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Abstract

The fatigue damage on wind turbine blades will threaten the safety and stability of the wind
turbine and thus lower the efficiency and economy of the power generation system. The
wake-induced fatigue plays an important role in this fatigue damage, which has not been
deeply studied in the previous research of this domain. This is because the calculation of
fatigue damage on a wind turbine blade under wake conditions will include the knowledge
of wind turbine wake (fluid mechanics), composite structure modelling (solid structure
modelling), aero-elastic modelling (coupling between fluid and structures), and fatigue
analysis. Moreover, the anisotropic composite wind turbine blade, e.g. bendtwist coupling
blade, will also bring challenges for the structural modelling. To propose a model to
solve the above problems holistically is the motivation of the thesis. In this thesis, to
construct the aero-elastic model under wake conditions for fatigue analysis, the elastic
actuator line model is proposed and verified. To consider the anisotropic properties of
composite wind turbine blade, e.g. bend-twist coupling wind turbine blade, the anisotropic
wind turbine blade structure model is constructed. Based on the structure model and cross
sectional analysis method (BECAS), the fatigue analysis methodology is proposed. Due to
the similarity between the anisotropic wind turbine blade structure model and Maxwell’s
equation (electromagnetic equations), the FDTD method, which is a FDM based method
and long been used in electromagnetic simulation, is applied to construct a novel anisotropic
wind turbine blade structure model. Specifically, firstly, the actuator line model is validated
in terms of thrust coefficient and flow field prediction. It is found that the nacelle effect has
impact on the velocity profile around wake center region. And the proposed single-point
nacelle model, single momentum source point smeared by Gaussian function, can be used
to correct the prediction not only for RANS turbulence model but also for LES turbulence
model. Secondly, Based on NREL SOWFA, the elastic actuator line model is constructed as
an aero-elastic model for wake conditions to simulate the dynamic loading of wind turbine
blade. The stochastic and deterministic wake-induced fatigue loading are reproduced by the
proposed elastic actuator linemodel. Compared with the explicit elastic actuator linemodel,
the implicit elastic actuator line can run with larger time step. However, the accuracy of
implicit method will decrease. Thirdly, the performance of normal and bend-twist coupling
wind turbine blade with anisotropic composite materials in wake conditions are studied by
using the fatigue analysis methodology based on anisotropic structure model, cross sectinal
analysis, and fatigue analysis method. Based on this fatigue analysis methodology, the
fatigue life of NREL 5MW wind turbine blade is analysed. The predicted fatigue life
(26.0187 years) of the main structure (spar caps) is very close to the design life (20 years).
From the fatigue analysis for wind turbines in wake conditions, it is found that the wake-
induced fatigue has a significant impact on the fatigue life of wind turbine blades (fatigue
life drops from 26.0187 years to 1.7388 years under compact layout). And wind farm
layout can affect the wake-induced fatigue damage (increase from 1.7388 years (compact
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layout) to 6.9084 years (normal layout)). Furthermore, it is also found that the bend-twist
coupling wind turbine blade can alleviate the fatigue load under wake condition. Lastly, the
structure model based on FDTD method is constructed for anisotropic wind turbine blade
and validated in terms of beams with deformation coupling, non-inertia coordinate system,
and non-uniform sections (real wind turbine blade). The stability analysis for the proposed
FDTD model is carried out, which shows that the root cause of the numerical instability
for the proposed method is the highest-frequency mode in numerical model. Based on
this analysis, the unconditionally stable explicit FDTD structure model is proposed and
constructed, which strikes a balance between accuracy and efficiency. Compared with
implicit method, the unconditionally stable explicit FDTD model overcomes its limitations
on time step with little effect on its solution accuracy.
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Chapter 1

Introduction

Wind power generation is a promising energy utilizationwaywith a high level of commercial
competence and less carbon emission. Today, there is 12239 MW wind power which has
been installed in Canada. Among all the provinces, Ontario ranks the top one. For Ontario
electrical grid, the wind power also accounts for more and more proportions (9% until now)
on the whole power generation system. As a result, wind energy has a great impact on the
daily life of the Ontario residents. However, plenty of technical problems arise for the wind
energy utilization. Among them, wake effect is one of the most important issues.

For modern wind energy utilization, wind turbines are always clustered as a wind
farm (e.g. the 132 MW wind farm in Ontario with 88 wind turbines), in which the wind
turbines share the same management, maintenance, and electrical system. Unfortunately,
the compact distance between wind turbines will make wake effect commonly exist in the
current wind farms.

Due to the presence of rotating blades, the wake flow of upstream wind turbine is
characterized by decreasing velocity and increasing turbulence intensity. As a result, the
downstream wind turbine performance will be affected by the upstream wake. Generally
speaking, wind turbinewakes can result in 10%-20%decline ofwhole power production and
5 %-15 % increase of fatigue load on the wind turbine rotor. Previous research and practice
mainly concentrate on the wake effect of power loss. Since the study of wake-induced
fatigue is an interdisciplinary research domain, including methods of wake modelling,
aero-elastic modelling (including aerodynamics and structural modelling), fatigue analysis,
few research papers were found in this domain compared with the research on the wake-
induced power loss. However, the fatigue damage on the wind turbine blades will threaten
the safety and stability of the wind turbine blade and thus lower the economy and efficiency
of the power generation system. The fatigue issue is also a bottle-neck for the design of
large wind turbine blade. As a result, how to simulate the dynamic loading under wake
conditions and quantify the wake-induced fatigue damage accurately and efficiently is a
problem. Moreover, the current fatigue mitigation method, such as bend-twist coupling
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wind turbine blade, will also increase the difficulty of the first problem, which will also be
seriously considered in this thesis. The motivations of the thesis will be comprehensively
introduced in the following section.

1.1 Motivations
Wind turbine blades account for 13 % of the onshore wind turbine total cost according to
the published data, which are obviously very important to the manufactures and operation
companies. As a result, Fatigue damage analysis for wind turbine blade is significant
for the design and maintenance of a wind turbine blade. However, the calculation of
fatigue damage on a wind turbine blade will include the knowledge of wind turbine wake
(fluid mechanics), anisotropic composite blade modelling (solid structure modelling), aero-
elasticity (coupling between fluid and structures), and fatigue analysis. Furthermore, all of
the mentioned models should be coupled together efficiently, because the fatigue analysis
requires long simulation time (physical time). According to the research papers in this
domain, there exist two difficulties in modelling the dynamic loading for the wake-induced
fatigue.

On one hand, the design life of wind turbine blade is normally 20 years. During
its life time, the wind turbine blade will suffer from the turbulence in the surrounding
atmosphere and turbulent wind turbine wakes. Obviously, the simulation of this turbulent
flow involves two scales of flow: atmospheric flow and wind turbine wake flow, which
increases the computational cost for numerical models (e.g. CFD model for wind turbine
wake). Moreover, the CFD model will also be coupled with the aero-elastic model to
simulate the dynamic loading, which further raise the computational cost. In summary,
the difficulty is the coupling between different scales of flows (atmospheric flow and wake
flow) and the coupling between fluid models and aero-elastic models.

On the other hand, the wind turbine blade structure is complicated, because it is a
twist composite structure with different airfoil shapes on different sections. Different
sections of the airfoil, including the leading edge, trailing edge, and spar caps, consists of
different composite material layers. For bend-twist coupling wind turbine blade, there exist
orientation offset on the fibres of the composite, whichmakes the structuremore anisotropic,
i.e. bend and twist deformations are coupled together. The application of composite
materials in wind turbine blade enhances the anisotropy of the structure, which will also
bring challenges to the modelling of wind turbine blade structures. The conventional beam
models are not accurate enough for the anisotropic beam modelling.

To propose a model to solve the above problems holistically is the motivation of the
thesis. It should be mentioned here that the current research is inspired by the National
Renewable Energy Laboratory ’s work on coupling between SOWFA code (fluid mechanics
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1. Introduction

solver) and FAST 7.0 code (aero-elastic code). However, in the current research, instead of
using modal approach in NREL FAST 7.0, a novel finite-difference-method based model is
proposed to be the structure model, which is simple to be programmed and coupled with
fluid mechanics solver. This FDM structure model is further improved and generalized by
using FDTD method. Furthermore, the cross sectional analysis method (DTU BECAS) is
employed to consider sectional stress (and strain) for different materials and the anisotropic
properties of wind turbine blade. By using the proposed model, the wake-induced fatigue
damage will also be studied, which will provide more understanding about the performance
of normal and bend-twist coupling wind turbine blade under wake conditions.

1.2 Objectives and proposal
Based on the aforementioned twomotivations, the two objectives of the thesis are as follows:

(1) To construct an aero-elastic model under wake conditions to simulate the dynamic
loading on the wind turbine blade for fatigue analysis.

(2) To construct an advanced structuremodel, which considers the anisotropic properties
of composite materials, for the above aero-elastic model.

The idea to solve the first problem is to use the actuator line, which is not only a wake
model but also an aerodynamic model. If we can build a FDM based structure model which
can be easily and efficiently coupled with actuator line model, then the aero-elastic model
for wake conditions can be constructed. This is the first novelty of the thesis.

For the second problem,we further extend the proposed structuremodel to the anisotropic
formulation by using the Newtonian method, in which we found that the derived equations
are very similar to the Maxwell equations. As a result, a numerical method for Maxwell
equations, namely FDTD method [4], is employed to solve the anisotropic structure equa-
tions. This method can strike a good balance between accuracy and efficiency. This is the
second novelty of the thesis.

In this thesis, to finish these two objectives, a four-stage research is carried out, which
are the four chapters in the thesis.

(1) During the stage one or Chapter 2, atmospheric and actuator line models based on
NRELSOWFA code are introduced and validated in terms of flowfield and thrust coefficient
prediction. The individual wind turbine wake, multi-wake interactions, and wind turbine
wakes in the wind farm are all studied. The comparison in terms of employing turbulence
models is also carried out.

(2) In the stage two or Chapter 3, the elastic actuator line model is proposed and
constructed, which is based on the two-way coupling approach combining the conventional
actuator line and the proposed structure model. The proposed elastic actuator line model
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is verified by comparing with NREL FAST 7.0. To enlarge the time step, an implicit
formulation for elastic actuator line is also proposed and verified. By using the implicit
elastic actuator line model, the characteristics of dynamic loading of wind turbine blade are
studied.

(3) In the stage three or Chapter 4, the research focuses on the fatigue analysis method-
ology for the proposed elastic actuator line. The anisotropic beam model for composite
wind turbine blade based on the FEM method is constructed and validated. To fill the
gap between the dynamic loading from beam structure model and stress (and strain) time
series for fatigue analysis, the cross sectional analysis method BECAS is employed. The
fatigue analysis methodology is constructed. Based on this methodology, the performance
of normal and bend-twist coupling wind turbines under wake conditions is studied.

(4) In the stage four or Chapter 5, the research focuses on improving the structural
modelling for the proposed elastic actuator line. The anisotropicwind turbine blade structure
model based on the FDTD method is proposed based on the formulation described in stage
two. The structure model in this stage is the generalized formulation of the stage two model.
The proposed FDTD model is further validated in this stage. In addition, the stability
analysis for the proposed FDTD model is carried out to find out the root cause of numerical
instability. Based on this analysis, the unconditionally stable FDTD structure model is
proposed and verified, in which the time step can be enlarged without losing accuracy
compared with implicit method. This approach strikes a balance between accuracy and
efficiency.

In summary, for the first two stages, the elastic actuator line model is proposed, con-
structed, and verified. In the next two stages, the components in elastic actuator line model,
including fatigue analysis and structure modelling, are refined and improved. The main
body structure of the thesis is shown in Figure 1.1.
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1. Introduction

Figure 1.1 Thesis outline.

1.3 Literature review
In this section, the research papers related to the aforementioned topics are reviewed. Firstly,
since wake modelling is the foundation of the elastic actuator line model in this thesis, the
history and development of wakemodels are reviewed in Section 1.3.1. Secondly, the papers
of observations about the wake-induced fatigue are introduced in Section 1.3.2 to back up
our motivations in Section 1.1. Thirdly, the fatigue analysis method for wind turbine blade
are reviewed in Section 1.3.3. The first three sections of literature review is related to the
first objective in Section 1.2. The next two sections, including Section 1.3.4 and 1.3.5, are
related to our second objective. In these two sections, the application of bend-twist coupling
wind turbine blade and the anisotropic wind turbine blade models are also fully reviewed.

1.3.1 Wind turbine wake modelling

Wake models are the essential part for wake-induced fatigue analysis. The development of
wind turbine wake models has mainly witnessed 3 stages.

The first stage is the semi-empirical modelling stage (1979-1988). In the beginning,
Lissman proposed a model based on jet theory and empirical assumptions [5]. The Lissman
model is feasible, but not practical. Then it was followed by Jensen wake model, which
is based on the momentum integral equation [6]. Despite ideal assumptions are still
required, this model has been proven to be efficient and effective by engineering practice
and adopted by commercial softwareWindSim. Unlike Jensenmodel’s uniform distribution
assumption, Larsen presented an analytical model based on similarity solution theory [7].
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Actually, Larsenmodel is more similar to the real wake flow in terms of velocity distribution,
however, it often underestimated wake recovery which is caused by turbulence and restricts
its application to the large wind farm. Unfortunately, this problem is common in the
analytical wake models.

As a result, in the second stage (1991-1999), in order to consider the effect of turbulence,
the Reynolds Average Navier-Stokes (RANS) method has occurred in this domain. Ainslie
model is a two-Dimensional RANS model, which neglects radial and tangential velocities.
Remarkably, a pre-calculated near wake velocity distribution is employed. Similarly, Taylor
proposed a three-dimensional RANS model of one equation turbulence model, which ac-
cords with the observations in wind tunnel [8]. Then Crespo used a two-equation turbulence
model based on the similar assumption of Taylor’s, while discrepancy between its results
and data from wind farm measurement was obvious [9]. All of models mentioned above
are quasi-steady wake models in which near wake flows are pre-calculated. In addition,
the turbulence intensity in wake flows is derived from the effective turbulence model so
that dynamic wake flows in front of the downstream turbine is the superposition of steady
and fluctuating wind [10]. Noticeably, in the first two stages, the ambient flows and each
wake flow are simulated separately (except for the Crespo model). In addition, the average
velocity field and turbulent velocity in wakes are simulated separately without concerning
the atmospheric turbulence-turbine interaction (or turbine modelling). In fact, these models
was firstly proposed to calculate the long-term power loss due to wind turbine wake in
early years. The simplification is also due to the computational capability at that time.
Although these models are rather efficient and still prevalent in the engineering practice
until now, the lack of coupling between wake flows and ambient flow is still a limitation for
unsteady modelling (like dynamic loading). Moreover, those in this and its previous stages
are all conventional wind turbine wake models, which mainly concentrate on individual
wake modelling.

As a result, in the next stage (2000-now), fully three-dimensional CFD wake models
occur, which means that wake flows are simulated within the ambient flows in the wind
farm, including all the turbines, terrain and atmospheric motion. These recent achievements
are fully reviewed in Sanderse’s paper in 2011 [11] and are briefly introduced in this section.
The most striking characteristic of these recent works is the rotor modelling, which is in
previous work too much simplified as a pre-calculated near wake velocity distributions. By
employing the rotor modelling, complex phenomenon, e.g. tip vortex shedding (and root
vortex) and dynamic loading, can be reproduced naturally. The first rotor model is proposed
by Sorensen [12], which is the actuator disc model. For this model, the wind turbine rotor
is represented as body force “disc”, which is smoothed by applying a Gaussian function in
the computational domain. Normal and heavy loading situations are successfully simulated
in this case. It was followed by Leclerc’s work [13] in 2004, in which the vortex ring is
reproduced based on the actuator disc principle. This work is further tested by NREL wind
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1. Introduction

tunnel experiment [14]. As for the validation paper [15], actuator disc is proven to be an
effective method to predict the far wakes in wind farm. However, the near wake vortex
structure is different compared with full rotor computation (full-resolved blade, CFD),
which will restrict its application on the dynamic loading simulation. Similar validations
can also be found in the Mikkelsen’s paper [16]. Although some limitations still exist (only
valid for rotationally symmetric flow conditions), actuator disc is still commonly used not
only in the unsteady simulation with LES [17], but also steady simulations due to its high
efficiency. To better simulate the vortex structures and dynamic motions of blades in wakes,
the actuator line model was proposed [18], in which blades are divided into numbers of
elements . For each element, the body force is calculated from the tabulated airfoil data.
This method is further studied and validated in Troldborg’s paper in 2008 [19]. Research
of LES simulation with actuator line can be found in Lu [20] and Conzemius’s [21] paper.
Next, the actuator surface occurs, in which the blades are represented as body force surfaces
[22] [23]. However, finer grids are required for this method, which makes it too much
time consuming for engineering practice. Despite these actuator models already give a
rather trusty approximations for aerodynamic loading, the direct modelling of rotor is still
worthwhile, in which the geometry of wind turbine is fully resolved. These direct modelling
works [24][25][26][27]. Despite of its computational-consuming, it can still provide a more
accurate, detailed and deep knowledge for the wind turbine wake aerodynamics compared
with actuator models [28]. However its large computations and technical difficulties (e.g.
meshing of the geometry) of direct modelling are still obstacles for its application on
the wind farm simulation. In conclusion, considering accuracy and efficiency, actuator
models are the most promising method to reproduce the unsteady wake flows in wind farm
nowadays. Among them, actuator line models, which can be used to simulate complicated
wake vortex structures and reproduce unsteady wake flows, will be employed in the thesis.
However, most research until now on actuator line mainly concentrate on wake-induced
effect of power loss and do not consider the elasticity of blades. Although wake flows can
be reproduced by conventional methods, dynamic loading cannot be accurately predicted
because of the absence of fluid-structure interaction simulation. Recently, research begin to
concentrate on the coupling between CFD and structure models, which are, however, almost
all one-way coupling methods [29][30], in which structural model does not have impact on
the CFDmodel. Noticeably, NREL has made the first attempt on two-way coupling between
LES model and its aero-elastic code [31]. More attempts and studies for its engineering
application are still necessary on this realm. In order to fulfill our research objectives,
knowledge of aero-elastic simulation of wind turbine is required. In the thesis, the elastic
actuator line model is proposed and employed in Chapter 3, which is the two way coupling
method between actuator line method and finite-difference-method based structure model.
The foundation of elastic actuator line model will be studied in Chapter 2.

Except for the aforementioned models, there still exist three important wake models
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in this domain, including vortex model [32], dynamic wake meandering (DWM) model
[33], and effective turbulence method [34]. The vortex model, namely the lifting line or
lifting surface model, is used for near wake computation and aerodynamic force prediction.
This method is based on potential flow assumption (coupled with viscous boundary layer
correction sometimes). The bound circulation of the wind turbine blade is first determined
from the boundary condition (e.g. Kutta condition). The global flow field is determined
by the induction law of Biot-Savart. The dynamic wake meandering model is proposed
by Larsen in 2007. This model can capture the dynamic motion of the wind turbine
wake, namely wake meandering, which is popular in the dynamic load simulation of wind
turbine. The effective turbulence method is proposed by Frandsen, which is employed
by GL guidlines for wind turbine certification. This model can be used to calculate the
turbulence intensity distribution in the wake region.

1.3.2 Wake-induced fatigue

In the previous section, the wake modelling methods are introduced. In this section, the
wake-induced fatigue will be reviewed to back up our motivations. In fact, numbers of
previous experimental researches based on field observation support the significant wake-
induced fatigue load on wind turbine blades. To begin with, the earliest observation about
the wake effect on dynamic loading of wind turbine blades is Dahlberg’s paper (1992), the
loading data of four Danwin 23/180 kW turbines shows that the wind turbine wake caused
a large increase of blade load variation [35]. Per Volund’s paper in 1992 concluded two
main effects of wakes on the dynamic load of wind turbine blades: Firstly the turbulence is
higher in wake than that in the surroundings, which leads to the stochastic load fluctuations.
Secondly the blade once per revolution enters and leaves the low speed area of the wake
[36], which mainly accounts for the deterministic loading. Similar phenomena can also
be found in the observation in the Vindeby off-shore wind farm (450 kW wind turbine)
in Denmark [37]. Following research also observes large wake impact on the dynamic
load exists not only on on-shore wind farms, but also on offshore ones [38]. In recent
observations on the modern Mega-watt wind turbines in Yeong-heung Wind Farm (Korea)
in 2014, large wake-induced fatigue was observed [39]. As known to all, the wind turbine
is the biggest rotating machine[40], and the blade length is still getting larger. As a result,
the fatigue of blades (especially wake-induced fatigue) should be seriously considered and
studied. In this thesis, both stochastic and deterministic fatigue loading are studied, and the
wake-induced fatigue damage is also researched based on the elastic actuator line model
in Chapter 3 and FEM based aero-elastic code in Chapter 4. How to quantify the fatigue
damage, or the fatigue analysis method, will be fully reviewed in the next section.
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1.3.3 Fatigue analysis method of wind turbine blade

In the domain of fatigue analysis of a wind turbine blade, the moment-based methods are
popular in the wind energy industry, because of the utilization of beammodels and empirical
load spectrum. It is convenient to provide root bending moments (highest bending moment
along the blade) from beam models and empirical load spectrum rather than to provide the
stress time series. As for the moment based method, the root bending moments, including
flapwise and edgewise bending moments, is often used to calculate the Damage Equivalent
Load (DEL) based on an M-N curve and the rainflow counting algorithm according to the
reference number of load ranges [41–44]. Due to its simplicity and robustness, it is now also
adopted in the recent research of bend twist coupling wind turbine blades [45]. However,
the fatigue damage of different materials at a blade section cannot be calculated, which is
also critical for bend-twist coupling turbine blade design. In order to show the fatigue life of
different materials at different cross sections under different wake conditions, the stress-life
method is used in this thesis.

In fact, a wind turbine blade is a kind of thin wall composite beam structure. For
this kind of structure, there are mainly three methods for fatigue life prediction or fatigue
damage analysis, including macroscopic models (fatigue life models or empirical models),
phenomenological models (stiffness or strength degradation method), and progressive dam-
age models. These three methods have been introduced comprehensively in the Anastasios’
book[46]. The first category of fatigue life models is based on the S-N curves and Constant
Life Diagrams (CLD). The fatigue damage is calculated by the empirical damage accumu-
lation rules such as the Palmgren-Miner rule. The damage mechanism is not considered
in this model. Contrary to the aforementioned empirical fatigue life models, the second
category of models capture the physics of fatigue damage by introducing the fatigue metrics
of residual strength or residual stiffness. The fatigue failure occurs when the certain limit of
fatigue metric is reached. Despite the phenomenological models can capture the physical
meaning of fatigue damage, it does not show better performance compared with the first
category of empirical models in the case of variable amplitude loading which is presented
in Nijssen’s thesis [47]. In the author’s view, this is because of the complicated mechanism
involved in the fatigue damage of wind turbine blades. Therefore, further corrections and
improvements are also required for the phenomenological models. The guidelines for safety
factors of phenomenological models are also lacking. The main disadvantage of these two
aforementioned methods is that they are limited to the uni-axial loading cases and do not
take into account other stress components for fatigue life prediction, e.g. shear stress. But
they are reasonable for slender beam structures, such as wind turbine blades, in which the
normal stress in the beam axial direction is dominant. To deal with the complex loading
patterns, the third category of models or progressive damage models are proposed based
on principles of micro mechanics, in which one or more fatigue damage variables related
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to the observable damage mechanisms are introduced to model the damage modes, such as
transverse matrix cracks and de-laminations. Although this method is the most promising
way to predict the fatigue life or the fatigue damage of composite structures, it is still
computationally intensive for application. Few authors have applied this method in fatigue
life prediction of wind turbine blades. As a result, the first category of fatigue life models,
which is also suggested in the GL guidelines for wind turbine manufacturers, are adopted
here to analyse the longevity and fatigue damage of different materials of wind turbine
blades. The stress time series are reconstructed through the use of DTU BECAS based on
the dynamic loading data from the aero-elastic model, e.g. elastic actuator line model.

1.3.4 Fatigue mitigation method for wind turbine blade: Bend-twist
coupling wind turbine blade

In the previous section, the fatigue analysis methods are reviewed. In this section, an
important fatigue mitigation method, namely bend-twist coupling wind turbine blade de-
sign, will be introduced. The bend-twist coupling (BTC) concept stems from aeronautical
industry, and it has been successfully used in the design of F-86 Sabre and the Boeing
B-47 Stratojet to mitigate the aerodynamic load (see the page 9 of [48]). For wind energy
industry, nowadays, there are mainly two different kinds of BTC concepts: “twist-to-stall”
and “twist-to-feather”. As for the “twist-to-stall" turbine blade, the blade tends to operate
in the stall region to reduce the load during instant wind speed increase. However, this
BTC technique often makes the blade suffer from the flutter instability [49] and substan-
tial fatigue damage. In fact, the “twist-to-stall” design is always adopted to capture more
energy rather than to reduce the fatigue damage [50]. Instead of increasing the angle of
attack to the stall region, the “twist-to-feather" blade is designed to decrease the angle of
attack when the wind speed suddenly increases. Recent research concentrates on BTC with
“twist-to-feather” because of its quick response to gusts and effective fatigue load mitigation
effect [45]. The flutter instability and fatigue increase issue in “twist-to-stall” design are not
obvious in BTC with “twist-to-feather” design. Nowadays, BTC design has been applied
in large off-shore wind turbine blades (e.g. 5MW wind turbine blades). As a result, in this
thesis, the “twist-to-feather" BTC blade will be studied and discussed.

In the area of “twist-to-feather" BTC blades, previous research mainly focused on the
static analysis or the analysis of dynamic cyclic load [51, 52] of BTC blades based on
3D fully-blade-resolved FEM analysis to achieve higher coupling coefficient. However,
for fatigue analysis, aero-elasticity of a wind turbine is also a dominant factor so that the
governing equations of flow part and structural part should be coupled and solved together
[53]. Due to its large computation cost, the 3D fully-blade-resolved method is less attractive
to the researchers and engineers who studymultiple wind turbines. Furthermore, the fatigue
analysis of wind turbine blades requires large amount of loading time series, which further

10



1. Introduction

increases the computational cost. Although there exist the spectrum method, in which
the loading can be generated by using the empirical model, such as WISPERX spectrum
[54], these methods are highly dependent on the structure of wind turbine blades and wind
turbulence. With the change of structures of the blade and wind conditions (e.g. wake
conditions), the nature of the spectrum will also change. As a result, an efficient aero-
elastic model for BTC blades is required to generate loading time series. Models based on
beam theory are popular in the aero-elastic models of wind turbine blades [53].

The idea of the beam theory is to split the 3D beam structure problem into a 2D
cross-sectional analysis problem and a 1D beam modelling problem [55]. As for the 2D
cross-sectional analysis problem, the previous models in the beam-theory domain always
assume that the beam is made of homogeneous and isotropic materials. These models fail to
simulate the anisotropic effects and warping effects caused by the composite materials (e.g.
the bend-twist coupling induced by the fibre orientations). To overcome these problems,
Giavotto et al. proposed a 2D FEM method to compute the generalized warping functions
and cross-sectional properties for beam structures [56]. Based on this theory, the DTU
BECAS was developed to analyse the cross-sectional properties of a wind turbine blade.
For the 1D beam modelling, the anisotropic beam model on the basis of the aforementioned
generalized 2D FEM cross-sectional analysis is also proposed by Kim et al [57]. In the
present study, the DTU BECAS (generalized 2D cross-sectional analysis tool) and the
anisotropic beam model will be used to generate the dynamic loading of wind turbine
blades for fatigue analysis. The BTC effect will be discussed in the Chapter 4. This
anisotropy has also been considered in NREL BeamDyn and DTU HAWC2.

1.3.5 Modelling of anisotropic composite wind turbine blade

The aforementioned bend-twist coupling wind turbine blade is anisotropic, which is chal-
lenging for structural modelling. The anisotropic beam modelling problem first occurred in
the helicopter industry because of the application of composite materials in the helicopter
rotor design to strengthen the blade and resist the fatigue damage [58]. The elastic coupling
effects mentioned in the previous section (Section 1.3.4) make the displacement fields of
the composite blade structure more complicated than the kinematic assumptions of ad hoc
beam theories [59], such as Euler-Bernoulli beam theory [60]. In addition, in the classical
beam theories or ad hoc beam theories, the structure is assumed to be made of materials
with isotropic and homogeneous properties, which is not suitable for the anisotropic beam
case. The progress of anisotropic beam modelling attributes to the work of Giavotto, Borri
and Hodges [59]. Rather than constructing the consitutive relation between sectional forces
and strain in an analytical way, e.g. ad hoc beam models, they build the generalized cross-
sectional constitutive equations and three-dimensional warping functions by using linear
finite element analysis, namely the linear cross-sectional analysis. In Hodges’ book [58], it
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is concluded that the three-dimensional anisotropic beam modelling problem can be split
into the two-dimensional linear cross-sectional analysis and an one-dimensional nonlinear
beam analysis.

Applying the cross-sectional constitutive law of two-dimensional cross-sectional analy-
sis, Kim [61] studied the anisotropic beammodel for wind turbine blades with finite element
formulation. The nonlinear anisotropic beam model can capture the coupling effects and
the inertia effects of the composite wind turbine blade [32]. It should be mentioned here
that the beam model is more popular in the research and application than the fully blade
resolved three-dimensional simulation in the domain of wind turbine blade structural mod-
elling, because the beammodel can be easily extended to the aero-elastic model by coupling
it with the aerodynamic model. The aero-elasticity plays a pivotal role in the dynamics of
wind turbine blade. By using the aero-elastic model, the dynamic response of wind turbine
will be predicted, and the fatigue damage (or longevity) of the blade can be calculated,
which is important to the economic evaluation, and the maintenance of the wind turbine.

According to the employed discretization methods, nowadays structral models of aeroe-
lastic simulation for the wind turbine blade can be divided into three categories: beam
models based on modal approach [62], multi-body dynamics (MBD) [63], and finite ele-
ment method (FEM) [64] respectively. Among all these three methods, modal approach,
to the author’s best knowledge, is the most widely-used method. For example, famous
commercial wind turbine aero-elastic softwares DTU FLEX5 [65] and NREL FAST [66]
all employ modal approach as their discretization methods. Truncating the high frequency
modes, the modal approach lowers the number of degrees of freedom (DOFs) of the struc-
ture, which highly boosts the efficiency of the simulation. Normally, the simulation of
modal-approach based aero-elastic model is carried out with first three or four modes ex-
tracted from finite element model [67]. However, the first three or four modes do not include
the torsional modes that are important for the anisotropic wind turbine blade. For the MBD
model, the structure is discretized into several bodies that are connected with each other
by different joints. DTU HAWC1 employs MBD as its discretization method. It should
be mentioned here that the aforementioned anisotropic beam model that is proposed by
Kim[61] for HAWC2 is based on the FEM formulation, which will also be employed in
Chapter 4.

In the thesis, a novel anisotropic beam model based on finite-difference time-domain
(FDTD) method [68] is proposed for the anisotropic wind turbine blade. There are two
important features for this model. Firstly, instead of using aforementioned modal approach,
MDBmethod, and FEM, the FDTDmethod is utilized to discretize the governing equations,
which is a finite difference method. In fact, FDTD method is one of the most popular
technique to solve electromagnetic problem (or Maxwell’s equations), which was first
proposed by K. Yee in the 1970s[69]. With its decades’ development, the FDTD method is
proven to be an effective method to simulate the non-linear dynamic Maxwell’s equations
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1. Introduction

with a wide range of frequencies. Due to its finite-difference nature, the formulation of
the numerical model is simpler and intuitive than the MDB or FEM. By using the leapfrog
scheme in time, the equations are solved element by element alternately and explicitly,
which avoids solving the system simultaneously (e.g. global matrix in FEM) and improves
the efficiency of the simulation. For the Maxwell’s equations, it is obvious that there exist
two sets of equations in terms of electric field and magnetic field respectively, in which
the FDTD can be applied directly. For the structural model of wind turbine blade case,
normally speaking, we only have one set of equations in terms of displacements. In the
author’s views, this is the main reason why there is no previous research that applies FDTD
method to structural modelling of wind turbine blade. In this research, to make the structural
models adapt to the FDTD method, the aforementioned one set of equations in terms of
displacement are manipulated into two sets of equations in terms of velocity (and angular
velocity) of beam elements and sectional moment (and force) as dependent variables. This
is the second important feature of the proposedmodel. Noticeably, the two sets of dependent
variables are coincidently what are required for the aero-elastic model. Specifically, the
velocities (and angular velocities) of beam elements are used for the coupling between the
aerodynamic model and structural model. This idea of modelling was proposed in Chapter
3, and it will be generalized in Chapter 5. The sectional moments (and forces) are used
in the fatigue damage calculation. Obviously, the aforementioned two features provide the
proposed model with advantages over the previous method of structural modelling of wind
turbine blade.

1.3.6 Chapter summary

In this chapter, the problem, objectives, motivations, and the previous research work are all
comprehensively introduced to support the motivation and novelty of the present research
work. From the literature review, firstly, the wake-induced fatigue is very significant in
nowadays onshore and offshore wind farms. However, secondly, the current wake models
are mostly for the study of wake-induced power loss, in which the structural deformation is
not considered. Moreover, thirdly, the fatigue mitigation method, e.g. bend-twist coupling
wind turbine blade, provide the modelling of wind turbine blade with lots of challenges. As
a result, its meaningful to deal with the modelling of aforementioned problems, which will
be illustrated in the following chapters.
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Chapter 2

Actuator line model

2.1 Principle of actuator line model
The reason why conventional fully-blade-resolved CFD simulation is computationally ex-
pensive for wind turbine case is that the blade geometry should be resolved, which increases
the number of cells and limits the time step because of the Courant–Friedrichs–Lewy(CFL)
condition. Instead of resolving the blade geometry, in actuator line model, the blade effect is
simplified by applying rotating body forces in the structured background mesh, which also
actuates the flow field as the real wind turbine blades. The body forces can be calculated in
the Blade-Element-Momentum (BEM) manner, in which the forces are predicted according
to the 2D aerodynamics of the airfoil, namely velocity triangle as the following Figure 2.1.
Specifically, the lift and drag coefficients and forces are determined by the local velocites
through 2D tabulated data (CL and CD curves) for each blade element. The equation for the
body force per unit length (or aerodynamic force) are shown in the Equation (2.1).

®f2D =
1
2
ρu2

relc(CL(α)®eL + CD(α)®eD) (2.1)

Where ρ is the air density, and c is the chord length of the airfoil. CL and CD are life and
drag coefficients respectively, which are functions of local angle of attack (α) and Reynolds
number (Re). ®eL and ®eD are unit vectors of lift and drag forces. urel is the relative velocity
magnitude, which is calculated by Equation (2.2).

urel =
√
(ut)

2 + (un)
2 =

√
[Ωr(1 + a′)]2 + [u∞(1 − a)]2 (2.2)

Based on Equation (2.3), the local angle of attack α can be calculated according to the
local velocities, including ut and un (tangential and normal velocities), which are shown in
Figure 2.1.
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α = Ψ − β = arctan(
un

ut
) − β (2.3)

In Equation 2.3, Ψ and β are inflow angle and pitch angle respectively. Equation
(2.3) is very similar to calculation of angle of attack in BEM method. However, from
Equation (2.2), the most obvious difference between BEM model and actuator line model
in terms of aerodynamic force prediction can be illustrated, which is the calculation of
axial and tangential induction factors, namely a and a′ in Equation (2.2). These two
factors quantify the induced velocity from the vortex system around the rotating wind
turbine blades, including bounding vortex, tip vortex, and root vortex. When the thrust
coefficient CT is higher than 0.5 (or axial induction factor is above 0.4), the near wake
region of wind turbine becomes turbulent, which breaks the laminar flow assumptions
of BEM. To remedy this problem, the empirical corrections, such as Glauert correction,
should be employed. For actuator line model, the applied body forces will produce vorticity
by which the vortex system around wind turbine can be generated without laminar flow
assumption. The induction factors a and a′ are contained the local velocities. Specifically,
the aforementioned body forces ®f occurs in the Navier-Stokes equations as the momentum
source.

Figure 2.1 Velocity triangle for the airfoil in the local inertia coordinate system.

ρ
∂ui

∂t
+ ρu j

∂ui

∂x j
= −

∂p
∂x j
+ µ

∂2ui

∂x j∂x j
+ fi,

∂ui

∂xi
= 0 (2.4)

In Equation (2.4), the body force components fi are not directly equal to the components
of local aerodynamic force ®f2D. To avoid singularity caused by the applied forces, Gaussian
function (or kernel function) is employed to smear the forces ®f2D in the flow field. The
formula to calculate the effect ®fε of local aerodynamic forces ®f2D located at ®x to the grid
point whose cell center is located at ®ca is shown in Equation (2.5).
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2. Actuator line model

®fε = f2D ⊗ ηε, ηε =
1

ε2π
3
2

e−(
| ®x−®ca |
ε )2 (2.5)

In this equation, ε is the parameter to control the concentration and radius of theGaussian
function. ⊗ represents the convolution operator, which is illustrated in Equation (2.6). The
body force ®f for each grid point is the summation of the effects of all the actuator points (or
kernels), see Equation (2.6) and Figure 2.2.

®f (®x) =
B∑

i=1

∫ R

0
®f2D(®ca(r))ηε(| ®x − ®ca(r)|)dr (2.6)

In this Equation, B is the number of the blades, and R is the rotor radius. r is the
span-wise distance. The actuator points are distributed along r direction, and dr is the
length of actuator line element.

Figure 2.2 Sketch of actuator line model.

From the previous statement, it can be found that actuator line model has two important
functions. On one hand, the actuator linemodel is an efficient rotormodel to perturb the flow
field and generate the wind turbine wake flow, which is also a feasible way to connect the
macro scale simulation (atmospheric simulation) and micro scale simulation (wind turbine
wake). On the other hand, the actuator line model is also an aerodynamic model with less
assumptions compared with widely-used BEM model. In the following sections, these two
aspects will be validated by using wind tunnel experiment data.
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2.1.1 Turbulence models for wind turbine wake

The vortex system around the wind turbine blades will break down at the end of near wake
region because of turbulence effect. In the far wake region, the ambient flow turbulence
(atmospheric turbulence) will help the wake velocity recover. As a result, the turbulence
model is necessary for the wind turbine wake simulation. There are two types of models that
are widely used in this domain: Reynolds-averagedNavier-Stokesmethod (or RANSmodel)
and large eddy simulation technique (LES). Generally speaking, the RANSmodel is enough
for the prediction of wind turbine wake velocity profile in wind tunnel experiment, which
has been proven by several validation cases. It indicates that the wake flow itself is rather
"isotropic". In the author’s opinion, there are two reasons why LES attracts attentions of
researchers recently. Firstly, the atmospheric flow (near wall flow) in wind farm is naturally
anisotropic. The second reason is that a wide range of perturbations of velocity can be
simulated by LES which is essential to the dynamic loading and fatigue damage of wind
turbine. In the following part, two typical models : standard k − ε two-equation model
and LES model with Smagorinsky and one-equation SGS models will be introduced in
sequence.

When the Reynolds number keeps on increasing, the solution of Navier-Stokes equations
becomes chaotic. It is hard to capture the small scale eddies (e.g. Kolmogorov scale eddy)
in high Reynolds number flow by using the current numerical methods because of the
high computational cost and the restriction of grid number. However, the coarse grid
will remove the small eddies, which dissipate the kinetic energy of large eddies in high
Reynolds number flow. To solve this problem, in RANS method, the velocity (and other
flow variables) are decomposed into time averaged component u and fluctuating component
u′, namely Reynolds decomposition. Instead of solving the original equations, the equations
of averaged component u are solved, which is more "smooth" and less chaotic. The effect of
the removed small eddies is modelled by several added equations. The Reynolds averaged
incompressible Navier-Stokes equations of motion in conservation form are as follows:

ρ
∂ui

∂t
+

∂

∂x j
(ρuiu j + ρu′iu

′
j) = −

∂P
∂xi
+
∂(2µSi j)

∂x j
+ fi,

∂ui

∂xi
= 0 (2.7)

In Equation (2.7), Si j is the strain-rate tensor:

Si j =
1
2
(
∂ui

∂x j
+
∂u j

∂xi
) (2.8)

In Equation (2.7), the negative of term ρu′iu
′
j is called Reynold stress tensor:

τi j = −ρu′iu
′
j (2.9)
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2. Actuator line model

In the k − ε model, the turbulence kinetic energy k equation and dissipation rate
equation ε equation, are used to model the Reynold stress tensor τi j based on the Boussinesq
assumption, which is given in the following equation:

τi j = 2µT Si j −
2
3
ρkδi j (2.10)

where µT is the eddy viscosity, which is a function of k and ε :

µT = ρCµ
k2

ε
(2.11)

The equation of turbulence kinetic energy is:

ρ
∂k
∂t
+ ρu j

∂k
∂x j
= τi j

∂ui

∂x j
− ρε +

∂

∂x j
[(µ +

µT

σk
)
∂k
∂x j
] (2.12)

The equation of dissipation rate is:

ρ
∂ε

∂t
+ ρu j

∂ε

∂x j
= Cε1

ε

k
τi j
∂ui

∂x j
− Cε2ρ

ε2

k
+

∂

∂x j
[(µ +

µT

σε
)
∂ε

∂x j
] (2.13)

The above equations (2.12) and (2.13) compose the famous k − ε two equation model.
The values of closure coefficients in the above two equations are:

Cε1 = 1.44 Cε2 = 1.92 Cµ = 0.09 σk = 1.0 σε = 1.3 (2.14)

From Equation (2.10), it can be seen that the turbulence viscosity is isotropic due to the
properties of the fluctuating components. In RANS method, the fluctuating components
represent the very small eddies, which dissipates the kinetic energy and obviously isotropic.
To overcome this limitation, the LES method occurs, which was firstly proposed to simulate
the atmospheric flow. Contrary to the Reynolds decomposition in RANSmodel, the velocity
(and other variables) is decomposed into two parts: resolved proportion ũ and sub-grid-
scale proportion u′. The decomposition is realized by using explicit or implicit LES filter.
Among these two parts, the resolved proportion represents the resolved large eddies, which
could be anisotropic. The Navier-Stokes equations and continuity equation for the resolved
proportion (or filtered equations) are as Equation (2.15).

∂ũi

∂t
+

∂

∂x j
(ũiu j) = −

1
ρ

∂ p̃
∂xi
+ 2ν

∂S̃i j

∂x j
−
∂τr

i j

∂x j
,

∂ũi

∂xi
(2.15)

Si j is the strain rate tensor which has been defined in Equation (2.8). τr
i j is the residual

stress tensor, which represents the interactions between resolved and unresolved proportions.
Different sub-grid scale models (SGS) are proposed to model the residual stress tensor τr

i j .
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Two SGSmodels will be introduced, including Smagorinsky model and one-equation eddy-
viscosity model.

The Smagorinsky SGS model is firstly proposed in 1963 [70]. In this model, it is
assumed that the residual stress tensor complies with the follow Equation (2.16).

τr
i j =

2
3

ksgsδi j − 2νsgsD̃i j
dev (2.16)

In Equation (2.16), νsgs is the sub-grid scale eddy viscosity. D̃i j is the resolved scale
strain rate tensor, which is defined by the Equation (2.17). D̃i j

dev is the deviatoric tensor of
D̃i j . ksgs is the sub-grid scale kinetic energy.

D̃i j =
1
2
(
∂ũi

∂x j
+
∂ũ j

∂xi
) (2.17)

In Smagorinsky SGSmodel, ksgs and νsgs are calculated by Equations (2.18) and (2.19).

ksgs =
Ck∆

2
√

2D̃ : D̃
Cε

(2.18)

νsgs = (Cs∆)
2
√

2D̃ : D̃ (2.19)

Where : is the double inner product. In Equations (2.18) and (2.19), Ck and Cε are two
constants whose typical values are 0.094 and 1.048 respectively. ∆ is the sub-grid length
scale. Cs can be calculated by Equation (2.20).

C2
s = Ck

√
Ck

Cε
(2.20)

To overcome the deficiency of Smagorinsky SGSmodel in high Reynolds number flows,
the one-equation eddy-viscosity SGS model was proposed [71]. Equation (2.16) is also
employed in this SGS model. The νsgs is defined in Equation

νsgs = Ck
√

ksgs∆ (2.21)

And the transport equation of ksgs is shown in the Equation (2.22).

∂ρksgs

∂t
+
∂ρũ j ksgs

∂x j
−

∂

∂x j
[ρ(ν + νsgs)

ksgs

∂x j
] = −ρτi j : D̃i j − Cε

ρk
3
2
sgs

∆
(2.22)

The first term at the right hand side is the production term, which can be calculated by
Equation (2.23).
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2. Actuator line model

−ρτi j : D̃i j = [−
2
3
ρksgsδi j+2ρνsgsD̃dev

i j ] : D̃i j = −
2
3
ρksgs

∂ũk

∂xk
+ρνsgs

∂ũi

∂x j
(2D̃i j−

1
3

tr(2D̃i j)δi j)

(2.23)
In this thesis, the Smagorinsky SGS model will be used in wind tunnel case with low

Reynolds numbers. The one-equation eddy-viscosity SGS model is employed in the wind
farm simulation case with high Reynolds numbers. The turbulence models in this thesis are
shown in Figure 2.3.

Turbulence model

RANS LES

Standard k − ε model: isotropic
turbulence, averaged velocity

Wind tunnel experiment case study

SGS: Smagorinsky model SGS: One-
equation model

Wind tunnel case
study (low Re)

Wind farm case
study (high Re)

Figure 2.3 Turbulence models for actuator line.

2.1.2 Parameters

There are mainly four undetermined parameters in the actuator line model: actuator width
∆b, cell size of background mesh ∆grid , Gaussian radius ε, and time step ∆t. Based on the
experience of previous researchers [72], there are some guidelines for these four parameters.
The first parameter should be determined is the ∆b, which represents the spacing of actuator
line. It is suggested that there should be 30 to 60 actuator points along the blade (normally
40). ∆b can be determined by the number of actuator points and the blade radius. ∆grid

is suggested to be slightly larger than ∆b (∆grid ≥ ∆b). The projection radius or Gaussian
radius ε is important to the predicted aerodynamic force, which is suggested to be equal to
2∆grid . Although there are some research on the optimization of ε in which the distribution
of ε is non-uniform [73], the uniform ε is still used in this thesis because of its simplicity.
The parameter ∆t is firstly restricted by the CFL number, which should be less than 1.
Another requirement for the ∆t is that the actuator line should not pass one single cell
within one time step. Or the maximum time step is ∆grid divided byΩR, whereΩ and R are
rotational speed and tip radius respectively. The latter requirement is more restrictive, which
often makes the CFL number less than 0.2. The flowchart of parameters determination is
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shown in Figure 2.4. It should be mentioned here that the guidelines of parameters are
for the LES based actuator line model, which will also be applied in the simulations with
RANS turbulence model.

Figure 2.4 Determination of parameters.

2.1.3 Pressure-Implicit with Splitting-Operators (PISO) algorithm

PISO is an Navier-Stokes equation unsteady solver for Equation (2.7). Similar to the Semi-
Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm, the equation for
pressure is derived in PISO by combining the momentum equation and mass conservation
equation, because there is no explicit equation for pressure. The numerical form of Equation
(2.7) is as follows:

ρ

∆t
(un+1

i − un
i ) = H(un+1

i ) − ∇i pn+1
i + Si (2.24)

In Equation (2.24), H is the finite-volume operator, and Si is the source term. The
derived Poisson equation (by taking divergence on both side of Equation (2.24) to eliminate
un+1

i ) for pressure is:

∇2
i pn+1

i = ∇iH(un+1
i ) + ∇iSi +

ρ

∆t
∇iun

i (2.25)

To further decouple the pressure from the momentum equations, the solution process is
split into several steps (splitting operator), normally including one predictor step and two
corrector steps. Specifically the velocity field is firstly predicted by using the pressure value
of the last time step:

Au∗ + H′u∗ =
ρ

∆t
un

i − ∇i pn
i + Si (2.26)

A and H′ are diagonal matrix and off-diagonal matrix of the finite-volume operator of u∗i ,
which is the predicted velocity. The pressure field can be corrected by the following Poisson
equation:

22



2. Actuator line model

∇2
i (A
−1p∗) = ∇i[A−1(

ρ

∆t
un

i − H′u∗) + A−1∇iSi] (2.27)

Then the velocity field can be corrected in the first corrector:

u∗∗ = A−1(
ρ

∆t
un

i − H′u∗) − A−1∇i p∗i + A−1Si (2.28)

which is followed by the correction of pressure:

∇2
i (A
−1p∗∗) = ∇i[A−1(

ρ

∆t
un

i − H′u∗∗) + A−1∇iSi] (2.29)

The second corrector is very similar to the first corrector:

u∗∗∗ = A−1(
ρ

∆t
un

i − H′u∗∗) − A−1∇i p∗∗i + A−1Si (2.30)

The calculated pressure p∗∗ and u∗∗∗ have at least second order time accuracy. Since
actuator line model is an unsteady model, the PISO solver in OpenFOAM is employed to
solve the Navier-Stokes equations. In this thesis, the combination of actuator line model
and PISO solver is a two-way coupling. Specifically, the actuator line model samples the
local velocity in the flow field before the predictor step to calculate the body forces. In the
first predictor step, the calculated body forces are smeared in the flow field as source term
Si in Equation (2.26) by using Gaussian function. The flowchart of actuator line model is
shown in the Figure 2.5. It should be mentioned here that the coupling between actuator
line model and PISO solver is weak coupling. In the following sections, several validation
cases are carried out to validate the actuator line model in terms of aerodynamic force and
wake velocity profile predictions. The unsteady airfoil aerodynamics is not considered in
the simulation cases of conventional actuator line model.
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Initialize flow field

Start time marching.

Predictor: solve momentum equa-
tions implicitly for velocity field.

1st Corrector: solve p equation explic-
itly. Update velocity field explicitly.

2nd Corrector: solve p equation explic-
itly. Update velocity field explicitly.

t+∆t.

PISO solver

Sample local velocity and AOA.

Compute aerodynamic
force by using 2D airfoil.

Locate actuator points
and compute body force.

Rotate actuator points.

Actuator line

Velocity

Body force

Figure 2.5 Flowchart of the actuator line model based on PISO solver.

2.2 Validation case study: Krogstad wind tunnel experi-
ment I

2.2.1 Test case description

The advantage of actuator line model is that it can generate turbulent wake flow and simulate
the dynamic aerodynamic loading at the same time in an efficient and feasible way. In this
section, the Krogstad wind tunnel experiment will be used to validate the actuator linemodel
in terms of wake flow prediction and dynamic load calculation. This Krogstad experiment
is a series of "blind tests" for the wind turbine wake models, which is carried out at the
Norwegian University of Science and Technology (NTNU) on October, 2011 [74]. As for
the wind tunnel test section, the width and height are 3m and 2m respectively. Its length
is almost 12 m long. The reference wind speed ranges from 7 to 15 m/s. The turbulence
intensity of the wind tunnel is 0.3%.

Figure 2.6 S826 airfoil shape.
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Figure 2.7 The lift and drag coefficients of S826 airfoil for different Reynold numbers.

For experiment I, only one single three-bladed turbine is used for the test. The diameter
of the rotor is 0.894m, and the hub height is 0.817m. The same airfoil is used all along
the span, which is NREL S826 airfoil. The shape of the airfoil is shown in Figure 2.6.
The lift and drag coefficients for S826 (Re=75000 to 150000) are also presented in Figure
2.7. The blade is made of aluminum and very stiff under the loading of the designed blade,
which means that no obvious elastic deformation during the test. The tested wind turbine
is illustrated in Figure 2.8 (a). The chord and twist distributions of the blade are shown in
the Figure 2.8 (b). The data of lift and drag coefficients is from the computational results
of Xfoil, in which the 3D rotational augment (stall delay) is not considered.

(a) Krogstad wind turbine [74]. (b) Chord and twist distribution.

Figure 2.8 Wind turbine and its structural properties for the Krogstad wind tunnel test.

For the numerical model, the cell size of the background mesh (wind tunnel) is 0.15 m.
Three-level mesh refinement is applied to the background mesh to refine the rotating and
wake region of actuator line. The finest mesh size is 0.018 m, which is slightly higher than
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the actuator width (0.011 m) according to the aforementioned empirical rule. The Gaussian
radius ε of actuator line model is 0.036. The total number of cells is 3.74 million, which
can be seen in Figure 2.9. The surrounding walls of wind tunnel are modelled as non-
slip boundary conditions. The turbulent kinetic energy kb at the inlet boundary (Dirichlet
boundary condition) can be calculated according to the turbulence intensity (Iinlet) at the
inlet by using Equation (2.31).

kb =
3
2
(Ure f Iinlet)

2 (2.31)

(a) The sketch of mesh for Krogstad wind tunnel
test.

(b) The mesh for CFD model.

Figure 2.9 Mesh of Krogstad wind tunnel test.

As for the boundary conditions, the incoming free-stream turbulence intensity Iinlet is
0.23 % (for the empty wind tunnel), and reference wind speedUre f is 10 m/s. The turbulent
kinetic energy kb at the boundary is calculated to be 0.0008 m2/s2 according to Equation
(2.31). According to the paper of the wind tunnel test, the turbulence intensity dropped
from 0.23% at the inlet position to 0.22% at the 3D downstream position. Based on this fact,
the boundary condition for turbulent dissipation rate εb can be calculated by the following
equation:

εb ≈
∆kUre f

Ld
(2.32)

In Equation (2.32), ∆k is the variation of turbulent kinetic energy along the distance, and
Ld is the distance for the variation. The calculated turbulent dissipation rate εb is 0.000252
m2/s3. The outlet boundary conditions for turbulent kinetic energy and dissipation rate
are all Neumann boundary conditions (zero gradient). The time step is 0.0005 s, which is
constant during the simulation. After 10 s (physical time) simulation, the simulated wind
turbine wake is fully developed in the wind tunnel, which is illustrated in Figure 2.10.
From Figure 2.10, it can be seen that the wake region slightly expands behind the rotor.
This is because of the recovery of pressure in near wake region. The pressure experiences
a sharp decrease on the rotor section. As a result, the wake will expand to absorb more
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momentum for the pressure recovery. This result can also be achieved by Betz theory (based
on Bernoulli equation potential flow), which means that the near wake region conforms to
the potential flow theory. The pressure will fully recover to the inflow condition at around
1D downstream of the rotor, which is at the end of near wake region in this case. Beyond
the near wake region, turbulence will play an important rule on the development of wake
flow. The wake region does not further expand significantly downstream because of the low
turbulence intensity of ambient flow (0.23%).

Figure 2.10 The velocity magnitude contour of the single wind turbine.

In addition, the wake vortex structure can be seen in the Figure 2.11. The helical vortex
structure is not obvious because of the high rotational speed of wind turbine (1281.8 r/min).
At that time, the performance parameters of wind turbine, including power output, thrust
force, and tangential force, become stable though this is an unsteady simulation. Then the
values of variables related to the aerodynamic force and wake profile will be sampled and
compared with the measured data in the wind tunnel quantitatively.

Figure 2.11 The vortex structure of wind turbine wake.
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Firstly, the predicted thrust coefficients Ct under different tip speed ratios λ will be
compared with the measured data. λ can be calculated by using Equation (2.33).

λ =
ΩR
U∞

(2.33)

U∞ is the inflow wind velocity. The formula of Ct is shown in the following equation:

Ct =
T

1
2 ρAU2

∞

=
T

1
2 ρπR2U2

∞

(2.34)

A in the above Equation (2.34) is the swept area of wind turbine rotor. The Ct quantifies
how much momentum in the inflow is transformed into the thrust force of the rotor, which
is also an important component of aerodynamic force. It should be mentioned here that the
original Blade ElementMomentum (BEM)method is only suitable for lightly-loaded turbine
whose Ct is lower so that its wake shape is perfect helix. To correct the prediction of BEM
in high Ct case, empirical corrections, e.g. Glauert correction, are required. The actuator
line model can predict the aerodynamic force without this lightly-loaded assumption and
empirical corrections, because its wake is simulated by CFD. The comparison between
the predicted thrust coefficients by actuator line model and the measured data is shown
in Figure 2.12. In Figure 2.12, each point indicates a experimental or simulation (fixed
inlet wind speed, variable rotational speed for different λs) case. Generally speaking, the
prediction of actuator line has a good agreement with the test data. The actuator line slightly
underestimates the thrust force at λ = 2 because this wind turbine operates in the deep stall
region when λ ≤ 3. In the deep stall region, the flow field is highly unsteady, and the real
lift and drag coefficients may slightly deviate from the tabulated data. Since thrust force is
an important component of aerodynamic force as mentioned before, the actuator line model
is preliminarily validated to be a good aerodynamic model.

In addition, asmentioned before, actuator linemodel can also reproduce thewind turbine
wake flow, including near wake and far wake flows. In Krogstad experiment I, the horizontal
velocity profile (longitudinal velocity) at the hub height will be sampled in two sections:
1D and 3D downstream, which represent near wake and far wake respectively. The sketch
for the test sections is shown in Figure 2.13. The inlet velocity is 10 m/s, and the tip speed
ratio (λ) of the operating wind turbine is 6 (or rotational speed is 1281.8 r/min), which is
the optimum operating condition for the test wind turbine. The turbulence intensity of the
incoming free-stream is 0.23 %. The normalized wake velocity deficit (1 − Uwake

Ure f
) is used

to depict the velocity profile in the wake region. Obviously, when the deficit is higher, the
velocity is lower.

The comparison between the predicted wake profile (actuator line) and measured data
is shown in Figure 2.14.
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Figure 2.12 Comparison between the predicted thrust coefficients of actuator line and measured
data.

Figure 2.13 The sketch of velocity-profile test section for single wind turbine (D is the diameter of
the rotor).

29



In Figure 2.14, it can be found that the actuator linemodel performs verywell in the shear
region (between outer flow and wake). However, in the region of wake center, the actuator
line model significantly underestimates the time-averaged velocity deficit (or overestimates
the velocity magnitude), not only for 1D but also 3D. This phenomenon can be also found
in the Krogstad paper, in which the measured data is compared with the prediction of
actuator line model (Sorensen & Mikkelsen) [74]. Krogstad comments this discrepancy
that "it predicts virtually no velocity reduction behind the nacelle". In the author’s view,
this is caused by the absence of the nacelle in the conventional actuator line model, in
which only blades effects are modelled. On one hand, in the paper of Krogstad blind test,
the model with resolved nacelle (fully geometry resolved) shows good agreement with the
measured data around the wake center. On the other hand, in reality, the nacelle will indeed
cause momentum loss of the flow. In the next section, the nacelle will be modelled in the
framework of actuator line.

Figure 2.14 The comparison between predicted velocity profile (actuator line model) and measured
data in single wind turbine case.

2.2.2 Actuator line model with nacelle model

In this section, a simple nacelle model is proposed to simulate the nacelle effect. In order
to maintain the advantages of actuator line model, the nacelle is modelled as a point source
of body force, which is smeared in the flow field according to the following equation:

®f (®x) = ®fnacelle
1

ε2π
3
2

e−(
| ®x− ®x0 |
ε )2 (2.35)

In Equation (2.35), ®fnacelle is the strength of the point source, which is also themagnitude
of the aerodynamic force on the nacelle. ε is the smeared radius. x0 is the center of the
nacelle. To calculate the ®fnacelle, it is assumed that the discrepancy around the wake

30



2. Actuator line model

center region is caused by the nacelle. Therefore the rate of momentum loss is equal to
the magnitude of aerodynamic force on the nacelle, which can be calculated by using the
following equation:

fnacelle,x = πR2
dis(U

2
a,x −U2

m,x) (2.36)

In Equation (2.36), fnacelle,x is the longitudinal component of the momentum loss. The
other components of momentum loss are neglected, because the momentum loss mainly
occurs along the longitudinal direction (inflow direction). Rdis is the radius of the region
of the aforementioned discrepancy (the control volume is apparently a cylinder, in this case
Rdis is the hub radius). Ua,x andUm,x are the average values of aforementioned predicted and
measured velocities. After several trials, ε = 0.2 is determined to be the optimum Gaussian
radius, which balances the accuracy and numerical stability. The results are shown in Figure
2.15. The blue curve does not look symmetric, because, in the author’s view, is that the cells
in the support domain of nacelle model is not symmetrically distributed in the simulation
case.

Figure 2.15 The comparison between predicted velocity profile (actuator line model with and
without nacelle model) and measured data in single wind turbine case.

In Figure 2.15, the predicted values of actuator line with nacelle correction has a very
good agreement with the measured data in both near wake region (1D) and initial far wake
region (3D). Mainly two conclusions can be drawn in this validation case. Firstly, the
nacelle model or nacelle correction is necessary for actuator line model, especially for the
simulation of wind tunnel experiment case (or small wind turbines), in which the nacelle
is relatively large. Secondly, the nacelle effect can be modelled by a point source of body
force, which is smeared in the flow field by Gaussian function.

Two interesting phenomena can be observed in Figure 2.15. Firstly, the wake of nacelle
becomes stronger from 1D to 3D (the wake deficit is increasing). In the author’s view,
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this is because of the momentum diffusion between the wakes of rotor and nacelle, which
is enhanced by the high turbulence intensity in wake region. Secondly, the wake deficit
around rotor tip recovers very slowly, because the turbulence intensity of ambient flow
is much lower. These two phenomena can be not only found in the experiment data but
also reproduced by the actuator line model, which indicates that the turbulence intensity of
ambient flow plays important role in the development of wake.

The validation case in this section is about the single wind turbine wake. In the next
section, the wake interaction cases, including tandem and staggered wind turbines, are used
to validate the capability of actuator line model in predicting wake profiles when the wakes
interact with each other.

2.3 Validation case studies: Krogstad wind tunnel experi-
ment II and III

2.3.1 Experiment II: tandem wind turbines
The case of tandem wind turbines or two in-a-line wind turbines has been commonly used
in the research of wind turbine wake, because this is the worst case scenario of wake effect.
For single wind turbine wake, it is still possible to derive the analytical solution for wake
profile. As for the tandem wind turbines, the wake of downstream wind turbine immerses
in and interacts with the upstream wake, which makes it difficult to predict the wake profile
of downstream turbine in the analytical way, which assumes the ambient flow to be uniform
flow and linear wake superposition. According to the previous research, the analytical
wake model will have negative wake deficit in some cases if linear superposition method is
employed, which is obviously unreasonable. This is also the reason why numerical model
(or CFD model) attracts attention recently. In Krogstad wind tunnel experiment II, the
tandem-wind-turbine case is carried out, which is shown in Figure 2.16 and Figure 2.17.

The tip speed ratios of the upstream and downstream turbines are 6 and 4 respectively,
which means that the rotational speeds of the upstream and downstream turbines are 1281.8
r/min and 854.53 r/min under 10 m/s inflow wind speed . The downstream turbine operates
under this condition to achieve the optimum local tip speed ratio, because the flow velocity
drops nearly 1

3 in front of the downstream turbine compared with the ambient flow. The
velocity magnitude contour is shown in Figure 2.18. From this figure, it can be seen that
the wind turbine wakes are fully developed. The downstream turbine is fully immersed in
the upstream turbine wake, which is non-uniform. The vortex structure of two wind turbine
wakes are shown in Figure 2.19.

The horizontal velocity (longitudinal) profiles are measured at 1D and 2.5D sections
behind the downstream wind turbine at the hub height. The results of actuator line model
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Figure 2.16 The tandem-wind-turbine experiment [1].

Figure 2.17 The sketch of velocity-profile test section for tandem wind turbines (D is the diameter
of the rotor).

Figure 2.18 The velocity magnitude contour for the tandem wind turbines.
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(a) Lateral view.
(b) Front view.

Figure 2.19 The vortex structure of tandem wind turbines.

are compared with the measured data in Figure 2.20. Although this is the wake profile
of downstream wind turbine, the same issue in experiment I can also be found in this
comparison, which is that the velocity deficit behind the nacelle is underestimated. The
previous issue can also be addressed by the nacelle model in last section. The comparison
between the actuator line model and measured data is shown in the Figure 2.21.

Figure 2.20 The velocity profile at 1D and 2.5D sections for tandem wind turbines (behind
downstream wind turbine).

FromFigure 2.21, it can be seen that the discrepancy around the nacelle region is reduced
by the nacelle model. But there still exists slight discrepancy around the rotor tip region.
In the author’s opinion, the reason for this discrepancy are two fold. On one hand, the
uniform distribution of Gaussian radius is not the optimum one for actuator line, which will
influence the effect of actuator line model. The force distribution of upstream wind turbine
in this case is shown in Figure 2.22. In some recent research papers of the actuator line
parameters, it is also found that the non-uniform distribution can achieve higher accuracy.
On the other hand, the discrepancies of upstream and downstream wind turbine wake will
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Figure 2.21 The velocity profile at 1D and 2.5D sections for tandem wind turbines (with and without
nacelle model).

be superimposed in this region, which further enlarges the discrepancy.
From both experimental data and simulation results, it can be seen that the wake of

downstream turbine recover faster than that of upstream wind turbine when we compare
Figure 2.21 with Figure 2.15. As mentioned in the last section, this issue is caused by the
high turbulence intensity of upstream wind turbine wake, which is obviously the ambient
flow for the downstream wind turbine wake.

Figure 2.22 The force distribution of upstream wind turbine for tandem wind turbines.

2.3.2 Experiment III: staggered wind turbines

The experiment III is about two staggered wind turbines. In the wind farm, the wind
turbines are staggered to mitigate the wake effect from upstream wind turbine. The wakes
of upstream and downstream wind turbines will interact with each other. In Krogstad wind
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tunnel experiment III, two turbines with the same rotor and hub height are used, which is
shown in Figure 2.23. The distance between the two turbines is 3D, and the horizontal offset
distance to the center line of wind tunnel is 0.2 m. The wind speed profiles are measured at
the 1D and 3D behind the second wind turbine at the hub height (0.8 m), which is illustrated
in Figure 2.24. The tip-speed-ratios of upstream and downstream wind turbines are 6 and
4.75 respectively, which means that the rotational speeds of two wind turbines are 1281.8
and 1014.8 r/min.

Figure 2.23 The two staggered wind turbines in Krogstad wind tunnel experiment [2].

Figure 2.24 The sketch of staggered wind turbines (D is diameter of rotor)

The velocity magnitude contour of staggered wind turbines is shown in Figure 2.25.
Since there exist an horizontal offset between the center-lines of the two staggered wind
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turbine rotor, the flow field is highly asymmetric compared with the previous tandem-wind-
turbine case.

Figure 2.25 The velocity magnitude contour for the staggered wind turbines.

The calculated wind turbine wake profiles are compared with the measured data in
Figure 2.26. The wake profiles of actuator line model have a good agreement with the
measurements. It should be mentioned that there is no nacelle model in this case, but the
results do not show underestimation of wake deficit as previous cases. It can be concluded
that the effect of nacelle is weakened by the wind turbine rotor because of the staggered
layout. This phenomenon can also be observed in Krogstad’s paper [2].

Figure 2.26 The velocity profile at 1D and 3D sections for staggered wind turbines (without nacelle
model).

2.4 Comparison between LES and RANS
In the previous sections, the RANS turbulence model (standard k − ε model) is employed.
In this section, the LES turbulence model with Smagorinsky SGS model is employed in
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this section to simulate the wake flow for single Krogstad wind turbine case, which will
be compared with the results of RANS model. The mesh in the previous sections are also
used in the current simulation case, and the nacelle model in the previous sections is also
implemented. The parameters, including the actuator width (0.011 m), Gaussian radius
(0.036), and time step (0.0005 s), are all the same as that of case with RANS model. After
simulation of 15 s (physical time), the flow field becomes fully turbulent, which can be seen
from Figure 2.27.

Figure 2.27 Vortex structure of the single Krogstad wind turbine (LES model).

By comparing with the vortex structure of LES model (Figure 2.27) and RANS model
(Figure 2.11), it can be found that the vortex structure breaks down at around 3D behind
wind turbine for the case of LES, which is not observed in the case of RANS model. This
can also be observed in Figure 2.28, in which near and far wake regions are very clear. As
a result, the LES model can capture more information of the wake flow.

Figure 2.28 The velocity magnitude contour for the staggered wind turbines using LES model.

The velocity profiles (horizontal line) sampled behind the wind turbine (1D and 3D) of
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RANS model and LES model are compared in Figure 2.29. Firstly, it can be seen that the
prediction of LES model matches well with the measured data, which is better than that of
RANS model in the single wind turbine case. Secondly, the proposed nacelle model also
works well for the actuator line with LES model. Thirdly, there is a obvious overshoot in
the prediction of LES model, which is caused by the overprediction of aerodynamic force
in the blade tip region that is mentioned in the previous section. As a result, the LES model
is more sensitive to the body force of actuator line.

Figure 2.29 The sketch of staggered wind turbines with nacelle model (D is diameter of rotor)

2.5 Comparison between actuator line model and fully-
blade-resolved method

In the previous sections, the validation cases for actuator linemodel, namely the comparisons
between the measured data and prediction results of actuator line model, are carried out
to validate the actuator line model, from which the accuracy of actuator line model is
illustrated. In this section, the comparison between actuator line model and fully-blade-
resolved method is carried out to illustrate the efficiency of the actuator line model.

The NREL 5MWwind turbine blade is selected to be the research subject in this section.
The NREL 5MW baseline wind turbine is an offshore wind turbine and designed by NREL,
which is shown in Figure 2.30. It is a three-bladed upwind horizontal wind turbine. Its rated
power is 5MW. The diameter of its rotor is 126 m with 90 m hub height. The cut-in, rated,
and cut-out wind speeds are 3 m/s, 11.4 m/s, and 25 m/s respectively. The rated rotational
speed is 12.1 rpm. The geometry of NREL 5MWwind turbine blade is presented in Figure
2.30. The airfoil distribution and the lift coefficients are shown in Figure 2.31 and 2.32.

In this case, the inlet velocity is 10 m/s, and the rotational speed is 9.55 rpm. The
meshes for actuator line model and fully-blade-resolved method are shown in Figure 2.34
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Figure 2.30 NREL 5MW wind turbine blade geometry.

Figure 2.31 NREL 5MW wind turbine blade.

Figure 2.32 Lift and drag coefficients for the airfoils of NREL 5MW wind turbine blade.
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Figure 2.33 Mesh for the fully-blade-resolved simulation.

and 2.33 respectively. For the fully-blade-resolved method, dynamic mesh in OpenFOAM
is employed to simulate the rotating wind turbine blades. Specifically, the mesh of fully-
blade-resolved method is split into two regions, including the rotating region (see Figure
2.33, red box) and stationary region. The rotating region rotates with the rotational speed
of rotor, namely 9.55 rpm. The arbitrary mesh interface (AMI) method in OpenFOAM is
employed to build the coupling between rotating and stationary regions. Standard k − ε
model is employed as the turbulence model.

Figure 2.34 Mesh for the actuator line simulation.

From the figures of results (see Figure 2.35 and 2.36), it can be found that the simulated
vortex structures and flow fields (velocity magnitude) are very similar for the two methods.
compared with 2.7 million cells for actuator line model, 4.6 millions cells is used in fully-
blade-resolved case to resolve the geometry of the blade (y+ ≈ 100). Moreover, the time
step for fully-blade-resolved method is 1× 10−5s according to the CFL condition, while the
time step of actuator line model is 5×10−3s, because the mesh size of actuator line model is
larger than that of fully-blade-resolved method. In this simulation case, it can be seen that
the actuator line model is an effective simulation model for wind turbine wake, which strikes
good balance between accuracy and efficiency. It should be mentioned here that there is no
quantitative comparison between the blade-resolved method and actuator line model. Here
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Figure 2.35 Vortex structures of actuator line model and fully-blade-resolved method.

the mesh sizes for the blade-resolved method and actuator line model are determined by the
typical methods. The mesh size for the blade-resolved method is determined by the yplus
(40-200). The mesh size for the actuator line model is determined by the suggested method
in Section 2.1.2.

Figure 2.36 The comparison between the calculated flow field of actuator line model and
fully-blade-resolved method (m/s).
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2.6 Atmospheric simulation: precursor method

2.6.1 Principle of precursor method

Obviously, the initial and boundary conditions are very important for the CFD simulation.
It is relatively easy to determine these conditions for wind tunnel case with uniform and low
turbulence intensity inflow conditions. However, for the turbulent atmospheric flow with
log-law profile in the wind farm, they are difficult to determine. In fact, the atmospheric
flow is mainly driven by the pressure gradient force and dragged by the frictional force on
the surface of the ground. As a result, instead of prescribing the velocity profiles, the idea
of precursor method is to generate the initial and boundary conditions in a "physical way".
Specifically, the constant pressure gradient force is applied in the flow field as body forces
to drive the flow, and the frictional forces are applied on the surface as shear forces to drag
the flow. The sketch of the precursor method is shown in Figure 2.37.

The pressure gradient can be calculated according to the longitudinal wind velocity at
the specific height (e.g. hub height). The upper boundary is bounded by the "capping
inversion" (or reversed temperature profile), which is similar to the real atmosphere. This
"capping inversion" is generated by introducing potential temperature transport equation
(see Equation (2.37), θ̄ represents the potential temperature, and q j represents the heat flux).
The boundary conditions of the surroundingwalls are all cyclic boundary conditions tomake
the flow circulate in the computational domain. After several iterations, the "atmospheric
flow" becomes fully turbulent.

∂θ̄

∂t
+

∂

∂x j
(u j θ̄) = −

∂

∂x j
(q j) (2.37)

For the neutral atmosphere case with 3 km × 3 km × 1 km (mesh size 20 m, time step
0.5 s), the flow becomes fully turbulent after 20000 s (physical time), which is presented in
Figure 2.37 (a). The longitudinal velocity at 90 m height (hub height) is 8 m/s. Figure 2.37
(b) shows the instantaneous velocity field, in which the velocity gradient (vertical) can be
seen. Another important issue for the precursor method is the shear force on the surface,
which can be calculated by the Schumann wall stress model, which will be introduced in
the following subsection.

2.6.2 Schumann wall shear stress model

Since atmospheric turbulence is anisotropic, LES model is very suitable for atmospheric
flow simulation. However, it is very computationally expensive to resolve the near wall
region, because the scale of the turbulence becomes extremely small in this region. Actually
the wind turbine operates in the "log-law" region of atmosphere. The near wall effects can
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(a) The sketch of precursor method
(b) The velocity field simulated by precursor
method (m/s)

Figure 2.37 Illustration and simulation result of precursor method

be simplified by using wall shear stress model. Instead of resolving the near wall region,
the Schumann wall stress [75] are added on the wall surface to reproduce the "log-law"
boundary layer flow. The Schumann wall shear stress is introduced in this section. The
shear stress is related to the friction velocity u∗, which can be calculated by the velocity and
height of the first cell center (subscript 1

2 ) and the log law. In Equation (2.38), the brackets
represent the horizontal average.

u∗ =
κ〈ũ 1

2
〉

ln( z
z0
+ f (L))

(2.38)

In this equation, L is the Obukhov length which represents the buoyancy effect on
turbulent flows. In neutral atmosphere, f (L) is zero. The sketch of Schumann wall stress
model is as follows:

Figure 2.38 The sketch of Schumann wall stress model

The next important question is how to calculate the wall stress τ of each grid. Schumann
assumed that the wall stress τ is proportional to the local velocity of the first grid, which is
shown in the equation below:
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τ = −u2
∗

ũ1/2

〈ũ1/2〉
(2.39)

The calculated wall shear force τ will be applied in the flow field to simulate the
wall effect of the ground. It should be mentioned here that the precursor method does
not guarantee the log law profile. As a result, the precursor method can be validated by
comparing with log law profile. For the case in the previous subsection, the calculated
mean velocity profile matches well with the log-law profile, which can be seen in Figure
2.39. It can be seen that precursor method has a very good agreement with the log law in
the region where wind turbines operate (0 - 200 m).

Figure 2.39 Comparison between the predicted vertical velocity profile and the log-law profile.

2.7 Case study: wind farm with 9 wind turbines
In the previous sections, the wind turbine wake and atmospheric flow are all studied and
simulated by using actuator line model and precursor method respectively. In this section,
the aforementioned two method will be coupled together to simulate the wake flow in
atmospheric flow of a wind farm. A wind-turbine cluster with nine WindPACT wind
turbines is studied. This wind farm will also be used in the following chapters to study the
dynamic loading on the wind turbine blade.
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2.7.1 Case description

The WindPACT wind turbine model in this case is a 1.5 MW wind turbine, which is a
typical scale wind turbine in application. The blade of WindPACT wind turbine is a 33
m length blade. S818, S825, and S826 are used in different sections of the blade, which
is shown in Figure 2.40. The lift and drag coefficients for actuator line models are shown
in Figure 2.41. The twist and chord distributions are illustrated in the Figure 2.42. The
parameters for the WindPACT wind turbine are given in Table 2.2.

Figure 2.40 WindPACT wind turbine and the airfoil distribution.

Table 2.1 Parameters of WindPACT wind turbine.

Distance from root (m) Airfoil Chord (m) Twist (o)
0 Cylinder 1.89 10.5
0.7 Cylinder 1.89 10.5
7 S818 2.8 10.5
15.75 S825 2.16 2.5
24.5 S825 1.52 0
33.25 S826 0.875 -0.6

The mesh in Section 2.6 will be used in this case as the background mesh. The
background mesh is refined around the wind farm region. The refined region is highlighted
with red, which is shown in Figure 2.43. The layout of the wind turbines is also shown in
Figure 2.43. The longitudinal distance between wind turbines is 5D, and the lateral distance
between wind turbines is 3D. In this case, the mesh size is refined to be 1.25 m, and the
refined mesh is illustrated in Figure 2.43. In the previous section, the flow field in the wind
farm becomes fully turbulent after 20000 s. The boundary values (from 20000 - 20400 s)
of the atmospheric simulation with background mesh are stored and mapped to the inlet
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2. Actuator line model

boundary conditions of the refined mesh case, in which the outlet boundary is zero gradient
boundary condition for velocity. The body forces of pressure gradient are also stored in the
background mesh case and applied in the refined mesh case. This methodology is included
in the SOWFA code and presented in Figure 2.44.

Figure 2.41 The lift and drag coefficients for the airfoils of WindPACT wind turbine.

Figure 2.42 Geometric properties of WindPACT wind turbine.

2.7.2 Results and discussion

The simulated velocity field is shown in Figure 2.45, in which the fully turbulent flow can
be found. It can be also seen that the wake flow of the nine wind turbines is meandering.
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(a) The sketch of nine WindPACT wind turbines. (b) The layout of the nine-wind-turbine wind farm.

(c) Mesh for the simulation case.

Figure 2.43 Illustration of layout and mesh of the wind farm case.

Figure 2.44 Simulation methodology of wind farm case.
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2. Actuator line model

Table 2.2 Parameters of WindPACT wind turbine.

Parameters Value
Hub height 84 m
Rotor diameter 70 m
Cut-in speed 3 m/s
Rated speed 11.5 m/s
Cut-out speed 27.6 m/s
Rated power 1.5 MW
Rotational speed 20.5 rpm

Obviously, the wake flow is asymmetric in the wind farm. The downstream wind turbines
are all fully immersed in the upstream wind turbine wakes (blue region). It should also
seen in Figure 2.45 that the wakes of nine wind turbines interact with each other, and the
wind farm wake also occurs behind the wind-turbine cluster. The power outputs and their
average values of the nine wind turbines are shown in Figures 2.46 and 2.47 respectively.
In Figure 2.46, the power outputs of downstream wind turbines (WT 4, 5, 6, colored with
red and green) are obviously lower than that of the upstream wind turbine (WT 1, 2, 3,
colored with red). Similar to the observations in the real wind farm, a huge power output
decrease can be found in the comparison between the first upstream wind turbine and the
second wind turbine. No clear power decrease is observed in the comparison between the
second turbine and the third one. This phenomenon can be seen in all three arrays of wind
turbine as evident in Figure 2.46. The simulation period in this case is 400 seconds due
to the high computation cost. In the following research the simulation period is increased
to 600 seconds. In the future, the author would further improve the simulation period to
achieve better statistical convergence.
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(a) The cutting plane of velocity magnitude along
the streamwise direction.

(b) The cutting plane of velocity magnitude along
the spanwise direction.

(c) The horizontal cutting plane at the hub height.

Figure 2.45 Simulation result of wind farm with nine WindPACT wind turbines.

Figure 2.46 Comparison between the fluctuating power output of wind turbines.
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2. Actuator line model

Figure 2.47 Comparison between the average power output of wind turbines.

2.8 Chapter summary
In this chapter, actuator line model is fully introduced and validated by using wind tunnel
experiment data in terms of aerodynamic force and wake flow predictions, which are
important to the dynamic loading of wind turbine blade. In addition, the precursormethod in
SOWFA (simulator for wind farm application) code [76] is also introduced for atmospheric
flow simulation, which is preliminarily verified by log-law profile. The results in terms of
wake loss of the coupled model of actuator line and precursor method are also reasonable.
From the simulations above, firstly, it is found that the nacelle effect is not considered
in the conventional actuator line model, which may affect the velocity profile around the
wake center. The nacelle model is proposed to model the nacelle effect effectively, which
is validated in this chapter. Secondly, it can be found that the structural deformation is
not considered in the conventional actuator line model, which is significant to the fatigue
damage of wind turbine blade. To solve this problem, the elastic actuator line model will
be proposed in the next chapter.
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Chapter 3

Elastic actuator line model

In the previous chapter, the actuator line model has been introduced and validated in terms
of flow field and aerodynamic force prediction. From the previous study, it is found that the
actuator line model can predict the wake flow and aerodynamic loading accurately. From
the wind farm case, it is found that the actuator line model can predict wake induced power
loss, which is very similar to the observations. However, from the structure side, there are
still several important factors, including gravitational force, inertia force, and elastic force,
which are neglected in actuator line model. They are neglected because they have less effect
on the power output of wind turbines. But these factors play important roles in the dynamic
loading of wind turbine blade, which is the foundation of wake induced fatigue analysis of
wind turbine blade.

Figure 3.1 Principle of elastic actuator line model.

To consider these factors, the structural model for wind turbine blade is built and coupled
with actuator line model in this thesis. The coupled model is called "elastic actuator line
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model". It should be mentioned here that the coupling between actuator line model and the
structural model is a two-way coupling, which is presented in Figure 3.1 and Figure 3.2.
Obviously, the actuator line model provides the structural model with aerodynamic force.
The aerodynamic force of actuator line model is also influenced by the structural model,
because the local angle of attack will change due to the elastic deformation of wind turbine
blade. Equation (2.3) in actuator line model turns into Equation (3.1) in elastic actuator line
model. ue,n and ue,t are two velocity components for actuator line element or blade element,
which are induced by the elastic deformation. The position of the nodes are passed from
the structural model to the aerodynamic model (in addition to the velocities) in the current
model. The orientation change has not been considered in the current model.

If the structure model is a black box (red box in Figure 3.2), its input is the aerodynamic
force from actuator line model, and the outputs of the black box are the velocity of blade
element under the rotating coordinate system and the dynamic loading (see Figure 3.1). In
the following sections, the structure model for elastic actuator line will be constructed, and
the proposed elastic actuator line model will also be verified.

α = Ψ − β = arctan(
un + ue,n

ut + ue,t
) − β (3.1)

Initialize flow field

Start time marching.

Predictor: solve momentum equa-
tions implicitly for velocity field.

1st Corrector: solve p equation explic-
itly. Update velocity field explicitly.

2nd Corrector: solve p equation explic-
itly. Update velocity field explicitly.

t+∆t.

PISO solver

Sample local velocity and AOA.

Compute aerodynamic
force by using 2D airfoil.

Locate actuator points
and compute body force.

Solve structure equations
of three blades explicitly.

Rotate actuator points.

Actuator line

Velocity

Body force

Figure 3.2 Flowchart of the elastic actuator line model based on PISO solver.
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3. Elastic actuator line model

3.1 Explicit elastic actuator line

3.1.1 Theoretical equations

Since wind turbine blade is a slender structure whose one dimension is much larger than
the other two (see Figure 3.1), it can be simplified as a cantilever beam. Due to its large
aspect ratio, its beam equations can be further reduced by applying the Euler-Bernoulli
assumptions [60]. The simplified beam equations are called "Euler-Bernoulli beam", which
will be the structure model for elastic actuator line in this section. The derivations based on
kinematics analysis and equilibrium equations of beam section are shown in the Appendix
A. The local coordinate system of the beam equations is shown in Figure 3.3. From Figure
3.3, it can be seen that the local coordinate system is attached on the rotating blade, which
is non-inertia coordinate system so that the inertia forces should be introduced. In the
local coordinate system, there exist three dimensions, including direction 0 (out-of-plane),
direction 1 (in-plane), and direction 2 (span-wise). Direction 0 is along the principle axis
of the main shaft. Direction 2 is defined to be along the span-wise direction. Direction
1 is perpendicular to both direction 2 and direction 0 following the right-hand rule. Each
rotating blade will has one local coordinate system. The subscript of variables indicates
which direction it follows. The partial differential equations of wind turbine blade structure
is presented in Equations (3.2) - (3.4). It should be mentioned here that only deflections
along direction 0 and 1 are considered in this chapter. In the next two chapters, the other
4 degrees of freedom (another deflection and 3 torsions) will be considered. The current
model also neglects the geometric nonlinearity, change in the centrifugal forces associated
with the transverse deflections, Coriolis forces (nonlinear), blade coning and pitching, and
blade coning and pitching. In the next stage research, the author would further improve
these models in terms of these factors.

ρs(r)
∂2q0

∂t2 +
∂2

∂r2 (EI00(r)
∂2q0

∂r2 + EI01(r)
∂2q1

∂r2 ) −
∂

∂r
(Nc(r)

∂q0
∂r
) − f2D,0 − fg,0 = 0 (3.2)

ρs(r)
∂2q1

∂t2 +
∂2

∂r2 (EI11(r)
∂2q1

∂r2 + EI10(r)
∂2q0

∂r2 ) −
∂

∂r
(Nc(r)

∂q1
∂r
) − f2D,1 − fg,1 = 0 (3.3)

N(r) =
∫ R

r
ρs(r)Ω2rdr (3.4)

In Equations (3.2) - (3.4), q indicates the displacement of each section, which is the
dependent variable in the above equations. r and t represent span-wise direction (direction
2) and time, which are independent variables in the above equations. ρs is the mass per unit
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Figure 3.3 The coordinate system of structure model.

length for each beam section. EI represents the stiffness of the cross section. Nc and fg are
the centrifugal force and gravitational force on each cross section. The root of the beam is
clamped, and the tip is assumed to be free end.

There are two obvious difficulties in solving these equations numerically. Firstly, the
presence of the high order terms (second order in time and fourth order in space) will
complicate the numerical discretization and the implementation of boundary conditions. In
addition, high order schemes often cause instability. For example, the central difference
schemes with fourth or higher order are unstable when the high-order boundary schemes
are implemented. Secondly, the two governing equations are coupled together, which can
be seen from the second term in Equations (3.2) - (3.3). The coupling effect is caused by
the structural twist of the wind turbine blade. Contrary to the conventional beam structure,
wind turbine blade sections are non-uniform and twisted (twist angle is also non-uniform
from 0o to 10o), which is shown in Figure 3.4. The stiffness in Equation (3.2) - (3.3) can
be derived according to the edgewise (EIe) and flapwise (EI f ) stiffness, which is shown in
Equation (3.5) - (3.7). This coupled equations require to be solved simultaneously, which
is computationally expensive. In addition, the derivative of EI should be dealt with in the
simulation. The equations are solved alternatively because the simultaneous equation has
high order time and spatial derivatives, which makes the numerical model very unstable.
Lowering the order of derivatives and solving alternatively is an effective method to solve
this problem for FDM model.
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3. Elastic actuator line model

EI00 = EIe − (EIe − EI f ) cos2 θ (3.5)

EI11 = EI f + (EIe − EI f ) cos2 θ (3.6)

EI01 = EI10 = sin 2θ(
EIe − EI f

2
) (3.7)

Figure 3.4 Illustration of structural twist of wind turbine blade.

In this thesis, to overcome the aforementioned two difficulties, two sets of variables are
introduced, including deformation-induced velocity V and M (and S). They are defined by
the following Equations (3.8) - (3.10).

V0 =
∂q0
∂t
, V1 =

∂q1
∂t

(3.8)

M0 = EI00(r)
∂2q0

∂r2 + EI01(r)
∂2q1

∂r2 , M1 = EI11(r)
∂2q1

∂r2 + EI10(r)
∂2q0

∂r2 (3.9)

S0 = Nc(r)
∂q0
∂r

, S1 = Nc(r)
∂q1
∂r

(3.10)

After substituting Equations (3.8) - (3.10) into Equations (3.2) - (3.4), the original
governing equations are transformed to a new formulation (Equations (3.11) - (3.16)):

ρs(r)
∂V0
∂t
+
∂2M0

∂r2 −
∂S0
∂r
− f2D,0 − fg,0 = 0 (3.11)
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ρs(r)
∂V1
∂t
+
∂2M1

∂r2 −
∂S1
∂r
− f2D,1 − fg,1 = 0 (3.12)

∂M0
∂t
= EI00(r)

∂2V0

∂r2 + EI01(r)
∂2V1

∂r2 (3.13)

∂M1
∂t
= EI11(r)

∂2V1

∂r2 + EI10(r)
∂2V0

∂r2 (3.14)

∂S0
∂t
= Nc(r)

∂V0
∂r

(3.15)

∂S1
∂t
= Nc(r)

∂V1
∂r

(3.16)

Although the number of governing equations increases from two to six by applying this
substitution and transformation method, it brings three advantages. Firstly, the orders of
derivatives are reduced, which can be seen from Equations (3.11) - (3.16) that the highest
orders of derivatives for time and space are first order and second order respectively. This
avoids the aforementioned difficulty of high order scheme for the time and spatial deriva-
tives. Secondly, the above equations can be solved alternatively rather than simultaneously.
Specifically, the variable V is solved first based on M and S of previous time step. Then
the M and S will be updated by using the new V . Lastly, the variables V and M represents
the deformation induced velocity and bending moments, which are the required output for
elastic actuator line model (see Figure 3.1). For example, V0 and V1 are related to ue,t and
ue,n in Equation (3.1), which is one "bridge" between actuator line model and structure
model (see Figure 3.1). The relation between them is shown in Equation (3.17).

ue,t = −V1, ue,n = −V0 (3.17)

The root of the blade is clamped, which is the boundary condition (mixed boundary
condition) for V . V and its first order spatial derivative are zero. This boundary condition
is shown in Equation (3.18).

∂V0
∂r
= 0, V0 = 0,

∂V1
∂r
= 0, V1 = 0 (3.18)

The tip of the blade is free end, which is the boundary condition (mixed boundary
condition) for M . M and its first order spatial derivative (shear force) are zero. This
boundary condition is shown in Equation (3.19).

∂M0
∂r
= 0, M0 = 0,

∂M1
∂r
= 0, M1 = 0 (3.19)
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3. Elastic actuator line model

In summary, our problem is to solve the Equations (3.11) - (3.16) under the boundary
conditions of Equations (3.18) - (3.19), which is an initial and boundary value problem.
In the next subsection, the numerical equations will be presented to solve the proposed
governing equations.

3.1.2 Numerical model

Forward Euler method is used to discretize the time derivative, which means that the
numerical model is explicit. The numerical discretization of the structural model (Equations
(3.11) - (3.16)) is shown in Equations (3.20) - (3.26). The time accuracy is further increased
to 2nd order in Chapter 5 by employing leapfrog scheme.

Vn+1
0,i − Vn

0,i

∆t
= −

1
ρs,i

(δ2M0)
n
i

∆r2 +
1
ρs,i

(δS0)
n
i

∆r
+

f n
2D,0,i + f n

g,0,i

ρs,i
(3.20)

Vn+1
1,i − Vn

1,i

∆t
= −

1
ρs,i

(δ2M1)
n
i

∆r2 +
1
ρs,i

(δS1)
n
i

∆r
+

f n
2D,1,i + f n

g,1,i

ρs,i
(3.21)

Mn+1
0,i − Mn

0,i

∆t
= (EI00)i

(δ2V0)
n+1
i

∆r
+ (EI01)i

(δ2V1)
n+1
i

∆r2 (3.22)

Mn+1
1,i − Mn

1,i

∆t
= (EI11)i

(δ2V1)
n+1
i

∆r
+ (EI10)i

(δ2V0)
n+1
i

∆r2 (3.23)

Sn+1
0,i − Sn

0,i

∆t
= Nc,i

(δV0)
n+1
i

∆r
(3.24)

Sn+1
1,i − Sn

1,i

∆t
= Nc,i

(δV1)
n+1
i

∆r
(3.25)

Nc,i =

Ns∑
j=i

ρs, jΩ
2r j∆r (3.26)

The finite difference operators in Equations (3.20) - (3.26) are shown in Equations (3.27)
- (3.28).

δ2Mi = Mi−1 − 2Mi + Mi+1 δ2Vi = Vi−1 − 2Vi + Vi+1 (3.27)

δSi = Si − Si−1, δVi = Vi+1 − Vi (3.28)
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As mentioned in the previous subsection, the numerical model will be solved alterna-
tively and explicitly. Firstly, V will be solved based on the M , S, and ®f2D in previous time
step according to Equations (3.20) - (3.21). Secondly, M and S in the next time step will be
solved based on the updated V according to Equations (3.22) - (3.26). The flowchart of the
solution procedure is shown in Figure 3.5. This procedure will be repeated in the solution
procedure.

The physical meaning for the Equations (3.20) - (3.21) is the Newton’s second law or
equilibrium equations, which means that the external loading drives the blade element to
deform or the dynamics of the beam. Equations (3.22) - (3.26) indicate the Hooke’s law or
relation between deformation curvatures and elastic forces or the kinematics of the beam.
In the author’s opinion, these equations can be solved alternatively, because each set of
equations represents a single physical process.

Mn
0,i Mn

1,i Sn
0,i Sn

1,i f n
2D,0 f n

2D,1

Vn+1
0 Vn+1

1

Mn+1
0,i Mn+1

1,i Sn+1
0,i Sn+1

1,if n+1
2D,0 f n+1

2D,1

Solve Vn+1 explicitly (dynamics)

Equation (3.20) - (3.21)
Equation (3.22) - (3.26)

Solve Mn+1 explicitly (kinematics)

Actuator line

Actuator line

Figure 3.5 Flowchart of the numerical structure model.

For the numerical partial differential equations in explicit formulation, it is necessary
to derive the largest time step (or CFL number). To derive the necessary condition of the
time step for the proposed numerical model, the stability analysis is carried out, which is
shown in Appendix B. To simplify the stability analysis, the coupled terms and centrifugal
terms are dropped. The above Equations (3.20) - (3.25) turn into simplified formulation of
Equations (3.29) - (3.32).

Vn+1
0,i − Vn

0,i

∆t
= −

1
ρs,i

(δ2M0)
n
i

∆r2 +
f n
2D,0,i + f n

g,0,i

ρs,i
(3.29)

Vn+1
1,i − Vn

1,i

∆t
= −

1
ρs,i

(δ2M1)
n
i

∆r2 +
f n
2D,1,i + f n

g,1,i

ρs,i
(3.30)

Mn+1
0,i − Mn

0,i

∆t
= (EI00)i

(δ2V0)
n+1
i

∆r
(3.31)
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Mn+1
1,i − Mn

1,i

∆t
= (EI11)i

(δ2V1)
n+1
i

∆r
(3.32)

The stability condition for the time step is shown in equation below.

∆t ≤
√
ρs

EI
∆r2

2
(3.33)

In this equation, ρs
EI is the minimum value of ρs,i

EIi
of all the sections. This condition

will be used in the case study to select the appropriate time step for the simulation. The
boundary conditions for V , M , and S are shown in Figure 3.6.

Figure 3.6 The boundary condition for the numerical structure model. (The hollow circle indicates
the value is 0.)

The programming code is illustrated in Appendix G.1.

3.2 Verification and case study

3.2.1 Verification case 1

A comparison between the results of the proposed elastic actuator line model and the NREL
FAST 7.0 on the dynamic loading of single NREL 5MWwind turbine is carried out. NREL
FAST 7.0 has long been used for aero-elastic simulation of single wind turbine in wind
energy industry. As a result, the comparison is an efficient and effective method to verify
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the newly proposed elastic actuator line model in the previous section. The NREL 5MW is
used to be the research object of comparison.

As mentioned in the previous section, the rotor diameter and the hub height of NREL
5MW wind turbine are 126 m and 90 m respectively. The rated rotational speed is set to
be 12.1 rpm, and the cut-in, rated, and cut-out wind speed are 3 m/s, 11.4 m/s, and 25 m/s
respectively. In verification case 1, the inlet wind condition is set to be the steady wind of
5 m/s. The rotational speed is set to be 9.16 rpm. The tip speed ratio (TSR) for the 5 m/s
wind velocity is around 12 (high TSR value). The TSR is well above the operational TSR
of wind turbine. This is a numerical verification for the proposed model. The structural
properties of NREL 5MW wind turbine blade are shown in Figure 3.7.

For the turbulence model, the standard k − ε turbulence model is employed. The PISO
solver is used to couple velocity and pressure fields. The inlet boundary condition is uniform
inflow boundary condition (Dirichlet boundary condition). The outlet boundary condition is
zero gradient boundary condition (Neumann boundary condition). The boundary conditions
of surrounding walls are non-slip boundary conditions (Dirichlet boundary condition). The
proposed elastic actuator line model will be employed as the aeroelastic model, in which
the actuator line model is coupled with the simplified beam model (3.29) - (3.32) through
aerodynamic force ( ®f2D) and deformation induced velocity (®ue), which is shown in Figure
3.1. The data of tip displacements and root moments is recorded from 0 s (no deformation)
to 6 s. The mesh of CFD model in this case is shown in Figure 3.8. There are 40 nodes for
each blade (which is similar to the node number of actuator line model). The aerodynamic
forces are all from the actuator linemodel in this case. The lack of the statistical convergence
also play a role in my view because the simulation period is only 30s.

Figure 3.7 The structural properties of NREL 5MW wind turbine blade.
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3. Elastic actuator line model

(a) The sketch of single NREL 5MW wind
turbine (refined region is colored by red).

(b)Mesh of single NREL 5MWwind turbine case.

Figure 3.8 Illustration of mesh for single NREL 5MW wind turbine case.

3.2.2 Results and discussion

The calculated root bendingmoments and tip displacements of three blades (in the directions
of out-of-plane and in-plane, see Figure 3.3) are compared with the results of NREL FAST,
which are shown in Figures 3.10 and 3.11. Equation (3.33) is used to derived the time step.

It can be seen from these results that the bending moments and displacements are of
the same order of magnitude as the results of NREL FAST, which are what we expected.
This basically verifies the derived time step, because there is no numerical divergence
during simulation. However, the fluctuation patterns of moment and tip displacement of
the elastic actuator line are still different from the result of the NREL FAST. The difference
is very obvious in the out-of-plane direction (or 0 direction) defined in Figure 3.1 and 3.9.
Moreover, the fluctuation of moment and tip displacement from elastic actuator line are
more smooth. Noticeably, these fluctuations will have impact on the fatigue damage of the
wind turbine blade. The oscillation in moments time series, in my view, is because of the
existence of the high-frequency modes in the structure model (explicit model).

To further quantify the errors of this simplified model, two indices are employed.
Specifically, the fluctuation of root bending moment in the direction 0 is lower than that of
the direction 1, while the mean value of root bending moment in the direction 0 is larger
(viz., the mean value of bending moment in direction 1 is nearly 0 Nm). As a result, we
use normalized Root-Mean-Square-Error (RMSE) to quantify the solution accuracy in the
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Figure 3.9 Sketch of coordinate system of the blade in the case study.

Figure 3.10 Out-of-plane (up) and in-plane (down) blade tip displacements obtained with the
simplified equations (3 Blades) at tip speed ratio (TSR) = 12
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3. Elastic actuator line model

Figure 3.11 Out-of-plane (up) and in-plane (down) blade root bending moments obtained with the
simplified equations (3 Blades) at tip speed ratio (TSR) = 12

direction 0 and Pearson correlation coefficient Rcor to quantify the solution accuracy in the
direction 1. The RMSE and Rcor are shown in Equations (3.34) - (3.35).

RMSE =

√
1
n
∑n

i=1(yi − ŷi)

Mean(ŷi)
(3.34)
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2
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2
√
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2
i − (

∑n
i=1 yi)

2
(3.35)

The yi represents the predicted data from the elastic actuator line model, and ŷi is the
predicted data from NREL FAST. The "n" represents the number of data. The results of
prediction accuracy are illustrated in Table 3.1 - 3.2.

Table 3.1 Accuracy of the elastic actuator line model in comparison with FAST in terms of root
bending moments obtained with simplified equations (TSR = 12).

Root moment Blade1 Blade2 Blade3
RMSE (0 direction) 14.35 % 15.03 % 14.80 %
Rcor (1 direction) 99.10 % 77.73 % 86.33 %

From Table 3.1 - 3.2, more information of simplified model is found. Although this
simplified model can provide reasonable results (the order of magnitude), we can still see
at least two problems in the current simplified mode:
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Table 3.2 Accuracy of the elastic actuator line model in comparison with FAST in terms of tip
displacement obtained with simplified equations (TSR = 12).

Tip displacement Blade1 Blade2 Blade3
RMSE (0 direction) 7.02 % 7.60 % 7.31 %
Rcor (1 direction) 97.90 % 66.12 % 79.04 %

1. The normalized RMSE of root bending moment in the direction 0 is erroneous
(around 15 %).

2. Although RMSE of tip displacement in the direction 0 is less than 10 %, the
correlation coefficients (Rcor) of tip displacement in the direction 1 for blade 2 are lower
than 70 % (the coordinate system is defined in Figures 3.3 and 3.9.

The problems are most likely due to the absence of the structural twist term and the
centrifugal term.

3.2.3 Verification case 2

To prove our speculation in the discussion of verification case 1, the neglected terms (cou-
pled terms and centrifugal terms) are considered according to Equations (3.11) - (3.16).
The time step is determined according to Equation (3.33). It is expected that the complete
equations (Equations (3.11) - (3.16)) can achieve higher accuracy compared with the sim-
plified equations (Equations (3.29) - (3.32)). Since the time step is derived based on the
simplified equations, this also verifications of its effectiveness on the complete equations.
To comprehensively verify the proposed model, the case with low tip speed ratio (TSR = 6)
is also carried out.

3.2.4 Results and discussion

The results of the complete equations are shown in Figures 3.12 (tip displacement) and 3.13
(root moment). From these two figures, the simulation with complete equations captures
the fluctuations of the tip displacements and root moments very well. The accuracy of the
complete model is shown in Tables 3.3 - 3.4. Compared with the results of the simplified
model, the accuracy of the completemodel is obviously increasing (Compare theTables (3.1)
- (3.2) with Tables (3.3) - (3.4). Specifically, all RMSEs are less than 10 % and correlation
coefficients Rcor are more than 90 %. This indicates that the absence of structural twist
term and centrifugal term will cause at least 5 % error increase of root moment RMSE in
the direction 0 (see Figure 3.3).

The accuracy of results for a lower tip speed ratio (TSR = 6) are shown in Figures 3.14
- 3.15 and Tables 3.5 - 3.6.
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3. Elastic actuator line model

Figure 3.12 Out-of-plane (up) and in-plane (down) blade tip displacements obtained with the
complete equations (3 Blades) at tip speed ratio (TSR) = 12

Figure 3.13 Out-of-plane (up) and in-plane (down) blade root bending moments obtained with the
complete equations (3 Blades) at tip speed ratio (TSR) = 12
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Figure 3.14 Out-of-plane (up) and in-plane (down) blade tip displacements obtained with the
complete equations (3 Blades) at tip speed ratio (TSR) = 6

Figure 3.15 Out-of-plane (up) and in-plane (down) blade root bending moments obtained with the
complete equations (3 Blades) at tip speed ratio (TSR) = 6
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Table 3.3 Accuracy of the elastic actuator line model in comparison with FAST in terms of root
bending moments obtained with complete equations (TSR = 12).

Root moment Blade1 Blade2 Blade3
RMSE (0 direction) 8.86 % 9.20 % 8.37 %
Rcor (1 direction) 99.78 % 95.09 % 95.40 %

Table 3.4 Accuracy of the elastic actuator line model in comparison with FAST in terms of tip
displacement obtained with complete equations (TSR = 12).

Tip displacement Blade1 Blade2 Blade3
RMSE (0 direction) 6.64 % 6.03 % 5.45 %
Rcor (1 direction) 99.39 % 92.74 % 93.01 %

Table 3.5 Accuracy of the elastic actuator line model in comparison with FAST in terms of root
bending moments obtained with complete equations (TSR = 6).

Root moment Blade1 Blade2 Blade3
RMSE (0 direction) 4.89 % 5.52% 4.98 %
Rcor (1 direction) 98.57 % 89.99 % 93.49 %

Table 3.6 Accuracy of the elastic actuator line model in comparison with FAST in terms of tip
displacement obtained with complete equations (TSR = 6).

Tip displacement Blade1 Blade2 Blade3
RMSE (0 direction) 3.69 % 3.41 % 3.15 %
Rcor (1 direction) 99.10 % 84.80 % 91.91 %

The results of elastic actuator line still match well with those of NREL FAST 7.0. The
accuracy is very similar to that for higher tip speed ratio. From these comparisons, the
proposed elastic actuator line model is preliminarily verified.

3.2.5 Case study: two staggered NREL 5MW wind turbines

In the previous subsections, the theoretical and numerical formulations of the proposed
elastic actuator line model are established. The preliminary verification of the proposed
model is performed. For this subsection, the present elastic actuator line model will be
employed to analyse the loading of two staggered NREL 5MW wind turbines.

In this case, the neutral atmosphere boundary conditions, which are shown in Equation
(3.36) - (3.38), is used at inlet. The wind speed at hub height (90 m) is set to be 10 m/s. The
rotational speed of the rotor is assumed to be fixed, which is a limitation of the simulation
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(a) The layout of staggered wind turbines.

(b) The mesh for the CFD model.

Figure 3.16 Illustration of layout and mesh of simulation case.

case. Roughness length z0 is set to be 0.1 m (grassland), and von Karman constant κ is
0.41. The friction velocity can be derived can be derived by using Equation (3.36). Then
according to Equations (3.36) - (3.38), the profiles of velocity, turbulent kinetic energy,
and dissipation rate can be calculated. The simulation period is 30s in this case, which is
another limitation of the simulation case.

u =
u∗

κ
ln

z
z0

(3.36)

ε =
(u∗)3

κz
(3.37)

k =
(u∗)2√

Cµ

(3.38)

The layout of the twowind turbines is shown in Figure 3.16. This is a very interesting and
unique case in terms of wake-induced fatigue, which can also be found in some experiment
based research. In this case, the downstream wind turbine rotor is half immersed in the
upstream wind turbine wake. As a result, wind turbine wake will influence the loading
history of downstream wind turbine blade. The time history of out-of-plane (or direction
0) root moment of one blade over a period of 10 seconds is illustrated in Figure 3.17. It
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3. Elastic actuator line model

can be seen from the time series that the fluctuations of upstream and downstream wind
turbines are obviously different, which is caused by the upstream wind turbine wake effect
in terms of velocity deficit and an increase in turbulence intensity on the performance of
downstream wind turbine.

Figure 3.17 Time series of out-of-plane bending moments for upstream and downstream wind
turbines.

By using the rainflow counting algorithm, the out-of-plane moment amplitude cycles
for the two wind turbines can be calculated. The numbers of cycles for different moment
amplitude are shown in Figure 3.18. From this figure, it can be seen that the number of
cycles of high moment amplitude (≥ 1600 Nm) for downstream wind turbine is larger than
the upstream one, which means that the downstream wind turbine experiences larger fatigue
damage.
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Figure 3.18 Rain-flow counting results of blade root moments (out-of-plane) for upstream and
downstream wind turbines in staggered layout.

3.3 Implicit elastic actuator line and fatigue analysismethod-
ology of wind turbine blade

In the previous section, the elastic actuator line with explicit finite difference structure
model (explicit elastic actuator line) is proposed and verified by comparing its results with
that of NREL FAST. On one hand, It should be mentioned here that there exist a time step
difference between the structure model and actuator line model in explicit elastic actuator
line. The determination of actuator line time step has been introduced in Section 2.1.2. The
time step for the proposed structure model is shown in Equation (3.33). In the case study of
NREL 5MW in Section 3.2, the time step of actuator line model is around 0.01 s, while the
time step of structure model is calculated to be 5 × 10−4 s. Since the stiffness in Equation
(3.33) is large for the composite wind turbine blade, the time step of structure model is
extremely small compared with actuator line model. This will lower the efficiency of the
algorithm, because the fluid equations that are computationally expensive will be solved
with extremely small time step. In implicit method, larger time step can be employed, which
will boost the efficiency (0.01s in the current case). However, the implicit method requires
matrix inversion, which will also lower its efficiency. Overall, the implicit method in this
case is 5-10 times faster than the explicit method. The simulation time of implicit method
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3. Elastic actuator line model

is 400 seconds, which is also larger than that of explicit method, 30 seconds. Moreover, for
fatigue analysis, hundreds of physical-time simulation is required. As a result, the problem
is how to increase the time step of the structuremodel. To this problem above in our previous
research, the implicit structure model for elastic actuator line is proposed to increase the
time step limit. The implicit elastic actuator line will be verified by comparing its results
with that of explicit model.

This section can be divided into two parts. In the first part, the implicit structure model
for wind turbine blade is constructed and coupled with actuator line model to be the implicit
elastic actuator line model. The implicit elastic actuator line model will be verified by
comparing it with explicit elastic actuator line model. In the second part, based on this
model, the dynamic loading on the WindPACT blade of 9-wind-turbine case in Section 2.7
will be analyzed. The load spectrum and cycle-count matrix will be presented to show the
wake effect on the dynamic loading.

3.3.1 Numerical model

To remove the limitation of time step, the implicit discretized equations are derived as
shown in the Equations (3.39) - (3.44), in which Crank-Nicolson for M and V is employed
for temporal discretization. The governing equations in Section 3.1.2, including Equations
(3.20) - (3.26), turns in to an implicit formulation.
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Here δ and δ2 are all central difference scheme. If we further introduce vector
®p = [V0 V1 M0 M1]

T , the above equations can be represented in the following matrice
Equations (3.45) - (3.49).

− Ai
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The right hand side is a 4 × 1 vector ®di, which are shown in Equation (3.49).
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Similar to the finite element method, the above matrice equations are for the local beam
element. These equations can then be assembled as a sparse global matrix, which consists
of matrix Ai, Bi, and Ci. In contrast to the finite element method, shape functions are not
required in these equations. In the following subsection, the proposed implicit method will
be verified. The programming code is illustrated in Appendix G.2.
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3.3.2 Verification case study

The proposed implicit elastic actuator line model is verified in this subsection by comparing
it with the aforementioned explicit method. The numerical simulation in the Section 3.2.1
with NREL 5MW wind turbine blade will be carried out. The calculated root bending
moments (direction 0 and 1, out-of-plane and in-plane) of implicit method with 5 × 10−4s
and 5 × 10−3s time step will be compared with that of explicit method with 5 × 10−4s time
step, which is shown in Figures 3.19 - 3.21. From the comparison of three blades, it can
be found that the proposed implicit elastic actuator line has a good agreement with the
verified explicit method presented in the previous section for both out-of-plane and in-plane
bending moments. However, there still exists small discrepancies between implicit method
and explicit method . With the time step increasing from 5×10−4s to 5×10−3s, the accuracy
does not drop obviously, especially for the Mip.

The proposed implicit elastic actuator line will be used to calculate the dynamic loading
of 9 WindPACT wind turbine blades in wind farm, because larger time step can be used for
this method. It should be mentioned here that the implicit method will obviously affect the
low frequency vibration, which can be seen in Figures 3.19 - 3.21. This problem is solved
in the Chapter 5, in which the unconditionally stable explicit model is proposed that can
run with large time step and does not affect the low frequency vibrations. The green curve
represents the implicit method that runs with 10 times larger time step than the red one. As
a result, the difference is from the enlarged time step.

Figure 3.19 Comparison between implicit method, implicit method with large time step, and
explicit method in terms of bending moments (Blade 1).
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Figure 3.20 Comparison between implicit method, implicit method with large time step, and
explicit method in terms of bending moments (Blade 2).

Figure 3.21 Comparison between implicit method, implicit method with large time step, and
explicit method in terms of bending moments (Blade 3).
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3.3.3 Case study: dynamic loading on the 9 wind turbines in wind
farm

In Section 2.7, the conventional actuator line model and precursor method are coupled to
simulate the wind turbine wake effect in wind farm with 9 WindPACT wind turbines. The
stiffness distribution of WindPACT wind turbine blade is shown in Figure 3.22.

Figure 3.22 Stiffness distributions for WindPACT wind turbine blade.

In this section, the proposed implicit elastic actuator line will be employed to simulate
the dynamic loading on wind turbine blade. The simulation time is 400 s (physical time,
from 20001-20400 s). Firstly, the out-of-plane and in-plane moments time series are
sampled on three sections (2.5 m, 5 m, and 7.5 m) from the wind turbine blade root of wind
turbine 0 in Figure 3.25, which is shown in Figures 2.43 and 3.23. The load time series of
different sections are shown in Figure 3.24. It can be found that the moments of sections
are increasing from tip to root, not only for the amplitude and mean value of out-of-plane
bending moments, but also for the in-plane bending moments. The rotational speed of rotor
is assumed to be fixed, which is a limitation of the simulation case.

Since themoments fluctuation on the root section is most obvious among all the sections,
we further compare the moments time series of the root sections for different wind turbine
blades on the same row, which can be seen in Figure 3.25. The loading time series are shown
in Figure 3.27. From this figure, we can see that the fluctuating patterns of out-of-plane
moments for different wind turbines are different because of the different turbulent inflow
(see Figure 3.26), but the fluctuating amplitudes are very similar. In addition, the amplitudes
of in-plane bending moments are very similar to each other, which are mainly dominated
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Figure 3.23 Sampling sections on wind turbine blade.

Figure 3.24 Comparison of loading time series on different sections.
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by the gravitational force. We further analyse the power spectrum of the fluctuating out-of-
plane bending moments, which is dominated by the dynamic aerodynamic loading. It can
be found that the similar obvious two peaks occurs in all the three wind turbine blades for
three wind turbines. These peaks are related to the atmospheric turbulence. In other words,
although the loading of wind turbines in a row have different fluctuating patterns, they still
share the same power spectrum that is shown in Figure 3.28, because there is no wake flows
in front of them.

Figure 3.25 Layout of wind turbines (the sampled wind turbines are highlighted with red).

Figure 3.26 The comparison of inflow wind speed for different wind turbines (WT 0, 1, 2).
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Figure 3.27 The comparison of loading time series on the wind turbine blade of wind turbines in
the first row.

Figure 3.28 Power spectrum comparison for out-of-plane bending moments of different wind
turbines in the first row.
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Next, the loading of wind turbines with and without wake effects are compared with each
other, which is shown in Figure 3.30. The sampled wind turbines are shown in Figure 3.29.
Obviously, wind turbine 0 does not experience any wake effect, but wind turbine 3 and 6
are all operating in the wake flows. From Figure 3.30, it can be observed that amplitudes of
out-of-plane bending moments of wind turbines in wake are larger than that of wind turbine
0 without wake, which is caused by the wake turbulence. The power spectrum of the out-of-
plane bending moments are shown in Figure 3.31. To clearly illustrate the power spectrum,
only the spectrum for wind turbine 0 and 3 are presented in Figure 3.31. Compared with
Figure 3.28, an obvious difference can be found between the power spectrum of upstream
wind turbine and downstream one, which is caused by the wake turbulence. In the author’s
view, the uniform flow field distribution caused by wake flows in the wind farm is the main
reason for this shift.

Figure 3.29 Layout of wind turbines (the sampled wind turbines are highlighted with red).

The rainflow counting for the out-of-plane moments of upstream and downstream wind
turbines is carried out. The results can be seen in Figure 3.32. By comparing these two
figures, it can be found that the cycles of high amplitude (above 5 × 104) increase in the
downstream wind turbine blade loading with wake effect. These cycles will cause fatigue
damage increase on wind turbine blade, which is the wake-induced fatigue. At the same
time, the mean value of the loading will decrease in the wake region, which will alleviate
the fatigue load on the wind turbine blade according to the Goodman correction. Here the
author would like to compare the loading amplitude between the upstream and downstream
wind turbines. The most qualitative way to compare the fatigue load between turbines is the
fatigue damage analysis. As a result, the fatigue damage analysis methodology is proposed
in the following section. The results are for WT0 andWT3. To quantify the fatigue damage
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Figure 3.30 The comparison of loading time series on the wind turbine blade of wind turbines in a
line.

Figure 3.31 Power spectrum comparison for out-of-plane bending moments of different wind
turbines in a line.
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comprehensively, The comprehensive wake effect in terms of TI and mean loads will be
calculated.

(a) Rainflow matrix for upstream wind turbine blade loading.

(b) Rainflow matrix for downstream wind turbine blade loading.

Figure 3.32 Rainflow matrix for upstream and downstream wind turbine blade loading.

3.4 Chapter summary
In this chapter, the elastic actuator line model, the coupled model of conventional actuator
line model and FDM based structure model, which is developed. The explicit elastic
actuator line model is verified by NREL FAST 7.0. From the stability analysis of the
proposed model, it is found that the required time steps for the conventional actuator line
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model and proposed FDM structure model are very different. The time step not only affects
the numerical stability but also the efficiency of the proposedmodel. To enlarge the required
time step of the FDM based structure model, an implicit method is applied and verified
against the explicit method. By using the aforementioned models, both stochastic (Section
3.3.3) and deterministic (Section 3.2.5) wake-induced fatigue loading that is mentioned in
Section 1.3.2 are simulated in the simulations. In the literature review, we have mentioned
that the stochastic loading is caused by the higher turbulence intensity in wake (the wind
farm case). The wind turbine blade once per revolution enters and leaves the wake region
can cause deterministic loading. They are two common types of wake-induced fatigue
loading.

For the proposed elastic actuator linemodel, there still exists several deficiencies. Firstly,
the anisotropic properties of composite structure are not considered in this model, because
the proposed model is based on Euler-Bernoulli beam model, which is an ad hoc beam
model. Torsional deformation is not considered in this model. Secondly, the dynamic stall
effect is not considered in this model, which will also affect the dynamic loading of wind
turbine blade. Thirdly, although the proposed implicit method can successfully enlarge the
required time step, the prediction of implicit method still has small discrepancies compared
with explicit method. Lastly, the simulation cases in this chapter is about the dynamic
loading of wind turbine blade. The fatigue analysis has not been carried out, because the
fatigue analysis is based on the stress or strain of materials in the wind turbine blade. There
is still a gap between the simulated dynamic loading (moments) and the stress (or strain)
time series of materials. These problems will be solved in the following two chapters.
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Chapter 4

Anisotropic wind turbine blade
modelling by using FEM formulation

Wind turbine blade is commonly assumed to be a cantilever thin-walled beam. This
assumption extensively simplifies the structural modelling. As mentioned in the literature
review, the composite wind turbine blade is anisotropic, especially for bend-twist coupling
blade, which makes it challenging to model, because the anisotropy of blade structure will
break the displacement assumption in ad-hoc beam models, i.e. Euler-Bernoulli beam
model. To accurately reconstruct the stress and strain of each material in the blade section
for fatigue analysis, DTU BECAS (beam cross section analysis software) is employed in
this chapter to reconstruct the stress and strain from the simulated sectional loading. In
BECAS, the warping displacements, which are neglected in ad-hoc beam models, are
seriously considered in this linear two-dimensional cross-sectional analysis. Furthermore,
the one-dimensional FEM beam model is further constructed to simulate the deformations
in 6 DoFs (only two deflections considered in structure model in previous section).

Specifically, the BEM model and anisotropic beam model are coupled together. On
one hand, the BEM model provides the beam model with the external aerodynamic forces
(axial force and tangential force) at each cross section. On the other hand, the blade is
driven to vibrate by external forces. The vibration-induced velocity (along the flapwise and
edgewise directions) at each section will also affect the aerodynamic force calculation of
BEM in terms of the local inflow angle. In addition, the torsion of the blade induced by
BTC will lead to the change of the twist angle, which will also be considered in this model.
In addition, the dynamic stall for the lift coefficient is also implemented in the aeroelastic
code. The simulated loading (sectional bending moments and forces) is used to reconstruct
the stress and strain for different materials by using BECAS. For fatigue analysis, according
to GL certification [77], the aforementioned stress-based analysis method is employed in
this section. The methodology is shown in Figure 4.1. The flowchart of this two-way
coupling aero-elastic model is shown in Figure 4.2. The basic theories and equations in
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Figure 4.2 will be further explained in this section.

2D sectional analysis, BECAS

Anisotropic beam model

Stiffness matrix Ks

Aerodynamic model
coupling

Aeroelastic model

Displacement history of beam

Newmark’s iteration

Sectional force and moment

Strain and stress time history Equation (4.9)

Stress recovery

Rainflow counting algorithm Fatigue life estimation
S-N curve

Shifted Goodman diagram
Fatigue analysis

Figure 4.1 Flowchart of the structure of methodology.
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Figure 4.2 Flowchart of the aeroelastic model.

4.1 Cross-sectional analysis method
This subsection is about the two-dimensional sectional analysis. In this part, the governing
equations of cross-sectional analysis, BECAS [78], will be briefly introduced. Firstly, the
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displacement of a point on cross section can be decomposed into two components, including
rigid-body displacements and warping displacements by the Equation (4.1) [57] (see Figure
4.3). It should be mentioned here that the warping displacements are not considered in the
conventional ad-hoc beam models, i.e. the Euler-Bernoulli beam models in the previous
section. The warping function, which is introduced in literature review, is important to the
anisotropic wind turbine blade modelling.

s = v + gwarping (4.1)

Figure 4.3 Decomposition of deformation of the cross section [3].

In Equation (4.1), s is the vector of displacement; v is the vector associated with rotation
and translation; gwarping is the warping displacement vector which is generally neglected
in the ad hoc beam models, such as Euler Bernoulli. The detailed derivation of the cross
sectional model can be found in [79] and is only briefly introduced in this subsection.

The governing equations of cross-sectional displacement can be assumed to be a linear
and homogeneous differential equations. If the finite element formulation is employed,
the relationship between the nodal warping displacement U, generalized strain Φ and the
external resultant θ (six degrees of freedom) can be represented by the following equations
[78] (equations 4.2 and 4.3):

U
(nd×1)

= X
(nd×6)

θ
(6×1)

∂U
∂z
(nd×1)

=
∂X
∂z
(nd×6)

θ
(6×1)

Φ
(6×1)
= Y
(6×6)

θ
(6×1) (4.2)

θ = [Fx, Fy, Fz, Mx, My, Mz]
T (4.3)

The components of generalized strain Φ are shown in Equation 4.4, in which τ and κ
are shear angles and curvatures of the cross section.

87



Φ = [τx, τy, τz, κx, κy, κz] (4.4)

The critical variables in Equation (4.2) can be obtained by solving the following gov-
erning Equation (4.5) and Equation (4.6). Specifically, Equation (4.6) should be solved first
for ∂X∂z and ∂Y

∂z . Then the Equation (4.5) can be solved in terms ofX andY. The z represents
the spanwise direction, and the coordinate system is shown in the Fig. 4.4. X and Y are
actually the solutions of warping displacements and generalized strain (rotation angles of
the cross section and the curvatures of the beam) under unity stress resultant. The nd is the
total number of degrees of freedom which equals 3 × nn. nn is the number of nodes. The
coefficient matrices of these equations contain the information of cross sectional materials
and geometry, which are presented in Appendix. C. It should be mentioned here that X and
Y do not represent the coordinate system here but the warping displacement and generalized
strain solution when the resultant θ equals I6 (unitary matrix).

Figure 4.4 Coordinate system of a wind turbine blade.
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The ∂X
∂z ,

∂Y
∂z , X andY can be used to calculate the compliance matrix Fs andKs stiffness

matrix for beam model. The Λ1 and Λ2 are Lagrange multipliers associated with warping
displacements (constraints on warping). Without Λ1 and Λ2, the equations are unable to be
solved. The other parameters in the matrices, including E, R, and D, has been stated in the
Appendix C. The compliance matrix and stiffness matrix in terms of ∂X

∂z ,
∂Y
∂z , X and Y are

shown as follows:
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Ks = F−1
s (4.8)

These equations are the basis of stiffness matrix construction for beam model in next
chapter. The governing equations of 2D cross-sectional deformation (warping displace-
ments and generalized strains, see Figure 4.3) are Equation (4.5) and Equation (4.6). By
solving this linear equation system, X and Y in the stiffness matrix calculation of Equation
(4.8) can be achieved, which means that the stiffness matrix for the anisotropic beam model
can be calculated. In addition, they are also used in the following Equation (4.9) to recon-
struct the strain through loading resultant θ on the cross section. Then the nodal warping
displacement U, the generalized strain of beamΦ, and their first order derivatives can thus
be calculated by Equation (4.2).

Since these calculated variables are related to the three-dimensional strain on each cross
section element, the nodal strain can be obtained by following Equation (4.9), which is the
basis of stress and strain reconstruction. εn,Xn,Yn and ( ∂U∂z )n are nodal value of ε ,X,Y and
( ∂U∂z ). N2d is the shape function for the two-dimensional cross sectional model (four-node
linear element shape function). The formulation about S, Z and B in Equation (4.9) are all
presented in the Appendix C.

εn
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(4.9)
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Until now, the two important procedures in the cross sectional analysis are introduced,
including stiffness matrix calculation (Equation (4.7)) and strain reconstruction (Equa-
tion(4.9)). Next, the fatigue analysis method will be illustrated.

4.2 Structuralmodelling of anisotropicwind turbine blade
The finite element formulation of present one-dimensional anisotropic beam model is
proposed in [57]. To expand this formulation to a dynamic beam model, the Hamilton’s
principle and an implicit Newmark’s method, are used for solving this dynamic equation in
this paper.

It should be mentioned that the one-dimensional beam model and the following aerody-
namic model to be described in the next section are implemented an in-house Matlab code
here, and the structural model will be verified in the next section first. The following part in
this section will discuss the modelling details of one-dimensional anisotropic beam model.

L = T −Π +W f (4.10)

To construct the dynamic model, the Hamilton’s principle (Equation(4.10)) is supposed
to be used and represented by the following equation. L in this equation is the Lagrangian
functional, which is the combination of kinetic energy, potential energy and the work of
external force W f .

In the finite element formulation, the displacement vector d (6 components) of beam
can be represented by the nodal displacements vector dn.

d
(6×1)
= N
(6×6Ni)

Nα
(6Ni×12)

dn
(12×1)

(4.11)

In Equation (4.11), Ni represents the order of the shape function of beam. The details
about the parameter matrices can be found in Appendix D. It should be noted here that in
order to construct high-order (Ni > 3) polynomial shape functions for the two-node element,
Kim et al. introduces a new derivation of shape functions by using the total elastic energy
minimization method in his paper [57]. The high-order shape function of displacement is
required, because we need to differentiate the displacement with respect to z to calculate
the generalized strain of beam. This makes the formulation of Nα more complicated, which
is shown in Appendix D. Nα is implemented in each term of Equation (4.10). As a result,
in the following part, each term in Equation (4.10) will be represented in form of nodal
displacement vector in Equation (4.11).

Firstly, the potential energy (elastic strain energy) can be represented by the following
equation.
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and

Ke = (Nα)
T
©­­«
∫
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ª®®¬Nα (4.13)

In this equation, Bb is the first derivative of shape function N. Ks is the stiffness matrix,
which is calculated in Equation (4.8). TheKe is the local stiffness matrix. Le here represents
the length of the local beam element.

Secondly, the kinetic energy equation is illustrated as follows.

T = 1
2
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and

Me = (Nα)
T
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∫
Le

N(z)TEsN(z)dz
ª®®¬Nα (4.15)

The matrix Es can be calculated by the surface integral on the cross section. The
coordinate system is presented in Figure 4.4. The Me is the local mass matrix defined in
Equation (4.15) [78].
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∫
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Lastly, the work of external force is given as follows:

W f = dT
n

∫
Le

(Nα)
T N(z)T dz · f (4.17)

In this equation f is the force on the beam element.
The above equations from Equation (4.12) to Equation (4.17) is in their local forms,

which can be assembled into the global form:

KGD +MG ÜD = FG (4.18)

Here KG is the global stiffness matrix. MG is the global mass matrix. FG is the global
external force matrix, and D is the global displacement matrix. Equation (4.18) is solved by
the Newmark’s method [80]. In this equation, all the nonlinear terms are neglected, which
is a limitation of the model. The boundary condition at the blade root is clamped boundary.
The displacement and velocity are zero at the root.

Firstly, initial values (o) are assigned to the displacement vector and its first and second
order time derivatives.

Do = [0]6nbn×1 ÛDo
= [0]6nbn×1 ÜDo

= [0]6nbn×1 (4.19)

In Equation (4.19), the nb is the number of beam nodes.
In the first step, the second derivative of displacement can be calculated.

ÜDn+1
= K−1

cmFn+1,residual (4.20)

Kcm and Fn+1,residual are shown as follows.

Kcm = KGβ∆t2 +MG (4.21)

Fn+1,residual = Fn+1 −KG

[
Dn + ∆t ÛDn

+ ∆t2
(
1
2
− β

)
ÜDn

]
(4.22)

In the second step, the displacement and its first derivative of the next time step can be
calculated.

Dn+1 = Dn + ∆t ÛDn
+ ∆t2

[(
1
2
− β

)
ÜDn
+ β ÜDn+1

]
(4.23)

ÛDn+1
= ÛDn

+ ∆t
[
(1 − γ) ÜDn

+ γ ÜDn+1] (4.24)
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And then return to the first step. If 2β ≥ γ ≥ 1
2 , the algorithm is unconditionally stable.

If γ = 1
2 , the algorithm can achieve second order time accuracy. If β = 0 and γ = 1

2 ,
the algorithm is the central difference method. If β = 1

6 and γ = 1
2 , the algorithm is the

linear acceleration method. If β = 1
4 and γ = 1

2 , the algorithm is the implicit method. The
parameters of β and γ are chosen to be 1

4 and 1
2 respectively to guarantee the unconditional

stability of the algorithm. The programming code can be found in Appendix H.

4.3 Fatigue analysis methodology
In the introduction part, mainly three kinds of fatigue analysis methods are introduced,
including the fatigue life models, phenomenological models, and progressive damage mod-
els. Among these methods, as we claim previously, the progressive damage method is
the most promising method because of its capability to deal with the multi-axial fatigue
analysis. The progressive method can also predict multiple fatigue damage modes, because
it is based on the first principles. However, in wind energy industry, the progressive damage
model has not been widely adopted in the fatigue life prediction of wind turbine blades. In
the author’s view, this is mainly due to its complexity and computational cost. In the GL
guidelines for the certification of wind turbines, the fatigue life method is suggested for the
fatigue life prediction of composite structures, which consists of the Palmgren-Miner fatigue
damage accumulation rule, rainflow counting algorithm, S-N curve, and shifted Goodman
diagram. The values of safety factors are also suggested in the GL guidelines. Although it
is more efficient, the fatigue life method still has limitations due to its empirical nature. Its
accuracy is highly dependent on the precision of the data source, including the S-N curve
and Goodman diagram. The simulation time will affect the statistical convergence of the
fatigue analysis. The simulation time in the following cases is 5 min and 10 min, which is
a limitation of these simulation cases.

The fatigue damage of wind turbine blade material can be calculated by Miner’s rule
given by Equation (4.25). The basic assumption of this rule is that the damage can be
accumulated linearly and independently.

Dp =
∑

i

1
N(σa,i, σm,i)

(4.25)

In Equation (4.25), Dp represents the total fatigue damage of the subject material in a
certain period. i indicates the stress cycle number. N is the number of cycles to failure in
terms of mean stress σm,i and stress amplitude σa,i, which can be calculated by the rainflow
counting algorithm. By considering S-N curve (stress vs. number of cycles) and constant
life diagram (shifted Goodman relationship), the number of cycles to failure N(σa,i, σm,i)

can be calculated by the Equation (4.27) from the GL certification guideline [77]. The life
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of a wind turbine blade in years can be calculated by using the following Equation (4.26). L
here is the life of the blade material, and Tp is our simulation time (5min in our case study).

L =
1

Dp

Tp

365 × 24 × 3600
(4.26)

N(σa,i, σm,i) =

[
σT + |σC | − 2|γMaσm,i − σT + |σC | |

2γMb

C1b
σa,i

]m

(4.27)

In Equation (4.27), σT and σC are ultimate tension and compression strengths (charac-
teristic short-term structure member resistance) for tension and compression respectively.
γMa is partial safety factors for material respectively. m is the exponential factor of the S-N
curve. γMb

can be calculated by

γMb
= γM0

∏
i

Cib (i = 1, 2, 3, 4, 5) (4.28)

or
γMb

C1b
= γM0

∏
i

Cib (i = 2, 3, 4, 5) (4.29)

In the above Equation (4.28) or (4.29), Cib represents the safety factors in terms of
temperature effect, material fabrication effect etc. The detailed value for each safety factors
will be introduced in the following sections. Here γM0 equals to 1.35. These safety factors
of material are from the GL guidelines for the certification of wind turbines. It should be
mentioned here that the variable σ (stress) in Equations (4.25) and (4.27) can be replaced
by ε (strain), if the ε − N method is employed.

4.4 Case study: modal and static analysis of NREL 5MW
wind turbine blade

In the following sections, the NREL 5MW turbine blade is selected to be the research
subject, which is extensively used in the research related to large wind turbines. Each of its
blades is 61.5meters long andweighs 17740 kg. This blade is designed according to the IEC
standard, and the information of structural properties can be found in the NREL report [81].
The information ofmaterial properties, layup informations, and blade geometry are obtained
from the Sandia report [82], which is shown in the Fig. 4.5. It should be mentioned here that
this turbine blade are mainly made of four kinds of composite materials, including triaxial
(TRIAX), biaxial (WEB), carbon fibre uniaxial (CUD) and glass fibre (EUD) uniaxial
composite materials. The layup of different materials is shown in Fig. 4.7. The main
structure, spar caps, is mainly made of carbon fibre composite, which endures large normal
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stress. The glass fibre composite is mainly used to build the trailing edge reinforcement
section. The triaxial fibre composite is used to build the leading edge and trailing edge of
the blade. The biaxial fibre composite is the material of shear webs, which can absorb shear
forces in the cross section. 40 finite elements are used in this case study.

Here BTC is simply induced by the slight orientation change on the spar caps (see Figure
4.5). Although including BTC in caps is complicated and costly from the manufacturing
point of view, it is still the most simple and direct way to induce a higher BTC coefficient,
because the spar caps are the main structure which endures most of the bending moment.
In fact, the simulation cases presented in this and next sections, more details about BTC in
caps are discovered and discussed. Here four different orientations (0o, 5o, 10o and 15o)
of carbon fibre composite in spar caps are researched and compared in this paper. The
BTC coefficients of these four different orientations are shown in Figure 4.6. The BTC
coefficients are calculated by Equation (4.30). In this equation, EI represents the flapwise
bending stiffness, GJ indicates the torsional stiffness, and gc is the coupling stiffness. The
plot of BTC coefficients at different orientations is shown in Figure 4.6. Obviously, 15o

orientation design has the highest coupling coefficient.

Figure 4.5 The sketch of the BTC NREL 5MW turbine blade.

αc = −
gc

√
EI × GJ

(4.30)

In this section, the modal analysis and static analysis on the NREL 5MW turbine blade
are carried out to preliminarily investigate the properties of BTC blade. This investigation
shows a big picture about the BTC effect on the dynamic and static response of wind turbine
blade. Mathematically, modal analysis is an eigenvalue problem in terms of Equation (4.18).
Both elastic potential energy and inertia term are considered in the modal analysis part,
which are the most important parts for the numerical implementation of the beammodel. In
addition, the modal analysis is used as a verification case for the present anisotropic beam
model. The static analysis can reveal information about the stress and strain distributions,
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Figure 4.6 BTC coefficients for different orientations.

Figure 4.7 Layup of different composite materials used in the NREL 5MW turbine blade.

though inertia effects are neglected in the static analysis. It should be mentioned that the
inertial effects and gravitational forces will be carefully considered in the next section of
dynamic simulation.

To begin with, for modal analysis, we compute the natural frequencies and discuss the
BTC effects on modes. Firstly, the present computed natural frequencies for the first six
modes of an anisotropic beam and the result obtained with 3D ANSYS are compared. The
results of 3D ANSYS analysis are from the Resor’s paper in 2013 about design of the NREL
5MW turbine blade [82]. From Table 4.1, it can be seen that they have a good agreement.
Since mode of the blade is related to the inertia and elastic potential effect, this result verifies
the previous formulation and our inhouse code for the one-dimensional beam model. For
illustration purpose, the first six mode shapes can be seen in Figure 5.5. In my view, the
difference between the current model and ANSYS is because the ANSYS model is a high
fidelity 3D model, while the structural model employed in this thesis is 1D beam model.
The modal analysis is limited to the stationary rotational rotor speed.

Next, the BTC effects on natural frequencies of the blades with different spar cap
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orientations are studied. Specifically, the natrual frequencies for different blades with
composites at different orientations on caps are compared in Table 4.2. It shows that each
natural frequency of bending modes for 5o, 10o, and 15o orientations tends to decrease,
which is caused by the reduction of stiffness on longitudinal direction. In contrary, the
torsional modes tend to slightly increase. It is also found that edgewise modes are less
sensitive to the change of fibre orientation, which also means that the edgewise moment
is less sensitive to the spar caps orientation change. Because the dominant force in the
edgewise direction is gravity, the fatigue damage of materials related to the edgewise
moments is also less affected by the orientation change.

Table 4.1 Comparison between results obtained with the present beam model and ANSYS in terms
of predicted natural frequency.

ANSYS (Hz) Beam model (Hz) Description
0.87 0.89 1st Flapwise
1.06 1.04 1st Edgewise
2.68 2.72 2nd Flapwise
3.91 3.90 2nd Edgewise
5.57 5.75 3rd Flapwise
6.45 7.15 1st torsion

The static analysis is carried out under the condition of rated wind speed (at 11.4 m/s)
to study the static response of the wind turbine. The root bending moment of wind turbine
blade is always the maximum. For the static stress (not moment) analysis case, it is not
always the case. In this case, the aerodynamic force is pre-calculated using the BEMmethod
and the azimuth angle of the blade is 90o(clockwise), which means that the blade is directed
vertical to the ground. Here only the longitudinal stress and strain are analysed, because
they are much larger than the other components and, therefore, more significant for fatigue
analysis due to the blade’s slender beam structure.

The wind turbine blade is made of different composite materials, which have different
mechanical properties, including stiffness and strength. Among these materials, carbon
fibre composite in the spar caps endures a large proportion of loading, which also means
that the stress on the spar caps are much higher than in the other sections. However, it
does not always mean that the spar caps are the most vulnerable part of the blade. Because
different materials have different capabilities of resistance to fatigue damage. For example,
the stress on the glass fibre composite (reinforcement section) is much lower than that of
carbon fibre (spar caps). But the glass fibre is less resistant to the fatigue damage than
carbon fibre, which can be seen from Table 4.5. As a result, the fatigue damage of different
materials should be analysed separately. This is also the reason why we use BECAS to
reconstruct the strain and stress in the cross sections. It should be noted that the stress is not
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continuously distributed in composite structure along the blade because of the difference
in material properties. Fortunately, the strain distribution is continuously distributed. To
study the BTC effect, the strain distributions in a wind turbine blade for different orientation
cases are firstly provided in Figure 4.9a-4.9d. These figures are produced by reconstructing
the strain on different cross sections.

Table 4.2 The predicted natural frequencies of wind turbine blades with different spar cap
orientations.

Description 0o (Hz) 5o (Hz) 10o (Hz) 15o (Hz)
1st Flapwise 0.89 0.88 0.85 0.82
1st Edgewise 1.04 1.04 1.04 1.03
2nd Flapwise 2.72 2.63 2.47 2.30
2nd Edgewise 3.90 3.87 3.82 3.77
3rd Flapwise 5.75 5.72 5.43 5.09
1st Torsion 7.15 7.16 7.17 7.17

Figure 4.8 First six mode shapes.

From Figure 4.9a, it can be seen that there exist an strain-concentration zone at the
transition section of the blade (from round shape to airfoil shape). The materials around the
“concentration zone" will have much larger stress than the same materials in other sections.
From Figures 4.9b-4.9d for the BTC blades, there occurs another “concentration zone" close
to the tip around the leading (and trailing edges). It is obviously caused by the BTC effect.
The plot of the maximum magnitudes of longitudinal (fibre-direction) stresses of different
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materials at different cross sections (0 m from root to 45 m from root) are shown in the
Figures 4.10a-4.10f. In these figures, the carbon fibre refers to the spar caps. The glass fibre
refers to the reinforcement section. The triaxial composite refers to the trailing and leading
edges. The biaxial composite refers to the shear webs. On one hand, although the moments
are decreasing from the root to the tip, there is a stress peak for different materials in the
transition section, which is within the first strain-concentration zone. On the other hand,
for shear webs (biaxial composite) and triaxial composite, there is another peak at around
the tip, which is within the second strain-concentration zone. To further study the stress
and strain distributions of the blade, we randomly choose two cross sections from within
these two “concentration zones" as two samples for further analysis. The corresponding
longitudinal (fibre-direction) stress and strain distributions are shown in Figures 4.11a-4.11h
and Figures 4.12a-4.12h. Figures 4.11a-4.11h are sampled at the 10.25 m section from the
root of the blade. It should be mentioned here that the strain is continuously distributed
because the materials are bonded with each other. If the strain is continuous, the stress
is not continuous because of the difference of material properties. From these figures,
there are no differences in terms of stress and strain distributions between different BTC
blades at the 10.25m section. In other words, the static responses of this blade section for
BTC blades with different fibre orientations are the same. In the aeroelastic simulation
and fatigue analysis given in the next section, the peak and valley of stress values on this
section will be minimized by the BTC effect, and the fatigue mitigation effect will be shown.
Fig. 4.12a-4.12h are sampled at the 30 m section, where the orientation of carbon fibre
are induced (see Figure 4.5). Two important things can be observed in these figures. On
one hand, the maximum stress is slightly reduced by the orientations induced in the spar
caps. Since the maximum stress exists in the spar caps, so the load of carbon fibre will
be alleviated. On the other hand, the loading for other materials is increasing, because the
strain value is increasing, which can be seen in these figures. In the author’s view, the shear
webs that are most close to the spar caps will endure a large increase in stress.
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(a) Strain for 0o fibre (b) Strain for 5o fibre

(c) Strain for 10o fibre (d) Strain for 15o fibre

Figure 4.9 Strain distribution for different orientations (static analysis).
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(a) Out-of-plane moment (b) In-plane moment

(c) Carbon fibre (UD) (d) Biaxial composite

(e) Glass fibre (UD) (f) Triaxial composite

Figure 4.10 Distribution of moment and maximum stress for different materials for different fibre
orientations (spar cap).
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(a) Strain for 0o fibre (b) Stress for 0o fibre (Pa)

(c) Strain for 5o fibre (d) Stress for 5o fibre (Pa)

(e) Strain for 10o fibre (f) Stress for 10o fibre (Pa)

(g) Strain for 15o fibre (h) Stress for 15o fibre (Pa)

Figure 4.11 Longitudinal (fibre-direction) stress and strain isopleths for different fibre orientations
on the section 10.25m.
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(a) Strain for 0o fibre (b) Stress for 0o fibre (Pa)

(c) Strain for 5o fibre (d) Stress for 5o fibre (Pa)

(e) Strain for 10o fibre (f) Stress for 10o fibre (Pa)

(g) Strain for 15o fibre (h) Stress for 15o fibre (Pa)

Figure 4.12 Longitudinal(fibre-direction) stress and strain isopleths for different fibre orientations
on the section 30m.
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4.5 Aeroelasticmodelling of anisotropicwind turbineblade
In this section, the aeroelastic model will be established by combining the aforementioned
beam model (structural model) with an aerodynamic model. The aerodynamic force can be
determined by the local lift and drag coefficients, namely Cl and Cd , which can be obtained
through the look-up table of lift and drag coefficients with respect to the local angle of attack
α based on the inflow angle φ, pitch angle β and blade twist angle due to the blade torsion
∆β:

α = φ − β + ∆β (4.31)

From the blade element analysis, the local inflow angle φ can be calculated by using the
following equation:

tan φ =
(U∞ +U′n)(1 − a) + Ve−op

(Ωr +U′t )(1 + a′) + Ve−ip
(4.32)

The Ve−op and Ve−ip are out-of-plane and in-plane velocities induced by the vibration
of the blade, which are predicted from the structure model. U∞ and Ωr are free stream
velocity and rotational velocity respectively. It is assumed that the near wake is stable, the
axial and tangential induction factors a and a′ are constant, which can be calculated by the
blade element momentum (BEM) method. The procedure of BEM can be seen from the
Figure 4.13 [83]. The U′n and U′t are two components of the fluctuating velocity, which can
be obtained from a turbulent wind model to be introduced later. In Figure 4.13, F = Ftip

(Froot = 1), which is the tip loss factor and calculated by equations (4.33) - (4.34). In
these equations, B is the number of blades, r is the radial distance from root, and R is
the tip radius of the blade. In Figure 4.13, σ′ is the local solidity, which is calculated by
Equation (4.35), in which c(r) is the local chord length. In this model, it is assumed that the
frequencies of the structural vibration is higher than the frequencies of turbulence, which
is also a limitation of the current model. It is also assumed that the induction factors are
fixed throughout the whole simulation. The near wake is assumed to be steady during the
simulation. The induction factors are derived from the steady wind conditions. The induced
velocities are precalculated. The elastic twist has been included in the aerodynamic load
calculation. The turbulence is assumed uniformly distributed across the rotor. The spatial
coherence is neglected.

F =
2
π

arccos(e− f ′) (4.33)

f ′ =
B
2

R − r
r sin(φ)

(4.34)
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σ′ =
Bc(r)
2πr

(4.35)

Initialization of a and a′

Calculate inflow angle φ = arctan(U∞(1−a)
Ωr(1+a′) )

Calculate angle of attack
α = φ − β

Check table Cl and Cd

Tip correction

Ct ≥ 0.96F

Calculate a and a′

a =
[
1 + 4F sin2 φ

σ′Cn

]−1

a′ =
[
−1 + 4F sin φ cos φ

σ′Ct

]−1

Calculate a and a′

a =
18F−20−3

√
Ct (50−36F)+12F(3F−4)

36F−50

a′ =
[
−1 + 4F sin φ cos φ

σ′Ct

]−1

YES NO

Residual ≤ Tol

store a and a′

NO

Final YES

Figure 4.13 Flowchart of blade element momentum method.

The aerodynamic forces can be calculated by Equation (4.36).

fa(α) = L(α)
1
2
ρV2

relcdr (4.36)

where L(α) is the coefficient matrix from the

L(α) =

− cos φ sin φ 0
sin φ cos φ 0

0 0 1




Cd

Cl

Cmc

 (4.37)

The Cm and c are aerodynamic moment coefficient and chord respectively. This aero-
dynamic model can be coupled with the aforementioned structural model (1D anisotropic
beam model). The structure of the aeroelastic model is shown in Figure 4.2.
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The Risφmodel [84] is employed as the dynamic stall model for lift coefficient, in which
the non-dimensional parameter f defined in Equation (4.42), a measure of the degree of
separation, is introduced to correct the aforementioned lift coefficient. The dynamic angle
of attack αd (a function of time t) is also introduced which is shown in Equation (4.38).

αd(t) = α(1 − A1 − A2) + c1(t) + c2(t) (4.38)

in which c1(t) and c2(t) are two variables to describe the delayed lift coefficient. A1 and A2
are two parameters, which are shown in Table 4.3. The dynamic linear lift is calculated as:

Cl0,d = Cl0(α) +
πc Ûα
2urel

(4.39)

Where

Cl0(α) =
dCl

dα

��
α0
(α − α0) (4.40)

in which α0 is the angle of attack under which the lift coefficient is zero. If the separation
parameter f is equal to 0 (fully separated condition), the Cl0 = 4Cst

l , in which Cst
l is from

the table checking of static lift coefficients (the superscript "st" means static). The variables
can be determined by the following Equation (4.41). In this equation, C′l0 is the retarded lift
coefficient.


Ûc1
Ûc2
ÛC′l0
Ûfd


=


−(ω1 +

Ûurel
urel
) 0 0 0

0 −(ω2 +
Ûurel
urel
) 0 0

0 0 −ω4 0
0 0 0 −ω3




c1
c2
C′l0
fd


+


ω1 A1α

ω2 A2α

ω4Cl0,d
ω3 f (α f )


(4.41)

The separation parameter f can be calculated by Equation (4.42).

f (α) = (2

√
Cl0(α)

Cst
l (α)

− 1)2 (4.42)

The dynamic lift coefficient for aerodynamic model can be calculated by Equation
(4.43).

Cl,d(t) = fd(t)Cl0(αd) + (1 − fd)Cl1(αd) (4.43)

In Equation (4.43), the Cl1 can be calculated by the following Equation
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Cl1(αd) =


Cl0(αd)

2
f = 1

[Cst
l,d(αd) − CL,0(αd) f ]

1 − f
else

(4.44)

Table 4.3 Parameters of dynamic stall model.

Parameters Values
ω1 0.0455
ω2 0.3
ω3 0.0875
ω4 0.4125
A1 0.165
A2 0.335

Two test cases (one for ) of DU-40 airfoil for the dynamic stall model are carried out.
The prescribed change of α is shown in equations below.

α(t) = 5 + 5sin(12t) (o) (4.45)

α(t) = 20 + 50sin(12t) (o) (4.46)

The comparison between the static and dynamic (corrected) lift coefficients are com-
pared in Figure 4.14 and 4.15. The lift coefficient for dynamic stall model is slightly
different from the static lift coefficient. The dynamic lift coefficients varies along the blue
circle, which is the delayed effect.
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Figure 4.14 Test case 1 for dynamic stall model.

Figure 4.15 Test case 2 for dynamic stall model.

4.6 Case study 1: fatigue load alleviation of single wind
turbine under rated wind speed condition

In this section, the dynamic loading under rated wind speed (11.4 m/s) condition will be
simulated without dynamic stall model. The loading time series of wind turbine blade
with different fibre orientations on spar caps are compared with each other to illustrate
the bend-twist coupling effect. Fatigue analysis for different materials with different fibre
orientations on different sections will also be carried out . The fatigue analysis under wide
range of wind speed conditions with dynamic stall model will be presented in case study 3.
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4.6.1 Turbulent inflow simulation and problem statement

The aero-elastic simulation (dynamic simulation) is carried out for the NREL 5MW wind
turbine. The rotational speed is 12.1 rpm, the wind speed is 11.4 m/s and the turbulence
intensity is 10%. It is assumed that the wind speed is evenly distributed for all the wind
directions. The fluctuating wind speed is simulated by the Sandia method [85]. In this
method, the fluctuating wind speed is assumed to be coloured noise, whose spectrum
(Kaimal spectrum) is shown in Equation (4.47).

f Sk( f )
σ2

k

=
4 f Lk/Vhub

(1 + 6 f Lk/Vhub)
5
3

(4.47)

where f is the frequency in Hz, k is the index referring to the velocity component direction
(1 = longitudinal, 2 = lateral, 3 = upward), Sk( f ) is the single-sided velocity component
spectrum, σk is the velocity standard deviation, Lk is the velocity component integral scale
parameter, and Vhub is the wind velocity at the hub height. Instead of using a white noise,
the transformation matrix can be obtained from the above spectrum, by which the matrix
is used to generate the simulated wind speed in frequency domain. Lastly the wind speed
can be recovered by employing the inverse Fourier transform. The simulated wind speed
is shown in Figure 4.16. The comparison between the power spectrum of simulated wind
speed and Kaimal wind spectrum is shown in FIgure 4.17.

Figure 4.16 Fluctuating longitudinal wind speed under normal wind condition.

The methodology of aeroelastic simulation and fatigue analysis has already been pre-
sented in previous sections. For fatigue analysis, the safety factors, thickness and strength
of different materials of NREL 5MW turbine blade can be seen in Tables 4.4 and 4.5. In
Table 4.4, the γMa is the partial safety factor for the material. Cib represents the safety
factor in terms of temperature effect, material fabrication effect, etc. Obviously, the fatigue

109



Figure 4.17 The comparison between the power spectrum of simulated turbulent wind and Karmal
spectrum.

properties of 0o UD composite will be different from that of other UD composites with
offset angles. To apply the properties of 0o UD, material coordinate system is employed
for the UD composites with offset angles, which is explained in the BECAS manual (2015,
pages 60-61). The longitudinal stress can be transformed to the material coordinate system
(along the fibre) by multiplying rotation matrix.

Figure 4.18 Fluctuating root bending moments under normal wind condition.
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Figure 4.19 Fluctuating root bending moments under the normal wind condition (enlarged view).

Figure 4.20 Fluctuating root bending moments under the normal wind condition (further enlarged
view).

4.6.2 Dynamic loading and fatigue analysis

In this section, the loading, tip displacements, and the fatigue damage of a single wind
turbine with different orientations of carbon fibre will be compared under the rated wind
speed condition (turbulence intensity of 0.1). The fluctuating wind speed is shown in Figure
4.16. The fluctuating root bending moments of each blade are illustrated in the Figure 4.18.
Figures 4.19 and 4.20 are the partial enlarged figure of Figure 4.18. It can be seen that the
minimization of the peaks and valleys of fluctuating flapwise bending moments is achieved
by the BTC effect. With an increase in orientation angle, the mitigation effect is more

111



Figure 4.21 Fluctuating tip displacements under the normal wind condition.

obvious. For the edgewise bending moment, the mitigation effect is not observed, because
the edgewise bending moment is dominated by the gravity force instead of the aerodynamic
force. For the tip displacements, both the flapwise and edgewise tip displacements of BTC
blades are shifted upward, which can be seen in the Figure 4.21. In the figure of edgewise
displacement, the amplitudes of vibrations are 1.5476m, 1.5975m, 1.6795m, and 1.7648m
for the 0, 5, 10, and 15 offset angles respectively. In other words, there exist an increase
of the amplitudes with an increase in offset angles. Compared with blades without the
BTC effect, the shifted values of the flapwise and edgewise displacements for the 15o BTC
blade are 2m and 0.2m respectively. This extra tip displacement will affect the designed
gap between the blade and tower. Figure 4.22 shows the minimum fatigue life of different
materials on different cross sections. There is a lowest point of fatigue life for different
materials. If we recall the “strain-concentration" zone in the previous section, the lowest
point is located in this zone (10.25 m from the root). This fatigue damage is caused by
the large strain (or stress) value for different materials. As a result, the 10.25 m section,
a section with standard airfoil shape most close to the lower point, is determined to be
the section for further fatigue analysis. From our calculations, it should be noted that the
longevity of carbon fibre composite in spar caps, which is the main structure, has increased
with an increase in orientation angle due to the BTC effect. For the section around the tip,
the fatigue mitigation effect is obvious for spar caps. In fact, the lowest value of fatigue life
in spar caps increases from 337 years to 404 years for the 15o case. It should be noticed
that this fatigue mitigation effect is due to the aforementioned peak-valley minimization in
terms of bending moments. The fatigue life of other materials, including EUD, TRIAX,
does not change too much.
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Table 4.4 Safety factors for different materials.

Material γMa C2b C3b C4b C5b m
EUD (Glass fibre) 2.65 1.1 1.0 1.1 1.2 10
TRIAX (Triaxial fibre) 2.65 1.1 1.2 1.1 1.2 10
WEB (Biaxial fibre) 2.65 1.1 1.2 1.1 1.2 10
CUD (Carbon fibre) 2.65 1.1 1.0 1.1 1.2 14

Table 4.5 Thickness(each layer) and strength of different materials.

Material Thickness (mm) σT (MPa) σC (MPa)
EUD (Glass fibre) 0.47 793.05 -542.49
TRIAX (Triaxial fibre) 0.94 700 -700
WEB (Biaxial fibre) 1 144 -213
CUD (Carbon fibre) 0.47 1546 -1047

Figure 4.22 Longevity of different materials on different sections under the normal wind condition.

4.7 Case study 2: fatigue analysis of multiple wind tur-
bines in the wind farm (wake condition)

In this section, wake effect on the wind turbine blade is considered, which is also an
important factor for fatigue load increase. The dynamic stall effect is neglected in this case
study, which will be considered in case study 3. This wake condition is also referred to as
the IEC61400-1 standard for wind turbines. The effective turbulence intensity in the wake
region can be calculated by using the following equations. The probability distribution for
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wind direction is assumed to be uniform.

Ie f f =
σ̂e f f

Vhub
=

1
Vhub
[(1 − Npw)σ̂m + pw

N∑
i=1

σ̂m
T (di)]

1
m (4.48)

σ̂T =

√
0.9V2

hub

1.5 + 0.3di
√

Vhub
+ σ̂2 (4.49)

In Equation (4.48), Ie f f is the effective turbulence intensity under the wake condition.
σ̂e f f is the standard turbulence deviation under wake condition. Vhub is the wind speed at
the hub height (11.4 m/s in this case). N is the number of neighbouring turbines. pw is a
constant (0.06 for uniformly distributedwind direction). σ̂T is the added turbulence standard
deviation. m is the coefficients for the S-N curve. σ̂ is the ambient turbulence standard
deviation. di is the distance between wind turbines, which is normalized by diameter.
The uniformly distributed wind direction is used here to employ the effective turbulence
equations of wake, which is a limitation of the current simulation.

Two different layouts are analysed, including three wind turbines in a line, and nine
wind turbines in array. The longitudinal distance is 5D (D is the diameter of the wind
turbine rotor). The lateral distance is 3D. From Figure 4.23, it can be seen that the
turbulence intensity for an array of nine wind turbines is much higher than that of the three
turbines in a line. In this figure, the percentage number beside the circle represents the
turbulence intensity. In Figure 4.24, each bar represents the aforementioned “lowest point"
for different materials at different cross sections, which are also the lowest fatigue lives
of different materials at different sections. As a result, Figure 4.24 shows the fatigue life
of different materials under different wake conditions. It should be noted that the wake
mitigation effect for spar caps is obvious for different cases. There exist a large decrease
of life for both CUD (spar caps) and BIAX (shear webs) under the wake condition. The
high turbulence intensity in the wake region will induce large stress fluctuations, which will
directly affect the fatigue life of CUD that endures large loading. From Figure 4.24, it can
be seen that the spar caps (CUD) ofWT 8 among all the wind turbines because of the higher
turbulence intensity in wake. The analysis in this section is just qualitative analysis, because
the dynamic stall and the probability density distribution of wind speed are all neglected.
In the next section, the WT 8 will be chosen to be the subject for wake-induced fatigue
analysis.
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Figure 4.23 Wind turbine layouts.

Figure 4.24 Fatigue life comparison between two different orientations of different wind turbine
blades with different materials .

4.8 Case study 3 with dynamic stall model and under wide
range of wind speed

In this section, the fatigue life of materials of wind turbine blade will be calculated under
wide range of wind speed conditions (design load cases, DLC, power production condition
in IEC 61400-1). The turbulence intensity for different wind conditions is calculated based
on the normal turbulence model (NTM). Dynamic stall effect is also considered in this case.
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4.8.1 Dynamic stall effect

In this section, the dynamic stall effect is considered. Firstly, the simulated dynamic loading
of the numerical model with and the without dynamic stall model are compared in Figure
4.25. From this figure, it can be seen that the fluctuating patterns in the initial period are
obviously different during the period from 0 s to 10 s. In this period, the wind turbine blade
is loaded with aerodynamic force. The fluctuation part (with the mean value subtracted) of
out-of-plane moments are further compared with each other, which is shown in Figure 4.26.
The power spectrum for the fluctuation parts of the simulated loading with and without
dynamic stall model is further compared in Figure 4.27, from which it can be seen that the
two fluctuations share the same spectrum for the low frequency (below 1 Hz).

Figure 4.25 The comparison between the simulated moments of the numerical model with and
without dynamic stall model.
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Figure 4.26 Comparison between the out-of-plane bending moments (with mean value subtracted)
with and without dynamic stall model.

Figure 4.27 Comparison between the power spectrum of out-of-plane bending moments (with
mean value subtracted) with and without dynamic stall model.
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4.8.2 Fatigue life analysis for single wind turbine

In the previous sections, the fatigue analysis of the blade is performed based only on sim-
ulations at one wind speed (11.4 m/s). Moreover, the analysis is performed at a turbulence
intensity of 10 %. This is of course not representative of the conditions encountered by
a wind turbine which operates in a wide range of wind velocities (3-25 m/s). In order
to obtain realistic values of the fatigue damage, simulations are performed over the whole
range of operational conditions. The weights of the different wind conditions are introduced
through a representative Weibull distribution. In addition, the turbulence intensity are also
calculated according to IEC 61400-1. In other words a realistic fatigue spectrum will be
composed in order to deal with the realistic lifetime results in this section. The wind turbine
is analysed under the condition of wind class IB and power production (design load case 1.2
with normal turbulence model) in IEC 61400-1. For wind class IB, the reference turbulence
intensity is 0.14 according to IEC 61400-1. The standard deviation of velocity for different
wind speed (at hub height) can be calculated by the Equation (4.50). The rotational speed
of wind turbine rotor is assumed to be fixed which is a limitation of the simulation cases.

σ1 = Ire f (0.75Vhub + 5.6) (4.50)

The Equation (4.51) is the function of Weibull distribution, which is the probability
density function of wind speed in wind farm. The plot of Weibull distribution is shown in
Figure 4.28.

f (V) = (
k
c
)(

V
c
)k−1e−(

V
c )

k

(4.51)

The simulated wind speed and loading (out-of-plane moments) for different wind speed
range is shown in Figure 4.29 and 4.30.

The control strategy of wind turbine can be divided into two stages. In the first stage,
from 0 - 11.4 m/s (rated wind speed), the rotational speed of rotor is the control variable
to optimizing the power production (optimum tip speed ratio (TSR)), and the pitch angle is
0o. In the stage 2, from 11.4 - 25.0 m/s, the rotational speed is fixed (12.1 rpm), and the
pitch angle becomes the control variable. The data for these parameters is shown in Table
4.6 along with the turbulence intensity.

The fatigue lives for different materials under different wind conditions are calculated
based on the fatigue damage of the 10.25 m section, which are shown in Table 4.7. From
this table, it can be seen that the lives for different wind speed conditions are very different.
The life at around rated wind speed (9 - 13 m/s) is the lowest one for all the materials. The
total calculated life for different materials is shown in Table 4.8. It should be mentioned
here that the calculated life of main structure, carbon fibre composite on spar caps, is very
close to the design life, 20 years. The biaxial composite in the shear webs has the shortest
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Figure 4.28 Weibull distribution of wind speed for the simulation case.

Figure 4.29 Simulated wind speed for different wind conditions.

life, 2.62 years. In next section, the fatigue life of different materials under wake conditions
will be presented to show fatigue-induced fatigue damage.
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Figure 4.30 Simulated out-of-plane moments for different wind conditions.

Table 4.6 Parameters for the different wind speed range (from 3 m/s - 25 m/s).

Wind speed range (m/s) Characteristic
wind speed
(m/s)

Rotational
speed (rpm)

Pitch angle (o) Turbulence in-
tensity

3-5 5 5.31 0 0.262
5-7 7 7.43 0 0.217
7-9 9 9.55 0 0.192
9-11 11 12.1 0 0.176
11-13 13 12.1 6.60 0.165
13-15 15 12.1 10.45 0.157
15-17 17 12.1 13.54 0.151
17-19 19 12.1 16.23 0.146
19-21 21 12.1 18.70 0.142
21-23 23 12.1 21.18 0.139
23-25 25 12.1 23.47 0.136
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Table 4.7 Calculated fatigue life for different materials under different wind speed conditions.

Wind speed range (m/s) CUD
(years)

EUD
(years)

TRIAX
(years)

BIAX
(years)

Weights
(Weibull)

3-5 1.5986e+9 53.9377 3.7694e+3 1.7199e+5 0.1377
5-7 2.2980e+7 31.1932 2.4859e+3 1.7459e+5 0.1717
7-9 4.3345e+4 17.1537 1.6062e+3 727.5506 0.1792
9-11 5.6153 9.8457 1.1439e+3 1.1046 0.1627
11-13 15.9887 24.0427 1.1897e+3 5.1545 0.1306
13-15 302.7857 30.9046 963.6181 0.4809 0.0935
15-17 125.8710 21.9941 433.0670 21.6409 0.0600
17-19 100.9939 18.0107 289.6136 7.8679 0.0346
19-21 115.6948 18.0496 208.3771 4.7127 0.0180
21-23 2.1208e+3 13.0352 213.2192 7.6625 0.0084
23-25 3.0045e+3 5.2837 124.6927 1.4742 0.0035

Table 4.8 Calculated fatigue life for different materials.

Wind speed range (m/s) Fatigue life (years)
CUD 26.0187
EUD 19.8213
TRIAX 1.0219e+3
WEB 2.6190
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4.8.3 Fatigue life analysis for wind turbine under wake condition and
compact layout

In this subsection the wake effect will be considered. The fatigue life of turbine 8 (see
Figure 4.23, 9 wind turbines in array) will be calculated. The turbulence intensity under
wake conditions is calculated by Equation (4.48). The parameters are shown in Table 4.9.
The simulated wind speed and root out-of-plane bending moments are shown in Figure 4.31
and 4.32 respectively. The calculated fatigue life for different materials under different wind
conditions are shown in Table 4.10. By comparing Table 4.10 with Table 4.7 (no wake),
the fatigue lives of different materials all decrease under wake condition. The calculated
fatigue life for the main structure (CUD) is much lower (1.7388 years) in Table 4.11 than
that of condition without wake effect (26.0187 years). The wake-induced fatigue is obvious.
This also is because, in author’s view, the layout is too compact. The lateral distance is 3D,
and longitudinal distance is 5D. Normally, the lateral and longitudinal distances are at least
5D and 7D respectively. Next, the fatigue damage under normal layout will be analysed.

Figure 4.31 Simulated wind speed for wake conditions.
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Figure 4.32 Simulated out-of-plane moments for wake conditions.

Table 4.9 Parameters for the different wind speed range (from 3 m/s - 25 m/s) under wake condition.

Wind speed range (m/s) Characteristic
wind speed
(m/s)

Rotational
speed (rpm)

Pitch angle (o) Turbulence in-
tensity

3-5 5 5.31 0 0.321
5-7 7 7.43 0 0.276
7-9 9 9.55 0 0.249
9-11 11 12.1 0 0.230
11-13 13 12.1 6.60 0.217
13-15 15 12.1 10.45 0.206
15-17 17 12.1 13.54 0.198
17-19 19 12.1 16.23 0.190
19-21 21 12.1 18.70 0.184
21-23 23 12.1 21.18 0.179
23-25 25 12.1 23.47 0.174
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Table 4.10 Calculated fatigue life for different materials under wake conditions.

Wind speed range (m/s) CUD
(years)

EUD
(years)

TRIAX
(years)

BIAX
(years)

Weights
(Weibull)

3-5 6.7595e+8 53.4924 2.7273e+3 1.1202e+5 0.1377
5-7 6.1500e+6 31.1441 2.4572e+3 5.4080e+5 0.1717
7-9 6.5015e+3 16.6784 1.5444e+3 119.7997 0.1792
9-11 0.4827 9.4055 1.0728e+3 0.1476 0.1627
11-13 0.6079 20.0514 343.9903e+3 0.5905 0.1306
13-15 63.8614 25.5055 725.0841 1.0879 0.0935
15-17 5.1503 12.5421 132.5835 1.9407 0.0600
17-19 4.5651 10.0683 91.6298 1.0541 0.0346
19-21 4.4335 10.6346 34.5358 0.7288 0.0180
21-23 87.8126 6.1392 64.8479 1.2029 0.0084
23-25 168.3429 2.0313 37.2014 0.2011 0.0035

Table 4.11 Calculated fatigue life for different materials.

Wind speed range (m/s) Fatigue life (years)
CUD 1.7388
EUD 16.8524
TRIAX 406.6164
WEB 0.6563
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4.8.4 Fatigue life analysis for wind turbine under wake conditions and
normal layout

In this section, the fatigue lives for wind turbines under wake conditions and normal wind
farm layout (9 wind turbines in array, 5D for lateral distance and 7D for longitudinal
distance) are calculated. The parameters for different wind speed conditions are shown
in Table 4.12. The simulated wind speeds and out-of-plane root bending moments are
illustrated in figures 4.33 and 4.34. The fatigue analysis results are shown in Tables 4.13
and 4.14. When compared these two tables with the Table 4.7 (no wake), it can be seen that
the wake effect is still very significant to the fatigue life of wind turbine blade. The fatigue
life of spar caps (main structure) drops from 26.0187 years to 6.9084 years. Although some
less dominant factors are not considered in this case, i.e. non-uniform wind directions, it
still can be concluded that the wake-induced fatigue has an large impact on the fatigue life
of wind turbine blade. Compared the results in Table 4.14 with that in Table 4.11 (compact
layout), the fatigue life increases from 1.7388 years to 6.9084 years. It can be concluded
that the layout of wind turbine also has a impact on the fatigue damage of wind turbine
blades. Next the performance of BTC blade with 15o fibre orientation on the carbon fibre
composite in the spar caps in the previous section is studied (for WT8). The fatigue lives
of different materials in BTC wind turbine blade are shown in Table 4.15 and 4.16. The
fatigue damage is alleviated by introducing the bend-twist coupling effect. Comparing the
fatigue life of carbon fibre composite in BTC blade with that of normal wind turbine blade
under wake condition, it can be found that the total fatigue life of carbon fibre composite
increases from 6.9084 years to 6.9532 years. It should be mentioned here that the BTC
design in this thesis (introduce constant 15o offset on spar cap) is not optimal design for this
wind turbine blade, which can be seen in Figure 4.6 that the coupling coefficients are not
very high. But the fatigue load alleviation effect is still obvious in some wind speed range,
e.g. 11-15 m/s.
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Figure 4.33 Simulated wind speed for wake conditions and normal layout.

Figure 4.34 Simulated out-of-plane moments for wake conditions and normal layout.
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4. Anisotropic wind turbine blade modelling by using FEM formulation

Table 4.12 Parameters for the different wind speed range (from 3 m/s - 25 m/s) under wake
conditions and normal layout.

Wind speed range (m/s) Characteristic
wind speed
(m/s)

Rotational
speed (rpm)

Pitch angle (o) Turbulence in-
tensity

3-5 5 5.31 0 0.2911
5-7 7 7.43 0 0.2450
7-9 9 9.55 0 0.2183
9-11 11 12.1 0 0.2006
11-13 13 12.1 6.60 0.1879
13-15 15 12.1 10.45 0.1784
15-17 17 12.1 13.54 0.1710
17-19 19 12.1 16.23 0.1648
19-21 21 12.1 18.70 0.1596
21-23 23 12.1 21.18 0.1556
23-25 25 12.1 23.47 0.1517

Table 4.13 Calculated fatigue life for different materials under wake conditions and normal layout.

Wind speed range (m/s) CUD
(years)

EUD
(years)

TRIAX
(years)

BIAX
(years)

Weights
(Weibull)

3-5 2.0312e+9 51.0607 3.5647e+3 1.9869e+5 0.1377
5-7 9.9102e+6 30.8361 2.4187e+3 9.1604e+4 0.1717
7-9 2.8041e+4 17.1227 1.5980e+3 739.0295 0.1792
9-11 1.2108 9.6709 1.1171e+3 0.3079 0.1627
11-13 21.0242 22.4947 1.0453e+3 2.7883 0.1306
13-15 39.9979 25.9339 697.1048 4.9734 0.0935
15-17 143.2279 25.5949 530.6142 3.2463 0.0600
17-19 44.4458 15.2231 219.5617 2.3996 0.0346
19-21 229.5693 11.9032 247.8988 7.3153 0.0180
21-23 88.3748 8.7207 118.7112 2.2269 0.0084
23-25 7.6653 4.1704 34.3980 1.1356 0.0035

127



Table 4.14 Calculated fatigue life for different materials for normal layout.

Wind speed range (m/s) Fatigue life (years)
CUD 6.9084
EUD 18.7893
TRIAX 874.4315
WEB 1.5712

Table 4.15 Calculated fatigue life for different materials under wake conditions for BTC blade.

Wind speed range (m/s) CUD
(years)

EUD
(years)

TRIAX
(years)

BIAX
(years)

Weights
(Weibull)

3-5 2.7593e+9 54.9027 3.8601e+3 2.3339e+5 0.1377
5-7 1.4935e+7 29.0696 2.3079e+3 9.3524e+4 0.1717
7-9 2.7796e+4 16.5784 1.5452e+3 834.5782 0.1792
9-11 1.1838 9.5579 1.1099e+3 0.3079 0.3466
11-13 42.1325 22.2240 1.0443e+3 2.7883 3.8398
13-15 45.3534 21.2948 575.2739 4.9734 6.1749
15-17 507.0271 17.5519 385.7082 3.2463 3.4022
17-19 104.3946 13.8084 192.5606 2.3996 12.2359
19-21 359.1663 8.7844 178.3102 7.3153 9.8222
21-23 69.3830 4.8082 62.2503 2.2269 1.4874
23-25 5.8628 2.4603 20.5534 1.1356 0.6109

Table 4.16 Calculated fatigue life for different materials for BTC blade.

Wind speed range (m/s) Fatigue life (years)
CUD 6.9532
EUD 17.3377
TRIAX 712.3523
WEB 1.8097
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4. Anisotropic wind turbine blade modelling by using FEM formulation

4.9 Chapter summary
In this chapter, the fatigue analysis methodology for different materials of wind turbine
blade is proposed. To fill the gap between the loading time series and the stress (or strain)
of materials, the cross sectional analysis method BECAS is employed. The loading time
series is simulated by the aero-elastic model, which is the coupled model of aerodynamic
model and anisotropic wind turbine blade structure model. The anisotropic structure, i.e.
bendtwist coupling wind turbine blade, is studied in this chapter in terms of modal analysis,
static analysis, and fatigue analysis. From the case studies, it can be found that the wake
effect has a significant impact on the fatigue life of wind turbine blade, which can be affected
by the layout of wind turbines. The wake effect can be alleviated by introducing bendtwist
coupling in wind turbine blade.

In this chapter, the structure model is based on the FEM formulation. To improve the
structure model in elastic actuator line, the FDTD anisotropic beam model (FDM based
method) for wind turbine blade will be constructed and validated.
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Chapter 5

Anisotropic wind turbine blade
modelling by using FDTD method

In the previous chapter, the FEM model is employed for the structure modelling. In this
chapter, a novel structure model for an anisotropic wind turbine blade structure is proposed
based on the Newtonian method and finite-difference time-domain method (FDTD). The
proposed structure model will be verified and validated by three cases. It should be
mentioned here that the proposed explicit FDTD model is the general formulation of the
structure model of the verified explicit elastic actuator line in Chapter 3. The stability
analysis for the proposed FDTD model is also carried out to uncover the root cause of the
instability of the explicit FDTD method. Based on this analysis, the unconditionally stable
explicit FDTD model is proposed to overcome its limitations on time step with little effect
on its solution accuracy.

5.1 Governing equations of anisotropic wind turbine blade
The theoretical equations of an anisotropic beam includes two parts. The first part is the
equilibrium equations of the deformed beam element. The second part is the constitutive
equations, which depict the constitutive relation between the sectional moments (and forces)
and the sectional strains (curvatures and angles of rotation). The equilibrium equations can
be either derived by the Newtonian method or the energy method (such as variational
method). In this research, the former one is employed. The Newtonian method is based
on the force and moment balance of each beam element. The coordinate system (inertia
frame) of the beam element is shown in Figure 5.1. In this coordinate system, the r
direction is the longitudinal direction or span-wise direction. Equation (5.1) shows the
aforementioned equilibrium equations. In this equation, M and F are sectional moments
and forces respectively. Fe and Me are the external force and moment vectors. FB′ is the
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sectional force vector of the section B′ for the deformed beam element. drl is the differential
vector of the deformed beam element. In previous ad hoc beam models, drl is assumed
to be equal to dr. This small deflection assumption will eliminate the non-linearity of the
equations for simplicity. It should be noted here that this assumption is dropped in this
research, which means that the present model can consider large deflection effect. Naturally,
the present anisotropic beam model is non-linear. The derivation of the proposed model is
shown in Appendix E.

Figure 5.1 Coordinate system of the beam element.

{
dM + drl × FB′ +Me = 0 moment balance
dF + Fe = 0 force balance

(5.1)

To illustrate the non-linearity of the present equations, we expand the previous equilib-
rium equations by introducing the following definition of several vectors and inertia forces
under the inertia frame:

F =
[
Fx Fy Fr

]T (5.2)

M =
[
Mx My Mr

]T (5.3)

q =
[
qx qy qr

]T (5.4)

Me =Mei +Mel (5.5)
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5. Anisotropic wind turbine blade modelling by using FDTD method

Fe = Fei + Fel (5.6)

It should be mentioned here that there are still terms of nonlinearity are not considered
in the proposed model, e.g. geometric nonlinearity.

Fei and Mei are the inertia force and moment vectors of the inertia frame. Fel and Mel

are other external forces except for inertia force and moment, e.g. aerodynamic force. By
using these definitions, the expanded governing equations can be derived as shown in the
following equations.

ρs
∂2qx

∂t2 − ρsym
∂2ϕr

∂t2 =
∂Fx

∂r
+ Fel,x (5.7)

ρs
∂2qy

∂t2 + ρs xm
∂2ϕr

∂t2 =
∂Fy

∂r
+ Fel,y (5.8)

ρs
∂2qr

∂t2 + ρsym
∂2ϕx

∂t2 − ρs xm
∂2ϕy

∂t2 =
∂Fr

∂r
+ Fel,r (5.9)

ρsym
∂2qr

∂t2 + Ixx
∂2ϕx

∂t2 − Ixy
∂2ϕy

∂t2 =
∂Mx

∂r
+ Fr

∂qy

∂r
− Fy

∂qr

∂r
− Fy + Mel,x (5.10)

− ρs xm
∂2qr

∂t2 − Ixy
∂2ϕx

∂t2 + Iyy
∂2ϕy

∂t2 =
∂My

∂r
− Fr

∂qx

∂r
+ Fx

∂qr

∂r
+ Fx + Mel,y (5.11)

− ρsym
∂2qx

∂t2 + ρs xm
∂2qy

∂t2 + (Ixx + Iyy)
∂2ϕr

∂t2 =
∂Mr

∂r
+ Fy

∂qx

∂r
− Fx

∂qy

∂r
+ Mel,r (5.12)

In Equations (5.10) - (5.12), it can be seen that the nonlinear terms occurs on the right
hand side (such as Fr

∂qy
∂r in Equation (5.10)). In the above equations, ϕ represents the

angle of rotation. (xm, ym) is the position of the gravity center of the cross section (or beam
element). The parameters of the cross section, namely ρs and I, are the mass per unit length
and moments of inertia of beam element, which can be calculated by the following Equation
(5.13):


ρs 0 0
0 Ixx Ixy

0 0 Iyy

 =
∫

A


1 0 0
0 y2 xy
0 0 x2

 ρ(x, y)dA (5.13)
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In the above 6 equilibrium equations (Equations (5.7) - (5.12)), we have 12 unknowns.
As a result, additional 6 equations are required, which are exactly the aforementioned con-
stitutive equations. In the ad hoc beam models, such as Euler-Bernoulli beam model or
Timoshenko beammodel, the constitutive equations are derived by the analytical kinematics
analysis of the beam section. By substituting the prescribed displacement fields into the
strain-displacement relation and employing Hooke’s law, the constitutive relation between
the sectional forces and sectional strain parameters (such as curvatures) can be constructed.
In fact, these ad hoc beam models are still popular in today’s wind turbine blade struc-
tural models for their simplicity. Nevertheless, the prescribed displacement fields restrict
their applications in the anisotropic beam cases, especially for BTC blade, because the
displacement fields of anisotropic beam are much more complicated as mentioned in the
introduction. To overcome this limitation, researchers recently proposed the linear sectional
analysis method (FEM analysis) to construct the generalized constitutive relation. The lin-
ear sectional analysis can be carried out by employing the software, such as VABS or DTU
BECAS. The generalized constitutive equations in this research are shown below. The
matrix K in Equation (5.14) can be calculated by using VABS or BECAS [86]. It should be
noticed here that the matrix of K will be diagonal if the beam is isotropic. Therefore, the
anisotropic beam modelling is obviously more complicated than that of isotropic beam.



Fx

Fy

Fr

Mx

My

Mr


=



K11 K12 K13 K14 K15 K16
K21 K22 K23 K24 K25 K26
K31 K32 K33 K34 K35 K36
K41 K42 K43 K44 K45 K46
K51 K52 K53 K54 K55 K56
K61 K62 K63 K64 K65 K66





∂qx
∂r − ϕy
∂qy
∂r + ϕx
∂qr
∂r
∂ϕx
∂r
∂ϕy
∂r
∂ϕr
∂r


(5.14)

Until now, the governing equations of non-linear anisotropic beam forwind turbine blade
are derived, including Equations (5.7) - (5.12) and Equation (5.14). In previous research,
the next step is to substitute the constitutive equations (Equation (5.14)) into equilibrium
equations ( Equations (5.7) - (5.12)) to construct a system in which displacements (and
angles of rotation) are dependent variables. Then equations of local elements will be
assembled together into global system and solved simultaneously by numerical methods.
Obviously, this process will lead to high order of derivatives with respect to both time and
space, which complicates the discretization and the construction of boundary conditions for
finite difference (or finite volume) methods. In the author’s opinion, this is the main reason
why finite-difference method is not popular in the structural modelling of a wind turbine
blade. In fact, the structuralmodel of thewind turbine blade is 1D beammodel, whichmeans
that the mesh of the blade is one dimensional. For this 1D beam problem, finite difference
method has several obvious advantages, such as the intuitive and simple discretization.
In addition, the stability analysis of the numerical model is much more straight forward,
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5. Anisotropic wind turbine blade modelling by using FDTD method

which is important for the further application of the model. In this research, to apply the
finite difference method to the anisotropic beam model, the equations are manipulated into
two new sets of equations instead of merging them together. Rather than solving system
simultaneously, these two sets of equations are solved element by element alternately and
explicitly, which boosts the efficiency of the simulation. The manipulation is shown in the
following part of this section.

Firstly, for the equilibrium equations (Equations (5.7) - (5.12)), 9 variables are intro-
duced, which are shown in Equation (5.15) - (5.17).

Vx =
∂qx

∂t
Vy =

∂qy

∂t
Vr =

∂qr

∂t
(5.15)

ωx =
∂ϕx

∂t
ωy =

∂ϕy

∂t
ωr =

∂ϕr

∂t
(5.16)

Sx =
∂qx

∂r
Sy =

∂qy

∂r
Sr =

∂qr

∂r
(5.17)

Obviously, V and ω are velocity and angular velocity of the beam element respectively.
S is the first order spatial derivative of displacement with respect to r . After substituting
these newly defined variables into equilibrium equations, the original equilibrium equations
are transformed into a new formulation with lower-order time and spatial derivatives:

ρs
∂Vx

∂t
− ρsym

∂ωr

∂t
=
∂Fx

∂r
+ Fel,x (5.18)

ρs
∂Vy

∂t
+ ρs xm

∂ωr

∂t
=
∂Fy

∂r
+ Fel,y (5.19)

ρs
∂Vr

∂t
+ ρsym

∂ωx

∂t
− ρs xm

∂ωy

∂t
=
∂Fr

∂r
+ Fel,r (5.20)

ρsym
∂Vr

∂t
+ Ixx

∂ωx

∂t
− Ixy

∂ωy

∂t
=
∂Mx

∂r
+ Fr Sy − FySr − Fy + Mel,x (5.21)

− ρs xm
∂Vr

∂t
− Ixy

∂ωx

∂t
+ Iyy

∂ωy

∂t
=
∂My

∂r
− Fr Sx + FxSr + Fx + Mel,y (5.22)

− ρsym
∂Vx

∂t
+ ρs xm

∂Vy

∂t
+ (Ixx + Iyy)

∂ωr

∂t
=
∂Mr

∂r
+ FySx − FxSy + Mel,r (5.23)
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Secondly, for the constitutive equations (Equation (5.14)) and Equation (5.17), we take
the first order derivative with respect to time.

∂Sx

∂t
=
∂Vx

∂r
∂Sy
∂t
=
∂Vy

∂r
∂Sr

∂t
=
∂Vr

∂r
(5.24)



∂Fx

∂t
∂Fy

∂t
∂Fr
∂t
∂Mx

∂t
∂My

∂t
∂Mr

∂t


=



K11 K12 K13 K14 K15 K16
K21 K22 K23 K24 K25 K26
K31 K32 K33 K34 K35 K36
K41 K42 K43 K44 K45 K46
K51 K52 K53 K54 K55 K56
K61 K62 K63 K64 K65 K66





∂Vx

∂r − ωy
∂Vy

dr + ωx
∂Vr
∂r
∂ωx

∂r
∂ωy

∂r
∂ωr

∂r


(5.25)

Equations (5.18) - (5.25) are our newly derived governing equations to solve. As is
mentioned, there are two sets of equations. The first set of equations includes Equations
(5.18) - (5.23). In these equations, the left hand side is about the first order time derivatives
of V and ω. The right hand side is about the first order spatial derivatives of S, F, and
M . Interestingly, this situation is exactly opposite in the other set of equations (Equations
(5.24) - (5.25)). In other words, the spatial derivatives of V and ω lead to the change of S,
F, and M in the time domain, and vice versa. This is very similar to the Maxwell equations,
in which the spatial derivatives of electric field induces the change of magnetic field in the
time domain and vice versa. It can be imagined that there exist two sets of waves in the
blade structure, which are waves of forces and velocities. These two waves excite each other
to maintain the vibration of the blade structure. This similarity inspired the authors to apply
the computational electromagnetics method to solve the aforementioned anisotropic beam
model, which is the novelty of this research.

5.2 Explicit FDTD anisotropic wind turbine blade model
In this section, the finite-difference time-domain (FDTD) method is applied to discretize
and numerically solve the above governing equations. Three important features of the
FDTD method are inherited by the numerical model in this research. The first feature is the
central difference scheme in time, which guarantees the second order time accuracy. The
second feature is the staggered grid for two sets of variables, which represents the waves of
forces and velocities as mentioned above. This staggered grid arrangement is also known
as the Yee lattice, which is shown in the Figure 5.2. This guarantees the second order
spatial accuracy of the numerical model. Noticeably, to achieve the same level spatial and
time accuracy in the FEM model, in which displacements are dependent variables, at least
a fourth order scheme in space (to calculate moments) and a third order scheme in time (to
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calculate velocities) should be used. Taking advantages of the newly introduced two sets
of variables and the leapfrog manner, the FDTD method makes the discretization of the
current model simpler. The numerical model is shown below. Equations (5.18) - (5.25) are
discretized to be Equations (5.26) - (5.33). In addition, since the wind turbine blade is a
cantilever beam, the boundary condition at the free end is Neumann boundary condition (no
moments and forces at the end) for conventional FEM models, in which displacements are
dependent variables. In the proposed model, the Neumann boundary condition turns out to
be Dirichlet boundary condition, which is simpler and can be seen in the Figure 5.2. The
third feature is that the two sets of equations are solved element by element alternately and
explicitly instead of solving the equations simultaneously. This featuremakes the simulation
of this model more efficient. The solving process of FDTD is shown in Figure 5.3. Firstly,
variables V and ω are calculated at time n+ 1

2 by variables F,M, and S at time n according
to the Equations (5.26) - (5.31). Secondly, the variables F, M, and S at time n + 1 are
predicted by the calculated variables V and ϕ at time n + 1

2 according to Equations (5.32) -
(5.33). This process is repeated by marching in time (see Figure 5.3).

Figure 5.2 Computational grid in time and space (Yee lattice).
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
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
=


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In this section, the theoretical and numerical models of anisotropic wind turbine blade
have been constructed based on the Newtonian method and the FDTD method. The
application of the proposed model is also an important part of our research. Since the
proposedmethod is very different from the conventional FEMmodel, it is necessary to derive
and show how to apply the proposed model in different application cases; for example the
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Figure 5.3 Flowchart of FDTD method.

modal analysis of anisotropic beam structure, dynamic simulation under rotating (floating)
frame, etc. As a result, in the following sections, three application cases are carried out to
further illustrate and validate the proposed model. The programming code can be found in
Appendix I.
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5.3 Validation case 1: anisotropic box beam
The conventionalmodal analysis of awind turbine blade ismostly based onFEMformulation
rather than the proposed FDTD model. As a result, in this section, the method of modal
analysis under the proposed FDTD method is firstly derived. Then the validation case of
an anisotropic rectangular box beam is carried out to validate the proposed model. The
comparison between predicted natural frequencies of HAWC2 (Kim), VABS (Hodges) [86],
and MSC/Nastran is shown in this section. The coupling modes will also be shown and
discussed in the last part of this section.

5.3.1 Problem statement

The anisotropic rectangular box beam is made of T300/5208 Graphite/Epoxy. The dimen-
sion and layups are shown in the Figure 5.4. The stiffness matrix Ks is shown in Equation
(5.34). Some off-diagonal terms are nonzero, which means that there exist structural cou-
plings, such as edgewise deflection - flapwise bending (K14) coupling, flapwise deflection -
edgewise bending (K25), and axial deflection - torsion (K36). It should be mentioned here
that the rectangular box beam is uniform and symmetric. As a result, the Ixy, xm, ym in
the above equations are all zero. The structural properties of the rectangular box beam are
shown in Table 5.1.

Figure 5.4 Anisotropic rectangular box beam.
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Ks =



K11 0 0 K14 0 0
0 K22 0 0 K25 0
0 0 K33 0 0 K36

K41 0 0 K44 0 0
0 K52 0 0 K55 0
0 0 K63 0 0 K66


(5.34)

Table 5.1 Structural properties for the rectangular box beam[61].

Material T300/5208 Graphite/Epoxy

Properties Rectangular box beam

E11 11.03 GPa

E33 146.79 GPa

G12 4.82 GPa

G13, G23 6.20 GPa

ν12 0.28

ρs 1599 kg/m3

K11 7.7440 × 105 N

K14 8.3266 × 103 Nm

K22 2.9557 × 105 N

K25 9.0666 × 103 Nm

K33 5.0574 × 106 Nm

K36 -1.7195 × 104 Nm

K44 2.4576 × 102 Nm2

K55 7.4439 × 102 Nm2

K66 1.5040 × 102 Nm2

5.3.2 Method of modal analysis based on the proposed FDTD formu-
lation

Since modal analysis is based on a linear system, the non-linear terms in Equations (5.29) -
(5.31) are firstly dropped. The Equations (5.29) - (5.31) become:
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The above Equations (5.26) - (5.28), Equations (5.35) - (5.37), and Equations (5.32) -
(5.33) can be rewritten in the following simple formulations (Equations (5.38) - (5.39)). DP

and DQ are linear operators.

Qn+ 1
2 = Qn− 1

2 − DPPn
∆t (5.38)

Pn+1 = Pn + DQQn+ 1
2∆t (5.39)

where

P =
[
FT MT ]T (5.40)

Q =
[
VT ωT

]T (5.41)

The above formulation can be further rewritten in the following way (Equations (5.42)
- (5.43)):

∂Q
∂t
= −DPP (5.42)

∂P
∂t
= DQQ (5.43)

Eliminating vector P, we merged the two first order equations into one second order
equation of vector Q:

∂2Q
∂t2 = −(DPDQ)Q = −MQ (5.44)

where
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M = DPDQ (5.45)

And the eigenvalue (ξi) and eigenvector (VQ,i) of matrixM are defined by the following
Equation (5.46):

(M − ξiI)VQ,i = 0 (5.46)

Now this formulation (Equation (5.46)) is similar to the equations of modal analysis in
the previous research. The eigenvectors of M forms a complete set of basis to represent the
Q, which is the velocities and angular velocities vector. As a result, we have the following
Equation (5.47).

Q =
∑

i

VQyi(t) (5.47)

We further substitute Equation (5.47) into Equation (5.44), ODE of yi (Equation (5.48)),
which is the transient part of Q.

∂2yi

∂t2 + ξiyi = 0 (5.48)

By solving this second order homogeneous ODE, the solution of yi for vectorQ (veloc-
ities and angular velocities) can be calculated and shown in Equation (5.50). χi is the phase
angle.

yi = ai cos(
√
ξit) + bi sin(

√
ξit) (5.49)

yi =

√
a2

i + b2
i sin(

√
ξit + χi) (5.50)

Previous research of modal analysis mainly focuses on the displacement, which is the
time integral of velocity. The transient of displacement (zi) is shown in Equation (5.51),
where χ′i is the phase angle.

zi =

√
a2

i + b2
i

ξi
sin(

√
ξit + χ′i ) (5.51)

Comparing Equations (5.50) and (5.51), it can be found that the modes of displacement
and velocity share the same natural frequencies

√
ξi, in which ξi is the eigenvalue of mode

i. Here the natural frequencies are angular frequencies. The modes of displacement and
velocity also share the same mode shapes. In other words, the modal analysis can be carried
out by the eigenanalysis of matrix M. In the modal analysis, the rotational speed effect is
neglected, which is a limitation of the proposed model.
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5.3.3 Results and discussion

By using the modal analysis method described in the previous subsection, the natural
frequency and mode shape can be calculated based on the eigenanalysis of matrix M.
The predicted natural frequencies are compared with those obtained with HAWC2 (FEM
model), VABS (Hodges’s method), and commercial software MSC/Nastran. The MSC/-
Nastran (high-fidelity model) case is carried out in [61], in which the 4-node shell element
is used. The structure is meshed with 38 elements circumferentially and 1015 elements
longitudinally. The comparison between the proposed FDTD method and the aforemen-
tioned three models in terms of the predicted natural frequencies is shown in Table 5.2. In
this table, it can be seen that the proposed FDTD model is in a very good agreement with
MSC/Nastran, VABS, and HAWC2 in this case, which also validates the proposed model.
Among these models, HAWC2model is also a kind of beammodel. Although the derivation
and formulation of the proposed FDTD model is totally different from the HAWC2 model
as mentioned above, their predicted natural frequencies are very similar to each other for
different modes.

Table 5.2 Comparison between the calculated natural frequencies of FDTD, HAWC2, VABS, and
Nastran [61].

Mode FDTD [Hz] HAWC2 [Hz] Hodges [Hz] MSC/Nastran
[Hz]

1st (Flap-Edge) 2.99 3.00 3.00 2.98
2nd (Edge-Flap) 5.18 5.19 5.19 5.12
3rd (Flap-Edge) 18.78 18.79 19.04 18.65
4th (Edge-Flap) 32.40 32.41 32.88 32.02
5th (Flap-Edge) 52.55 52.57 54.69 52.17
6th (Edge-Flap) 89.56 89.54 - 93.39

Furthermore, the calculated first 6 mode shapes are also shown in Figure 5.5. From
these figures, it can be seen that the FDTD model can capture the coupled mode shapes
clearly, which is the most important feature for an anisotropic beam. Since the first two
modes have small coupling effects, it is not easy to reproduce the coupled behaviour. It
should be mentioned here that these calculated mode shapes are also very similar to the
results of HAWC2, which can be found in [61].
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Figure 5.5 First 6 mode shapes of the anisotropic rectangular box beam.

5.4 Validation case 2: spin-up manuever
This spin-up maneuver case under floating frame was proposed by Kane [87] to validate
a non-linear dynamic model. Furthermore, there exist complicated inertia forces of the
floating frame, which are also important for the structural modelling of wind turbine blade.
This case also exits in [61] to validate the FEM anisotropic beam model. In this research,
this validation case is also carried out for our proposed FDTD method.

5.4.1 Problem statement

The beam is rotating along the direction j1 (j0 in Figure 5.7), which is shown in Figure 5.6.
The prescribed rotating angle at the end is presented in Equation (5.52). Obviously, the
frame is rotating with changing angular acceleration, which induces Euler force, Coriolis
force, and the centrifugal force in the floating frame (the floating frame is attached to the
shadow beam in Figure 5.7). It should be noted here that the aforementioned governing
equations can be reduced, because three degrees of freedom out of total six are dropped in
this case (rotations along direction i and k, and deflection along direction j). The simplified
governing equations and inertia forces will be derived and illustrated in the following part,
which is based on the floating frame (i1, j0, and k1). To derive the sectional strain without
small rotation assumption, the frame attached to the deformed beam section is further
introduced (i2, j0, and k2 in Figure 5.7). The structural properties of the rotating beam are
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shown in the Table 5.3. The beam section is assumed to be symmetric for axis i1 and k1.
The effect of gravity is insignificant, which is neglected in the model. This case is a 2D
case, which is the limitation of the validation case.

Figure 5.6 Sketch of spin-up maneuver.

Ψ(t) =

{
6
15 [

t2

2 + (
15
2π )

2(cos 2πt
15 − 1)] rad 0 ≤ t ≤ 15s

(6t − 45) rad t > 15
(5.52)

Figure 5.7 Coordinate system of the spin-up maneuver.
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Table 5.3 Structural properties for the rotating beam.

ρs 1.2 kg/m

I 6.0 × 10−4 kgm

L 10 m

K11 1.00 × 107 N

K22 1.00 × 107 N

K33 2.80 × 107 N

K44 1.40 × 104 Nm2

K55 1.40 × 104 Nm2

K66 9.98 × 103 Nm2
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5.4.2 Construction of FDTD model of spin-up maneuver case based
on the floating frame

The simplified governing equations for the rotating beam are shown in the following Equa-
tions (5.53) - (5.58). The detailed derivations are shown in the Appendix F. It should be
mentioned here that Equations (5.56) - (5.57) show the small rotation assumption (ϕy ≈ 0).
Ω is the rotational speed of the shadow beam, which is a virtual rotational rigid beam with
the same rotational speed as the prescribed rotational speed Ψ(t) of the beam end. It can
be also seen that the non-linear terms and inertia forces are rigorously considered in the
following equations.

ρs
∂Vx

∂t
=
∂Fx

∂r
− ρs[2VrΩ + (r + qr) ÛΩ + qxΩ

2] (5.53)

ρs
∂Vr

∂t
=
∂Fr

∂r
+ ρs[2VxΩ + qx ÛΩ + (r + qr)Ω

2] (5.54)
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(5.56)

∂Fx

∂t
= GA(

∂Vx

∂r
− ωy cos(ϕy)) ≈ GA(

∂Vx

∂r
− ωy) (5.57)
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∂ωy
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(5.58)

Based on the proposed FDTD method, the numerical dynamic model is shown in the
Equations (5.59) - (5.66). The two sets of Equations (Equations (5.59) - (5.61) and Equations
(5.62) - (5.66)) are solved element by element alternately in the FDTD manner.
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5.4.3 Results and discussion

In this part, the predicted tip displacements and rotation angle are compared with the results
in [87]. The first simulation is carried out with small rotation assumption. From Figure 5.8,
the predicted results of tip displacement in x direction (i1) and twist angle in y direction
(j0) have a good agreement with Simo’s results. There exist small discrepancies in these
two figures in the final oscillation part. The most obvious discrepancy occurs in the tip
displacement in r direction (k1). Although the predicted offset is correct, the model failed to
predict the valley of the curve. However, if we compare the tip displacement in x direction
(i1) and the tip displacement in r direction (k1), it can be easily found that the former one
is much larger than the latter. As a result, the current model captures the main physical
behaviour of the rotating beam. In the author’s opinion, the discrepancy is caused by the
small rotation assumption. To capture more detailed information of the rotating beam, the
numerical model without small rotation assumption is constructed.

The results of FDTD model without small rotation assumption are shown in the Figure
5.10. From this figure, it can be seen that the predicted values of FDTD model and Simo’s
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Figure 5.8 Comparison between the results of proposed FDTD model (with small rotation
assumption) and Simo’s benchmark data.

Figure 5.9 Comparison between the results of proposed FDTD model (with small rotation
assumption) and Simo’s benchmark data (oscillation part enlarged).

results have a very good agreement, which validates the proposed model. Considering large
rotation is necessary for the numerical model in this case. As a result, the proposed model
can be extended to model large rotations.
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Figure 5.10 Comparison between the results of proposed FDTD model (without small rotation
assumption) and Simo’s benchmark data.

Figure 5.11 Comparison between the results of proposed FDTD model (without small rotation
assumption) and Simo’s benchmark data (oscillation part enlarged).
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5.5 Validation case 3: NREL 5MW and WindPACT wind
turbine blade

In the previous two case studies, the beam is uniform, and the beam sections are symmetric.
In this case study, the case study of realwind turbine bladeswith nonuniform and asymmetric
sections, namely NREL 5MW andWindPACT wind turbine blades, is carried out to further
validate the proposed FDTD model. The method of modal analysis presented in the case
study 1 is employed in this section to calculate the natural frequencies and mode shapes of
the wind turbine blade. Because the beam section is non-uniform and asymmetric, there
exist some modifications (M′) for Equation (5.42), which is as follows:

M′Qn+ 1
2

j =M′Qn− 1
2

j − DP, jPn
j dt (5.67)

where

M′ =
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Iyy, j
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0
−ym, j xm, j 0 0 0 Ixx, j+Iyy, j
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
(5.68)

From Equation (5.69), we can see that (M′)−1DP, j will be our new DP, j .

Qn+ 1
2

j = Qn− 1
2

j − (M′)−1DP, jPn
j dt (5.69)

The predicted first 6 natural frequencies are comparedwith that of ANSYSmodel, which
are shown in Tables 5.4 and 5.5. From this comparison, it can be seen that the proposed
FDTD results match very well with the ANSYS results. This further validate the proposed
model. The first 6 calculated mode shapes are shown in Figures 5.12 and 5.13. This modal
analysis does not include the rotational speed, which is the limitation of this simulation.
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Table 5.4 Comparison between the calculated natural frequencies of FDTD and ANSYS for NREL
5MW wind turbine blade.

Mode No. FDTD [Hz] ANSYS [Hz] Description
1st 0.88 0.87 1st flapwise bending
2nd 1.03 1.06 1st edgewise bending
3rd 2.69 2.68 2nd flapwise bending
4th 3.86 3.91 2nd edgewise bending
5th 5.91 5.57 3rd flapwise bending
6th 6.64 6.45 1st torsion

Figure 5.12 Predicted mode shapes of NREL 5MW wind turbine blade by using FDTD model.

Table 5.5 Comparison between the calculated natural frequencies of FDTD and ANSYS for
WindPACT wind turbine blade.

Mode No. FDTD [Hz] ANSYS [Hz] Description
1st 1.0923 1.0783 1st flapwise bending
2nd 1.7202 1.7001 1st edgewise bending
3rd 2.8424 2.9804 2nd flapwise bending
4th 4.8144 5.0382 2nd edgewise bending
5th 6.1099 6.3093 3rd flapwise bending
6th 10.2781 10.305 1st torsion
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Figure 5.13 Predicted mode shapes of NRELWindPACT wind turbine blade by using FDTDmodel.

5.6 Unconditionally stable explicit FDTDanisotropic wind
turbine blade model

In this section, the stability analysis for the aforementioned explicit FDTD method is
firstly carried out to discover the root cause of the instability. Based on this analysis, the
unconditionally stable explicit FDTD method is proposed.

5.6.1 Stability analysis of explicit FDTD model

The stability analysis in this subsection is based on the D. Jiao’s paper on electromagnetic
simulation [4]. For the stability analysis, it is assumed that the instability is mainly caused
by the linear part of the governing equations. The Equations (5.26) - (5.33) can be simplified
as the Equation (5.70) (drop the source terms).[

Qn+ 1
2

Pn+1

]
=

[
I −∆tDP

∆tDQ I − ∆t2M

] [
Qn− 1

2

Pn

]
(5.70)

The amplitude matrix G is shown in the Equation (5.71).

G =
[

I −∆tDP

∆tDQ I − ∆t2M

]
(5.71)
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Define vector U pertinent to Equation (5.70) as follows.

Un =

[
Qn− 1

2

Pn

]
(5.72)

Then the Equation (5.70) can be rewritten as Equation (5.73).

Un+1 = GUn (5.73)

To guarantee the stability, the spectral radius of amplitude matrix G should be less than
one. In other words, the modulus of the eigenvalues of G should be less than one. The
diagonal matrix Λ̃G of eigen-values of matrix G is shown in Equation (5.74).

GV = VΛ̃G (5.74)

And Equation (5.74) can be also rewritten as Equation (5.75).

(G − I)V = V(Λ̃G − I) (5.75)

We further substitute G in Equation (5.71) into Equation 5.75,[
0 −∆tDP

∆tDQ −∆t2M

] [
VQ

VP

]
=

[
VQ

VP

]
Λ̃G (5.76)

Where

Λ̃G = ΛG − I (5.77)

The Equation 5.76 can be rewritten as:

− ∆tDPVP = VQΛ̃G (5.78)

∆tDQVQ − ∆t2MVP = VPΛ̃G (5.79)

Multiply Equation (5.79) from right by Λ̃G ans substitute Equation (5.76) into it.

− ∆t2MVP(I + Λ̃G) = VPΛ̃
2
G (5.80)

which yields

− ∆t2MVP,i =
(γi − 1)2

γi
VP,i (5.81)
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In Equation (5.81), the γi is the ith eigenvalue of matrix G. If the ith eigenvalues of M
is ξi, we have:

− ∆t2ξi =
(γi − 1)2

γi
(5.82)

As mentioned above, to guarantee the numerical stability, the γi should met the require-
ments of Equation (5.83).

|γi | ≤ 1 (5.83)

Combining Equation (5.82) and (5.83), we have the condition for time step:

∆t ≤
2
√
ξi

(5.84)

In Equation (5.84), it can be found that the time step is dependent on the ξi, which
is the ith eigenvalue of M. In Section 5.3.2, ξi is proven to be related to the predicted
natural frequency (

√
ξi) of the structure. In other words, the root cause of the explicit FDTD

method is the high frequency waves. With the resolved frequency increasing, the time
step becomes extremely small. However, in fact, we do not need to capture the highest
frequency wave. For example, low frequency fluctuations loading plays the dominant role
in the fatigue damage of wind turbine blade. In other words, the highest frequency wave
we want to resolve is often much lower than the highest natural frequency of the FDTD
model, which obviously makes the time step much smaller in the application cases. Based
on this fact, the stability of modal approach, explicit FDTD method can be analysed. For
the modal approach, only four or five modes are considered, which means that large range
of frequencies are truncated, which guarantee the large time step. However, the accuracy
of the model will also decrease because of the truncated frequencies. For explicit FDTD
model, all of the frequencies are kept for high accuracy, which also means that the time step
will be extremely small. This analysis is presented in Figure 5.14.

The idea of unconditionally stable FDTD method is that we can choose the time step ∆t
according to the highest frequencywhich is required to resolve ( fmax). For example, the fmax

can be the highest frequency related to the fatigue damage or can be calculated according
to the required time step of actuator line ( fmax =

1
2∆t ). The frequencies between fmax and

√
ξmax will be truncated, which can enlarge the time step without loosing the accuracy. In

other words, it strikes a balance between accuracy and efficiency. The unconditionally stable
explicit FDTD model for wind turbine blade structure will be constructed in the following
subsection.
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Figure 5.14 Illustration of unconditionally stable FDTD.
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5.6.2 Unconditionally stable explicit FDTD model

The VP,st and VQ,st are the truncated eigen vectors of P and Q, which is shown in the
Equations (5.85) and (5.86).

Ps = VP,st yP (5.85)

Qs = VQ,st yQ (5.86)

By using these two eigen vectors, the Equation (5.70) turns into Equation (5.87) - (5.88).

VQ,st y
n+ 1

2
Q = VQ,st y

n− 1
2

Q − ∆tDPVP,st y
n
P − ∆tSn

P (5.87)

Vp,st y
n+1
P = Vp,st y

n
P − ∆tDQVQ,st y

n+ 1
2

Q − ∆tSn+ 1
2

Q (5.88)

which yields

y
n+ 1

2
Q = yn

Q − ∆tV−1
Q,stDPVP,st y

n
P − ∆tV−1

Q,stSn
P (5.89)

yn+1
P = yn

P − ∆tV−1
p,stDQVQ,st y

n+ 1
2

Q − ∆tV−1
p,stS

n+ 1
2

Q (5.90)

The V−1
Q,st and V−1

p,st can be precalculated. A simulation case for the NREL 5MW wind
turbine blade is carried out to verify the proposed unconditionally stable FDTD method. A
constant force (20 N/m) along x direction (see Figure 5.1) is applied on the stationary wind
turbine blade (from root to the tip). The calculated 20-second root bending moments along
different directions of unconditionally stable FDTD method and implicit method with time
step 1 × 10−3 (e.g. time step of actuator line model) are compared with that of explicit
FDTD method, which is shown in Figures 5.15 to 5.17. The implicit method is formulated
by replacing the Fn and Mn in the right hand side by Fn+1 and Mn+1 in Equation (5.26) -
(5.31). The required largest time step for explicit FDTD method is 1 × 10−5, which means
that the time step of unconditionally stable explicit method and implicit method is 100 times
larger than that of explicit FDTD method in this case.

Unlike the implicit method, the unconditionally stable explicit method captures the
fluctuations accurately, which can be seen from the Figures 5.15 (root bending moment
along x direction) and 5.16 (root bending moment along y direction). The unconditionally
stable method lose accuracy for the bending moment along r direction (see Figure 5.17),
which is obviously smaller than the other two components in this case and will have less
effect on the fatigue damage. In summary, the unconditionally stable explicit FDTD model
can overcome its limitations on time step with little effect on its solution accuracy.
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5. Anisotropic wind turbine blade modelling by using FDTD method

Figure 5.15 Comparison between unconditionally stable explicit, implicit, and explicit FDTD
method in terms of root moment along x direction.

Figure 5.16 Comparison between unconditionally stable explicit, implicit, and explicit FDTD
method in terms of root moment along y direction.
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Figure 5.17 Comparison between unconditionally stable explicit and explicit FDTD method in
terms of root moment along r direction.

5.7 Chapter summary
In this chapter, the structure model based on FDTD method is proposed and validated
by three cases in terms of deformation coupling, non-inertia coordinate system, and non-
uniform blade sections ( for NREL 5MW andWindPACTwind turbine blades). This FDTD
model is a generalized formulation of the structure model presented in Chapter 3, which
further considers the anisotropic nature of composite wind turbine blade. In addition, the
modal analysis method based on this formulation is also proposed and validated. From the
stability analysis, it can be concluded that the root cause for instability for the proposed
numerical method is the highest frequency mode in the model. Based on this analysis,
the unconditionally stable explicit FDTD structure model is proposed, constructed, and
verified, which strikes a balance between accuracy and efficiency. Compared with implicit
method, the unconditionally stable explicit FDTD model can overcome its limitations on
time step with little effect on its solution accuracy.
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Chapter 6

Conclusions and future work

In this thesis, firstly, the actuator line model is validated in terms of thrust coefficient and
flow field prediction. Secondly, Based on NREL SOWFA, the elastic actuator line model is
constructed as an aero-elastic model for wake conditions to simulate the dynamic loading
of wind turbine blade. Thirdly, the performance of normal and bend-twist coupling wind
turbine blade with anisotropic composite structure in wake conditions are studied by using
the aero-elastic model based on anisotropic structure model, cross sectional analysis, and
fatigue analysis method. Lastly, the structure model based on FDTD method is constructed
for anisotropic wind turbine blade and validated, which strikes balance between accuracy
and efficiency. The main conclusions are as follows:

(1) The nacelle effect has impact on the velocity profile around wake center region. The
proposed single-point nacelle model, single momentum source point smeared by Gaussian
function, can be used to reproduce the nacelle effect not only for RANS turbulence model
but also for LES turbulence model.

(2) The proposed elastic actuator linemodel can be used to simulate the fatigue loading in
wake. Instead of employing displacements as dependent variables in conventional structure
models, velocity and moment are dependent variables which is suitable for the coupled
model of conventional actuator line model and structure model (velocity is required), and
the fatigue analysis (moment is required). The FDM based structure model is the first
contribution of the current thesis. The stochastic and deterministic wake-induced fatigue
can all be reproduced by the proposed elastic actuator line model. Compared with the
explicit elastic actuator line model, the implicit elastic actuator line can run with larger time
step. However, the accuracy of implicit method will decrease.

(3) The fatigue analysis methodology is proposed based on the anisotropic wind turbine
blade structure model and cross sectional analysis method. Based on this fatigue analysis
methodology, the fatigue life of NREL 5MWwind turbine blade is analysed. The predicted
fatigue life (26.0187 years) of the main structure is very close to the design life (20 years).
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From the fatigue analysis for wind turbine blade in wake conditions, it is found that the
wake-induced fatigue has a significant impact on the fatigue life of wind turbine blades
(fatigue life drops from 26.0187 years to 1.7388 years under compact layout). Wind farm
layout can affect the wake-induced fatigue damage (increase from 1.7388 years (compact
layout) to 6.9084 years (normal layout)). Furthermore, it is also found that the bend-twist
coupling wind turbine blade can alleviate the fatigue load under wake condition.

(4) Based on the FDTD method, a novel anisotropic beam model for wind turbine
blade is constructed and validated in terms of beams with deformation coupling, non-
inertia coordinate system, and non-uniform sections (real wind turbine blade). The stability
analysis for the proposed FDTDmodel is carried out, which shows that the root cause of the
numerical instability for the proposed method is the highest-frequency mode in numerical
model. Based on this analysis, the unconditionally stable explicit FDTD structure model
is proposed and constructed, which strikes a balance between accuracy and efficiency.
Compared with implicit method, the unconditionally stable explicit FDTD overcomes its
limitations on time step with little effect on its solution accuracy. This is the second
contribution of the thesis.

In the future, the proposed fatigue analysis methodology and anisotropic wind turbine
blade structure model will be employed in the elastic actuator line model, which will be
further verified by NREL FAST 8.0, fluid-structure-interaction model, and measured data.
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Appendix A

Derivation of structure model for explicit
elastic actuator line

A.1 Equilibrium equations (the dynamics of beam ele-
ment)

In this section, the one-dimensional equilibrium equations are constructed on each beam
element by using Newtonian method. The balance of moments and forces of direction 0 is
based on the coordinate system in Figure A.1. The F and M are sectional shear force and
bending moments. fe and Me are external force and moments on the beam section.

The equilibrium of force resultant along direction 0 is shown in Equation (A.1).

dF0
dr
+ fe,0 = 0 (A.1)

The equilibrium of moment resultant along direction 0 is shown in Equation (A.2).

dM0
dr
− me,0 − F0 = 0 (A.2)

Combing the Equations (A.1) and (A.2), we have the Equation (A.4).

d2M0

dr2 −
dme,0

dr
+ fe,0 = 0 (A.3)

Based on Figure A.2, the equation for direction 1 is shown in Equation (A.4).

d2M1

dr2 −
dMe,1

dr
+ fe,1 = 0 (A.4)
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Figure A.1 The sketch for the moments and forces along direction 0.

Figure A.2 The sketch for the moments and forces along direction 1.
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A. Derivation of structure model for explicit elastic actuator line

To further analyse and establish the governing structure equations of wind turbine blade,
the external force andmoments should be seriously considered, which consists of three parts:
inertia force (centrifugal force), aerodynamic force, and gravitational force.

®fe = ρs ®a + ®fa + ρs ®g = −ρs
d2 ®q
dt2 +

®fa + ®fg (A.5)

The external moments is caused by the centrifugal force:

®Me = −N(r)
d ®q
dr

(A.6)

Among this equation, N(r) is the centrifugal force:

N(r) =
∫ R

r
ρs(r)Ω2rdr (A.7)

The derived equilibrium equations are:

ρs
∂2q0

∂t2 −
∂2M0

∂r2 −
∂

∂r
(N(r)

∂q0
∂r
) − fa,0 − fg,0 (A.8)

ρs
∂2q1

∂t2 −
∂2M1

∂r2 −
∂

∂r
(N(r)

∂q1
∂r
) − fa,1 − fg,1 (A.9)

A.2 Kinematics of thebeamelement basedonEuler-Bernoulli
assumption

The derived Equations (A.8) and (A.9) have two variables redundant, which are M0 and
M1. To remove the redundant variables, the relation between moments and displacements
should be built by applying the kinematics analysis of the beam. For ad-hoc beam models,
the displacement field (kinematics) for each point in the beam is assumed to be a function
of displacements of the beam section. The Euler-Bernoulli assumptions for beam models
are as follows:

(1) the cross section is infinitely rigid in its own plane, and any material point in the
plane of the cross section solely consists of two rigid body translations.

(2) the cross section of a beam remains the same plane after deformation.
(3) the cross section remains normal to the deformed axis of the beam (see Figure A.3

and A.4).
The derivation also neglects the impact of transverse deflection and the associated radial

shortening on the centrifugal force.
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Figure A.3 Illustration of Euler-Bernoulli assumption.

Figure A.4 Illustration of Euler-Bernoulli assumption.
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A. Derivation of structure model for explicit elastic actuator line

Based on the first assumption, the displacements for each point (q′) along directions 0
and 1 are:

q′0(x0, x1, r) = q0(r) (A.10)

q′1(x0, x1, r) = q1(r) (A.11)

According to the second assumption, the q′r can be derived:

q′r(x0, x1, r) = qr(r) − x0ω1(r) + x1ω0(r) (A.12)

According to the third assumption, we have:

ω1 =
dq0(r)

dr
(A.13)

ω0 =
dq1(r)

dr
(A.14)

q′r(x0, x1, r) = qr(r) − x0
dq0(r)

dr
+ x1

dq1(r)
dr

(A.15)

Based on the infinitesimal strain field assumption, we have

εi j =
1
2
(q′i, j + q′j,i) (A.16)

In which

εrr =
dqr(r)

dr
− x0

d2q0(r)
dr2 − x1

d2q1(r)
dr2 (A.17)

By applying Hooke’s law, the stress can be calculated as

σrr = Eεrr = E(
dqr(r)

dr
− x0

d2q0(r)
dr2 − x1

d2q1(r)
dr2 ) (A.18)

The moments M0 and M1 are

M0 =

∫
A

x0σrr dA =
∫

A
x0E(

dqr(r)
dr

− x0
d2q0(r)

dr2 − x1
d2q1(r)

dr2 )dA (A.19)

M1 =

∫
A

x1σrr dA =
∫

A
x1E(

dqr(r)
dr

− x0
d2q0(r)

dr2 − x1
d2q1(r)

dr2 )dA (A.20)

173



As a result, we derived the equations of M and displacements:[
M0
M1

]
=

[
−

∫
A E x2

0 dA −
∫

A E x0x1dA
−

∫
A E x0x1dA −

∫
A E x2

1 dA

] [
d2q0
dr2

d2q1
dr2

]
(A.21)

The governing equations (Equation (3.2) - (3.3)) can be derived by combining the
equilibrium and kinematics equations.
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Appendix B

Stability analysis of the structure model
in elastic actuator line.

According to von Neumann stability analysis [88]

Vi =

J−1∑
k=0

Akω
k
i (B.1)

Mi =

J−1∑
k=0

Bkω
k
i (B.2)

ωk
i = eilk x (B.3)

Here Ak is the error amplitude. lk is the wave number.
Substitute the above equations into the governing equations (drop the aerodynamic force

and gravitational force terms), we have:

An+1
k − An

k

∆t
= −

1
ρs

Bn
k(2 cos 2πk

J − 2)
∆r2 (B.4)

Bn+1
k − Bn

k

∆t
= EI

An
k(2 cos 2πk

J − 2)
∆r2 (B.5)

Then

An+1
k = An

k + η1Bn
k (B.6)

An+1
k + η2Bn+1

k = Bn
k (B.7)
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Where

η1 =
4∆t
ρs∆r2 sin2 πk

J
(B.8)

η2 =
4∆t
∆r2 EI sin2 πk

J
(B.9)

Then we can derive: [
An+1

k
Bn+1

k

]
= G

[
An

k
Bn

k

]
(B.10)

Where

G =
[

1 η1
−η2 1 − η1η2

]
(B.11)

To guarantee the stability of the numerical equations, |Gn | should be bounded.

Gn = T


λ(1) · · · · · · 0
... λ(2) · · · 0
...

...
. . .

...

0 0 · · · λ(P)


T−1 (B.12)

T is the normalized eigenvector of G (p is the number of columns of G), and

|(T−1)i j | ≤
1
|∆|

(B.13)

∆ is the determinant of T, so that

|(Gn)i j | ≤
p2

|∆|
Rn (B.14)

Where

R = max |λi | (B.15)

Then

|Gn | ≤
p3

|∆|
Rn (B.16)

As a result, |∆| should not be equal to zero to guarantee stability. According to this, the
appropriate time step can be derived:
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B. Stability analysis of the structure model in elastic actuator line.

4(
∆t
∆r2 )

2 EI
ρs

sin4 πk
J
− 1 < 0 (B.17)

∆t <
1
2

√
ρs

EI
∆r2 (B.18)
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Appendix C

Two-dimensional cross-sectional model
(BECAS)

The elements in parameter matrices for 2D sectional model (fromEquation (4.5) to Equation
(4.6)) are listed in this appendix. All of these information is summarized from the BECAS
tutorial [79]. Most of the parameters are about surface integral of blade section.

A
(6×6)
=

ne∑
e=1

∫
A
ZT

eST
eQeSeZedA (C.1)

R
(nd×6)

=

ne∑
e=1

∫
A
BT

eQeSeZedA (C.2)

E
(nd×nd)

=

ne∑
e=1

∫
A
BT

eQeBedA (C.3)

C
(nd×nd)

=

ne∑
e=1

∫
A
BT

eQeSeN2d,edA (C.4)

L
(6×nd)

=

ne∑
e=1

∫
A
ZT

eST
eQeSeN2d,edA (C.5)

M
(nd×nd)

=

ne∑
e=1

∫
A
NT

2d,eST
eQeSeN2d,edA (C.6)

D
(nd×6)

=

[
I3 · · · I3
n1 · · · nnn

]T

(C.7)

In Equation (C.7), n has the same form of the ne in Equation (C.10). And I3 is a
unitary matrix. In those equations, N2d,e is the two-dimensional shape function for a finite
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element on the cross section of the blade, which is four-node element in this study. Qe is
the elementary material constitutive matrix in Hooke’s law, in which σe = Qeε e (σe is the
elementary stress and ε e is the elementary strain).

Be =



∂
∂x 0 0
0 ∂

∂y 0
∂
∂y

∂
∂x 0

0 0 ∂
∂x

0 0 ∂
∂y

0 0 0


(C.8)

Ze
(3×6)
=

[
I3 ne

]
(C.9)

ne =


0 0 y

0 0 −x
−y x 0

 (C.10)

Se =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


(C.11)

Tr =



0 0 0 0 −1 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(C.12)
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Appendix D

One-dimensional beam model

This appendix is about the parameters of one dimensional anisotropic beam model. The
derivation of the model can be found in [57]. To begin with, the shape function is given as
follows:

N
(6×24)

=

[
I
(6×6)

zI
(6×6)

(z)2I
(6×6)

(z)3I
(6×6)

]
(D.1)

Where z in Equation (D.1) is defined in Figure 1. The following equations are used to
deal with Nα from Equation (4.11). z1 and z2 are the z positions of two nodes of one beam
element.

Nd
(24×24)

=


N(z1)
(12×24)

N(z2)
(12×24)

 =
[

N1
(24×12)

N2
(24×12)

]
(D.2)

Aα1
(6×24)

=


I

(12×12)

0
(12×12)

 (D.3)

Aα2
(6×24)

=


0

(12×12)

I
(12×12)

 (D.4)

Y1 = Aα1N−1
1 (D.5)

Y2 = Aα2 − Aα1N−1
1 N2 (D.6)

Bs = TrN(z′) + I6N′(z) (D.7)

Ds =

∫ z2

z1

BT
s KsBsdz (D.8)

P = YT
2DsY1 (D.9)

Q = −YT
2DsY2 (D.10)
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Lastly, the formula of Nα is as follows:

Nα = Y1 + Y2Q−1P (D.11)
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Appendix E

Derivation for the equilibrium and
constitutive equations

According to Figure 5.1, the deformed beam element vector AB is as follows:

A′B′ = drl = dr + qB − qA = drk + dq (E.1)

where

dr = drk (E.2)

and

dq = qB − qA (E.3)

For the moments and forces balance, we have:{
MB′ −MA′ + drl × FB′ +Me = 0 moment balance
FB′ − FA′ + Fe = 0 force balance

(E.4)

where

MB′ −MA′ = dM (E.5)

and

FB′ − FA′ = dF (E.6)

It is also known that
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drl × F =

������
i j k

dqx dqy dqr + dr
Fx Fy Fr

������ = [Fr dqy − Fy(dqr + dr)]i + [Fx(dqr + dr) − Fr dqx]j + (Fydqx − Fxdqy)k

(E.7)

Substitute Equations (E.5) - (E.7) into Equation (E.4), we have the following equations:

dFx

dr
+ Fe,x = 0 (E.8)

dFy

dr
+ Fe,y = 0 (E.9)

dFr

dr
+ Fe,r = 0 (E.10)

dMx

dr
+ Fr

dqy

dr
− Fy

dqr

dr
− Fy + Me,x = 0 (E.11)

dMy

dr
− Fr

dqx

dr
+ Fx

dqr

dr
+ Fx + Me,y = 0 (E.12)

dMr

dr
+ Fy

dqx

dr
− Fx

dqy

dr
+ Me,r = 0 (E.13)

And we further substitute the inertia forces (non-inertia frame), which are shown as the
following equations, into above equations.



Fei,x

Fei,y

Fei,r

Mei,x

Mei,y

Mei,r


= −



ρs 0 0 0 0 −ρsym

0 ρs 0 0 0 ρs xm

0 0 ρs ρsym −ρs xm 0
0 0 ρsym Ixx −Ixy 0
0 0 −ρs xm −Ixy Iyy 0

−ρsym ρs xm 0 0 0 Ixx Iyy





Üqx

Üqy

Üqr

Üϕx

Üϕy
Üϕr


(E.14)

We will finally have the equilibrium equations of anisotropic wind turbine blade (Equa-
tions (5.7) - (5.12)).

The generalized strain (with small rotation assumption) for the cross section is:

ε =
[

dqx
dr − ϕy

dqy
dr + ϕx

dqr
dr

dϕx
dr

dϕy
dr

dϕr
dr

]T
(E.15)
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E. Derivation for the equilibrium and constitutive equations

The constitutive equation is:

P = Ksε (E.16)

which is the Equation (5.14).
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Appendix F

Derivation of inertia forces (floating
frame)

From Figure 5.7, we have the displacement for a point on the cross section:

®φ(r, x, t) = ®φ0(r, t) + x®t2(r, t) (F.1)

where

®φ0(r, t) = [r + qr(r, t)]®k1 + qx(r, t)®i1 (F.2)

and

®t1(r, t) = cos(ϕy(r, t))®k1 + sin(ϕy(r, t))®i1 (F.3)

®t2(r, t) = − sin(ϕy(r, t))®k1 + cos(ϕy(r, t))®i1 (F.4)

The time derivatives for the vectors are as follows:

Û®k1 = Ω®i1 (F.5)

Û®i1 = −Ω®k1 (F.6)

Û®t1 = (ωy +Ω)®t2 (F.7)

Û®t2 = −(ωy +Ω)®t1 (F.8)
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The first order time derivative of the displacement vector (velocities) is as follows:

Û®φ =
Û®φ0 − x(ωy +Ω)®t1 (F.9)

Further expanding the above equation, we have:

Û®φ(r, x, t) = (Vr −Ωqx)®k1 + [Vx +Ω(r + qr)]®i1 − x(ωy +Ω)®t1 (F.10)

And the second order time derivative (acceleration):

Ü®φ(r, x, t) = [
∂Vr

∂t
−2VxΩ−qx ÛΩ−(r+qr)Ω

2]®k1+[
∂Vx

∂t
+2VrΩ+(r+qr) ÛΩ−qxΩ

2]®i1−x(ωy−Ω)
2®t2−x(

∂ωy

∂t
+ ÛΩ)®t1

(F.11)
The above equation illustrate the inertia forces in the floating frame. And the shear

strain and the curvature for the beam section are:

®γ =
∂ ®φ0
∂r
− ®t1 = (1 +

∂qr

∂r
− cos(ϕy))®k1 + (

∂qx

∂r
− sin(ϕy))®i1 = γr ®k1 + γx®i1 (F.12)

®κ =
∂ϕy

∂r
®t3 =

∂ϕy

∂r
®j1 = κy ®j1 (F.13)

The constitutive equations for the beam section in the spin-up maneuver case is as
follows:

Fr = E A(1 +
∂qr

∂r
− cos(ϕy)) ≈ E A

∂qr

∂r
(F.14)

Fx = GA(
∂qx

∂r
− sin(ϕy)) ≈ GA(

∂qx

∂r
− ϕy) (F.15)

My = EI
∂ϕy

∂r
(F.16)
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Appendix G

Elastic actuator line code example

G.1 Explicit elastic actuator line

1 void hor izon ta lAxisWindTurb inesALM : : d e f o rma t i o n ( )
2 {
3

4 In fo <<" d e f o rma t i o n s t a r t h i t h i s i s p e r t u r b "<< end l ;
5 / / Proceed turb ine by turb ine .
6

7 I O d i c t i o n a r y d e f _ i n i v a l u e
8 (
9 IOob j e c t

10 (
11 " d e f _ i n i v a l u e " ,
12 runTime_ . c o n s t a n t ( ) , " t u r b i n e P r o p e r t i e s " ,
13 mesh_ ,
14 IOob j e c t : :MUST_READ,
15 IOob j e c t : : AUTO_WRITE
16 )
17 ) ;
18

19 I O d i c t i o n a r y t u r b i n eA r r a y P r o p e r t i e s
20 (
21 IOob j e c t
22 (
23 " t u r b i n eA r r a y P r o p e r t i e s " ,
24 runTime_ . c o n s t a n t ( ) ,
25 mesh_ ,
26 IOob j e c t : :MUST_READ,
27 IOob j e c t : : AUTO_WRITE
28 )
29 ) ;

189



30

31

32 / / c l e a r the i n i t i a l va lue s
33 d e f _ i n i v a l u e . lookup ( "M00" ) . c l e a r ( ) ;
34 d e f _ i n i v a l u e . lookup ( "M10" ) . c l e a r ( ) ;
35 d e f _ i n i v a l u e . lookup ( " Def0 " ) . c l e a r ( ) ;
36 d e f _ i n i v a l u e . lookup ( " Def1 " ) . c l e a r ( ) ;
37 d e f _ i n i v a l u e . lookup ( " Sc00 " ) . c l e a r ( ) ;
38 d e f _ i n i v a l u e . lookup ( " Sc10 " ) . c l e a r ( ) ;
39 d e f _ i n i v a l u e . lookup ( " v00 " ) . c l e a r ( ) ;
40 d e f _ i n i v a l u e . lookup ( " v10 " ) . c l e a r ( ) ;
41 d e f _ i n i v a l u e . lookup ( " dve l0 " ) . c l e a r ( ) ;
42 d e f _ i n i v a l u e . lookup ( " dve l1 " ) . c l e a r ( ) ;
43

44 / / bu i ld new i n i t i a l va lue
45

46 d e f _ i n i v a l u e . lookup ( "M00" ) . append ( word ( " ( " ) ) ;
47 d e f _ i n i v a l u e . lookup ( "M10" ) . append ( word ( " ( " ) ) ;
48 d e f _ i n i v a l u e . lookup ( " Def0 " ) . append ( word ( " ( " ) ) ;
49 d e f _ i n i v a l u e . lookup ( " Def1 " ) . append ( word ( " ( " ) ) ;
50 d e f _ i n i v a l u e . lookup ( " Sc00 " ) . append ( word ( " ( " ) ) ;
51 d e f _ i n i v a l u e . lookup ( " Sc10 " ) . append ( word ( " ( " ) ) ;
52 d e f _ i n i v a l u e . lookup ( " v00 " ) . append ( word ( " ( " ) ) ;
53 d e f _ i n i v a l u e . lookup ( " v10 " ) . append ( word ( " ( " ) ) ;
54 d e f _ i n i v a l u e . lookup ( " dve l0 " ) . append ( word ( " ( " ) ) ;
55 d e f _ i n i v a l u e . lookup ( " dve l1 " ) . append ( word ( " ( " ) ) ;
56

57 f o r A l l ( windVec tors , i )
58 {
59 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( " Azimuth " )

. c l e a r ( ) ;
60 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( " Azimuth " )

. append ( az imu th [ i ] / degRad ) ;
61 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( " RotSpeed "

) . c l e a r ( ) ;
62 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( " RotSpeed "

) . append ( r o t Sp e ed [ i ] / rpmRadSec ) ;
63 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( " TorqueGen

" ) . c l e a r ( ) ;
64 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( " TorqueGen

" ) . append ( to rqueGen [ i ] ) ;
65 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( " P i t c h " ) .

c l e a r ( ) ;
66 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( " P i t c h " ) .

append ( p i t c h [ i ] ) ;
67 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( "NacYaw" ) .

c l e a r ( ) ;
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G. Elastic actuator line code example

68 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( "NacYaw" ) .
append ( nacYaw [ i ] / degRad ) ;

69

70 In fo <<" d t ="<<dt << end l ;
71 In fo <<" d e l t t ="<< d e l t t [ i ]<< end l ;
72 In fo <<" de l tNo="<<d t / d e l t t [ i ]<< end l ;
73 In fo <<" d e l t N o i n t ="<< i n t ( d t / d e l t t [ i ] +1 ) << end l ;
74

75 f o r ( i n t l =0 ; l < i n t ( d t / d e l t t [ i ] +1 ) ; l ++)
76 {
77

78 i f ( a c t u a t o r l i n e t y p e [ i ] == " e l a s t i c " )
79 {
80

81 i f ( l == 0)
82 {
83

84 d e f _ i n i v a l u e . lookup ( "M00" ) . append ( word ( " ( " ) ) ;
85 d e f _ i n i v a l u e . lookup ( "M10" ) . append ( word ( " ( " ) ) ;
86 d e f _ i n i v a l u e . lookup ( " Def0 " ) . append ( word ( " ( " ) ) ;
87 d e f _ i n i v a l u e . lookup ( " Def1 " ) . append ( word ( " ( " ) ) ;
88 d e f _ i n i v a l u e . lookup ( " Sc00 " ) . append ( word ( " ( " ) ) ;
89 d e f _ i n i v a l u e . lookup ( " Sc10 " ) . append ( word ( " ( " ) ) ;
90 d e f _ i n i v a l u e . lookup ( " v00 " ) . append ( word ( " ( " ) ) ;
91 d e f _ i n i v a l u e . lookup ( " v10 " ) . append ( word ( " ( " ) ) ;
92 d e f _ i n i v a l u e . lookup ( " dve l0 " ) . append ( word ( " ( " ) ) ;
93 d e f _ i n i v a l u e . lookup ( " dve l1 " ) . append ( word ( " ( " ) ) ;
94 }
95 / / Info <<"deformat ion i n i t i a l i a t i o n done"<<endl ;
96 / / Proceed blade by blade .
97 f o r A l l ( w indVec to r s [ i ] , j )
98 {
99

100 / /− i n t e r p o l a t i o n f o r c e f l u i d −> s t ru c t u r e
101 f o r ( i n t m=0;m < numde fPo in t s [ i ] −3;m++)
102 {
103 fq0 [ i ] [ j ] [m] = i n t e r p o l a t e ( c a n t i l e v e r R a d i u s [ i ] [ j ] [m] −0.5∗

d e l t r [ i ] , b l a d eRad i u s [ i ] [ j ] , Force0 [ i ] [ j ] ) ;
104 fq1 [ i ] [ j ] [m] = i n t e r p o l a t e ( c a n t i l e v e r R a d i u s [ i ] [ j ] [m] −0.5∗

d e l t r [ i ] , b l a d eRad i u s [ i ] [ j ] , Force1 [ i ] [ j ] ) ;
105 fq0 [ i ] [ j ] [m]= fq0 [ i ] [ j ] [m] / db [ i ] [ 0 ] ∗ d e l t r [ i ] + ( b l a d e g r a v i t y

[ i ] [ j ] [m] & b l a d eA l i g n e dVe c t o r s [ i ] [ j ] [ 0 ] ) ∗ d e l t r [ i ] ;
106 fq1 [ i ] [ j ] [m]= fq1 [ i ] [ j ] [m] / db [ i ] [ 0 ] ∗ d e l t r [ i ] + ( b l a d e g r a v i t y [ i ] [ j

] [m] & b l a d eA l i g n e dVe c t o r s [ i ] [ j ] [ 1 ] ) ∗ d e l t r [ i ] ;
107

108 / /− save s e c t i o n a l f o r c e g rav i t y and c e n t r i f u g a l f o r c e
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109 g r a v i t y l o n g [ i ] [ j ] [m]=Gc [ t u r b i n eType ID [ i ] ] [ 0 ] [m] / dens [
t u r b i n eType ID [ i ] ] [ 0 ] [m] ∗ ( b l a d e g r a v i t y [ i ] [ j ] [m] & b l a d eA l i g n e dVe c t o r s
[ i ] [ j ] [ 2 ] ) ; / / g r av i t y f o r c e normal s e c t i o n

110 c e n t r i f o r c e [ i ] [ j ] [m]= r o tSpe ed [ i ]∗ r o t Sp e ed [ i ]∗Nc [
t u r b i n eType ID [ i ] ] [ 0 ] [m] ; / / c e n t r i f u g a l f o r c e normal s e c t i o n

111 }
112 / / Info <<" i n t e r p o l a t i o n f o r c e done"<<endl ;
113 / /− boundary cond i t i on for M, second order in space
114 M00[ i ] [ j ] [ numde fPo in t s [ i ] −1 ]=0 . 0 ;
115 M10[ i ] [ j ] [ numde fPo in t s [ i ] −1 ]=0 . 0 ;
116 / /− boundary cond i t i on for S , second order in space
117 Sc00 [ i ] [ j ] [ numde fPo in t s [ i ] −1 ]=0 . 0 ;
118 Sc10 [ i ] [ j ] [ numde fPo in t s [ i ] −1 ]=0 . 0 ;
119 / /− f i r s t computation loop for v ( v from 2~(N−2) , parameters

from 0~(N−4) )
120 f o r ( i n t m=2;m < numde fPo in t s [ i ] −1;m++)
121 {
122 v01 [ i ] [ j ] [m]= v00 [ i ] [ j ] [m]− d e l t t [ i ] / dens [ t u r b i n eType ID [ i

] ] [ 0 ] [m−2]∗(M00[ i ] [ j ] [m−1]−2∗M00[ i ] [ j ] [m]+M00[ i ] [ j ] [m+1 ] ) / d e l t r [ i ] /
d e l t r [ i ]+ fq0 [ i ] [ j ] [m−2 ] / dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m−2]∗ d e l t t [ i ]∗
f l u i dD e n s i t y [ i ] ;

123 v11 [ i ] [ j ] [m]= v10 [ i ] [ j ] [m]− d e l t t [ i ] / dens [ t u r b i n eType ID [ i
] ] [ 0 ] [m−2]∗(M10[ i ] [ j ] [m−1]−2∗M10[ i ] [ j ] [m]+M10[ i ] [ j ] [m+1 ] ) / d e l t r [ i ] /
d e l t r [ i ]+ fq1 [ i ] [ j ] [m−2 ] / dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m−2]∗ d e l t t [ i ]∗
f l u i dD e n s i t y [ i ] ;

124 / /− c e n t r i f u g a l c o r r e c t i o n
125 i f ( s t i f f t y p e [ i ] == " c e n t r i f u g a l " )
126 {
127 v01 [ i ] [ j ] [m]= v01 [ i ] [ j ] [m]+ d e l t t [ i ] / dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m

−2]∗( Sc00 [ i ] [ j ] [m]−Sc00 [ i ] [ j ] [m−1] ) / 1 . 0 / d e l t r [ i ] ;
128 v11 [ i ] [ j ] [m]= v11 [ i ] [ j ] [m]+ d e l t t [ i ] / dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m

−2]∗( Sc10 [ i ] [ j ] [m]−Sc10 [ i ] [ j ] [m−1] ) / 1 . 0 / d e l t r [ i ] ;
129 }
130

131 }
132 / / Info <<" v e l o c i t y done"<<endl ;
133 / /− boundary cond i t i on for v , second order in space
134 v01 [ i ] [ j ] [ 0 ] = 0 . 0 ;
135 v11 [ i ] [ j ] [ 0 ] = 0 . 0 ;
136 / /− second computation loop for M (M from 1~(N−3) , parameters

from 0~(N−4) )
137 f o r ( i n t m=1;m < numde fPo in t s [ i ] −2;m++)
138 {
139 M01[ i ] [ j ] [m]=M00[ i ] [ j ] [m]+ EI0 [ t u r b i n eType ID [ i ] ] [ 0 ] [m

−1]∗ d e l t t [ i ] / d e l t r [ i ] / d e l t r [ i ] ∗ ( v01 [ i ] [ j ] [m−1]−2∗v01 [ i ] [ j ] [m]+ v01 [ i
] [ j ] [m+1 ] ) +EIc [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / d e l t r [ i ] / d e l t r [ i
] ∗ ( v11 [ i ] [ j ] [m−1]−2∗v11 [ i ] [ j ] [m]+ v11 [ i ] [ j ] [m+1 ] ) ;
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140 M11[ i ] [ j ] [m]=M10[ i ] [ j ] [m]+ EI1 [ t u r b i n eType ID [ i ] ] [ 0 ] [m
−1]∗ d e l t t [ i ] / d e l t r [ i ] / d e l t r [ i ] ∗ ( v11 [ i ] [ j ] [m−1]−2∗v11 [ i ] [ j ] [m]+ v11 [ i
] [ j ] [m+1 ] ) +EIc [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / d e l t r [ i ] / d e l t r [ i
] ∗ ( v01 [ i ] [ j ] [m−1]−2∗v01 [ i ] [ j ] [m]+ v01 [ i ] [ j ] [m+1 ] ) ;

141 }
142 / /− c e n t r i f u g a l f o r c e for S ( S from 1~(N−3) , parameters from

0~(N−4) )
143 i f ( s t i f f t y p e [ i ] == " c e n t r i f u g a l " )
144 {
145 f o r ( i n t m=1;m < numde fPo in t s [ i ] −2;m++)
146 {
147 Sc01 [ i ] [ j ] [m]= Sc00 [ i ] [ j ] [m]+ r o t Spe ed [ i ]∗ r o t Sp e ed [ i ]∗Nc [

t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / 1 . 0 / d e l t r [ i ] ∗ ( v01 [ i ] [ j ] [m]−v01 [ i
] [ j ] [m−1] ) ;

148 Sc11 [ i ] [ j ] [m]= Sc10 [ i ] [ j ] [m]+ r o t Spe ed [ i ]∗ r o t Sp e ed [ i ]∗Nc [
t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / 1 . 0 / d e l t r [ i ] ∗ ( v11 [ i ] [ j ] [m]−v11 [ i
] [ j ] [m−1] ) ;

149 / /− shear f o r c e save
150 s h e a r f o r c e 0 [ i ] [ j ] [m−1]= −1.0∗(M01[ i ] [ j ] [m+1]−M01[ i ] [ j ] [m] )

/ d e l t r [ i ]+ Sc01 [ i ] [ j ] [m] ;
151 s h e a r f o r c e 1 [ i ] [ j ] [m−1]= −1.0∗(M11[ i ] [ j ] [m+1]−M11[ i ] [ j ] [m] )

/ d e l t r [ i ]+ Sc11 [ i ] [ j ] [m] ;
152 }
153 }
154 / / Info <<"Moment done"<<endl ;
155 i f ( s t i f f t y p e [ i ] != " c e n t r i f u g a l " )
156 {
157 f o r ( i n t m=1;m < numde fPo in t s [ i ] −2;m++)
158 {
159 / /− shear f o r c e save
160 s h e a r f o r c e 0 [ i ] [ j ] [m−1]= −1.0∗(M01[ i ] [ j ] [m+1]−M01[ i ] [ j ] [m] )

/ d e l t r [ i ] ;
161 s h e a r f o r c e 1 [ i ] [ j ] [m−1]= −1.0∗(M11[ i ] [ j ] [m+1]−M11[ i ] [ j ] [m] )

/ d e l t r [ i ] ;
162 }
163 }
164 / / Info <<" shear f o r c e done"<<endl ;
165 / /− re save the M for i n t e r p o l a t i o n
166 f o r ( i n t m=1;m<numde fPo in t s [ i ] −2;m++)
167 {
168 M01_in te r [ i ] [ j ] [m−1]=M01[ i ] [ j ] [m] ;
169 M11_in te r [ i ] [ j ] [m−1]=M11[ i ] [ j ] [m] ;
170 }
171 / / Info <<"save moment done"<<endl ;
172 / /− i n t e r p o l a t i o n on c r i t i c a l s e c t i o n for s t r e s s recovery and

f a t i g u e a n a l y s i s
173 / / Info <<" i n t e r p o l a t i o n s t a r t "<<endl ;
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174 / / Info <<" c r i s e c "<< c r i s e c [ i ]<< endl ;
175 / / Info <<" can t i l e v e rRad iu s "<< can t i l e v e rRad iu s [ i ] [ j ]<< endl ;
176 / / Info <<" shear for ce0"<< i n t e r p o l a t e ( c r i s e c [ i ] , c an t i l e v e rRad iu s [ i ] [ j ] ,

shear fo rc e0 [ i ] [ j ] ) <<endl ;
177 s h e a r f o r c e 0 _ c r i [ i ] [ j ]= i n t e r p o l a t e ( c r i s e c [ i ] ,

c a n t i l e v e r R a d i u s [ i ] [ j ] , s h e a r f o r c e 0 [ i ] [ j ] ) ;
178 / / Info <<" shear for ce0 done"<<endl ;
179 s h e a r f o r c e 1 _ c r i [ i ] [ j ]= i n t e r p o l a t e ( c r i s e c [ i ] ,

c a n t i l e v e r R a d i u s [ i ] [ j ] , s h e a r f o r c e 1 [ i ] [ j ] ) ;
180 / / Info <<" shear for ce1 done"<<endl ;
181 g r a v i t y l o n g _ c r i [ i ] [ j ]= i n t e r p o l a t e ( c r i s e c [ i ] ,

c a n t i l e v e r R a d i u s [ i ] [ j ] , g r a v i t y l o n g [ i ] [ j ] ) ;
182 / / Info <<" grav i t y l ong done"<<endl ;
183 c e n t r i f o r c e _ c r i [ i ] [ j ]= i n t e r p o l a t e ( c r i s e c [ i ] ,

c a n t i l e v e r R a d i u s [ i ] [ j ] , c e n t r i f o r c e [ i ] [ j ] ) ;
184 / / Info <<" c e n t r i f o r c e done"<<endl ;
185 M0_cri [ i ] [ j ]= i n t e r p o l a t e ( c r i s e c [ i ] , c a n t i l e v e r R a d i u s [ i ] [ j ] ,

M01_in te r [ i ] [ j ] ) ;
186 / / Info <<"M0 done"<<endl ;
187 M1_cri [ i ] [ j ]= i n t e r p o l a t e ( c r i s e c [ i ] , c a n t i l e v e r R a d i u s [ i ] [ j ] ,

M11_in te r [ i ] [ j ] ) ;
188 / / Info <<"M1 done"<<endl ;
189 / / Info <<" c r i t i c a l done"<<endl ;
190 }
191

192 f o r A l l ( w indVec to r s [ i ] , j )
193 {
194

195 i f ( l == 0)
196 {
197 d e f _ i n i v a l u e . lookup ( "M00" ) . append ( word ( " ( " ) ) ;
198 d e f _ i n i v a l u e . lookup ( "M10" ) . append ( word ( " ( " ) ) ;
199 d e f _ i n i v a l u e . lookup ( " Sc00 " ) . append ( word ( " ( " ) ) ;
200 d e f _ i n i v a l u e . lookup ( " Sc10 " ) . append ( word ( " ( " ) ) ;
201 d e f _ i n i v a l u e . lookup ( " v00 " ) . append ( word ( " ( " ) ) ;
202 d e f _ i n i v a l u e . lookup ( " v10 " ) . append ( word ( " ( " ) ) ;
203 d e f _ i n i v a l u e . lookup ( " dve l0 " ) . append ( word ( " ( " ) ) ;
204 d e f _ i n i v a l u e . lookup ( " dve l1 " ) . append ( word ( " ( " ) ) ;
205 }
206

207 f o r ( i n t n =0; n < numde fPo in t s [ i ] ; n++)
208 {
209 i f ( l == 0)
210 {
211 d e f _ i n i v a l u e . lookup ( "M00" ) . append (M00[ i ] [ j ] [ n ] ) ;
212 d e f _ i n i v a l u e . lookup ( "M10" ) . append (M10[ i ] [ j ] [ n ] ) ;
213 d e f _ i n i v a l u e . lookup ( " Sc00 " ) . append ( Sc00 [ i ] [ j ] [ n ] ) ;
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214 d e f _ i n i v a l u e . lookup ( " Sc10 " ) . append ( Sc10 [ i ] [ j ] [ n ] ) ;
215 d e f _ i n i v a l u e . lookup ( " v00 " ) . append ( v00 [ i ] [ j ] [ n ] ) ;
216 d e f _ i n i v a l u e . lookup ( " v10 " ) . append ( v10 [ i ] [ j ] [ n ] ) ;
217 }
218 v00 [ i ] [ j ] [ n ]= v01 [ i ] [ j ] [ n ] ;
219 M00[ i ] [ j ] [ n ]=M01[ i ] [ j ] [ n ] ;
220 Sc00 [ i ] [ j ] [ n ]= Sc01 [ i ] [ j ] [ n ] ;
221 v10 [ i ] [ j ] [ n ]= v11 [ i ] [ j ] [ n ] ;
222 M10[ i ] [ j ] [ n ]=M11[ i ] [ j ] [ n ] ;
223 Sc10 [ i ] [ j ] [ n ]= Sc11 [ i ] [ j ] [ n ] ;
224 }
225

226 f o r ( i n t m = 0 ; m < numBladePo in t s [ i ] ; m++)
227 {
228 / /− i n t e r p o l a t i o n the save f o r c e to the c r i t i c a l s e c t i o n
229

230

231 i f ( l == 0)
232 {
233 d e f _ i n i v a l u e . lookup ( " dve l0 " ) . append ( dve l0 [ i ] [ j ] [m] ) ;
234 d e f _ i n i v a l u e . lookup ( " dve l1 " ) . append ( dve l1 [ i ] [ j ] [m] ) ;
235 }
236 i f ( ( b l a d eRad i u s [ i ] [ j ] [m]>= c a n t i l e v e r s t a r t [ i ] )&&(b l a d eRad i u s [ i ] [ j

] [m] <=( c a n t i l e v e r e n d [ i ] ) ) )
237 {
238 dve l0 [ i ] [ j ] [m]= i n t e r p o l a t e ( b l a d eRad i u s [ i ] [ j ] [m] ,

c a n t i l e v e r R a d i u s [ i ] [ j ] , v00 [ i ] [ j ] ) ;
239 dve l1 [ i ] [ j ] [m]= i n t e r p o l a t e ( b l a d eRad i u s [ i ] [ j ] [m] ,

c a n t i l e v e r R a d i u s [ i ] [ j ] , v10 [ i ] [ j ] ) ;
240 / / b l adePo in t s [ i ] [ j ] [m]= b ladePo in t s [ i ] [ j ] [m]+ dve l0 [ i ] [ j ] [

m]∗ b ladeAl ignedVectors [ i ] [ j ] [ 0 ] ∗ d e l t t [ i ]+ dve l1 [ i ] [ j ] [m]∗
b ladeAl ignedVectors [ i ] [ j ] [ 1 ] ∗ d e l t t [ i ] ;

241

242 }
243 }
244

245 i f ( l == 0)
246 {
247 d e f _ i n i v a l u e . lookup ( " Def0 " ) . append ( Def0 [ i ] [ j ] ) ;
248 d e f _ i n i v a l u e . lookup ( " Def1 " ) . append ( Def1 [ i ] [ j ] ) ;
249 d e f _ i n i v a l u e . lookup ( "M00" ) . append ( word ( " ) " ) ) ;
250 d e f _ i n i v a l u e . lookup ( "M10" ) . append ( word ( " ) " ) ) ;
251 d e f _ i n i v a l u e . lookup ( " Sc00 " ) . append ( word ( " ) " ) ) ;
252 d e f _ i n i v a l u e . lookup ( " Sc10 " ) . append ( word ( " ) " ) ) ;
253 d e f _ i n i v a l u e . lookup ( " v00 " ) . append ( word ( " ) " ) ) ;
254 d e f _ i n i v a l u e . lookup ( " v10 " ) . append ( word ( " ) " ) ) ;
255 d e f _ i n i v a l u e . lookup ( " dve l0 " ) . append ( word ( " ) " ) ) ;
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256 d e f _ i n i v a l u e . lookup ( " dve l1 " ) . append ( word ( " ) " ) ) ;
257 }
258 Def0 [ i ] [ j ]= Def0 [ i ] [ j ]+ v00 [ i ] [ j ] [ numde fPo in t s [ i ] −2]∗ d e l t t [ i ] ;
259 Def1 [ i ] [ j ]= Def1 [ i ] [ j ]+ v10 [ i ] [ j ] [ numde fPo in t s [ i ] −2]∗ d e l t t [ i ] ;
260 }
261

262 i f ( l == 0)
263 {
264 d e f _ i n i v a l u e . lookup ( "M00" ) . append ( word ( " ) " ) ) ;
265 d e f _ i n i v a l u e . lookup ( "M10" ) . append ( word ( " ) " ) ) ;
266 d e f _ i n i v a l u e . lookup ( " Def0 " ) . append ( word ( " ) " ) ) ;
267 d e f _ i n i v a l u e . lookup ( " Def1 " ) . append ( word ( " ) " ) ) ;
268 d e f _ i n i v a l u e . lookup ( " Sc00 " ) . append ( word ( " ) " ) ) ;
269 d e f _ i n i v a l u e . lookup ( " Sc10 " ) . append ( word ( " ) " ) ) ;
270 d e f _ i n i v a l u e . lookup ( " v00 " ) . append ( word ( " ) " ) ) ;
271 d e f _ i n i v a l u e . lookup ( " v10 " ) . append ( word ( " ) " ) ) ;
272 d e f _ i n i v a l u e . lookup ( " dve l0 " ) . append ( word ( " ) " ) ) ;
273 d e f _ i n i v a l u e . lookup ( " dve l1 " ) . append ( word ( " ) " ) ) ;
274 }
275 }
276 }
277

278 }
279 d e f _ i n i v a l u e . lookup ( "M00" ) . append ( word ( " ) " ) ) ;
280 d e f _ i n i v a l u e . lookup ( "M10" ) . append ( word ( " ) " ) ) ;
281 d e f _ i n i v a l u e . lookup ( " Def0 " ) . append ( word ( " ) " ) ) ;
282 d e f _ i n i v a l u e . lookup ( " Def1 " ) . append ( word ( " ) " ) ) ;
283 d e f _ i n i v a l u e . lookup ( " Sc00 " ) . append ( word ( " ) " ) ) ;
284 d e f _ i n i v a l u e . lookup ( " Sc10 " ) . append ( word ( " ) " ) ) ;
285 d e f _ i n i v a l u e . lookup ( " v00 " ) . append ( word ( " ) " ) ) ;
286 d e f _ i n i v a l u e . lookup ( " v10 " ) . append ( word ( " ) " ) ) ;
287 d e f _ i n i v a l u e . lookup ( " dve l0 " ) . append ( word ( " ) " ) ) ;
288 d e f _ i n i v a l u e . lookup ( " dve l1 " ) . append ( word ( " ) " ) ) ;
289 runTime_ . w r i t e ( ) ;
290

291 }

G.2 Implicit elastic actuator line code

1 void hor izon ta lAxisWindTurb inesALM : : d e f o rma t i o n ( )
2 {
3

4

5

6 In fo <<" d e f o rma t i o n s t a r t h i t h i s i s p e r t u r b "<< end l ;
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7 / / Proceed turb ine by turb ine .
8

9 I O d i c t i o n a r y d e f _ i n i v a l u e
10 (
11 IOob j e c t
12 (
13 " d e f _ i n i v a l u e " ,
14 runTime_ . c o n s t a n t ( ) , " t u r b i n e P r o p e r t i e s " ,
15 mesh_ ,
16 IOob j e c t : :MUST_READ,
17 IOob j e c t : : AUTO_WRITE
18 )
19 ) ;
20

21 I O d i c t i o n a r y t u r b i n eA r r a y P r o p e r t i e s
22 (
23 IOob j e c t
24 (
25 " t u r b i n eA r r a y P r o p e r t i e s " ,
26 runTime_ . c o n s t a n t ( ) ,
27 mesh_ ,
28 IOob j e c t : :MUST_READ,
29 IOob j e c t : : AUTO_WRITE
30 )
31 ) ;
32

33

34 In fo <<" s t a r t 1 "<< end l ;
35 / / c l e a r the i n i t i a l va lue s
36 d e f _ i n i v a l u e . lookup ( "M00" ) . c l e a r ( ) ;
37 d e f _ i n i v a l u e . lookup ( "M10" ) . c l e a r ( ) ;
38 d e f _ i n i v a l u e . lookup ( " Def0 " ) . c l e a r ( ) ;
39 d e f _ i n i v a l u e . lookup ( " Def1 " ) . c l e a r ( ) ;
40 d e f _ i n i v a l u e . lookup ( " Sc00 " ) . c l e a r ( ) ;
41 d e f _ i n i v a l u e . lookup ( " Sc10 " ) . c l e a r ( ) ;
42 d e f _ i n i v a l u e . lookup ( " v00 " ) . c l e a r ( ) ;
43 d e f _ i n i v a l u e . lookup ( " v10 " ) . c l e a r ( ) ;
44 d e f _ i n i v a l u e . lookup ( " dve l0 " ) . c l e a r ( ) ;
45 d e f _ i n i v a l u e . lookup ( " dve l1 " ) . c l e a r ( ) ;
46

47 / / bu i ld new i n i t i a l va lue
48

49 d e f _ i n i v a l u e . lookup ( "M00" ) . append ( word ( " ( " ) ) ;
50 d e f _ i n i v a l u e . lookup ( "M10" ) . append ( word ( " ( " ) ) ;
51 d e f _ i n i v a l u e . lookup ( " Def0 " ) . append ( word ( " ( " ) ) ;
52 d e f _ i n i v a l u e . lookup ( " Def1 " ) . append ( word ( " ( " ) ) ;
53 d e f _ i n i v a l u e . lookup ( " Sc00 " ) . append ( word ( " ( " ) ) ;
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54 d e f _ i n i v a l u e . lookup ( " Sc10 " ) . append ( word ( " ( " ) ) ;
55 d e f _ i n i v a l u e . lookup ( " v00 " ) . append ( word ( " ( " ) ) ;
56 d e f _ i n i v a l u e . lookup ( " v10 " ) . append ( word ( " ( " ) ) ;
57 d e f _ i n i v a l u e . lookup ( " dve l0 " ) . append ( word ( " ( " ) ) ;
58 d e f _ i n i v a l u e . lookup ( " dve l1 " ) . append ( word ( " ( " ) ) ;
59

60 f o r A l l ( windVec tors , i )
61 {
62

63 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( " Azimuth " )
. c l e a r ( ) ;

64 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( " Azimuth " )
. append ( az imu th [ i ] / degRad ) ;

65 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( " RotSpeed "
) . c l e a r ( ) ;

66 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( " RotSpeed "
) . append ( r o t Sp e ed [ i ] / rpmRadSec ) ;

67 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( " TorqueGen
" ) . c l e a r ( ) ;

68 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( " TorqueGen
" ) . append ( to rqueGen [ i ] ) ;

69 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( " P i t c h " ) .
c l e a r ( ) ;

70 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( " P i t c h " ) .
append ( p i t c h [ i ] ) ;

71 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( "NacYaw" ) .
c l e a r ( ) ;

72 t u r b i n eA r r a y P r o p e r t i e s . s ubD i c t ( tu rb ineName [ i ] ) . lookup ( "NacYaw" ) .
append ( nacYaw [ i ] / degRad ) ;

73

74

75

76 d e l t t [ i ]= d t / 1 . 0 ;
77 f o r ( i n t l =0 ; l <1 ; l ++)
78 {
79

80 i f ( a c t u a t o r l i n e t y p e [ i ] == " e l a s t i c " )
81 {
82

83 i f ( l == 0)
84 {
85

86 d e f _ i n i v a l u e . lookup ( "M00" ) . append ( word ( " ( " ) ) ;
87 d e f _ i n i v a l u e . lookup ( "M10" ) . append ( word ( " ( " ) ) ;
88 d e f _ i n i v a l u e . lookup ( " Def0 " ) . append ( word ( " ( " ) ) ;
89 d e f _ i n i v a l u e . lookup ( " Def1 " ) . append ( word ( " ( " ) ) ;
90 d e f _ i n i v a l u e . lookup ( " Sc00 " ) . append ( word ( " ( " ) ) ;
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91 d e f _ i n i v a l u e . lookup ( " Sc10 " ) . append ( word ( " ( " ) ) ;
92 d e f _ i n i v a l u e . lookup ( " v00 " ) . append ( word ( " ( " ) ) ;
93 d e f _ i n i v a l u e . lookup ( " v10 " ) . append ( word ( " ( " ) ) ;
94 d e f _ i n i v a l u e . lookup ( " dve l0 " ) . append ( word ( " ( " ) ) ;
95 d e f _ i n i v a l u e . lookup ( " dve l1 " ) . append ( word ( " ( " ) ) ;
96 }
97

98 / / Proceed blade by blade .
99 f o r A l l ( w indVec to r s [ i ] , j )

100 {
101

102 / /− assembly the g l oba l matrix search every s i n g l e c on t r o l
po in t each po in t i s a matrix

103 f o r ( i n t m=1;m < numde fPo in t s [ i ] −1;m++)
104 {
105

106 / / Info <<" i n i t i a l i z a t i o n matrix"<<endl ;
107 / /− A matrix
108 Am[ 0 ] [ 0 ] = 0 . 0 ;
109 Am[ 0 ] [ 1 ] = 0 . 0 ;
110 Am[0 ] [ 2 ]= −1 . 0∗ d e l t t [ i ] / 2 . 0 / d e l t r [ i ] / d e l t r [ i ] / dens [ t u r b i n eType ID [

i ] ] [ 0 ] [m−1 ] ;
111 Am[ 0 ] [ 3 ] = 0 . 0 ;
112 Am[ 1 ] [ 0 ] = 0 . 0 ;
113 Am[ 1 ] [ 1 ] = 0 . 0 ;
114 Am[ 1 ] [ 2 ] = 0 . 0 ;
115 Am[1 ] [ 3 ]= −1 . 0∗ d e l t t [ i ] / 2 . 0 / d e l t r [ i ] / d e l t r [ i ] / dens [ t u r b i n eType ID [

i ] ] [ 0 ] [m−1 ] ;
116 Am[ 2 ] [ 0 ] = EI0 [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / 2 . 0 / d e l t r [ i ] /

d e l t r [ i ] ;
117 Am[ 2 ] [ 1 ] = EIc [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / 2 . 0 / d e l t r [ i ] /

d e l t r [ i ] ;
118 Am[ 2 ] [ 2 ] = 0 . 0 ;
119 Am[ 2 ] [ 3 ] = 0 . 0 ;
120 Am[ 3 ] [ 0 ] = EIc [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / 2 . 0 / d e l t r [ i ] /

d e l t r [ i ] ;
121 Am[ 3 ] [ 1 ] = EI1 [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / 2 . 0 / d e l t r [ i ] /

d e l t r [ i ] ;
122 Am[ 3 ] [ 2 ] = 0 . 0 ;
123 Am[ 3 ] [ 3 ] = 0 . 0 ;
124 / / Info <<" i n i t i a l i z a t i o n matrix B"<<endl ;
125 / /− B matrix
126 / / damp[ i ] = 1 0 . 0 ; / / comtemprary
127 Bm[ 0 ] [ 0 ] = 1 . 0 + damp [ i ] ∗ 4 . 0 ∗3 . 1 415926 / 1 00 . 0 ∗ d e l t t [ i ] ;
128 Bm[ 0 ] [ 1 ] = 0 . 0 ;
129 Bm[0 ] [ 2 ]= −1 . 0∗ d e l t t [ i ] / d e l t r [ i ] / d e l t r [ i ] / dens [ t u r b i n eType ID [ i

] ] [ 0 ] [m−1 ] ;
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130 Bm[ 0 ] [ 3 ] = 0 . 0 ;
131 Bm[ 1 ] [ 0 ] = 0 . 0 ;
132 Bm[ 1 ] [ 1 ] = 1 . 0 + damp [ i ] ∗ 4 . 0 ∗3 . 1 415926 / 1 00 . 0 ∗ d e l t t [ i ] ; / / +damp[ i

] ∗4 . 0∗3 . 1415926 / 100 . 0∗ d e l t t [ i ] ;
133 Bm[ 1 ] [ 2 ] = 0 . 0 ;
134 Bm[1 ] [ 3 ]= −1 . 0∗ d e l t t [ i ] / d e l t r [ i ] / d e l t r [ i ] / dens [ t u r b i n eType ID [ i

] ] [ 0 ] [m−1 ] ;
135 Bm[ 2 ] [ 0 ] = EI0 [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / d e l t r [ i ] / d e l t r [ i

] ;
136 Bm[ 2 ] [ 1 ] = EIc [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / d e l t r [ i ] / d e l t r [ i

] ;
137 Bm[ 2 ] [ 2 ] = 1 . 0 ;
138 Bm[ 2 ] [ 3 ] = 0 . 0 ;
139 Bm[ 3 ] [ 0 ] = EIc [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / d e l t r [ i ] / d e l t r [ i

] ;
140 Bm[ 3 ] [ 1 ] = EI1 [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / d e l t r [ i ] / d e l t r [ i

] ;
141 Bm[ 3 ] [ 2 ] = 0 . 0 ;
142 Bm[ 3 ] [ 3 ] = 1 . 0 ;
143 / / Info <<" i n i t i a l i z a t i o n matrix C"<<endl ;
144 / /− C matrix
145 Cm[ 0 ] [ 0 ] = 0 . 0 ;
146 Cm[ 0 ] [ 1 ] = 0 . 0 ;
147 Cm[0 ] [ 2 ]= −1 . 0∗ d e l t t [ i ] / 2 . 0 / d e l t r [ i ] / d e l t r [ i ] / dens [ t u r b i n eType ID [

i ] ] [ 0 ] [m−1 ] ;
148 Cm[ 0 ] [ 3 ] = 0 . 0 ;
149 Cm[ 1 ] [ 0 ] = 0 . 0 ;
150 Cm[ 1 ] [ 1 ] = 0 . 0 ;
151 Cm[ 1 ] [ 2 ] = 0 . 0 ;
152 Cm[1 ] [ 3 ]= −1 . 0∗ d e l t t [ i ] / 2 . 0 / d e l t r [ i ] / d e l t r [ i ] / dens [ t u r b i n eType ID [

i ] ] [ 0 ] [m−1 ] ;
153 Cm[ 2 ] [ 0 ] = EI0 [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / 2 . 0 / d e l t r [ i ] /

d e l t r [ i ] ;
154 Cm[ 2 ] [ 1 ] = EIc [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / 2 . 0 / d e l t r [ i ] /

d e l t r [ i ] ;
155 Cm[ 2 ] [ 2 ] = 0 . 0 ;
156 Cm[ 2 ] [ 3 ] = 0 . 0 ;
157 Cm[ 3 ] [ 0 ] = EIc [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / 2 . 0 / d e l t r [ i ] /

d e l t r [ i ] ;
158 Cm[ 3 ] [ 1 ] = EI1 [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / 2 . 0 / d e l t r [ i ] /

d e l t r [ i ] ;
159 Cm[ 3 ] [ 2 ] = 0 . 0 ;
160 Cm[ 3 ] [ 3 ] = 0 . 0 ;
161

162 / /− e x t e rna l f o r c e matrix
163 / / Info <<" ex t e rna l f o r c e matrix fq0"<<endl ;
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164 fq0 [ i ] [ j ] [m] = i n t e r p o l a t e ( c a n t i l e v e r R a d i u s [ i ] [ j ] [m] ,
b l a d eRad i u s [ i ] [ j ] , Force0 [ i ] [ j ] ) ;

165 fq1 [ i ] [ j ] [m] = i n t e r p o l a t e ( c a n t i l e v e r R a d i u s [ i ] [ j ] [m] ,
b l a d eRad i u s [ i ] [ j ] , Force1 [ i ] [ j ] ) ;

166 fq0 [ i ] [ j ] [m] = fq0 [ i ] [ j ] [m] / db [ i ] [ 0 ] ∗ d e l t r [ i ] + (
b l a d e g r a v i t y [ i ] [ j ] [m−1] & b l a d eA l i g n e dVe c t o r s [ i ] [ j ] [ 0 ] ) ∗ d e l t r [ i ] ;

167 fq1 [ i ] [ j ] [m] = fq1 [ i ] [ j ] [m] / db [ i ] [ 0 ] ∗ d e l t r [ i ] + ( b l a d e g r a v i t y [ i ] [ j ] [m
−1] & b l a d eA l i g n e dVe c t o r s [ i ] [ j ] [ 1 ] ) ∗ d e l t r [ i ] ;

168

169 / /− save s e c t i o n a l f o r c e g rav i t y and c e n t r i f u g a l f o r c e
170 g r a v i t y l o n g [ i ] [ j ] [m]=Gc [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1 ] / dens [

t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗( b l a d e g r a v i t y [ i ] [ j ] [m−1] &
b l a d eA l i g n e dVe c t o r s [ i ] [ j ] [ 2 ] ) ; / / g r av i t y f o r c e normal s e c t i o n

171 c e n t r i f o r c e [ i ] [ j ] [m]= r o tSpe ed [ i ]∗ r o t Sp e ed [ i ]∗Nc [
t u r b i n eType ID [ i ] ] [ 0 ] [m−1]+( b l a d e g r a v i t y [ i ] [ j ] [m−1] &
b l a d eA l i g n e dVe c t o r s [ i ] [ j ] [ 2 ] ) ∗Gc [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1 ] / dens [
t u r b i n eType ID [ i ] ] [ 0 ] [m−1 ] ; / / c e n t r i f u g a l f o r c e normal s e c t i o n

172

173 / / Info <<" ex t e rna l f o r c e matrix dm"<<endl ;
174 dm[ 0 ] = fq0 [ i ] [ j ] [m]∗ d e l t t [ i ] / dens [ t u r b i n eType ID [ i

] ] [ 0 ] [m−1]− d e l t t [ i ] / 2 . 0 / d e l t r [ i ] / d e l t r [ i ] / dens [ t u r b i n eType ID [ i ] ] [ 0 ] [
m−1]∗(M00[ i ] [ j ] [m−1]−2∗M00[ i ] [ j ] [m]+M00[ i ] [ j ] [m+1 ] )− d e l t t [ i ] / 2 . 0 /
d e l t r [ i ] / dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗( Sc00 [ i ] [ j ] [m−1]−Sc00 [ i ] [ j ] [
m+1 ] ) +v00 [ i ] [ j ] [m] ;

175 dm[ 1 ] = fq1 [ i ] [ j ] [m]∗ d e l t t [ i ] / dens [ t u r b i n eType ID [ i
] ] [ 0 ] [m−1]− d e l t t [ i ] / 2 . 0 / d e l t r [ i ] / d e l t r [ i ] / dens [ t u r b i n eType ID [ i ] ] [ 0 ] [
m−1]∗(M10[ i ] [ j ] [m−1]−2∗M10[ i ] [ j ] [m]+M10[ i ] [ j ] [m+1 ] )− d e l t t [ i ] / 2 . 0 /
d e l t r [ i ] / dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗( Sc10 [ i ] [ j ] [m−1]−Sc10 [ i ] [ j ] [
m+1 ] ) +v10 [ i ] [ j ] [m] ;

176 dm[ 2 ] = M00[ i ] [ j ] [m]+ EI0 [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗
d e l t t [ i ] / 2 . 0 / d e l t r [ i ] / d e l t r [ i ] ∗ ( v00 [ i ] [ j ] [m−1]−2∗v00 [ i ] [ j ] [m]+ v00 [ i
] [ j ] [m+1 ] ) +EIc [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / 2 . 0 / d e l t r [ i ] / d e l t r
[ i ] ∗ ( v10 [ i ] [ j ] [m−1]−2∗v10 [ i ] [ j ] [m]+ v10 [ i ] [ j ] [m+1 ] ) ;

177 dm[ 3 ] = M10[ i ] [ j ] [m]+ EI1 [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗
d e l t t [ i ] / 2 . 0 / d e l t r [ i ] / d e l t r [ i ] ∗ ( v10 [ i ] [ j ] [m−1]−2∗v10 [ i ] [ j ] [m]+ v10 [ i
] [ j ] [m+1 ] ) +EIc [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / 2 . 0 / d e l t r [ i ] / d e l t r
[ i ] ∗ ( v00 [ i ] [ j ] [m−1]−2∗v00 [ i ] [ j ] [m]+ v00 [ i ] [ j ] [m+1 ] ) ;

178

179 / /− two cond i t i o n s for c e n t r i f u g a l f o r c e S
180 / / Info <<" ex t e rna l f o r c e matrix ds"<<endl ;
181 i f (m==1)
182 {
183 dm[0 ]= fq0 [ i ] [ j ] [m]∗ d e l t t [ i ] / dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m

−1]− d e l t t [ i ] / 2 . 0 / d e l t r [ i ] / d e l t r [ i ] / dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗(
M00[ i ] [ j ] [m−1]−2∗M00[ i ] [ j ] [m]+M00[ i ] [ j ] [m+1 ] )− d e l t t [ i ] / 1 . 0 / d e l t r [ i ] /
dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗( Sc00 [ i ] [ j ] [m]−Sc00 [ i ] [ j ] [m+1 ] ) +v00 [ i
] [ j ] [m] ;
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184 dm[1 ]= fq1 [ i ] [ j ] [m]∗ d e l t t [ i ] / dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m
−1]− d e l t t [ i ] / 2 . 0 / d e l t r [ i ] / d e l t r [ i ] / dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗(
M10[ i ] [ j ] [m−1]−2∗M10[ i ] [ j ] [m]+M10[ i ] [ j ] [m+1 ] )− d e l t t [ i ] / 1 . 0 / d e l t r [ i ] /
dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗( Sc10 [ i ] [ j ] [m]−Sc10 [ i ] [ j ] [m+1 ] ) +v10 [ i
] [ j ] [m] ;

185 }
186

187 i f (m==numdefPo in t s [ i ] −2)
188 {
189 dm[0 ]= fq0 [ i ] [ j ] [m]∗ d e l t t [ i ] / dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m

−1]− d e l t t [ i ] / 2 . 0 / d e l t r [ i ] / d e l t r [ i ] / dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗(
M00[ i ] [ j ] [m−1]−2∗M00[ i ] [ j ] [m]+M00[ i ] [ j ] [m+1 ] )− d e l t t [ i ] / 1 . 0 / d e l t r [ i ] /
dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗( Sc00 [ i ] [ j ] [m−1]−Sc00 [ i ] [ j ] [m] ) +v00 [ i
] [ j ] [m] ;

190 dm[1 ]= fq1 [ i ] [ j ] [m]∗ d e l t t [ i ] / dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m
−1]− d e l t t [ i ] / 2 . 0 / d e l t r [ i ] / d e l t r [ i ] / dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗(
M10[ i ] [ j ] [m−1]−2∗M10[ i ] [ j ] [m]+M10[ i ] [ j ] [m+1 ] )− d e l t t [ i ] / 1 . 0 / d e l t r [ i ] /
dens [ t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗( Sc10 [ i ] [ j ] [m−1]−Sc10 [ i ] [ j ] [m] ) +v10 [ i
] [ j ] [m] ;

191 }
192

193

194 / / Info <<"assembly g l oba l matrix"<<endl ;
195 / /− Assembly the g l oba l matrix G0
196 f o r ( i n t n =0; n < 4 ; n++)
197 {
198 f o r ( i n t mm=0;mm < 4 ;mm++)
199 {
200 G0[ n+(m−1) ∗4 ] [mm+(m−1) ∗4]= −1.0∗Cm[ n ] [mm] ;
201 G0[ n+(m−1) ∗4 ] [mm+(m) ∗4]=Bm[ n ] [mm] ;
202 G0[ n+(m−1) ∗4 ] [mm+(m+1) ∗4]= −1.0∗Am[ n ] [mm] ;
203 }
204 }
205

206

207

208 / / Info <<"assembly g l oba l matrix G1"<<endl ;
209 / /− Assembly the g l oba l matrix G1
210 f o r ( i n t n =0; n < 4 ; n++)
211 {
212

213 G1[ n+(m−1) ∗4 ] [ 0 ]=G0[ n+(m−1) ∗ 4 ] [ 2 ] ;
214 G1[ n+(m−1) ∗4 ] [ 1 ]=G0[ n+(m−1) ∗ 4 ] [ 3 ] ;
215

216 f o r ( i n t nn =2; nn < 4∗ numdefPo in t s [ i ] −10; nn++)
217 {
218 G1[ n+(m−1) ∗4 ] [ nn ]=G0[ n+(m−1) ∗4 ] [ nn +4 ] ;
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219 }
220

221 G1[ n+(m−1) ∗4 ] [4∗ numde fPo in t s [ i ]−10]=G0[ n+(m−1) ∗4 ] [4∗
numde fPo in t s [ i ] −4 ] ;

222 G1[ n+(m−1) ∗4 ] [4∗ numde fPo in t s [ i ]−9]=G0[ n+(m−1) ∗4 ] [4∗
numde fPo in t s [ i ] −3 ] ;

223 }
224 / / Info <<"assembly g l oba l matrix ds"<<endl ;
225 / /− Assembly the matrix ds
226 f o r ( i n t nn =0; nn < 4 ; nn++)
227 {
228 ds [ (m−1)∗4+nn ]=dm[ nn ] ;
229 }
230 / / Info <<"end"<<endl ;
231

232 }
233

234

235

236 / /− assembly done
237 / / Info <<" s o l v i n g matrix"<<endl ;
238 / /− Matrix i n v e r s i on
239 us= i n v i m p l i c i t (G1 , numde fPo in t s [ i ] , ds ) ; / / i n v e r s e matrix
240

241 / /−next t ime s t ep va lue v e l o c i t y
242 f o r ( i n t m=2;m<numde fPo in t s [ i ] −1;m++)
243 {
244 v01 [ i ] [ j ] [m]= us [ 4+ (m−2) ∗ 4 ] ;
245 v11 [ i ] [ j ] [m]= us [ 5+ (m−2) ∗ 4 ] ;
246 }
247 v01 [ i ] [ j ] [ numde fPo in t s [ i ]−1]= us [4∗ numde fPo in t s [ i ] −10 ] ;
248 v11 [ i ] [ j ] [ numde fPo in t s [ i ]−1]= us [4∗ numde fPo in t s [ i ] −9 ] ;
249

250 / /−next t ime s t ep va lue moment
251 f o r ( i n t m=1;m<numde fPo in t s [ i ] −2;m++)
252 {
253 M01[ i ] [ j ] [m]= us [ 2+ (m−1) ∗ 4 ] ;
254 M11[ i ] [ j ] [m]= us [ 3+ (m−1) ∗ 4 ] ;
255 }
256 M01[ i ] [ j ] [ 0 ] = us [ 0 ] ;
257 M11[ i ] [ j ] [ 0 ] = us [ 1 ] ;
258

259 / /−next t ime s t ep c e n t r i f u g a l s t r e s s
260 f o r ( i n t m=1;m<numde fPo in t s [ i ] −1;m++)
261 {
262 Sc01 [ i ] [ j ] [m]= Sc00 [ i ] [ j ] [m]+ r o t Spe ed [ i ]∗ r o t Sp e ed [ i ]∗Nc [

t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / 4 . 0 / d e l t r [ i ] ∗ ( ( v00 [ i ] [ j ] [m+1]−v00
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[ i ] [ j ] [m−1] ) +( v01 [ i ] [ j ] [m+1]−v01 [ i ] [ j ] [m−1] ) ) ;
263 Sc11 [ i ] [ j ] [m]= Sc10 [ i ] [ j ] [m]+ r o t Spe ed [ i ]∗ r o t Sp e ed [ i ]∗Nc [

t u r b i n eType ID [ i ] ] [ 0 ] [m−1]∗ d e l t t [ i ] / 4 . 0 / d e l t r [ i ] ∗ ( ( v10 [ i ] [ j ] [m+1]−v10
[ i ] [ j ] [m−1] ) +( v11 [ i ] [ j ] [m+1]−v11 [ i ] [ j ] [m−1] ) ) ;

264 s h e a r f o r c e 0 [ i ] [ j ] [m]= −1 .0∗(M01[ i ] [ j ] [m]−M01[ i ] [ j ] [m−1] ) /
d e l t r [ i ]+ Sc01 [ i ] [ j ] [m] ;

265 s h e a r f o r c e 1 [ i ] [ j ] [m]= −1 .0∗(M11[ i ] [ j ] [m]−M11[ i ] [ j ] [m−1] ) /
d e l t r [ i ]+ Sc11 [ i ] [ j ] [m] ;

266

267 }
268

269 / / Info <<" shear for ce0"<< i n t e r p o l a t e ( c r i s e c [ i ] , c an t i l e v e rRad iu s [ i ] [ j ] ,
shear fo rc e0 [ i ] [ j ] ) <<endl ;

270 s h e a r f o r c e 0 _ c r i [ i ] [ j ]= i n t e r p o l a t e ( c r i s e c [ i ] ,
c a n t i l e v e r R a d i u s [ i ] [ j ] , s h e a r f o r c e 0 [ i ] [ j ] ) ;

271 / / Info <<" shear for ce0 done"<<endl ;
272 s h e a r f o r c e 1 _ c r i [ i ] [ j ]= i n t e r p o l a t e ( c r i s e c [ i ] ,

c a n t i l e v e r R a d i u s [ i ] [ j ] , s h e a r f o r c e 1 [ i ] [ j ] ) ;
273 / / Info <<" shear for ce1 done"<<endl ;
274 g r a v i t y l o n g _ c r i [ i ] [ j ]= i n t e r p o l a t e ( c r i s e c [ i ] ,

c a n t i l e v e r R a d i u s [ i ] [ j ] , g r a v i t y l o n g [ i ] [ j ] ) ;
275 / / Info <<" grav i t y l ong done"<<endl ;
276 c e n t r i f o r c e _ c r i [ i ] [ j ]= i n t e r p o l a t e ( c r i s e c [ i ] ,

c a n t i l e v e r R a d i u s [ i ] [ j ] , c e n t r i f o r c e [ i ] [ j ] ) ;
277 / / Info <<" c e n t r i f o r c e done"<<endl ;
278 M0_cri [ i ] [ j ]= i n t e r p o l a t e ( c r i s e c [ i ] , c a n t i l e v e r R a d i u s [ i ] [ j ] ,

M01[ i ] [ j ] ) ;
279 / / Info <<"M0 done"<<endl ;
280 M1_cri [ i ] [ j ]= i n t e r p o l a t e ( c r i s e c [ i ] , c a n t i l e v e r R a d i u s [ i ] [ j ] ,

M11[ i ] [ j ] ) ;
281

282

283 }
284

285

286 / /− save the data
287 f o r A l l ( w indVec to r s [ i ] , j )
288 {
289

290 i f ( l == 0)
291 {
292 d e f _ i n i v a l u e . lookup ( "M00" ) . append ( word ( " ( " ) ) ;
293 d e f _ i n i v a l u e . lookup ( "M10" ) . append ( word ( " ( " ) ) ;
294 d e f _ i n i v a l u e . lookup ( " Sc00 " ) . append ( word ( " ( " ) ) ;
295 d e f _ i n i v a l u e . lookup ( " Sc10 " ) . append ( word ( " ( " ) ) ;
296 d e f _ i n i v a l u e . lookup ( " v00 " ) . append ( word ( " ( " ) ) ;
297 d e f _ i n i v a l u e . lookup ( " v10 " ) . append ( word ( " ( " ) ) ;
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298 d e f _ i n i v a l u e . lookup ( " dve l0 " ) . append ( word ( " ( " ) ) ;
299 d e f _ i n i v a l u e . lookup ( " dve l1 " ) . append ( word ( " ( " ) ) ;
300 }
301

302 f o r ( i n t n =0; n < numde fPo in t s [ i ] ; n++)
303 {
304 i f ( l == 0)
305 {
306 d e f _ i n i v a l u e . lookup ( "M00" ) . append (M00[ i ] [ j ] [ n ] ) ;
307 d e f _ i n i v a l u e . lookup ( "M10" ) . append (M10[ i ] [ j ] [ n ] ) ;
308 d e f _ i n i v a l u e . lookup ( " Sc00 " ) . append ( Sc00 [ i ] [ j ] [ n ] ) ;
309 d e f _ i n i v a l u e . lookup ( " Sc10 " ) . append ( Sc10 [ i ] [ j ] [ n ] ) ;
310 d e f _ i n i v a l u e . lookup ( " v00 " ) . append ( v00 [ i ] [ j ] [ n ] ) ;
311 d e f _ i n i v a l u e . lookup ( " v10 " ) . append ( v10 [ i ] [ j ] [ n ] ) ;
312 }
313 v00 [ i ] [ j ] [ n ]= v01 [ i ] [ j ] [ n ] ;
314 M00[ i ] [ j ] [ n ]=M01[ i ] [ j ] [ n ] ;
315 Sc00 [ i ] [ j ] [ n ]= Sc01 [ i ] [ j ] [ n ] ;
316 v10 [ i ] [ j ] [ n ]= v11 [ i ] [ j ] [ n ] ;
317 M10[ i ] [ j ] [ n ]=M11[ i ] [ j ] [ n ] ;
318 Sc10 [ i ] [ j ] [ n ]= Sc11 [ i ] [ j ] [ n ] ;
319 }
320

321 f o r ( i n t m = 0 ; m < numBladePo in t s [ i ] ; m++)
322 {
323 i f ( l == 0)
324 {
325 d e f _ i n i v a l u e . lookup ( " dve l0 " ) . append ( dve l0 [ i ] [ j ] [m] ) ;
326 d e f _ i n i v a l u e . lookup ( " dve l1 " ) . append ( dve l1 [ i ] [ j ] [m] ) ;
327 }
328 i f ( ( b l a d eRad i u s [ i ] [ j ] [m]>= c a n t i l e v e r s t a r t [ i ] )&&(b l a d eRad i u s [ i ] [ j

] [m]<= c a n t i l e v e r e n d [ i ] ) )
329 {
330 dve l0 [ i ] [ j ] [m]= i n t e r p o l a t e ( b l a d eRad i u s [ i ] [ j ] [m] ,

c a n t i l e v e r R a d i u s [ i ] [ j ] , v00 [ i ] [ j ] ) ;
331 dve l1 [ i ] [ j ] [m]= i n t e r p o l a t e ( b l a d eRad i u s [ i ] [ j ] [m] ,

c a n t i l e v e r R a d i u s [ i ] [ j ] , v10 [ i ] [ j ] ) ;
332 / / b l adePo in t s [ i ] [ j ] [m]= b ladePo in t s [ i ] [ j ] [m]+ dve l0 [ i ] [ j ] [m

]∗ b ladeAl ignedVectors [ i ] [ j ] [ 0 ] ∗ d e l t t [ i ]+ dve l1 [ i ] [ j ] [m]∗
b ladeAl ignedVectors [ i ] [ j ] [ 1 ] ∗ d e l t t [ i ] ;

333

334 }
335 }
336

337 i f ( l == 0)
338 {
339 d e f _ i n i v a l u e . lookup ( " Def0 " ) . append ( Def0 [ i ] [ j ] ) ;
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340 d e f _ i n i v a l u e . lookup ( " Def1 " ) . append ( Def1 [ i ] [ j ] ) ;
341 d e f _ i n i v a l u e . lookup ( "M00" ) . append ( word ( " ) " ) ) ;
342 d e f _ i n i v a l u e . lookup ( "M10" ) . append ( word ( " ) " ) ) ;
343 d e f _ i n i v a l u e . lookup ( " Sc00 " ) . append ( word ( " ) " ) ) ;
344 d e f _ i n i v a l u e . lookup ( " Sc10 " ) . append ( word ( " ) " ) ) ;
345 d e f _ i n i v a l u e . lookup ( " v00 " ) . append ( word ( " ) " ) ) ;
346 d e f _ i n i v a l u e . lookup ( " v10 " ) . append ( word ( " ) " ) ) ;
347 d e f _ i n i v a l u e . lookup ( " dve l0 " ) . append ( word ( " ) " ) ) ;
348 d e f _ i n i v a l u e . lookup ( " dve l1 " ) . append ( word ( " ) " ) ) ;
349 }
350 f o r ( i n t m = 0 ; m < numBladePo in t s [ i ] ; m++)
351 {
352 de f0 [ i ] [ j ] [m]= de f0 [ i ] [ j ] [m]+ v00 [ i ] [ j ] [m]∗ d e l t t [ i ] ;
353 de f1 [ i ] [ j ] [m]= de f1 [ i ] [ j ] [m]+ v10 [ i ] [ j ] [m]∗ d e l t t [ i ] ;
354 }
355 }
356

357 i f ( l == 0)
358 {
359 d e f _ i n i v a l u e . lookup ( "M00" ) . append ( word ( " ) " ) ) ;
360 d e f _ i n i v a l u e . lookup ( "M10" ) . append ( word ( " ) " ) ) ;
361 d e f _ i n i v a l u e . lookup ( " Def0 " ) . append ( word ( " ) " ) ) ;
362 d e f _ i n i v a l u e . lookup ( " Def1 " ) . append ( word ( " ) " ) ) ;
363 d e f _ i n i v a l u e . lookup ( " Sc00 " ) . append ( word ( " ) " ) ) ;
364 d e f _ i n i v a l u e . lookup ( " Sc10 " ) . append ( word ( " ) " ) ) ;
365 d e f _ i n i v a l u e . lookup ( " v00 " ) . append ( word ( " ) " ) ) ;
366 d e f _ i n i v a l u e . lookup ( " v10 " ) . append ( word ( " ) " ) ) ;
367 d e f _ i n i v a l u e . lookup ( " dve l0 " ) . append ( word ( " ) " ) ) ;
368 d e f _ i n i v a l u e . lookup ( " dve l1 " ) . append ( word ( " ) " ) ) ;
369 }
370 }
371 }
372

373 }
374 d e f _ i n i v a l u e . lookup ( "M00" ) . append ( word ( " ) " ) ) ;
375 d e f _ i n i v a l u e . lookup ( "M10" ) . append ( word ( " ) " ) ) ;
376 d e f _ i n i v a l u e . lookup ( " Def0 " ) . append ( word ( " ) " ) ) ;
377 d e f _ i n i v a l u e . lookup ( " Def1 " ) . append ( word ( " ) " ) ) ;
378 d e f _ i n i v a l u e . lookup ( " Sc00 " ) . append ( word ( " ) " ) ) ;
379 d e f _ i n i v a l u e . lookup ( " Sc10 " ) . append ( word ( " ) " ) ) ;
380 d e f _ i n i v a l u e . lookup ( " v00 " ) . append ( word ( " ) " ) ) ;
381 d e f _ i n i v a l u e . lookup ( " v10 " ) . append ( word ( " ) " ) ) ;
382 d e f _ i n i v a l u e . lookup ( " dve l0 " ) . append ( word ( " ) " ) ) ;
383 d e f _ i n i v a l u e . lookup ( " dve l1 " ) . append ( word ( " ) " ) ) ;
384 runTime_ . w r i t e ( ) ;
385

386 }
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Appendix H

FEM anisotropic beam model code

1 c l o s e a l l
2 c l e a r a l l
3 c l c
4

5 %% Setup the case
6

7 %Set base path
8 [ BECAS_basepath ] = BECAS_ i n i t i a l i z e ( ) ;
9

10 %Set f o l d e r path
11 addpa th ( genpa th ( f u l l f i l e ( BECAS_basepath , ’BECAS’ , ’ s r c ’ , ’ ma t l ab ’ ) ) )
12 addpa th ( genpa th ( f u l l f i l e ( BECAS_basepath , ’FRANS’ , ’ s r c ’ , ’ ma t l ab ’ ) ) )
13 addpa th ( genpa th ( f u l l f i l e ( BECAS_basepath , ’SHEFE ’ , ’ s r c ’ , ’ ma t l ab ’ ) ) )
14

15 %known s e c t i o n
16 d i s t a n c e =[0 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 1 . 37 1 . 5 1 . 6 4 . 1 5 . 5 6 . 83 9 10 .25 12

14 .35 17 18 .45 20 .5 22 .55 24 .6 26 .65 30 .75 32 34 .85 37 38 .95 41 42
43 .05 45 47 .15 51 .25 54 .67 57 .4 6 0 . 1 3 ] ;

17 d i s t a n c e 1 = [ 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 1 . 37 1 . 5 1 . 6 4 . 1 5 . 5 6 . 83 9 10 .25 12
14 .35 17 18 .45 20 .5 22 .55 24 .6 26 .65 30 .75 32 34 .85 37 38 .95 41 42
43 .05 45 47 .15 51 .25 54 .67 57 .4 60 .13 6 1 . 5 ] ;

18 d i s =[0 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 1 . 37 1 . 5 1 . 6 4 . 1 5 . 5 6 . 83 9 10 .25 12
14 .35 17 18 .45 20 .5 22 .55 24 .6 26 .65 30 .75 32 34 .85 37 38 .95 41 42
43 .05 45 47 .15 51 .25 54 .67 57 .4 60 .13 6 1 . 5 ] ;

19

20 %tw i s t ang le
21 r o t = [13 .31∗ ones ( 1 , 1 5 ) , 1 2 . 5 3 , 1 1 . 4 8 , 1 0 . 6 8 , 1 0 . 1 6 , 9 . 6 3 ,
22 9 . 0 1 , 8 . 4 , 7 . 7 9 , 6 . 5 4 , 6 . 1 8 , 5 . 3 6 , 4 . 7 5 , 4 . 1 9 , 3 . 6 6 ,
23 3 . 4 , 3 . 1 3 , 2 . 7 4 , 2 . 3 2 , 1 . 5 3 , 0 . 8 6 , 0 . 3 7 , 0 . 1 1 , 0 ] ;
24 r o t = r o t /180∗ pi ;
25

26 %f i n i t e e lement mesh

207



27 d =1 . 5 ;
28 d i s 1 = [ 0 : d : 6 1 . 5 ] ;
29 l eng th= d i s t a n c e 1 − d i s t a n c e ;
30

31 %aerodynamic f o r c e
32 f o r c e = x l s r e a d ( ’C : \ S tudy f i e l d \ t h e s i s \ d a t a \ forceNREL5MW . x l s x ’ , ’ f o r c e ’ ) ;
33 f o r c e co l um= zero s (6∗ s i z e ( d i s1 , 2 ) , 1 ) ;
34

35 %azimuth ang le
36 t h e t a =2∗ pi / 2 ;
37

38 f o r i = 1 : 1 : s i z e ( d i s1 , 2 )
39 f o r c e co l um ( ( i −1) ∗6+1)= f o r c e ( i , 3 ) ;
40 f o r c e co l um ( ( i −1) ∗6+2)= f o r c e ( i , 2 ) ;
41 end
42

43 % i n i t i a l i z a t i o n of g l oba l matrix
44 KG= zeros (6∗ s i z e ( d i s1 , 2 ) ,6∗ s i z e ( d i s1 , 2 ) ) ;%s t i f f n e s s matrix
45 MG= zeros (6∗ s i z e ( d i s1 , 2 ) ,6∗ s i z e ( d i s1 , 2 ) ) ;%mass matrix
46 FG= zeros (6∗ s i z e ( d i s1 , 2 ) , 1 ) ;%ex t e rna l f o r c e
47

48

49 %% Element a n a l y s i s
50

51 %s t i f f n e s s matrix and mass matrix from s e c t i o n s
52 f o r i =1 : 1 : 38
53 %% Options
54 % Folder name con t i n i ng input data (MUST BE DEFINED)
55 o p t i o n s . f o l d e rname= f u l l f i l e ( BECAS_basepath , ’BECAS’ , ’ examples ’ , ’

NREL5MW3_nrel_rotation ’ , num2str ( i ) ) ;
56

57 %% Build arrays for BECAS
58 [ u t i l s ] = BECAS_Utils ( o p t i o n s ) ;
59

60 %% Optional mesh checking rou t in e
61 [ meshcheck ] = BECAS_CheckMesh ( u t i l s ) ;
62

63 %% Cal l BECAS module for the eva l ua t i on of the c ro s s s e c t i o n s t i f f n e s s
matrix

64 [ c o n s t i t u t i v e . Ks , s o l u t i o n s ] = BECAS_Const i tu t ive_Ks ( u t i l s ) ;
65 Ksave ( : , : , i ) = c o n s t i t u t i v e . Ks ;
66

67 %% Cal l BECAS module for the eva l ua t i on of the c ro s s s e c t i o n mass matrix
68 [ c o n s t i t u t i v e .Ms] = BECAS_Const i tut ive_Ms ( u t i l s ) ;
69 Msave ( : , : , i ) = c o n s t i t u t i v e .Ms ;
70

71 end
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72

73

74 %in t e rp the mass matrix and s t i f f n e s s matrix
75 f o r i =1 :6
76 f o r j =1 :6
77 f o r k =1: s i z e ( d i s1 , 2 )
78 Kin t ( i , j , k ) = i n t e rp1 ( d i s , reshape ( Ksave ( i , j , : ) , 1 , s i z e ( d i s , 2 ) ) ,

d i s 1 ( k ) ) ;
79 Mint ( i , j , k ) = i n t e rp1 ( d i s , reshape ( Msave ( i , j , : ) , 1 , s i z e ( d i s , 2 ) ) ,

d i s 1 ( k ) ) ;
80 end
81 end
82 end
83

84 %in t e rp the tw i s t ang le
85 f o r i =1 : s i z e ( d i s1 , 2 )
86 r o t 1 ( i ) = i n t e rp1 ( d i s , r o t , d i s 1 ( i ) ) ;
87 end
88

89 %% assembly matrix
90 f o r i = 2 : 1 : s i z e ( d i s1 , 2 )
91 % def i n e v a r i a b l e s
92 syms z ;
93 % s t r a i n d i sp lacement matrix
94 B0= zeros ( 6 , 6 ) ;
95 B0 ( 1 , 5 ) =−1;
96 B0 ( 2 , 4 ) =1 ;
97 B1=diag ( [ 1 , 1 , 1 , 1 , 1 , 1 ] ’ , 0 ) ;
98 % polynomial matrix
99 N=[ eye ( 6 ) , z∗ eye ( 6 ) , z ^2∗ eye ( 6 ) , z ^3∗ eye ( 6 ) ] ;

100 N1st =[ eye ( 6 ) , z∗ eye ( 6 ) ] ;
101 Nd1st =[ subs ( N1st , z , d i s 1 ( i −1) ) ; subs ( N1st , z , d i s 1 ( i ) ) ] ;
102

103 %Nd=[ eye ( 6 ) , z e ro s ( 6 , 6 ) ; eye ( 6 ) ,L∗eye ( 6 ) ] ;
104 NN=[ subs (N, z , d i s 1 ( i −1) ) ; subs (N, z , d i s 1 ( i ) ) ] ;
105 N1=NN( 1 : 1 2 , 1 : 1 2 ) ;
106 N2=NN( 1 : 1 2 , 1 3 : end ) ;
107 Alpha1 =[ eye ( 1 2 ) ; zeros ( 1 2 , 1 2 ) ] ;
108 Alpha2 =[ zero s ( 1 2 , 1 2 ) ; eye ( 1 2 ) ] ;
109 Y1=Alpha1∗ inv (N1) ;
110 Y2=Alpha2−Alpha1∗ inv (N1) ∗N2 ;
111

112 % s t i f f n e s s matrix
113 B=B0∗N+B1∗ d i f f (N, ’ z ’ ) ;
114 D= i n t (B’∗ Kin t ( : , : , i ) ∗B , ’ z ’ , d i s 1 ( i −1) , d i s 1 ( i ) ) ;
115 P=Y2’∗D∗Y1 ;
116 Q=−1∗(Y2’∗D∗Y2) ;
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117 Na=Y1+Y2∗ inv (Q) ∗P ;
118 K=(Na ) ’∗D∗Na ;
119

120 Nasave ( : , : , i −1)=Na ;
121

122 %record the s t i f f n e s s
123 Kf lap ( i −1)=Kin t ( 4 , 4 , i ) ;
124 Kto r s i o n ( i −1)=Kin t ( 6 , 6 , i ) ;
125 Massden ( i −1)=Mint ( 1 , 1 , i ) ;
126

127 % Mass matrix
128 D= i n t (N’∗ Mint ( : , : , i ) ∗N, ’ z ’ , d i s 1 ( i −1) , d i s 1 ( i ) ) ;
129 M=(Na ) ’∗D∗Na ;
130

131 %forc e matrix
132 f e = fo r c e co lum (6∗ ( i −2) +1:6∗ i ) ;
133 g r a v i t y =[Mint ( 1 , 1 , i −1) ∗9 . 8∗ [ cos ( t h e t a ) ; 0 ; s i n ( t h e t a ) ; 0 ; 0 ; 0 ] ; Mint ( 1 , 1 , i )

∗ 9 . 8∗ [ cos ( t h e t a ) ; 0 ; s i n ( t h e t a ) ; 0 ; 0 ; 0 ] ] ;
134 Ffe= i n t ( ( Na ) ’∗N’ ∗ ( N1st ∗ inv ( Nd1st ) ∗ ( f e + g r a v i t y ) ) , ’ z ’ , d i s 1 ( i −1) , d i s 1 ( i ) ) ;
135

136 Nsave ( : , : , i ) = i n t ( ( Na ) ’∗N’ , ’ z ’ , d i s 1 ( i −1) , d i s 1 ( i ) ) ;
137

138 % assmbly g l oba l matrix
139 KG(1+6∗( i −2) :6∗ i , 1+6∗ ( i −2) :6∗ i ) =KG(1+6∗( i −2) :6∗ i , 1+6∗ ( i −2) :6∗ i ) +K;
140 MG(1+6∗( i −2) :6∗ i , 1+6∗ ( i −2) :6∗ i ) =MG(1+6∗( i −2) :6∗ i , 1+6∗ ( i −2) :6∗ i ) +M;
141 FG(1+6∗( i −2) :6∗ i , 1 ) =FG(1+6∗( i −2) :6∗ i , 1 ) +Ffe ;
142 end
143

144 KGs=KG( 7 : end , 7 : end ) ;
145 MGs=MG( 7 : end , 7 : end ) ;
146 noded i s = d i s 1 + 1 . 5 ;
147

148 %% modal a n a l y s i s
149 [Mode , FreqM]= e i g (KG( 7 : end , 7 : end ) ,MG( 7 : end , 7 : end ) ) ;%Mode
150 S t r u c t u r e _ f r e q u e n c y = sqr t ( diag ( FreqM ) ) / 2 / pi ;%frequency
151 save ( ’C : \ p ape r \ c omp o s i t e _ s t r u c t u r e s \ r ev i s ed20171215 \ d a t a \ o u t p u t \Mode . mat

’ , ’Mode ’ , ’ S t r u c t u r e _ f r e q u e n c y ’ ) ;
152

153 %KGs1=diag ( d iag (Mode’∗KGs∗Mode) ) ;
154 %MGs1=diag ( d iag (Mode’∗MGs∗Mode) ) ;
155 Mode1=Mode ( : , 2 2 9 : end ) ;
156 KGs1=diag ( diag (Mode1 ’∗KGs∗Mode1 ) ) ;
157 MGs1=diag ( diag (Mode1 ’∗MGs∗Mode1 ) ) ;
158 save ( ’C : \ S tudy f i e l d \ t h e s i s \ d a t a \NREL_5MW\NREL5MWdata \

s t i f f n e s s _m a s s _ d a t a _ 1 0 . mat ’ , ’KGs ’ , ’MGs’ , ’ noded i s ’ , ’Mint ’ , ’ K in t ’ , ’
d i s 1 ’ , ’ Nsave ’ , ’ Nasave ’ , ’KGs1 ’ , ’MGs1 ’ , ’Mode ’ , ’Mode1 ’ ) ;

159
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160 x l s w r i t e ( ’C : \ S tudy f i e l d \ t h e s i s \ d a t a \Mode . x l s x ’ ,Mode , ’mode25 ’ ) ;
161

162 %% s t a t i c a n a l y s i s
163 DG= inv (KG( 7 : end , 7 : end ) ) ∗FG ( 7 : end ) ;%disp lacement
164 Disp l a c emen t =[ zero s ( 6 , 1 ) ;DG] ;
165 x l s w r i t e ( ’C : \ S tudy f i e l d \ t h e s i s \ d a t a \ D i sp l a c emen t . x l s x ’ ,DG, ’

D i sp l acemen t25 ’ ) ;
166

167 %% recover g en e ra l i z ed s t r a i n
168 f o r i = 1 : 1 : s i z e ( d i s1 , 2 ) −1
169 s t r a i n 1 ( : , i ) =( D i sp l a c emen t (7+6∗( i −1) :12+6∗( i −1) )−Disp l a c emen t (1+6∗( i −1)

:6∗ i ) ) / d ;
170 end
171 s t r a i n _ s a v e = s t r a i n 1 ;
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Appendix I

FDTD anisotropic beam model code

1 c l o s e a l l
2 c l e a r a l l
3 c l c
4

5 %% Setup the case
6

7 %Set base path
8 [ BECAS_basepath ] = BECAS_ i n i t i a l i z e ( ) ;
9

10 %Set f o l d e r path
11 addpa th ( genpa th ( f u l l f i l e ( BECAS_basepath , ’BECAS’ , ’ s r c ’ , ’ ma t l ab ’ ) ) )
12 addpa th ( genpa th ( f u l l f i l e ( BECAS_basepath , ’FRANS’ , ’ s r c ’ , ’ ma t l ab ’ ) ) )
13 addpa th ( genpa th ( f u l l f i l e ( BECAS_basepath , ’SHEFE ’ , ’ s r c ’ , ’ ma t l ab ’ ) ) )
14

15 %known s e c t i o n
16 d i s =[0 0 . 7 1 . 6 2 . 5 3 . 4 4 . 3 5 . 2 6 . 1 7 8 . 75 10 .5 12 .25 14 15 .75 17 .5 19 .25

21 22 .75 24 .5 26 .25 28 29 .75 31 .5 3 3 . 2 5 ] ;
17 dr =0 . 2 5 ;
18 d i s 1 =0: d r : 3 3 . 2 5 ;
19

20 f o r i =1 : 1 : 24
21 %% Options
22 % Folder name con t i n i ng input data (MUST BE DEFINED)
23 o p t i o n s . f o l d e rname= f u l l f i l e ( BECAS_basepath , ’BECAS’ , ’ examples ’ , ’ w indpac t ’

, num2str ( i −1) ) ;
24

25 %% Build arrays for BECAS
26 [ u t i l s ] = BECAS_Utils ( o p t i o n s ) ;
27

28 %% Optional mesh checking rou t in e
29 [ meshcheck ] = BECAS_CheckMesh ( u t i l s ) ;
30
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31 %% Cal l BECAS module for the eva l ua t i on of the c ro s s s e c t i o n s t i f f n e s s
matrix

32 [ c o n s t i t u t i v e . Ks , s o l u t i o n s ] = BECAS_Const i tu t ive_Ks ( u t i l s ) ;
33 Ksave ( : , : , i ) = c o n s t i t u t i v e . Ks ;
34

35 %% Cal l BECAS module for the eva l ua t i on of the c ro s s s e c t i o n mass matrix
36 [ c o n s t i t u t i v e .Ms] = BECAS_Const i tut ive_Ms ( u t i l s ) ;
37 Msave ( : , : , i ) = c o n s t i t u t i v e .Ms ;
38

39 end
40

41 f o r i =1 :6
42 f o r j =1 :6
43 f o r k =1: s i z e ( d i s1 , 2 )
44 Kin t ( i , j , k ) = i n t e rp1 ( d i s , reshape ( Ksave ( i , j , : ) , 1 , s i z e ( d i s , 2 ) ) ,

d i s 1 ( k ) ) ;
45 Mint ( i , j , k ) = i n t e rp1 ( d i s , reshape ( Msave ( i , j , : ) , 1 , s i z e ( d i s , 2 ) ) ,

d i s 1 ( k ) ) ;
46 end
47 end
48 end
49

50 L=33 . 25 ;%leng th of the beam
51 N= s i z e ( Kint , 3 ) ;%c e l l number
52 dr =0 . 2 5 ;%c e l l l eng th
53

54 Mav= zeros (N∗6 ,N∗6+6) ;
55 Mam= zeros (N∗6 ,N∗6+6) ;
56

57 f o r j =1 :N
58

59 rho=Mint ( 1 , 1 , j ) ;
60 xm=Mint ( 6 , 2 ) / rho ;
61 ym=Mint ( 3 , 4 ) / rho ;
62 Jx=Mint ( 4 , 4 , j ) ;
63 Jy=Mint ( 5 , 5 , j ) ;
64 Jxy=−Mint ( 4 , 5 , j ) ;
65 J r =( Jx+Jy ) ;
66

67

68 Ks=Kin t ( : , : , j ) ;
69

70 Mp=[1 ,0 ,0 , 0 , 0 , −ym ; . . .
71 0 , 1 , 0 , 0 , 0 ,xm ; . . .
72 0 , 0 , 1 ,ym,−xm , 0 ; . . .
73 0 ,0 , rho ∗ym/ Jx ,1 , − Jxy / Jx , 0 ; . . .
74 0 ,0 , − rho ∗xm/ Jy ,− Jxy / Jy , 1 , 0 ; . . .
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75 − rho ∗ym/ J r , rho ∗xm/ J r , 0 , 0 , 0 , 1 ] ;
76

77 % Mp=eye ( 6 , 6 ) ;
78

79 A=[ −1/ rho / dr , 0 , 0 , 0 , 0 , 0 ; . . .
80 0 , −1/ rho / dr , 0 , 0 , 0 , 0 ; . . .
81 0 ,0 , −1 / rho / dr , 0 , 0 , 0 ; . . .
82 0 , −1 /2 / Jx , 0 , −1 / Jx / dr , 0 , 0 ; . . .
83 1 / 2 / Jy , 0 , 0 , 0 , −1 / Jy / dr , 0 ;
84 0 ,0 , 0 , 0 , 0 , −1 / J r / d r ] ;
85

86 B= [1 / rho / dr , 0 , 0 , 0 , 0 , 0 ; . . .
87 0 , 1 / rho / dr , 0 , 0 , 0 , 0 ; . . .
88 0 , 0 , 1 / rho / dr , 0 , 0 , 0 ; . . .
89 0 , −1 /2 / Jx , 0 , 1 / Jx / dr , 0 , 0 ; . . .
90 1 / 2 / Jy , 0 , 0 , 0 , 1 / Jy / dr , 0 ;
91 0 , 0 , 0 , 0 , 0 , 1 / J r / d r ] ;
92

93 C=[ −1/ dr , 0 , 0 , 0 , − 1 / 2 , 0 ; . . .
94 0 , −1/ dr , 0 , 1 / 2 , 0 , 0 ; . . .
95 0 ,0 , −1 / dr , 0 , 0 , 0 ; . . .
96 0 ,0 ,0 , −1 / dr , 0 , 0 ; . . .
97 0 ,0 , 0 , 0 , −1 / dr , 0 ; . . .
98 0 ,0 , 0 , 0 , 0 , −1 / d r ] ;
99

100 D=[1 / dr , 0 , 0 , 0 , − 1 / 2 , 0 ; . . .
101 0 , 1 / dr , 0 , 1 / 2 , 0 , 0 ; . . .
102 0 , 0 , 1 / dr , 0 , 0 , 0 ; . . .
103 0 , 0 , 0 , 1 / dr , 0 , 0 ; . . .
104 0 , 0 , 0 , 0 , 1 / dr , 0 ; . . .
105 0 , 0 , 0 , 0 , 0 , 1 / d r ] ;
106

107 Mav(1+ ( j −1) ∗6 :6+ ( j −1) ∗6 ,1+( j −1) ∗6 :6+ ( j −1) ∗6)=− inv (Mp) ∗A;
108 Mav(1+ ( j −1) ∗6 :6+ ( j −1) ∗6 ,7+( j −1) ∗6 :12+( j −1) ∗6)=− inv (Mp) ∗B ;
109 Mam(1+ ( j −1) ∗6 :6+ ( j −1) ∗6 ,1+( j −1) ∗6 :6+ ( j −1) ∗6)=Ks∗C;
110 Mam(1+ ( j −1) ∗6 :6+ ( j −1) ∗6 ,7+( j −1) ∗6 :12+( j −1) ∗6)=Ks∗D;
111 end
112

113 Mav ( : , end −5: end ) = [ ] ;
114 Mam( : , 1 : 6 ) = [ ] ;
115

116 M=Mav∗Mam;
117

118 [V,D]= e i g (M) ;
119 d e l t =2 /max (max (D) ) ;
120

121 f r e qu en cy =diag ( sqr t (D) ) / 2 / pi ;

215



122

123 save ( ’C : \ p ape r \ a p p l i e d e n e r g y 2 \ mode_casewindpac t . mat ’ , ’ d i s 1 ’ , ’V’ ) ;
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