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Abstract

In [9] Graham Farr gave a proof of a correlation inequality involving colourings of
graphs. His work eventually led to a conjecture that number of colourings of a graph
with certain properties gave a log-concave sequence. We restate Farr’s work in terms of
the bivariate chromatic polynomial of Dohmen, Poenitz, Tittman [7] and give a simple,
self-contained proof of Farr’s inequality using a basic combinatorial approach. We attempt
to prove Farr’s conjecture through methods in stable polynomials and computational ver-
ification, ultimately leading to a stronger conjecture.
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Chapter 1

Introduction

We let G denote an arbitrary undirected graph on n vertices. When there is no confusion,
we will use V to denote V (G), and E to denote E(G). A subset W of V is said to be
independent (or stable) if its vertices are pairwise non-adjacent, and is said to be dependent
otherwise. In particular, a vertex with a loop cannot be in any independent set. We denote
by I(G) the set of all independent sets of G.

Fix a non-negative integer k and a probability p such that kp ≤ 1. We will write
[k] to denote the set {1, . . . , k}. We will often think of the elements of [k] as colours.
Independently for each v ∈ V and each i ∈ [k], v is assigned colour i with probability
p. Hence a vertex is assigned no colour with probability 1 − kp. At times it may be
convenient to think of uncoloured vertices as having been assigned a (k+ 1)-th colour. For

each i ∈ [k], denote by Γ
(p)
i (or Γi when p is clear) the set of vertices assigned colour i.

Thus Γ
(p)
1 , . . . ,Γ

(p)
k are k mutually dependent random variables, each depending only on p.

For all ` ∈ {0, . . . , k}, we call the probabilities of the form

Pr(Γ1, . . . ,Γ` ∈ I(G))

the joint independence probabilities of G. In [9] Graham Farr proved that the joint inde-
pendence probabilities are negatively correlated. Specifically, he showed:

Theorem (Theorem 2 of [9]). Let G be a graph, k a non-negative integer, and p a proba-
bility, such that kp ≤ 1. For every ` ∈ [k] we have

Pr(Γ1, . . . ,Γ` ∈ I(G)) ≤ Pr(Γ1, . . . ,Γ`−1 ∈ I(G)) Pr(Γ` ∈ I(G)).
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We will refer to this result as Farr’s correlation inequality. Farr’s original proof, as well
as other proofs by McDiarmid [17] and Dubhashi and Ranjan [8], have relied on arguments
grounded in probabilistic methods. In Section 4 we will give a proof using a bare-bones
combinatorial approach.

Farr also defined a sequence (a
(k)
` )k`=0 where the `-th term is

a
(k)
` = Pr(Γ1, . . . ,Γ` ∈ I(G)) Pr(Γ1, . . . ,Γk−` ∈ I(G))

for ` ranging from 0 to k. Farr’s correlation inequality and other results led Farr to
conjecture that this sequence is log-concave. That is to say, for each i ∈ {1, . . . , k − 1}

(a
(k)
i )2 ≥ a

(k)
i−1a

(k)
i+1.

It seems that little to no progress has been made toward proving or disproving this con-
jecture. Following our proof of Farr’s Correlation inequality we will attempt to prove that
the sequence (a

(k)
` )k`=0 is log-concave.

Chapter 2 will review what is currently known about the joint independence probabil-
ities. This will include relations with the independence and chromatic polynomials of a
graph, a proof of Farr’s correlation inequality using basic probability theory, and what is
currently known about log-concavity of the sequence (a

(k)
` )k`=0.

In Chapter 3, we will focus on finding a better description for joint independence
probabilities. We show that it is not an evaluation of the Tutte polynomial. An exact
expression is then given in terms of a generalisation of the chromatic polynomial. This
description has implications for joint independent probabilities and the sequence (a

(k)
` )k`=0.

Chapter 4 will give a proof of an extension of Farr’s correlation inequality using a simple
combinatorial approach.

Chapter 5 will introduce a new graph invariant, Bk(G; y), which guarantees the log-

concavity of the a
(k)
` ’s when it has only real roots. Delving into known theory of real-rooted

polynomials, we show that Bk(G; y) possesses many attractive, and sometimes peculiar,
properties with regards to real-rootedness. We also present a loosely related, yet interesting,
result which came up during this investigation.

The final chapter will list computational results and further work that they moti-
vate. These results include exhaustive verifications of log-concavity and real-rootedness of
Bk(G; y).
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Chapter 2

Background

We begin by considering only a single Γi. Fix an arbitrary set W ⊆ V . For each vertex
v ∈ V , v ∈ Γi with probability p, independently of any other vertex being in Γi. Therefore
the probability that Γi is exactly W is p|W |(1− p)n−|W |. It follows that the probability of
Γi being an independent set is given by the polynomial

A(G; p) =
∑

W∈I(G)

p|W |(1− p)n−|W |.

Farr calls this polynomial the stability polynomial of G.

Using this idea, for any given k we can express Pr(Γ1, . . . ,Γk ∈ I(G)) as a polynomial
in p. Fix disjoint sets W1, . . . ,Wk ⊆ V . For each v ∈ V and i ∈ [k], v ∈ Wi with probability
p, and therefore

Pr(Γ1 = W1, . . . ,Γk = Wk) = p|W1|+···+|Wk|(1− kp)n−|W1|−···−|Wk|.

Thus we have

Pr(Γ
(p)
1 , . . . ,Γ

(p)
k ∈ I(G)) =

∑
W1,...,Wk∈I(G)

disjoint

p|W1|+···+|Wk|(1− kp)n−|W1|−···−|Wk|. (2.1)

Hence these probabilities are all given by polynomials in p. The forms given above are not
particularly enlightening. However, it has been shown that these polynomials, especially
A(G; p), are related to other graph polynomials [9] [19]. We will focus on the relations to
the independence polynomial and the chromatic polynomial.
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2.1 Relation to Polynomials of Graphs

The independence polynomial was first studied by Gutman and Harary [11]. Denoted
by I(G;x), it is defined to be the generating series for independent sets with respect to
cardinality, that is

I(G;x) =
∑

W∈I(G)

x|W |.

A detailed overview of the independence polynomial can be found in the survey [16] of
Levit and Mandrescu.

It is immediately clear that the stability polynomial and the independence polynomial
are related by a simple transformation

A(G; p) =
∑

W∈I(G)

p|W |(1− p)n−|W | = (1− p)nI(G; p/(1− p)). (2.2)

For example, consider the complete graph on n vertices, Kn. The only independent
sets of Kn are the empty set and singleton. Therefore its independence polynomial is
I(Kn;x) = 1 + nx. It follows from (2.2) and a bit of rearranging that

A(Kn; p) = (1− p)n−1(1− p(n− 1)).

Unfortunately, computing the independence polynomial for a general graph is a hard prob-
lem (specifically, it is #P-hard [27]). However there are many recurrence results that can
be used to compute I(G;x) if it is known for smaller graphs.

Before stating a few such results, we establish some notation. For U ⊆ V (G), G − U
denotes the graph obtained by deleting the vertices in U from G. If v is a vertex of G,
we write G − v to mean G − {v}. For an edge e of G, we let G \ e and G / e denote,
respectively, the graphs obtained by deleting and contracting the edge e. If the edge e is
a loop, then G \ e = G / e. We also define a third edge-removal operation we call edge
extraction, denoted by G− e, in which the ends of the edge are removed.

Theorem 2.1.1. If G1 and G2 are disjoint graphs, then

I(G1 ∪G2;x) = I(G1;x)I(G2;x).

Proof. Since G1 and G2 are disjoint, the independent sets of G1 ∪ G2 are unions of an
independent set of G1 with an independent set of G2. The result now follows from the
definition of I(G;x).
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A graph is the disjoint union of its connected components. Denote by κ(G) the number
of connected components of G. An immediate consequence of Theorem 2.1.1 is that if
G1, . . . , Gκ are the connected components of G, then

I(G;x) =
κ∏
i=1

I(Gi;x).

The analogous result also holds for A(G; p).

Theorem 2.1.2. Let G be a graph and e be an edge of G. The independence polynomial
of G satisfies the following recurrence relation:

I(G;x) = I(G \ e;x)− x(I(G / e;x)− I(G− e;x)).

This recurrence is usually given as I(G;x) = I(G \ e;x) − x2I(G − N(u) − N(v);x)
where u, v are the ends of e and N(u) is the set containing u and all vertices adjacent to
u in G. For our purposes, the form we gave will be more relevant.

Proof. Let u, v be the ends of e. Independent sets of G \ e can be divided into two classes,
those that contain both u and v, and those that contain at most one. The latter are in a
one-to-one correspondence with the independent sets of G.

Let w be the image of u and v under the contraction of e. The independent sets of
G/e can also be divided into two classes, those that contain w and those that do not. The
former are in bijection with the independent sets of G \ e which contain both u and w.
The latter are in bijection with the independent sets of (G/ e)−w which is exactly G− e.

Since the independent sets of G \ e containing both u and v contain one more vertex
than the corresponding independent sets of G / e which contain w, we must multiply the
independence polynomial of the latter by x.

Since every W ⊆ V is independent in an edgeless graph, its independence polynomial
is clearly ∑

W⊆V

x|W | =
n∑
i=0

(
n

i

)
xi = (1 + x)n.

Thus, one can always compute the independence polynomial of a graph by repeatedly
applying Theorem 2.1.2. However, this quickly becomes infeasible as the number of poly-
nomials that must be computed triples with every edge removed.
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We have shown Pr(Γ1, . . . ,Γ` ∈ I(G)) is related to the independence polynomial when
` = 1. The other main relation with a graph invariant comes when ` = k and kp = 1. In
this case, Γ1, . . . ,Γk form a colouring of G.

A colouring of G is any function c : V → K where K is a finite set. The elements of K
are referred to as colours and the preimage, c−1(i), of any colour i ∈ K is called the i-th
colour-class of c. If K is a set of k colours, we say that c is a k-colouring. We do not require
that all colours have a non-empty preimage, thus a (k− 1)-colouring is also a k-colouring.
A colouring whose colour-classes are all independent sets is said to be proper. In particular,
a graph with a loop cannot have a proper colouring. Unless we specify otherwise, we will
always use the set K = [k] as the colours of our k-colourings.

A colouring can be viewed as a partition of the vertex set along with a choice of colour
for each part of the partition. A proper colouring’s corresponding partition will contain
only independent sets. This mapping is a bijection, thus we can express the number of
k-colourings of a graph in terms of the number of ways its vertices can be partitioned into
independent sets.

For each j ∈ {0, . . . , n}, define λj(G) to be the number of partitions of V into exactly
j non-empty independent sets. Given k colours and a partition with j parts, there are
(k)j ways of assigning a different colour to each part, where (k)j is the falling factorial
k(k − 1) · · · (k − j + 1). Therefore, the number of k-colourings of G is given by

n∑
j=0

λj(G)(k)j. (2.3)

This shows that there is a polynomial in k which gives the number of k-colourings of G
for every non-negative integer k. We call the polynomial (2.3) the chromatic polynomial
of G and denote it by P (G; k). Notice that λn = 1 since we can always partition V into
singletons. Therefore, the chromatic polynomial is always a monic polynomial of degree n.

For example, the chromatic polynomial of Kn, the edgeless graph on n vertices, is kn

since every colouring is proper. On the other hand, the only independent sets of vertices
in the complete graph Kn are singletons, thus P (Kn; k) = (x)n.

The chromatic polynomial was first studied for graphs in the plane by Birkhoff [3] in
1912 in an effort to prove the Four-Colour Map Theorem. It was generalised to all graphs
in 1932 by Whitney [32,33]. For detailed surveys of the chromatic polynomial see [2, 22].

If kp = 1, then every vertex is assigned to one of Γ1, . . . ,Γk. In this case we obtain a
k-colouring of G whose i-th colour-class is Γi. Since the probability that v ∈ V receives
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colour i ∈ [k] is independent of v and i, each k-colouring is equally likely to occur. In total
there are kn k-colourings, therefore

Pr(Γ1, . . . ,Γk ∈ I(G)) =
P (G; k)

kn
. (2.4)

The chromatic polynomial also provides a crude lower bound on the stability polyno-
mial. Since the colour-classes of a proper colouring are independent sets, choosing a proper
colouring uniformly at random among all colourings is more restrictive than choosing an
independent set among all subsets of V . Hence we have

P (G; k)

kn
≤ A(G; 1/k). (2.5)

Unfortunately, as was the case for the independence polynomial, determining the chromatic
polynomial is #P-hard [13]. The simplest way of computing the chromatic polynomial is to
use recursive results similar to those we listed for the independence polynomial. In proving
these we make use of the fact that two polynomials which agree at infinitely many points
are identical.

Theorem 2.1.3. Let G1 and G2 be graphs such that V (G1) ∩ V (G2) induces a complete
graph on r vertices in each of G1 and G2 (r is 0 if G1 and G2 are disjoint). Then

P (G1 ∪G2; k) =
P (G1; k)P (G2; k)

(k)r

where (k)0 = 1.

Proof. Let C = V (G1)∩V (G2). A proper k-colouring of G1∪G2 corresponds to the union
of a proper k-colouring of G1 with a proper k-colouring of G2 such that both colour C in the
same way. Since C induces a complete subgraph in both G1 and G2, its vertices must be
assigned distinct colours. We know that proper colourings are partitions into independent
sets along with a choice of colour for each part. Since the colours for the vertices of C
are determined by the colourings of G1, the colourings of G2 are restricted by a factor of
(k)r. Thus after choosing a colouring for G1, we lose r colour choices. Hence the number
of colourings of G2 is reduced by a factor of (k)r.

In particular, P (G1 ∪G2; k) = P (G1; k)P (G2; k) when G1 and G2 are disjoint. Hence,
as was true for I(G;x), if G has connected components G1, . . . , Gm, then

P (G; k) =
m∏
i=1

P (Gi; k).

7



Another useful observation is that if T is a tree, v, w ∈ V (T ) are adjacent, and v is not
adjacent to any other vertex of T , then T = (T − v) ∪ K2 where the vertex set of K2 is
{v, w}. These graphs have one vertex in common hence

P (T ; k) =
(k)2P (T − v; k)

(k)1
= (k − 1)P (T − v; k).

Since P (K1; k) = k it follows by induction on n that the chromatic polynomial of any tree
on n vertices is k(k − 1)n−1. This means that the number of proper k-colourings of a tree
is entirely determined by the number of vertices.

The next result is similar to Theorem 2.1.2 and is one of the best known properties of
the chromatic polynomial.

Theorem 2.1.4 (Deletion-Contraction Recurrence). Let G be a graph and e be an edge of
G. The chromatic polynomial of G satisfies

P (G; k) = P (G \ e; k)− P (G / e; k).

Proof. Let e be any edge in G and consider a proper k-colouring c of G\ e. If c colours the
ends of e with different colours, then c is a proper k-colouring of G, otherwise it corresponds
to a proper k-colouring of G / e (after identifying the two ends of e). This mapping is a
bijection between the proper k-colourings of G \ e and the union of those of G and G / e.
Thus we have the deletion-contraction recurrence.

Since the chromatic polynomial of an edgeless graph on n vertices is kn, this recurrence
provides a second way of showing that P (G; k) is a polynomial of degree n with integer
coefficients.

2.2 Farr’s Correlation Inequality

Suppose that k and p are such that kp = 1. The stability polynomial gives the probability
that a single Γi is independent. Since the Γi are symmetric, it follows that

A(G; 1/k)k =
k∏
i=1

Pr(Γi ∈ I(G)). (2.6)

On the other hand (2.4) states that

pnP (G; 1/p) = Pr(Γ1, . . . ,Γk ∈ I(G)).

8



The left-hand side of (2.4) requires that Γ1, . . . ,Γk, in addition to being independent, form
a partition of V . In Farr’s words [9, p. 15], a comparison of these two equalities suggests
that the events (Γi ∈ I(G)) are negatively correlated. That is

Pr(Γ1, . . . ,Γk ∈ I(G)) ≤
k∏
i=1

Pr(Γi ∈ I(G)). (2.7)

We recall Farr’s correlation inequality:

Theorem (Theorem 2 of [9]). Let G be a graph, k a non-negative integer, and p a proba-
bility, such that kp ≤ 1. For every ` ∈ [k] we have

Pr(Γ1, . . . ,Γ` ∈ I(G)) ≤ Pr(Γ1, . . . ,Γ`−1 ∈ I(G)) Pr(Γ` ∈ I(G)).

By repeatedly applying this result, one easily obtains (2.7). Furthermore, when kp = 1
we obtain the following inequality involving the chromatic polynomial and the stability
polynomial:

P (G; k)

kn
≤ A(G; 1/k)k.

It is important to note that this bound is a big improvement over (2.5). Of course, the
right-hand side can also be expressed in terms of the independence polynomial as

(k + 1/k)nkI(G; 1/k − 1)k.

Farr’s original proof is by no means basic as it uses the Ahlswede-Daykin Inequality (also
known as the Four Functions Theorem), a very powerful correlation inequality result. Farr
even mentions [9, p. 15]:

I found this surprisingly hard to prove, and indeed the proof given uses the
considerable power of the Ahlswede-Daykin Theorem.

Soon after, an alternate proof was provided by McDiarmid [17] which relied on Harris’
Inequality, a weaker, but not elementary, correlation inequality result implied by the
Ahlswede-Daykin Inequality. McDiarmid’s proof was stated as a consequence of a lemma
stronger than Farr’s result. In [8, Section 4.4] Dubhashi and Ranjan recast Farr and Mc-
Diarmid’s results in terms of their balls and bins experiment framework. Their proof uses
only basic probability theory and their result is a very strong extension of Farr’s correla-
tion inequality. To state their result, we define a more general way of assigning colours to
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vertices at random. Let k be a non-negative integer and let q = (qi,v : i ∈ [k], v ∈ V ) be
a vector of probabilities such that

∑
i∈[k] qi,v = 1 for all v ∈ V . Independently, for each

vertex v ∈ V , v is assigned colour i with probability qi,v for each i ∈ [k]. Denote by Γ
(q)
i

(or Γi when q is clear) the set of vertices assigned colour i.

Theorem 2.2.1. Let k be a non-negative integer and q be a vector of probabilities such
that

∑
i∈[k] qi,v = 1. For any j, ` ∈ [k] such that j < ` we have

Pr(Γ1, . . . ,Γ` ∈ I(G)) ≤ Pr(Γ1, . . . ,Γj ∈ I(G)) Pr(Γj+1, . . . ,Γ` ∈ I(G)).

It is easy to recover Farr’s result from Theorem 2.2.1. Consider k + 1 colours, for all
v ∈ V set qi,v = p for all i ∈ [k], and set qk+1,v = 1 − kp. Then with j = ` − 1 we obtain
Farr’s correlation inequality.

We include the following proof of Theorem 2.2.1, adapted from [8], as an example of
the probabilistic approach to Farr’s correlation inequality. This will contrast with Chapter
4 in which we provide a proof using an entirely combinatorial approach. Unfortunately,
our result won’t be quite as strong as Theorem 2.2.1.

When X is a vector with entries indexed by a set A, and B is a subset of A, then by
XB we mean the vector (Xi : i ∈ B). A vector X = (X1, . . . , Xk) of random variables is
negatively associated if it satisfies the following condition: for any disjoint sets I, J ⊆ [k]
and any functions f : RI → R and g : RJ → R that are both non-decreasing or both
non-increasing we have

E[f(XI)g(XJ)] ≤ E[f(XI)]E[g(XJ)].

We note that the inequality above holds for f and g if and only if it holds for −f and −g.
Therefore, to show X is negatively associated it suffices to show the inequality holds for
non-decreasing f and g.

Lemma 2.2.2 (Lemma 9 of [8]). If X = (X1, . . . , Xm) are binary random variables satis-
fying

∑
i∈[m]Xi = 1, then X is negatively associated.

The following elementary proof is due to McDiarmid [8, Remark 11].

Proof. Let I, J be disjoint subsets of [m] and let f : {0, 1}I → R and g : {0, 1}J → R be
non-decreasing functions. Define f ∗ and g∗ by

f ∗(xI) := f(xI)− f(0)

g∗(xJ) := g(xJ)− g(0).

10



Since f and g are non-decreasing, f ∗ and g∗ are non-negative functions and

f(0) = 0 = g(0).

However, we know
∑

iXi = 1, hence f ∗ and g∗ cannot be non-zero at the same time. Thus
we have

E[f ∗(XI)g
∗(XJ)] = 0 ≤ E[f ∗(XI)]E[g∗(XJ)].

It follows from the linearity of expectation that

E[f(XI)g(XJ)] = E[f ∗(XI)g
∗(XJ)] + f(0)E[g∗(XJ)] + g(0)E[f ∗(XI)] + f(0)g(0)

≤ E[f ∗(XI)]E[g∗(XJ)] + f(0)E[g∗(XJ)] + g(0)E[f ∗(XI)] + f(0)g(0)

= E[f(XI)]E[g(XJ)].

Thus X is negatively associated.

Next we require a tool to show that a union of negatively associated vectors of variables
is also negatively associated. The following result appears as part 1 of Proposition 8 in [8].
but the proof we give is due to Joag-Dev and Proschan [14, Property P7].

Lemma 2.2.3. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn) be vectors of negatively
associated random variables such that X is independent from Y . Then their union (X,Y )
is also negatively associated.

Proof. Let (Xf ,Xg) and (Yf ,Yg) be partitions of X and Y . Let f : R|Xf |+|Yf | → R and
g : R|Xg |+|Yg | → R be non-decreasing functions.

Use hf (Yf ) to denote E[f(Xf ,Yf ) | Yf ]. Since hf (Yf ) is a measurable function we have

E[f(Xf ,Yf ) | Yf ] = E[f(Xf ,Yf ) | Yf ,Yg]

almost surely. A similar result holds for hg(Yg) = E[g(Xg,Yg) | Yg].

We know that hf and hg are non-decreasing as f and g are non-decreasing. Since X
is independent of Y , the negative association of X is preserved when the expectation is
conditional on Y . Hence we have

E[f(Xf ,Yf )g(Xg,Yg) | Yf ,Yg] ≤ hf (Yf )hg(Yg).

11



It then follows that

E[f(Xf ,Yf )g(Xf ,Yf )] = E[E[f(Xf ,Yf )g(Xg,Yg) | Yf ,Yg]]
≤ E[hf (Yf )hg(Yg)]

≤ E[hf (Yf )]E[hg(Yg)]

= E[f(Xf ,Yf )]E[f(Xg,Yg)]

where the second inequality is due to Y being negatively associated. We conclude that the
union of X and Y is negatively associated.

We translate our random colouring into binary random variables with k variables per
vertex. For each i ∈ [k] and v ∈ V let the distribution of Xi,v be such that Xi,v = 1 if
v ∈ Γi and Xi,v = 0 otherwise. Thus, for a fixed v ∈ we have

∑
iXi,v = 1. The idea is to

show that (Xi,v : i ∈ [k], v ∈ V ) is negatively associated and then produce non-increasing
functions which indicate when certain colour-classes are independent sets.

Proof of Theorem 2.2.1. Since each vertex is coloured independently in our random colour
assignment, the vectors (Xi,v : i ∈ [k]) are all pairwise independent. Since each of these
vectors is negatively associated, it follows from Lemma 2.2.3 that the entire vector (Xi,v :
i ∈ [k], v ∈ V ) is negatively associated.

Now we create non-increasing functions which indicate when certain colour-classes are
independent sets. For each i ∈ [k] we write Xi to mean the vector (Xi,v : v ∈ V ) and we
define fi : {0, 1}V → R by

fi(Xi) =

{
1, if Γi is an independent set

0, otherwise

where Γi = {v ∈ V : Xi,v = 1}.
Each fi is non-increasing as we cannot make a dependent set of vertices independent

by adding vertices. Since these functions are non-negative, the property of being non-
increasing is preserved by products. Therefore

E

[
k∏
i=1

fi(Xi)

]
≤ E

[
j∏
i=1

fi(Xi)

]
E

[
k∏

i=j+1

fi(Xi)

]
.

Note that the expectation of a binary random variable is equal to the probability that this
variable is 1. Thus we conclude that

Pr(Γ1, . . . ,Γk ∈ I(G)) ≤ Pr(Γ1, . . . ,Γj ∈ I(G)) Pr(Γj+1, . . . ,Γn ∈ I(G)).
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While Theorem 2.2.1 holds for probabilities that depend on both i and v, Farr’s work,
and consequently the majority of this thesis, is only concerned with the case where the
probability is fixed for all i ∈ [k] and v ∈ V . Thus, with the exception of Chapter 4, we

will always assume that there is a single p being used to define Γ
(p)
1 , . . . ,Γ

(p)
k .

2.3 The Sequence a(k)

By the symmetry between the colour-classes, Farr’s correlation inequality can be written
as

Pr(Γ1, . . . ,Γk ∈ I(G)) ≤ Pr(Γ1, . . . ,Γk−1 ∈ I(G)) Pr(Γ1 ∈ I(G)).

This led Farr to study the following sequence: for j = 0, . . . , k we define

a
(k)
j (G; p) := Pr(Γ1, . . . ,Γj ∈ I(G)) Pr(Γ1, . . . ,Γk−j ∈ I(G)).

We refer to the entire sequence as a(k)(G; p). When there is no ambiguity, we will omit p
and G.

This sequence is symmetric, that is to say a
(k)
j = a

(k)
k−j for all j = 0, . . . , k. Farr’s

correlation inequality states that a
(k)
0 ≤ a

(k)
1 and, by symmetry, that a

(k)
k−1 ≥ a

(k)
k . In

Chapter 6, we will give results of verification by computer which shows that the pattern
continues with terms increasing as they approach the centre of the sequence.

We say that a sequence of real numbers α0, . . . , αn is unimodal if it has a single peak.
That is, there exists some i ∈ {0, . . . , n} such that

α0 ≤ α1 ≤ · · · ≤ αi−1 ≤ αi ≥ αi+1 ≥ · · · ≥ αn−1 ≥ αn.

Since a(G; k) is symmetric, it being unimodal would mean the single peak is in the centre
of the sequence. A stronger condition on a sequence is logarithmic concavity.

Let α0, . . . , αn be a sequence of non-negative real numbers. For i ∈ {1, . . . , n − 1}, αi
is said to be an internal zero of the sequence if αi = 0 and there exist i< ∈ {0, . . . , i− 1}
and i> ∈ {i + 1, . . . , n} such that αi< and αi> are non-zero. The sequence is said to be
logarithmically concave (abbreviated to log-concave) if for all i ∈ {1, . . . , n − 1} we have
α2
i ≥ αi−1αi+1. For a detailed survey of log-concave and unimodal sequences see [23].

The prototypical example of a log-concave sequence is a row of Pascal’s triangle. Indeed,
one can easily verify that(

k

`

)2(
k

`− 1

)−1(
k

`+ 1

)−1
=

(`+ 1)(k − `+ 1)

`(k − `)
> 1.

13



As mentioned earlier, log-concavity is a stronger condition on a sequence than unimodality.

Theorem 2.3.1. If α0, . . . , αn is a log-concave sequence with no internal zeroes, then
α0, . . . , αn is unimodal.

Proof. As there are no internal zeroes, we lose no generality in assuming that α1, . . . , αn−1
are all non-zero. Let i ∈ {1, . . . , n − 1} be arbitrary. If αi−1 ≥ αi, then it follows from
α2
i ≥ αi−1αi+1 that αi ≥ αi+1. Similarly, αi ≤ αi+1 will imply αi−1 ≤ αi. Thus there can

only be one peak in the sequence.

While the requirements for log-concavity are much stronger than those for unimodality,
Graham Farr was able to show that, under moderate conditions, unimodality and log-
concavity are equivalent for the sequence ak. In fact, his result is slightly stronger and shows
that a peak in the centre of ak is enough to guarantee log-concavity (and unimodality).

Theorem 2.3.2 (Private communication from G. E. Farr). If 2kp ≤ 1 and a(m) has a local
central maximum for all even m < 2k, then a(k) is log-concave.

Proof. Let j be a positive integer such that j ≤ k
2
. Since a(2j) and a(2k−2j) have a central

peak we have
a
(2j)
j a

(2k−2j)
k−j ≥ a

(2j)
j−1a

(2k−2j)
k−j−1 .

We can rewrite this as

Pr(Γ1, . . . ,Γj ∈ I(G))2 Pr(Γ1, . . . ,Γk−j ∈ I(G))2

≥ Pr(Γ1, . . . ,Γj−1 ∈ I(G)) Pr(Γ1, . . . ,Γj+1 ∈ I(G))

Pr(Γ1, . . . ,Γk−(j+1) ∈ I(G)) Pr(Γ1, . . . ,Γk−(j−1) ∈ I(G))

which is easily seen to be
(a

(k)
j )2 ≥ a

(k)
j−1a

(k)
j+1.

Thus a(k) is log-concave.

While this result is an interesting partial converse to Proposition 2.3.1, it requires
information about many sequences and puts a big restriction on k. This restriction is
particularly unfortunate as it means that a vertex receives no colour at least half the
time. Thus the result tells us nothing when p = 1/k, which the most interesting case to
consider. With this in mind, and having undoubtedly verified many examples, Farr made
the following conjecture:

14



Conjecture 2.3.3 (Private communication from G. E. Farr). Let G be a graph. For any
non-negative integer k and any probability p such that kp ≤ 1, the sequence a(k)(G; p) is
log-concave.
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Chapter 3

The Joint Independence Probabilities
as a Polynomial

We wish to better describe Pr(Γ1, . . . ,Γ` ∈ I(G)) as a polynomial. We know that for
each `, the probability is a polynomial in p. This polynomial can be written in terms of
the independence polynomial when ` = 1 and in terms of the chromatic polynomial when
`p = 1. These polynomials have some similar properties such as being multiplicative over
the connected components of G and satisfying some sort of deletion-contraction recurrence.
It stands to reason that Pr(Γ1, . . . ,Γ` ∈ I(G)) might be a polynomial in both k and p which
possesses these properties.

We begin by exploring possible connections to the Tutte polynomial. This polynomial is
an important tool for studying graph invariants which have these kinds of properties. Un-
fortunately, we will see that the Tutte polynomial cannot describe the joint independence
probabilities in general. We will turn to P (G; k, `), a two-variable generalisation of the
chromatic polynomial due to Dohmen, Poenitz, and Tittmann [7]. Thanks to its combina-
torial interpretation, we will see that this polynomial is equivalent to Pr(Γ1, . . . ,Γ` ∈ I(G)).
We explore the implications of this relation, especially in regards to the sequence a(k), and
conclude with some important properties of P (G; k, `).

3.1 The Tutte Polynomial

The Tutte polynomial is one of the most important and well-studied graph invariants. Via
Theorem 3.1.3 it generalises graph invariants which possess a multiplicative property and
satisfy a deletion-contraction recurrence.
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The rank of G, denoted r(G), is defined to be the number of edges in a maximal acyclic
subgraph of G. Since a tree on n vertices has n−1 edges, r(G) = n(G)−κ(G). For F ⊆ E,
we identify F with the spanning subgraph of G with edge set F . The Tutte polynomial,
T (G;x, y), is defined as follows:

T (G;x, y) =
∑
F⊆E

(x− 1)r(G)−r(F )(y − 1)|F |−r(F ). (3.1)

The Tutte polynomial was first studied by Tutte in [26], however the coefficients of the
equivalent rank polynomial, R(G;x, y) = T (G;x−1, y−1), were studied earlier by Whitney
[32,33]. A great account of the history of the Tutte polynomial can be found in Section 3
of [10].

We denote the graph with a single vertex and a single loop by L. The Tutte polynomial
can also be defined recursively in the following way.

Theorem 3.1.1. T (G;x, y) is the unique polynomial which satisfies all of the following:

(i) T (K1;x, y) = 1, T (K2;x, y) = x, and T (L;x, y) = y;
(ii) if G1 and G2 are graphs with at most one vertex in common, then

T (G1 ∪G2;x, y) = T (G1;x, y)T (G2;x, y);

(iii) for every edge e ∈ E that is neither a cut-edge, nor a loop

T (G;x, y) = T (G \ e;x, y) + T (G / e;x, y).

The following proof is adapted from [20].

Proof. It is easy to verify (i) holds.

If G1 and G2 have at most one vertex in common, then a maximal acyclic subgraph of
G is the union of maximal acyclic subgraphs of G1 and G2. Thus

r(G1 ∪G2) = r(G1) + r(G2).

Since G1 and G2 have no edges in common, (ii) follows from (3.1).

Fix an edge e that is neither a cut-edge nor a loop. Observe that r(G \ e) = r(G) and
r(G / e) = r(G)− 1. If F ⊆ E does not contain e, then

(x− 1)r(G)−r(F )(y − 1)|F |−r(F ) = (x− 1)r(G\e)−r(F )(y − 1)|F |−r(F ).
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On the other hand, if F contains e, then

(x− 1)r(G)−r(F )(y − 1)|F |−r(F ) = (x− 1)r(G/e)−r(F/e)(y − 1)|F/e|−r(F/e).

We conclude from these observations that (iii) holds.

Now suppose that f(G;x, y) is a graph invariant satisfying (i), (ii), and (iii). We will
show that T and f are the same by induction on m, the number of edges of G. The basis of
induction is handled by (i). We assume that for some m ≥ 2, T and f agree for all graphs
with fewer than m edges. Suppose G has m edges. If G has an edge e that is neither a
cut-edge nor a loop, then f(G;x, y) = T (G;x, y) since they both satisfy (iii). Otherwise,
every edge of G is either a cut-edge or a loop. We will show that G = G1 ∪ G2 where G1

and G2 have at most one vertex in common and both have fewer than m edges. It will
then follow that

T (G;x, y) = T (G1;x, y)T (G2;x, y) = f(G1;x, y)f(G2;x, y) = f(G;x, y).

If G is not connected, let G1 be some connected component of G and let G2 = G−V (G1).
If G is connected, then G must have a vertex v incident with at least two distinct edges.
In this case G is the union of two graphs G1 and G2, each having at least one edge, whose
only common vertex is v. In both cases, G1 and G2 have fewer edges than G, completing
the proof.

Remark 3.1.2. Using (i), (ii) and straightforward induction on the number of edges, one
can easily show that T (G;x, y) = xiyj when G is has i cut-edges, j loops, and no other
edges.

As mentioned earlier, the Tutte polynomial generalises all graph invariants which satisfy
a deletion-contraction recurrence and a multiplicativity property.

Theorem 3.1.3 (Theorem 1 in Section 2 of [20]). Suppose that f is a graph invariant
satisfying all of the following:

(i) f(K1) = 1;

(ii) f(G1 ∪G2) = f(G1)f(G2) whenever G1 and G2 have at most one vertex in common;

(iii) there exist a, b such that f(G) = af(G \ e) + bf(G / e) whenever e ∈ E is neither a
cut-edge or a loop.

Then, for any graph G, we have

f(G) = a|E(G)|−r(G)br(G)T (G; b−1f(K2), a
−1f(L)). (3.2)
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Proof. Let f ′(G) denote the right-hand side of (3.2). We already argued that r(G) =
r(G1) + r(G2) when G1 and G2 have at most one vertex in common. Hence f ′(G) satisfies
(ii) since T (G;x, y) satisfies it. If e ∈ E is neither a loop nor a cut-edge, then r(G\e) = r(G)
and r(G/ e) = r(G)− 1. Thus, since T (G;x, y) satisfies a deletion-contraction recurrence,
f ′ satisfies the following:

f ′(G) = a|E(G)|−r(G)br(G)T (G; b−1f(K2), a
−1f(L))

= a|E(G)|−r(G)br(G)[T (G \ e; b−1f(K2), a
−1f(L)) + T (G / e; b−1f(K2), a

−1f(L)]

= af ′(G \ e) + bf ′(G / e).

That f ′(G) = f(G) now follows in the same way we showed T (G;x, y) was unique in
the proof of Theorem 3.1.1.

The chromatic polynomial does not quite satisfy the conditions of Theorem 3.1.3. In
particular, P (K1; k) = k, and if G1 and G2 have exactly one vertex in common, then
P (G1 ∪G2; k) = k−1P (G1; k)P (G2; k). To address this, we define the polynomial

P ′(G; k) = k−κ(G)P (G; k).

It is clear that P ′(K1; k) = 1. Moreover, if G1 and G2 have at most one vertex in common,
it is easy to show P ′(G1∪G2; k) = P ′(G1; k)P ′(G2; k) using Theorem 2.1.3 and the following
observation:

κ(G1 ∪G2) =

{
κ(G1) + κ(G2), if |V (G1) ∩ V (G2)| = 0

κ(G1) + κ(G2)− 1, if |V (G1) ∩ V (G2)| = 1.

Finally, when e is not a cut-edge we are guaranteed that deleting e will not change the
number of connected components. Hence P ′ satisfies the deletion-contraction recurrence
just as P (G; k) does

P ′(G; k) = P ′(G \ e; k)− P ′(G / e; k).

It now follows from Theorem 3.1.3 that the chromatic polynomial is the following evaluation
of the Tutte polynomial:

P (G; k) = (−1)r(G)kκ(G)T (G; 1− k, 0).

Unfortunately, the independence polynomial cannot be expressed as an evaluation of
the Tutte polynomial. It follows from Remark 3.1.2 that the Tutte polynomial of a tree
on n vertices is xn−1. On the other hand, I(G;x) differs for the two trees on four vertices:

I(K1,3;x) = 1 + 4x+ 3x2 + x3

I(P4;x) = 1 + 4x+ 3x2.
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Thus, while the joint independent probabilities may be expressed in terms of the Tutte
polynomial when kp = 1, this does not hold for general k. In particular, the probability
that a subset Γi of vertices is independent is not an evaluation of the Tutte polynomial.

3.2 The Bivariate Chromatic Polynomial

Let K be a finite set of colours and let L be a subset of K. A (K,L)-colouring of G is a
colouring c : V → K such that c−1(i) is an independent set whenever i ∈ L. We call the
colours in L the proper colours of K and the colours in K \ L the improper colours of K.

For convenience, if k and ` are non-negative integers such that ` ≤ k, then by a (k, `)-
colouring we will mean a ([k], [`])-colouring of G. Similarly, if L ⊆ [k], then we may use
(k, L)-colouring to mean a ([k], L)-colouring.

1

2

1 3

2
3

1

2 3

3

Figure 3.2.1: A (3, 2)-colouring of the Petersen graph

When none of the colours are proper we simply have a colouring and when all the
colours are proper we have a proper colouring. Hence (k, `)-colourings sit in between k-
colourings and proper k-colourings. We also note that a vertex with a loop-edge can only
be coloured with an improper colour.

For U ⊆ V , we denote by G[U ] the graph induced by the vertices in U . Just as the
number of proper k-colourings is given by a polynomial in k, the number of (k, `)-colourings
is given by a polynomial in k and `.

Theorem 3.2.2 (Theorem 1 of [7]). For any non-negative integers k and ` such that ` ≤ k,
the number of (k, `)-colourings of G is given by∑

W⊆V

(k − `)n−|W |P (G[W ]; `). (3.3)
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Proof. We consider all possible ways of partitioning the vertices into a set of properly
coloured vertices and a set of improperly coloured vertices. For each W ⊆ V there are
P (G[W ]; `) colourings of U with the proper colours, and (k − `)|W | ways of colouring the
remaining vertices with the improper colours.

We call (3.3) the bivariate chromatic polynomial of G and denote it by P (G; k, `). As we
mentioned earlier, when all colours are proper we recover the notion of proper colourings,
hence P (G; k, k) = P (G; k). On the other hand, in the absence of proper colours we
recover the notion of arbitrary colourings, hence P (G; k, 0) = kn. This generalisation of
the chromatic polynomial was first introduced in 2003 by Dohmen, Poenitz, and Tittmann
[7].

A graph has a proper 1-colouring if and only if it has no edge. Hence, it follows from
Theorem 3.2.2 that

P (G;x+ 1, 1) =
∑
W⊆V

xn−|W |P (G[W ]; 1) =
∑

W∈I(G)

xn−|W |.

Thus, the independence polynomial is the following evaluation of P (G; k, `):

I(G;x) = xnP (G; (x+ 1)/x, 1).

Using (2.2) we deduce a similar expression for the stability polynomial in terms of the
bivariate chromatic polynomial

A(G; p) = pnP (G; 1/p, 1).

Recall also (2.4) which gives a similar relation expressing the joint independence probabil-
ities in terms of P (G; `) when ` = 1/p:

Pr(Γ1, . . . ,Γ` ∈ I(G)) =
P (G; `)

`n
=
P (G; `, `)

`n
.

These relations for specific values of ` are generalised in the following result which shows
that Pr(Γ1, . . . ,Γ` ∈ I(G)) and P (G; k, `) coincide.

Theorem 3.2.3. Let G be a graph and let ` be a non-negative integer. Then

Pr(Γ
(p)
1 , . . . ,Γ

(p)
` ∈ I(G)) = pnP (G; 1/p, `)

as polynomials in p.
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Proof. Recall (2.1) which stated

Pr(Γ
(p)
1 , . . . ,Γ

(p)
` ∈ I(G)) =

∑
W1,...,Wk∈I(G)

disjoint

p|W1|+···+|Wk|(1− kp)n−|W1|−···−|Wk|.

Since proper `-colourings are in one-to-one correspondence with partitions of the vertices
into ` independent sets (some of which may be empty), we can rewrite (2.1) as a sum over
W = W1 ∪ · · · ∪W`

Pr(Γ1, . . . ,Γ` ∈ I(G)) =
∑
W⊆V

p|W |(1− `p)n−|W |P (G[W ]; `).

Using Theorem 3.2.2 we easily rewrite pnP (G; 1/p, `) as∑
W⊆V

p|W |(1− p`)n−|W |P (G[W ]; `).

Since both identities hold for all real numbers p between 0 and 1/`, we conclude that

pnP (G; 1/p, `) and Pr(Γ
(p)
1 , . . . ,Γ

(p)
` ∈ I(G)) agree as polynomials in p.

Theorem 3.2.3 has some important consequences for the bivariate chromatic polyno-
mial. It gives meaning to P (G; k, `) when k is a positive non-integer number. It also
implies a result analogous to Farr’s correlation inequality holds for the bivariate chromatic
polynomial. As for the joint independence probabilities, Theorem 3.2.3 tells us that it can
be studied under the lens of (k, `)-colourings. Moreover, many of its properties can be
deduced from properties of P (G; k, `). For example, computing Pr(Γ1, . . . ,Γ` ∈ I(G)) for
Kn and Km,n can easily be done by counting (k, `)-colourings.

Consider the complete graph on n vertices. To count the number of (k, `)-colourings
it suffices to count all possible ways of choosing a set of vertices to be properly coloured,
and colouring the vertices accordingly. For each i, there are

(
n
i

)
ways of choosing i vertices

and (`)i ways of colouring them with proper colours. The remaining vertices are coloured
however we choose, thus

P (Kn; k, `) =
n∑
i=0

(
n

i

)
(k − `)i(`)n−i.

For the complete bipartite graph Ka,b with bipartition (A,B) where |A| = a and |B| = b,
we count the ways of choosing i vertices from A and colour them with j colours. Let

{
i
j

}
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denote Stirling numbers of the second kind which count the number of ways in which an
i-element set can be partitioned into j non-empty subsets. Then there are

{
i
j

}
(`)j ways of

colouring the vertices chosen from A, (k− `)a−i ways of colouring the remainder of A with
improper colours, and (k − j)b ways of colouring the vertices of B. Therefore

P (Ka,b; k, `) =
a∑
i=0

(
a

i

)
(k − `)a−i

i∑
j=0

{
i

j

}
(k − j)b(`)j.

We conclude that

Pr(Γ1, . . . ,Γ` ∈ I(G)Kn) = pn
n∑
i=0

(
n

i

)
(1/p− `)i(`)n−i,

Pr(Γ1, . . . ,Γ` ∈ I(G)Ka,b) = pa+b
a∑
i=0

(
a

i

)
(1/p− `)a−i

i∑
j=0

{
i

j

}
(1/p− j)b(`)j.

An additional consequence of Theorem 3.2.3 is that, for any positive integer k,

a
(p)
k (G; `) = p2nP (G; 1/p, `)P (G; 1/p, k − `).

Thus if the sequence (P (G; 1/p, `))k`=0 is log-concave, then it is immediate that a
(p)
k (G) is

as well. This equality also suggests that the sequence of evaluations of P (G; k, `) may be

a more basic object to study, and that a
(p)
k (G) is simply inheriting its log-concavity. For

example, Farr’s correlation inequality can equivalently be stated as saying

P (G; k, `)P (G; k, 0) ≤ P (G; k, `− 1)P (G; k, 1).

In particular, when ` = 2,

P (G; k, 2)P (G; k, 0) ≤ P (G; k, 1)2

hence the first three terms of (P (G; 1/p, `))k`=0 satisfy the definition of log-concavity. To
take advantage of the combinatorial interpretation of P (G; k, `) we will focus on the case
where p = 1/k. Since increasing the number of proper colours adds restrictions on the
colouring it follows that the sequence is decreasing

p−n = P (G; 1/p, 0) ≥ P (G; 1/p, 1) ≥ · · · ≥ P (G; 1/p, ) = P (G; k).

In fact, the sequence is strictly decreasing when G has an edge since the edge will restrict
the assignment of any proper colours. In Section 6.1 we give computational verification that
(P (G; k, `))k`=0 is log-concave for allG and k where n(G) ≤ 10 and k ≤ n(G)+1. The results
of these computations motivated a shift from studying a(k) to studying (P (G; 1/p, `))k`=0.
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3.3 Properties of P (G; k, `)

We will make frequent use of the following result to prove identities involving the bivariate
chromatic polynomial.

Lemma 3.3.1. Let p ∈ R[x, y] be arbitrary. Then p is uniquely determined by the values
p(k, `) for all non-negative integers k, ` such that ` ≤ k.

Proof. Let N be a non-negative integer such that each of x and y appear in p at most to
the N -th power. Let S = {N, . . . , 2N + 1} × {N, . . . , 2N + 1}. For s = (i, j) ∈ S let ms

be the monomial (x−N)i(y −N)j. Define M as the matrix

M = (mi(j))i,j∈S.

The set {(x)a : a ∈ {0, . . . , N}} is a basis for polynomials in x of degree at most N . This
is easily seen by induction on N and the observation that (x)N is the only falling factorial
of degree N . It follows that {ms : s ∈ S} is a basis for R[x, y] of degree at most N for
each variable individually. Hence p(x, y) is in the column space of M . Thus, if M is non-
singular, p(x, y) is uniquely determined by {p(s) : s ∈ S}. Notice that (x)i(y)j = 0 when
x ∈ {0, . . . , i − 1} or y ∈ {0, . . . , j − 1}. Thus, with an appropriate ordering of the rows
and columns, M is a triangular matrix with non-zero entries on its diagonal. We conclude
that M is non-singular.

It is a consequence of Lemma 3.3.1 that identities involving P (G;x, y) need only be
shown to hold for non-negative integers `, k such that ` ≤ k. We will use this fact many
times without explicit mention.

By considering (3.3) it is clear that the term corresponding to W = ∅ is the only one
in which k appears to the n-th power. This shows that the degree of P (G; k, `) in terms of
k is n. Moreover, the coefficient of kn is 1. In order to say something similar in regards to
` we will express P (G; k, `) in terms of falling factorials of `. To do so, we will make use
of a standard technique in enumerative combinatorics, the Inclusion-Exclusion Principle.

Inclusion-Exclusion Principle. Let S and A be finite sets. Suppose that we have a set
As ⊆ A for each s ∈ S. For every T ⊆ S, denote by AT the set

⋂
t∈T At, where A∅ = A.

Then the number of elements of A that are not contained in any As is∣∣∣∣∣A \⋃
s∈S

As

∣∣∣∣∣ =
∑
T⊆S

(−1)|T ||AT |.
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A proof of the Inclusion-Exclusion Principle can be found in Section 2.1 of [24].

Theorem 3.3.2. Fix a graph G. For every non-negative integer i and every W ⊆ V ,
define µi(W ) to be the number of partitions of W into exactly i dependent sets. Then

P (G; k, `) =
∑
i≥0

(−1)i(`)i
∑
W⊆V

µi(W )(k − i)n−|W |.

Proof. Fix arbitrary non-negative integers k, ` such that ` ≤ k. For each i ∈ [`], define Ai
to be the set of k-colourings for which the i-th colour-class is dependent. Then P (G; k, `)
counts the number of k-colourings which are not in any Ai. We let A be the set of all
k-colourings of G and use the notation given in the statement of the Inclusion-Exclusion
Principle. It follows that we have

P (G; k, `) =
∑
I⊆[`]

(−1)|I||AI |.

For I ⊆ [`], AI is the set of k-colourings c of G which have the property that c−1(j) is
dependent for each j ∈ I. To count such colourings we consider partitioning the vertices
into two sets: those which are coloured with colours in I, and those which are not. Let
i = |I|. For W ⊆ V , there are µi(W ) · i! ways of colouring the vertices of W with the
colours of I and (k − i)n−|W | ways of colourings the other vertices with the remaining
colours. Therefore

|AI | =
∑
W⊆V

µi(W )(k − i)n−|W |i!.

Since there are (`)i/i! subsets of [`] of cardinality i, the result follows.

If π is a partition of W into i dependent sets, then each part of π contains two vertices
which are joined by an edge, hence |W | ≥ 2i. It follows from Theorem 3.3.2 that the
coefficient of kj`i in P (G; k, `) can only be non-zero when j + 2i ≤ n. In particular, the
total degree of P (G; k, `) is n. It also means that π must contain a set of vertices matched
by a matching of size i. We denote by ν(G) the maximum size of a matching of G. It
follows that µi(W ) is zero for every W when i > ν(G). Furthermore, for every i ≤ ν(G)
there is a W ⊆ V such that µi(W ) is non-zero. We deduce that the degree of P (G; k, `) in
terms of ` is ν(G).

If W ⊆ V is such that |W | = 2i for some i ∈ {0, . . . , ν(G)}, then µi(W ) is the number
of matchings of G for which the set of matched vertices is exactly W . By fixing i, and
summing µi(W ) over all W ⊆ V satisfying |W | = 2i, we obtain the number of matchings
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of G of cardinality i. Call this last quantity mi(G). Then the coefficient of the terms of
total degree n are

[kn−2i`i]P (G; k, `) = (−1)imi(G).

It is interesting to note that (−1)imi(G) is the coefficient of the i-th term in the matching
polynomial of G.

The bivariate chromatic polynomial also possesses a multiplicativity property, and sat-
isfies a deletion-contraction recurrence, like the independence and chromatic polynomials.

Theorem 3.3.3. If G1 and G2 are disjoint graphs, then

P (G1 ∪G2; k, `) = P (G1; k, `)P (G2; k, `).

Proof. Since the assignment of colours in one connected component cannot place restric-
tions on the (k, `)-colouring of another component, the (k, `)-colourings of G1 ∪G2 are in
one-to-one correspondence with pairs of (k, `)-colourings for G1 and G2.

Once again, this means that P (G; k, `) multiplies over connected components. However,
it also has an important implication for the sequences (P (G; k, `))k`=0 and a(k)(G; p). Since
the term-wise product of two log-concave sequences is also log-concave, Theorem 3.2.2 tells
us that in order to show (P (G; k, `))k`=0 is log-concave, it suffices to check this result for
the connected components of G.

Unfortunately, when G1 and G2 have vertices in common we cannot hope for a result
like Theorem 2.1.3. Such a result would have to account for all possible ways of partitioning
the common vertices between the proper and improper colours. In particular, we would
require an expression for the number of (k, `)-colourings where some vertices must receive
proper colours.

The deletion-contraction recurrence that P (G; k, `) satisfies is similar to the expression
given for the independence polynomial in Theorem 2.1.2. Since P (G; k) and I(G;x) are
evaluations of P (G; k, `), this recurrence generalises Theorem 2.1.2 and Theorem 2.1.4.

Theorem 3.3.4 (Lemma 12 of [1]). If e is an edge in a graph G, then

P (G; k, `) = P (G \ e; k, `)− P (G / e; k, `) + (k − `)P (G− e; k, `). (3.4)

Proof. As in the proof of Theorem 2.1.4, P (G \ e; k, `)− P (G / e; k, `) corresponds to the
number of (k, `)-colourings of G where the ends of e get different colours. The remaining
(k, `)-colourings of G must assign the same improper colour to both ends of e. The number
of such colourings is given by (x− y)P (G− e; k, `).
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Given Theorems 3.3.3 and 3.3.4 it is natural to seek a polynomial which would be to
P (G; k, `), what the Tutte polynomial is to P (G; k). One such object has been studied
by Averbouch, Godlin, and Makowsky [1]. The polynomial in question is a three-variable
generalisation of the Tutte polynomial which specialises to all graph invariants satisfying
Theorems 3.3.3 and 3.3.4.

Table 3.3.5 lists the bivariate chromatic polynomial for the complete graphs, the com-
plete bipartite graphs, the path graphs, and the cycle graphs. Details and justification for
the cycle and path graphs can be found in Section 5 of [7].

G P (G; k, `)

Kn

n∑
i=0

(
n

i

)
(k − `)i(`)n−i

Km,n

m∑
i=0

(
m

i

)
(k − `)m−i

i∑
j=0

{
i

j

}
(k − j)nk(`)j

Pn
∑

0<i+2j≤n

(−1)n−i−j
(
i+ j

i

)(
n− i− j − 1

n− i− 2j

)
ki`j

Cn (−1)n`+ n
∑

0<i+2j≤n

(−1)n−i−j

i+ j

(
i+ j

i

)(
n− i− j − 1

n− i− 2j

)
ki`j

Table 3.3.5: P (G; k, `) for some common families of graphs
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Chapter 4

A Combinatorial Proof of Farr’s
Correlation Inequality

Recall Farr’s correlation inequality which states that for a number of colours k, a probability
p, and ` ∈ [k], we have

Pr(Γ
(p)
1 , . . . ,Γ

(p)
` ∈ I(G)) ≤ Pr(Γ

(p)
1 , . . . ,Γ

(p)
`−1 ∈ I(G)) Pr(Γ

(p)
` ∈ I(G)). (4.1)

In this chapter we will provide a combinatorial proof of this inequality in the more general
setup used for Theorem 2.2.1. Specifically, q = (qi,v : i ∈ [k], v ∈ V ) is a vector of

probabilities, for each each v ∈ V ,
∑

i∈[k] qi,v = 1 and v ∈ Γ
(q)
i with probability qi,v. We

aim to prove the following theorem:

Theorem 4.0.1. Let k be a non-negative integer, and q be a vector of probabilities such
that

∑
i∈[k] qi,v = 1 for each v ∈ V . Then, for each ` ∈ [k], we have

Pr(Γ
(q)
1 , . . . ,Γ

(q)
` ∈ I(G)) ≤ Pr(Γ

(q)
1 , . . . ,Γ

(q)
`−1 ∈ I(G)) Pr(Γ

(q)
` ∈ I(G)).

Fix a graph G. We let Γ denote the k-colouring whose i-th colour-class is Γi for each
i ∈ [k]. For convenience, if L ⊆ [k], we will denote by Ck(L) the set of (k, L)-colourings of
G. Since Ck(∅) is the set of all k-colourings, we can rewrite the inequality of Theorem 4.0.1
as follows:

Pr(Γ ∈ Ck([`])) · Pr(Γ ∈ Ck(∅)) ≤ Pr(Γ ∈ Ck([`− 1])) · Pr(Γ ∈ Ck({`})).

The key ingredient of the proof is an injective function, Ψk,`, which will map Ck([`]))×C(∅)
into Ck([`−1])×Ck({`}). Section 4.1 will focus on defining Ψk,` and Section 4.2 will contain
the remainder of the proofs of Theorem 4.0.1 and Farr’s correlation inequality.

28



4.1 An Injective Function on Pairs of Colourings

Fix a graph G. For L ⊆ [k], let Ck(L) will be the set of (k, L)-colourings of G. We will
define an injective function Ψk,` mapping Ck([`]) × Ck(∅) into Ck([` − 1]) × Ck({`}). We
begin with an example showing the result of applying Ψk,` to a pair of 3-colourings of the
Petersen graph. Afterwards, we will give a formal treatment of Ψk,`.

For our example ` will be 3. We consider the colourings c1 ∈ C3([3]) and c2 ∈ C3(∅)
which are depicted in Figure 4.1.1; c1 is shown on the left and c2 on the right.
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2
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3

3 2

1

1

2

1 1

1
3

2

2 3

2

Figure 4.1.1: The colourings c1 and c2

For every vertex v ∈ V , if either c1(v) or c2(v) is ` (3 in this case), then we swap the
colour of c1(v) and c2(v). Doing so yields the colourings shown in Figure 4.1.2.
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Figure 4.1.2: The colourings after the first swap

In Figure 4.1.2 the colouring on the right is a (3, {3})-colouring, but the colouring on
the left is not a (3, {1, 2})-colouring. Call the left colouring c′1. For each colour i ∈ {1, 2}
we define the set Ai to be the set of vertices v ∈ V which satisfy the following:

• v was originally assigned colour ` by c1,
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• v is assigned colour i by c′1, and
• v is adjacent to a vertex that is also assigned colour i by c′1.

In our example, A1 and A2 each contain a single vertex. These vertices are indicated in
Figure 4.1.3.
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in A1

in A2

Figure 4.1.3: The sets Aj for the left colouring

For every colour i ∈ {1, 2} and every v ∈ Ai, we swap the colours assigned to v in the
left and right colouring of Figure 4.1.2. Each of these vertices will now be assigned the
same colour they were originally assigned by c1 and c2. The first and second colour-classes
of the left colouring will now be independent sets. The resulting colourings are shown in
Figure 4.1.4.
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Figure 4.1.4: Final colourings produced by Ψ3,3

From left to right denote the colourings of Figure 4.1.4 by d1 and d2 respectively. We
observe that d1 is a (k, {1, 2})-colouring of G and that d2 is a (k, {3})-colouring of G. The
pair (d1, d2) is the image of (c1, c2) under Ψk,`.

We now formally define Ψk,`. The reader is encouraged to verify that the example above
conforms with the following definition. Fix k, ` and let (c1, c2) ∈ Ck,` × Ck,0. If no such
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(c1, c2) exist for this choice of k, `, then we are done. For all i, j ∈ [k], we define

Ci,j = c−11 (i) ∩ c−12 (j).

The Ci,j’s partition V into k2 sets, some of which may be empty, such that⋃
j∈[k]

Ci,j = c−11 (i)

is an independent set for each i ∈ [`]. Let u ∼ v denote adjacency of u and v in G. For
j ∈ [`− 1] we define Aj to be the set

{u ∈ C1,j : u∼ v, for some v ∈ Cj,i and some i 6= `}.

To make notation easier, we will set Aj = ∅ for all other j. We now swap the vertices in
C1,j \ Aj with those in Cj,1, for all j ∈ [k]. Specifically, we define Di,j, where i, j ∈ [k], as
follows:

Di,j =


C`,i \ Ai, if j = `

Cj,` ∪ Aj, if i = `

Ci,j, otherwise.

We note that since A` = ∅, D`,` = C`,` in both of the first two conditions. It is quickly
verified that the Di,j’s form a partition of V . We define d1 and d2 to be the unique
k-colourings of G which satisfy, for all i, j ∈ [k],

d−11 (i) ∩ d−12 (j) = Di,j.

Claim 4.1.5. The k-colourings d1 and d2 defined above are, respectively, a (k, [` − 1])-
colouring and a (k, {`})-colouring of G.

Proof. Let i ∈ [` − 1] be arbitrary. We begin by showing the i-th colour-class of d1 is an
independent set. It is clear that⋃

j 6=`

Di,j =
⋃
j 6=`

Ci,j ⊆ c−11 (i),

hence the union on the left is an independent set of G. As for Di,`, it is defined to be
C`,i \Ai. Since the `-th colour-class of c1 is an independent set, so is C`,i. Our choice of Ai
ensures there is no vertex in Di,` adjacent to a vertex in any Di,j where j 6= `. Thus, d−11 (i)
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is an independent set. As i was arbitrary, we conclude that d1 is a (k, [`− 1])-colouring of
G. On the other hand, we have

d−12 (`) =
k⋃
i=1

Di,` =
k⋃
i=1

(Ci,` \ Ai).

In particular, the `-th colour-class of d2 is a subset of the `-th colour-class of c1. This
colour-class is independent, and so d2 is a (k, {`})-colouring of G.

Claim 4.1.6. The mapping (c1, c2) 7→ (d1, d2) given above is injective.

Proof. Just as d1, d2 are uniquely determined from the Di,j’s, c1, c2 can be uniquely deter-
mined from the Ci,j’s. Hence, it suffices to show that the Ci,j’s can be uniquely determined
using only the Di,j’s. We begin by defining Ai in terms of Di,j Ai.

We know Ai = ∅ when i 6∈ [` − 1], hence we fix i ∈ [` − 1]. From the definition,
D`,i = Ci,` ∪ Ai. Since c−11 (i) is independent, Ci,` has no neighbours in Ci,j for all j 6= `.
But Ci,j = Di,j when neither i nor j is `. Thus Ci,` has no neighbours in Di,j for all j 6= `.
The vertices in Ai were chosen because they were adjacent to vertices in some Ci,j for some
j 6= `. This means that

Ai = {u ∈ D1,i : u∼ v, for some v ∈ Di,j and some j 6= `}.

Now, using the definition of Di,j, we have

Ci,j =


D`,i ∪ Ai, if j = `

Dj,` \ Aj, if i = `

Di,j, otherwise.

This shows that c1, c2 can be uniquely determined from d1, d2, thus the mapping is injective.

We define Ψk,` to be the injective function described above which takes (c1, c2) ∈
Ck([`])× Ck(∅) to (d1, d2) in Ck([`− 1])× Ck({`}).

4.2 Proof of Farr’s Correlation Inequality

Fix a graph G. Let Tk be the set of all n-tuples, indexed by V , of unordered pairs {a, b}
where a, b ∈ [k]. The idea is to use t ∈ Tk to prescribe the possible colours that can be
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assigned to each vertex by a pair of k-colourings. In particular, for a pair of k-colourings
(c1, c2) and t ∈ Tk, we wish to have {c1(v), c2(v)} = tv for each v ∈ V . For L1, L2 ⊆ [k],
we define Kk(t;L1, L2) to be the set

{(c1, c2) ∈ Ck(L1)× Ck(L2) : {c1(v), c2(v)} = tv, ∀v ∈ V }.

The key to the proof is that Ψk,` is an injective function which preserves {c1(v), c2(v)} for
each v ∈ V . This is captured by the following lemma:

Lemma 4.2.1. Let t ∈ Tk and ` ∈ [k] be arbitrary. Then we have

|Kk(t; [`], ∅)| ≤ |Γk(t; [`− 1], {`})|.

Proof. Let (c1, c2) ∈ Kk(t; [`], ∅) be arbitrary and let (d1, d2) = Ψk,`(c1, c2). Since Ψk,` is
an injective function and (c1, c2) is arbitrary, it will be sufficient to show that (d1, d2) ∈
Kk(t; [`− 1], {`}).

Thanks to Claim 4.1.5, we only need to show that for every v ∈ V

{c1(v), c2(v)} = {d1(v), d2(v)}. (4.2)

We recall the definitions of Ci,j and Di,j from the previous section. To verify (4.2) holds
we can equivalently show that for all i, j ∈ [k]

Ci,j ∪ Cj,i = Di,j ∪Dj,i. (4.3)

If i = `, then D`,j = Cj,`∪Aj and Dj,` = C`,j \Aj. The case for j = ` is similar. Otherwise
Di,j = Ci,j and Dj,i = Cj,i. In all three cases (4.3) holds.

Proof of Theorem 4.0.1. For any L1, L2 ⊆ [k], we can break up the probabilities

Pr(Γ ∈ Ck(L1) Pr(Γ ∈ Ck(L2))

as a sum over t ∈ Tk to obtain∑
t∈Tk

∑
(c1,c2)∈Kk(t;L1,L2)

Pr(Γ = c1) Pr(Γ = c2).

The probability that v ∈ V get colour i ∈ [k] is qi,v, hence for a k-colouring c, we have

Pr(Γ = c) =
∏
v∈V

qc(v),v.
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In particular, if (c1, c2) are such that {c1(v), c2(v)} = tv for each v ∈ V , then

Pr(Γ = c1) Pr(Γ = c2) =
∏
v∈V
{a,b}=tv

qa,vqb,v.

The right-hand side depends only on t; for convenience we will denote this product by
t(q). Thus we have

Pr(Γ ∈ Ck(L1) Pr(Γ ∈ Ck(L2)) =
∑

t∈Tk(V )

t(q) · |Kk(t;L1, L2)|. (4.4)

We set L1 = [`] and L2 = ∅ in (4.4). Applying Lemma 4.2.1 yields

Pr(Γ ∈ Ck({1, . . ., `}) Pr(Γ ∈ Ck(∅))

=
∑

t∈Tk(V )

t(q) · |Kk(t; [`], ∅)|

≤
∑

t∈Tk(V )

t(q) · |Kk(t; [`− 1], {`})|

= Pr(Γ ∈ Ck([`− 1]) Pr(Γ ∈ Ck({`}))
This concludes the proof of Theorem 4.0.1.

Farr’s correlation inequality is a simple corollary of Theorem 4.0.1.

Corollary 4.2.2 (Farr’s correlation inequality). Let k be a non-negative integer and p be
a probability such that kp ≤ 1. Then for any ` ∈ [k] we have

Pr(Γ ∈ Ck([`])) · Pr(Γ ∈ Ck(∅)) ≤ Pr(Γ ∈ Ck({1, . . . , `− 1})) · Pr(Γ ∈ Ck({`})).

Proof. Let k′ = k + 1. For each v ∈ V set qi,v = p for all i ∈ [k], and set qk+1,v = 1 − kp.
It follows from Theorem 4.0.1 that

Pr(Γ ∈ Ck([`])) · Pr(Γ ∈ Ck(∅)) ≤ Pr(Γ ∈ Ck([`− 1])) · Pr(Γ ∈ Ck({`})).
This concludes the proof of Farr’s correlation inequality using a basic combinatorial ap-
proach.

We have tried without success to extend our approach to prove Theorem 2.2.1 or to
prove log-concavity of (P (G; k, `))k`=0 beyond the first three terms. Our attempts seem to
suggest that our approach relies heavily on the ability to freely change the colours assigned
to vertices by c2 without having to worry about keeping some colour-classes independent.
A different approach will likely be needed to provide combinatorial proofs of these stronger
results.
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Chapter 5

The Polynomial Bk(G; y)

While testing various approaches to log-concavity of the sequence (P (G; k, `))k`=0, we
came across a peculiar polynomial, which we will call Bk(G; y), whose roots seem to al-
ways be real. For this particular polynomial, real-rootedness implies the log-concavity of
(P (G; k, `))k`=0, motivating us to study Bk(G; y). For any positive integer k, the Bk(G; y)
is defined as follows:

Bk(G; y) =
k∑
`=0

(
k

`

)
P (G; k, `)y`.

The focus of this chapter is the study of Bk(G; y) and its peculiar properties.

Section 5.1 will focus on the motivation for studying Bk(G; y). This includes the result
due to Newton which inspired the definition of Bk(G; y) and some basic examples. In
Section 5.2 we introduce some basic results in the theory of stable polynomials, a more
general notion of real-rootedness, which we will use in the remainder of the chapter. Sec-
tion 5.3 will discuss what we know about the coefficients and roots of Bk(G; y). Section 5.4
gives a proof that the real-rootedness of Bk(G; y) depends on the roots of the polynomial
for the connected components of G. An analogue of the deletion-contraction recurrence
for Bk(G; y) is explored in Section 5.5. Section 5.6 will discuss a related transformation
on polynomials that may preserve real-rootedness. Finally, Section 5.7 will give a related
result which came up during our investigation.
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5.1 Motivation to Study Bk(G; y)

The inspiration for defining Bk(G; y) is the following result due to Newton, commonly
referred to as Newton’s Inequalities.

Newton’s Inequalities. Let

φ(x) =
m∑
`=0

(
m

`

)
α`x

`

be a polynomial of degree m with real coefficients. If φ(x) has only real roots, then the
sequence (α`)

m
`=0 is log-concave.

For simplicity, we will write Dx to mean ∂/∂x and similarly for other variables. The
following proof is adapted from Stanley [23].

Proof. First, we show that if p ∈ R[x] has only real roots, then so does Dxp. Let θ1 <
· · · < θr be the distinct roots of p with multiplicities m1, . . . ,mr. Then we have

p(x) =
n∏
i=1

(x− θi)mi

Using the product and chain rules for differentiation, it is straightforward to show that
there exists some q ∈ R[x] of degree r − 1 such that

Dxp = q(x)
n∏
i=1

(x− θi)mi−1

To show the roots of q(x) are real, we recall Rolle’s Theorem which states that if f is a
continuous real-valued function on an interval [a, b], which is differentiable on (a, b), and
f(a) = f(b), then Dxf(c) = 0 for some c ∈ (a, b). Applying Rolle’s Theorem with a = θi
and b = θi+1 for each i ∈ [r − 1] we can show that the r − 1 roots of q are all real. We
conclude that Dxp has only real roots.

Next, we fix j ∈ {1, . . . ,m− 1} and let φ1(x) be the polynomial

φ1(x) = Dj−1
x φ(x) =

m∑
`=j−1

(
m

`

)
(`)j−1α`x

`−j+1.
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Our argument above guarantees that φ1(x) has only real roots. Define φ2(x) to be

φ2(x) = xm−j+1φ1(x
−1) =

m∑
`=j−1

(
m

`

)
(`)j−1α`x

m−`.

Notice that the roots of φ2(x) are the inverses of the non-zero roots of φ1(x), hence φ2(x)
has only real roots. Finally, define φ3(x) to be

φ3(x) = Dm−j−1
x φ2(x) =

j+1∑
`=j−1

(
m

`

)
(`)j−1(m− `)m−j−1α`xj+1−`.

As with φ1(x), all the roots of φ3(x) are real. It is straightforward to simplify the expression
for φ3(x) given above to

φ3(x) =
m!

2
(αj−1x

2 + 2αjx+ αj+1).

This quadratic has real roots exactly when α2
j ≤ αj−1αj+1. Since j ∈ {1, . . . ,m − 1} was

arbitrary, we conclude that (αj)
m
j=0 is log-concave.

In particular, it follows from Newton’s Inequalities that the sequence (P (G; k, `))k`=0 is
log-concave when Bk(G; y) has only real roots. Since

(
k
0

)
, . . . ,

(
k
k

)
is a log-concave sequence,

log-concavity of the evaluations of P (G; k, `) also follows from the real-rootedness of the
following polynomial

k∑
`=0

P (G; k, `)y`.

However, it is easy to check that

k∑
`=0

P (K1; k, `)y
` = k

k∑
`=0

y`

has non-real roots when k = 2. The polynomial Bk(G; y), on the other hand, is not known
to have non-real roots for any G and k. We discuss an exhaustive search for such a pair in
Section 6.1.

Table 5.1.1 lists some of the simpler examples of Bk(G; y). Each can be deduced from
the definition of Bk(G; y) and the forms for P (G; k, `) given in Table 3.3.5. Unfortunately,
even for simple families of graphs, expressions for Bk(G; y) tend to be lengthy. This can
be seen in the progression from B(K1,m; y) to Bk(K2,m; y).
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G Bk(G; y)

Kn kn(1 + y)n

K1,m k((k − 1)my + km)(y + 1)k−1

K2,m k(y + 1)k−2[km(y + k) + (k − 1)my(2k − 1 + y) + (k − 2)my(ky + 1)]

Table 5.1.1: Some simple examples of Bk(G; y)

It is immediately clear that, for every positive integer k, Bk(Kn; y) and Bk(K1,m; y)
have only real roots for all k. Real-rootedness of Bk(K2,m; y) is equivalent to showing that
the following quadratic has real roots

[(k − 1)m + k(k − 2)m]y2 + [km + (2k − 1)(k − 1)m + (k − 2)m]y + km+1.

Showing this quadratic has real roots for arbitrary k and m does not appear to be straight-
forward.

5.2 Basic Theory of Stable Polynomials

For z ∈ C, let =(z) denote the imaginary part of z. Define H to be the half-plane
{z ∈ C : =(z) > 0}. Let z be a sequence of indeterminates (z1, . . . , zη) for some η. A
polynomial f ∈ C[z] is said to be stable if one of the following is true:

• f is identically zero, or
• for all z ∈ Hη, we have f(z) 6= 0.

A stable polynomial in R[z] is called real-stable. Thus for Bk(G; y) to have only real roots
is equivalent to Bk(G; y) being real-stable. We denote the set of stable polynomials in z
by S[z], and the set of real-stable polynomials in z by SR[z]. It should be noted that the
notion of stability for polynomials is not related to that of stability for sets of vertices. For
a detailed survey of the theory of stable polynomials in multiple variables we direct the
reader to [30].

The following theorem is a basic result used throughout the theory of stable polynomi-
als:

Hurwitz’s Theorem (Theorem 1.3.8 or [21]). Let S ⊆ Cη be a non-empty connected
open set, and let (fn)∞n=1 be a sequence of functions, each analytic and non-vanishing on
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S, which converges to a limit f uniformly on compact subsets of S. Then either f(z) 6= 0
for all z ∈ S, or f is identically zero.

The set Hη is both connected and open. Hence, if a sequence of polynomials in S[z]
converges uniformly to a limit f on compact subsets of S, then either f is identically zero,
or f(z) 6= 0 for all z ∈ Hη. In particular, if f is a polynomial, then f is stable.

Lemma 5.2.1 (Lemma 2.4 of [30]). For any f ∈ S[z], the following operations preserve
stability:

(a) permutation: f 7→ f(zτ(1), . . . , zτ(η)) for any permutation τ of 1, . . . , η,
(b) scaling: f 7→ cf(a1z1, . . . , aηzη) where c ∈ C and a1, . . . , aη are positive real numbers,
(c) diagonalisation: for any j ∈ {2, . . . , η}, f 7→ f(z)|z1=zj ,
(d) specialisation: f 7→ f(a, z2, . . . , zη) for any a ∈ (H ∪ R),
(e) inversion: f 7→ zd1f(−z−11 , z2, . . . , zη) where d is the degree of z1 in f ,
(f) differentiation: f 7→ Dz1f .

By permuting the variables parts (c) through (f) apply to all indeterminates.

Proof. It is clear that parts (a), (b), (c) hold. For part (d), the result is clear when
=(a) > 0. When =(a) = 0, we consider the sequence (am)∞m=1, where am = a+ i2−m. Since
=(am) > 0, we know f(am, z2, . . . , zη) is stable for all m ≥ 1. The fm’s converge uniformly
to f(a, z2, . . . , zη) which must be stable by Hurwitz’s Theorem. Part (e) follows from the
fact that −(a+ ib)−1 = (−a+ ib)/(a2 + b2).

To prove part (f) holds, we let d be the degree of f with respect to z1 and consider
the sequence fj(z) = j−df(jz1, z2, . . . , zη) for j ≥ 1. By part (b), all fj are stable. The
sequence converges to a polynomial, which is stable by Hurwitz’s Theorem. Our choice
of d ensures that this limit is not identically zero. So for any choice of w2, . . . , wη ∈ H,
g(x) = f(x,w2, . . . , wη) is a stable polynomial of degree d. Let ξ1, . . . , ξη be the roots of
g(x) and write

g(x) = c
d∏
j=1

(x− ξj)

for some c ∈ C. Since g is stable, ξj 6∈ H for every j ∈ [d]. Then we have

Dxg(x)

g(x)
= Dx log(g(x)) =

d∑
j=1

(x− ξj)−1.

Note that if =(x) > 0, then =((x − ξj)−1) < 0 for all j ∈ [m] and therefore Dxg(x) 6= 0.
Thus, if z ∈ Hη, then Dz1f(z) 6= 0. We conclude that this polynomial is stable.
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We denote by S[z] (resp. SR[z]) the set of all power series in C[[z]] that arise as
the limit of a sequence of polynomials in S[z] (resp. SR[z]) which converge uniformly on
compact sets.

For example, it is well-known that

exp(z) =
∞∑
n=0

zn

n!
= lim

n→∞
(1 + zn−1)n. (5.1)

It is easy to show that
∑∞

n=0
zn

n!
converges uniformly on any compact set. Furthermore,

the only root of (1 + zn−1) is z = −n. Therefore (1 + zn−1)n ∈ S[z] and we conclude that
exp(z) ∈ S[z]. We now give a few results which allow us to produce new objects in S[z]
from existing ones.

Lemma 5.2.2. If f(z) ∈ C[z], then f(−wz) ∈ S[w, z] if and only if f(z) has only real
non-positive roots.

Proof. Observe that H is exactly the set of non-zero z ∈ C whose argument lies in the
open interval (0, π). Hence

{xy : x, y ∈ H} = C \ {r ∈ R : r ≥ 0}

and the result follows.

Lemma 5.2.3. Suppose A(z) ∈ SR[z]. Then A(−z) ∈ SR[z]. Moreover, if A(z) arises a
limit of real-stable polynomials whose roots are all non-positive, then A(−xy) ∈ S[x, y].

Proof. Let (fj)
∞
j=1 be a sequence of polynomials in SR[z] converging uniformly to A(z) on

compact sets. Since fj(z) is a real polynomial, fj(−z) ∈ SR[z] as well. It follows that

A(−z), which arises as the limit of fj(−z) as j →∞, is in SR[z]. Next, assume that each fj
has only non-positive roots. Notice that if a setK is compact, then the set {−xy : x, y ∈ K}
is compact as well. Thus it follows from Lemma 5.2.2 that fj(−xy) ∈ S[x, y] for every

j ≥ 1, and hence A(−xy) ∈ S[x, y].

Since the only root of (1 + zn−1)n is z = −n, it is immediate from Lemma 5.2.3 that
exp(−z) ∈ SR[z] and exp(−wz) ∈ S[w, z].

Lemma 5.2.4. Suppose A(z) ∈ S[z] and p(z) ∈ C[z]. Then p(z)A(z) ∈ S[z] if and only
if p(z) ∈ S[z].
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Proof. By definition, there exists a sequence of polynomials (fi)
∞
i=1, each in S[z], which

converge uniformly on compact sets to A(z). If p(z) ∈ S[z], then (pfi)
∞
i=1 is a sequence

of stable polynomials which converge uniformly on compact sets to p(z)A(z) (note that
|p(z)| is bounded on any given compact set). Hence p(z)A(z) ∈ S[z] when p(z) ∈ S[z].

Conversely, suppose p(z)A(z) arises as the limit of a sequence of polynomials (gj)
∞
j=1,

each in Sz. By Hurwitz’s theorem p(z)A(z) cannot vanish on Hη. In particular, p(z)
cannot vanish on Hη, thus it is stable.

In particular, if p(z) ∈ C[z], then p(−wz) exp(−wz) ∈ S[w, z] if and only if p(z) has
only real non-positive roots.

5.3 Coefficients and Roots of Bk(G; y)

Some basic results regarding the roots of Bk(G; y) can be obtained by understanding its
coefficients,

(
k
`

)
P (G; k, `). The binomial coefficient

(
k
`

)
can be thought of as the number

of ways of choosing ` proper colours out of a set of k colours. Hence we may think of the
coefficient of y` in Bk(G; y) as counting all (k, Y )-colourings of G over all sets Y ⊆ [k] of
size `. Note that this counts a colouring more than once if it is a valid (k, Y )-colouring for
multiple Y .

Unfortunately, this means that if G has no k-colouring, then the coefficient of yk will
be zero. However, a graph must always have a (k, k− 1)-colouring as we can simply colour
all the vertices with the single improper colour. Therefore, the degree of Bk(G; y) is k
when G has a k-colouring and k − 1 otherwise. To remedy this, we can consider replacing
Bk(G; y) with the polynomial

B̂k(G; y) = ykBk(G; y−1) =
k∑
j=0

(
k

j

)
P (G; k, k − j)yj

to obtain a polynomial of degree k. It follows from Lemma 5.2.1 that the stability of
B̂k(G; y) is equivalent to the stability of Bk(G; y). Most of the properties of Bk(G; y) also
hold for B̂k(G; y). Furthermore, since

(
k
`

)
=
(
k
k−`

)
, the coefficients have a combinatorial

interpretation similar to the one described for Bk(G; y). For our purposes the degree of
Bk(G; y) is not important so we will stick to Bk(G; y).

Since all the coefficients of Bk(G; y) are non-negative, Descartes’ Rule of Signs guaran-
tees that all the real roots of Bk(G; y) are non-positive. For a proof of Descartes’ Rule of
Signs we refer the reader to [31].
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Descartes’ Rule of Signs. Let φ(x) =
∑n

j=0 αjx
j be a polynomial with real coefficients.

The number of sign changes (ignoring zeroes) in the sequence α0, α1, . . . , αn−1, αn is an
upper bound on the number of positive real roots of φ (counted with their multiplicity).

It isn’t immediately clear that Bk(G; y) has any real roots. However, a glance at some
examples quickly reveals that −1 is often, if not always, a root with high multiplicity. The
following result confirms this and gives the multiplicity of −1 as a root of Bk(G; y).

Lemma 5.3.1. For any W ⊆ V , define ρ(W ) to be 1 if W is an independent set and 0
otherwise. Then, for any graph G and any non-negative integer k, we have

Bk(G; y) =
∑
c

k∏
i=1

(1 + y)ρ(c
−1(i)) (5.2)

where the sum is over all k-colourings c.

Proof. We can think of the coefficient of y` in Bk(G; y), as counting the number of pairs
(L, c) where L ⊆ [k], |L| = `, and c is a (k, L)-colouring of G.

A colouring c with exactly m independent colour-classes can contribute to the coefficient
of y` in exactly

(
m
`

)
ways, once for each choice of ` proper colours. Note that when m < `,

the colouring c cannot contribute to the coefficient of y` and
(
m
`

)
= 0 accordingly. We

conclude that the contribution of the colouring c to Bk(G; y) is

m∑
`=0

(
m

`

)
y` = (1 + y)m.

This can be rewritten as
k∏
i=1

(1 + y)ρ(c
−1(i)).

Summing over all possible k-colourings completes the proof.

Corollary 5.3.2. Let G be any graph and k be any positive integer. The following are
true:

• −1 is a root of Bk(G; y) with multiplicity k − ν(G); and
• if θ is a real root of Bk(G; y), then θ ≤ −1.

42



Proof. Every colouring has at most ν(G) dependent colour-classes since any dependent
set contains two adjacent vertices. This means that each k-colouring contributes a factor
(1+y) at least k−ν(G) times. Moreover, there exists at least one k-colouring with exactly
k − ν(G) independent colour-classes, hence −1 must be a root of Bk(G; y) with exactly
this multiplicity.

A closer look at the proof of Lemma 5.3.1 reveals that the coefficient of y` in

Bk(G; y − 1) =
∑
c

k∏
i=1

yρ(c
−1(i))

is the number of k-colourings of G with exactly ` independent colour-classes. It follows
from Descartes’ Rule of Signs that the real roots of Bk(G; y − 1) are non-positive as well,
thus the real roots of Bk(G; y) are at most −1. We summarize these results in the following
corollary.

In particular, it follows from Corollary 5.3.2 that if ν(G) ≤ 1, then Bk(G; y) has at
most one root that is not −1. Since the non-real roots of Bk(G; y) must come in pairs, it
follows that, for such a graph, Bk(G; y) is always stable. The graphs with ν(G) = 1 are
exactly K1,m for some m, hence we have a second proof that Bk(K1,m; y) is always stable.

Results similar to those of Corollary 5.3.2 also exist for B̂k(G; y). As we mentioned
earlier, the inverses of the non-zero roots of B̂k(G; y) are the roots of Bk(G; y). Thus we
have the following results:

• 0 is a root of B̂k(G; y) with multiplicity 1 if and only if G has no proper k-colouring;
• −1 is a root of B̂k(G; y) with multiplicity k − ν(G); and
• if θ is a real root of B̂k(G; y), then 0 ≤ θ ≤ 1.

5.4 Bk(G; y) and Connected Components of G

Recall that to show (P (G; k, `))k`=0 was log-concave, it sufficed to show it for the connected
components of G. In general, most nice invariants of a graph can be determined from
the connected components of the graph. Ideally, the stability of Bk for every connected
component of G would be enough to determine if Bk(G; y) is stable. However, it is far
from obvious that this will work for Bk(G; y). We will make use of powerful results from
the theory of stable polynomials to show that this is indeed the case.
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For ` ∈ {0, . . . , η}, the `-th elementary symmetric function in z is defined to be

e`(z) =
∑

1≤i1<···<i`≤η

zi1 · · · zi` .

The function e` is called symmetric since it is invariant under permutation of z1, . . . , zη.
We observe that e` has

(
η
`

)
terms, each of total degree `. It follows that

e`(z, . . . , z) =

(
η

`

)
z`.

If f(z) ∈ C[z] is a polynomial in a single variable, let Polηf(z) denote the polynomial

in C[z] obtained by replacing occurrences of z` in f with
(
η
`

)−1
e`(z). Thus, if f(z) =∑m

`=0 α`z
`, then

Polηf(z) =
m∑
`=0

α`
(
η

`

)−1
e`(z).

This is called the η-th polarisation of f . It follows from our remarks above that Polηf is
symmetric and Polηf(z, . . . , z) = f(z).

A circular region of C is a non-empty subset A of C that is open or closed, and is
bounded by a circle or a straight line. The following theorem due to Grace, Walsh, and
Szegö tells us that in a circular region the polarisation of f can only attain values attainable
by f itself.

Theorem 5.4.1 (Theorem 3.4.1b of [21]). Suppose f ∈ C[z] has degree at most η and
A ⊆ C is a circular region. If either f has degree exactly η, or A is convex, then for every
w ∈ Aη there exists w ∈ A such that Polηf(w) = f(w).

Corollary 5.4.2. If f ∈ C[z] has degree at most d, then Poldf is stable if and only if f is
stable.

Proof. Recall that Poldf(z, . . . , z) = f(z), thus it follows from Lemma 5.2.1 that Poldf
cannot be stable when f is not stable. For the converse implication, observe that H is a
convex circular region. Therefore, if there exists w ∈ Hd such that Poldf(w) = 0, then
Theorem 5.4.1 guarantees the existence of w ∈ H such that f(w) = 0. In other words, if
f cannot be stable when Polηf is not stable.

For univariate polynomials f(z) =
∑k

`=0

(
k
`

)
α`z

` and g(z) =
∑k

`=0

(
k
`

)
β`z

`, we define
the Schur-Szegö composition of f and g as follows:

f ∗ g =
k∑
`=0

(
k

`

)
α`β`z

`.
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Notice that it follows from Theorem 3.3.3 that if G has connected components G1, . . . , Gm,
then

Bk(G; y) = Bk(G1; y) ∗Bk(G2; y) ∗ · · · ∗Bk(Gm; y).

We are now ready to show that stability of every Bk(Gi; y) guarantees the stability of
Bk(G; y). The following is a special case of a theorem of Schur and Szegö. The proof given
is adapted from that of part (a) of Proposition 2.4 in [28].

Theorem 5.4.3. If f, g ∈ C[z] are such that f is stable and g has only real non-positive
roots, then f ∗ g is stable.

Proof. If f ∗g is identically zero there is nothing to show. Assume otherwise and let η be a
positive integer such that η = max{deg(f), deg(g)}. For j ∈ {0, . . . , η} let βj ∈ C be such
that

g(z) =

η∑
j=0

(
η

j

)
βjz

j.

We begin by showing the result holds when 0 is not a root of g. In this case, there exist
c ∈ C and real positive θ1, . . . , θη such that

g(z) = c

η∏
i=1

(1 + θiz). (5.3)

The coefficient of zj in (5.3) must be cej(θ1, . . . , θη) since ej gives the sum over all j-subsets
of the indices. Thus, it must be that

c

(
η

j

)−1
ej(θ1, . . . , θη) = βj

for all j ∈ {0, . . . , η}. It is now clear that

f ∗ g = c · Polηf(θ1z, . . . , θηz).

It follows from Corollary 5.4.2 that Polηf is stable. By Lemma 5.2.1, so is f ∗ g.

Now we handle the case where 0 is a root of g with multiplicity d > 0. Using θi’s as
above, we write

g(z) = czd
η−d∏
i=1

(1 + θiz).
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For each positive integer m, define

gm(z) = cm−d(1 +mz)d
η−d∏
i=1

(1 + θiz).

The sequence f ∗ gm converges uniformly to f ∗ g. We know f ∗ gm is stable for each m
and so Hurwitz’s Theorem implies that the limit, f ∗ g, is stable as well.

Since the real roots of Bk(G; y) are at most −1, it follows immediately that Bk(G; y) is
stable when Bk is stable for all connected components of G. This is also true of B̂k(G; y)
since its roots are non-positive as well.

5.5 A Deletion-Contraction Recurrence for Bk(G; y)

Since Bk(G; y) is so closely related to P (G;x, y), the deletion-contraction recurrence for
P (G;x, y) induces a similar recurrence for Bk(G; y). It is straightforward to show that
applying yDy to a polynomial multiplies the coefficient of yj by j. Thus the following
identity follows from (3.4):

Bk(G; y) = Bk(G \ e; y)−Bk(G / e; y) + (k − yDy)Bk(G− e; y). (5.4)

We can expand the term (k − yDy)Bk(G; y) as

k∑
`=0

(k − `)
(
k

`

)
P (G; k, `)y`.

We note that the coefficient of yk must be zero, but that the coefficient of yk−1 is non-zero.
This means that, unlike Bk(G; y) which can be of degree k or k − 1, (k − yDy)Bk(G; y)
is always polynomial of degree k − 1. Furthermore, we can think of (k − `) as being the
number of ways of assigning a colour to a vertex with a loop. Thus if L is a graph consisting
of a vertex not in G and a loop, then

(k − yDy)Bk(G; y) = Bk(G ∪ L; y).

In general, it can be quite difficult to determine if the sum of two polynomials is stable.
In the case of real-stable polynomials, we can guarantee the sum is stable when the roots
of the polynomials satisfy an interlacing condition. Let f and g be real-stable polynomials,
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let θ1 ≤ · · · ≤ θ` be the roots of f , and let ξ1 ≤ · · · ≤ ξm be the roots of g. We say the
roots of f and g are interlaced if

θ1 ≤ ξ1 ≤ θ2 ≤ ξ2 ≤ · · · .

Theorem 5.5.1 (Hermite, Kakeya, Obreschkoff, Theorem 6.3.8 of [21]). If f, g ∈ R[z],
then the following are equivalent:

• af + bg is stable for all a, b ∈ R,
• f and g are stable and their roots are interlaced.

Proposition 5.5.2. Let G be a graph and k be a positive integer. If Bk(G; y) is stable,
then so is (k − yDy)Bk(G; y).

Proof. Rolle’s Theorem guarantees that DyBk(G; y) has a root in the open interval between
any two distinct roots of Bk(G; y). Furthermore, if θ is a root of Bk(G; y) with multiplicity
r, then it is a root of DyBk(G; y) with multiplicity r− 1 (write Bk(G; y) as a product over
its roots and use the product rule to differentiate). Thus, if θ1 ≤ · · · ≤ θd are the roots of
Bk(G; y) and ξ1 ≤ · · · ≤ ξd−1 are the roots of DyBk(G; y), then we have

θ1 ≤ ξ1 ≤ θ2 ≤ · · · ≤ ξd−1 ≤ θd.

Multiplying DyBk(G; y) by y adds a root at 0. Corollary 5.3.2 showed that θd = −1, thus
the roots of Bk(G; y) and yDyBk(G; y) are interlaced. It follows from Theorem 5.5.1 that
(k − yDy)Bk(G; y) is stable.

Unfortunately, we cannot hope for all the terms of (5.4) to have their roots interlaced
with one another. As an example, we consider the cycle and path graphs on four vertices
and the edges e1, e2 as shown below.

e1
e2

Table 5.5.3 lists some of the Bk polynomials for these graphs where k = 4. We see that the
roots of B4(C4; y) and B4(C4 /e1; y) are not interlaced. Interlacing of roots for all the other
possible pairs are ruled out by P4 and its subgraphs, with the exception of Bk(G/e; y) and
(k− yDy)Bk(G− e; y). There are many graphs with more than four vertices which exhibit
similar non-interlacing properties. However, for all these graphs the roots are interlaced in
the exceptional case of Bk(G / e; y) and (k − yDy)Bk(G − e; y). We give more details of
this in Section 6.4.
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polynomial approximate roots
B4(C4; y) -2.58, -1.18, -1, -1

B4(C4 / e1; y) -2.67, -1, -1, -1
B4(P4; y) -2.16, -1.10, -1, -1

B4(P4 \ e2; y) -1.54, -1.15, -1, -1
B4(P4 / e2; y) -1.78, -1, -1, -1

(4− yDy)B4(P4 − e2; y) -1, -1, -1

Table 5.5.3: Roots of B4(G; y) for graphs related to C4 and P4

5.6 The Operator P (G; k, yDy)

It is well-known that

(1 + y)k =
k∑
`=0

(
k

`

)
y`.

With this fact in mind, we can think of Bk(G; y) as being the result of applying a linear
transformation Tk to (1 + y)` where Tk replaces y` with P (G; k, `)y` for all ` ≥ 0. Since
(1 + y)k is stable, we wish for Tk to preserve the stability of (1 + y)k. Our first insight into
Tk is the following lemma:

Lemma 5.6.1. Let f(x) be a polynomial and define T to be the linear transformation
mapping xm to f(m)xm for every non-negative integer m. Then T = f(xDx) where multi-
plication is replaced by composition.

Proof. It suffices to show T (xm) = f(xDx)(x
m) for all non-negative integers m. We write

f(x) as
∑m

i=0 αix
i. For all non-negative integers j, we have

T (xj) = f(j)xj =
m∑
i=0

αij
ixj =

m∑
i=0

αi(xDx)
ixj = f(xDx)x

j,

thus T = f(xDx).

It is immediate from Lemma 5.6.1 that

Bk(G; y) =
k∑
j=0

(
k

j

)
P (G; k, j)yj = P (G; k, yDy)(1 + y)k (5.5)
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In this section we will study the operator P (G; k, yDy) and its surprising connections to
Bk(G; y). We will make use of Theorems 5.6.2 and 5.6.4, two theorems due to Julius Borcea
and Petter Brändén [4] which characterise stability-preserving operators. Proofs of these
theorems are quite long and can be found in [4] as well as in [30].

This first theorem characterises operators which preserve stability of polynomials whose
degree is bounded. For a positive integer d, denote by C[z]≤d the set of polynomials in
C[z] of degree at most d.

Theorem 5.6.2 (Univariate case of Theorem 1.1 of [4]). Suppose T : C[z]≤d → C[z] is a
linear transformation. Then T maps S[z]≤d into S[z] if and only if either of the following
holds:

• T (f) = η(f) · g for some linear functional η : C[z]≤d → C and g ∈ S[z], or
• the polynomial

T [(w + z)d] =
d∑
j=0

(
d

j

)
T (zj)wd−j

is in S[w, z].

A useful fact is that T (w + z)d ∈ S[w, z] if and only if T (1− wz)d ∈ S[w, z]. One can
easily verify this using Lemma 5.2.1 and the following equality:

T [(1− zw)d] =
d∑
j=0

(
d

j

)
(−1)jT (zj)wj = (−1)dwdT [(−w−1 + z)d]. (5.6)

Theorem 5.6.3. Let G be a graph and k be non-negative integer. Then Bk(G; y) ∈ S[y]
if and only if P (G; k, yDy) maps S[y]≤k into S[y].

Proof. For simplicity we write T
(k)
G to mean P (G; k, yDy). It follows from Theorem 5.6.2

and (5.6) that T
(k)
G maps S[z]≤k into S[z] if and only if T

(k)
G [(1 − yz)k] ∈ S[y, z]. Using

(5.5) and the fact that yDy(−yz) = −yz, it is easy to see that

T
(k)
G [(1− yz)k] = Bk(G;−yz).

Lemma 5.2.2 tells us this is equivalent to Bk(G; y) having only real, non-positive roots,
which is equivalent to Bk(G; y) being stable thanks to Corollary 5.3.2.
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Hence the operator P (G; k, yDy) has the peculiar property that it suffices to check its
effect on (1 + y)k to determine if it maps S[y]≤k in S[y].

We now turn to the second characterisation theorem of Borcea and Brändén to deter-
mine if a strengthening of Theorem 5.6.3 exists.

Theorem 5.6.4 (Univariate case of Theorem 1.3 in [4]). Let T : C[z] → C[z] be a linear
transformation. Then T maps S[z] into S[z] if and only if either of the following holds:

• T (f) = η(f) · p for some linear functional η : C[z]→ C and p ∈ S[z], or
• the power series

T (exp(−zw)) =
∑
j≥0

T (zj)
(−w)j

j!

is in S[z, w].

Using induction on j and the product rule for differentiation, one can easily show that
the following useful identity holds for all non-negative integers j.

(zDz)j = zjDj
z (5.7)

Using (5.7) and Theorem 5.6.4 we prove the following two results.

Theorem 5.6.5. Suppose f(z) =
∑m

j=0 ajz
j ∈ R[z] be arbitrary and let g(z) to be the

polynomial
∑m

j=0 aj(z)j. Then g(zDz) is an operator which maps S[z] into itself if and
only if f(z) has only real non-positive roots.

Proof. Using (5.7) we see that g(zDz) maps

g(zDz) =
m∑
j=0

ajz
j(Dz)

j.

Hence we have

g(zDz)[(exp(−zw)] =
n∑
j=0

ajz
j(Dz)

j exp(−zw)

=
n∑
j=0

aj(−zw)j exp(−zw)

= f(−zw)e−zw.

It follows from Theorem 5.6.4 that g(zDz) preserves stability if and only if g(zDz) exp(−zw)
is in S[w, z]. From Lemma 5.2.3 we conclude that g(zDz) preserves stability if and only if
f(z) has only real, non-positive roots.
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Lemma 5.6.6. Suppose f(z) ∈ R[z] is not identically zero, then f(wz) exp(wz) 6∈ S[w, z].

Proof. Define g from f as in the statement of Theorem 5.6.5. Let T be the operator which
maps zj to g(j)(−z)j. From Lemma 5.6.1 we conclude that T maps (−z)j to f(zDz)z

j.
Using our work in the proof of Theorem 5.6.5 we have

T (exp(−wz)) = g(zDz) exp(wz) = f(wz) exp(wz).

It is clear that the image of T is not one-dimensional (consider T (za) and T (zb) where a, b
are non-negative integers such that g(a) 6= g(b)). Thus it follows from Theorem 5.6.4 that
f(wz) exp(wz) ∈ S[w, z] if and only if T is a stability-preserving operator. We will show
that T will never preserve stability.

Since f is not identically zero, neither is g. So there exists a non-negative integer j such
that g(j) and g(j+ 1) are both non-zero and of the same sign. Now consider czj + zj+1 for
some c ∈ H. Notice that this polynomial is stable as its only non-zero root is −c. On the
other hand, we have

T (czj + zj+1) = (−z)j[cg(j)− g(j + 1)z].

Since g(j) and g(j+1) have the same sign, cg(j)/g(j+1) ∈ H and hence T (czj+zj+1) is not
stable. We have shown T does not preserve stability, hence f(wz) exp(wz) 6∈ S[w, z].

In particular, choosing f(z) = 1 above shows that exp(wz) does not arise as a limit of
stable polynomials.

We recall Theorem 3.3.2 which showed

P (G; k, `) =

ν(G)∑
i=0

(−1)i
∑
W⊆V

µi(W )(k − i)n−|W |(`)i,

where µi(W ) is the number of ways W can be partitioned into i dependent sets. We define

Q(G; k, y) =

ν(G)∑
i=0

(−1)iyi
∑
W⊆V

µi(W )(k − i)n−|W |.

For i ∈ {0, . . . , ν(G)}, there is always some W ⊆ V for which µi(W ) is non-zero (just
take the set of matched vertices of a matching of cardinality i). Thus, the coefficients of
Q(G; k, y) are non-zero and alternate in sign. It follows from Descartes’ Rule of Signs that
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any real root of Q(G; k, y) is strictly positive. The strictness is due to the coefficient of y0

being non-zero.

For a fixed k, it follows from Theorem 5.6.5 that P (G; k, yDy) preserves stability if and
only if Q(G; k, y) has only real non-positive roots. When Q(G; k, y) is constant, G is an
edgeless graph and P (G; k, yDy) trivially preserves stability. However, when the degree of
Q(G; k, y) is at least 1, we conclude that P (G; k, yDy) cannot preserve stability. Hence,
there must exist some b for which P (G; k, yDy) does not map S[y]≤b into S[y]. It is
immediate from Theorem 5.6.3 that Bk(G; y) is stable if and only if any such b must be
greater than k. It is unclear how one could go about determining, for a given graph G, if
a pair of k and b exist such that P (G; k, yDy) does not map S[y]≤b into S[y].

Remark 5.6.7. Theorem 1.4 of [4] is a slightly different version of Theorem 5.6.4 for opera-
tors T which map R[z] into R[z]. In particular, P (G; k, yDy) maps SR[z] into itself if and

only if it maps at least one of exp(−xy) and exp(xy) into SR[x, y]. Proceeding as in the
proof of Theorem 5.6.5 we see that

P (G; k, yDy) exp(xy) = Q(G; k, xy) exp(xy).

We already showed that Q(G; k,−xy) exp(−xy) 6∈ S[x, y]. As for Q(G; k, xy) exp(xy), it
follows from Lemma 5.6.6 that it is not in S[x, y]. Since stable polynomials encompass the
real-stable ones we conclude that P (G; k, yDy) does not preserve real-stability either.

While the locations of the real roots of Q(G; k, y) guarantee that P (G; k, yDy) does not
always preserve stability, stability of Q(G; k, y) implies the stability of Bk(G; y). To show
this we require another powerful theorem of Borcea and Brändén:

Theorem 5.6.8 (Special case of Theorem 5.1 of [4]). Suppose that F (w, z) ∈ C[w][[z]]
and that pa(w) ∈ C[w] for each non-negative integer a, such that F (w, z) =

∑
a≥0 z

apa(w).

Then F (w, z) is in S[w, z] if and only if

b∑
a=0

(b)az
apa(w)

is in S[w, z] for every non-negative integer n.

Theorem 5.6.9. Let G be a graph and k be a non-negative integer. If Q(G; k, y) ∈ S[y],
then so is Bk(G; y).
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Proof. By Lemma 5.2.4, if Q(G; k, y) ∈ S[y], then Q(G; k, y) exp(y) ∈ S[y]. This power
series has the following form: ∑

a≥0

P (G; k, a)
ya

a!
.

Stability is not violated by adding variables to the ambient space, hence this power series
is also in S[x, y]. By Theorem 5.6.8 this is equivalent to

b∑
a=0

(
b

a

)
P (G; k, a)ya

being stable for all non-negative integers b. In particular, when b = k it implies that

k∑
a=0

(
k

a

)
P (G; k, a)ya = Bk(G; y)

is stable.

This result is important as it translates a problem about the Bk(G; y)’s, a family of
univariate polynomials with varying degrees, into one about Q(G; k, y), a single polynomial
in two variables. Section 6.5 uses this to guarantee stability of Bk(G; y) for some graphs.

5.7 A Power Series and an Interesting Result

Motivated by Theorem 5.6.8, we now attempt to show Bk(G; y) is stable for all k, using a
well-chosen power series. Unfortunately, these attempts will fail. Fortuitously, in doing so
we happen upon an interesting, but only loosely related result.

The idea is to define a power series such as

C(G;x, y) =
∑
k≥0

xk

k!
Bk(G; y).

If F (x, y) in Theorem 5.6.8 is C(G;x, y), then the appropriate pa(y) would be Ba(G; y)/a!.
Assume that

b∑
a=0

(b)ax
a

a!
Ba(G; y)
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is in S[x, y] for some non-negative integer b. It follows from Lemma 5.2.1 that, for each
k ≤ b, the following is stable

Bk(G; y) =
1

(b)k

[
(Dx)

k

b∑
a=0

(b)ax
a

a!
Ba(G; y)

]
x=0

.

Thus, C(G;x, y) ∈ S[x, y] implies that Bk(G; y) ∈ S[y] for every non-negative integer k.
Unfortunately, this fails spectacularly. Using Lemma 5.6.1 for y and then for x, we can
show

C(G;x, y) = P (G;xDx, yDy) exp(x(y + 1)).

Since differentiating exp(x(y + 1)) is equivalent to multiplying it by a polynomial, there
must exist some polynomial ϕ(G;x, y) such that

C(G;x, y) = P (G;xDx, yDy) exp(x(y + 1)) = ϕ(G;x, y) exp(x(y + 1)).

For example, for the edgeless graph on n vertices, P (Kn; k, `) = kn so ϕ(Kn;x, y) =
(x(y+1))n. Since H is invariant under the map y 7→ y+1, it follows from Lemma 5.6.6 that
C(G;x, y) is not even in S[x, y] for the edgeless graphs. Instead, we consider C(G;−x, y) =
P (G;xDx, yDy) exp(−x(y + 1)). In this case

C(Kn;−x, y) = (xDx)
n exp(−x(y + 1)) = xn(y + 1)n exp(−x(y + 1))

which we know to be in S[x, y] thanks to Lemma 5.2.4. While this may seem promising,
these are likely to be the only graphs for which this is true. Indeed P (K2; k, j) = k2 − j,
and so

C(K2;−x, y) = (x2y2 + 2x2y + x2 − x) exp(−x(y + 1)).

The polynomial x2y2 + 2x2y + x2 − x is not stable; we can verify that it vanishes when
x = (−1 + i

√
3)/2 and y = (−3 + i

√
3)/2. Thus C(K2;x, y) cannot arise as a limit of

stable polynomials. In fact, we have checked the partial sums from Theorem 5.6.8 using a
computer, and found that C(G;−x, y) 6∈ S[x, y] for all connected graphs with at most five
vertices.

However, in our investigation of C(G;−x, y) we did stumble across an interesting result.
We recall (3.3) which stated

P (G; k, `) =
∑
W⊆V

(k − `)n−|W |P (G[W ]; `).
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With some manipulation we have

C(G;−x, y) =
∞∑
k=0

(−x)k

k!

k∑
`=0

(
k

`

)
P (G; k, `)y`

=
∞∑
k=0

(−x)k

k!

k∑
`=0

(
k

`

)
y`
∑
W⊆V

(k − `)n−|W |P (G[W ]; `)

=
∑
W⊆V

∞∑
`=0

(−xy)`

`!
P (G[W ]; `)

∑
k≥`

(−x)k−`

(k − `)!
(k − `)n−|W |.

Using our usual tricks the rightmost sum is easily seen to be (xDx)
n−|W | exp(−x). We

define

R(G; z) =
∑
k≥0

P (G; k)
zk

k!
.

Then we have

C(G;−x, y) =
∑
W⊆V

(−xDx)
n−|W | exp(−x)R(G[W ];−xy).

This expression is interesting as (−xDx)
n−|W | exp(−x) is entirely independent of G, de-

pending only on n − |W |, and R(G; z) is the generating function for evaluations of the
chromatic polynomial. We thought it good to ask: when is R(G; z) or R(G;−xy) the limit
of a sequence of stable polynomials?

To answer this question, we use Lemma 5.6.1 to obtain

R(G; z) =
∑
k≥0

P (G; k)
zk

k!
= P (G; zDz) exp(z).

As usual, we are interested in the polynomial obtained from P (G; k) by replacing (z)j with
zj. Luckily, this polynomial and its roots have already received much attention. Recall
(2.3) in which we defined the chromatic polynomial to be

P (G; k) =
n∑
j=0

λj(G)(k)j,

where λj(G) was the number of partitions of V into exactly j, possibly empty, independent
sets. First studied by Korfhage [15], the sigma polynomial of G, denoted σ(G; z), is defined
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to be the polynomial
n∑
j=0

λj(G)zj.

We say that a graph is σ-real if σ(G; z) has only real roots.

Theorem 5.7.1. For all graphs G, D(G; z) = σ(G; z) exp(z). Furthermore, the following
are equivalent:

(i) P (G; zDz) maps S[z] into itself,
(ii) D(G; z) ∈ S[z],

(iii) G is σ-real.

Proof. It is easy to deduce from (5.7) that

D(G; z) = P (G; zDz) exp(z) = σ(G; z) exp(z) (5.8)

Proceeding as in the proof of Theorem 5.6.5 we also see that

P (G; zDz) exp(−wz) = σ(−wz) exp(−wz) = D(G;−wz).

The coefficients of σ(G; z) are non-negative integers, hence we deduce from Descartes’
Rule of Signs that real roots of σ(G; z) are non-positive. The equivalence of (i) and (ii) is
immediate from Theorem 5.6.4 and Lemmas 5.2.2 and 5.2.3. The equivalence of (ii) and
(iii) follows from (5.8) and Lemma 5.2.4.

The property of being σ-real is not particularly rare among graphs. There are many
families of graphs that have been shown to be σ-real. The following is a list of some of the
most important families of graphs known to be σ-real:

Theorem 5.7.2 (Theorem 2.2 of [6]). Let G be a graph. If G satisfies any of the following
conditions, then G is σ-real.

• G has 7 or fewer vertices (Section 3 of [5]),
• G has no (n− 4)-colouring (Theorem 3.7 of [6]),
• G is a chordal graph, that is it has no induced cycle of length greater than 3 (Theorem

3.5 of [29]),
• G has no independent set of cardinality 3 (in this case σ(G;x) is the matching poly-

nomial of G which was famously shown to be real-stable by Heilmann and Lieb in
Lemma 4.1 of [12]),
• G is an incomparability graph, that is there exists a partial order ≺ on V such that
uv is an edge of G whenever u and v are incomparable. (Theorem 2.5 of [29])
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Chapter 6

Computational Results and Open
Problems

This final chapter focuses on computational results and the further work they motivate.
Specifically, we give computer evidence in support of Conjecture 2.3.3 as well as log-
concavity of other sequences and give grounds for conjecturing that Bk(G; y) is stable
for all graphs G and all positive integers k.

6.1 Log-Concavity of (P (G; k, `))k`=0

Recall that Farr’s Correlation Inequality implies that the first three terms of sequence
(P (G; k, `))k`=0 satisfy the definition of log-concavity. Following our proof in Chapter 4 we
mentioned that our attempts to extend this result to show log-concavity of further terms
in the sequence were unsuccessful. Using a computer we have verified that this sequence
is log-concave for all graphs G with n(G) ≤ 10 and all k ≤ n(G) + 1.

Since the bivariate chromatic polynomial is multiplicative over connected components,
it sufficed to check only connected graphs. For each n up to 10, we generated a list of all
connected graphs on n vertices, up to isomorphism, using the the program Nauty, created
by Brendan McKay and Adolfo Piperno [18]. Throughout this chapter, these lists will be
used when checking all connected graphs with a given number of vertices.

A program written in C checked log-concavity of the sequence for each graph G and k.
To do so, this program created a list of all partitions of an n-element set. For each graph,
it ran through all partitions and recorded, for all i and j, the number of partitions which
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have exactly j independent parts out of a total of i parts. Since a colouring corresponds to
a partition of the vertices and a choice of colour for each part, it was then easy to compute
the sequence (P (G; k, `))k`=0 and check if it is log-concave. Numerical computations were
performed using the GNU Multiple Precision Arithmetic Library to avoid problems with
integer overflow. A few computations were compared against the output of a similar
program written separately in Racket (a Scheme-derived language) to verify correctness.
The code for the C program can be found in Appendix A.

As mentioned above, we found that (P (G; k, `))k`=0 is log-concave for connected graphs
G with 10 or fewer vertices and all non-negative integers k such that k ≤ n(G) + 1. We
chose to not go beyond 10 vertices as the computations became too lengthy. Recall that
log-concavity of this sequence implies log-concavity of a(k)(G; 1/k), hence these results lend
credence to Conjecture 2.3.3 (Farr undoubtedly performed similar computations as well).
Our findings motivate the following strengthening of Farr’s conjecture:

Conjecture 6.1.1. For any graph G and any non-negative integer k, the sequence

P (G; k, 0), P (G; k, 1), . . . , P (G; k, k)

is log-concave.

6.2 Terms in the Deletion-Contraction Recurrence

Recall (3.4), the generalised deletion-contraction recurrence for P (G; k, `), which states
that

P (G; k, `) = P (G \ e; k, `)− P (G / e; k, `) + (k − `)P (G− e; k, `).

In Section 6.1, we found that the sequence (P (G; k, `))k`=0 is log-concave for many G and
k. This turns out to also be the case for the following sequences:

(P (G \ e; k, `)− P (G / e; k, `))k`=0,

(P (G \ e; k, `) + (k − `)P (G− e; k, `))k`=0,

(P (G / e; k, `)− (k − `)P (G− e; k, `))k`=0.

These three sequences correspond to the three possible pairs of terms on the right-hand side
of (3.4). We verified their log-concavity using SageMath and the same lists of connected
graphs generated by Nauty. The SageMath script used can be found in Appendix B.
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For each graphG in the lists, and each edge e of G, we computed the bivariate-chromatic
polynomial of the required graphs using (3.3). The computations of the chromatic polyno-
mial, as well as all vertex deletions, edge deletions, and edge contractions were performed
using SageMath’s built-in graph library. For each k ≤ n(G) + 1 we evaluated the polyno-
mials at every value of `, and tested log-concavity of all three sequences.

We checked all connected graphs G such that n(G) ≤ 8, going no further due to time
constraints. We found that for all such graphs, all edges e, and all k ≤ n(G) + 1, the
three sequences were log-concave. It is possible that these sequences and the generalised
deletion-contraction recurrence can be exploited to prove Conjecture 6.1.1. However it
unlikely that this can be achieved without a much better understanding of the behaviour
of these sequences.

6.3 Stability of Bk(G; y)

The only families of graphs for which we know Bk(G; y) is stable are the edgeless graphs and
star graphs (K1,m for some positive integer m) have the property that Bk(G; y) is stable.
To better understand how common this property is, we checked the roots of Bk(G; y) for
many graphs. To do so, we made use of the following result:

Proposition 6.3.1. Let t be a vector (tv : v ∈ V ) of variables. For W ⊆ V , we will write
tW to mean the monomial

∏
v∈W tv.

Define the power series S(G; y, t) as follows:

S(G; y, t) = exp

(∑
v∈V

tv

)
+ y

∑
W⊆I(G)

tW .

Then for any non-negative integer k, we have

Bk(G; y) = [tV zk](1− zS(G; y, t))−1.

Proof. Recall Lemma 5.3.1 which states that

Bk(G; y) =
∑
c

k∏
j=1

(1 + y)ρ(c
−1(j)),

where the sum is over all k-colourings c. In this expression a k-colouring can be viewed as
an ordered partition of V into k (possibly empty) parts, where independent parts contribute
a factor of (1 + y) and dependent parts contribute 1.
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Observe that for each W ⊆ V the coefficient of tW in exp(
∑

v∈V tv) must be 1. Fur-
thermore, these are the only monomials in which every indeterminate occurs at most to
the first power. Adding y

∑
W⊆I(G) t

W ensures that the coefficient of tW is (1 + y) for
independent W , while remaining 1 otherwise. We think of an ordered partition of V into
k, possibly empty, parts as a choice of k monomials in S(G; y, t) such that for each v ∈ V ,
tv occurs exactly once among all the monomials. The product of the coefficients of all the
monomials will be the contribution of this partition to Bk(G; y). Thus

Bk(G; y) = [tV ](S(G; y, t))k.

It follows that

Bk(G; y) = [tV zk]
∑
k≥0

zk(S(G; y, t))k = [tvzk](1− zS(G; y, t))−1.

We found that using Proposition 6.3.1 was the quickest way to compute Bk(G; y) in
Maple for the graphs we were interested in. For each connected graph G, a Maple script
computed I(G), (1− zS(G; y, t))−1, and then Bk(G; y) for all desired k. We used Maple’s
fsolve function to find the roots numerically as complex numbers. Maple represents
complex numbers as two floating-point numbers, hence the usual uncertainties involving
floating-point numbers are present. For this reason, this is an imperfect approach. In
the future it would be better to use Sturm’s Theorem [25] and exact integer arithmetic.
Issues regarding approximations aside, we checked all connected graphs G with n(G) ≤ 9
and k ≤ n(G) + 1 without fsolve returning a root θ with |=(θ)| > 10−7. We chose 10−7

arbitrarily, but also examined a small sample of the roots produced by Maple and found
that any imaginary parts were much smaller than this bound. It is very surprising that
none of the Bk(G; y) examined had a root with significant imaginary part. For this reason,
we find it plausible that the Bk(G; y) we tested were all real-stable. The Maple code used
can be found in Appendix C.

6.4 Interlacing of Roots

In Section 5.5 we gave recurrence (5.4) for Bk(G; y) which stated that for all G and all
non-negative integers k

Bk(G; y) = Bk(G \ e; y)−Bk(G / e; y) + (k − yDy)Bk(G− e; y).

Using Table 5.5.3 we showed that the polynomials appearing in this equation do not in-
terlace each other’s roots, with the exception of Bk(G / e; y) and (k − yDy)Bk(G − e; y).
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We used Maple to compute the roots of both polynomials approximately and check if they
interlace. The relevant Maple code can be found in Appendix C. We allowed for roots to
have imaginary part less than 10−7 in magnitude and we considered two roots equal if they
differed by less than this quantity. We also ignored the small imaginary parts when check-
ing for interlacing. The edge contractions and vertex deletions were done using Maple’s
GraphTheory package. We performed these computations for all connected graphs G with
n(G) ≤ 8, all edges e of G, and all k ≤ n(G) + 1. In all cases we found that the roots were
interlaced. This is a bit mysterious and perhaps points to (k−yDy)Bk(G−e; y)−Bk(G/e; y)
being a bit special.

6.5 Roots of Q(G; k, y)

Our last computational results are related to Theorem 5.6.9 which stated that if Q(G; k, y)
is stable, then so is Bk(G; y). The upshot of this result is that the analysis of Q(G; k, y),
which is a single polynomial in two variables, is at times simpler than that of infinitely
many different Bk(G; y)’s.

For a real polynomial of small degree, we can use its discriminant to determine stability.
We denote by δ(G; k) the discriminant of Q(G; k, y) with respect to y. We know the degree
of Q(G; k, y) in terms of y is ν(G), hence when G has fewer than 8 vertices, Q(G; k, y)
is, at worst, a cubic in y. We obtain Q(G; k, y) from P (G; k, `) using the following result
adapted from Section 1.9 of [24]. Recall that

{
i
j

}
counts the number of partitions of an

i-element set with exactly j non-empty parts.

Proposition 6.5.1. Let f(x) =
∑m

i=0 ai(x)i be an arbitrary polynomial and define g(x) =∑m
i=0 aix

i. Further define

si(x) =
i∑

j=0

{
i

j

}
xj

for each i ∈ {0, . . . ,m}. If b0, . . . , bm are such that f(x) =
∑m

i=0 bix
i, then

g(x) =
m∑
i=0

bisi(x).

Proof. We will begin by showing

xi =
i∑

j=0

{
i

j

}
(x)j (6.1)
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for all non-negative integers i. Suppose x is a positive integer. The left-hand side counts
the number of functions from [i] to [x]. Every such function f is surjective onto a set Y
whose cardinality is at most m. The pre-images f−1(y) for all y ∈ Y form a partition of
[i] into |Y | parts. For each j ∈ {0, . . . ,m}, there are

{
i
j

}
partitions of [i] into j parts and

(x)j possible ways of mapping the parts to a subset of [x] with j elements. One can easily
verify that this is a bijection. Therefore (6.1) holds for all positive integers x. It follows
that the two sides must agree as polynomials.

We know {xi : i ≥ 0} and {(x)i : i ≥ 0} are bases for the space of polynomials in x.
Thus, if we are replacing (x)i with xi to obtain g(x) from f(x), then we are replacing xi

with si(x).

For each connected graph we had Maple compute P (G; k, `) using (3.3). We used
Proposition 6.5.1 to compute Q(G; k, y), and then computed its discriminant δ(G; k) as
a polynomial in k. By considering only graphs with 7 or fewer vertices, we ensured the
degree of Q(G; k, y) in terms of y was at most 3. It is well-known that the discriminant of
a polynomial ay3 + by2 + cy + d is

b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd.

We used fsolve to find the largest real root θ of δ(G; k). Again, we allowed for |=(θ)| to be
at most 10−7 (in this case this is quite generous). In the case that the value of θ, as returned
by fsolve, was slightly non-real, we threw away the imaginary part. For quadratics and
cubics, the polynomial has only real roots when the discriminant is non-negative. Thus
we had Maple evaluate δ(G; k) at k = θ + 1 and check that it is positive. If we found
the discriminant to be positive beyond its largest real root, then we checked stability of
Bk(G; y) for k ≤ θ+ 1 in the way described in Section 6.3. The Maple code used can, once
again, be found in Appendix C.

Figure 6.5.2: Four graphs for which δ(G; k) is negative as k →∞

These computations were performed on all connected graphs G with n(G) ≤ 7. Only
four graphs were found for which the δ(G; k) is not positive beyond its largest real root.
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These graphs are shown in Figure 6.5.2. For each of these four graphs, Q(G; k, y) has
two non-real roots for all positive integers k. However, for each of these graphs we used
the methods described in Section 6.3 to check the roots of Bk(G; y) for all k ≤ 21. Since
the largest real root of δ(G; k) was less than 13 for all four graphs, we are confident that
their discriminant being negative is not an indicator of non-stability for Bk(G; y). We also
performed these computations on some of the connected graphs with 8 vertices but found
many graphs for which the determinant was negative beyond its largest real root.

Overall, we have good evidence that Bk(G; y) is stable in many cases. We summarise
the cases in which we have proven, or have strong computational evidence, that Bk(G; y)
is stable below:

• ν(G) ≤ 1 and k is arbitrary.
• G is a connected graph with n(G) ≤ 9 and k ≤ n+ 1.
• G is a connected graph with n(G) ≤ 7, G is not one of the four graphs in Figure 6.5.2,

and k is arbitrary.
• G is a graph and k is a non-negative integer such that for each connected component
H of G, H and k satisfy one of the conditions above.

These results gives us the confidence to make the following conjecture:

Conjecture 6.5.3. For all graphs G and all non-negative integers k Bk(G; y) is real-stable.
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Appendix A

C Program Used to Check
Log-Concavity of (P (G; k, `))k`=0

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include "gmp-6.1.0/gmp.h"

// Assumes all graphs read have same number of vertices

#define N // Set to number of vertices

#define ADJ_MAT_SIZE ((N * (N - 1)) / 2)

#define R_ROWS ((N / 2) + 1)

#define R_COLS (N + 1)

#define RESULTS_SIZE (R_ROWS * R_COLS)

#define MAX_K (N + 1) --max number of colours

typedef unsigned int uint;

struct _ILst { // List if integers

int first;

struct _ILst *rest;

};

struct _LLst { // List of lists

ILst *first;

struct _LLst *rest;

};

struct _LLLst { // List of lists of lists
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LLst *first;

struct _LLLst *rest;

};

struct _Graph { // Graph

int nVerts;

char *adjMat;

};

// Returns the number of elements in lst

int lengthLLst (LLst *lst) {

int len = 0;

while (lst != NULL) { len += 1; lst = lst->rest; }

return len;

}

// Append elem to the front of lst

ILst *consILst (int elem, ILst *lst) {

ILst *newCell = (ILst*)malloc(sizeof(ILst));

newCell->first = elem; newCell->rest = lst;

return newCell;

}

LLst *consLLst (ILst *elem, LLst *lst) {

LLst *newCell = (LLst*)malloc(sizeof(LLst));

newCell->first = elem; newCell->rest = lst;

return newCell;

}

LLLst *consLLLst (LLst *elem, LLLst *lst) {

LLLst *newCell = (LLLst*)malloc(sizeof(LLLst));

newCell->first = elem; newCell->rest = lst;

return newCell;

}

// Appends elem to the front of every element of lst

LLst *consAllILst (int elem, LLst *lst) {

LLst *pos = lst;

while (pos != NULL) {

pos->first = consILst(elem, pos->first);

pos = pos->rest;
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}

return lst;

}

LLLst *consAllLLst (ILst *elem, LLLst *lst) {

LLLst *pos = lst;

while (pos != NULL) {

pos->first = consLLst(elem, pos->first);

pos = pos->rest;

}

return lst;

}

// Appends lst1 to the front of lst2

LLLst *appendLLLst (LLLst *lst1, LLLst *lst2) {

if (lst1 == NULL) return lst2;

if (lst2 == NULL) return lst1;

LLLst *newLst = consLLLst(lst1->first, NULL);

LLLst *pos = newLst;

lst1 = lst1->rest;

while (lst1 != NULL) {

pos->rest = consLLLst(lst1->first, NULL);

pos = pos->rest;

lst1 = lst1->rest;

}

pos->rest = lst2;

return newLst;

}

// Add elem tor prtn in all possible ways

LLLst *addToPrtn (int elem, LLst *prtn) {

if (prtn == NULL) {

return consLLLst(consLLst(consILst(elem, NULL), NULL), NULL);

}

return consLLLst(consLLst(consILst(elem, prtn->first), prtn->rest),

consAllLLst(prtn->first, addToPrtn(elem, prtn->rest)));

}

// Add elem to each partition in prtns in all ways possible
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LLLst *addToAllPrtns (int elem, LLLst *prtns) {

LLLst *result = NULL;

while (prtns != NULL) {

result = appendLLLst(addToPrtn(elem, prtns->first), result);

prtns = prtns->rest;

}

return result;

}

// Produces a list of all set partitions of the set {0,...,n-1}

LLLst *partitionsList (int n) {

if (n == 0) {

return consLLLst(NULL, NULL);

} else {

return addToAllPrtns(n-1, partitionsList(n-1));

} }

// Read a graph (in g6 format) from the file descriptor ’in’

// Assumes the graph being read has no more than 62 vertices

int ReadGraph (int in, struct Graph *g) {

int c = 0;

if (read(in, &c, sizeof(char)) == 0) return 0; // Reached EOF

g->nVerts = c - 63;

int pos = 0;

while (read(in, &c, sizeof(char)) != 0) {

if (c == ’\n’) break;

c = c - 63;

for (int i = 5; i >= 0 && pos < ADJ_MAT_SIZE; i -= 1) {

g->adjMat[pos++] = (c >> i) & 1;

} }

return 1;

}

// Returns 1 if the set is stable in G, 0 otherwise

int IsStable(struct ILst *set, struct Graph *G) {

while(set != NULL) {

int u = set->first;

set = set->rest;
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int colStartIndx = (u * (u - 1)) / 2;

for (ILst *pos = set; pos != NULL; pos = pos->rest) {

if (G->adjMat[colStartIndx + pos->first]) {

return 0;

} } }

return 1;

}

// Returns the number of sets in the given list which are stable

int numStableSets (LLst *sets, Graph *g) {

int n = 0;

while (sets != NULL) {

n += isStable(sets->first, g);

sets = sets->rest;

}

return n;

}

// Returns the number of partitions (provided as ps) of V(G)

// with exactly i stable parts as the i-th entry of ’results’

// Assumes ’results’ is initialised to zero

void CountPartitions (struct LLLst *ps, struct Graph *G, int *results) {

while (ps != NULL) {

int stbl = numStableSets(ps->first, G);

results[((N + 1) * (lengthLLst(ps->first) - stbl)) + stbl] += 1;

ps = ps->rest;

}

}

// Compute the falling factorial (n)_k, z is return value

void FallingFact (mpz_t z, uint n, uint k) {

if (k > n) {

mpz_set_ui(z, 0);

} else {

mpz_set_ui(z,1);

for (uint i = n; i > n - k; i -= 1) {

mpz_mul_ui (z, z, i);

} } }
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// Compute the number of (k,i)-colourings for each i in [k]

// returned as i-th entry of b

// ’results’ is assumed to be the vector produced by CountPartitions

void ComputeBs (int k, int *results, mpz_t *b) {

mpz_t z1, z2; mpz_init(z1); mpz_init(z2);

for (uint i = 0; i < MAX_COLOURS; i += 1) {

mpz_set_ui(b[i], 0);

if (i > k) continue;

int resPos = 0;

for (uint ns = 0; ns < min((uint) R_ROWS, k - i + 1); ns += 1) {

for (uint s = 0; s < R_COLS; s += 1) {

if (ns + s <= k) {

fallingFact(z1, k, ns + s);

mpz_addmul_ui(b[i], z1, (uint) results[resPos]);

}

resPos += 1;

} } } }

// Check if b’s are log-concave (k indicates the length of b)

// Prints graph, k, and i for which sequence is not log-concave

void CheckLogConc(int line, int k, mpz_t *b) {

mpz_t bb, ac;

mpz_init(bb);

mpz_init(ac);

for (int x = 0, y = 1, z = 2; z < MAX_K; x += 1, y += 1, z += 1) {

mpz_mul(ac, b[x], b[z]);

mpz_mul(bb, b[y], b[y]);

if (mpz_cmp(bb,ac) < 0) {

printf("line = %d -- k = %d -- i = %d\n", line, k, y);

} } }

int main() {

// Initialize graph structure G, vector of mpz_t b,

// open file created by Nauty, create list of partitions

int line = 0;

while (readGraph(in, &G) != 0) {

for (int i = 0; i < RESULTS_SIZE; i += 1) results[i] = 0;
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CountPartitions(partitions, &G, results);

for (int k = 0; k < MAX_K; k += 1) {

ComputeBs(k, results, b);

CheckLogConc(line, k, b);

}

line += 1;

} }
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Appendix B

Sage Script Used to Check
Log-Concavitiy of Related Sequences

def AddSeqs(s1,s2):

return [s1[j] + s2[j] for j in range(len(s1))]

def SubSeqs(s1,s2):

return [s1[j] - s2[j] for j in range(len(s1))]

def IsLC(seq):

for j in range(1,len(seq)-1):

if seq[j]^2 < seq[j-1]*seq[j+1]: return false

return true

def TestGraph(g6str,kmax):

G = Graph(g6str)

P = G.bivariate_chrom_poly()

for e in G.edges():

Gdel = G.copy(); Gcon = G.copy(); Gext = G.copy()

Gdel.delete_edge(e)

Gcon.contract_edge(e)

Gext.delete_vertices([e[0],e[1]])

Pdel = Gdel.bivariate_chrom_poly()

Pcon = Gcon.bivariate_chrom_poly()

Pext = Gext.bivariate_chrom_poly()
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for k in range(1,kmax):

S = [P(x=k,y=j) for j in range(k+1)]

Sdel = [Pdel(x=k,y=j) for j in range(k+1)]

Scon = [Pcon(x=k,y=j) for j in range(k+1)]

Sext = [(k-j)*Pext(x=k,y=j) for j in range(k+1)]

if not (IsLC(SubSeqs(Sdel,Scon)) and

IsLC(SubSeqs(Sext, Scon)) and

IsLC(AddSeqs(Sdel,Sext))): return false

return true
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Appendix C

Maple Code Used to Check
Properties of Bk(G; y)

# Returns S(G;x,t)

SS := proc(V::set, I::set, $)

return exp(add(t[v], v in V)) + x*add(mul(t[v], v in S), I in I);

end proc:

# Returns true if no element of E is a subset of W

IsIndep := proc(W::set, E::set(set), $)

return not ormap((e) -> e subset W, E);

end proc:

# Initialize a graph G for future use of the Bkpoly function

_VSet[0] := {}: # List of vertex sets

_VPowSet[0] := {}: # List of powersets of vertex sets

InitGraph := proc(G::Graph, $)

global _VSet, _VPowSet;

local n, StableSets;

n := NumberOfVertices(G);

if not type(_VSet[n], set) then

_VSet[n] := {seq(i, i=1..n)};

_VPowSet[n] := powerset(_VSet[n]);

end if;

Indeps := select(IsIndep, _VPowSet[n], Edges(G));
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SetGraphAttribute(G, "Sgeo"=1 / (1 - y*SS(_VSet[n], Indeps)));

end proc:

# Returns the coefficient of the the monomial prod_{(t,i) in S} t^i

coeffList := proc(expr, S::set(list), $)

return foldl((Z, x) -> coeftayl(Z, x[1] = 0, x[2]), expr, op(S));

end proc:

# Returns B_k(G;x) (assumes InitGraph has been called on G)

Bkpoly := proc(G::Graph, k::nonnegint, $)

local Z;

Z := GetGraphAttribute(G, "Sgeo");

return simplify(coeffList(coeftayl(Z, y = 0, k),

{seq([t[v], 1], v in _vSet[NumberOfVertices(G)])}));

end proc:

# Returns false if some bk has non-real roots, true otherwise

AreAllBkStable := proc(kmax::nonnegint, path::string)

local NextGraph, k, G;

NextGraph = ImportGraph(path, "graph6", output=iterator);

do:

G := NextGraph();

if (G = FAIL) then return true; end if;

InitGraph(G);

for k from 1 to kmax do

if (not andmap(IsReal, [fsolve(Bkpoly(G,k)=1,complex,x)])) then

return false;

end if;

end do;

end do;

end proc:

# Version of the ’Contract’ function that works with Bkpoly

SafeContract := proc(G::Graph, e, $)

local n,H;

n := NumberOfVertices(G) - 1;

H := RelabelVertices(Contract(G,e), [seq(i, i=1..n)]);

InitGraph(H);
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return H;

end proc;

# Version of the ’DeleteVertex’ function that works with Bkpoly

SafeDeleteVertex := proc(G::Graph, v, $)

local n,H;

n := NumberOfVertices(G) - nops(v);

if (n = 0) then

H := Graph();

else

H := RelabelVertices(DeleteVertex(G,v), [seq(i, i=1..n)]);

end if;

InitGraph(H);

return H;

end proc;

# "Approximately equal" function to deal with numerical inacuracies

ApproxEq := proc(x,y)

return (abs(x-y) < 0.0000001);

end proc:

# Returns true if the elements of L1 and L2 interlace each other

Interlace := proc(L1::list, L2::list, $)

local i,L1max,L2max;

i := 1;

L1max := nops(L1);

L2max := nops(L2);

while(i <= L1max and i <= L2max and ApproxEq(L1[i],L2[i])) do

i := i + 1;

end do;

if (i > L1max) then return i >= L2max; end if;

if (i > L2max) then return i >= L1max; end if;

if (L1[i] > L2[i]) then return Interlace(L2, L1); end if;

while (i < L1max) do

if (i > L2max) then return false; end if;

if (not (ApproxEq(L1[i], L2[i]) or ApproxEq(L2[i],L1[i+1])))

and (L1[i] > L2[i] or L2[i] > L1[i+1]) then

return false;

78



end if;

i := i + 1;

end do;

if (i < L2max) then return false;

if (i = L2max) then return ApproxEq(L1[i],L2[i]) or L1[i]<=L2[i]; fi;

return true;

end proc:

# Returns false if no interlacing is found, true otherwise

CheckInterlacing := proc(kmax::nonnegint, path::string)

local NextGraph, k;

NextGraph := ImportGraph(path, "graph6", output=iterator);

do:

G := NextGraph();

if (G = FAIL) then return true; end if;

InitGraph(G);

for e in Edges(G) do

Gcon := SafeContract(G, e);

Gext := SafeDeleteVertex(G, convert(e, list));

for k from 1 to kmax do

Bkcon := Bkpoly(Gcon, k);

Bkext := Bkpoly(Gext, k);

A := k*Bkext - x*diff(Bkext, x);

Brs := map((z) -> Re(z), [fsolve(Bkcon=0, complex)]);

Ars := map((z) -> Re(z), [fsolve(A=0, complex)]);

if (not Interlace(Brs,Ars)) then return false; end if;

end do;

end do;

end do;

end proc:

# Compute the Bivariate Chromatic Polynomial of G

BivChromPoly := proc(G::Graph, x::name, y::name, $)

global _vSet, _vPowSet;

local n;

n := NumberOfVertices(G);

if (n = 0) then return 1; elif (n = 1) then return x; end if;

if not type(_vSet[n], set) then
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_vSet[n] := {seq(i, i=1..n)};

_vPowSet[n] := powerset(_vSet[n]);

end if;

return simplify(add((x-y)^(n - nops(W))*ChromaticPolynomial(

InducedSubgraph(G,W),y), W in _vPowSet[n]);)

end proc:

# Precompute the stirling polynomials.

MAX_STIRLING := 12: # Max degree we will compute

strlY[0] := 1:

for k from 1 to MAX_STIRLING do:

strlY[k] := sort(expand(y*strlY[k-1] + y*diff(strlY[k-1],y))):

end do:

# Maps sum_{k=0}^n a_k*(t)_k to sum_{k=0}^n a_k*y^k

FallingFactsToYPowers := proc(p::polynom(integer), t::name, $)

local P,d;

P := expand(p): d := degree(p,x);

return simplify(add(coeff(P,t,k)*strlY[k], k=0..d));

end proc:

IsReal := proc(z::complex)

return evalb(abs(Im(z)) < 0.0000001);

end proc:

# Discriminant of quadratic

QuadDiscr := proc(p::polynom(integer), y::name, x::name, $)

local A,B,C;

A := coeff(p,y,2); B := coeff(p,y,1); C := coeff(p,y,0);

return B^2 - 4*A*C;

end proc:

# Discriminant of cubic

CubicDiscr := proc(p::polynom(integer), y::name, x::name, $)

local A,B,C,D;

A := coeff(p,y,3); B := coeff(p,y,2);

C := coeff(p,y,1); D := coeff(p,y,0);

return B^2*C^2 - 4*A*C^3 - 4*B^3*D - 27*A^2*D^2 + 18*A*B*C*D;
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end proc:

# Check if discriminant

CheckDiscr := proc(p::polynom(integer), y::name, x::name, $)

local d,discr,m;

d := degree(p,y);

if (d <= 1) then return -infinity;

elif (d = 2) then discr := QuadDiscr(p,y,x);

elif (d = 3) then discr := CubicDiscr(p,y,x);

else return FAIL; end if; # Should not occur

m := Re(max(select(IsReal, [fsolve(disc=0, complex)])));

if (eval(disc,x=m+1) > 0) then return m; else return FAIL; end if;

end proc:

# Check if Q(G;k,y) has positive discriminant as we tend to infinity

CheckQpolys := proc(path::string)

local NextGraph, maxM, m;

m := -infinity;

NextGraph := ImportGraph(path, "graph6", output=iterator);

do:

G := NextGraph()

if (G = FAIL) then return true; end if;

InitGraph(G)

P := BivariateChromaticPoly(G,x,y);

sig := FallingFactsToYPowers(P,y);

m := CheckDiscr(sig,y,x);

if (m = FAIL) then return false; end if;

if (m > maxM) then maxM := m; end if;

end do;

print("maxM =", maxM);

return true;

end proc:
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