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Abstract 

Nonpoint source pollution poses the greatest threat to water quality in developed countries. 

Modeling this type of pollution is a challenge for reactive transport models because of the 

change in scale: moving from a local field site- to a watershed-size problem. Computational 

resources and detailed watershed characterization are the major limiting factors in the fully 

time- and space-resolved modeling of the subsurface fate and transport of pollutants from 

nonpoint sources. While detailed characterization has been performed on a few well-studied 

watersheds, the knowledge derived from these watersheds has not led to a better 

understanding of watershed functioning in ungauged watersheds. Consequently, 

alternative approaches to modeling subsurface nonpoint source pollution have emerged to 

inform risk assessment to water resources and watershed management.  

    This study investigates the development of a methodology that decouples flow and 

transport with the implementation of an analytical approach for 1-D travel time probability 

distribution functions (PDFs) to simulate subsurface flow at the watershed scale, that is, a 3-

D problem. The first two chapters of my thesis focus on constraining and providing tools for 

the implementation of this methodology in watersheds. First, the analytical methodology for 

travel time was tested under varying conditions of heterogeneity, slope, and aquifer depths 

that were imposed on a virtual watershed, using Alder Creek, Ontario, as a test case. The 

analytical method parameters for the 28 scenarios considered were calibrated against the 

travel time PDFs generated with a 3-D numerical model (FEFLOW), which was used as 

baseline for comparison. The analytical method simulations revealed a negative relationship 

between the watershed mean travel time (wMTT) and the degree of imposed heterogeneity 

(𝜎𝑌
2) of geostatistically defined permeability fields. This relationship was attributed to the 

effect of preferential flow paths. The effect of increasing aquifer depth (i.e., bedrock 

topography) on wMTT was similar to that of reducing the slope in surface topography, both 

resulting in an increase in wMTT. 
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    Given the promising results of the analytical method in the Alder Creek virtual analogs, 

further testing was conducted in 8 additional virtual watersheds. This inter-watershed 

comparison study examined the effects of 28 geomorphological indexes on wMTT and their 

predictive power in estimating analytical model parameters. This study is the first inter-

watershed comparison of subsurface models that establishes relationships between 

watershed features and hydrologic functioning for groundwater storage and discharge. 

Among the classes of watershed features considered, those related to elevation (e.g. Relief), 

texture topography (e.g. drainage density, Dd), and Horton’s law (e.g. bifurcation factor, RB) 

were the most influential geomorphological classes emerging in the developed regression 

models. These regression models enable the application of the analytical methodology for 

deriving travel time PDF in other environmental settings. The transferability of these tools 

was verified for three extra watersheds in which the particle median travel time (pMTT), 

and their travel time distribution (TTD) performed on par to the upper tier of the original 

watersheds. Further research is proposed to include subsurface heterogeneity in the analysis 

to better evaluate its role in regulating wMTT in a subset of these watersheds.  

    This methodology may constitute in a viable modeling alternative where subsurface 

information is scarce or scale limitations exist in developing a subsurface numerical model. 

The analytical methodology can provide a first line of knowledge in subsurface travel time 

and its distribution in an ungauged basin through the use of readily available tools (i.e., GIS 

and MATLAB). This knowledge can be later challenged or verified as more information 

becomes available. Potential directions to explore for the improvement of the methodology 

are proposed for further research. 

    The third chapter applies the travel time PDF approach to the allocation of nitrogen (N) 

fluxes from base flow contributions to stream water chemistry in an existing hydrological 

model of Carroll Creek (Grand River basin, Ontario). This is a prospective chapter in which 

an outline for the development of an N isotope model linked to a hydrological model is 

presented. The N isotope model includes relevant N transformation and 15N fractionation 

processes in the plant-soil system and aims at simulating N-NO3- concentrations and 
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isotopic compositions (δ15N). A bottom-up, stepwise approach is proposed in order to 

determine the most essential 15N discriminating processes and spatial discretization 

required by the model to match observations in the watershed. 
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Chapter 1 

Introduction 

Nonpoint source pollution has been recognized as one of the largest threats to water quality 

(USEPA, 2002; EEA, 2007; EC, 2007). The focus of watershed management has shifted from 

significantly reducing point sources to address diffuse contamination from agricultural, 

industrial, and urban activities, in which groundwater plays an important role. Unlike point 

source pollution, the contamination of groundwater is a long-term process controlled in part 

by the characteristic water residence time of the watershed, which ranges from months to 

millennia (Maxwell et al., 2016). It is usually assumed that the residence time of solute 

compounds is equal to the residence time in the groundwater reservoir of the water that 

carries the solute. Water and solute residence times are the same only for non-reactive 

solutes, however (Kazemi et al., 2006). For this reason, recent mathematical frameworks 

aimed at characterizing groundwater age started treating it as an intrinsic property of the 

water molecule (Goode, 1996; Etcheverry & Perrochet, 2000; Cornaton, 2004; Kazemi et al., 2006). 

However, long before the development of mathematical approaches, groundwater age was 

quantified in the field with the use of environmental tracers (Fritz & Fontes, 1980).  

    Tracer techniques, both physical and computational, have allowed the evaluation of 

aquifer systems in terms of: renewability (e.g. recharge rate estimation), performance (e.g. 

prevention of overexploitation, estimation of groundwater flow velocity), origin (e.g. 

groundwater flow paths), transport properties estimation, groundwater mixing, and 

groundwater vulnerability to pollution (Kazemi et al., 2006). Environmental tracers can 

generally provide an average estimate of groundwater age considering the sampling 

conditions associated with screened wells and in groundwater discharge zones. In reality, 

groundwater samples taken from an aquifer represent a distribution of ages that can only be 

properly determined through mathematical modeling (Kazemi et al., 2006).  

    A travel time distribution synthesizes the physical transport of the mass of a conservative 

tracer through the landscape’s geographical heterogeneities. This distribution can be 
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determined either for a single water particle with the travel time distribution (TTD) 

representing likelihood of appearance or for the entire watershed as individual water 

particle distributions are collated to form a unified distribution. The groundwater TTD 

provides a description of the residence time in the subsurface for rainfall water as it gets 

mixed with tracer-free groundwater until it leaves the watershed at the outlet (Darracq et al., 

2010; Botter et al., 2011). The determination of groundwater age and its distribution in an 

aquifer still requires the creation of a subsurface model. Following the implementation of 

lumped-parameter models for the analysis of environmental tracers (Maloszewski & Zuber, 

1982) (Figure 1-1), analytical solutions for travel time distributions were also developed for 

watershed-scale (Haitjema, 1995) and one-dimensional systems (Cornaton, 2012; Soltani & 

Cvetkovic, 2013). These simple mathematical expressions have not yet been applied to a 

three-dimensional watershed, nor verified against age distribution estimates from numerical 

models.  

 

Figure 1-1. Travel time distributions following exponential, gamma, and advection-

dispersion models (Kirchner et al., 2000). 

    A comprehensive hydrogeological knowledge of a watershed, as the result of a myriad 

studies on both hydrology and hydrogeology, if ever really achieved, is a rare occurrence. 

How much of that knowledge can be transferable to an ungauged basin? This has been the 

subject of research initiatives in the field of watershed hydrology (Hrachowitz et al., 2013) as 

common practices in hydrology have failed to identify laws of watershed behavior that can 
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be scaled up to similar or larger watersheds (Soulsby et al., 2006). Comparative studies on 

multiple watersheds have led to the recognition that landscape characteristics, such as 

topography, and soil type are not only important in predicting watershed response, but also 

in controlling the mean travel time estimated from isotopic analyses (Soulsby & Tetzlaff, 2008; 

Tetzlaff et al., 2009). These studies have also revealed that the insights derived from isotopic 

analyses are not transferable to all watersheds, which is in turn a confirmation of the 

concept of uniqueness of watersheds asserted by Beven (2000, 2001). This uniqueness 

concept has not stopped the efforts to find empirical relationships to define hydrologic 

response dynamics based on landscape characteristics for the purpose of their 

regionalization (Hrachowitz et al., 2009).  

    The lack of a complete deterministic knowledge of any study site was recognized early in 

the field of hydrogeology, which motivated the development of stochastic approaches in the 

1960’s relying on applications of the theory of space random functions (Rubin, 2003). 

Stochastic theory has led to the creation of geostatistical techniques incorporating both 

airborne geophysical and borehole data for generating conditional geological realizations of 

three-dimensional permeability fields (Carle, 1996; He et al., 2014). Conditional and random 

permeability fields have been incorporated into watershed-scale reactive transport models 

where accurate flow and transport conditions are necessary for estimating groundwater 

mixing, as well as reaction times and rates (Green et al., 2010). Due to the complexity 

associated with developing a groundwater model, there is a lack of inter-watershed 

comparisons to identify the controlling factors that might influence watershed response 

characteristics, including the travel times of water particles in the subsurface. 

1.1 On Alternative Reactive Transport Models 

Subsurface reactive transport models have continued to evolve since their first inception 

with the incorporation of equilibrium controlled reactions (Rubin & James, 1973). These 

models initially focused on the fate of organic constituents in local, small scale subsurface 

settings, typically the result of point source contamination as part of remediation projects 

(Zheng & Bennett, 2002), or in nonpoint source pollution using coarse gridded or two 
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dimensional domains (Almasri & Kaluarachchi, 2007; Jiang and Somers, 2009; Zhang and 

Hiscock, 2011; Aisopou et al., 2015) for watershed-scale studies. For the case of nonpoint 

source contamination, the model domain is much larger to characterize, monitor, and 

simulate (Corwin et al., 1999; Zheng & Bennett, 2002) than localized groundwater 

contamination at sites. Numerical simulations can, in principle, simulate the spatio-temporal 

variability of the distributions of contaminants. However, when applied to diffuse 

contamination, due to limited computational resources, either the spatial resolution or the 

complexity of the reaction networks will be compromised, which in turn limits how much 

predictive understanding on contaminant fate and transport can be gained (Kourakos et al., 

2012). For this reason, new approaches have been sought to efficiently run simulations of 

multicomponent reaction systems in a groundwater system, which also helped improve 

understanding of these systems. 

    Typically, limited information is available - at the watershed scale - that can be used to 

condition reactions at the multi-scale reactive interfaces within a watershed. In order to deal 

with this lack of information for flow and transport, the existing approaches have been 

adapted either by simplifying a three-dimensional (3-D) computational model for solute 

transport to a quasi 3-D model (Lin et al., 2010), or by coupling a spatially distributed 

watershed model to a one dimensional leaching model of, say, nitrogen (Styczen & Storm, 

1993), or recently developed alternative techniques such as the streamline simulation model 

approach have also been implemented (Martin & Wegner, 1979; Green et al., 2010) (Figure 

1-2). 

    The travel time methodology presented in this thesis is, similar to the streamline 

simulation approach. It decouples subsurface flow from solute transport hence offering the 

possibility to treat each process independently. The basic principle is to approximate 

subsurface flow through the estimation of particle TTDs spread across the watershed on 

which solute transformation processes can be built. Details on the two main options that 

were considered when selecting the 1-D analytical equation for particle TTDs are presented 

in section 1.3. 
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Figure 1-2. Solute transport scheme along flow paths defined for a streamline approach 

(reproduced from Malmström et al., 2004). 

1.2 The Importance of Travel Time in Watersheds 

The diversity of flow paths available to rainfall infiltrating at different locations in the 

watershed to reach the receiving stream, defines a distribution of travel times (Kirchner et al., 

2000). A watershed’s travel time distribution has become a fundamental watershed metric 

that can provide information on storage, flow pathways and source of water (McGuire & 

McDonnell, 2006). Hence, the determination of travel time distributions (TTDs) has been the 

focus of research studies since the mid-1970’s (Przewlocki and Yurtsever, 1974). Travel time 

distributions started being developed to provide a quantitative interpretation of 

environmental radioisotope data in groundwater systems for the transport of water and 

solutes (Maloszewski & Zuber, 1982). In these initial efforts, groundwater age data were fitted 

to lumped-parameter models following linear, exponential, or gamma distribution functions 

(Busenberg & Plummer, 1992), which were later adopted in stable isotope analysis of surficial 

hydrology (Soulsby et al., 2000).  

    The application of TTD approaches in the field of surficial hydrology has led to recent 

advances in the understanding of watershed hydrology, specifically by providing a 

theoretical basis for i) explaining the power-law behavior of biogeochemical lag times and 

groundwater mixing patterns (Kirchner et al., 2000), ii) the age composition of stream water 

associated with storm events (McDonnell et al., 2010), iii) the conceptualization of 

hydrological functioning to investigate runoff generation processes by the adequate 
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description of flow paths and base flow contributions (Turner et al., 1987; Uhlenbrook & 

Leibundgut, 2002; Uhlenbrook et al., 2002), and iv) the nonlinear (threshold-type) connectivity 

among landscape reservoirs and their interaction with water age distributions under 

transient hydrological conditions (McDonnell, 2003; Soulsby et al., 2009; McNamara et al., 2011; 

Soulsby et al., 2015). Calibration and validation of TTDs typically rely on daily and sub-daily 

isotope databases collected over multiple years to evaluate the fluxes among landscape 

water storage units that can be used to constrain process-based modeling (Soulsby et al., 

2015). Several modeling approaches can be conditioned with this information. Predictive 

subsurface TTD models range from lumped to semi-distributed (with hydrologic response 

units) to fully distributed spatial representations of the hydrological system (Birkel & 

Soulsby, 2015). Tracer-aided conceptual modeling, in surficial hydrology, also benefited from 

the use of isotope analyses, in explaining the distinction between the celerity of pressure 

waves and the pore velocity of water, initially derived by Beven (1982), which affect the 

hydraulic response and the transit time, respectively (Birkel & Soulsby, 2015).  

    Travel time distributions can also yield important information on how contaminant 

solutes are stored and released from a watershed (McGuire & McDonnell, 2006). They have 

also been used to characterize transport processes at contaminated sites (Dagan & Nguyen, 

1989; Cvetkovic and Dagan, 1994; Malmström et al., 2004) applying a Lagrangian approach, and 

at the watershed scale (Rinaldo & Marani, 1987; Haitjema, 1995; McDonnell et al., 2010; Botter et 

al., 2011) as part of framework methods that include water balance, stochastic, and mass 

transfer functions. The transit time of a pollutant in a watershed is linked to the extent that it 

is retained, removed, and/or transformed in the subsurface as a result of geochemical and 

biogeochemical processes (Haitjema, 1995). The temporal and spatial variations of these 

transformations can also affect the stochastic solute response imprinted in a watershed TTD. 

The effect of these pollutant transformations is relevant when analyzing watershed TTDs.  

    The physical or biogeochemical processes that affect a given pollutant may be either 

ubiquitous or spatially distributed. The outcome of transformations that require specific 

conditions to occur in the watershed will be the subject of damping as a result of mixing 
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with solute contributions from areas where those transformations do not occur. The 

proximity of a point source contamination to a waterbody controls both its attenuation by 

biogeochemical processes and its contribution to the overall hydrochemical signature of the 

watershed, because long travel times imply greater contact times for these transformation 

processes to occur. For nonpoint contamination, on the other hand, the spatial distribution 

of favorable conditions within the different landscape units controls contaminant 

attenuation and the overall hydrochemical signature of the watershed. The solute residence 

distribution in the watershed, then, is controlled by the input function describing the supply 

of the solutes to the groundwater flow system, the prior concentrations in the landscape 

reservoirs, and the water residence time distribution of the watershed (Botter et al., 2005). 

The retention of solutes in watersheds has been evidenced in several studies (Boyer et al., 

2002; van Breemen, 2002) leading to the development of the concepts of biogeochemical lag 

time and solute legacy (Hamilton, 2012; Van Meter & Basu, 2015; Van Meter et al., 2016). These 

concepts are gaining in recognition because of persistent water quality problems even after 

pollutant reduction strategies have been put in place. 

1.3 Existing Analytical TTDs 

Several approaches have been developed to derive formulations for analytical travel time 

PDFs. A Lagrangian approach has frequently been combined with either the 1-D mass 

balance transport equation (Soltani & Cvetkovic, 2013), the 1-D transient groundwater flow 

equation (Cornaton, 2012), or a watershed-scale, flow mass balance (Botter et al., 2011). For 

the Lagrangian approach, the development of a travel time theory for solute transport was 

initiated for spatially stationary and temporally steady conditions (Shapiro & Cvetkovic, 1988; 

Dagan and Nguyen, 1989; Neuman, 1993). It was not until the work of Indelman and Rubin 

(1996) that, a nonstationary velocity field defined by a linear trend in the mean logarithmic 

conductivity field was incorporated into a Lagrangian theory for nonreactive solutes. An 

analytical solution for the case of quasi-unidirectional mean flows was also provided by 

Indelman and Rubin (1996). Their theory is based on resident concentrations in terms of 

particle displacement moments. Zhang et al. (2000) developed, instead, a solute flux 
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approach in terms of statistic moments of travel time and transverse displacement, which 

corresponds to a more general case of nonstationary flow. However, no analytical solution 

was incorporated as part of their work. A brief description is presented in the next sections, 

for those options that were considered most pertinent to this study. 

1.3.1 Haitjema’s Analytical Expression 

A method for the analytical estimate of the watershed TTD was developed by Haitjema 

(1995), for a steady-state, two-dimensional groundwater. This analytical expression was 

derived by assuming: i) a Dupuit-Forchheimer groundwater flow condition (i.e., constant 

hydraulic gradient along the vertical dimension), and ii) the ratio (porosity*saturated 

aquifer thickness)/(aquifer recharge rate) (θH/r) is constant over the entire groundwater 

system (Haitjema, 1995). The resulting equation indicates that the advection process and 

discharge conditions follow an exponential function as the basis of the residence time 

distribution, rather than mixing in the groundwater system (Leray et al., 2016). The equation 

is given by: 

𝐹(𝑡) = 1 − 𝑒𝑥𝑝 (−
𝑡𝑟

𝜃𝐻
)                                                                                                                               Eq. 1.1 

    Note that the resulting cumulative distribution function F(t) of travel times does not 

depend on the following watershed characteristics: size, shape, drainage network, or 

hydraulic conductivity. Equation (1.1) was derived by applying a water balance around the 

isochrone area, delineated by a water residence time T, of a completely homogeneous 

groundwatershed, in which the groundwater flow velocity remains constant, as long as the 

other variables of the θH/r ratio are constant. In a further evaluation of this expression, 

Leray et al. (2016) found that it can be applied to any type of fully or partially-penetrating 

outlet: discharge to a stream or to a pumping well, as long as these outlets capture all the 

flow lines (Luther & Haitjema, 1998).  

   In the above expression, the effect of dispersion is neglected and recharged water is 

conveyed, and eventually discharged following an exponential TTD. The recharged water is 

stored at every time step assigning an inception time (i.e., age) to each mass of recharged 
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water, which is then sampled uniformly by the outlet representing the age distribution of 

the aquifer (Harman, 2015).  

1.3.2 Cornaton’s Analytical Expression 

Similar to Haitjema (1995), the expression derived by Cornaton (2012), who built on the 

work of Ginn (1999) on exposure time in the subsurface and of Delhez and Deleersnijder 

(2002) on oceanic circulations and surface water bodies,  is based on a Gaussian-type initial 

age (τ) distribution (𝑔(𝑥, 𝜏)) in a uniform velocity field. This age distribution is assumed to 

be the solution to the one-dimensional advection-dispersion equation, where the 

concentration of non-reactive solutes is approximated by the age distribution resulting in 

the expression: 

𝜕𝑔

𝜕𝑡
= −𝑣

𝜕𝑔

𝜕𝑥
+ 𝐷

𝜕2𝑔

𝜕𝑥2
−
𝜕𝑔

𝜕𝜏
                                                                                                                        Eq. 1.2 

    For the solution to this equation and its initial and boundary conditions, Cornaton (2012) 

first applied a Laplace transform using the age (τ) dimension, and a second Laplace 

transform using the chronological time (t) dimension. The resulting expression includes s 

and r as the complex Laplace variables, for which the system is resolved by Cornaton (2012) 

in the Laplace domain (𝑔̃(𝑥, 𝑟, 𝑠)). The final expression for the age distribution (τ) recovers 

the chronological time (t) term by applying the inverse Laplace transform to 𝑔̃(𝑥, 𝑟, 𝑠), 

obtaining 𝑔(𝑥, 𝑡, 𝑠) (see equations A10 and A11 in Cornaton, (2012)).   

    The approach used in this thesis follows that of Soltani & Cvetkovic (2013) (see section 

2.2.1). In contrast to Cornaton (2012) who derived an analytical solution directly from Eq. 

1.2, Soltani & Cvetkovic (2013) applied the analytical solution of the 1-D advection-

dispersion equation for the resident concentration (C for g) derived by Bischoff (1964). 

Another difference is that Soltani & Cvetkovic (2013) departed from a Lagrangian 

framework where for conservative solutes C is approximated by the PDF of particle position 

𝑝(𝑥; 𝑡) instead of using 𝑔(𝑥, 𝜏). Later in their derivation, Soltani & Cvetkovic (2013) obtained 

the water age distribution (that is, the sought-after state variable), from 𝑝(𝑥; 𝑡).  
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    In order to test the performance of his analytical solution, Cornaton (2012) applied it to a 

reference problem consisting of a finite domain length L = 200 m, with a longitudinal 

dispersivity αL = 2 m, and an initial, steady-state age distribution 𝑔(𝑥, 𝑡, 𝜏). This steady-state 

age distribution is the result of maintaining a uniform and constant velocity Uo = 1 m/d in 

the 1-D groundwater flow model. These steady state conditions are then modified by 

imposing, at t >=0, a constant flow velocity two times lower, i.e., Uo = 0.5 m/d. For the 

purpose of comparing the Soltani & Cvetkovic (2013) expression with Cornaton (2012)’s, this 

reference problem, which shares great similarities with the conditions used in this thesis, 

was reproduced with the Soltani & Cvetkovic (2013) expression (Figure 1-3). In this figure, 

the breakthrough curve of the age distribution after 50 days of the change in flow velocity is 

the last one that remains unaltered (dashed blue line). At time t=350 days, the new velocity 

condition completely flushes out the former age distribution, and replaces it with an older 

mean age. The Soltani & Cvetkovic (2013) estimates of travel time exhibit a short delay with 

respect to those from the Cornaton (2012)’s expression, but an overall good match. This 

delay may reflect the mathematical approximation used in MATLAB to compute the 

complementary error function required by the expression. 

Considering the complexity of the Cornaton (2012)’s expression in the Laplace transform 

and the good match achieved in the reference problem (Figure 1-3), the Soltani & Cvetkovic 

(2013) expression was selected to be used in this thesis. 

1.4 The Influence of Landscape in MTT 

The relationship between landscape characteristics and watershed’s mean travel time (MTT) 

has been explored for the past 30 years (Pearce et al., 1986; Stewart & McDonnell, 1991, Wolock 

et al., 1997). This quest has been recently motivated by resetting research goals towards 

obtaining a better understanding of hydrological functioning in watersheds with the use of 

less deterministic approaches (Dooge, 1986; McDonnell et al., 2007; Soulsby & Tetzlaff, 2008). In 

addition to this quest, the initiative of developing generalizable hydrological theories and 

more flexible model approaches to be applied in ungauged basins (Prediction in Ungauged 

Basins, PUB; Sivapalan, 2003a) has also contributed to recent research efforts (see Hrachowitz 
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et al., 2013). These studies have investigated the influence of terrain slope (McGuire et al., 

2005; Tetzlaff et al., 2009a, 2009b), soil type (Tetzlaff et al., 2009a, 2009b), watershed size  

 

 

Figure 1-3. Reference problem used by Cornaton (2012) is reproduced using the Soltani & 

Cvetkovic (2013) TTD expression for a 1-D, 200 m model domain with uniform and constant 

velocity Uo = 1 m/d being flushed with a slower velocity Uo = 0.5 m/d starting at t=0. 

Compared with Figure 3a in Cornaton (2012) copied here as background. 

(McGlynn et al., 2003; Hrachowitz et al., 2010), and aspect (Broxton et al., 2009) on water transit 

times in watersheds. A summary of these findings is presented in section 3.1. One 

characteristic common to these findings is that they were obtained primarily for montane 

watersheds, with shallow aquifers and bedrock surfaces yielding MTT values ranging from 

months to a few years (<4 years).  These MTT estimates were mostly validated with tracer-

aided (e.g. chloride, stable isotopes) models and in some cases from inter-watershed 

comparison studies (Tetzlaff et al., 2009a, 2009b; Hrachowitz et al., 2009). The study by Tetzlaff 

et al. (2009a) focused on finding these relationships in watersheds from different 

geomorphic regions, whereas the studies by Tetzlaff et al. (2009b) and Hrachowitz et al. 
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(2009) used watersheds located in the same geomorphic regions in Scotland. Hrachowitz et 

al. (2009) provided more regional variability within the same province and developed a 

regression model for the prediction of MTT (days) based on landscape characteristics:  

log(MTT) =  −0.72 RSC –  1.04 log(DD)–  0.09 PI –  0.22 TWImed +  5.37                               Eq. 1.3 

where RSC is the proportion of responsive soil cover (i.e., poorly drained soils), DD is the 

drainage density, PI is the mean annual precipitation intensity (mm/day), and TWImed is the 

median topographic wetness index. This expression was the result of analyzing 20 study 

watersheds with a drainage area ranging from 0.3 to 35 km2, in mostly steep, montane 

settings. A similar analysis is presented in this thesis but for watersheds with both steep and 

more subdued topography, and most importantly, with both deeper aquifers and larger 

watersheds that could potentially yield MTT values in the tens to hundreds of years.  

1.5 Nitrogen Isotope Models 

The simulation of nonpoint nutrient pollution at watershed scale has been performed using 

different approaches, including lumped conceptual type models such as GLEAMS (Leonard 

et al., 1987) or CREAMS (Knisel & Williams, 1995) to 1-D physically based models such as 

RZWQM (DeCoursey et al., 1992), and DAISY (Hansen et al., 1991). When considering 

hydrological partitioning in the determination of nitrogen (N) fluxes, the numerical process-

based model DAYCENT estimates these fluxes in a daily time-step for 1-D modeling (Del 

Grosso et al., 2001). In order to extend the 1-D simulation of DAISY and DAYCENT of N 

export for the entire watershed, these models have been linked to watershed models like 

MIKE-SHE (Styczen & Storm, 1993; Refsgaard et al., 1999; Boegh et al., 2004) and SWAT (Li et 

al., 2004), respectively.  

    The discrimination of the 15N isotope in various steps of the N cycle in natural systems 

provides the means to identify the mechanisms that control the transformation and losses of 

N both in the soils and in the subsurface. However, there have been relatively few attempts 

to develop models for N isotopes in these environments. One of these N isotope models 

consisted of adapting DAYCENT with natural N isotope mass balance principles to quantify 
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the flux of gaseous N emissions from tropical rain forests (Bai & Houlton, 2009). Bai & 

Houlton (2009) applied their model to 6 different locations in Hawaii following an annual 

precipitation gradient. Mary et al. (1998) developed the compartmental model FLUAZ to 

calculate gross N transformation rates in the soil-plant system for experiments using the 15N 

tracing technique, and applying a nonlinear least square algorithm to estimate reaction 

rates. However, FLUAZ is not driven by the hydrological partitioning occurring in the soil-

plant system but only by concentration gradients and has been exclusively implemented to 

15N tracing experiment data. This model was later updated by Müller et al. (2004, 2007) with 

more reactions and with a Monte Carlo simulation approach to deal with the estimation of a 

greater number of transformation rates.  

1.6 Thesis Objectives and Structure 

The main goal of this thesis is the development and testing of a methodology for the 

determination of the age distribution of groundwater particles and the corresponding mean 

travel time using a 1-D analytical expression applied at the watershed scale. This 

methodology provides the necessary tools for the implementation the analytical 

methodology across watersheds based on landscape characteristics. These tools include: 

selection criteria to predict the quality of performance of the analytical method in a given 

watershed, estimation of analytical method parameters for future analytical model 

development for the estimation of particle TTDs and watershed’s MTT (wMTT), and a direct 

estimation of the wMTT based on geomorphological features. This methodology was 

applied to three watersheds for method verification. A hydrologically linked N isotope 

model is further developed to couple transformation processes with the groundwater TTD. 

   To accomplish the above, the 1-D analytical expression developed by Soltani and 

Cvetkovic (2013) for travel time PDF was tested by comparing it against the output from the 

numerical model FEFLOW (DHI-WASY GmbH) in the form of a breakthrough curve 

created by the probability of exit field at observation points distributed across the 

watershed. This comparison entailed a suite of 28 scenarios where different conditions of 

topography (reduced and actual), subsurface heterogeneity (FGEN generated random 
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permeability fields), and aquifer depth (actual, deep, shallow) were tested (Chapter 2). 

These scenarios were simulated using a virtual watershed approach for a watershed that 

resembles that of Alder Creek (Ontario, Canada). The predictive tools for the analytical 

model implementation were developed after applying the methodology to another eight 

watersheds in North America. The geomorphological features of these watersheds were 

used as predictors in the regression tools to be used for the future implementation of the 

methodology in other watersheds (Chapter 3). The analytical model is linked to an existing 

hydrological model (RAVEN) developed for one of these watersheds (Carroll Creek) to 

ultimately obtain a watershed scale N isotope model that will be able to reproduce observed 

N concentrations and isotopic compositions (Chapter 4). 

    The methodology introduced in this thesis is meant to be applied as a first approach to 

constrain subsurface travel times in ungauged watersheds. These initial estimations can 

then be later challenged or verified as new hydro(geo)logical information and data become 

available. The implementation of our analytical methodology may also become 

advantageous in situations where, in addition to the lack of subsurface information, 

deterministic models face a problem of scale.  

    In Chapter 5, the major conclusions from the overall research work are presented, 

together with the future work that is needed to constrain and complement the methodology 

outlined here. A brief discussion on how the methodology and the empirical relationships 

developed in this study can be both transferred and scaled-up to other watersheds, but also 

they can be further enriched with future implementations. Most importantly, the proposed 

analytical method relies on readily available tools (i.e., GIS and MATLAB) and is therefore 

easily implemented when limited observational data on the subsurface hydrology are 

available. 
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Chapter 2 

Analytical Method to Estimate MTT and TTD for Groundwater at 

a Watershed Scale 

Summary 

Modeling of groundwater transport at the watershed scale often focuses on fully addressing 

water fluxes leaving chemical reactions to a secondary role due to compromises related to 

computational efficiency. Mean travel time (MTT) and travel time distributions (TTDs) have 

become parameters commonly used to quantify watershed solute transport response in 

surface hydrology, but their use in subsurface hydrology is rather limited. The uniqueness 

concept of a watershed, typically referring to its landscape heterogeneity, fails to recognize 

the macroscale landscape components that control the distribution of travel times. Here, we 

develop a method using a one-dimensional analytical equation that provides single particle 

median travel time (pMTT, and its distribution), and the entire-watershed MTT (wMTT), 

through the use of simple and ubiquitous tools (e.g. GIS and MATLAB). Results are 

compared against a three-dimensional subsurface numerical model of a virtual watershed 

for multiple scenarios (n=28) that include changes in surface topography, subsurface 

geostatistical heterogeneity, and aquifer depth. When comparing results for pMTT, the 

goodness of fit between the numerical and analytical methods yields, on average, r2=0.50 ± 

0.07, with the lowest value of 0.34 for the deep aquifer scenario (DH) and the highest at 0.58 

for one of the reduced topography scenarios. For subsets of scenarios defined by the size of 

imposed heterogeneity and topography, the analytical wMTT explains the variability of the 

numerical wMTT estimates from 71% to as high as 94%. A detailed flow path analysis 

showed that the method employed for the delineation of the flow paths in the analytical 

method, in some locations, fails to intercept adjacent streams, resulting in longer travel 

times. This modifies the TTD of the watershed by reducing its skewness to the right. The 

calibrated velocities (Uo) used for the analytical method were positively correlated to the 

imposed heterogeneity and surface topography, and negatively correlated to aquifer depth. 
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Some observations indicate that surface topography may exert similar effects on wMTT as 

the depth to bedrock. Even though our findings on topography and aquifer depth are 

limited to few settings, the application of this methodology to a wider range of watersheds 

can help establishing these relationships. The transferability of these relationships to similar 

ungauged watersheds is important to better understand watershed functioning. The 

analytical method can be a promising alternative to a numerical method in situations where 

quick analyses are needed, limited background information is available, and computational 

efficiency is a constraint. 

2.1 Introduction 

The dispersion of pollutant-bearing groundwater in aquifers and its manifestation in stream 

chemistry has been quantified using groundwater age as a measure of watershed response 

by applying field techniques (Böhlke and Denver, 1995; Böhlke et al., 2007) and numerical 

models (Green et al., 2010). Travel time distributions (TTD) have been proposed as a tool to 

understand the major hydrological controls at a watershed scale and identify patterns in 

stream chemistry from both anthropogenic pressures in managed watershed and 

geomorphological features in ungauged watersheds (McGuire et al., 2005; McDonnell et al., 

2007). Mean travel times (MTTs) can be controlled by many aspects of the landscape 

structure (Hrachowitz et al., 2010). 

    The concept of a watershed mean travel time (wMTT) has been recognized as an 

important indicator of the water cycling processes that are taking place in relatively shallow 

subsurface layers of hillslope environments with respect to water resources renewability, 

degree of mixing, storage, connectivity (of the different units in the landscape), and 

discharge (Soulsby and Tetzlaff, 2008; Hrachowitz et al., 2010; Soulsby et al., 2011). In these 

hillslope studies, soil horizons are included as part of the contributing drainage area to 

stream flows, but they are shallow compared to watersheds with aquifers of tens of meters 

deep. Experimental techniques have been used to estimate travel times at different scales. At 

the watershed scale, MTTs have been estimated experimentally by using stable isotope 

techniques of the water molecule based on differences in rain and stream signatures, mostly 
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in upland watershed studies (Kendall, 1998; McGuire et al., 2005; Rodgers et al., 2005). These 

study areas are characterized by shallow soils and underlying bedrock. Resulting wMTTs 

ranged from months to few years, as typically the bedrock contribution is neglected. In these 

environmental settings, tracer analysis including isotopic signatures has allowed assessing 

potential flow paths and sources in hillslope hydrology (Uhlenbrook & Leibundgut, 2002; 

Soulsby et al., 2004; Rodgers et al., 2005; Soulsby et al., 2011).  

    The attenuation of rainfall signatures observed in streams, which is characteristic of stable 

isotopes, is also exhibited by chloride concentrations (Kirchner et al., 2000; Soulsby and 

Tetzlaff, 2008). This frequently monitored parameter (Cl) allowed extending the chemical 

damping analysis to very long rain and stream chemistry databases, resulting in travel time 

distributions characterized by a long-tail and a power-law shape (Kirchner et al., 2000). This 

behavior indicates that the watershed is acting as a fractal filter with respect to the input 

signal, by smoothing it into the observed stream chemistry at timescales from days to a few 

months. However, for streams located at Plynlimon, Wales, at the multi-annual timescale 

their spectral power coincides, thus reducing their spectral differences, suggesting that 

upland watersheds store the rainwater chemical pattern at this timescale (Kirchner et al., 

2001; Lindgren et al., 2004). The reasons behind this fractal behavior were attributed to 

aquifer heterogeneity (Kirchner et al., 2001; Lindgren et al., 2004). 

    Kirchner et al. (2001) applied a 1-D advection dispersion model to yield a travel time 

distribution for a hillslope. They fitted it to match the power spectrum of observed Cl- 

concentration spectra and that of a gamma distribution that best matched it in their previous 

work (Kirchner et al., 2000). The result was a model that required high values of 

macrodispersion, of about half that of the flow path length, so that the Peclet numbers, 

estimated as vL/2D (v, flow path mean velocity; L: flow path length, and D: macrodispersion 

coefficient), vary between 0.1 and 1.0. The high values of macrodispersion are related to the 

long-tailed behavior in travel time distributions. The fractal nature of watersheds was 

subsequently verified by incorporating more subsurface hydrology components with a 

numerical modeling approach (Lindgren et al., 2004; Kollet and Maxwell, 2008). Kollet and 
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Maxwell (2008) used a fully integrated subsurface model to test the fractal scaling behavior 

in base flow travel time distributions. Land surface and variably unsaturated flow processes 

were included in the vadose zone in a 3-D numerical model for the Little Washita watershed 

(Oklahoma, USA). Travel time distributions were generated from backward-in-time particle 

tracking using a Lagrangian scheme for water particles departing from the riverbed back to 

their points of origin in the watershed. They confirmed both the fractal behavior and the 

power law shape of the base flow travel time distributions. With the estimated travel times 

of the particles at both the water table and land surface, the respective distributions were 

compared revealing the influence in travel time distributions and power spectra due to the 

processes occurring in the unsaturated zone. This influence was deemed significant but 

limited to approximately 1 year of arrival time to the river bed, indicating that the vadose 

zones of areas closer the river are the most influential.  

   The fractal nature of watersheds has transcended spatial scales (Kirchner and Neal, 2013) 

and its applicability has extended to the interaction with other hydrologic components in 

the watershed (Kollet and Maxwell, 2008; Wörman et al., 2007; Schilling and Zhang, 2012). 

Similarly, the identification of the major controls on travel time distribution at the 

watershed scale focuses on the components of the landscape that are common to any 

watershed, in order to assess their transferability (McDonnell, 2003; McDonnell et al., 2007; 

Tetzlaff et al., 2009a). Studies have evaluated the effects of surface topography (McGuire et al., 

2005; Cardenas, 2007; Tetzlaff et al., 2009b), watershed size (Wolock et al., 1997; Wörman et al., 

2007; McGlynn et al., 2004; Tetzlaff et al., 2009b; Darracq et al., 2010; Hrachowitz et al., 2010), 

bedrock topography (Freer et al., 2002; Wörman et al., 2007), and soil cover (Tetzlaff et al., 

2009b; Rodgers et al., 2005) on predicting wMTTs. Most of these studies use tracer approaches 

in upland watersheds, and numerical modeling in a few of them (Worman et al., 2007; Kollet 

& Maxwell, 2008). In general, it has been found that mean slope and percent of responsive 

soils (low permeability) controls the watershed response to transport regarding travel times. 

The size of the watershed is not a major controlling factor; whereas the stream density tends 

to correlate with wMTTs. Worman et al. (2007) indicates that subsurface flow is controlled to 

some extent, at any point in the watershed and at any watershed scale, by small-scale 
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topographic features. This effect is proportional to the size of these surface features and 

decays rapidly with depth. With the exception of Worman et al. (2007), and contrary to 

surface hydrology studies, the effects of topography, soil type, and watershed size have not 

been established in subsurface hydrology. 

    The travel time distributions for single water particles in a watershed can be defined 

based on either their point of entry or their point of discharge into a stream (Botter et al., 

2011). The first distribution keeps track of the particle’s original chemical characteristics to 

deliver the solute into the stream chemistry at a point and travel time, dictated by its own 

flow path. The second distribution is defined by looking at the stream chemistry and its 

connection with the watershed’s past chemical inputs. It corresponds to the travel times 

provided by tracer analysis and the backward-in-time particle approach (Botter et al., 2011) 

used by Kollet and Maxwell (2008), in which convection and dispersion effects are included. 

When steady state conditions apply, both types of travel time distributions coincide. There 

are several methods to identify travel time distributions for single particles or for the entire 

watershed that incorporate the flow partitioning at the ground surface (Fiori and Russo, 2008; 

Rinaldo et al., 2011; Botter et al., 2011). However, their application to real watersheds has been 

limited (van der Velde et al., 2010). 

    The determination of groundwater age has been resolved numerically and has been 

implemented in several numerical models (HGS, Therrien and Sudicky, 1996; ParFlow, Ashby 

and Falgout, 1996; and FEFLOW, DHI-WASY, GmbH). Analytical methods have also been 

developed for the mean travel time cumulative distribution function for two dimensional 

groundwater flow (Haitjema, 1995), and the one-dimensional particle travel time problem 

(Cornaton, 2012; Soltani & Cvetkovic, 2013). Haitjema (1995) derived an analytical equation 

that depends on porosity, saturated aquifer thickness, and recharge rate, and relies on the 

assumption of Dupuit-Forchheimer flow. Haitjema’s analysis is based on establishing a 

water balance around areal isochrones within the groundwatershed, thereby yielding an 

equation that is independent of the hydraulic conductivity, groundwater size and shape, 

and stream network structure (Haitjema, 1995). The one-dimensional analytical methods 
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offer the possibility to decouple flow from transport so that the complexities associated with 

the steady and unsteady transit of water particles through the watershed can be simplified, 

and more focus can be given to the biogeochemical transformations. These analytical 

equations, however, have not been tested and compared for a variety of subsurface 

conditions.  

    Here, we use the 1-D analytical equation developed by Soltani and Cvetkovic (2013) to 

obtain travel time distributions for particles departing from the potentiometric surface and 

moving towards their point of discharge, and calculate their wMTT and TTD for the entire 

watershed. The wMTT and TTDs estimated by the analytical method are compared to 

results of a numerical model that uses a backward adjoint model to define the breakthrough 

curve for travel time. A virtual watershed is used that resembles the Alder Creek watershed 

in Ontario (Canada), which has been the topic of many studies (summarized in Frind et al., 

2014). Multiple scenarios (n=28) were simulated in this virtual watershed including changes 

in topography (two types: reduced and actual topography), geostatistically modelled 

heterogeneity (included in 24 scenarios), and aquifer depth (in 4 homogeneous scenarios). 

The layout of scenarios was designed to gain understanding of the relative effects 

subsurface heterogeneity, topography, and subsurface geometry may exert on subsurface 

wMTT and TTD at the watershed scale. This study is the first step in applying a 1-D travel 

time analytical equation to a 3-D watershed scale problem in order to provide a quick tool 

for the estimation of wMTT and its distribution in ungauged watersheds. 

2.2 Analytical Equation for Travel Time 

2.2.1 Soltani and Cvetkovic Equation 

In this study, the analytical approach developed by Soltani and Cvetkovic (2013) is used to 

generate travel time probability density functions (PDFs) along 1-D flow paths distributed 

across the watershed. Some generalities of their equation are discussed here but for more 

details on its development and verification we refer to the original publication. The equation 

was derived from the solution of the 1-D ADE equation that incorporates a Fickian 
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macrodispersivity term (λL) and a convective term defined by U(t), which corresponds to the 

flow field velocity assumed to be relatively uniform in space (x): 

𝜕𝐶

𝜕𝑡
+ 𝑈(𝑡)

𝜕𝐶

𝜕𝑥
= 𝜆𝐿𝑈(𝑡)

𝜕2𝐶

𝜕𝑥2
                                                                                                                      Eq. 2.1 

where C is the concentration of a conservative solute; and x, is the distance along the flow 

path running parallel to the velocity field (U). A Lagrangian framework is applied to the 

solution of this equation by making the behavior of a non-reactive solute concentration (C)  

equivalent to the particle position (x)’s PDF at any time t, p(x,t). The final solution is then 

obtained for the forward model in the form of a cumulative density function (CDF), 

according to: 

𝐹𝑓(𝑡; 𝑥) =
1

2
𝑒𝑟𝑓𝑐 (

𝑥 − 𝑈0𝜑(𝑡)

√4𝜆𝐿𝑈0𝜑(𝑡)
)                                                                                                             Eq. 2.2 

where U0 is the mean velocity field; 𝜑(𝑡) is a dimensionless function that depends on time 

and applied to U0 make the analytical equation suitable to transient flow applications: 

𝑈(𝑡) = 𝑈𝑜𝜑(𝑡). For this study, a stationary flow field is used, i.e., 𝜑(𝑡)=1.  

    Soltani and Cvetkovic (2013) tested the results of the above equation against another 

analytical equation developed by Cornaton (2012) derived from a water age density that is a 

more general approach. The validation was satisfactory against Monte Carlo trajectory 

simulations, which were generated by randomizing the spatial component of intrinsic 

permeability, ҡ(x), of the spatio – temporal velocity term, 𝑣(𝑥, 𝑡)  =  𝑈𝑜ҡ(𝑥)𝜑(𝑡), with a 

normally distributed function (Y(x)) of heterogeneity and a negative-exponential structure, 

ҡ(x)= exp[Y(x)] for 𝜎𝑌
2 = 𝑉𝑎𝑟(𝐿𝑛 𝐾) = 0.8 and correlation length (IY) of 50 m. Fixed values of 

macrodispersion (λL~𝜎𝑌
2𝐼𝑌) and uniform velocity (= 𝑈𝑂exp (−𝜎𝑌

2/2) were applied to the 

analytical equation to match those used in the trajectory simulations. A similar approach is 

adopted in the present study by using the one-dimensional analytical formulation but 

applying it to a three-dimensional virtual watershed in which the subsurface has been 

modified to create hydraulic conductivity fields with known degrees of heterogeneity. The 
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challenge of the analytical methodology presented here is to identify the most suitable 

uniform velocity and changes in macrodispersion with flow path distance. 

2.2.2 Travel Time PDFs from Analytical Approach 

The forward (or backward) model version of the analytical equation developed by Soltani 

and Cvetkovic (2013) is applied to water particles across the watershed at locations that 

coincide with the observation points used in the numerical modeling, in order to allow for 

comparisons of the results. The analytical equation relies on three main parameters for each 

water particle flow path: a constant mean flow velocity (Uo [L/T]), a characteristic flow path 

distance (x [L]) and a constant macrodispersion (λL [L]). An evenly spaced-grid of 200 meters 

by 200 meters was used to distribute the water particles across the watershed. ArcNLET, a 

GIS application developed by Rios et al. (2013), incorporates a particle tracking protocol 

based on groundwater flow direction and magnitude vectors. These vectors are estimated 

using a two-dimensional Dupuit-Forchheimer assumption, which uses the ground surface 

elevation as proxy to delineate the water table elevation map, and maps of vertically 

homogeneous hydraulic conductivity and porosity. These maps ultimately allow the 

estimation of direction and the magnitude of flow, in the form of informal-gridded raster 

data. The method provides the means to control how similar the water table elevation is to 

the overlying topography, via a smoothness factor (SF). The higher this value is the more 

independent the water table is from topography. This parameter dictates where locally 

recharged groundwater will discharge, either into an adjacent river or into a farther surface 

water feature through a deeper and longer flow path. A digital elevation model of 100-m 

cell-size was used for the tracking as it smoothed out even more the surface features. A 

horizontally homogeneous map of hydraulic conductivity and porosity (η), with the values 

of 6.5 x 10-5 m/s and 0.33, respectively, were used in the particle tracking. The GIS 

application yields the flow path distance (x) for each observation point.  

    The bulk velocity of each water particle was initially calculated as the bulk Darcy velocity 

K·dh/x using the flow paths from ArcNLET’s particle tracking (x) and the digital elevation 

map (DEM) for the actual topography. The macrodispersion was initially assumed to be 
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10% of the total flow path distance (x): 𝜆𝐿 = 0.10 ∙ 𝑥. With these three parameters an 

ensemble of travel time CDF curves was initially obtained one for each distributed water 

particle, and after applying the derivative to these curves, a uncalibrated set of travel time 

PDFs were generated. As suggested by Soltani and Cvetkovic (2013), in developing the 

analytical equation, a uniform velocity field was applied to the ensemble of streamlines. 

Even though a transient velocity field in time could be applied to the formulation, the 

velocity does not vary spatially from streamline to streamline to match the limitation of the 

numerical model of travel time estimation under stationary conditions. 

    The median of the travel time CDF was chosen as the statistic of comparison of travel time 

as this variable is skewed towards the longer travel times. Generally in this type of 

distributions, the statistics are located from left to right in the order: mode (at peak), median 

(at 50% of CDF), and mean. Median and mean tend to be close to each other in a PDF with 

normal macrodispersion; whereas, in a PDF with a long tail, associated with greater 

macrodispersion, the gap between the median and the mean also increases. For this study, 

the median of the distribution was chosen to be the most appropriate mean travel time 

variable.  

2.3 Travel Time Distribution using the Numerical Model 

A number of approaches and conceptualizations have been developed to mathematically 

characterize groundwater age. One of these relies on treating groundwater age as a random 

variable that is probabilistically distributed as if it were the concentration of a conservative 

tracer, using the advection-dispersion-equation (ADE) commonly applied in pollutant 

transport problems. The approach developed by Cornaton (2004) and Cornaton and 

Perrochet (2006), and recently updated in Cornaton (2014), has been implemented in 

subsurface models such as Hydrogeosphere (HGS) and FEFLOW (DHI-WASY GmbH). The 

equations for life expectancy (E), defined as the time left for a particle before leaving the 

domain, were derived from the backward adjoint model (Cornaton, 2004) and are presented 

in Appendix A. In the backward-in-time model, used to determine the life expectancy CDF 

(gE), the boundary conditions (BCs) dictate that only outlets can be assigned a non-zero 
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mass-transport condition. This Cauchy-type BC is kept constant throughout the simulation, 

but the zero condition applied elsewhere in the domain will evolve from an initial value of 

zero yielding gE. However, this gE does not provide any information regarding whether a 

given position x in the aquifer does actually make part of the natural drainage basin of a 

particular outlet. Thereby, an adapted version of the backward-in-time model (Cornaton, 

2014) that transports the probability of exit (𝑝𝐸) as random variable can be used to identify 

both the time expected for a water particle anywhere in the domain to exit through one 

and/or several specified outlets, and the probability value (0 ≤ 𝑝𝐸  ≤ 1) of a water particle to 

exit the domain through one over other outlets. Here 𝑝𝐸(𝑥, 𝑡, 𝛤𝑜𝑢𝑡), is the lifetime-

expectancy-to-outlet CDF, which defines, for a particular transit time t, the probabilistic 

drainage basin associated with a specific outlet 𝛤𝑜𝑢𝑡 (Cornaton, 2014). This problem is similar 

to that of defining wellfield capture zones where the outlet is the well screen. Here, 

however, the outlet corresponds to thousands of points spread around the streambed at 

subsurface-surface water exchange elements identified by a steady state model.  

    The modified version of the backward-in-time model and its boundary conditions for the 

probability of exit are: 

𝜕𝜃𝑝𝐸
𝜕𝑡

= ∇ ∙ 𝐪𝑝𝐸 + ∇ ∙ 𝜃𝐃∇𝑝𝐸 − 𝑞𝐼𝑝𝐸      𝑖𝑛  Ω, 

𝑝𝐸(𝒙, 0) = 0   𝑖𝑛   Ω, 

−𝜃𝐃∇𝑝𝐸 ∙ 𝒏 = 0   𝑜𝑛   𝛤0,                                                                                                             Eq. 2-3. 

[−𝐪𝑝𝐸 − 𝜃𝐃∇𝑝𝐸] ∙ 𝒏 =  −𝐪 ∙ 𝒏   𝑜𝑛   𝛤𝑜𝑢𝑡 , 

[−𝐪𝑝𝐸 − 𝜃𝐃∇𝑝𝐸] ∙ 𝒏 =  0    𝑜𝑛  𝛤+  \  𝛤𝑜𝑢𝑡 , 

where Ω, 𝛤𝑜, 𝛤+, 𝛤𝑜𝑢𝑡 represent the entire domain, the domain’s impervious boundary, the 

watershed’s subsurface outlet, and the internal outlet system, respectively; ∇ denotes the 

Nabla operator; θ is porosity or mobile water content; q is the Darcy flux vector; D is the 

tensor of macro-dispersion; 𝑛 is a normal outward unit vector; and 𝑞𝐼𝑝𝐸 is a source term to 

represent recharge. These equations are similar to the gE equations (Appendix A), except for 
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a couple of differences. First, the probability of exit 𝑝𝐸(𝑥, 𝑡) converges to unity, as t increases 

to infinity, matching its maximum value at the outlet 𝛤𝑜𝑢𝑡. Second, it allows creating 

multiple Cauchy-type BCs to target a specific outlet from all potential outlets of the 

groundwater system, including wells, springs, surface waterbodies, and interconnection 

zones between aquifers. It does so by simply assigning [−𝐪𝑝𝐸 − 𝜃𝐃∇𝑝𝐸] ∙ 𝒏 = 1   to the 

sought outlet(s), which in our case are the exchange flux river bed elements. For those water 

particles that will not be intercepted by the sought outlet Γout, a value of pE(x,t) less than one 

will be achieved in the CDF’s plateau (Cornaton, 2014). These equations are valid only when 

simulating groundwater flow at steady state and running a mass transport problem under 

transient conditions, where the mass transported, in this case, is 𝑝𝐸(𝑥, 𝑡). 

2.3.1 Setup of the Numerical Model 

A virtual watershed approach is used for this study allowing for the evaluation of a specific 

parameter under multiple imposed conditions. The model domain is based upon that of 

Alder Creek in Ontario, Canada. Alder Creek is part of the Grand River watershed. It has a 

total area of 81.2 km2 and comprises mostly agricultural lands, some undisturbed natural 

vegetation, and urban and rural development. The local aquifer is part of the Waterloo 

Moraine, a multi-layer aquifer characterized by three till confining units, lying in between 

glaciofluvial sand, fine sands, and gravel units (Martin & Frind, 1998; Frind et al., 2014). The 

footprint outlined by the model boundary (Figure 2-1), is greater in some areas, as dictated 

by topography to evaluate the analytical approach in adjacent areas to the boundary. In 

doing so, parts of other watersheds were included in the north and southwest boundary as 

it was suspected based on topography that they contribute groundwater to the Alder Creek 

watershed. Additionally, the model domain differs from the real watershed in its elevation 

as it was shrunk by approximately 60 meters in order to favor conditions for exchange 

between subsurface and surface water. The shrinking was made by keeping the lowest 

elevation by the outlet constant as the remaining elevation points in a raster were altered by 

a reduction factor. The resulting topographic relief was modified to 348.1 meters above sea 

level (masl) at its highest point and 289.3 masl at its lowest point from 410.5 masl and 289.3 
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masl, respectively. The reduced topography model increased the exchange flux points by 

21% with respect to the actual topography model. 

    The mesh for the numerical model was created with GridBuilder (McLaren, 2011) using an 

approximated element size of 200 meters. For the first six slices, a vertical separation of 0.25 

meters was kept along the entire domain to emulate the pseudo-unsaturated approach 

selected in FEFLOW version 6.2 (DHI-WASY GmbH, 2015) to model the potentiometric 

surface and saturated flow at a watershed scale. This approach vertically linearizes 

unsaturated flow using pressure head and saturation, which compares well with the fully 

applied Richards’ equation if only saturated groundwater flow is sought (Diersch, 2014). 

These linear relationships are determined from relating the actual geometric condition of the 

element in order to scale balance terms of saturation and pressure head between adjacent 

element nodes for partially saturated conditions within the element.  

    The subsurface model was implemented in FEFLOW as an unconfined aquifer with the 

top slice acting as a phreatic boundary condition. Two different model configurations were 

created for the simulation scenarios considered in the study: reduced topography and actual 

topography. The reduced topography model follows the description provided in the 

previous paragraphs; the actual topography model corresponds to the unmodified 

topography of the watershed. Three versions of the actual topography model were used, 

one with the unmodified aquifer geometry (AH), one with a deeper (DH) and one with a 

shallower (SH) aquifer. The latter two were created by increasing aquifer thickness by 50 m 

and by reducing aquifer thickness approximately by half that of the actual topography 

model, respectively. These three model configurations used the actual topography and 

intend to shed light on the effects of aquifer geometry, further assuming a fully completely 

homogeneous porous media. These models were built in the same manner as the reduced 

topography model, with the same number of slices and their vertical separation for the top 

1.5 meters of unsaturated soil. For the DH model, the additional 50-meter aquifer thickness 

was achieved by separating the 6 bottom slices, out of the 32, by 10-meter intervals. The base 

of the aquifer (bottom slice) for the reduced topography model was created by smoothing  
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Figure 2-1. Alder Creek watershed map showing the 2D mesh and streams used in the numerical 

model, along with the reduced topography and the location of calibration points used for the 

analytical approach. The triangular element grid was created using the GridBuilder (McLaren, 

2011) code by limiting the size of elements to 200 meters. The elements of the grid around the 

rivers were then selected for further refinement making a total of 16,371 triangular elements per 

slice, which were replicated in 32 slices for a grand total of 523,872 elements for the entire model 

domain. The slices were vertically separated with a maximum of 3.0 meters, and a minimum 

vertical interval of 0.25 meters applied to the entire domain wherever the dynamic distribution 

of intervals between slices is constrained by the underlying bedrock. 
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out its topography after converting a 25-meter cell size DEM to a 600-meter cell size. This 

conversion was made by resampling the original raster using a bilinear function in ArcGIS. 

For the aquifer geometry models (i.e., AH, SH, DH), the base of the aquifer was made 

equivalent to the bedrock surface elevation model available from the Grand River 

Conservation Authority (GRCA)’s GIS database. The main subsurface model properties for 

each topographic/domain condition are listed in Table 2-1.  Local studies have identified a 

wide range of groundwater recharge rate estimates from as low as 100 mm/year (Rudolph, 

1985) to as high as 310 mm/year (Martin and Frind, 1998). For this hypothetical study, a 

value of 237 mm/year (6.5 x 10-4 m/d) was chosen similar to that of Radcliffe (2000), who 

studied in detail the local physical hydrogeology to evaluate the impact of urbanization. For 

the purpose of this study the material associated with the aquifer properties listed in Table 

2-1 correspond to that of clayey sand, and the values of the properties were taken from local 

studies that included this lithologic category as a result of their modeling calibration effort 

(Martin & Frind, 1998; Radcliffe, 2000). Aquifer properties were kept the same for both 

topographic models, except for the hydraulic conductivity which varied accordingly to the 

degree of heterogeneity defined for each scenario. Table 2-2 provides a list of the 28 

scenarios evaluated in this study and their IDs classified by topography, heterogeneity, and 

aquifer thickness. This latter set is to get some insight on potential changes in flow path 

distance with respect to aquifer geometry. 

2.3.2 Heterogeneity (Numerical Modeling) 

The assignment of different levels of heterogeneity to the model domain was performed by 

generating statistically anisotropic permeability fields on a uniformly distributed grid. This 

grid is later transposed to the geometry used by the model domain comprised of triangular 

elements of various planar dimensions and heights. The permeability realizations were 

generated using the algorithm called FGEN developed by Robin et al. (1993). The 

parameters used in these realizations are presented in Table 2-3. 
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Table 2-1. Model properties used in simulations and other watershed parameters. 

Property Value Unit 

Annual recharge 237 mm 

Hydraulic conductivity (Kavg) 6.5x10-5 m s-1 

Specific storage (Ss) 1.3x10-4 m-1 

Porosity (θ) 0.33 -- 

Hydraulic head (Dirichlet BC) 282.0 masl1 

Slices 32 32 

Reduced Topography 2 

Elevation range (top slice) 289.3 - 348.1 masl 

Elevation range (bottom slice) 236.7 - 263.5 masl 

Aquifer thickness (min - max) 51.3 - 86.6 m 

Vertical separation (slices) 3.0 m 

Mean slope 1.24 deg 

Mean aspect 173.0 deg 

Topographic index 8.65 -- 

Actual Topography 2 

Elevation range (top slice) 292.2 - 409.1 masl 

Elevation range (bottom slice) 237.1 - 302.1 masl 

Aquifer thickness (min - max) 39.8 - 142.4 m 

Vertical separation (slices) 4.7 m 

Mean slope 2.53 deg 

Mean aspect 172.7 deg 

Topographic index 8.02 -- 

Deep Aquifer  (DH) 

Elevation range (top slice) 292.2 - 409.1 masl 

Elevation range (bottom slice) 187.1 - 252.1 masl 

Aquifer thickness (min - max) 89.8 - 192.4 m 

Vertical separation (slices) 6.2 (top) - 10.0 (bottom) m 

Shallow Aquifer (SH) 

Elevation range (top slice) 292.2 - 409.1 masl 

Elevation range (bottom slice) 264.7 - 331.4 masl 

Aquifer thickness (max -  min) 26.1 - 93.2 m 

Vertical separation (slices) 3.3 m 

1 meters above sea level 
2 RH and AH correspond to the homogeneous case for the reduced and actual topography models. 
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Table 2-2. List of scenarios classified by topographic relief, imposed heterogeneity, and 

aquifer thickness (geometry, G). 

Topographic 

Relief 

Correlation 

Length, 

Ixy[m] 

VAR [Ln K] = 𝜎𝑌
2

  - Scenario ID 

𝜎𝑌
2 = 
0.3 

𝜎𝑌
2 = 
0.7 

𝜎𝑌
2 = 
1.0 

𝜎𝑌
2 = 

1.25 
𝜎𝑌
2 = 
1.5 

𝜎𝑌
2 = 
2.0 

Reduced 150 1 2 3 4 5 6 

Reduced 300 7 8 9 10 11 12 

Reduced 450 13 14 15 16 17 18 

Actual 300 19 20 21 22 23 24 

Reduced Homogeneous (RH) 

Actual Homogeneous (AH) 

Actual(G1) Deep Aquifer -  Homogeneous (DH) 

Actual(G2) Shallow Aquifer -  Homogeneous (SH) 

 

 Table 2-3. Parameters used for permeability realizations in FGEN. 

Parameters Value Units 

Mean hydraulic conductivity (Kavg) 6.5x10-5 m s-1 

Variance (Ln K), 𝜎𝑌
2 0.3, 0.7, 1.0, 1.25, 1.5, 2.0 m s-1 

Correlation lengths (Ix, Iy, Iz) 150, 150, 2.7 m 

Correlation lengths (Ix, Iy, Iz) 300, 300, 2.7 m 

Correlation lengths (Ix, Iy, Iz) 450, 450, 2.7 m 

Power spectrum model exponential covariance -- 

Spatial step size: Xu, Yu, Zu 150, 150, 2.7 m 

Number of nodes (full) x, y, z 256, 256, 128 -- 

Number of nodes (truncated) 110, 110, 70 -- 

Number of realizations 10 -- 
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    Transposing the generated permeability field to the model domain geometry was 

performed in MATLAB by using only the truncated field and matching the nearest centroid 

of the elements from both grids. The maps with Ixy = 150 m (Figure A1 in Appendix A) show 

a higher density of clusters of porous media with similar hydraulic conductivity, which is 

directly dependent on the number of seeds used in the simulation. As the correlation length 

increases, so does the connectivity of areas creating larger extensions of area with similar 

property materials. This behavior is also observed in the cross sections where interbedded 

areas seem partially connected at different depths of both high (red) and low (blue) 

conductivity zones.  

    The permeability fields for each scenario were generated for a single realization. The 

ergodicity hypothesis verifies that this realization is a true reflection of the ensemble 

statistics of permeability (k) that were applied to create it (Rubin, 2003), and it constitutes, 

according to Zhan (1999) in a ‘bridge connecting the single realization to the ensemble’. The 

ergodicity hypothesis of the generated permeability fields was tested estimating the relative 

variances of the spatial average of the hydraulic conductivity, defined by R, using the 

closed-form equation for R developed by Zhan (1999) for the three-dimensional problem. 

The ergodicity hypothesis depends not only on the ratio of the scale of the watershed over 

the horizontal correlation length (Ixy) but it is also affected by its vertical component 

(Iz=2.7m), the degree of heterogeneity (𝜎𝑌
2), the geometry of the model domain (i.e., L·W·H), 

and the autocorrelation method used to generate the field (i.e., linear or exponential). The 

values of R for all scenarios with the same imposed heterogeneity (𝜎𝑌
2, Ixy, Iz) and with 

different subsurface geometry (i.e., RH, AH, DH, SH) fell within a narrow range. The 

highest R value (~3.2x10-4) corresponded to the scenarios with the largest correlation length 

(Ixy=450m) and degree of heterogeneity (𝜎𝑌
2 =2.0). Its associated error index (√R) of using the 

ergodicity hypothesis should be kept lower than 10% (Zhan, 1999), which in our case was 

less than 2% for all scenarios.  
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2.3.3 Travel Time PDFs from Numerical Model 

FEFLOW (DHI-WASY GmbH) is used to generate the travel time PDFs for observation 

points distributed across the watershed in order to evaluate the performance of applying the 

1-D analytical travel time equation. The numerical approach by Cornaton (2014) presented 

previously for determining the probability of exit CDF, 𝑝𝐸(𝑥, 𝑡), is applied to the study area 

to obtain both: 

 the probability of exit of a water particle (added as an observation point in FEFLOW 

at the water table elevation) through exchange flux points (identified through a 

steady state model analysis), and, 

 the travel time CDF defined as the evolution of the probability of exit field as it 

moves backward-in-time from the exchange flux plane up until it reaches the 

observation points, depicting, as it transports 𝑝𝐸(𝑥, 𝑡) through the model domain, a 

breakthrough curve of probability of exit. 

    The maximum value of the CDF, 𝑝𝐸(𝑥, 𝑡), corresponds to the probability of exit, which 

could be one (1.0) for those water particles exiting the domain through the exchange flux 

plane, or less than one for those that exit the domain through other outlet(s). In order to 

identify which water particles (i.e., observation points) should be included in the analysis to 

eventually compare them to their analytical counterparts, a value of 0.5 was chosen as 

threshold of probability of exit, that is, that only water particles with a probability of exit 

equal or greater than 50% were considered for further analysis. A similar probability value 

is typically used when delineating well capture zones (Souza et al. 2013). By doing so, the 

selected area of the model domain is that which has a probability >50% to truly contribute to 

the river flow (i.e., groundwatershed), and in FEFLOW defines an effective drainage area to 

the river. Because in the case considered there are no other surface outlets (e.g. wellfields), 

the non-selected area is thought to be part of a deeper (regional) groundwater flow system 

that exits the watershed through the Dirichlet boundary condition located along the outlet. 

Once the travel time CDF is defined for each observation point, it is converted to a PDF by 

applying a derivative.  
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    For each simulation scenario a new steady state is obtained together with a new set of 

exchange flux locations along the streambed to be used as the source of the probability of 

exit by imposing a non-zero BC on them. Simulations are run for a period of 165,000 days 

(~452 years) assuring that most of water particles have exited the model domain. The 

transport component of probability of exit 𝑝𝐸(𝑥, 𝑡) in the model is simulated in transient 

state as it moved through the stationary velocity field. The transport of the variable 𝑝𝐸(𝑥, 𝑡) 

through the porous media entails the use of parameters that control its macro-dispersion 

(D), i.e., the longitudinal (αL) and transverse (αT) dispersivity coefficients, which proved to 

be very sensitive to recovering all the mass in the shape of the CDF. A range of αL values 

between 35 m to 45 m was obtained in order to recover the observation points’ mass 

through the travel time breakthrough curve, whereas the αT value resulted in values close to 

10% that of αL.   

2.4 Calibration 

The shapes of the resulting travel time PDFs for individual observation points and for 

different scenarios that were generated by the numerical model are not uniquely skewed to 

the right and high kurtosis values, even though this is the dominating shape. There are 

several PDFs that tend to delineate another milder, wider peak, making the overall shape of 

the travel time PDF almost bi-modal in these cases. These PDFs are likely the result of the 

interactions of topography and/or variability of the hydraulic conductivity along the flow 

paths. In some cases, these PDFs correspond to water particles released at short distances 

from the point of discharge, along rising slopes. It is likely that their peak value is 

attenuated by the interference of a longer, upstream flow path that originates from a zone 

with higher hydraulic head; or due to the mixing of flow paths as a result of the resistance to 

flow generated by the presence of a less conductive zone. The former case describes areas 

next to the streams where discharge creates zones of enhanced mixing of incoming flow 

paths, mixing waters of different ages and solute concentrations. The latter case is the result 

of landscape heterogeneity units including surface and bedrock topography, porous media, 

and stream density. It is difficult to discern between these two potential explanations. 
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Regardless of the actual reason behind the shape of these deviating distributions, the 

resulting PDF are indicative of extensive mixing experienced along the flow path where the 

transport mechanism is switching from an advective-dominated to a more dispersion-

dominated flow field. This is the case especially for longer-tailed distributions, which are 

characterized by low Peclet numbers (estimated as vL/2D). Nonetheless, the most dominant 

shape is skewed to the right, for which both mode and median of the travel time PDF tend 

to be close from each other, and Peclet numbers are typically greater than 1.0, due to lower 

macrodispersion. In summary, it is important to note that not all PDFs generated look alike 

and that the shapes of some cannot be replicated by the analytical solution regardless of the 

parameters values chosen for calibration.  

    Two types of calibration were attempted to match not only the shape of a particular travel 

time PDF but also the overall distribution of the median travel time variable obtained from 

the half-mass point of the travel time CDF. A first calibration approach entails matching the 

shape of the analytical travel time PDFs for a total of twenty four (24) points in the 

watershed with variable flow path distances, with that from the numerically generated 

PDFs.  The locations of these 24 calibration points are shown in Figure 2-1. The shape of a 

given PDFs is matched by iteratively (manually) varying the calibration parameters in the 

analytical equation: mean flow path velocity (U0) and macrodispersion (λL). The former 

allows matching the location of the travel time mode (peak), and the latter helps matching 

the arrival frequency and also in refining the location of the mode. A summary of this 

calibration process is depicted in a flow chart included in Appendix A (Figure A2). For each 

scenario, this calibration was conducted and values for the calibration parameters were 

obtained for each of the 24 calibration points. As these points are spread across the entire 

watershed, they are believed to represent most of the expected flow paths being affected by 

both topography and heterogeneity of the porous media. Out of the 24 calibration points, 

two showed evidence of either having a bi-modal behavior or having a milder or not a 

clearly defined peak. In these special cases, the location of the center of mass of the 

distribution was targeted rather than the location of its peak.  
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    The values of the calibration parameters are related to flow path distance to evaluate a 

potential pattern with the distance to discharge. The mean flow path velocity is poorly 

related to distance in all the reduced topography scenarios, averaging r2=0.06; whereas, it 

was mildly related in all the actual topography scenarios, averaging r2=0.30 with values as 

high as 0.49 and as low as 0.08. In the case where a relation exists, it takes the form of a 

negative power function exhibiting higher values of velocity at shorter distances, and lower 

ones as the distance to the point of discharge increases. Conversely, the macrodispersion 

values generally followed a distinctive relation with distance, taking the form of a positive 

power function assigning values of macrodispersion of 75 m for a flow path 1000-m long, 

and ranging from 130 m to 160 m for flow paths approximately 5000 -m long (Figure 2-2). 

This relationship is not only evident in all scenarios but it also exhibits a trend in 

heterogeneous scenarios of the reduced topography model where the macrodispersion 

decreases with distance as the degree of modeled heterogeneity increased, while the 

opposite tendency is observed for the actual topography model (Ixy= 300 m), that is, 

increasing macrodispersion with degree of heterogeneity at longer flow paths. Even though 

these relationships are generally weaker for the reduced topography cases (lower r2 values), 

the trend is still verified by the scenarios in which this relationship holds stronger: 𝜎𝑌
2 = 1.0 

and 𝜎𝑌
2 =2.0, both with r2~0.76. For both reduced and actual topography, the 

macrodispersion relates, in general, to both flow path distance and degree of heterogeneity 

by exhibiting lower variability at short and mid-distances and higher variability at distances 

far from the point of discharge. This characteristic becomes more evident in the actual 

topography model where the variability of macrodispersion is narrower suggesting that a 

specific value satisfies all degrees of heterogeneities evaluated for a given flow path 

distance. The positive power function for each scenario, in addition to the average calibrated 

flow path velocity from 24 points, constitute the first approach to calibration against the 

travel time PDFs (Table A1 in Appendix A) from the numerical model using the probability 

of exit (Pexit or pE). 
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Figure 2-2. Calibrated macrodispersion and its relationship to flow path distance (x) for 

reduced and actual topography scenarios with Ixy=300 m and Iz=2.7m. Raw λL and x data for 

the relationship is also shown as average (grey circle) and standard deviation (brackets) of 

all scenarios with Ixy=300 m, along with the widely used reference ratio for λL of 10 percent 

of x. Expressions for power functions are listed in Table A1 (Appendix A). 

    The second calibration procedure consisted of identifying the mean flow path velocity for 

each scenario so that a fitted line for the median travel time estimated by 𝑝𝐸(𝑥, 𝑡) and the 

analytical equation intercepts the origin at a 45 degree angle (i.e., the 1:1 relationship). By 

doing so, the overall response of the analytical methodology moved downward (with high 

U0 values) and upward (with low U0 values) defining angles lower and greater than 45, 

respectively. The velocities identified are listed in Table A1 (Appendix A). For this 

calibration effort, the macrodispersion values obtained from their positive power relation to 

flow path distance are used, although, their effect on the resulting velocity is secondary, it 

does help in reaching targeted arrival frequencies. For each scenario, the second calibration 

velocities are systematically lower than those estimated from the calibration of the 24 flow 

paths described earlier. Results discussed in the following sections relate to the first 

calibration approach as it provides better agreement with the numerical model. A brief 
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commentary is presented later in relation to the use of the second calibration method and 

the resulting comparison with the numerical model.  

2.5 Analysis of Calibration Results 

2.5.1 pMTT Comparison for the Reduced Topography Scenarios 

The first calibration approach assigns an average velocity (Uo) to the entire flow path 

ensemble for each scenario. The Uo value is estimated from the calibrated velocities of 24 

water particles (i.e., 24 observation points) spread across the watershed. For the analytical 

method, a smoothing factor of 20 is applied in all the scenarios, thus, only one set of flow 

paths is generated (i.e., x is constant for all scenarios) leaving only Uo and λL to be adjusted 

for calibration. The adjusted velocities and the resulting r2 used as a measure of fit of a line 

intercepting the origin varies from as low as 0.34 for the Deep Aquifer (DA) scenario to as 

high as 0.58 for scenarios 5 (Ixy=150 m, 𝜎𝑌
2=1.5) and 10 (Ixy =300 m, 𝜎𝑌

2=1.25) (Table A1). On 

average, the r2 in the reduced topography model for scenarios with Ixy =150 m and Ixy =450 

m, is 0.53, and with Ixy =300 m, 0.54; however, in the actual topography model the scenarios 

with Ixy =300 m have r2=0.43, and when considering the homogeneous scenarios only (AH, 

DH, SH) the average is r2=0.41 (Table A1). 

    The estimates of individual travel times were compared for both methods and for a 

selected group of scenarios: RH, ID 6 (Ixy= 150 m, 𝜎𝑌
2

 = 2.0), ID 12 (Ixy= 300 m, 𝜎𝑌
2

 = 2.0), and 

ID 18 (Ixy= 450 m, 𝜎𝑌
2

 = 2.0) (Figure 2-3). Other scenarios for the same correlation length were 

also examined but they did not exhibit much difference from those with the largest imposed 

heterogeneity (𝜎𝑌
2

 = 2.0). This implies that is not the degree of heterogeneity but its size, 

controlled by the correlation length, that modulates the variability in the spread of pMTT 

among scenarios. Considering that in the proposed methodology, a single bulk velocity (U0) 

is applied to all observation points, it is the flow path lengths that define the spread of 

pMTTs. In this case, the delineation of the flow paths in the analytical model matches well 

that of the numerical model for most of the observation points (Figure 2-3). Data points for 

which the analytical equation is either systematically overestimating or underestimating are 



 

 38 

highlighted on Figure 2-3 for further analysis: data points labeled as ‘location set 1’ and 

‘location set 3’ are selected from panel (a), the homogeneous case for the reduced 

topography model, and ‘location set 2’ from panel (d), scenario 18 (Ixy= 450 m, 𝜎𝑌
2

 = 2.0).  

Each point location represents a set of points with different imposed heterogeneities of 

varying correlation lengths. The stream traces (i.e., flow paths) from FEFLOW (Figure 2-4), 

are those generated under steady state flow conditions by placing the starting points of the 

trace located at the node nearest to the observation grid points. These starting points were 

set at slice number 7, corresponding to an elevation of 1.5 to 2.0m below ground surface, 

where a fully saturated water table is expected. These stream traces correspond to the two-

dimensional view of a three-dimensional path taken by water particles released at the 

locations described above. 

    Note that the overall distribution of observation points does not cover the entire area of 

the watershed (Figure 2-4). The reason is that the area in which the observation points are 

located corresponds to the extent of the area draining into the surface water features as 

determined by the condition 𝑝𝐸(𝑥, 𝑡) > 0.50 in the numerical model. The areas excluded 

recharge the aquifer, but exit the model domain via the porous media Dirichlet boundary 

condition (Figure 2-1). In a regional context, they are likely to discharge into adjacent 

subbasins. 

   The set of data points ‘location set 1’ and ‘location set 3’ are both starting in the 

homogeneous scenario with a weak agreement against the numerical model. Their 

agreement improved in all the heterogeneous scenarios, however. It does so for ‘location set 

1’ by both increasing the mean flow velocity in the analytical equation and by decreasing it 

in the numerical model, likely due to either the intersection of a less conductive porous 

media or a change in course in the  flow path for one with a longer distance. The data points 

for ‘location set 2’, selected from panel (d) of Figure 2-3 for being the most underestimated 

set of travel times by the analytical equation. Considering that this set showed a better 

agreement in the homogeneous model, indicates that the increased velocity required by the 

imposed heterogeneity, combined with the differences in the flow path length from both 
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Figure 2-3. Comparison of estimated pMTTs and wMTTs for observation points scattered in 

a 200-m grid using the proposed analytical approach (A) versus the numerical (F) approach 

(Pexit) for: a) scenario RH, b) scenario 6, c) scenario 12, and d) scenario 18. Locations of 

interest have been highlighted for further analysis in Figure 2-4.  
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Figure 2-4. Stream trace produced by the numerical model for scenarios a) RH and b) 18 

(Ixy=450m, 𝜎𝑌
2 =2.0) with reduced topography including the highlighted sets of data in Figure 

2-3. 

methods, generated large discrepancies along a wide range of median travel time estimates 

from the numerical model (e.g., discrepancies in years of 75 (100, 25) and 250 (375, 125), 

taken from Figure 2-3d). The stream traces for ‘location set 2’ (Figure 2-4b) do not reflect in 

any way the range of travel times, ranging from 100 to 375 years (Figure 2-3d). This 

disparity can be explained by the fact that in this area the depth to the water table is 8-9 m 

where the numerical model likely traces these flow paths through low conductivity units 

that could be disconnected from a fully saturated groundwater table. Similar patterns occur 

in areas where stream traces are unexpectedly short in upland regions. This constitutes a 
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limitation of using stream traces from the numerical model as reference of how flow paths 

should look like, instead, they are used here as tools in providing a general idea of their 

flow path patterns and distributions in the watershed.  

    Even though the traces for the ‘location set 2’ area are discontinued (Figure 2-4b), the 

aging of the groundwater is not, as reflected by the estimated travel times. For ‘location set 

3’, the flow paths of these observation points intercept the imposed heterogeneity (scenario 

18, Ixy=450m, 𝜎𝑌
2 =2.0) and change their course towards points of discharge located at shorter 

distances. This reduces the estimated travel times in the numerical model. The calibrated Uo 

is increased accordingly with respect to the homogeneous case making the estimated travel 

time shorter as well. However, the latter occurs without changing the flow paths predicted 

by the numerical model, a feature which the analytical method fails to predict. The pMTTs 

are thus in better agreement with the numerical approach, but not for the right reasons. The 

only way in which the analytical method incorporates the heterogeneity component is by 

varying the mean flow path velocity (Uo) and macrodispersion (λL).  

2.5.2 pMTT Comparison for the Actual Topography Scenarios 

    The pMTT estimates are also compared for the actual topography scenarios (Figure 2-5). 

For the same degree and type of heterogeneity, these scenarios require a greater calibrated 

velocity than those from the reduced topography. The level of correlation for the estimated 

pMTTs from both methods is unchanged to that of the reduced topography (Figure 2-3). The 

same flow path delineation in the analytical model with a smoothing factor of 20 is used 

here as in the reduced topography scenarios. A greater topography yields shorter stream 

traces in the numerical model as streams are more readily intercepted. Therefore, the greater 

U0 required by the actual topography scenarios in the analytical model is due to both shorter 

stream traces and greater pore velocities in the numerical model. 

    Similarly as for the reduced topography, the sets of data points ‘location set 1’ and 

‘location set 2’ were selected from the AH scenario; whereas, the set for ‘location set 3’ was 

selected from the DH scenario. The analytical approach overestimates and underestimates 
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the data sets ‘location set 1’ and ‘location set 3’, respectively. Their distribution does not 

abruptly differ from one scenario to the next indicating that both subsurface geometry and 

imposed heterogeneity in the numerical model do not significantly improve or worsen their 

correlation with the analytical approach. However, the overall agreement of the analytical 

approach to the numerical model estimates is diminished in the DH scenario. The data set 

‘location set 2’ is selected due to the relatively acceptable agreement between the two 

methods at long travel times for scenarios AH and 24 (Ixy=300 m, 𝜎𝑌
2 =2.0). The flow paths 

delineated by the analytical method for the area comprised by a subset of points from 

‘location set 1’ are in the vicinity to those estimated by the scenario AH in the numerical 

model for ‘location set 2’ (Figure 2-6a). However, the data set ‘location set 1’ is greatly 

overestimated by the analytical method, as the flow path delineation does not intercept the 

adjacent stream.  

    The ‘location set 2’ data set, in turn, shows stream traces in Figure 2-6b that are not 

representative of the long travel times estimated by the numerical approach (~225a in 

Figure 2-5b). This again shows a disparity between the stream traces delineation and the 

expected distances from those of the longest travel times estimated in the watershed by the 

numerical model. In the flow path analysis section (section 2.5.6), a further explanation of 

this disparity is presented (Figure A5b, Appendix A). Figure 2-5b shows the increase in 

velocity for both approaches as this set of points/traces (‘location set 2’) yields shorter travel 

times when compared to the homogeneous case. The set of points for ‘location set 3’ is 

found on the east and west side of the watershed. The subset on the east of the watershed is 

in an area with the deepest water table locations in the numerical model, but with enough 

head with respect to the river. The travel times for this set in scenario 24 are comparable to 

those estimated for the homogeneous case (AH), even though their stream trace delineations 

do not compare well. The reason for this underestimation is twofold, a deep water table 

elevation and the location of this area with respect to the regional groundwater flow, which 

both limit flow toward the stream and yield low local velocities. For the subset on the west, 

a combination of a slight difference in flow paths and a large difference in particle velocities 

between both methods explains the significant underestimation of the travel times by the  
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Figure 2-5. Comparison of estimated pMTTs and wMTTs for observation points spread 

across the 200-m grid using the proposed analytical (A) approach against the numerical (F) 

approach (Pexit) for: a) scenario AH, b) scenario 24, c) scenario DH, and d) scenario SH. 

Locations of interest have been highlighted for further analysis in Figure 2-6.  
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Figure 2-6. Stream trace produced by the numerical model for scenarios a) AH and b) 24 

(Ixy=300 m, 𝜎𝑌
2 =2.0) including also the location of highlighted sets of data in Figure 2-5. 

analytical method. The distribution of these data sets is rearranged in scenario SH indicating 

that under shallow aquifer depths the noted problems of not-intersected streams and the 

effects of deep water table and watershed geometry do play a less important role. 

2.5.3 Spatially Bound pMTT Comparison 

    The analytical method pMTT estimates were spatially compared to the pMTT values from 

the numerical model for both the RH and AH homogeneous scenarios (Figure 2-7). The  
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Figure 2-7. Distribution of percent differences in the estimates of pMTTs between the 

analytical (calibrated) and numerical approaches, for the homogeneous scenarios of both a) 

reduced and b) actual topographic models. 

largest discrepancies are present in the AH scenario, where the number of observation 

points with differences exceeding 500% (identified by points with a white background) is 

almost twice as high as in the RH scenario. This figure highlights areas exhibiting the 

greatest analytical-numerical discrepancies in the watershed that have been previously 

discussed such as those in the east (underestimated, dark brown) and in the northwest 

(overestimated, turquoise), as well as new areas that are located at or immediately adjacent 

to streams (overestimated, bright green). The data points with discrepancy values of 500 



 

 46 

percent or larger for the homogeneous model that were highlighted in Figure 2-7 are also 

highlighted in Figure A3 (Appendix A) using the estimated pMTTs from both methods. 

Identified points from scenario RH (Figure 2-7a) were also plotted in the scenario AH panel 

(Figure A3b) and vice versa. The conditions that made these extreme discrepancies in 

observation points (>500%) in the RH (or AH) scenario are seemingly damped for some of 

those locations when tracking them into the AH (or RH) scenario (Figure A3). For all of 

these points, their proximity to a stream yields relatively short travel times in the numerical 

model. Considering the problem areas discussed previously plus the latter areas adjacent to 

streams, the results suggest that the analytical approach tends to be in better agreement 

with the numerical model at mid- to long-distance flow paths. The further away from 

streams an observation point is, the better its travel time is predicted as it is less likely for 

the analytical method to fail intercepting streams and overestimating their time before 

discharge. 

2.5.4 Mean Watershed Travel Times (wMTT) 

The distribution of travel times of water particles released across the watershed provides 

some insight into the response of the watershed to external forcings, be they purely 

hydrological such as recharge variability, or the spread of contaminant inputs in terms of 

rates and locations throughout the watershed. The influence of topography, subsurface 

heterogeneity and geometry in the wMTT response are examined in this section by using 

the average of the ensemble of the median travel time PDFs (pMTTs) generated with both 

methods.  

    When averaging the individual travel time distributions from the individual observation 

points in the watershed, a mean travel time PDF is obtained for each numerical modeling 

scenario. The resulting PDFs can be compared against those generated with the analytical 

approach (Figure 2-8). The mean numerical model PDFs are more strongly skewed to the 

right than those from the analytical method, in all scenarios. A common pattern of 

exhibiting a higher peak of arrival frequency with increasing heterogeneity is present in 

both methods. This suggests that the mode and, most likely, the median of the travel time  
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Figure 2-8. wMTT PDFs estimated using the analytical (dashed line) and numerical (solid 

line) methods for selected scenarios with Ixy=300m within both a) reduced and b) actual 

topographic models. Note that DH, AH, and SH distributions are very close to each other 

for the analytical method. 

random variable decreases as the subsurface media of the modeled domain becomes more 

heterogeneous. Considering the type of heterogeneity imposed onto the porous media in 

this study, and for scenarios with the same topography, this result also indicates that 

preferential flow paths are widely present in the heterogeneous media allowing the early 

arrival of water particles to the point of discharge; as opposed to dispersion into the media 

of a hypothetical homogeneous case. A similar behavior is present for the actual topography 

model (Figure 2-8b), where the arrival frequency peaks at a higher value than for the 

homogeneous case, in the reduced topography, and keeps increasing with the degree of 

heterogeneity.  

    Together, these results suggest that both the mode and the median of the distributions 

have lower travel time values, which are associated with the effect of topography. The DH 

and SH scenarios are also plotted in Figure 2-8 to be compared against the actual-
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topography homogeneous case (AH): for the numerical model, they plot below and above 

the AH scenario, respectively, as expected; as shorter travel times are associated with 

shallower subsurface geometries and longer flow paths occur when less restrictions to flow 

are present. In general, the mean travel time PDFs from the analytical approach do also 

discern among scenarios with varying aquifer depth, but not with the same degree of 

differentiation, and they miss, as in the other scenarios, the mode of the distribution defined 

by the peak of the numerical model PDFs.    The mean of both the travel time and the arrival 

frequency that were estimated from the travel time CDF represent the mean values of the 

travel time distribution (i.e., PDF) for the entire watershed. The mean travel time and the 

mean arrival frequency estimated for each scenario were compared for both methods in 

Figure 2-9. The tendency of exhibiting shorter watershed travel times with increasing 

imposed heterogeneity (increased 𝜎𝑌
2) is again observed here for all the heterogeneous 

scenarios. Note that the range of estimated mean travel times varies from about 60 years to 

77 years for all the heterogeneous scenarios in the reduced topography model regardless of 

the correlation length applied to them. Thus, the imposed heterogeneity in these scenarios is 

quite alike. Perhaps, a wider selection of correlation length (Ixy) values might have yielded 

greater differences in travel time. However, the examined values of Ixy seem in agreement 

with the actual surficial geology features of the Alder Creek watershed. In addition, the 

imposed heterogeneity given by the Ixy values and the variance of logconductivity (𝜎𝑌
2) 

complies with the ergodicity hypothesis for the model domain.  

    The arrival frequency in the analytical approach is slightly underestimated in all the 

scenarios and less variable among scenarios than for the numerical method results. The 

higher arrival frequency (Figure 2-8b) corresponds to earlier arrival times for the entire 

watershed (Figure 2-9). For the analytical approach though, the range of estimated wMTTs 

is greater in the actual topography scenarios, favoring shorter travel times than those 

estimated by the numerical model. For both topographic models, and for both travel time 

methods, the homogeneous case constitutes an end-member scenario where the travel time 

is the longest because any imposed heterogeneity makes the MTT before discharge shorter 

(Figure 2-10a and Figure 2-10b, Table A1 in Appendix A). A watershed with similar 
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topography but with shallower aquifer depth would also have a shorter mean travel time 

for the entire watershed. This result was also replicated by the analytical method with less 

sensitivity to the imposed changes. When considering all 28 evaluated scenarios, the travel 

times derived from the calibrated analytical method explains well those estimated by the 

numerical model (𝑝𝐸(𝑥, 𝑡), r2=0.80). The mismatch on the peak of the mean travel time PDF 

is likely associated with the several observation points located near streams for which the 

analytical flow paths failed to intercept, mistakenly assigning larger flow paths instead. This 

pattern was somewhat compensated with the better agreement found for observation points 

located at mid- and far-distances away from the point of discharge, which both define a 

more regional groundwater flow within the watershed. 

 

 

Figure 2-9. Estimated wMTTs and arrival frequencies for all scenarios. Colored symbols 

correspond to the numerical method estimates, gray symbols to the respective analytical 

method estimates.  
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Figure 2-10. Estimated wMTTs by both methods are compared for a) reduced topography 

scenarios; and b) actual topography scenarios. Measure of agreement for each subset of data 

is presented, as well as for the entire set of scenarios (n=28). All Pearson correlation 

coefficients were significant (p<0.02), except for (*) where p=0.08. 

    The method developed by Haitjema (1995) to determine the watershed TTD was also 

applied to the actual topography scenarios (Figure A4, Appendix A): AH, DH, and SH. The 

wMTTs values obtained from the Haitjema method were overestimated by: 85, 158, and 52 

percent difference with respect to the target set by the numerical model. Although, this 

method incorporates aquifer depth as main parameter, it also assumes that the θH/r ratio is 

constant throughout the entire aquifer, which does not hold in many areas in the watershed. 

Whereas, the percent differences for the analytical method were: -3%, -25%, and 32%, 

respectively. However, unlike the analytical method, the Haitjema approach properly 

followed the trend in wMTT by the changes in aquifer depth conditions (Figure A4), as an 

aquifer depth parameter is explicitly modeled in Haitjema’s (1995) expression. 

2.5.5 Calibrated Uo and Heterogeneity 

    The resulting calibrated Uo are proportional to the degree of imposed heterogeneity 

(Figure 2-11). The use of the initial Darcy velocities alone (before calibration) would have 
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grossly underestimated the bulk velocities required and, in turn, overestimated wMTT. The 

calibrated Uo required to match the imposed heterogeneity yields an almost linear response 

to the increasing degree of heterogeneity (𝜎𝑌
2), for each size of heterogeneity (Ixy) evaluated. 

Actually, the slope of the relationship between Uo and 𝜎𝑌
2 is 0.012, 0.013, and 0.021 for the 

correlation lengths Ixy = 150m, 300m, and 450m, respectively (not shown). The range of bulk 

velocities required by the imposed heterogeneity ranges between 0.079 m/d, for scenario 1 

(Ixy=150m, 𝜎𝑌
2 =0.3), and 0.119 m/d, for scenario 18 (Ixy=450m, 𝜎𝑌

2 =2.0), which are a factor of 

1.65 (0.079[m/d]/ 0.048[m/d]) and 2.5 (0.119[m/d]/0.048[m/d]), respectively, different 

from the initial Darcy velocity estimates for the reduced topography model (based on 

topography alone). A similar factor as for the reduced homogeneous case (RH), for the AH 

case, and for the actual topography scenarios ID 19 (Ixy=300m, 𝜎𝑌
2 =0.3), and ID 24 (Ixy=300m, 

𝜎𝑌
2 =2.0), can also be estimated: 1.63 (RH), 1.33 (AH), 1.49 (ID 19) and 2.14 (ID 24). 

Considering that the slope of the actual topography model (2.53 degrees) is slightly above 

twice that of the reduced topography (1.24 degrees), the ratio of their initial Darcy velocities 

is 1.77 (0.085[m/d]/0.048[m/d]). While a linear correspondence was hardly expected, more 

data from watersheds could shed some light on how the mean Darcy velocity could vary 

with the watershed’s slope, and how it can be used as a predictor of a calibrated velocity 

from a numerical groundwater model. For now, with the estimated data, it seems that with 

a greater slope, the mean Darcy velocity becomes a better predictor when comparing the 

correction factors for AH (1.33) against that of RH (1.63). Intuitively, this trend is expected 

as an increased hydraulic head provides a stronger similarity to the theoretical case where 

the effect of dispersion is reduced in the convective-dominated system. The effect of 

subsurface geometry is also evident in this plot, as the factor for DH (1.23) shows that the 

mean Darcy velocity can be a better predictor for deep aquifers than for shallow aquifers 

(SH factor: 1.55).  
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Figure 2-11. Summary of calibrated velocities assigned to each scenario in the analytical 

approach, along with the DEM-based bulk Darcy velocities for both reduced and actual 

topographic model. 

2.5.6 Flow Path Analysis for Selected Transects (Homogeneous Aquifers) 

A flow path analysis was performed in two stages: first, to observe the changes in stream 

traces among homogeneous scenarios (RH, AH, DH) in the numerical model, and second, to 

compare them against the analytical approach. Seven transects were created for this 

analysis. A more detailed description of the findings is presented in Appendix A. The flow 

path delineations for the RH scenario were used as baseline for comparison. The stream 

trace distances tend to increase for all transects except for transect 6, while transects 3 and 4 

exhibited greater trajectory variations and had also greater slopes along the transect. The 

increase in topography generates deeper and longer flow paths as a consequence of a 

greater hydraulic head. Among the scenarios, the DH creates deeper and longer flow paths 

for all transects. The effect of subsurface geometry is significant in all transects except 

transects 4 and 5, based on the estimated pMTT. This effect is more evident at longer flow 

paths as they are more likely to sense the presence of the bedrock topography. 
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    Transect 3 pMTTs are strongly underestimated by the analytical method. This transect is 

located in an area where heterogeneity makes the stream traces stagnant (Figure 2-4b, 

Figure 2-6b). In the homogeneous case, the regional groundwater flow within the watershed 

is heavily deviating the flow paths near the boundary towards farther points of discharge. 

Thus, it is the effect of both imposed heterogeneity and regional groundwater flow that 

explains the significant underestimation of the pMTTs around this area (Figure 2-3d, Figure 

2-4b, Figure 2-5c, Figure 2-6b).  

    In general, the flow path lengths and the estimated pMTTs from both methods compares 

well for transects 1, 2, 5, and 7, are acceptable for transect 6, and not acceptable for transects 

3 and 4. Thus, a good correlation in flow path lengths does guarantee a good estimate of 

pMTTs.  

2.5.7 Effects of Topography and Aquifer Geometry on wMTT 

Four modeled scenarios are considered to evaluate the effects of topography and aquifer 

geometry, separate from changes in thickness, without the influence of heterogeneity: RH, 

AH, DH, and SH (Table 2-4). The analytical method exhibits no sensitivity to the depth of 

bedrock surface as the triad of homogeneous scenarios with actual topography exhibit 

similar wMTTs. The variability of the reported calibrated velocities for these scenarios 

(Figure 2-11) is not, then, indicative of a pattern for the overall ensemble of flow paths. The 

results for 𝑝𝐸(𝑥, 𝑡) suggest that by flattening the overall slope in this watershed by half, the 

wMTT increases 15 years (24%) and the mean scale is reduced by 14 percent, highlighting 

the importance of hydraulic heads as the driving force of subsurface flow in steep 

watersheds. Also, the increase of the aquifer thickness by ~50 m also causes an increase in 

wMTT (𝑝𝐸(𝑥, 𝑡)) of 15 years (24%), but unlike the case of RH, the longer mean arrival time is 

accompanied by flow paths that are, on average, 49% longer. This analysis for DH can be 

extended to the SH scenario where both wMTT and scale are reduced by 25 and 5 percent, 

respectively. Considering that the changes in wMTT and scale are far from being 

proportional, SH results indicate of that not only topography but also the depth to a 

confining layer can be important controlling factors in the porous media’s specific flow 
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velocities. The Peclet numbers are indicative of the type of transport conditions generated 

along the streamlines with the assigned values of calibrated U0 and λL, which are in general 

dominated by convective transport. 

Table 2-4. wMTTs, mode travel times, and mean flow path lengths and Peclet numbers for 

homogeneous scenarios. 

Scenario 

Mean 

Stream 

Traces 

Length 

[m] 

Peclet 

Number 

(vL/2D) 

Analytical 

wMTT [a]   

Mode Travel Time 

[a] 

Pexit Analytical  Pexit Analytical 

RH 1381 0.78±0.39 78.0 81.7  69.2 74.5 

AH 1614 1.18±0.46 62.7 56.4  53.1 51.4 

DH 2405 1.21±0.54 77.8 54.9  66.4 50.0 

SH 1530 1.47±0.61 47.1 57.8  40.0 52.8 

 

    The mean peak travel times (i.e., mode travel time) for each scenario (Table 2-4) are 

measures of peak spreading. By examining the mean and mode values produced by the 

numerical and analytical methods, the spread of the two statistics compare relatively well 

between the two methods.  

2.6 Discussion  

We applied a one-dimensional analytical equation of travel time to a three-dimensional 

watershed setting. Results were calibrated against a numerical model for 28 scenarios. These 

included changes in potential drivers of subsurface flow distribution and discharge such as 

topography, subsurface geometry, and subsurface heterogeneity. We constructed a set of 

virtual watershed models in order to verify the efficiency of the analytical method in 

predicting travel time at a watershed scale. The spread of models was envisioned to 

promote situations of groundwater exchange with surface water, as we are interested in 

applying this methodology to biogeochemical problems. This was achieved by mainly using 

reduced-topography scenarios (n=19 out of 28). The reliability of our approach depends on 
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adequately assigning three parameters to the ensemble of streamlines: flow path length (x), 

macrodispersion (λL), and mean flow path bulk velocity (U0). The last two parameters were 

used for calibration of the analytical travel time PDF to match the mode and arrival 

frequency of that from the numerical model for 24 observation points distributed across the 

watershed. 

    The flow path analysis (see section 2.5.6) highlights the important role played by both the 

flow path length in determining the travel time for individual water particles (Table A1 in 

Appendix A) and the mean value of travel times for the entire watershed (wMTT, Table 2-4). 

The model performance can be improved by incorporating as much knowledge as possible 

of the local conditions in relation to groundwater flow patterns. In areas where this 

information is unavailable, assumptions have to be made similarly to those used when 

building a numerical model. Data requirements for the development of subsurface 

numerical models are well established. However, the factors influencing the analytical 

model and its application to a 3-D groundwater system are more difficult to disentangle as 

there is no available literature. This study constitutes a first step in identifying some of these 

potential controls. However, factors such as drainage density and watershed size are not 

examined in this study as only one watershed is considered. These factors are evaluated in 

Chapter 3, where this methodology is applied to 8 additional watersheds. An aspect that 

became evident in the flow path analysis was the influence of regional groundwater flow in 

significantly controlling the travel times of particular areas within the watershed (transect 3, 

Figure 2-4b, Figure 2-6b). For these areas, deviation of the flow paths in the numerical model 

point to discharge locations beyond those inferred from the topography alone. 

    ArcNLET provides limited means to imitate the subsurface flow patterns generated by the 

numerical model. The flow patterns obtained from ArcNLET depend mostly on the value of 

the smoothing factor. For our study, a value of 20 provided the best overall match to 

numerical estimates. With values of 10, only limited regional flow occurs, as flow patterns 

would follow local topography more closely. On the other hand, using a smoothing factor of 

30, would result in more regional groundwater flow patterns throughout the watershed. A 
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full sensitivity analysis is beyond the reach of this study. However, smoothing factors of 10 

were applied to scenario 9 (𝜎𝑌
2 =1.0) and 12 (𝜎𝑌

2 =2.0) both with Ixy=300m, which resulted in 

lower wMTTs by 4 and 7 years, respectively. This reduction in wMTT was accompanied by 

a noticeable detriment in arrival frequency, as it did not increase with heterogeneity as the 

numerical model predicts. A smoothing factor of 30 was tested in actual topography 

scenarios with similar heterogeneity as above (𝜎𝑌
2 =1.0, 𝜎𝑌

2 =2.0). This smoothing factor 

yielded similar behavior in both rendering of wMTTs and pMTT distribution. The 

difference in wMTT was 1 and 2 years for the 𝜎𝑌
2 =1.0 and 𝜎𝑌

2 =2.0 heterogeneities, 

respectively. The value of 20 for the smoothing factor is the one that is more aligned with 

the behavior exhibited by the numerical model in both reduced and actual topography 

scenarios. For other watersheds, further studies are needed to properly assign this 

parameter. In general, a higher value would be required in flat terrains, whereas, a lower 

value would give a better fit in steeper terrains. As detailed information on deeper flow 

paths are only available where numerical models have been developed, a value of 20 is 

deemed a conservative estimate given the sparse information of watershed-scale regional 

groundwater flow patterns. Regional groundwater flow patterns extending far outside of 

the model domain are not addressed in this study. 

2.6.1 Calibration of Uo and λL 

Two calibration approaches were applied to the mean Darcy velocity defined by the 

differences in topographic elevation between the point of observation and its associated 

point of discharge. The second calibration option (i.e., adjusting Uo to move the entire set of 

observation points (n=1784) along a 1:1 value) overestimates the mean travel time by a 

magnitude of 20-30 years, i.e., 38-56% with respect to the AH numerical estimates. The 

results for the first line of calibration (i.e., adjusting Uo and λL to match mode and frequency 

of numerical travel time PDFs for 24 observation points) provides a better fit to the 

watershed’s MTT. The calibration of the Fickian longitudinal dispersivity term, which at 

field-scale studies is also known as macrodispersivity (λL) yields values ranging from 40 m 

to 160 m, for scale (L) distances of 200 m to 5500 m, respectively, and corresponding ratios 
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(λL/L) of 20 to 3%. The latter ratios are in the mid-range of the values of λL compiled by 

Gelhar (1992) from field data estimates. However, some of these compiled dispersivity 

measurements are regarded as unreliable, especially at larger scales, as few measurements 

were available for such long flow paths. The assumption of 10% of flow path length 

suggested by Gelhar (1992) as an approximation of field macrodispersion, has been widely 

used as starting point for calibration of groundwater transport models of contaminant 

plumes (Fetter, 1993). The calibrated curves in our study (Figure 2-2) are consistently below 

the λL = 0.1∙x line, especially for flow path lengths (scales) longer than 1000 m and 500 m in 

the reduced and actual topography models, respectively. If a solute were uniformly spread 

across the watershed, the values of dispersion will start increasing until they reach a plateau 

when all existing heterogeneity had been encountered (Dagan, 1988; Fetter, 1993). As the 

calibration of λL should result in mirroring the macrodispersion introduced in the numerical 

model, which varies from 35 m to 45 m, the calibrated values are seemingly enhanced as the 

scale increases. However, this increase is not as high as reported by other 1-D models 

(Kirchner et al., 2001). We propose that this phenomenon is due to a compensation effect 

associated with the addition of two more dimensions to the expression that was developed 

to solve a one-dimensional problem. The scale effect observed in macrodispersion describes 

a non-Fickian behavior (Dagan & Cvetkovic, 1996) as, in theory, this parameter should be a 

unique property of the medium.  

    At longer scales (Figure 2-2), the actual topography model sustains a slightly steeper slope 

in the relationship of λL and scale (L) than in the reduced model, even though both reach 

similar end values. Considering that the number of data points at longer scales is limited, 

observations at this scale are to be taken with caution. If what they represent is an actual 

trend, it could be stated that a larger λL value is expected at larger scales in areas with 

steeper topography, and more so, in areas with an increased degree of heterogeneity (i.e., 

higher 𝜎𝑌
2). The core of the λL correlation with flow path distance is that it can also be a 

proxy to a correlation with travel time. As discussed above, macrodispersion of solutes at a 

watershed scale increases with travel time. Based on theory from transport modeling, it 

could reach an asymptotic value at very long distances (Dagan, 1988; Fetter, 1993; Dagan & 
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Cvetkovic, 1996). In the numerical model, the ADE equation is used for transport of age 

throughout the model domain. Similarly, it is also used for the development of the 

analytical equation (Soltani & Cvetkovic, 2013). At the field scale, the ADE equation is 

dominated by the advective transport term (Dagan, 1988). Therefore, λL is expected to exhibit 

similar behavior as in the numerical model in that it reaches an asymptotic value at long 

flow paths or travel times. We observed that at mild-slopes, the asymptotic value could be 

reached quite early on (Figure 2-2a). 

2.6.2 Calibration Results and wMTTs 

The numerical results suggested that, in general, the calibrated λL values in the analytical 

model are slightly overestimated as the mean arrival frequency for the mean travel time 

(Figure 2-9) is systematically below that of the numerical model. This overestimation is 

more evident for the actual topography model scenarios, in which λL was calibrated with 

better overall correlation (Table A1). The arrival frequency is actually closely matched at 

longer travel times (scales), for the reduced topography model scenarios. The 

overestimation of the λL parameter by the analytical approach in the actual topographic 

model scenarios is accompanied by a wider range of travel times than those estimated using 

the 𝑝𝐸(𝑥, 𝑡) numerical approach (Figure 2-9). Contrary to expectations, a systematically 

better correlation between mean flow path velocity and flow path distance exists for the 

actual topographic model, but the resulting calibration of the actual topography scenarios is 

weaker in comparison to the reduced topography scenarios. The ratio of calibrated Uo 

between the most heterogeneous case (𝜎𝑌
2 =2.0) and the homogeneous case (AH) is 2.0 for 

actual topography, whereas, for reduced topography the same ratio is 1.4 (with Ixy= 300 m). 

The different velocities expressed by this ratio yield a greater variability in wMTT among 

the reduced topography scenarios (Figure 2-9). The wider range in bulk velocities applied to 

the analytical approach is not found for the numerical model responses in wMTTs. The 

increase in Uo with the degree of heterogeneity is observed in both topographic settings. 

Given that in subsurface settings the wMTT signal is longer and more temporally-

influenced by topography than in surficial settings, we speculate that a stronger relationship 
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between topographic characteristics and wMTT might be found in contrast to the large 

scatter in these relationships for surficial hydrology found by Tetzlaff et al. (2009b) for 

Scottish catchments. The scope of our study does not allow identifying these relationships. 

However, additional research could further develop these relationships by comparing 

watersheds with varying topography, subsurface geometry and heterogeneity. Such 

relationships would enable a path towards guidelines for the application of the analytical 

method in ungauged basins.  

    The distribution of travel times for the entire watershed is summarized by the wMTT PDF 

estimated for each scenario. As previously indicated, the analytical curves are less skewed 

to the right compared to their numerical counterparts. This is explained as the effect of 

deeper flow paths simulated in the analytical approach that do not intercept adjacent 

streams. If no evidence of a regional flow pattern exists, manually cutting short these flow 

paths in GIS is an alternative. However, they were left unmodified here to show their 

contribution to the overall distribution of travel times and to comply with the proposed 

methodology that relies on not having a priori knowledge on the existence of deeper flow 

paths. Simulated travel time PDFs like those presented here have been reported in others 

studies for surface hydrology (McGuire et al., 2007; Kirchner et al., 2000) and compared to 

various distributions (e.g. exponential, gamma). The unimodal distribution of travel times is 

characteristic of systems at steady state, as opposed to distributions for transient systems 

which can be multimodal and considerably less skewed. One advantage provided by the 

analytical equation is that it could be applied also to transient systems, which is not the case 

for the 𝑝𝐸(𝑥, 𝑡) numerical approach in FEFLOW that prevents from running both flow and 

transport simultaneously in a transient mode when transporting  𝑝𝐸(𝑥, 𝑡). 

    The degree of imposed, geostatistically distributed heterogeneity shows a positive 

correlation with Uo and a negative one with wMTT in both topographic settings. It is yet to 

be determined if this relationship holds true in other types of heterogeneity. For instance, in 

multi-layered settings, where different connectivity patterns in the subsurface may emerge. 

In such a setting, the vertical connectivity of the layers could determine whether the system 
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behaves as SH or DH. In cases with limited connectivity, an aquifer will tend to behave as 

the SH scenario, whereas in highly connected layers it will gravitate towards a DH-like 

scenario. A localized multi-layered setting might have occurred in our study for scenarios 

with the largest correlation length (Ixy=450m). For such conditions, the overall pattern of 

wMTT and flow path length could be different from those presented here.  

    Even for surface hydrology, a conclusive relationship between watershed size and wMTT 

remains to be found (Wolock et al., 1997; Asano et al., 2002; Shaman et al., 2004). Both 

approaches evaluated here (analytical and 𝑝𝐸(𝑥, 𝑡)) can provide insight in this relationship 

for subsurface hydrology via the analysis of mean travel time PDFs across multiple 

watersheds. In cases where computationally efficient simulations are sought, it is necessary 

to reduce the mesh resolution of the numerical model. That is, by making the mesh coarser 

in larger watersheds, less exchange flux locations will be identified, thus limiting the 

accuracy of the 𝑝𝐸(𝑥, 𝑡) field in the numerical model. It is in cases where quick results are 

needed, limited background information is available, or the watershed scale is a limiting 

factor for building a numerical model that the analytical method presented here can be 

envisioned as a modeling alternative. 

2.7 Conclusions 

A detailed analysis on the implementation of a proposed analytical methodology to estimate 

wMTTs and pMTT PDFs at the watershed scale is presented. We assessed the performance 

of the   methodology using a virtual watershed that was subjected to various potential 

controls of MTT including topography, subsurface geometry and heterogeneity. A total of 

twenty-eight (28) scenarios were created for this purpose and the topographic setting was 

modified to promote groundwater exchange fluxes with surface water. The results were 

evaluated against a numerical approach that relies on identifying the probability of exit of 

water particles distributed across the watershed. The proposed methodology compares well 

at mid- to long- flow path distances, and reproduces the variations exhibited by the 

numerical model from one scenario to the next. However, it overestimates the travel time of 

water particles located in the vicinity of streams as the flow path delineation used to 
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support the analytical model fails to intercept the stream channel. The generated particle 

travel time distributions for the entire watershed were slightly less skewed to higher pMTT 

values. This is likely due to deeper flow paths generated around stream segments compared 

to the pMTT’s numerical estimates. This effect does not significantly alter the location of the 

centroid of the distribution as the resulting wMTTs from all scenarios compare well with 

those of the numerical approach (r2=0.80, n=28, p<0.001). The effect of shallow confining 

units on the distribution of pMTTs at the watershed scale can be as significant as the effect 

of increasing the topographic slope. Our work advances the search for correlations between 

wMTT and topography for subsurface hydrology, but this will require going beyond the 

two topographic settings considered here.  

    The likely existence of preferential flow paths helped explain the increase in both the 

calibrated bulk velocity Uo (analytical model) and the consequent decrease in pMTTs (both 

types of models) with increased heterogeneity (𝜎𝑌
2). The relationship between Uo and 𝜎𝑌

2 

exhibits a linear trend that is maintained with increased slope and is accentuated with 

increasing size of heterogeneity (Ixy). Will this trend continue for steeper slopes? How about 

milder slopes? Is this trend still valid for other watersheds? Finding a more comprehensive 

relationship between calibrated velocities and DEM-derived Darcy velocities is crucial to 

guarantee that the methodology we propose is transferable to ungauged watersheds. This 

relationship needs to be established for other watershed characteristics, such as size, slope, 

and layered heterogeneity to verify if and under which circumstances it can be scaled up. 

    The method applied here, with the simplicity and ubiquity of the tools used (i.e., GIS and 

MATLAB), to estimate wMTT and pMTT distribution, and the process of comparing to the 

numerical model output, can be used to identify watershed-scale relationships relative to 

travel time. We presented a first step towards identifying an array of settings where the 

analytical approach is a viable alternative to the use of computationally expensive numerical 

modeling.   
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Chapter 3 

Geomorphological Controls on Subsurface Mean Travel Times 

(MTT): Multi-Watershed Performance Assessment of an Analytical 

MTT Model 

Summary 

The effects of a suite of geomorphological parameters on groundwater mean travel times 

(MTTs) at the watershed scale are investigated by simultaneously applying an analytical 

and a numerical model to 9 watersheds. This study builds on the work in Chapter 2, in 

which the effects on travel time distributions (TTD) of other contributing factors, in 

particular aquifer heterogeneity and thickness, were analyzed. The numerical watershed 

models are implemented under fully homogeneous and constant recharge conditions. 

Comparisons of travel times estimated by the analytical and numerical methods are carried 

out for individual observation points (pMTTs) distributed across the watershed and at the 

whole watershed scale (wMTT). With the exception of three study sites largely dominated 

by mountainous terrain where the numerical model fails to provide reliable results, the 

estimates of pMTTs and wMTT from the analytical model compare moderately and well, 

respectively, against the numerical model output (0.18<r2<0.52, and 0% to 12% difference). 

The analytical TTDs and wMTTs match especially well and, hence, they can be used to 

provide a first assessment of groundwater flow and transport of conservative solutes. The 

goodness of fit between the numerical and analytical models is tested for 28 

geomorphological indexes in order to delineate the physical watershed characteristics under 

which the analytical method works best. Optimal watershed characteristics include a 

topographic relief < 790 m and drainage density < 2.7 km-1. Single and multiple linear 

regression (SLR and MLR) models are used for the determination of the necessary analytical 

model parameters, that is, the smoothing factor (SF), uniform flow path velocity (Uo), and 

macrodispersion coefficient (λL). Texture topography (e.g. drainage density and structure) 

and topographic relief emerge as the strongest predictors of the parameters; for wMTTs, 
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topographic relief yields the highest predictive ability. The regression relationships are 

tested in three watersheds: Carroll Creek, Schneider Creek, and Nith River, all located in 

Ontario, Canada. With the predicted values of SF, Uo, and λL, the analytical model performs 

satisfactorily, except for Schneider Creek. Our analysis indicates that there are structural 

characteristics (e.g., low Horton’s law of slopes RS, values) for which the analytical model 

does not perform adequately and underestimates wMTT for Schneider Creek’s watershed. 

While the analytical model is not expected to capture all of the intricate flow paths dynamics 

in real watersheds, the simplicity of its implementation make it an attractive alternative to 

numerical flow models, particularly in the absence of detailed information on the 

subsurface. Further research should help widen the spectrum of potential applications of the 

analytical methodology.  

3.1 Introduction 

The need to better constrain water fluxes and storage at the watershed scale has motivated 

studies using comparative analyses based on geomorphological features with the mean 

travel time (MTT) as a key metric of watershed response (McGlynn et al., 2003; Tetzlaff et al., 

2009a; McNamara et al., 2011). There has been a long history of efforts in trying to establish 

the links between geomorphology and hydrological processes. Early work by Horton (1932, 

1945) identified physiographic characteristics that typically correlate with stream discharge 

using measures developed in the field of morphometry (Gardiner & Park, 1978). The 

Hortonian analysis provides the means, through stream ordering, to compare stream 

networks and their hydrological and erosional processes (Bowden & Wallis, 1964). In more 

recent years, the roles of intrinsic geomorphological features, have been examined in 

montane regions in order to assess surface hydrology, specifically those related to 

topography (Tetzlaff et al., 2009a, Tetzlaff et al., 2009b; Capell et al., 2012), watershed size 

(McGlynn et al., 2003; Hrachowitz et al., 2010; Hale & McDonnell, 2016a), soils (Rodgers et al., 

2005; Tetzlaff et al., 2009b; Hale and McDonnell, 2016a), and drainage density (Hrachowitz et al., 

2009; Soulsby et al., 2010; Capell et al., 2012) as potential controls of watershed’s MTT 

(wMTT).  
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    In examining topography, Tetzlaff et al (2009a) found that wMTT is inversely correlated 

with topographic indexes in 55 watersheds located in eight diverse geographical regions in 

the northern hemisphere. Furthermore, in flatter terrain the permeability of soils may play a 

more important role in regulating flow regimes. In another comparative analysis (Tetzlaff et 

al., 2009b), responsive soils (i.e., with poor drainage capacity) in 10 watersheds within the 

Cairngorm mountains in Scotland exhibited better predictive power of wMTT than 

topographic indexes, showing that potential landscape controls may play different roles in 

different regions. Rodgers et al. (2005) suggested that the interaction between topography 

and responsive soils represents a major control of wMTT. In these studies, wMTT estimates 

were obtained from isotope analyses (e.g. δ18O) of surface waters draining montane regions 

that are characterized by shallow, and not fully impermeable bedrock (McDonnell, 2003; 

McGrane et al., 2014), yielding ages not older than 4 years. Watershed MTT estimates 

obtained this way were used by Hrachowitz et al. (2009) to develop a predictive equation of 

wMTT in 20 montane watersheds in Scotland as a function of drainage density, responsive 

soils, precipitation, and topographic wetness index. The MTTs in Hrachowitz et al. (2009) 

and in the studies mentioned above were estimated using a lumped-parameter model 

developed by Maloszewski and Zuber (1982) typically applied to environmental tracers. 

Another inter-watershed comparison study evaluated the effect of bedrock permeability on 

stream base flow MTT at 15 nested watersheds distributed in two sites with distinct bedrock 

geology (Hale and McDonnell, 2016a). Hale and McDonnell (2016a) found longer MTTs (~6.2 

years) in permeable rocks where 67% of the variance in MTT can be explained by the 

drainage area. On the other hand, in poorly permeable rocks 91% of the variance of shorter 

MTTs (1.8 years) was explained by the ratio of median flow path length to median flow path 

gradient.  In contrast to these surficial hydrology studies, fewer studies have focused on the 

effects of topography (Wörman et al., 2007; Cardenas, 2007; Marklund & Wörman, 2011; Welch 

et al., 2012) and watershed size (Wolock et al., 1997) exerted over subsurface travel time. 

    Travel times distributions (TTDs) in non-mountainous settings are characterized by 

extended tails and MTTs that are on the order of decades (Frisbee et al., 2013; Hale et al., 

2016b). Marklund and Worman (2011) showed that topography and bedrock overburden are 
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major controls on the TTDs at nuclear depository sites in Sweden. Wörman et al. (2007) 

verified: first, the fractal behavior of landscape topography initially identified in previous 

studies (Rodriguez-Iturbe et al., 1992); secondly, the influence of landscape topography on 

subsurface water residence times and the similarities of their distributions at multiple scales; 

and lastly, the scale effect of geomorphological features on subsurface flow. Cardenas (2007) 

used topographically-driven groundwater flow and transport in a homogeneous porous 

media to show that the observed fractal behavior on stream chemistry can be explained not 

only by heterogeneity, as suggested by previous studies, but also by the influence of 

topography. Wolock et al (1997) presented evidence that low-flow stream chemistry 

exhibited less variability as watershed size and subsurface contact time increased.  

    The impact of climate and geology as it relates to subsurface water residence times has 

also received attention. Maxwell et al (2016) developed the first surface and subsurface 

residence times for most of continental North America at a high spatial resolution of 1 km 

using a fully integrated model (PARFLOW, Jones & Woodward, 2001), and for a domain that 

reached a fixed depth of 102 m below the ground surface. Recharge was spatially estimated 

as 𝑃 − 𝐸𝑇 and, at the continental scale, constituted together with the mean hydraulic 

conductivity the major controllers of peak travel times in the subsurface. Maxwell et al. 

(2016) also showed the fractal behavior of travel time distributions of major watersheds, and 

presented evidence that high aridity (i.e., low recharge) yields to longer flow paths and 

travel times. However, their results also suggest that more accurate representations of TTDs 

require more detailed information on bedrock overburden, hydraulic properties, and a finer 

spatial resolution. Considering both the mobilization of old water during storm events and 

its persistent chemistry (Kirchner, 2003), and the potential inter-basin connectivity of longer 

flow paths associated with hundreds or thousands years of travel time, the analysis of water 

quality impacts from diffuse pollution of anthropogenic or geologic origin can be improved 

with a better understanding of travel time distributions. 

    Analytical approaches have been developed to obtain either watershed-scale TTDs 

(Haitjema, 1995) or simple, one-dimensional applications to estimate travel time probability 
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density functions (PDFs) (Cornaton, 2012; Soltani and Cvetkovic, 2013). The work presented in 

Chapter 2 is the first attempt at applying the 1-D analytical equation for travel time of 

Soltani and Cvetkovic (2013) at the watershed scale by comparing the analytical solution to 

a numerical subsurface model. In Chapter 2, this comparison was performed for a virtual 

watershed, to which 28 scenarios with different conditions of heterogeneity, topography, 

and aquifer depth were applied. The outcome was the development of an analytical 

methodology to estimate particle median travel times (pMTT), their distributions, and 

wMTT. The analytical distributions compared with the numerical estimates well (0.34 < r2 < 

0.58 for pMTT; and, 0.72 < r2 < 0.94 for wMTT). In Chapter 2, it was found that wMTT 

negatively correlates with heterogeneity (Ixy, 𝜎𝑌
2), which was explained by the formation of 

preferential flow paths along larger hydraulic conductivity lenses. The effect of bedrock 

overburden was to generate deeper and longer flow paths. The analytical model in Chapter 

2 underestimated the arrival frequency of the peak of the travel time PDFs. This arrival 

frequency is primarily controlled by the macrodispersion coefficient, which in all scenarios 

remained under 10% of the total flow path length. The results also revealed the importance 

of flow path delineation in estimating particle travel times and the links with topography 

and the frequency of interception of the stream network. The uniform analytical flow 

velocities obtained in Chapter 2 exhibited a clear trend with heterogeneity, while a trend 

with topography was merely implied. The conclusion section of Chapter 2 suggested 

exploring further the effect of topography and stream density in other geomorphological 

settings as they may constitute important regulators of travel times in a watershed. 

    The geomorphological measures used as predictors of travel time in surficial hydrology 

have included topographic and slope indexes, soil type, and drainage density. The existing 

studies show there is no single universal controlling driver of travel time (Tetzlaff et al., 

2009a, 2009b; Hrachowitz et al., 2009). However, topographic indexes are likely to be among 

the top controlling factors (Tetzlaff et al., 2009a; Ali et al., 2012). In the realm of subsurface 

travel times, inter-watershed comparisons remain very limited. The degree of complexity 

involved in developing subsurface watershed models, combined with the great variety of 

subsurface models used to simulate watershed-scale groundwater flow and transport, have 
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hindered the conduct of inter-watershed comparison studies. The transferability of 

knowledge on the mechanisms that potentially control subsurface travel time distributions, 

from well-studied basins to ungauged basins is yet to be explored.  

    In this paper we build on the work presented in Chapter 2 by applying the proposed 

methodology to eight watersheds in addition to Alder Creek. We include a total of 28 

geomorphological indexes into the analysis to test their effects on numerically and 

analytically estimated travel times. The selected geomorphological indexes fit into five 

categories: elevation, shape, texture topography, fractal dimensions, and Horton’s laws. A 

virtual watershed approach is used: the numerical model yields travel time PDFs for each 

watershed, under similar conditions of recharge and a homogeneous subsurface to facilitate 

the inter-basin comparison of wMTT. The effects of these geomorphological indexes are 

translated into transferable relationships to predict wMTT in ungauged watersheds. In our 

study, the calibrated Soltani-Cvetkovic analytical equation (Soltani & Cvetkovic, 2013) is 

compared against the travel time distribution estimates of a three-dimensional, watershed-

scale subsurface numerical model in order to identify the more discerning indicators that 

can then inform future applications of the analytical TTD approach. 

    Here, the following major goals are targeted with our approach: first, compare TTDs, 

pMTT, and wMTT from both numerical and analytical models; second, identify significant 

discerning indexes based on the goodness of fit between numerical and analytical for future 

analytical model applications; third, develop regression models for predicting analytical 

model parameters and their evaluation on selected verification watersheds, for future 

implementations; and finally, identify major wMTT predictors from an array of 

geomorphological indexes through regression models.  

    Our study broadens the knowledge on the intrinsic geomorphic mechanisms controlling 

travel times in watersheds and yields an accessible method for MTT estimation using 

readily available tools (i.e., GIS and MATLAB). 
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3.2 Methods 

For this study, both numerical and analytical models were developed for the estimation of 

MTTs and their distributions at the watershed scale for a total of 9 watersheds in North 

America. In this section, details on both types of models are provided together with a 

description of the study watersheds and the geomorphological indexes that were chosen for 

analysis. 

3.2.1 Numerical and Analytical Travel Time 

In Chapter 2, I developed an analytical method to estimate pMTTs, their distribution, and 

wMTT for an entire watershed. For the numerical model, a virtual watershed approach was 

used applying the ground surface and bedrock topography to a fully 3-D homogeneous 

subsurface model for each of the 9 study watersheds. The estimates derived from the 

analytical method were calibrated against those obtained with the numerical model and 

compared against the selected geomorphological indexes. 

3.2.1.1 Numerical Method 

The numerical estimation of travel time was performed by using the probability of exit 

approach implemented in FEFLOW (DHI-Wasy GmbH). This approach was developed by 

Cornaton (2004) and Cornaton and Perrochet (2006). We refer the reader to these 

publications and to Cornaton (2014) where a recent update to the mathematical treatment 

can be found in more detail. A brief description of this method follows, which is specifically 

applied to subsurface travel time distributions at the watershed scale.  

    The backward adjoint model equations presented in (Cornaton, 2004) form the basis for 

calculating the life-expectancy probability density function (𝑔𝐸) of a particle in the porous 

media, defined as the time left for the particle before exiting the domain through an outlet. 

The probability of exit CDF (𝑝𝐸(𝑥, 𝑡)) is similar to the life-expectancy CDF (𝑔𝐸), however, by 

having 𝑝𝐸 being distributed as a random variable, it provides the means to estimate: i) the 

life-expectancy of any particle in the domain, and ii) the probability that a water particle will 

exit the domain. The 𝑝𝐸(𝑥, 𝑡) estimates can be calculated for a specific outlet that is part of a 
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multiple outlet system that could include, for example: wells, seepage surfaces, and 

exfiltration points along a river bed. This is accomplished by assigning a Cauchy boundary 

condition equal to unity (the maximum probability) to the target outlet. The target outlet in 

our case is the hundreds to thousands of exfiltration points along the stream bed. From this 

point backwards, a field of exit probability is created at every time step of the simulation 

depicting a break-through curve of exit probability at observation points (OPs) distributed 

in the watershed. Particles located in areas adjacent to the stream will exit the domain 

through this target outlet in their entirety with 𝑝𝐸(𝑥, 𝑡) values of 1.0. For particles located 

close to the boundaries of the watershed, 𝑝𝐸(𝑥, 𝑡) values are < 1, as these particles are 

affected by other potential outlets in the multiple outlet system. For this study, only two 

outlets are considered to be present: exfiltration through the stream bed and with 

groundwater flowing out near the watershed’s outlet.  

    The numerical modeling approach available in FEFLOW for travel time requires that the 

subsurface flow system be at steady state while the transport of the non-reactive tracer (i.e., 

age), is simulated as a transient process. The resulting break-through curve from each 

observation point corresponds to the travel time cumulative density function (CDF). Similar 

to when defining capture zones for wells, a probability of exit threshold of 0.5 is applied to 

the raw data treatment to exclude those observation points that fall outside of the natural 

drainage area (i.e., the groundwatershed) defined by the 𝑝𝐸(𝑥, 𝑡) field. Observations points 

outside of the natural drainage area discharge through the porous media outlet, that is, the 

corresponding water particles exit as groundwater into the adjacent watershed controlled by 

a Dirichlet boundary condition. 

    The MTT for each observation point is estimated from the median’s horizontal coordinate 

of the travel time CDF. For further analysis, the travel time CDF is numerically converted 

into a travel time PDF in MATLAB for calibration of the analytical pMTT estimates. 

3.2.1.2 Analytical Method 

The analytical method consists of applying the 1-D travel time distribution equation 

developed by Soltani and Cvetkovic (2013) to a set of observation points or particles spread 
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out in a grid across the watershed. The equation provides a CDF of travel time for a particle 

leaving its point of origin in the watershed up to its point of discharge. The point of 

discharge is defined using the GIS application ArcNLET (Rios et al., 2013). ArcNLET uses 

topography as a proxy for the potentiometric surface for which the Dupuit-Forchheimer 

approximation is applied to obtain a groundwater flow velocity and direction field along 

the horizontal plane. The direction and velocity fields are intercepted in ArcNLET by rivers, 

lakes, and other waterbodies that form the local surface hydrology. The output from 

ArcNLET that is incorporated into the analytical method corresponds to the flow path 

delineation and the distance for each particle released in the watershed until it reaches a 

waterbody. The corresponding expression developed by Soltani and Cvetkovic (2013) is: 

𝐹𝑓(𝑡; 𝑥) =
1

2
𝑒𝑟𝑓𝑐 (

𝑥 − 𝑈0𝜑(𝑡)

√4𝜆𝐿𝑈0𝜑(𝑡)
)                                                                                                         Eq. 3.1 

where, x is the flow path distance of each particle obtained from ArcNLET, 𝑈𝑂 is the mean 

uniform bulk velocity, 𝜑(𝑡) is a dimensionless factor for transient conditions, and λL, is the 

Fickian macrodispersion term. The 1-D analytical equation is applied on fully stationary 

condition, i.e., 𝜑(𝑡) = 1. 

    Equation 3.1 is derived from the solution of the 1-D ADE equation. Further details on its 

derivation and testing are provided in Soltani and Cvetkovic (2013). Two parameters in this 

equation are calibrated against the numerical MTT estimates: λL and 𝑈𝑂. The numerical 

determination of travel time is limited to stationary conditions. The flow path distance (x) is 

a sensitive parameter controlling the value of MTT for each observation point. In ArcNLET, 

variations in the delineation of a flow path and its distance (x) are achieved by assigning 

different values to a parameter called the smoothing factor (SF). This parameter refers to 

how close the representation of the potentiometric surface mimics the ground topography, 

that is, with low SF values (1-20) the potentiometric surface closely resembles the ground 

surface, and for high values (30-50) the resulting potentiometric surface is more 

independent from topography. 
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    With this in mind, in order to identify the configuration of parameters in the analytical 

method that provide the best match to the MTT estimates from the numerical model, the 

following considerations apply: 

 Stream Network. In the numerical model, groundwater discharge does not occur 

everywhere along the riverbed. In a domain with no heterogeneity, the distribution 

of groundwater discharge is primarily controlled by ground and bedrock 

topography and by the density of the river network. Several delineations of stream 

networks are evaluated for the study catchments. During the calibration process, 

stream segments are added and excluded as specified by a minimum number of cells 

from a GIS flow accumulation analysis. In this analysis, the number of cells needed 

to initiate a stream segment corresponds to a specific minimum drainage area. For 

the homogeneous subsurface domain (Kxy=Kz=5.26 m/d) chosen in this study, the 

portion of the stream network that actively exchanges with groundwater 

corresponds to second and third Strahler stream orders. In presumably more realistic 

heterogeneous domain, however, first and second Strahler stream orders are likely to 

yield the best calibration results. First order stream only play a role when 

heterogeneity is incorporated in the headwater area of a watershed. 

 Smoothing Factor (SF). For any observation point in the watershed, increasing this 

parameter tends to re-route the flow path to a point of discharge located further 

away from its origin. As this parameter is applied to the entire ensemble of 

observation points, the MTT for the entire watershed also increases (wMTT). Several 

SFs are tested in each study catchment during calibration, in combination with 

different stream network configurations. For future implementations of the 

analytical model, regression models that use the geomorphological indexes 

considered here can be used as predictors for SF, as well as λL and Uo (see Section 

3.3.3). 

 Macrodispersion (λL) and Mean Bulk Velocity (Uo).  These parameters are calibrated 

against the pMTTs estimated with the numerical model. Twelve out of the entire 

ensemble of observation points are selected for the calibration of the travel time 
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PDFs generated from the analytical model (by converting the travel time CDF) and 

the numerical model (as derived from the travel time break-through curve). When 

matching both PDFs, the λL value modulates the spread of the bell-shaped curve 

(typically skewed to the right). That is, the greater λL, the wider the PDF becomes 

accompanied by lower arrival frequencies, whereas for lower λL the PDF becomes 

more compressed (i.e., with a sharper peak) accompanied by greater arrival 

frequencies. The role of 𝑈𝑂 in the calibration process is that of matching the location 

of the travel time PDF peak along the time (horizontal) axis.  

For a given study watershed, a calibrated set of parameters is obtained by first identifying 

the best configuration of the stream network and the SF. This is done by comparing the 

numerical MTT estimates against the analytical values for each configuration. The 

calibration of λL and 𝑈𝑂 for the chosen calibration points is performed next using the best 

configuration obtained in the previous step. The final result of the calibration process is a 

mean bulk velocity and an equation of macrodispersion varying with flow path distance, 

both to be applied to the ensemble of observation points.  

3.2.2 Case Study Watersheds 

Nine watersheds are included in this study covering a wide range of slopes, sizes, and 

drainage density. All of them are located in North America (Figure 3-1, Table 3-1), five in 

Canada and four in the United States. Coincidentally, the study sites in Canada have mild to 

flat topographic relief, whereas the sites in the United States can be considered hillslope-

dominated watersheds. These sites are chosen because subsurface models have been 

developed for them and are available in recent publications. Three types of data are 

extracted of the watersheds: the ground and bedrock topography, and the stream network 

GIS delineation. Note, however, that bedrock topography is not available for all watersheds. 

Information on subsurface heterogeneity and local climatology are also gathered, when 

available, and may be used in the continuation of this study in the future.  
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    Three study sites are located in the Grand River basin (6800 km2), Ontario (Canada): 

Upper Laurel Creek (31.2 km2), Upper Nith (300.4 km2), and Alder Creek (78.0 km2). They 

have relatively muted topographic relief and slopes ranging from 67 to 122 m, and 1.17 to 

3.27 degrees, respectively. 

Table 3-1. Major watershed characteristics of study areas. 

Basin ID 
Area 
[km2] 

Strahler 
Order 

DEM 
cell 
size 
[m] 

Mean 
Elevation 

[m] 

Topo. 
Relief 

[m] 

Bedrock 
Surface 

Available 

mean 
DEM-

cell 
Slope 
[deg] 

Alder Creek AlC 78.0 5 25 353 122 Yes 2.57 

des Anglais River dAn 701.3 5 30 226 372 No1 1.04 

Ganaraska River Gan 278.1 5 20 233 317 Yes 3.67 

Pamilco Canyon Pam 134.9 4 20 1898 1065 No 9.53 

Rattlesnake River Rat 49.5 4 20 2182 928 No 11.7 

Sagehen River Sag 37.2 4 20 2263 790 No 8.62 

Thomas Creek ThC 198.6 6 20 740 1211 No 15.4 

Upper Laurel Creek uLc 31.2 4 25 376 74 Yes 3.27 

Upper Nith River uNi 300.4 4 25 388 67 Yes 1.17 

1 bedrock surface was estimated based on either well data (dAn) or available hydrogeological maps (Pam, Rat, 
and ThC). 

    The Ganaraska River (498.5 km2) discharges directly to Lake Ontario, with a significant 

topographic relief of 317 m. The thickness of the overburden deposits increases from south 

to north, that is, from the Lake Ontario shoreline to the Oak Ridges Moraine area, located in 

the headwaters of the basin (Earthfx, 2006).  

    Des Anglais River basin is located in Quebec, at the border with the United States. It is an 

extremely flat basin except for its headwaters surrounding against Covey Hill, on the 

outskirts of the Adirondacks Mountains, yielding a significant topographic relief of 372 m.  

    Rattlesnake River (49.5 km2) and Pamilco Canyon (134.9 km2) basins are both located 

within the Lower Walker River basin (10,230 km2) in Nevada (USA). Their topographic 

relief is similar and significant, 928 and 1065 m, respectively. The drainage network is sparse 
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as this region is dominated by semi-arid hydrologic conditions with intermittent streams 

frequently present (Allander et al., 2014). 

 
Figure 3-1. Distribution map of study areas in North America. Elevation ranking bars and 

drawing scales are shown for each study area.  

    The Sagehen River (37.2 km2) basin is located in California (USA) on the eastern flank of 

the northern Sierra Nevada. It is a commonly used basin for local modeling efforts and 

available information is plentiful. It is a basin dominated by steep headwaters and a U-

shaped valley, characteristic of glaciated terrain and meadow areas (Essaid et al., 2014). It has 

a topographic relief of 790 m and a steep mean slope of 8.62 degrees.  
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    The Thomas Creek (198.6 km2) basin in Oregon (USA) is located within the Santiam 

River basin (4700 km2). This basin has the greatest topographic relief (1211 m) and the 

steepest mean slope (15.4 degrees), from all the basins included in this study.  

3.2.3 Geomorphological Indexes 

A large number of indexes of basin geomorphology are estimated for the study areas in 

order to establish how they relate to the distribution of travel times in the watersheds. These 

indexes were grouped in Table 3-2 in the following classes: texture topography, elevation, 

shape, fractal dimensions, and mixed indexes. They are estimated using either a 

mathematical expression or graphically, by plotting data extracted from collected 

information.  

    Empirical “laws” initially suggested by Horton (1945) for stream networks are included in 

this study (Table 3-2). In particular, we use a modified “law” of stream lengths (RL) to 

estimate the total length of streams of order w in the watershed, not the average length as 

originally presented by Horton (1945). A Strahler’s stream-ordering scheme is applied to the 

watersheds. 

    Several elevation and slope measures are considered, many of which are self-explanatory 

except for the hypsometric curve and link slope (LnkSlp). The hypsometric curve provides a 

three-dimensional metric of the watershed by plotting relative height against relative area. 

The hypsometric curve can be used as an estimate of the age or activity stage of a 

watershed’s geological evolution (Bras, 1990). The fluvial scaling of link slopes (LnkSlp) is 

examined using Shreve’s (1966) stream ordering system as scaling index (i.e., the logarithm 

of magnitude) against the logarithm of link slopes. This relationship follows a power law 

scaling of the form: ax-n, where n has a reported average of 0.6 (Tarboton et al., 1989) and a 

range of 0.37-0.83 (Flint, 1974). 

   The shape of the watersheds is also quantified with several indexes that are typically 

based on comparing specific shapes and shape qualities to basin characteristics, such as area 

(A), perimeter (P), length (LT) and width (W).  
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Table 3-2. Geomorphological indices included in present study. 

 

 

 

Parameter Symbol Formula Units Notes / Description Reference

Horton's Law measures

Link slope LnkSlp Slp = LnkSlp∙N + i [%]

Corresponds to the slope of the relationship 

between mSS [%] and Shreve order [or 

magnitude, N]; i: intercept.

Tarboton et al (1989)

Texture topography measures

Drainage density Dd Dd = L / A [1/km]
L: stream segments length [km]; A: watershed 

area [km2]
Horton (1945)

Texture ratio Tex Tex = NmIn / P [1/km]

NmIn: maximum number of intersected stream 

segments by an elevation contour line; P: 

watershed perimeter [km]

Gardiner (1975)

Drainage frequency DF DF = NS / A [1/km2]
NS: number of stream segments; A:watershed area 

[km2]

Horton (1945); Brass 

(1990)

Ruggedness number HDd HDd = H ∙ Dd [-]
H: mean stream segment drop [km]; Dd: drainage 

density [1/km]
Strahler (1964)

Texture - Perimeter TexPer TexPer = NmIn / PUP [1/km]

PUP: perimeter for upstream watershed 

encompassed by elevation contour line with 

maximum number of intersected stream segments.

Smith (1950); 

Leopold et al (1964)

Elevation measures

Relief Relief Relief = Zmax-Zmin [m]
Topographic relief, elevation difference within 

watershed
Strahler (1964)

DEM cell-size slope cSlope [-] [deg]
Slope measurement given by the largest drop at 

each cell of the DEM, using Slope_3d GIS tool.
[-]

Main channel slope Schan [-] [%] Mean channel drop along segment. Gardiner (1975)

Mean Gradient mGrad mGrad = [Relief / LT] ∙ 100 [%]
LT: longitudinal length of watershed, longer 

dimension of watershed [km]
Gardiner (1975)

Hypsometric curve [-] [-] [-]

Relationship between relative height (contour 

elevation minus outlet elevation) and relative area 

(area upstream of contour elevation divided by 

total area). 

Leopold et al (1964); 

Brass (1990)

DEM slope probability 

histogram
[-] [-] [-]

Frequency occurrences of DEM cell-size slopes 

[deg] distributed in 100 bins. The DEM cell-size 

was kepth within 25-30m

[-]

[-]

mSS: mean stream slopes for each Strahler order 

(SO). R S : is the slope of the SO vs. mSS 

relationship ; i: intercept.

Horton's law of stream 

length

mSL, 

R L

mSL = RL∙SO + i [-]

mSL: mean stream length for each Strahler order 

(SO). R L : is the slope of the SO vs. mSL 

relationship; i: intercept.

Horton's law of streams                                                           

(Bifurcation ratio)
NS, R B NS = RB∙SO + i [-]

NS: number of stream segments for each Strahler 

order (SO). R B : is the slope of the SO vs. NS 

relationship; i: intercept. Horton (1945); 

Strahler (1952); 

Tarboton et al. 

(1988); Brass (1990); 

Rodriguez-Iturbe 

and Rinaldo (1997)
Horton's law of stream 

slopes

mSS, 

R S

mSS = RS∙SO + i
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Table 3-2. Geomorphological indices included in present study. (continued) 

 

 

Parameter Symbol Formula Units Notes / Description Reference

Shape measures

Circularity R C RC = A / Aceq [-]

Relates watershed area [A] with the area of a 

circle [Aceq] with the same perimeter length as 

the watershed.

Jarvis, R (1976)

Lemniscate ratio P LR [-]

Compares the perimeter of a lemniscate branch 

(eP) against that of the watershed (P). eP  is 

estimated with the incomplete elliptical integral of 

the second kind (E(a|m)).

Chorley  et al.  

(1957); Gardiner, V.  

(1975)

Form factor FormF FormF = A / LT
2 [-]

Relates watershed area [A] with a square of 

length equivalent to the longer dimension of 

watershed, LT [km]. 

Gardiner (1975)

Elongation ratio Er Er = √A / LT [-]
Relates the square root of the watershed's area 

with LT [km]
Gardiner (1975)

Compactness C C = P / √A [-]
Relates the watershed's perimeter [P] with the 

square root of the area [A]. 

MacEachren, A. 

(1985)

Relative distance variance RDV [km]

2
X

2
Y: distance variance of 100-m cells 

across watershed with respect to its centroid, for 

the x and y axis. Equivalent to estimating the 

moment of an area.

MacEachren, A. 

(1985)

Main channel length MnChL [-] [km]
Main stream length as defined by Shreve's (1966) 

stream order.
Gardiner (1975)

Fractal dimensions

Stream fractal BC method -

plane
D BCst NB = DBCst∙bs + i [1/m]

Stream fractal BC method -

1D
d BCst NB = dBCst∙bs + i [1/m]

Perimeter fractal BC method D BCp NB = DBCp∙bs + i [1/m]

Perimeter fractal WD 

method
D WDp -- [km]

Walking-Divider (WD) method applied to 

northing and easting coordinates of watershed's 

perimeter: an increasing chord length is used for 

each estimation of the perimeter as it 'walks' 

through its entire length.

Mixed measures

Link concentration [-] [-] [-]

Relationship between number of stream segments 

intercepted by a contour elevation and relative 

height (contour elevation minus outlet elevation).

Mesa (1986); Gupta 

et al. (1986)

Hack's law

LvAa, 

LvAb, 

LvAab

LMC = a∙Ab [-]

Relationship between main channel lenght (LMC) 

and respective drainage area (A). LvAa , LvAb , 

and LvAab  refers to the coefficient, exponent, and 

product of coefficient and product of this power 

law relationship.

Leopold et al. (1964); 

Rodriguez-Iturbe & 

Rinaldo (1997)

BCst: box-counting method applied to a stream 

network; NB: number of boxes; bs: box size [m] 

determined by GIS grid, which is increasingly 

varied to develop this relationship; i: intercept

» Steeper slope ~2.0 in Log [bs] vs Log [NB] plot 

corresponding to larger box sizes, for D BCst .                                                                                                                     

» Flatter slope ~1.0 in Log [bs] vs Log [NB] plot 

corresponding to smaller box sizes, for d BCst .                                                                                                                                                                

» Steeper slope ~1.0 Log [bs] vs Log [NB]plot 

corresponding to larger box size, for D BCp .

Mandelbrot (1983); 

Tarboton et al. 

(1988); Tarboton et 

al. (1989); Rodriguez-

Iturbe and Rinaldo 

(1997)

𝐸
 

2
 =  1 −       2( )   

 /2

0
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    The scaling behavior of the stream network of a watershed is quantified by calculating its 

fractal dimension using the box-counting technique (Lovejoy et al., 1987). The larger the box 

size the more space-filling the network is as its DBCst approaches 2, which corresponds to the 

dimension of the feature being captured by the river network (i.e., the watershed). The 

Walking-Divider method is also used to estimate the perimeter’s fractal dimension. A 

FORTRAN code for this method is provided in Lam and De Cola (1993), modified from 

Shelberg et al. (1982). It is rewritten in MATLAB for this study.  

3.3 Results 

3.3.1 Analytical vs. Numerical Travel Times 

The frequency distributions of the median travel times estimated with the numerical and 

analytical methods are compared for each watershed in Figure 3-2. Also shown on the figure 

are the values of descriptors of the shape of the distributions that can be used to estimate the 

goodness-of-fit between the two methods. For most watersheds, the distributions obtained 

with both methods are in fair agreement, except for Pamilco River, Rattlesnake River, and 

Thomas Creek watersheds where the numerical model exhibits extremely high frequencies 

at very short travel times. These watersheds are located in areas with hillslope-dominated 

geomorphological features typical of montane regions such as strong topographic relief and 

slopes. Sagehen River watershed is also located in a montane region; however, its 

distribution of pMTTs exhibits better agreement between models in spite of having the 

fourth largest topographic relief (790 m). Excluding these three watersheds, the mean, 

median, and standard deviation of the pMTT analytical model estimates follow closely 

those estimates from the numerical model, with in most cases, moderate underestimations 

of the mean and standard deviation.  

    Skewnesss of the analytical distributions is not well matched to the numerical ones in the 

Upper Laurel Creek and Ganaraska River watersheds. In terms of kurtosis, the occurrence 

of infrequent outliers is highest for Alder Creek, des Anglais River, and Ganaraska River 

watersheds, with the largest measure quantified for the analytical method estimates for des  
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Figure 3-2. Frequency distribution of median travel times (pMTTs) estimated by both 

numerical (Num) and analytical (AM) methods for the nine watersheds. Measures of fit for 

the distributions are also presented (m.: mean, md.: median, sd.: standard deviation, sk.: 

skewness, k.: kurtosis, p95.: the 95th percentile) for both methods. 

Anglais River. The closest kurtosis value to a normal distribution shape of 3.0 was for the 

analytical method pMTT estimates for Ganaraska River watershed, describing its smooth 

transition through the spectrum of travel times. Discrepancies between the magnitudes of 



 

 80 

the frequencies are observed in most study sites especially for the Sagehen River watershed, 

where the occurrence of large and wide spikes of travel times are present likely at different 

locations in the watershed. These locations could be along the slopes of hillslope areas of 

this, rather montainous watershed, yielding clusters of water particles with long travel 

times. This phenomenon is replicated by the analytical method but only at shorter travel 

times. The underestimation in the standard deviation of the analytical model pMTTs is 

indicative of the wider spread of the travel times estimated by the numerical model. The 

number of occurrences of the longest travel times that exceed the 95th percentile is very 

small and adds little to the analysis. This 95th percentile value of travel time is encompassed 

by the range of travel times estimated by the analytical model indicating that the 95% of 

travel time occurrences in a watershed are predicted by the proposed methodology. 

    The mean difference in wMTTs is (+)5.3 years between the models. Out of the three 

“problematic” hillslope watersheds, the largest differences of 19 and 29 years are for 

Pamilco Canyon and Rattlesnake Flat, respectively. When excluding Rattlesnake Flat, 

Pamilco Canyon, and Thomas Creek (RPT watersheds, hereafter) watersheds, the mean 

error in wMTTs is only (+)0.33 years and a good correlation between analytical and 

numerical wMTT is observed (r2=0.89, Figure 3-3). When including all watersheds, the 

correlation becomes weaker (r2=0.71). Both correlations indicate a slight overestimation of 

wMTT by the analytical method, but it is more evident when the RPT watersheds are 

included. 

    The estimates of pMTTs and the wMTT computed with the analytical and numerical 

methods are compared for the study watersheds in Figure 3-4. The best performance, 

measured by r-squared, of the analytical model occurs in Alder Creek (r2=0.52, Alc), 

followed by Upper Laurel Creek (r2=0.30, uLa) and Upper Nith River (r2=0.25, uNi), which 

coincidentally are all located in the Grand River watershed (Ontario, Canada). The goodness 

of fit for the pMTTs between these two methods is lowest for Rattlesnake Flat (r2=0.03, Rat). 

The worst performance is found again on the RPT watersheds. The analytical method in 

Sagehen River (Sag) explains 18% of the variance of pMTT from the numerical. Additional 
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Figure 3-3. Watershed MTTs (wMTT in years) estimates by the calibrated analytical and 

numerical methods. Linear regression lines with and without RPT watersheds are shown 

together with their respective r2 values. The root-mean-squared error (rmse) and mean 

absolute error (|∆̅|) measures of fit are also shown. 

measures of fit such as root-mean-squared error (rmse) and mean absolute error (|∆̅|) are not 

sensitive to the agreement of the analytical model when estimating pMTT with respect to 

the numerical approach  𝑝𝐸(𝑥, 𝑡). 

    Some watersheds exhibit vertical ‘banding’ in the pMTTs estimated with the numerical 

model. That is, for OPs with similar 𝑝𝐸(𝑥, 𝑡)-estimated MTTs their analytical counterpart 

exhibited a wide range of travel times. This vertical ‘banding’ is seen for the three hillslope- 

dominated watersheds (Figure 3-4d, Figure 3-4e, Figure 3-4g), and is most prominently 

expressed in Pamilco Canyon and Rattlesnake Flat. It extends to OPs with extremely short  
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Figure 3-4. Scatter plots for calibrated analytical and numerical (𝑝𝐸) particle MTTs for the 

nine watersheds. The watershed MTTs are also reported for the analytical (A) and numerical 

(F) models in years (a). Particle MTTs are discretized in color by three equal intervals of 

elevation: grey, green, and blue for interval Elev1, Elev 2 and Elev3. The histogram of 

elevation intervals for each watershed is shown as inset figure. The root-mean-squared error 

(rmse) and mean absolute error (|∆̅|) measures of fit are also shown. 
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travel times, nearing zero. This, together with the extremely high frequency of short travel 

times shown in Figure 3-2, constitute in another line of evidence of the poor performance of 

the numerical model in the RPT watersheds. 

    As mentioned in Table 3-1, a depth-to-bedrock map is not available for several 

watersheds, including: des Anglais, Pamilco Canyon, Rattlesnake Flat, and Thomas Creek. 

In the case of des Anglais, a local well depth database was used to approximate aquifer 

depth. Regional hydrogeology maps taken from Maurer et al. (2004) guided the estimation 

of the aquifer depth for Pamilco Canyon and Rattlesnake Flat watersheds, and from 

McFarland (1982) for Thomas Creek. For these three last watersheds, assumptions on depth-

to-bedrock were made in the hillslope areas. These assumptions were tested as potential 

reasons for the poor performance of the numerical model, however, different configurations 

of aquifer depth and mesh spatial resolution do not resolve the inconsistencies in travel time 

estimates. It is also likely that the steady flow field required by the transport model to 

simulate the transport of ages in FEFLOW becomes less reliable for steep hillslopes. This 

may create points of discharge that are dictated by steep topography and not by subsurface 

flow. For the analytical model, the original stream network delineation from NHD was 

modified several times to create first order streams following a fixed minimum number of 

cells in the flow accumulation raster in order to obtain a better agreement with numerical 

travel times, as it dictates the procedure outlined in section 3.2.1.2. Despite implementing 

many configurations, correlations do not improve for these three hillslope watersheds. 

    For some study watersheds, the pMTT agreement between the distributions from both 

methods depicted in Figure 3-2 does not match the measure of fit in Figure 3-4, which 

indicates that the travel times represented in the analytical model does not exactly coincide 

with the same locations than those registered in the numerical simulations. 

    Observation points are grouped according to their relative elevation in the watershed in 

three bins: low (Elev1), median (Elev2), and high (Elev3). The distributions of observation 

points (OPs, or particles) in these topographic elevation intervals shows that, generally, 

mid- and high-range OPs exhibits a wide range of travel times. Short travel times in 
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hillslope areas may occur, as well as in OPs located near the river network. Long travel 

times are not dominated by any elevation range, as at any point in the watershed local 

differential altitudes and distances exist where remote flow paths can be present. The range 

of flow paths at different altitudes along the stream network depends upon the shape of the 

watershed. In des Anglais (dAn) and Ganaraska (Gan) River watersheds a portion of OPs 

with long pMTTs is located at high elevations, but this is more accentuated in the Ganaraska 

River where the headwater area is more extensive.  In Alder Creek, high elevation OPs yield 

mid- to long travel times, whereas, in Upper Laurel Creek and Upper Nith River travel 

times are spread across a larger range of elevations. The degree of agreement between 

analytical and numerical models does not vary with elevation for the same watershed. For 

any of the hillslope-dominated watersheds, there is no single elevation range that shows a 

better correlation than the overall value.  

3.3.2 Where does the Analytical Model Performs Best?  

In this section, a series of geomorphological features are examined and quantified (Table B1) 

to identify conditions under which the analytical method performs best against the 

numerical output. For this purpose, the measure of fit, r-squared, between the numerical 

and analytical methods is used as the discerning factor of performance for the 

geomorphological feature being evaluated as predictor. The measures of fit rmse and |∆̅| do 

not show enough sensitivity to the agreement between the models to be used as discerning 

factors. The analysis also seeks to shed light on the roles played by these geomorphological 

features in particle and watershed MTTs. Exclusive and non-exclusive ranges are created for 

a particular index, where the non-exclusive range does not yield optimal performance as it 

may either exclude the Sagehen River watershed or include any of the RPT watersheds. 

3.3.2.1 Horton’s Analysis 

Horton indexes N, L and S (Table 3-2) correlate well with the Strahler stream order (w) 

within the ranges 0.71-0.98, 0.69-0.98, and 0.73-1.0, respectively. The order in which the 

fitted lines are distributed for N and L does not strictly follow watershed size, however, its 
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influence is clearly present (Figure 3-5). Ganaraska River, for instance, is slightly larger than 

one third the size of des Anglais River (701 km2), but the former exhibits a greater drainage 

density leading to both greater N and L. Horton’s RB law (i.e., the slope of N) does not 

produce any discretization with respect to the goodness of fit between the analytical and 

numerical methods (NumAn goodness of fit, hereafter) given by the r-squared value, but RL, 

yields a narrow discretization between values of 2.5 and 3.4. The relationships of S, as well 

as N and L, with stream order decreases as the upstream network feeds streams in the 

valleys. The steepest streams are located, in descending order, in the watersheds of Thomas 

Creek, Sagehen River, Rattlesnake Flat, and Pamilco Canyon, and the least steep ones in 

Upper Nith River, Upper Laurel Creek, and des Anglais River. Alder Creek and Ganaraska 

River are the mid-range in the set of study watersheds. For these two watersheds, these 

relationships with stream order actually yield a range of mean stream slopes with better 

NumAn goodness of fit. This range, highlighted in yellow in Figure 3-5, is encompassed by 

Upper Nith River and Ganaraska River. The law of slopes RS, however, does not provide a 

useful discerning tool with respect to the NumAn goodness of fit.  

3.3.2.2 Texture Topography Measures 

Drainage density (Dd = LS/A) is a measure of the degree of development of a watershed 

(Bras, 1990).  Its calculation depends on the resolution at which drainage maps (i.e., GIS 

shapefiles) or aerial photographs are used for delineation. There is a wide range of Dd 

values among the study sites (Figure 3-6 and Table 3-1). The drainage density in Thomas 

Creek is the largest followed by Sagehen River, whereas, the smallest is in Des Anglais 

River. Its relation to NumAn goodness of fit is systematically poor. Drainage density and 

drainage frequency (DF) are measures of texture topography (Smith, 1950). Thus, Tex (see 

Table 3-2) has a strong and positive relationship to Dd (Figure 3-6, r2=0.94). Both DF and Tex 

correlate poorly with NumAn goodness of fit (Figure B1, in Appendix B). No discerning 

ranges for these indexes are found for the study watersheds. 
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Figure 3-5. Horton analysis of stream networks: stream numbers (N), sum of lengths (L), 

and slopes (S). Fitted lines and r2 values of these relationships are shown for the study sites 

as 𝑟𝑁
2,  𝑟𝐿

2, and 𝑟𝑆
2. The correlation (r2) between the analytical and numerical particle MTTs 

for each watershed is also presented next to the respective fitted line. The slopes of the 

above relationships yields RB, RL, and RS for each study site (red circles). The fitted line 

through these parameters against the correlation between the analytical and numerical 

method is also plotted (red dashed-line). 
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    Strahler (1950) suggested that Dd increases with topographic relief (i.e., the difference 

between maximum and minimum elevation), which is verified here with a moderately 

strong, positive relationship (r2=0.43). The box highlighting better NumAn goodness of fit 

shown on Figure 3-6b suggests that the analytical model works better at lower drainage 

densities (<2.7 km-1) and topographic reliefs (<790 m). When Dd [1/km] is multiplied by the 

mean stream link drop (H [m]), it results in the dimensionless ruggedness number (HDd), 

which yields a relationship with a non-exclusive range. We propose that drainage density 

alone cannot be used to identify ranges with better NumAn goodness of fit. It is only when 

ground elevation (Relief) or stream network elevation (HDd) indexes are factored in that 

ranges discretizing the performance of the analytical model are obtained. When Relief alone 

is plotted against NumAn goodness of fit, it provides a range that clearly excludes the RTP 

watersheds (Figure B2d, in Appendix B). 

3.3.2.3 Elevation Measures 

    Mean watershed gradient (mGrad, %), mean channel slope (Schan, %), mean DEM cell-size 

slope (cSlope, deg), and the probability distribution of the DEM-cell size slope are included 

in this category. The performance of the analytical method improves when mGrad, Schan, 

cSlope, and Relief decreases (Table 3-2, Figure 3-7). The above elevation indexes are both 

inversely related with the NumAn goodness of fit via either an exponential or a power law 

function, and defining a range of performance for the analytical model. Relief and cSlope are 

the indexes that provide a definite range for the best performance of the analytical model 

with Relief < 790 m and cSlope < 8.63 degrees. (Note that although Thomas Creek has the 

second largest Schan, it also exhibits the highest RS value. This apparent discrepancy is likely 

due to the fact that Thomas Creek has a more extensive valley in which the contribution of 

high order streams is more important than in Sagehen River).  

    The histogram describing the occurrence of slopes at the DEM-cell scale is indicative of 

the spectrum of slopes present throughout a watershed. These histograms are shown here in 

terms of probability of occurrence (Figure B2, Appendix B). Watersheds that yielded the best 

NumAn goodness of fit are mostly spread around lower DEM-cell size slopes (<2.5 deg). 



 

 88 

 

Figure 3-6. Drainage density (Dd) and ruggedness number (HDd) as a function of the 

correlation between numerical and analytical results (NumAn goodness of fit). The 

relationship between Dd and texture ratio is also shown as well as between Dd and Relief. 

    Hypsometric curves were derived for all watersheds based on raster elevation data 

(Figure B3, in Appendix B). Characteristic profiles for geomorphologically young (or high 

activity), mature (medium activity), and old (low activity) watersheds can be associated  
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Figure 3-7. Elevation measures as a function of the degree of agreement between analytical 

and numerical methods (NumAn goodness of fit): a) mean gradient (mGrad), b) mean slope 

channel (Schan), c) mean DEM-cell size slope (cSlope), and d) topographic relief (Relief). 

Exclusive and non-exclusive ranges of these parameters are highlighted in yellow and blue, 

respectively, referring to the inclusion of Sagehen River watershed in the range. 
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with specific shapes of the hypsometric curve (Bras, 1990). Most of the study watersheds fall 

within the young (or high activity, concave down) and mature (medium activity, slightly 

concave down) categories except for des Anglais River whose strong concave up curve is 

associated with low activity (i.e., old age). This three-dimensional representation of the 

study sites, however, does not provide a means to discern among the NumAn goodness of 

fit. In other words, the analytical model performance is not constrained by the hypsometric 

curve. 

    A representation of the juxtaposition of watershed elevation and texture topography is 

provided by the link concentration plot that depicts the distribution of points at which the 

stream network dissects the topography at specific elevation contours throughout the 

watershed (Figure B4, Appendix B). Half of the study watersheds exhibited a single peak in 

their distribution of links: Sagehen River, Pamilco Canyon, Rattlesnake Flat, Alder Creek, 

and Upper Laurel Creek. The link concentration in the other half of watersheds follows a 

multi-modal behavior, where peaks occurred either consecutively or anywhere else in the 

watershed. However, an exclusive range of relative relief where the best NumAn goodness 

of fit dominates the link concentration distribution could not be determined.  

3.3.2.4 Measures of Shape 

Circularity (RC) compares the watershed area (A) against the equivalent area of a circle with 

the perimeter equal to that of the watershed (Jarvis, 1976). High values of Rc indicate more 

likeness to a ‘circular’ shape (Figure B5, Appendix B). This measure does not provide any 

discretization with respect to the performance of the analytical model. Both the lemniscate 

ratio (PLR) and elongation ratio (Er) provide non-exclusive ranges for better performance of 

the analytical model. The PLR ratio identifies Sagehen River and Rattlesnake Flat as the most 

similar to a lemniscate shape (Figure 3-1). According to ER, the most elongated watersheds 

are Thomas Creek and Ganaraska River (Figure 3-1). A measure of compactness (C) given 

by P/A0.5 again yields a weak range for best NumAn goodness of fit: C from 5.8 to 7.25. The 

lower C gets, the closer the perimeter length is to the length of the square-root of A and 

hence the watershed becomes more square shaped.  
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    Another measure of compactness is given by the relative distance variance (RDV), which 

divides the watershed in infinitesimal areas. The variance of the distance to these areas from 

the watershed centroid is quantified for its estimation. A non-exclusive range of RDV values 

is obtained when Pamilco Canyon is included in it (Figure B6, Appendix B). These ranges, 

even though non-exclusive, indicate that best agreement between the analytical and the 

numerical models are, in general, likely to be obtained in not too elongated watersheds (Er 

and C). This result can be tied to the watershed size given that larger watersheds tend to be 

more elongated as the ratio A/L2 (i.e., form factor) falls when A increases (Bras, 1990).  This 

can be observed in the relationship 𝐿 = 𝑎 ∙  𝑏, where the exponent b is always greater than 

0.5 (Leopold et al., 1964).  

3.3.2.5 Fractal Dimensions 

The box-counting technique is applied to both stream network and watershed perimeter 

(Figure 3-8). This technique reveals a bi-fractal behavior for both the stream network data 

and the perimeter data. The bi-fractal behavior is characterized by two segments of different 

slope that fits the data defining distinct regions of self-similarity. The first line is traced 

along small box sizes and a great number of boxes are required to intersect the targeted 

shape (i.e., the perimeter or the stream network). This line has a mild slope with a value 

close to (-)1.0, as given by the exponent of the fitted power function. The trend of this line is 

interrupted as the box size increases and exceeds a certain value. A steeper slope is then 

needed, as fewer boxes are required to intersect the entire stream network. The second line 

is traced along large box sizes that require a smaller number of boxes to intersect the 

network. A similar bi-fractal behavior is observed by the box counting technique applied to 

the watershed’s perimeters.  

    The steeper slope in the box-counting analysis represents the fractal dimension (DBCst) of 

the evaluated feature (Claps and Oliveto, 1996). The milder slope of the box counting data of 

the stream network approaches unity as it more closely traces the uni-dimensional aspect of 

the network (dBCst). The steeper slope, on the other hand, has a wider range of values from 

~1.5 to 2.0. The steeper slope is interpreted by some researchers as a measure of how space-
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filling the stream network is (Tarboton et al., 1988; Rodriguez-Iturbe & Rinaldo, 1997). The 

closer the fractal dimension is to 2 the more space filling the network is because, 

theoretically speaking, it approaches a surface dimension. This interpretation basically 

entails that a fractal dimension is another way of measuring texture topography using 

fractal analysis. However, this interpretation does not appear to apply to all watersheds in 

this study (Figure 3-8). Thomas Creek and Sagehen River have the largest drainage densities 

and fractal dimensions (~1.8), whereas Ganaraska River has the lowest fractal dimension. 

This does not correspond to the density of streams present in the latter watershed. The 

reason is likely that the space-filling interpretation of the fractal dimension of stream 

networks inherently assumes that all areas in the watershed contribute to the network, 

which is the reason why it has been challenged by other researchers (Phillips, 1993; Veltri et 

al., 1996). The mono-fractal dimensions estimated using the box-counting technique, when 

related to the respective NumAn goodness of fit, do not yield an exclusive range of values 

within which a better performance of the analytical model can be expected (Figure B7 in 

Appendix B). 

    The walking divider method is also used to estimate the fractal dimension of the 

perimeter curve. This method uses a chord length (step) and quantifies the number of 

chords required to cover the entire fractal curve. The result is an estimate of the length of the 

entire curve for a finite number of selected steps. Plotting the estimated length against the 

step size, the data increasingly underestimates the total length as step size increases, 

depicting a negative slope with values slightly above unity. The slope of this line 

corresponds to the fractal dimension in the walking divider method (DWDp). Note that the 

perimeter’s fractal dimension as estimated by both box-counting (DBCp) and walking divider 

(DWDp) methods yield different results (Figure B8). Neither method provides an exclusive 

range for better NumAn goodness of fit. However, the D-values estimated for the perimeter 

exceed unity for two watersheds using the box-counting method. This makes the box-

counting method less suited for estimating fractal dimensions of this uni-dimensional 

feature. 
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Figure 3-8. Fractal analysis of stream network and watershed perimeter using the box counting 

technique. The analysis on the stream network is in the principal logarithmic scale. A linear scale 

for the logarithmic values of perimeter and step (box) size is presented in the secondary set of 

axes. Power function curves (y=a∙xb) are fitted to the bi-fractal behavior of the stream network 

data. The coefficient of the power function (slope of the line) is shown adjacent to the curve. A 

linear function is fitted to the perimeter data. The slope of this function is shown next to the 

trendline. 
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3.3.2.6 Geomorphological Measures as Predictors of Analytical Model Performance - 

Summary 

In the above analyses, a set of multiple indexes are related to the degree of agreement 

between the analytical and numerical models, as expressed by the square-root of the 

expected response (i.e., NumAn goodness of fit) for each study watershed. A two-tier 

approach is proposed to make use of these indexes as criteria to gauge whether the 

analytical model can effectively be used for any given watershed: i) The first tier 

corresponds to the two indexes that provided an exclusive range in the examined study 

sites: Relief (exclusive range: < 790 m) and cSlope (exclusive range: < 8.63 deg). A drainage 

density of less than 2.7 km-1 can also be considered an additional selection criterion for apt 

watersheds for the implementation of the analytical model in cases where topographic relief 

is less than 790 m. ii) A second tier of indexes (Table 3-3) is obtained by including the non-

exclusive ranges where either one watershed of the hillslope-dominated watersheds falls 

into the range, or one watershed with better correlation falls outside of it. Most of these 

indexes are relatively easy to estimate for any watershed, except for the walking divider 

method applied to estimate the fractal dimension on the perimeter. The MATLAB code for 

this fractal measure is provided in Appendix B. The second tier of indexes is to be used as a 

second level analysis should the first tier yield a positive or negative result.  

3.3.3 Determination of SF, U0, and λL Values in Future Applications 

For future applications of the analytical model to other watersheds, guidelines on what 

parameter values to use for the smoothing factor (SF), mean flow path bulk velocity (U0), 

and macrodispersion coefficient (λL) are provided in this section. These guidelines are based 

on the relationships between these parameters and the geomorphological measures in Table 

3-2. Note that values from the RPT watersheds are excluded from this analysis. Thus, the 

analysis consists in the development of single linear regressions (SLRs) and multiple linear 

regressions (MLRs) using the six remaining watersheds. A principal component analysis 

was also conducted, however, it is not deemed significant due to the scarcity of available  
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Table 3-3. Second tier, non-exclusive ranges obtained for better performance of the 

analytical model. 

Measure Range Measure Range 

Law of slopes (RL) 2.5 - 3.4 Mean channel slope (Schan) < 2.27% 

Ruggedness number 
(HDd) 

< 0.03 Mean gradient (mGrad) < 1.2 

Lemniscate ratio (PLR) 0.56 to 0.68 DEM slope histogram peak < 2.5 deg 

Elongation ratio (Er) 0.53 to 0.68 
D one-dimensional box 
counting method on stream 

1.037 – 1.085 

Form factor (FormF) 0.28 – 0.45 
D-walking divider method 
on perimeter 

1.039 - 1.062 

Relative distance 
variance (RDV) 

0.60 - 0.85   

 

observations. Therefore, MLRs are reduced to two variables. The MLR models and their 

analysis can be found in Appendix B. 

3.3.3.1 Single Linear Regressions 

Macrodispersion power functions derived from the calibration of the analytical model relate 

the change in macrodispersion coefficient (λL) with respect to flow path distance (x) for the 

data collected from the 24 calibration points for each scenario. These power functions are 

developed for each watershed (Figure 3-9) and follow the form 𝑦 = 𝑎 ∙ 𝑥𝑏, where the 

exponent b ranges from 0.43 (des Anglais River) to 0.92 (Sagehen River). Combined with the 

coefficient a, this yields a wide spectrum of values for λL. In order to apply a similar power 

function to future watersheds, both the exponent b and the product ‘a∙b’ should be used as 

the target variables (instead of λL).  

    The Pearson correlations between each of the parameters in the analytical equation (i.e., 

SF, U0, plus λL’s power function exponent b, and λL’s power function product a∙b) and 

twenty-one (21) geomorphological indexes are shown in Figure 3-10. Additionally,  
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Figure 3-9. Macrodispersion coefficient fitted power functions (𝑦 = 𝑎 ∙ 𝑥𝑏) based on the 

calibrated data for the study watersheds (12 observation points), excluding the RPT 

watersheds. 

correlations between RB, RL, RS, the coefficient a (LvAa) of Hack’s law (𝐿 = 𝑐 ∙  𝑖
𝑏), the 

exponent b of this function (LvAb), and the product a·b (LvAab) with respect to the above 

geomorphological measures including the parameters of the analytical model (not shown) 

are also performed. Here, Ai corresponds to the composite drainage area associated with 

affluent streams converging to the main stream. 

    Both macrodispersion (λL) parameters b and a·b, on average, correlate equally better (0.47) 

than SF (0.38) and U0 (0.40) against all geomorphological indexes (Figure 3-10). Among the 

different parameters, Relief and LnkSlp correlations with SF are significant. The smoothing 

factor is also highly correlated (0.92, not shown) with LvAab. The latter product is related to 

the SF via an increasing power function, whereas, Relief relates to the SF via a decreasing 

power function (Figure 3-10a). In general, SF correlates significantly better with texture 

topography and slope indexes (0.50) than with shape and fractal indexes (0.26).  
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Figure 3-10. Pearson correlations of the parameters required by the analytical model, plotted against 

a) texture and slope indexes, and b) shape and fractal measures. The analytical parameters are: 

smoothing factor (SF), mean bulk velocity (U0), exponent of macrodispersion (λL) power function 

(𝑦 = 𝑎 ∙ 𝑥𝑏), b, and the product of coefficient (a) and exponent (b) of the power function, 𝑎 ∙ 𝑏. Among 

the indexes are: drainage density (Dd), texture (Tex), drainage frequency (DF), texture for contour 

perimeter (TexPer), main channel length (MnChL), DEM cell size slope (cSlope), mean channel slope 

(Schan), mean gradient (mGrad), slope of power function between link slopes and stream magnitude 

(LnkSlp), stream fractal dimension using the box-counting method (DBCst), mild slope of stream fractal 

dimension using the box-counting method (dBCst), and perimeter’s fractal dimension using the 

walking divider method (DWDp). Average correlation for each parameter is shown in the legend of 

plot b). 
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    The mean flow path bulk velocity (U0) is highly correlated with the unidimensional fractal 

dimension of the streams (i.e., mild slope, dBCst Figure 3-10b) and the fractal dimension of the 

perimeter (DBCp), both estimated with the box-counting method. On average, the texture 

topography and slope indexes correlate better with U0 (0.44, and 0.36, respectively) than 

with shape and fractal measures. Elevation and slope indexes exhibit, in general, lower 

correlations than expected. Using dBCp as predictor of U0 (Figure 3-11b), des Anglais River 

(dAn) and Sagehen River (Sag) watersheds act as end members of the relationship. These 

watersheds exhibit, respectively, the lowest and highest values for both the Dd and mean 

DEM cell size slope (cSlope) indexes. However, other watersheds do not follow either of 

these ranges, suggesting that other mechanisms are at play in the relationship between the 

stream network’s unidimensional fractal dimension and Uo. This fractal dimension is 

associated with an accurate determination of the stream length, given by the mild slope 

(Figure 3-8). How this fractal measure can exert control on U0, it is not clear at this stage. A 

similar decreasing power function and degree of agreement was also found for DBCp 

(Uo=0.04*DBCp-2.59, r2=0.73, not shown). The relationship with DBCp also had dAn and Sag 

watersheds as end members. A similarity in the distribution of stream and perimeter fractals 

can be explained by the concept that the watershed perimeter emulates the stream network 

that it encompasses. However, the relationship with the watershed scale subsurface velocity 

remains to be explained. 

    The exponent b and product a·b from the λL power functions correlate, in general, better 

with texture topography and slope indexes (0.55 and 0.48, on average, respectively) than 

with shape and fractal measures (0.38 and 0.45, respectively). They tend to correlate well 

with the same indexes but negatively against each other. Texture (Tex), TexPer, and DWDp 

stand out as potential predictors, whereas Relief, RC, PLR, C and RDV were poorly correlated 

with both b and a·b. The influence of texture topography is important for this set of variables 

that are derived from calibrated observations points in the watershed. The best prediction 

for exponent b is by TexPer, which is directly proportional to b via a power function (r2=0.64, 

p<0.05, Figure 3-11c). As b grows with TexPer, the larger λL will become (Figure 3-9). For 

instance, in Sagehen River λL grew faster with flow path length and simultaneously is the  
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Figure 3-11. Single linear regression for the prediction of a) smoothing factor (SF), b) mean 

flow path velocity (U0), c) λL power function exponent (b), and d) λL power function product 

(a·b). 

watershed with the largest TexPer value. For the product a∙b, Dd provided the best 

prediction (r2=0.85, p=0.08, Figure 3-11d) but in this case, the relationship is a decreasing 

power function. Considering that Dd and TexPer are positively correlated, the decreasing 

power function suggests that the coefficient a significantly decreases with texture 
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topography. The product a·b in conjunction with Figure 3-11c provides the means to back-

calculate both drivers of the λL power function: coefficient a and exponent b.   

3.3.3.2 Multiple Linear Regression 

Alternatively, multiple linear regressions (MLRs) can be developed for predicting analytical 

model parameters. The MLR models are constructed using a backward stepwise approach, 

which is combined with the Lasso technique aimed at efficiently selecting predictors from a 

total of 27 indexes. The quality of the models is quantified from the mean square error 

(MSE), and also using information theory indexes such as the Akaike information criterion 

(AIC) and the Bayes information criterion (BIC). I refer to Appendix B for more details on 

the development of these MLR models. 

    The smoothing factor (SF) is better predicted by shape measures (RC and LvAa) than 

elevation and slope-related indexes (Table B2, Appendix B). The Uo is predicted by texture 

topography indexes (Dd and DF), for which the collinearity test (i.e., condition index) deems 

it as a weak near dependency (nj<30). The dependence of U0 on these indexes rather than 

gravity-oriented measures such as cSlope, Relief, and mGrad, is telling on the importance of 

the stream frequency and the watershed shape in controlling subsurface flow and travel 

times. The exponent of the λL-power function b is predicted by shape (C and LvAb) and 

texture topography (Tex and Dd) measures. This is a reflection on the flow path distances 

that are constrained by the shape of the watershed, externally and internally by the 

interception of streams along the flow paths (i.e., texture topography). The product of the 

λL-power function a·b include texture topography indexes only as predictors: HDd and Tex 

(Figure B9, Appendix B). 

3.3.4 WMTT and Geomorphological Indexes 

A separate analysis was carried out to identifying predictors of wMTT using SLR and MLR 

models with a six-observation dataset that excludes the RPT watersheds. The MLR models 

and their analysis are presented in Appendix B. 
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3.3.4.1 SLR Models for wMTT 

A strong relationship exists between the numerical and analytical models for the six 

watershed wMTTs (r2=0.89, Figure 3-3). The wMTTs obtained with both methods correlate 

with geomorphological indexes and with the analytical model’s parameters (SF, U0, a·b, and 

b). The analytical wMTTs closely follow the correlation trends exhibited by the numerical 

wMTT, except for the indexes Tex, FormF, Er, and dBCst, where the analytical and numerical 

models yield opposite low correlations (Figure B10, Appendix B). Of the analytical method’s 

parameters, only SF exhibits a strong relationship with wMTT (r2=0.83). Several indexes 

correlate well with wMTT including Relief, mGrad, LnkSlp, LvAb, and LvAab. Among these 

indexes, Relief (r2=0.64, p=0.05), LnkSlp (r2=0.64, p=0.03), and LvAab (r2=0.63, p=0.06) are the 

best predictors for individual SLR models (Figure 3-12). These results suggest a significant 

dependence of wMTT on the geomorphological properties represented by these two 

indexes.  

    The relationship between wMTT and with Relief is expected: the greater Relief, the shorter 

wMTT (McGuire et al., 2005; Tetzlaff et al., 2009a; Hrachowitz et al., 2009; Capell et al., 2012). As 

mentioned before, Relief has a positive relationship with Dd implying that shorter flow paths 

are more likely present in steep watersheds. The relationship with LvAab is not as 

straightforward as it involves the coefficient product a∙b, which varied in our dataset 

between 0.61 and 0.71 (n=6). Hack (1957) already proposed that the values of a and b remain 

remarkably constant, 1.4 and 0.6, respectively, when applied to a whole range of basins 

around the world. Later this relationship was verified by Montgomery and Dietrich (1992) 

by replacing the longest stream length (L) by the watershed length. The wMTT-LvAab 

relationship obtained here is different in that it was developed from drainage areas created 

by the inflow from tributaries flowing into the main stem of the watershed. In this way, the 

coefficients a and b are derived from significant (at least, p<0.09) power functions. They are 

inherent to each watershed, and not directly comparable to those derived from inter-basin 

analysis.  
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Figure 3-12. SLR models for watershed MTTs (wMTT in years) as estimated by the 

numerical model for the six watersheds. The predictors for these models are Relief, the 

power function product a∙b (LvAab) for the fractal relationship between main stream length 

and drainage area (L=a∙Ab), and the exponent of the power function (LS=a∙Nb) between 

stream slope and magnitude (LnkSlp). 

    A third relationship links wMTT to the predictor, LnkSlp. The latter, is a measure of 

stream slopes decreases with magnitude (N). Here, magnitude (N) refers to the Shreve 

stream order. A relationship between LnkSlp and LvAab can be expected, at least in some 

watersheds because, as stream slopes decrease downstream along the stream network (i.e., 

from headwaters to valley), so does the drainage area of affluent rivers to the main stem as 

it converges to the watershed outlet. This would explain the similarities in the distribution 

of wMTT with LvAab and LnkSlp. For both the relationships with LnkSlp and LvAab, Sagehen 

and des Anglais Rivers are one of the end members, and Upper Nith and Laurel Creek 

define the other. These end member groupings are not reflected in any of the other 
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geomorphological relationships considered in this study. More work is needed to fully 

unravel how and why LvAab relates to both wMTT and the analytical model parameter SF 

(Figure 3-11a and Figure B9a) for the study watersheds.   

3.3.4.2 MLR for wMTT 

Applying similar steps in the creation of MLR models as for the analytical parameters, 

several models predicting wMTT were generated. Five models with similar predictive 

power are presented in Appendix B (Table B3) where more details on their development can 

be found. In the resulting models, indexes related to Horton’s law (RB, RC, and LnkSlp), 

texture topography (DF, HDd), and elevation (Schan) prevailed as predictors. The fourth 

model is considered the most relevant, for reasons explained in Appendix B (Figure B11). 

This is a Horton’s law-based model using RB and LnkSlp indexes as predictors. The only 

difference between LnkSlp and RS is that the former uses the logarithm of magnitude (N) as 

opposed to Strahler ordering, in the stream ordering scheme. For this reason, it is 

considered under the Hortonian category of measures. 

3.3.5 Verification of Proposed Models 

After applying Tier 1 (Relief < 790 m with Dd<2.7 [1/km] and cSlope<8.63 deg) and Tier 2 

(Table 3-3) indicators to a set of 19 subbasins located in the Grand River watershed, three 

subbasins (or tributary watersheds) were selected from seven that fulfilled the required 

conditions: Carroll Creek, Schneider Creek, and Nith River (Figure B12, Appendix B). 

Hence, the analytical model is assumed to yield estimates of travel time for these three 

subbasins that are comparable to numerical predictions. The verification process employs 

the same analytical and numerical model approaches as used earlier for the other 

watersheds, but not limited to homogeneous hydraulic conductivity (Kxy= Kz=5.26 m/d) 

and porosity (0.35). A bedrock surface map is available for the entire Grand River watershed 

and used here.  

    The predictive tools for SF, Uo, and λL (Figure 3-12 for SLR models, and Figure B9 and 

Table B2 for MLR models), based on correlations with geomorphological indexes (Table 3-4) 
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are used in the analytical model calculations. In general, the SLR models provide better 

estimates that fell within the expected value ranges, compared to the MLR models (Table 

B4), which yielded in some cases negative values. Although the SLRs suggest that both Relief 

and LvAab are predictors for SF, only the Relief estimated SF values agree with the ranges  

Table 3-4. Watershed characteristics, geomorphological indexes, and wMTT numerical and 

analytical estimates for the three selected subbasins used for verification. This list includes 

only the indexes used in the SLR and MLR models for predicting the analytical model 

parameters and wMTT.  

Parameters 
Carroll 
Creek 

Schneider 
Creek 

Nith 
River 

Area [km2] 78.1 70.3 47.7 

Perimeter [km] 54.5 49.6 44.3 

Dd [1/km] 1.63 1.05 1.63 

DF [1/km2] 2.24 1.56 2.47 

Tex [1/km] 0.44 0.54 0.79 

TexPer [1/km] 0.43 0.38 0.48 

HDd [-] 14.5 7.1 9.0 

RC [-] 0.16 0.18 0.26 

C [km/km] 6.18 5.91 6.41 

LvAa 1.24 0.50 0.50 

LvAab 0.56 1.01 0.71 

dBCst 1.059 1.043 1.064 

Relief [m] 146 129 85 

MnChL [m] 127233 73856 77884 

Schan  [%] 2.06 1.37 0.94 

LnkSlp 0.41 0.35 0.60 

RL 0.33 0.58 0.47 

RB 3.62 5.77 3.31 

RS 2.70 2.20 5.10 

Predicted Analytical Model Parameters 

a·b(λL) 0.44 0.66 0.40 

Uo 0.067 0.076 0.065 

SF 17 20 31 
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expected for these watersheds’ characteristics. The dBCst index tends to overestimate Uo, 

while DF appears to yield better Uo values. (Note: DF was initially identified as a potential 

Uo predictor in section 3.3.3.1). The analytical λL parameters b and a·b were adequately 

estimated from TexPer and Dd, although, Dd tends to slightly overestimate a·b. Ultimately, 

index DF was used instead, as it generates better results. The MLR models for SF and a·b 

provided unreasonable, negative estimates, whereas for Uo and b the estimates are within 

the expected ranges. However, for all the predicted parameters, the estimates from the SLR 

models are preferred.  

    The analytical models for the verification watersheds were constructed with the predicted 

estimates for SF, Uo, and the dispersion parameters b, and a·b. The frequency of travel times 

estimated by both models is compared using measures of fit for the shape of the 

distributions (Figure 3-13a, Figure 3-13b, and Figure 3-13c). The measures of fit for Carroll 

Creek and Nith River watersheds show a similar degree of agreement obtained in the initial 

9 study watersheds. This is not the case for the Schneider Creek watershed where the 

analytical model pMTT estimates yield a distribution with significantly less range, given by 

the standard deviation, which, in turn, lead onto the underestimation of the wMTT (Figure 

3-13d). For these two watersheds, the 95th percentile of the numerical model estimates of 

travel time is still encompassed by the range of pMTTs estimated by the analytical method. 

    The level of agreement between methods measured by the measures of fit used on the 

particle-to-particle comparison (Figure 3-14) for the Schneider Creek watershed does not 

reflect the significant offset of the entire TTD. It is only the inclination of the trendline of the 

entire dataset that shows evidence of the TTD offset with respect to the numerical TTD.The 

inclinations of the particle cloud (i.e., pMTT) in the scatter plots for the three verification 

watersheds, are less than 45 degrees, suggesting that the predicted analytical Uo is faster 

than the mean velocity in the numerical model simulations. The effect on the overall wMTT 

does not appear to be that significant as the analytical and numerical wMTT in Carroll 

Creek and Nith River were similar. However, for the Schneider Creek watershed, where the  
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Figure 3-13. Frequency of travel times (pMTTs) estimated by both numerical (Num) and 

analytical (AM) methods for the verification watersheds: a) Carroll Creek, b) Schneider 

Creek, and c) Nith River. The predictive tools derived in this study for estimating watershed 

MTT based on geomorphological features are compared in panel (d). The SLR and MLR 

models used topographic Relief and Horton’s law measures (LnkSlp & RB) as predictors, 

respectively. 
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degree of inclination is much below 45 degrees, the analytical wMTT is significantly 

underestimated relative to the numerical estimate: 50 versus 87 years, respectively.   

    The regression models directly relating wMTT to geomorphological indexes are also 

applied on the verification watersheds. The wMTT estimates based on the Relief and LnkSlp 

SLR models range between 47 to 70 years, compared to the numerical model’s values 

between 63 and 90 years (Table B5, in Appendix B). The predictive ability of LvAab and 

LnkSlp appears to be limited as they do not capture the trend in wMTT values generated by 

the numerical model (Table B5), possibly because the LvAab and LnkSlp values of the 

verification watersheds fall outside the ranges of values used to initially develop the SLR 

model. Given that the two indexes yield trends that are completely opposite to those of the 

numerical results, we do not recommended using LvAab and LnkSlp as predictors of wMTT. 

This leaves Relief as the main predictor of wMTT (Figure 3-14d) among the SLR models. 

Even though the Relief-based model follows the general numerical trend, its performance is 

least for the low topographic relief of the Nith River.  

    The geomorphological indexes of the verification watersheds are also used in the MLRs 

(Table B3, Appendix B). From the MLR models listed in Table B3, only models 2, 3, and 4 

provide usable results highlighting the product a·b from the λL power function as the key 

analytical predictor in models 2 and 3. The similar results produced by models 2 and 3 likely 

reflect the shared influence of a·b. Model 4 captures the interaction between the 

geomorphological indexes RB and LnkSlp. Both indexes can be seen as Horton’s law 

measures considering that the only difference between LnkSlp and RS is that, in the former, 

the logarithm of the stream’s magnitude (N) is used instead of the Strahler order. The 

wMTT estimates of models 2 and 3 are clustered around 70 years, but do not capture the 

inter-watershed trend observed in the numerical model (Figure 3-14d). Model 4, 

interestingly, follows the wMTT trend of the analytical model characterized by a significant 

underestimation of wMTT for Schneider Creek (Figure 3-14d). Keeping in mind the caveats 

associated with all modeling approaches used, the regression models may present an 

alternative to the analytical model to obtain preliminary wMTT estimates. 
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Figure 3-14. Scatter plots for analytical and numerical particle MTTs for verification 

watersheds: a) Carroll Creek; b) Schneider Creek; and c) Nith River. The watershed MTT are 

also reported for the analytical (A) and numerical (F) models. The predictive tools derived 

in this study for estimating watershed MTT based on geomorphological features are 

compared in panel (d). The SLR and MLR models used topographic Relief and Horton’s law 

measures (LnkSlp & RB) as predictors, respectively. 
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3.4 Discussion 

The travel time distributions (TTDs) and watershed MTTs estimated by the numerical and 

analytical models are comparable in most of the study watersheds, except in the more 

mountainous RPT river basins. That is, we cautiously conclude that, in appropriate 

geomorphological settings, the analytical model performs well, regardless of watershed size. 

This is an important result from a watershed management point of view, because it provides 

a simple method to estimate the range of groundwater travel times in a given watershed, 

and it implies that local flow processes are replicated at larger scales. Ultimately, it is at the 

watershed scale that planning decisions should be made for regional and hydrologically 

connected areas (Sivapalan et al., 2003; Wagener et al., 2010).  

    The TTDs presented here provide crucial baseline information to assess the subsurface 

transport of diffuse pollutants infiltrating into a regional aquifer system. They yield insights 

into the hydrological and water quality responses to alterations in the watershed associated 

with land cover, land use, water management and climate change. A sustainable 

groundwater supply relies on the continued replenishment of the resource via recharge that, 

when exposed to contamination, may require an environmental risk assessment to be 

conducted to predict its impact on wellfields and receiving streams and reservoirs. The 

range of potential groundwater travel times in a watershed also impacts the fate of pollutant 

and nutrient legacies that have accumulated in the subsurface as a result of historical 

practices.   

    The analytical methodology used here, then, provides the means to obtain both an 

approximate distribution of groundwater ages and the MTT of a watershed by employing 

simple and readily available tools (here, GIS and mathematical software packages, and 

DEM). In comparison, the analytical method presented here performs more accordingly 

with the numerical output than the exponential function-type TTD from Haitjema (1995)’s 

approach (Figure 3-15, and Figure B14 in Appendix B). Notwithstanding the simplifying 

assumptions used in this study for both numerical and analytical methods, in particular 

steady-state flow and subsurface homogeneity, we believe the analytical equations and the 
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regression models yield useful information about the behavior of the groundwater system at 

the watershed scale. As shown in Chapter 2, these simplifying assumptions can be relaxed, 

for example by introducing heterogeneity in subsurface properties. In addition, the steady 

state flow assumption may offer a reasonable approximation for long travel time 

groundwater systems (Beven, 2010), such as found in lowland-dominated watersheds.  

 

Figure 3-15. Estimates of the wMTT using both the Haitjema (1995) method (a) and the 

analytical methodology (b) developed in this study. Trendlines for both the 9 watersheds 

and the set excluding the RPT watersheds are compared to the numerical model estimates. 

The measure of fit mean absolute error is shown for each data set (|∆|). 

    In contrast to the TTD range and wMTT, and not necessarily unexpected, the analytical 

approach only performs moderately well when estimating pMTT. Alder Creek scores best in 

the analytical-numerical comparison (r2=0.52, Figure 3-4) followed by acceptable 

performances, except for the RPT watersheds where hillslope hydrology plays a decisive 

role. The watershed’s shape controls the range of travel times observed in the lowland, 

midland, and upland portions of the watersheds, as short travel times occur in lowland 

regions and longer travel times in midland areas. The topographic slope controls the range 

of travel times in the upland regions. The analytical model’s performance, however, remains 
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unaltered in the different elevation intervals of the observation points (OPs). As indicated in 

Figure 3-3 and Figure 3-2, the range of wMTTs and the variability of pMTT do not depend 

on watershed size.  

    The geomorphological analysis presented helps to identify those physical properties of a 

watershed that most significantly affect groundwater travel times, and to delineate the 

geomorphological conditions under which the analytical model performs well, or not. In 

general, among the geomorphological indexes considered, texture topography and elevation 

measures are the most revealing. A single geomorphological index, Relief, explains the poor 

agreement between the analytical and numerical results for the RPT watersheds. The best 

agreement occurs when Relief is less than 790 m. In addition, the analytical model performs 

best when Dd is less than 2.7 km-1, probably as a result of the strong correlation between Dd 

and Relief (Figure 3-6b). In other words, the analytical model seems to be more suited at 

lower drainage densities and in flatter watersheds.  

    The similar wMTT estimates for the Sagehen River (37.2 km2) and des Anglais River 

(701.3 km2) watersheds provide an interesting test case, given the large differences in size 

and slope characteristics of the two watersheds: the drainage density for Sagehen River is 

almost five times higher than for des Anglais, while Relief is twice as high. However, the 

topographic conditions in the des Anglais’ watershed are particular in that the ground 

elevation above 80 m occurs in only one isolated, steep slope location, Covey Hill, which 

constitutes the major water source for the watershed. The remaining terrain is very flat 

(Figure 3-1 and Figure B3). The steep drop in elevation between Covey Hill and the wide 

valley generates high bulk groundwater velocities. These high velocities in the numerical 

model are matched in the analytical method during calibration (Figure 3-11b). This yields 

pMTTs and wMTTs for des Anglais comparable to a smaller and steep watershed, such as 

Sagehen River, rather than values associated with a large and extremely-flat watershed.  

    The discrepancy between the apparent (steeper) and actual (flat-dominated terrain) Relief 

of des Anglais is evident in the Dd-Relief relationship where this watershed falls off the 

average trendline (Figure 3-6). In the same figure, Rattlesnake Flat and Pamilco Canyon also 
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exhibit lower than expected drainage densities relative to their Relief. The low drainage 

networks in these watersheds reflect the semi-arid climate conditions in which the actual 

(real) watersheds are located. To counteract the artifact of mapping the real drainage 

network onto the virtual watersheds, several denser drainage networks were created. 

However, none of these attempts improved the performance of the analytical model.  

    In terms of Relief, Sagehen River has the fourth highest value among the study 

watersheds, but in terms of mGrad and Schan it is one of the top two sites. The question then 

arises why a watershed with these steep characteristics performs better than the three RPT 

watersheds? The answer may lay in the hypsometric (Figure B3) and the link concentration 

(Figure B4) curves of these four watersheds. The hypsometric curve of Sagehen River 

suggests the presence throughout the watershed of milder slopes associated with an 

elongated and rather steep valley that dominates about 80 percent of the watershed (>0.2 

sA/A). Along this valley, the density of streams is much greater than in the rest of the 

watershed as suggested by the link concentration curve. These characteristics, which are 

absent in the RPT watersheds, are not only better suited for implementing the analytical 

method, they also generate longer flow paths, pMTTs and wMTTs. In summary, the special, 

divergent geomorphological characteristics of Sagehen River and des Anglais River both 

converge to similar wMTT values. 

    The regression analyses show that elevation (Relief for SF), shape (LvAab for SF), fractal 

dimension (dBCst for Uo), and texture topography (TexPer and Dd for macrodispersion 

parameters b and a∙b) indexes can be used as predictors for the analytical model parameters 

in the SLR models, but not the shape or Horton’s law indexes. The parameters of the LvA 

power law relationship between main stream length and drainage area (i.e., LvAb and 

LvAab, section 3.3.4.1) serve as predictors not only for the analytical model parameters but 

also for wMTT (Table B3). However, the interpretation of the link between the LvA power 

function and wMTT is not straightforward. As shown in section 3.3.4.1, LnkSlp and LvAab 

are similarly distributed with respect to wMTT-pexit (Figure 3-12), because the two 

parameters are significantly correlated (r=0.82). This correlation with LnkSlp helps explain 
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the role of a∙b of the LvA power function in wMTT. The index LnkSlp is a measure of the rate 

of drainage transition from the upstream to downstream portions of the watershed. Thus, 

the a∙b product of the LvA power function can be seen as a measure of the drainage area per 

unit main stem length. Note, however, that in the verification watersheds, the LvAab-based 

regression models do not perform as well in predicting both analytical model parameters 

and wMTT.  

    Fractal dimensions, especially dBCst, DBCp, and DWDp, exhibit strong correlations with U0 

and the macrodispersion parameter b, but only the contribution of dBCst is significant enough 

to be part of the U0 SLR model. An MLR model based on texture topography indexes (i.e., 

Dd and DF, Table B2) for U0 is also proposed. The macrodispersion parameters (i.e., b and 

a∙b) appear well constrained by texture topography indexes in both SLR and MLR models. 

However, the SLR models perform better than the MLR models, and they are recommended 

to estimate the macrodispersion parameters for use in future applications of the analytical 

model (Table B4). The MLR models are likely more sensitive to the limited amount of 

observations that are available to constrain them properly. From the analysis of the results 

from the verification watersheds, the best predictors of the analytical model parameters that 

emerge are: texture topography (DF, TexPer, and Dd, for Uo, b, and a∙b), and elevation (Relief 

for SF) (Table 3-5).  

Table 3-5. Summary of most relevant predictors used in the verification watershed analysis. 

Predicted Parameter(s) Type of Measure, Index & Model 

Analytical model parameters 

SF       :  elevation (Relief) = 3934*Relief-1.09 
Uo       :  texture topography (DF) = 0.089*DF-0.35 
b (λL)   :  texture topography (TexPer) = 0.83*TexPer0.36 
a·b (λL) :  texture topography (Dd) = 1.08*DF-1.10 

wMTT 
SLR   :  elevation (Relief) = 163.8*Relief-0.19 
MLR :  Horton’s law (LnkSlp and RB)  
             = 41.3 + 109.7*LnkSlp – 10.7*RB 
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    In the proposed MLR models for predicting wMTT the predominant types of indexes are 

Horton’s law (RB, RC, LnkSlp), texture topography (HDd, DF), analytical model parameters 

(a∙b) and shape (RC, MnChL). In the verification watersheds, Relief is the best predictor of 

wMTT among the SLR models but, surprisingly, it does not appear in any of the MLR 

models. The best MLR model (i.e., No. 4, LnkSlp- and RB-based) follows the trend but not 

exactly the magnitude of the analytical wMTT estimates. Considering this and the fact that, 

in the case of Schneider Creek, the analytical method overestimates Uo when using DF as 

predictor, and that LnkSlp and RB are Horton’s law indexes, the particular structural 

configuration of the stream network, which is related to DF, LnkSlp and RB, may be the 

cause of the poor performance of the analytical model in this watershed. Schneider Creek 

exhibits by far the lowest RS value (= 2.2 Table 3-4) among the study watersheds, which is 

characteristic of a very smooth drainage transition from the upper reaches to the lowlands. 

However, more work is needed to support this explanation.  

   The predictions provided here for both the analytical model parameters and for wMTT are 

based on a limited number of observations, which strongly weighs on the performance of 

the MLR models. Nonetheless, the good results for Carrol Creek and Nith River, and the 

other study watersheds, are quite encouraging and indicate that the analytical model and 

the associated regression models provide a meaningful approach to generate first, rough 

estimations of groundwater travel time distributions in watersheds that lack the data or 

resources for the implementation of a full numerical hydrogeological model. When applying 

the analytical methodology, however, the various caveats and recommendations presented 

in this work should be taken into consideration. 

3.5 Conclusions 

The goals of this study were fourfold: 1) To test the performance of the analytical 

methodology for particle (p-) and watershed (w-) MTT developed in Chapter 2 in different 

environmental settings (i.e., nine virtual watersheds); 2) To identify the geomorphological 

properties that control particle travel times and, at the same time, yield metrics to evaluate 

the potential performance of the analytical model in future applications. (Note: this objective 
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emerged from the results in Chapter 2 where the effects of topography and depth to aquifer 

on TTDs and wMTTs were examined.) 3) To predict the parameters of the analytical model 

for future applications, by deriving regression equations from the physical characteristics of 

watersheds. 4) To identify, via the construction of SLR and MLR models, the 

geomorphological controls on watershed MTTs.  

    In order to assess the performance of the analytical method, the observed 

geomorphological data from nine real watersheds are mapped onto nine virtual analog 

watersheds. These virtual watersheds are further assumed to have homogeneous aquifers 

that are recharged at the same, uniform annual recharge of 227 mm per year. In four of the 

watersheds, aquifer depths are assigned based on the available maps of the bedrock surface. 

For the remaining watersheds, bedrock surfaces are created either from large scale 

hydrogeological maps that cover the valley regions and are then extended to the hillslope 

areas, or from groundwater well depth data assuming full penetration of the aquifer.  

    Based on the generated pMTT estimates, the TTDs of the analytical model compare 

reasonably well to those of the numerical model for most watersheds, except the RPT 

watersheds. The 95th percentile of the pMTTs estimated by the numerical model is 

encompassed by the analytical model estimates, which closely follow the shape descriptors 

of the distribution from the numerical model. For the wMTT estimates there is good 

agreement (r2=0.89), with the analytical wMTTs remaining, on average, within 12% of the 

numerical values (excluding the RPT watersheds). This is an important result with 

implications for watershed management as TTDs and wMTTs are key metrics constraining 

watershed-scale groundwater tracer transport. However, the spatially bound analytical 

pMTT do not yield the same level of prediction. There are two reasons for this: 1) the 

numerical model yields unreliable travel times in the RPT watersheds, where hillslope 

hydrology plays a major role that is not well captured in the simulations, and 2) in the other 

six watersheds, the predicted analytical and numerical groundwater age distributions do 

not exactly coincide at the same watershed locations. This spatial disconnection between the 

TTDs and the pMTTs reveals a failure of the analytical model to capture the full intricacy of 
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groundwater flow paths. The best agreements between analytical and numerical pMTTs are 

for Alder Creek (r2=0.52), Upper Laurel Creek (r2=0.30), and Upper Nith River (r2=0.25). 

Similar agreements are found for the three additional verification watersheds: r2=0.15, 0.28, 

and 0.34 for Carroll Creek, Schneider Creek and Nith River, respectively. 

    The larger pMTTs are predominately generated at mid- and high-elevations in the 

watershed because longer flow paths tend to develop in these areas, thereby revealing an 

important control by the watershed shape. Thus, as expected from the findings in Chapter 2, 

flatter terrain generally yields longer travel times. The exception is des Anglais River where 

groundwater flow velocities are strongly affected by the only elevated part of the 

watershed, Covey Hill. The unique topography of des Anglais River results in fast flow 

velocities that ultimately lead to a wMTT comparable to that of Sagehen River’s, despite the 

completely opposite geomorphological characteristics of the two watersheds in terms of 

relief, average slope and drainage density.  

    From the geomorphological indexes considered (27 in total), topographic relief (< 790 m) 

coupled with drainage density (< 2.7 km-1) and mean channel slope (Schan < 8.63 deg) yield 

the most discriminatory conditions under which the analytical model performs best. A 

second tier of geomorphological constrains is also identified that can help guide future 

selection of watersheds where the analytical method could be applied (Table 3-3). From this 

analysis, single and multiple linear regression (SLR and MLR) models are derived from 

which the analytical model parameters (SF, Uo, b, and a·b) can be estimated, which is 

essential for future implementations in other watersheds. Measures of, in order of 

importance, texture topography or drainage density, elevation, and shape (Table 3-5), 

emerge as the predictors in the SLR models. Overall, the MLR models do not perform as 

well as the SLR models, presumably because they are more sensitive to the limited number 

of observations (i.e., only six watersheds).  

    An important observation is that U0 appears to depend on indexes related to texture 

topography rather than direct slope-related indexes. Similarly, the b exponent in the 

analytical model is also predicted to be controlled primarily by texture topography. This 
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exponent defines both how fast the macrodispersion power function changes with respect to 

flow path distance, and how large the λL coefficient is. The fact that these parameters 

depend on texture topography indicate that they are influenced by the frequency at which 

the ensemble of groundwater flow paths intercept the streams in the watershed.  

    The application of the regression models to the verification watersheds reveals that Relief 

is the major predictor of wMTT and also the smoothing factor (SF). This suggests that 

gravity forcing is an important control on wMTT. In another transferable tool, a MLR model 

for wMTT (model 4 in Table B5), based on Horton’s law indexes, produces a similar pattern 

as the analytical model in which Schneider Creek’s wMTT is significantly underestimated 

(relative to the numerical prediction). This likely indicates that for certain structural 

watershed configurations the analytical model will perform poorly. Exactly what these 

configurations are will require further work.  

    Acceptable approximations of TTDs and wMTTs for ungauged river basins provide 

essential information to evaluate regional responses to changes in climate and land use. The 

analytical model and the regression models presented here are a step forward in building 

that capability. An important next step will be to determine how relaxing the key 

assumptions, that is, constant recharge and aquifer homogeneity, will affect the predictions 

and performance of these models. As recently suggested by Hale et al. (2016b), a more 

detailed analysis of subsurface heterogeneity as a predictor of groundwater travel times 

deserves further attention.  
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Chapter 4 

A Coupled Hydrology-Nitrogen Catchment Model   

Incorporating Nitrogen Isotopes 

Note: this is a prospective chapter presenting the preliminary development of a catchment-

scale model simulating the fate and transport of nitrate and its stable isotopes. The planned 

application of the model to a tributary watershed in the Grand River basin is outlined as 

well as associated modeling scenarios. This work is ongoing in collaboration with Dr. 

Mahyar Shaffi of University of Waterloo. 

Summary 

Nitrogen (N) nonpoint pollution management is an important environmental target in 

developed countries following the systematic elimination of point source discharges of raw 

wastewater. The reduction of N nonpoint sources has proven difficult due to ubiquitous 

anthropogenic sources and the occurrence of legacy stores in watersheds. Nitrogen isotopes 

in nitrate (14N and 15N) have been used to both track N sources in watersheds and trace N 

biogeochemical cycling through the various landscape compartments. Most N 

transformations and isotopic fractionations are directly or indirectly related to hydrological 

processes, yet attempts to fully couple them are fairly rare. Here, we initiate the 

development of a coupled hydrology-nitrogen biogeochemistry model platform and discuss 

its prospective application to the Carroll Creek watershed (78 km2) in the 6800 km2 Grand 

River basin in Southern Ontario. The study watershed is predominantly agricultural (86%). 

Annual loads of organic and inorganic fertilizers, biological N fixation, and atmospheric 

deposition are considered as inputs to the N isotope model. The external inputs of N and 

their respective 15N/14N ratios replenish the subsurface N compartments where the 

following N transformations can take place: organic N mineralization, ammonia 

volatilization, nitrification, plant uptake, and denitrification. The N exports from each 

hydrologic response unit are then collated from the various N compartments to form the 

overall N export from the watershed. The base flow N loads account for the travel times 
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estimated from the analytical model developed in Chapter 3 for Carroll Creek watershed. 

The ongoing work aims to calibrate the N isotope model using the concentrations and N 

isotope compositions of nitrate measured in Carroll Creek. This will be accomplished by 

fitting the N transformation rates and source N isotopic compositions using non-linear least 

square regressions or Monte Carlo simulations. A preliminary analysis indicates that the 

likelihood of finding a global minimum that closely matches the observed streamwater N 

isotope compositions is low, considering the uncertainties associated with assigning source 

N isotopic compositions and the current absence of representing the N redox 

transformations in the groundwater-surface water transition zones (e.g. riparian and 

hyporheic zones, and wetlands). Thus, this work is only a first step in the development of a 

process-based modeling platform to predict and analyze the watershed scale N isotopic 

imprints resulting from land use practices and subsurface N transformations. 

4.1 Introduction 

The concentrations and isotopic compositions of dissolved nitrogen (N) species change as 

they move along different the hydrological and biogeochemical pathways in the subsurface. 

This is of most importance in agricultural watersheds, where the demand of N to increase 

crop production has altered the allocation of N in soil ecosystems at the global scale 

(Vitousek et al., 1997; Vitousek et al., 2013). Watershed N exports occur chiefly through 

outflow of the oxidized, dissolved form of N (i.e., nitrate, NO3-), and gaseous emissions (i.e., 

N2O and N2) to the atmosphere. While the riverine inputs to coastal zones have increased as 

a result of rising agricultural inputs, they are just a fraction of the N inputs to the landscape 

because of N retention in soils and gaseous losses primarily driven by denitrification (Boyer 

et al., 2002; Wollheim et al., 2008; Hale et al., 2013). Notwithstanding this N removal, 

projections for food production and wastewater effluents have been used to estimate that 

the global riverine N flux will increase by 13% in 20 years, whereas developing countries are 

projected to see a 27% increase (Bouwman et al., 2005).  

    The reduction of point-source pollutants to waterbodies has been significant in the last 50 

years, at least in developed countries (Alexander & Smith, 2006; Schulz & Bischoff, 2008; 
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Ballantine & Davies-Colley, 2014). On the other hand, non-point source pollution remains a 

challenge as it involves a wider spectrum of human activities (e.g. fertilizer application, 

septic tank leachates, burning of fossil fuel, industrial releases to the atmosphere) being 

applied at different spatial and temporal rates over the entire landscape. Mitigating non-

point N pollution has quickly become one of the main watershed management targets in 

developed countries (Carpenter et al., 1998; Hardy & Koontz, 2008). This management task has 

been proven difficult due to the myriad of N sources in watersheds with mixed land use 

(Carpenter et al., 1998).  

    Stable N isotopes provide a means to identify sources and assess the reactive transport of 

N in surface and subsurface environments (Kendall, 1998), at various spatio-temporal scales. 

In several studies, researchers have been able to identify the origin of the distinct N isotopic 

imprints of nitrate (δ15N-NO3-) in areas dominated by a particular land use (Spoelstra et al., 

2001; Karr et al., 2001; Burns et al., 2009; Kaushal et al., 2011). Because different N sources may 

exhibit overlapping N isotopic compositions (Fogg et al., 1998), the task of identifying the 

sources of NO3- in a mixed land use scenario is more complex. It has, however been 

accomplished successfully (Aravena et al., 1993; Wassenaar, 1995; Robertson & Schiff, 2008). 

Another use of 15N abundances is to provide evidence for the occurrence of specific N 

transformations by keeping track of the 15N enrichment of the substrates and the depletion 

of the products (Mariotti et al., 1988; Lehmann et al., 2003), which, again, may be difficult to 

achieve in the case where N is subjected to a series of transformations as it moves from 

terrestrial to aquatic systems (Bottcher et al., 1990). 

    Considering the complexities associated with the interpretation of δ15N-NO3- data under 

mixed land uses and at the watershed scale, Burns et al. (2009) suggested limiting the 

analysis to a smaller portions of a few hundred km2 in large watersheds. For example, in a 

large watershed (26,000 km2, 27% of South Korea), Lee et al. (2008) were able to identify the 

major source of NO3-N in the northern branch of the watershed (~40% of total area), 

however, the isotopic signatures for the southern branch could not distinguish between 

manure and sewage. When considering streamwater isotopic N compositions, the sources 
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and transformations are not limited to landscape units next to the stream, they may in fact 

originate from nonpoint sources much farther away and involve long flow paths (Kaushal et 

al., 2006; Kaushal et al., 2011). Potential N transformations involve N volatilization, 

vegetation uptake, nitrification, and denitrification, with the latter occurring both in shallow 

and deeper aquifers (Wassenaar, 1995, Cey et al., 1999; Robertson and Schiff, 2008).  

    Nitrogen transformation processes in the soil and aquifers occur in parallel to 

hydrological processes. Thus, a biogeochemical model describing the N transformation in 

the subsurface must be accompanied by a hydrological model that simulates the transport 

fluxes among the different N reservoirs in the landscape. Here, we started developing an N 

isotope model which we link to the RAVEN hydrological model for the Carroll Creek 

watershed (78 km2). This watershed is located in the much larger the Grand River basin 

(6,800 km2) and is dominated by agricultural land use (86%). The N isotope model emulates 

the compartments in the hydrological partitioning used by RAVEN and follows a mass 

balance approach similar to those employed by Mary et al. (1998) for 15N tracing methods, 

and by Amundson and Baisden (2000) and later by Brenner et al. (2001) for the natural 15N 

abundance in a soil-plant system. The soil-plant system model presented in Brenner et al. 

(2001) is an improved version of the model in Amundson and Baisden (2000) and since its 

inception it has been applied in several studies (Amundson et al., 2003; Houlton et al., 2006; Bai 

& Houlton, 2009; Hilton et al., 2013).  

    Amundson et al. (2003) applied their soil-plant model to a worldwide database of δ15N 

and found that soil and plant δ15N values are negatively and positively correlated with 

mean annual precipitation and temperature, respectively. The phenomenon of the under-

expression of the isotopic effect associated with denitrification is a recurrent topic in N 

biogeochemistry (Houlton et al., 2006; Bai & Houlton, 2009), which Amundson et al. (2003) 

soil-plant N isotope model is able to reproduce. The phenomenon refers to the apparent 

reduction in the denitrification’s isotopic imprint with increasing scale of observation. In 

most environmental settings, denitrification is limited to clustered areas where the right 

biogeochemical conditions prevail. The isotopic (heavy) signatures of the residual N-NO3- 
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from these areas eventually mix with the N-NO3- from other areas where denitrification is 

inhibited, e.g., by the presence of molecular oxygen (Brandes & Devol, 1997). The increasing 

in-mixing of isotopically lighter N-NO3- dilutes, and possibly masks, the isotopic expression 

of denitrification at the watershed scale (Houlton et al., 2006).  

    Lehmann et al. (2003) following Brenner et al. (2001), applied a diffusion-reaction isotope 

model to a lacustrine environment accounting for denitrification in both water column and 

bottom sediments. The isotopic imprint associated with denitrification in this system was 

diminished by the input of fresh NO3-. In light of the limited number of observations, 

Lehmann et al. (2003) determined the model parameters using a weighted least square 

method for the most uncertain parameters (i.e., the isotopic enrichments of N and oxygen, 

and the denitrification rate constant), and a Monte Carlo simulation for the inhibition 

constants, Michaelis-Menten parameters, mixed sediment height, and turbulent diffusivity. 

In the 15N tracing model literature, Mary et al. (1998) developed the FLUAZ program, which 

solves a similar system of differential equations but includes a greater number of N 

transformations with the goal of calculating gross N transformation rates. The calculation of 

the final gross N rates is done in FLUAZ by applying a non-linear fitting technique based on 

Levenberg-Marquardt’s algorithm to find the global minimum (Mary et al., 1998). Significant 

improvements to the original FLUAZ model were made by Müller et al. (2004) by adding 

more N transformations. Later, Müller et al. (2007) replaced the Levenberg-Marquardt’s 

algorithm with a Monte Carlo sampling approach, due to the greater number of parameters 

to be estimated with only limited numbers of observations. 

    This chapter proposes the development of an N isotope model linked to a hydrological 

model at the watershed scale in order to match observations of stream concentrations and 

δ15N-NO3- signatures, similar to the modified version of DAYCENT of Bai and Houlton 

(2009), but for agriculture dominated watersheds. In our model the key N transformation 

processes below specified land use coverages are simulated. All the N exports from the 

different hydrological compartments are then collated into the watershed’s total N export 

via surficial (overland and tile flow) and subsurface (shallow and deep baseflow) pathways. 
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The contributions from baseflow generated in each hydrologic response unit (HRU) take 

into account the mean travel times of the shallow and deep baseflow in the HRU. These 

travel times are obtained from the analytical model developed in Chapter 3 for Carroll 

Creek watershed. For this watershed, historical N inputs, from both anthropogenic and 

natural sources, have been determined in previous research (Zhang, 2016). Typical ranges of 

N isotopic compositions (δ15N) of N sources and fractionation factors (α) of 15N 

discriminating biogeochemical processes are used. The construction of this model is a work 

in progress and the preliminary achievements are reported here. 

4.2 Methodology 

The proposed modeling framework builds on an existing hydrological model for the Grand 

River watershed, which passes computed water flows on to a biogeochemical mass balance 

model for N transformations in the soil and groundwater compartments of the hydrologic 

response units (HRUs) (M. Shafii, personal communication). The linked hydrological-N 

model calculations yield the NO3- fluxes associated with interflow, tile flow, and baseflow 

from all the HRUs in the watershed, and predict the NO3- concentration and export flux at 

the watershed stream.  

    In the existing RAVEN hydrological model, the baseflow contributions are estimated using 

an exponential function to relate flow routes to concentrations at the watershed scale (van 

der Velde et al., 2010). This convenient distribution has been widely used since its inception 

to account for groundwater travel time distributions (Rinaldo & Marani, 1987). However, it 

lacks a physical representation of the watershed. Here, instead, we replace the exponential 

function with the mean of the probability density functions (PDFs) of the particle median 

travel times (pMTT) computed for each HRU in the watershed, applying the methodology 

developed in Chapter 2. The study watershed (Carroll Creek) is used for verification of the 

analytical model whose parameters are obtained from the regression models based on the 

geomorphological watershed characteristics (Chapter 2). The analytical model provides 

estimates of the pMTTs (and their distributions) and the whole-watershed MTT (wMTT) for 
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Carroll Creek (Ontario, Canada) For the wMTT of Carroll Creek, the analytical model 

estimates 65 years, while the numerical model yields 63 years.  

    Next, we add an explicit representation of the stable isotopes 14N and 15N in the 

biogeochemical N model. The existing N reaction model, which is externally linked to the 

hydrological model, is further modified to include intermediate reaction steps for 

nitrification. Descriptions of the existing hydrological-N model and the proposed N model 

for the study site are presented below, followed by that of the proposed N isotope model. 

General characteristics of the study site and measured NO3- concentrations and δ15N 

compositions are also provided.  

4.2.1 Hydrological Model 

    The existing hydrological model for the Grand River watershed was built in RAVEN, a 

flexible, open source, semi-distributed modelling framework (RAVEN Development Team, 

version 2.7). A detail description can be found in Snowdon (2009) and in the user and 

developer manual version 2.7. The RAVEN approach is based on hydrological response units 

(HRUs) as the minimum expression of physical discretization. Within each HRU, multi-

layer soil and aquifer compartments are user-defined. The aggregation of HRUs creates 

subbasins, whose aggregation in turn creates the watershed. For this study, the HRUs are 

defined based on singular combinations of land use and soil type. The RAVEN model 

includes most hydrological surface and subsurface partitioning processes, including, among 

others, evapotranspiration, soil and canopy evaporation, snowmelt, infiltration, percolation, 

baseflow and runoff. For each of these processes, RAVEN provides a wide selection of 

possible algorithms.  

    For the partitioning processes, RAVEN offers, in addition to the typical operator splitting 

(or ordered series) method, three options of the Runge-Kutta numerical solver methods. The 

latter options differ from the operator splitting method in treating the water and energy 

storages simultaneously for all the processes involved instead of following a sequential 

source-depleting order (Snowdon, 2009). Two routing methods are available in RAVEN: (1) the 
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aggregation of the exported flows from all HRUs by applying a convolution of the discretely 

exported flow rates and the distribution of arrival times to the main channel of the subbasin, 

given by the unit hydrograph (UH), and (2) the unidirectional transfer (downstream only) of 

flow among subbasins along an open channel, with the diffusive wave method as the 

routing algorithm. The first routing method is called ‘in-catchment routing’ in RAVEN 

parlance, and can use a Gamma unit hydrograph for the time allocations of the HRU exports 

within the subbasin.  

    Carroll Creek is included in the RAVEN model as one subbasin, comprised of a total of four 

HRUs. In each of the four HRUs, the fluxes among the different water storage units (canopy, 

surface, double soil layers, and aquifer layers) are calculated. Besides these internal HRU 

fluxes, the following external fluxes result from the hydrological partitioning: overland 

flow, tileflow, baseflow, and deep baseflow. Using the in-catchment routing method, these 

exported fluxes are routed to the main channel of the subbasin (here, Carroll Creek) by 

applying a Gamma distribution function. These exported fluxes then carry the various 

solutes of interest to the outlet of the subbasin. 

4.2.2 Isotope Nitrogen Model 

The mass balance model for nitrogen (N) and N isotopes emulates the compartments 

included in the hydrological model: upper, lower active, and lower passive layers (Figure 

4-1). In the lower compartments only nitrate (NO3-) is explicitly represented. It is assumed to 

be the primary form of dissolved N exported from the HRU to the receiving stream. Note 

that this assumption can be relaxed in future model versions, for example by allowing 

export of dissolved organic N. In the upper compartment, the N pool is divided into organic 

N in soil and plants, soil NH4+, and NO3-. Ammonium is treated as a reactive intermediate 

whose concentration remains low. Mobile N (i.e., NO3-) from the upper compartment is 

leached both downwardly by percolation and through different processes laterally 

(overland flow, tileflow, and baseflow exports). Nitrogen cycling in the soil and aquifer 

compartments are sustained by atmospheric N deposition (AD) and land use N sources (e.g. 

organic (Fo) and inorganic (Fi) fertilizer). The separate compartments for soil and plants 
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organic N is a configuration that provides benefits that are threefold: the soil becomes the 

direct recipient of Fo, the leguminous plants receives transformed atmospheric N2 into 

available N through biological fixation (BNF), the loss of N through crop harvest can be 

assessed separately as well as the N recycling associated with litterfall and crop residue 

(L&CR).  

 

Figure 4-1. Schematic of the nitrogen model. L&CR: litter and crop residue, BNF: biological 

N fixation. 

    Although ammonium can also be a source of N for a limited number of plants (Högberg, 

1997), it is the final product of nitrification (i.e., NO3-), which the most utilized soil N 

substrate for plants in near neutral pH soils.  In addition to nitrification, ammonium can be 
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lost by volatilization to the atmosphere as ammonia (NH3) (Högberg, 1997; Kendall, 1998). 

Ammonia volatilization depends on weather and soil conditions (Karr et al., 2003; Kendall et 

al., 2007; Robertson & Schiff, 2008). In agricultural lands, manure is the main source of readily 

available NH3, which in turn is most efficiently removed during hot summer days 

(OMAFRA, 2017).  

    Nitrification produces NO3-, which can leave the HRU laterally, depending on the local 

topography, or vertically, with the infiltration of rainfall (i.e., leaching).  Denitrification 

removes NO3- to the atmosphere as reduced N2-gas. Nitrate leaching out of the soil first 

encounters the upper, active groundwater layer (i.e., the LA compartment), where 

denitrification and plant uptake processes act as sinks of NO3-. A deeper, less-active 

groundwater compartment (i.e., the LP compartment) acts as a buffer for the active 

groundwater layer and helps simulate the hydrological lag times of watershed responses to 

changes in the external forcings. In what follows, detailed descriptions of the N 

biogeochemical processes in the model that induce isotopic fractionations are given, as well 

as estimates of the natural and anthropogenic N inputs applied as model forcings. 

4.2.3 15N Discriminating Reactions 

Of the N cycling processes mentioned above, not all discriminate significantly against the 

heavier 15N isotope. In general, mineralization and plant uptake produce minimum 

fractionations. This has been observed in undisturbed forest soils with limited nitrification 

such that the δ15N of the soils is within a few permil (<2‰) from that of the tree roots 

(Nadelhoffer & Fry, 1994). The isotopic fractionations accompanying assimilation of NO3- by 

38 types of plants (-2.2 to +0.6‰) were found to be influenced by the substrate concentration 

(Mariotti et al., 1980). The isotopic enrichment in a treatment of soybeans at 5 mM NO3- 

concentration was +2‰ (Bergersen et al., 1988). Application to soils of a model for isotopic 

fractionation in aquatic algae predicts a maximum value of -4‰ for N assimilation (Fogel & 

Cifuentes, 1993). On average, however, nitrate assimilation by plants yields small 

fractionations, around -0.25‰. 
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    Volatilization isotopically affects recently mineralized organic N from soil and stored 

manure, be it in liquid or solid form. The effect in δ15N in long-term stored liquid manure is 

significant varying from +10‰ in winter to +30.8‰ in the summer days (Karr et al., 2003). In 

a local study at Strawberry Creek (Ontario, Canada), a few kilometers away from Carroll 

Creek, the N isotopic composition at the creek (+15.9‰) was attributed to the application of 

manure in the watershed (Mengis et al., 1999). Karr et al. (2003) observed a positive 

correlation between the changing isotopic composition of liquid manure (slurry from 

storage lagoons) and air temperature for a period of over a year. Local information for the 

use of liquid manure in Wellington County (Goss et al., 2001) suggests that the rate of 

manure application corresponds to half of that from solid manure, making the solid manure 

two-thirds the total volume of applied in the county. In the model, volatilization occurs in 

non-rainy days, as runoff and infiltrating rainfall dilutes and mobilizes NH4+ eventually 

towards a path of nitrification. The emissions of volatilized NH3 occurs during the first days 

of storage in solid manure, and can be similar to liquid manure’s emissions in the first 

month of storage, after which emissions from liquid manure keep increasing at a steady rate 

(Dewes, 1999). No isotopic data has been collected in solid manure during long-term storage, 

which in Ontario is stored at least for 180 days. 

        The degree of fractionation during nitrification is greatly dependent on the amount of 

anthropogenic N inputs to the soil-vegetation system (Kendall et al., 2007). In non-

agricultural lands, nitrification tends to yield similar δ15N values of soil water nitrate (~0 to 

+3‰) compared to the uncultivated organic N soil (+2 to +5‰), indicative of slight 15N 

depletion of NO3—N and slight 15N enrichment of soil N (Garten et al., 2007). The long-term 

leaching of depleted 15N-NO3- may lead to the gradual enrichment of 15N in uncultivated soil 

N. In cultivated soils, however, much larger 15N discrimination, between -12‰ to -29‰, is 

observed because the soils are not N-limited. Here, an average fractionation factor was 

chosen (αN = 0.979, (Table 4-1). In soils with manure application, volatilization and 

nitrification of organic-N can occur sequentially yielding a complex imprint in the isotopic 

composition of NO3-N. First, volatilization enriches 15N in the remaining NH4+-N, which is 
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then oxidized into a 15N depleted NO3- via nitrification. Considering that both processes 

generate similar enrichments, the resulting isotopic nitrate composition can vary from 

slightly enriched (~+8 ± 2 ‰) to more significantly enriched (+8 to +16‰) with respect to 

the isotopic composition of the cultivated soil N (Wassenaar, 1995).  

    In denitrification, nitrate is the electron acceptor and organic carbon is the electron donor 

in the enzymatic (kinetic) transformation of nitrate in solution into N-gas (N2 or N2O). In 

this reaction, the residual substrate, as in all isotopic processes, is enriched in 15N-NO3-, 

whereas the lighter gaseous species are released to the atmosphere. The occurrence of 

denitrification in cultivated fields is primarily controlled by the spatial distribution and 

availability of organic carbon, as well as soil moisture. In natural soils the availability of 

nitrate is often an additional limiting factor for denitrification. Because of these various 

controls the isotopic imprint of denitrification on soil water NO3- is quite variable, from -5‰ 

to -33‰ (Högberg, 1997). At this stage, the distribution of organic carbon is not represented 

in the model, and a mean fractionation factor (αD=0.981) for denitrification is used 

throughout (Table 4-1). 

4.2.4 Nitrogen Inputs and Model Stocks 

    Natural and anthropogenic N forcings are included in the model through the N inputs to 

the soil system: atmospheric deposition, fertilizer, manure, and biological N fixation. A brief 

description on the development of time series for N loads and their isotopic compositions is 

presented in this section, followed by the initial estimates of the compartment stocks in the 

model.  
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Table 4-1. Nitrogen fractionating processes, their isotopic effect, and the fractionation factor 

applied in the model.  

N Process Reaction Isotopic Effect αP/S 

Mineralization org-N → NH4+ 
Minimum to null fractionation has been 
reported, depleting 15N-NH4

+. 
0.999 

Volatilization NH4+→ NH3(g) 

Dependent on temperature, wind, rainfall, soil 
pH, and available light. Fractionation > 20‰ 
are reported resulting in enriched 15N-NH4

+ 
and depleted 15N-NH3(g). 

ƒ(T)1 

Nitrification NH4+→ NO3- 
Two-step reaction with conversion to NO2

- 
being rate limiting of the overall process. 
Large fractionation reported -12‰<ε<-29‰  

0.979 

Plant Uptake NO3-→ org-N 
Or assimilation, with limited fractionation 
within -0.25‰<ε<-4‰. 

0.998 

Denitrification NO3- →N2(g) 
Highly variable and dependent on soil 
saturation and temperature. Fractionation 
may vary between -5‰<ε<-33‰. 

0.981 

1 Fractionation is a function of daily temperature (T) following changes in δ15N observed in liquid manure at a 

site in North Carolina (Karr et al., 2003). To be used, unmodified, where liquid manure is applied. A similar 

relationship was adjusted for solid manure (see Appendix C). 

4.2.4.1 Nitrogen Inputs 

The estimation of a fixed daily atmospheric deposition N load is based on the historical 

analysis made by Zhang (2016) of NO3- in wet deposition collected during the period 1978-

2001 in several stations in the Grand River watershed. These data were collected by 

Environment Canada and accessible through its NatCHEM database. The historical analysis 

indicates that the trend of N loading in atmospheric deposition has been declining since the 

early 1990’s, when it reached a maximum of 20 kg/ha/yr. In the last decade (i.e., as of 2011) 

the estimated atmospheric N load is ~10 kg/ha/yr. These loads fall between typical values 

for unpolluted (5 kg/ha/yr) and polluted (28 kg/ha/yr) environments (Van Miegroet et al., 

1992). In precipitation, NO3- and NH4+ are the most common forms of N in atmospheric 

deposition (Holland et al., 1999). For this study, the oxidized form of N is assumed to be the 

only N species in atmospheric deposition.  The mean N isotopic composition in NO3- of 
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precipitation reported by Kendall (1998) is -2.5 ± 3‰. (Note: in many instances NH4+ in 

precipitation is slightly depleted in 15N with respect to NO3- precipitation, Kendall, 1998, but 

not in all cases, Heaton, 1986.) The mean N isotopic composition of 10 rain samples collected 

in Turkey Lake’s watershed (Ontario), located 600 km northwest of Carroll Creek, is -2.1‰ 

(Spoelstra et al., 2001). This δ15N value is used as representative of the N isotopic composition 

of atmospheric deposition (AD) in the model. 

    The N requirements for crop growth published by the Ontario Ministry of Agriculture, 

Food and Rural Affairs (OMAFRA) in the document “Agronomy Guide for Field Crops” 

(2017) is used as a guideline for allocating N fertilizer and manure application loads. In 

Carroll Creek, there are four major land uses associated to agricultural activities: row crops 

(crop rotation), small grains (buckwheat, flax, and sunflower), forages (hay), and pastures 

(grass). A common crop rotation in the Grand River watershed (Liu et al., 2016) is:  soybean, 

winter wheat, and corn. According to OMAFRA, only corn requires an annual N application 

that depends on soil texture (Table C1 in Appendix C). An area-weighted estimate of N 

required for corn (142 kg/ha) is included in the two-year rotation with a nominal N 

requirement of 20 and 15 kg/ha for soybean and winter wheat, respectively. For small 

grains, an average value of the recommended N requirements for buckwheat, flax, and 

sunflower is to be applied in the model (57 kg/ha in Table 4-2).  

    Symbiotic N fixing soil bacteria use the enzyme nitrogenase to catalyze the reduction of 

N2 from the atmosphere to NH3 (Buresh, 1980). This self-reliant ability regulates N supply to 

the vegetation. However, the intense cultivation of legumes combined with fossil fuel 

combustion has altered the ratio of biological N2 fixation and total N2 fixation at the global 

scale (Cleveland et al., 1999; Vitousek et al., 2013). Locally, Zhang (2016) has estimated the 

biological N fixation (BF) in the Grand River watershed as a function of crop coverage and 

rotation. After meeting with a local agricultural specialist, Liu et al. (2016) estimate that the 

most frequently occurring crop rotation in the Grand River watershed is: soybean, winter 

wheat, and corn. The mean BF value for this two-year rotation is used in the model. 

Although winter wheat and corn are not considered N2 fixing crops, they have been found 
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to create associative N2 fixation habitats with bacteria that fix N within the rhizosphere of 

the host plants (Hubbell & Kidder, 2009). In addition to plants, free-living heterotrophs in 

soils can also fix N drawing available energy from organic carbon leaching from 

decomposing material (litter). Their contribution to the overall global N2 fixation rates is 

minor, however (Hubbell & Kidder, 2009). In three Ontario forests, the asymbiotic N2 fixation 

in surface soils was estimated at <1 kg/ha/yr (Hendrickson, 1990). In the model presented 

here, BF of N is only provided by plants. 

    OMAFRA (2017) recommends applying an N fertilizer to manure ratio of two-thirds to 

supply the total N crop requirement (Table 4-2). The liquid form of manure provides almost 

twice as much readily available NH4+ than solid manure (42% versus 21%), however, the 

organic-N in solid manure has a more long-term benefit to the cultivated soil, even into the 

next year harvest.  

Table 4-2. Annual nitrogen crop requirements and rates of N fertilizer and manure to be 

applied in the model. 

Land Use 
Category 

Area [ha] 
N Crop 

Requirement 
[kg/ha] 

N Rate of 
Fertilizer [kg/ha] 

N Rate of 
Manure [kg/ha] 

Row crops 1952 49 16 33 

Small grains 766 57 19 38 

Forages 2222 60 20 40 

Pasture 646 44 15 29 

Area Weighted [kg/ha/a] 54 18 36 

 

    Litterfall and crop residue are important components in the N cycle and are highly 

dependent on the type of trees present in the watershed and the harvesting practices in the 

area. Coniferous and deciduous forests, that both make 4.1 and 4.5 % of the total area in 

Carroll Creek, respectively, differ in the amount of litter produced. The vegetation of 

coniferous forests tends to be more permanent year around, a characteristic that is utilized 

to control streamflow in watersheds, whereas, deciduous trees such as oak, maple, beech 
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lose their leaves each year. An estimation of this N flux for each vegetation type is presented 

in Appendix C (Table C2 and Table C3) based on published data. 

4.2.4.2 Compartment Model Stocks and Initial δ15N 

The stocks of soil organic and mineral N are presented here for the upper (U), lower active 

(LA), and lower passive (LP) compartments. In the lower compartments, only N as nitrate is 

modeled. The stock of N in soil refers to N contained in the soil organic matter. Soil organic 

N constitutes the second largest N reservoir after atmospheric N2 (Schlesinger, 1997). The 

source of this organic-N is the decomposition of litter from vegetation through millennia of 

balancing organic and mineral N inputs and mineral-N outputs (Marty et al., 2017). Thus, 

natural, uncultivated lands tend to be relatively rich in organic-N. The mean of the total soil 

N pool in 21 forests in Québec was 915 g N/m2, while the N concentrations of mineral soil 

horizons (1.3 g N/kg) are just a fraction of those of the usually thinner organic soil horizon 

(16.7 g N/kg) (Marty et al., 2017). In southern Ontario, Ellert & Gregorich (1996) sampled 

surface and deeper soils of both cultivated lands and adjacent forests to identify pools of 

carbon, N, and phosphorus. They found that the mean N surface concentrations of 

cultivated and forest soils were 586 and 724 g N/m2, respectively, with an average 

difference of 19%; whereas, the mean N subsurface values were 129 and 111 g N/m2 with an 

average difference of -16%.   

It is recognized that the inorganic N in soils only corresponds to around 1% of the total soil 

N (Kendall et al., 2007). This 1% consists mostly of NO3- and some NH4+. With an average 

NO3-/NH4+ ratio in  dissolved inorganic N (DIN) in the upper compartment of 5, 1% of total 

soil N gives, on average, 3.54 and 4.24 g NO3--N/m2 and 0.88 and 1.06 g NH4+-N/m2, for 

cultivated and uncultivated soils, respectively. The N stocks for the lower compartments 

follow similar values as the estimated above for the upper NO3- compartment.  

    The isotopic composition of liquid and solid manure changes throughout the year due to 

the effect of NH3 volatilization. In the proportional relationship of temperature and δ15N 

quantified by Karr et al. (2003), δ15N changes during the rising temperatures of spring and 
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summer at a faster rate than the declining limb of this relationship during the late summer, 

fall, and winter temperatures (Figure C1, Appendix C). Details on the rising and declining 

linear equations describing this behavior in liquid manure are presented in Appendix C. A 

similar analysis is not available in the literature for solid manure. Thus, it is assumed that 

solid manure’s δ15N varies following the range of values reported by Bateman & Kelly 

(2007): 3.4 to 20.4‰ δ15N, occurring at the same time of the year as the liquid manure. The 

isotopic composition of the mixture is weighted by the 2:1 ratio of solid to liquid manure 

that is reportedly applied in Wellington County (Goss et al., 2001). 

Table 4-3. Summary of annual N inputs, and their nitrogen isotopic compositions (δ15N). 

Initial δ15N is also provided for compartments for those HRUs dominated by either 

fertilizer or manure application. 

N Inputs  
Estimate 
[kg N/ha] 

δ15N (‰) 

Atmospheric Deposition 
(AD) 

10 -2.11 

Biological N Fixation 
(BNF) (soybeans/hay) 

252/222 02 

Litter & Crop Residue 
(forests/row crops) 

(26-53)/19 +83 

 Source Upper LA LP 

Fertilizer (Fi) 18 +1 +4.74 +126 +186 

Manure (Fo) 36 ƒS(T), ƒL (T)5 +165 +205,6 +85,6 

1 Measured by Spoelstra et al. (2001); 2 From atmospheric N2 -BF  Kendall (1998); 3 Nadelhoffer & Fry (1994); 4 

Soil NO3- from fertilizer and manure as in Kendall & Aravena (2000); 5 δ15N function based on Karr et al.(2003); 6 

Robertson & Schiff (2008). 

4.3 Coupling of Hydrological and Nitrogen Models 

The nitrogen model (Figure 4-1) mimics the compartment scheme used in the hydrological 

model. It simulates the internal transformation and exchange fluxes within each HRU, as 

well as the export fluxes leaving the HRU. These internal and external fluxes are 

incorporated into the nitrogen balance equations that define the change in time of each N 

form. For the light isotope, we have: 
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 𝑁𝑜𝑟𝑔

 𝑡
= 𝐹𝑜 + 𝐶𝑟 − 𝑘𝑀𝑁𝑜𝑟𝑔 

 𝑁𝑣𝑒𝑔

 𝑡
= 𝐵𝐹 + 𝑘𝑈𝑁𝑂3𝑈 + 𝑘𝑈𝐿𝑁𝑂3𝐿𝐴 − 𝐶𝑟 − 𝐻𝑣 

 𝑁𝐻4
 𝑡

= 𝑘𝑀𝑁𝑜𝑟𝑔 − 𝑘𝑁𝑁𝐻4 − 𝑘𝑉𝑁𝐻4 

 𝑁𝑂3𝑈
 𝑡

=  𝐷 + 𝐹𝑖 + 𝑘𝑁𝑁𝐻4 − 𝑘𝑈𝑁𝑂3𝑈 − 𝑘1𝑘2𝑘𝐷𝑁𝑂3𝑈 − 𝑘 𝑁𝑂3𝑈 − 𝑘𝐿𝑐ℎ𝑁𝑂3𝑈 

 𝑁𝑂3𝐿𝐴
 𝑡

= 𝑘𝐿𝑐ℎ𝑁𝑂3𝑈  𝑎 − 𝑘1𝑘2𝑘𝐷𝑁𝑂3𝐿𝐴 − 𝑘𝑈𝐿𝑁𝑂3𝐿𝐴 − 𝑘𝐵𝑁𝑂3𝐿𝐴 + (1 − 𝑎)𝑘𝐸 𝑁𝑂3𝐿𝑃 

 𝑁𝑂3𝐿𝑃
 𝑡

= (1 − 𝑎)𝑘𝐿𝑐ℎ𝑁𝑂3𝑈 − (1 − 𝑎)𝑘𝐸 𝑁𝑂3𝐿𝑃 

And, for the heavy isotope: 

 𝑁15 𝑜𝑟𝑔

 𝑡
=  𝐹𝑜𝐹𝑜 +  𝐶𝑟𝐶𝑟 − 𝑘𝑀𝛼𝑀 𝑁15 𝑜𝑟𝑔 

 𝑁15 𝑣𝑒𝑔

 𝑡
=  𝐵𝐹𝐵𝑁𝐹 + 𝑘𝑈𝛼𝑈 𝑜𝑁𝑢𝑁𝑂3𝑈 + 𝑘𝑈𝐿𝛼𝑈 𝑜𝑁𝐿𝐴𝑁𝑂3𝐿𝐴 −  𝐶𝑟𝐶𝑟 −  𝐻𝑣𝐻𝑣 

 15𝑁𝐻4
 𝑡

= 𝑘𝑀𝛼𝑀 𝑂𝑟𝑁𝑜𝑟𝑔 − 𝑘𝑁𝛼𝑁 𝑁15 𝐻4 − 𝑘𝑉𝛼𝑉 𝑁15 𝐻4 

 𝑁15 𝑂3𝑈
 𝑡

=  𝐴𝐷 𝐷 +  𝐹𝑖𝐹𝑖 + 𝑘𝑁𝛼𝑁 𝐴𝑚𝑁𝐻4 − 𝑘𝑈𝛼𝑈 𝑁15 𝑂3𝑈 − 𝑘1𝑘2𝑘𝐷𝛼𝐷 𝑁15 𝑂3𝑈 − 𝑘 𝑁15 𝑂3𝑈

− 𝑘𝐿𝑐ℎ 𝑁15 𝑂3𝑈 

 𝑁15 𝑂3𝐿𝐴
 𝑡

= 𝑎  𝑘𝐿𝑐ℎ 𝑁15 𝑂3𝑈 − 𝑘1𝑘2𝑘𝐷𝛼𝐷 𝑁15 𝑂3𝐿𝐴 − 𝑘𝑈𝐿𝛼𝑈 𝑁15 𝑂3𝐿𝐴  

                                                               −𝑘𝐵 𝑁15 𝑂3𝐿𝐴 + (1 − 𝑎)𝑘𝐸 𝑁15 𝑂3𝐿𝑃 

 𝑁15 𝑂3𝐿𝑃
 𝑡

= (1 − 𝑎)𝑘𝐿𝑐ℎ 𝑁15 𝑂3𝑈 − (1 − 𝑎)𝑘𝐸 𝑁15 𝑂3𝐿𝑃 
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The formulations used for the heavier N isotope are similar to those applied in previous 

studies by Brenner et al. (2001) and Lehmann et al. (2003), where i) the N inputs are 

multiplied by their isotopic compositional ratio (R), and ii) the rates of the N processes that 

discriminate against 15N are multiplied by the corresponding fractionation factor (αP/S). The 

fractionation factor, as previously indicated (Table 4-1), is expressed with the 15N-enriched 

form in the denominator yielding αP/S < 1. The hydrologic fluxes are represented in the form 

of fractions of a specific flow withdrawing from a reservoir source (Table 4-4). First-order 

reaction constants control the consumption of the substrates (Table 4-4). 

    The existing hydrological model extends over Carroll Creek with four HRUs for two 

agricultural land use types. For this spatial configuration, N transformation processes in the 

upcoming work will be sequentially activated in the simulation until reaching quasi steady-

state conditions. The spin-up period of simulation required to reach quasi steady-state is 

likely to be longer than the duration covered by time series data used for the N inputs. 

Several configurations of N transformation processes combined with spatial resolution 

increments (i.e., in number of HRUs and agricultural land uses) are planned to match 

observations with the minimal set of reactions and spatial discretization.  

4.4 Study Watershed 

The Carroll Creek watershed (78 km2) is located in the Grand River basin (6,800 km2). This 

region receives on average 916 mm of annual precipitation, and the mean annual 

temperature is 7oC. The upper and lower portions of the watershed are dominated by clay 

loam till soils and loam till soils, respectively (Figure 4-2a). In the lower portion of the 

watershed, pockets of organic, gravelly, and sandy soils are also present. Five agricultural-

related land uses can be recognized, including pasture (8.3%), which together amount to 

86.5% of the total watershed area (Figure 4-2b). Row crops and forage occupy more than 

half of area, with 25 and 29% coverage, respectively. All land use categories are uniformly 

distributed across the watershed, except for forests that are mostly adjacent to streams. 

Carroll Creek is an order five stream, in the Strahler-stream ordering scheme.  
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Table 4-4. Flow partitioning and N first-order reaction parameters in N balance model.  

Parameter Units Definition Value - Range 

kU [-] Plant uptake fraction [U1/VZ] tbdbhm2 

kUL [-] 
Plant uptake fraction from lower compartment 
[UL/SAT] 

tbdbhm 

kT [-] Tileflow fraction [T/VZ] tbdbhm 

a [-] Partial mixing coefficient  tbdbhm 

Lch [-] 
Leaching fraction from U to L compartment 
[Lch/VZ] 

tbdbhm 

B [-] Baseflow fraction [B/SAT] tbdbhm 

Ex [-] Exchange ratio, similar to a tbdbhm 

kM [day-1] Mineralization rate constant 0.006 to 0.043,4 

kN [day-1] Nitrification rate constant 0.05 to 0.305 

kV [day-1] Volatilization rate constant 5.1e-36 

kD [day-1] Denitrification rate constant 
0.002-0.065,7 

1.3e-3 to 0.098,9 
1 hydrological fluxes and compartments: U, UL, evapotranspiration from top and lower 

compartments; T, tileflow; Lch, percolation from upper to lower compartment; B, baseflow; VZ, 

vadose zone compartment; SAT, saturated-lower compartment. 
2 tbdbhm: to be determined by hydrological model. 
3 Stanford & Smith (1972). 
4 Zhang et al. (2017). 
5 literature review therein, Ramos & Carbonell (1991) [for top soils] 
6 Asada et al. (2013) 
7 surficial soils in Mariotti et al. (1982) [for top soils] 
8 sandy material with impermeable clay, Frind et al. (1990) [for lower soils/surficial geology] 
9 sand, silt, and clay, McMahon et al. (2008) and Tesoriero & Puckett (2011) [for lower soils/surficial 

geology] 

 

    Cummings (2015) included Carroll Creek as one of four watersheds in his study of the 

seasonality of stream NO3- concentrations and isotopic compositions of N and oxygen in 

NO3-. A common trend of low NO3- concentrations and high δ15N-NO3- and δ18O-NO3- 

during the growing season was identified in all watersheds (Figure 4-3), both indicative of 

the occurrence of denitrification (Cummings, 2015). The values for the N isotopic 

composition of NO3- (δ15N-NO3-) are indicative of significant N fractionation processes 
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occurring in the watershed. The agricultural nature of the watershed is also evident in the 

δ15N-NO3- values, which are farther away from values typically observed in uncultivated 

watersheds (+1‰<δ15N- NO3-<+7‰, Bai & Houlton, 2009).  

    Carroll Creek is one of the verification watersheds used to test the regression models for 

estimating both the analytical model parameters of the methodology developed in Chapter 

2 and the watershed mean travel time (wMTT). These regression models use easily 

measured geomorphological features as predictors. The analytical model created from the 

predicted parameters yield, in turn, estimates of particle median travel times (pMTT), 

which, together with their distribution and wMTT, are compared against the numerical 

model predictions (i.e., FEFLOW’s) (Figure 4-4). The goodness of fit (r2=0.15) for pMTT is 

comparable to the initial watersheds used to develop the regression models (Figure 4-4a). 

The wMTT predicted by the analytical model differs from the numerical counterpart by 

only 2 years (3 %). The distribution of ages simulated by the analytical model covers most of 

the occurrences and frequencies of travel times (Figure 4-4b), except for the longest ones 

where a relatively few occurrences of particles with travel times longer than 250 years were 

not reproduced by the analytical model. Also, the frequencies for short travel times (<50 

years) is slightly misrepresented in the analytical model. 
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Figure 4-2. Soil type (a) and land use (b) distribution in the Carroll Creek subbasin, and 

consolidated land use categories (c) and HRUs (d) currently in the existing RAVEN model.  
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Figure 4-3. Nitrate concentrations and N isotopic composition in NO3- (δ15N- NO3-) 

measured in the Carroll Creek stream waters by Cummings (2015). 
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Figure 4-4. Particle median travel times (pMTT) and watershed mean travel time (wMTT) 

(a) and pMTT distribution (b) estimated with the analytical model are compared against the 

respective numerical model estimates. On panel (a) A stands for analytical and F for 

numerical. 

4.5 Prospective Directions 

A method for optimization of the parameters in the N isotope model being considered is 

that used in the FLUAZ model (Mary et al., 1998) (i.e., Levenberg-Marquardt’s algorithm), or 

other similar ones, such as those available in the OSTRICH optimization software (Matott, 

2017). Once the model is ready to run simulations, different configurations of N 

transformation processes and spatial watershed discretization are planned (Table 4-5). These 

configurations will evaluate the influence of single and sequential N transformation 

processes under varying spatial discretizations. The targeted N transformation processes are 

those that discriminate against 15N as the reproduction of both N-NO3 concentrations and 

δ15N-NO3- signatures are sought. The observed N isotopic composition in Carroll Creek 

(Figure 4-3) is likely the result of the combination of the N isotopic composition of the 

sources, which are applied in all the configurations in Table 4-5, and one or more 15N 

discriminating process.  
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    Besides the configurations listed in Table 4-5, the contribution from either surface or 

subsurface fluxes in explaining the measured observations will be evaluated for each 

simulation. This discretization in the contribution can also be performed on natural versus 

anthropogenic N sources. Statistics to compare the generated time series against the 

observations will be applied to each simulation to measure performance.  

Table 4-5. List of planned simulations for configurations of varying N transformation 

processes and spatial discretization. 

Configuration N Transformations Included 

Spatial Discretization 

Number of 
HRUs 

Number of 
Agricultural Land 

Uses 

Sim1 NIT1 2 1 

Sim2 NIT 4 2 

Sim3 NIT + DENIT 2 1 

Sim4 NIT + DENIT 4 2 

Sim5 VOL + NIT 2 1 

Sim6 VOL + NIT 4 2 

Sim7 NIT  + PU 2 1 

Sim8 NIT  + PU 4 2 

Sim9 VOL + NIT + DENIT 2 1 

Sim10 VOL + NIT + DENIT 4 2 

Sim11 VOL + NIT + DENIT + PU 2 1 

Sim12 VOL + NIT + DENIT + PU 4 2 

Sim13 VOL + NIT + DENIT + PU + MIN 2 1 

Sim14 VOL + NIT + DENIT + PU + MIN 4 2 
1 NIT: nitrification; DENIT: denitrification; VOL: volatilization; PU: plant uptake; MIN: mineralization. 
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Chapter 5 

General Conclusions 

Travel time distributions (TTDs) provide key information about the hydrological 

functioning of watersheds that is essential for understanding and ultimately predicting the 

response of water quality to anthropogenic pressures, including changes in land use and 

regional climate change. Several approaches exist to determine TTDs of watersheds. These 

include tracer-assisted models and water balance calculations linked to tracer information, 

which have mostly been applied to watersheds in mountainous areas. In addition, analytical 

and numerical modeling approaches are also available for lowland watersheds with deeper 

aquifers. In this thesis, I present a simple, transferable methodology to estimate the 

groundwater TTD for the entire watershed, as well as TTDs for water particles entering the 

groundwater table at multiple, spatially distributed locations across the watershed. The 

proposed approach offers the advantage of separating subsurface flow and transport of 

locally leaching solutes from diffusive pollution sources spread across a watershed. 

    The proposed methodology is based on applying a 1-D analytical model to generate a 

travel time probability distribution function (PDF) that describes the groundwater TTD of a 

3-D watershed. The approach is developed using virtual watersheds for which the 

predictions of the analytical model are compared to the output of a 3-D numerical 

hydrological model (FEFLOW), under variable surface topography and subsurface 

heterogeneity. For the 28 individual scenarios evaluated in a virtual watershed, whose 

geomorphology and hydrogeology are inspired by that of Alder Creek, the TTDs, median 

particle travel times (pMTTs), and mean (whole-)watershed travel times (wMTTs) estimated 

with the analytical and numerical models are in good agreement, especially for mid- to 

long- distance flow paths. Furthermore, the analytical method responds correctly to 

imposed changes in subsurface heterogeneity. In the numerical model, an increase in the 

degree of aquifer heterogeneity (𝜎𝑌
2) results in a reduction of wMTT, a response matched by 
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the analytical method. This response, explained by the creation of preferential flow paths, is 

also matched when increasing the magnitude of heterogeneity (Ixy).  

    The analytical travel time estimations verify the already well-known watershed responses 

to variation in topography, in particular, the expected negative relationship between mean 

watershed slope and wMTT. However, while the numerical model predicts an increase in 

wMTT for a reduced topography scenario but with a deeper aquifer, the analytical model 

fails to reproduce this feature. In light of these results, I set out to explore the influence of 

watershed geomorphology on groundwater travel times in more detail using a series of nine 

virtual watersheds. 

    In Chapter 3 a set of empirical relationships are developed that allow the application of 

the analytical method in ungauged basins. The inter-watershed comparison approach 

includes eight virtual watersheds, in addition to the Alder Creek virtual analog, all subject 

to similar hydrologic forcing (that is, precipitation) and assuming fully homogeneous 

subsurface conditions. The analytical method performs well when estimating the 

watersheds’ TTDs and wMTTs, but less so in the case of pMTT. The results of the analyses 

imply that the analytical methodology could be used to guide watershed management and 

nonpoint source pollution risk assessment, provided the limitations of the approach are 

properly understood and taken into account. 

    To develop the relationships between geomorphological watershed attributes, the 

analytical model parameters, and wMTT estimates, a total of 28 geomorphological indexes 

are considered. The resulting predictive relationships are geared toward enabling the 

transferability of the analytical methodology to ungauged basins. The transferability is 

tested in three additional local verification watersheds. In these verification watersheds, the 

degree of agreement for the targeted watershed properties (i.e.,  TTD, wMTT and pMTT) is 

maintained relative to the original nine watersheds. The analytical method input parameters 

and wMTT are primarily related to elevation (i.e., Relief), texture topography (i.e., Dd, 

TexPer, DF), and Horton’s law (i.e., RB and LnkSlp) parameters. The wMTT estimated for 

Schneider Creek, one of the verification watersheds, is significantly underestimated, 
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however. Tentatively, it would appear that the structural configuration of the watershed’s 

stream network (as manifested by the variables DF, RB and LnkSlp) causes the analytical 

model to fail in accurately estimating wMTT. 

   The final chapter (Chapter 4) provides a preliminary outline for the development of an N 

isotope model linked to a hydrological watershed model. The aim is to replace the 

commonly used exponential lumped-parameter equation for representing groundwater 

TTD in hydrological models by the analytical modeling framework outlined in this thesis. 

To illustrate the proposed approach, a watershed with predominant agricultural land use is 

selected, Carroll Creek, a small tributary of the Grand River in Southern Ontario. I present 

the proposed approach for the N isotope reaction model that includes the most relevant N 

transformation processes that discriminate against 15N. A stepwise strategy to represent the 

relevant N processes and implement the spatial discretization of the watershed is discussed, 

as well as a preliminary assessment of the available data on stream NO3- concentrations and 

δ15N-NO3- compositions. 

5.1 Future Work 

Subsurface heterogeneity remains to be more precisely incorporated in the predictive 

relationships for the analytical model parameters and wMTT estimations. Hale and 

McDonnell (2016) and Hale et al. (2016) recently showed that subsurface bedrock 

permeability is an important predictor of baseflow MTT in montane watersheds. For the two 

montane watersheds with distinct bedrock permeability used in their research they show 

evidence for distinctly longer stream water MTTs (~6 years) in the permeable bedrock 

watershed. In Chapter 2, the analytical model responded consistently to changes in 

heterogeneity by increasing the calibrated Uo and reducing wMTT. Thus, some measures of 

subsurface heterogeneity are required as potential predictors of wMTT. The following 

approaches could prove useful in this respect: 1) using imposed, geostatistically defined 

heterogeneity metrics similar to that used in Chapter 2, and 2) implementing the 3-D 

sedimentary hydrofacies from numerical model domains developed by other authors. A 
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brief commentary on incorporating each approach on the original watersheds (excluding the 

RPT watersheds) is provided below. 

1) Imposed heterogeneity. In Chapter 2, imposed heterogeneity was applied to 28 

scenarios on a single watershed (i.e., the virtual Alder Creek watershed). An 

improvement to the imposed heterogeneity in Chapter 2 would be to consider larger 

planar correlation lengths, say Ixy = 1 or 2 km, to evaluate structural heterogeneity 

similar to multi-layered aquifer systems. Overall, many opportunities exist to further 

assess how calibrated Uo values depend on heterogeneity, but also how 

heterogeneity influences the predicted MTT in variable geomorphological settings 

(i.e., watersheds).  

2) Heterogeneity from numerical models. This information was actually collected at the 

beginning of this study for some of the original watersheds. The subsurface 

heterogeneity for these watersheds is incorporated in numerical models other than 

FEFLOW. A significant amount of work is required to make this 3-D data usable in 

FEFLOW, hence, explaining why aquifer homogeneity was assumed when testing 

the 28 geomorphological indexes in Chapter 3. Note that such 3-D data is not yet 

available for Ganaraska River, for which Earthfx (2006), a Toronto consultant, has 

developed a model for the Oak Ridges Moraine that includes this watershed. More 

realistic representations of the actual permeability fields for subsurface flow at each 

watershed will help to evaluate the effects of heterogeneity in wMTT. The estimates 

of wMTT and TTD for each watershed can also be compared with an equivalent 

heterogeneity scenario evaluated in the former approach.  

    After the implementation of the analytical methodology to a number of watersheds, a 

couple of potential changes to the methodology have emerged in order to strengthen its 

weaknesses. First, identifying distinct geomorphological areas within the watershed to 

apply different model parameters: SF, Uo, and λL, instead a single set of parameters for the 

entire watershed. The greater the number of distinct areas, the more intricated the 

development of the model will become, which defies the original conceptual framework in 
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two ways: ease in its implementation and being untethered by scale. Second, replacing the 

flow path delineation currently obtained from ArcNLET, with a new one where the flow 

paths in the vicinity of streams are better represented. An automated tool developed in 

Python working in interface with GIS could create similar flow path delineations without 

inputing any groundwater parameters, relying fully on a varying topographic surface. This 

topographic surface can be varied to create local and regional flow paths by resampling the 

DEM to small cell-sizes, for local discharges, and to large cell-sizes, for regional flow paths.  

 

The current outline for the development of the N isotope model follows the spatial 

discretization of the existing hydrological model, that is, four HRUs. Additional HRUs may 

be required to match observed measurements in Carroll Creek, which will demand further 

spatial discretization and hydrological modeling. This can be achieved by considering two 

additional agricultural land uses present in the area that are, at the moment, consolidated in 

the two current agricultural land use categories of the model. Increased level of 

discretization will be achieved with this addition, considering that the HRUs will be 

integrated by spatial overlays of land use and soil type. 

    One of the main sought outcomes from the preliminary work on the N isotope model for 

Carroll Creek is that the relative contributions of surface and subsurface N exports will be 

crucial to explaining stream-based nitrate concentrations and isotopic compositions. In the 

case that the base flow contributions play an important role in describing the stream water 

observations, the temporal refinement of these N export pathways will be required. The 

current outline for the N isotope model further works under the assumption that the N 

input sources, both natural and anthropogenic, have remained constant for a period of time 

similar to that of the base flow wMTT, estimated at around 63 years. This wMTT will 

actually be shorter if the heterogeneity in aquifer permeability is significant. To address this 

temporal issue, the following historical data will be necessary for the last 50 years in Carroll 

Creek: land use coverages, N fertilizer applications, and annual crop productions. If both 

spatial and temporal (historical) discretizations are needed to refine N exports from the 
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baseflow compartments, the proposed model modifications will provide the means to 

allocate the N fluxes according to the improved watershed TTDs.  
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Appendix A 

Supplementary Material: Chapter 2 

Introduction 

The supplementary material provides further details on the theoretical formulation for the 

estimation of travel time in the numerical model. A flow chart summarizing the calibration 

process followed in the analytical method is presented. Additionally, details are also 

included on the estimated groundwater flow path analysis of seven transects distributed 

across the watershed that are used to compare their distances and pMTTs estimated using 

the analytical and numerical methods.  

Travel Time Distribution using the Numerical Model 

The mathematical approach incorporated in FEFLOW (DHI-WASY GmbH) for the 

estimation of groundwater age was developed by Cornaton (Cornaton, 2004; Cornaton and 

Perrochet 2006; Cornaton, 2014). Three independent time variables are derived from this 

approach: age (A), life time expectancy (E), and transit time (T). Age is defined as the time a 

water particle has spent since the time of injection up to a location x in the aquifer. Life 

expectancy is the time that is left for a water particle at a location x before it leaves the 

aquifer. Transit time corresponds to the time since injection up until it exits the aquifer, 

which is equivalent to T = A + E. Under this approach, each of these time variables has its 

associated probability density function (PDF): gA, gE, and gT, derived from evaluating the 

respective time variable at any position x in the domain. Both gA and gE are distributed and 

transported using the ADE equation by solving the boundary value problem (i.e., for gE 

only): 

𝜕𝜃𝑔𝐸
𝜕𝑡

= ∇ ∙ 𝐪𝑔𝐸 + ∇ ∙ 𝐃∇𝑔𝐸 − 𝑞𝐼𝑔𝐸     𝑖𝑛  𝛺,    

And its boundary conditions: 

𝑔𝐸(𝒙, 0) = 𝑔𝐸(𝒙,∞) = 0   𝑖𝑛  𝛺, 
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[𝐪𝑔𝐸(𝒙, 𝑡) + 𝐃∇𝑔𝐸(𝒙, 𝑡)] ∙ 𝒏 =  (𝐪 ∙ 𝒏)𝛿(𝑡)  𝑜𝑛    Г+, 

−𝐃∇𝑔𝐸(𝒙, 𝑡) ∙ 𝒏 = 0   𝑜𝑛    Г0, 

where Ω, Γ+, Γ0, represent the entire domain, the outlet of interest, and the domain’s 

impervious boundary, respectively; θ, is porosity or mobile water content; q, is the Darcy 

flux vector; D, is the tensor of macro-dispersion; δ(t), is the time-Dirac delta function; and 

qIgE, is a source term to represent recharge. The second and third boundary conditions (BC) 

correspond to a Cauchy- and Neumann-type BC, respectively. This set of equations is 

referred as the ‘backward-in-time’ model, which was derived from the forward model by 

reversing the velocity field. The result of solving these boundary value equations is the 

respective density function that is transported, gA and gE, which should be interpreted as the 

probabilities of a water particle to arrive at (for the age PDF) position x after t years or less, 

and to exit the aquifer (for the life expectancy PDF) departing from position x after t years or 

less. The transit time probability is defined by the convolution of both gA and gE at every 

position x in the domain so that gT(x,t) = gA+E(x,t). According to this definition, the maximum 

value of gT(x,t) corresponds to either the maximum value of gA(x,t), which occurs at the 

outlet (Γ+), or the maximum value of gE(x,t), at the inlet (Γ-).  

Generated Heterogeneity Fields 

Using the FGEN program we generated hydraulic conductivity fields following the 

parameters specified in Table 2-3 for different correlation lengths (Ixy) and variance of 

logconductivity (𝜎𝑌
2). Figure A1 shows a subset of these generated fields in which iso-

conductivity areas become larger as the correlation length increases in both horizontal and 

vertical views, for a constant 𝜎𝑌
2 value of 1.0. 
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Figure A1. Hydraulic conductivity fields generated with FGEN, an example for 𝜎𝑌
2 = 1.0 in 

top view and cross section; a) Ixy = 150m; b) Ixy = 300m; c) Ixy = 450m; d) Ixy = 150m; and, e) Ixy 

= 450m. All these panels were created with a vertical correlation length (Iz) of 2.7m. 

Calibration Flow Chart 

The process used for calibrating the analytical method is presented here (Figure A2). It 

begins with the delineation of flow paths matching that of the numerical model by adjusting 

the smoothing factor in ArcNLET. There are two parameters in the analytical model that 

could be modified to match the numerical travel time PDF:  bulk velocity (U0) and 

macrodispersion (λL). The bulk velocity moves the travel time PDF along the x-axis (i.e., 

travel time), and the λL displaces the peak along the y-axis (i.e., arrival frequency). This is an 

iterative process that could also involve re-adjusting the smoothing factor in the case that 

d) e) 

b) c) a) 
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these calibration parameters require significant adjustments. The calibration process was 

applied to twenty-four observation points in the watershed for each scenario (n=28). 

 

Figure A2. Flow chart summarizing the calibration process used for the analytical model.  
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Calibrated Parameters for Analytical Model and MTT Estimates 

The analytical model was calibrated using two approaches: i) by adjusting the travel time 

PDFs for 24 particle locations estimated from both analytical and numerical models, and ii) 

by adjusting the mean bulk velocity (Uo) in order to have the data cloud of travel time 

estimates to fall in a 45o alignment with respect to the numerical estimates. These calibrated 

parameters from each approach are presented in Table A1. The analytical model parameters 

from the first calibration approach were applied to the respective scenario to obtain first the 

pMTTs, from which the wMTTs were calculated. The corresponding pMTTs from the 

numerical model were used for this calculation of numerical wMTTs.  

Analytical and Numerical pMTT Comparison [Worst Case] 

The greatest discrepancies (>500%) between the analytical and numerical model occurred 

next to streams for both reduced and actual topography models. In Figure A3, we are 

identifying these particle locations independently in both RH and AH scenarios. This figure 

is complementary with Figure 2-7, where the location of incremental discrepancies is 

represented as percent difference from the numerical estimate.  
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Figure A3. Data sets with pMTTs 500 % difference or greater with respect to the numerical 

estimates spatially, and independently, identified in Figure 2-7 for both a) RH and b) AH 

scenarios. 
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Table A1. Calibrated parameters for analytical approach along with the estimated mean 

travel time and their correlation with the numerical model estimates.  

Scenario ID 

Calibration with 24 Streamlines Analytical 
vs. Pexit, 2   

r 2 

wMTT3 
Pexit (a) 

wMTT, 
Analytical, 

(a) 
Bulk vel 
Uo [m/d] 

Calibrated 
Macrodispersion, λL 

Reduced Topography 

Homogeneous RH 0.078 13.32·X^0.272, r2=0.48 0.47 78.0 81.7 

K15hv031 1 0.079 13.03·X^0.271, r2=0.57 0.47 76.0 80.2 

K15hv07 2 0.079 12.09·X^0.291, r2=0.41 0.51 71.1 79.7 

K15hv10 3 0.087 6.79·X^0.359, r2=0.69 0.53 72.2 72.2 

K15hv125 4 0.085 8.02·X^0.34, r2=0.49 0.55 71.7 73.6 

K15hv150 5 0.088 8.94·X^0.321, r2=0.49 0.58 70.9 71.1 

K15hv200 6 0.101 7.51·X^0.34, r2=0.69 0.56 62.8 61.3 

K3hv03 7 0.081 8.75·X^0.338, r2=0.44 0.50 74.4 77.7 

K3hv07 8 0.094 9.45·X^0.322, r2=0.42 0.55 65.4 67.1 

K3hv10 9 0.095 4.93·X^0.398, r2=0.78 0.56 69.5 66.3 

K3hv125 10 0.094 10.28·X^0.30, r2=0.44 0.58 68.3 67.3 

K3hv150 11 0.099 10.58·X^0.295, r2=0.44 0.56 66.4 63.7 

K3hv200 12 0.107 6.27·X^0.358, r2=0.73 0.51 62.8 58.8 

K45hv03 13 0.083 12.88·X^0.28, r2=0.46 0.50 74.2 75.8 

K45hv07 14 0.093 11.68·X^0.285, r2=0.50  0.47 60.2 64.0 

K45hv10 15 0.09 5.61·X^0.375, r2=0.75 0.56 75.3 68.9 

K45hv125 16 0.101 12.76·X^0.270, r2=0.46 0.57 67.2 62.3 

K45hv150 17 0.107 12.26·X^0.272, r2=0.43 0.55 65.7 58.9 

K45hv200 18 0.119 6.79·X^0.348, r2=0.72 0.52 62.2 53.0 

Actual Topography 

Homogeneous AH 0.113 2.23·X^0.503, r2=0.92 0.46 62.7 56.4 

K3hv03 19 0.127 2.93·X^0.458, r2=0.9 0.47 58.1 50.2 

K3hv07 20 0.147 4.94·X^0.39, r2=0.91 0.43 53.8 43.1 

K3hv10 21 0.156 3.73·X^0.435, r2=0.93 0.42 53.5 40.8 

K3hv125 22 0.162 4.54·X^0.406, r2=0.9 0.42 52.3 39.8 

K3hv150 23 0.177 2.90·X^0.467, r2=0.91 0.41 50.6 36.9 

K3hv200 24 0.182 3.26·X^0.453, r2=0.93 0.40 46.2 35.9 

Deep Aquifer DH 0.105 3.96·X^0.418, r2=0.87 0.34 77.8 54.9 

Shallow 
Aquifer 

SH 0.132 2.80·X^0.466, r2=0.91 0.42 47.1 57.8 

1 Nomenclature used to refer to heterogeneous scenarios, e.g. K15hv03 for Ixy=150m; 𝜎𝑌
2 =0.3 

2 correlations are all significant (p<0.001). 
3 wMTT: mean travel time, taken as median from the travel time CDF. 
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Haitjema’s Method 

Haitjema (1995) developed an analytical solution for the distribution of residence times in a 

groundwatershed. As summarized in section 1.3.1, this method depends on porosity (θ), 

aquifer depth (i.e., H, saturated thickness), and recharge rate (r), following the expression: 

𝐹(t) = 1 − exp (−
t

T̅
 ) ; where T̅ =

θH

𝑟
 

    The correction to this equation for unconfined conditions was not used here as the ratio of 

r[m/s]/Kavg[6.09x10-5m/s]= 1.2x10-4 is similar to the case plotted in his Figure 7a (r/Kavg = 

1.0x10-4) in which the unmodified equation can be used to approximate the actual residence 

time distribution. Considering the subsurface parameters used in the numerical models for 

θ (0.35) and r (6.5e-4 m/d), and the saturated thickness estimated from the FEFLOW steady 

state model, H, the TTD for the AH, DH, and SH scenarios was estimated with the 

expression above (Figure A4a). Haitjema (1995) demonstrated that the MTT for the 

groundwatershed, given by the centroid of the area above the curve, corresponds to T̅. The 

wMTTs estimated from the Haitjema method were overestimated by 85% (AH), 158% (DH), 

and 52% (SH) with respect to the target set by the numerical model (Figure A4b). 

Notwithstanding this overestimation, the wMTT values are positively correlated with the 

increase and decreased in wMTT to changes to a deeper (DH) and a shallower (SH) aquifer 

is modeled in FEFLOW. Although, specifically including aquifer depth in his mathematical 

expression, the assumption of a constant θH/r ratio everywhere in the watershed does not 

hold for Alder Creek. 
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Figure A4. Travel time distributions for AH, DH, and SH scenarios using the Haitjema 

(1995)’s method (a), and their associated MTT (or T̅) estimates compared to the numerical 

output (b).  

Flow Path Analysis on Selected Transects for Homogeneous Cases 

The use of individual stream traces from the numerical model (FEFLOW) has proven to be 

somewhat unreliable (see Section 5) when defining a potential water particle flow path, 

especially, in heterogeneous domains. However, the homogeneous case, as discussed before, 

is not subjected to interception in low permeability zones disconnected from fully saturated 

groundwater tables. Thereby, flow paths along seven transects in the watershed are 

evaluated in scenarios RH, AH, DH, and SH to further discuss the influence of topography 

and subsurface geometry (Figure A5). The seven transects along with their respective flow 

paths were delineated using the reduced topography model. Therefore, the stream traces for 

the reduced topography model (RH) are used as reference for comparison with the traces 

from the AH and DH scenarios. Traces for scenario SH are not shown for clarity as they 

mostly fall in between the RH and AH traces. The transects are defined so that the points of 

discharge of the chosen set of flow paths did align as close as possible. For all transects and 

scenarios considered, except for transects 1 and 6, their three-dimensional trajectory ended 

at a point of discharge downstream from that of the reduced topography, seemingly 
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favoring longer flow patterns. For transect 6, however, the actual topography and applied 

aquifer depth have forced its flow paths to discharge at a location upstream. The three flow 

paths with the northernmost entry points completely miss the stream intersection, resulting 

in very long flow paths ending in points of discharge much further downstream. Flow paths 

in transects 3 and 4 exhibited greater trajectory variations (Table A2) from this visual top 

perspective. The difference in elevation along the transects varies from 14.0 m to 27.0 m, for 

transect 5 and 4, respectively; yielding for the latter the largest slope from all transects 

(1.79%) with reduced topography. Transect 1 and 7 have a similar elevation difference, 

however, the slope is 50% larger in transect 7 as its total length is shorter, which (Figure A5) 

is not so evident. The transects on the east bank of the river’s main stream have the highest 

slopes. A similar analysis applies to the actual topography model as these variables are 

proportional to the difference in topography, except for the mean stream trace length (Mean 

X). This variable slightly decreased for transect 6 and remained constant for transect 5; 

whereas, it increases for all other transects by as much as 41% and 33%, for transects 3 and 4, 

respectively. The longer flow paths in the AH scenario, according to these data, are 

attributed mainly to the effect of higher topography and greater hydraulic head, forcing the 

system to find equilibrium within a new groundwater flow by diverging into zones that will 

intercept other, often farther, points of discharge. 

    In order to tie this flow path evaluation with the proposed analytical approach for all four 

homogeneous models, the flow path distances are compared against the respective stream 

trace distance; also, the estimated mean travel time from the analytical approach is 

compared against that from the numerical model for all flow paths, and for each transect 

(Figure A6). The scale of correlation between the compared parameters from the analytical 

and numerical approaches is highly variable (Figure A6). Transects 1, 2, 5, and 7 exhibited a 

good correlation between the methods, for both parameters (flow path distance and mean 

travel time); whereas, transects 3, and 6 exhibit an acceptable correlation that is conditioned 

to a subset of flow paths within each transect. In general, a good agreement of the flow path 

distance parameter in the analytical approach with the numerical counterpart guarantees a 

similar correlation on the mean travel time plot. Besides calibrating U0 in the analytical 
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model, it is the assignation of an adequate flow path distance to each observation point that 

provides an equally adequate spread of ages for the transects evaluated, and for the 

watershed as a whole.  

Table A2. Transects topographic information as well as their respective mean flow path 

distance derived from stream traces in homogeneous models. 

Transect 
(n) 

Length 
[m] 

Reduced Topography (RH)  Actual Topography (AH) 

Mean X 
[m]1 

Slope 
Mean 
Z [m] 

ΔZ 
[m] 

 
Mean X 

[m]2 
Slope 

Mean 
Z [m] 

ΔZ 
[m] 

1 (13) 3114 1526 0.60% 332.3 19.8  1732 1.20% 378.7 39.3 

2 (11) 2619 1368 0.55% 327.2 16.7  1504 1.09% 368.7 33.2 

3 (6) 1438 1119 1.45% 324.8 20.7  1583 2.87% 363.9 40.8 

4 (7) 1702 1190 1.79% 323.7 27.0  1585 3.55% 361.7 53.7 

5 (11) 3607 2145 0.35% 320.7 14.0  2146 0.70% 355.8 27.8 

6 (11) 2704 1788 0.65% 320.5 14.9  1739 1.32% 355.4 29.7 

7 (9) 2161 1287 0.88% 311.7 21.8  1563 1.75% 337.9 43.2 

1 mean stream trace length for all transects is 1489 m. 
2 mean stream trace length for all transects is 1693 m. 
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Figure A5. Location of transects for which a flow path analysis was performed based on the 

stream traces obtained from homogeneous model scenarios RH, AH, and DH in FEFLOW.  
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Figure A6a. Analytical (a) flow path distances and (b) pMTTs are compared against their 

numerical estimates for transects 1 and 2. 
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Figure A6b. Analytical (a) flow path distances and (b) pMTTs are compared against their 

numerical estimates for transects 3 and 4. 
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Figure A6c. Analytical (a) flow path distances and (b) pMTTs are compared against their 

numerical estimates for transects 5 and 6. 
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Figure A6d. Analytical (a) flow path distances and (b) pMTTs are compared against their 

numerical estimates for transect 7. 

   Transect 3 is located in an area that has been previously identified as problematic for the 

analytical method to reproduce the numeric model’s estimates of travel time. The fact that 

not only for the heterogeneous (Figure 2-5b, Figure 2-7b) but also for the homogeneous case 

(Figure A6b) the problem persists is indicative that issues other than topography and 

subsurface geometry are at play to explain both the degree of underestimation by the 

analytical method and the wide range of travel times predicted by the numerical model. 

Note that in panel (a) for this transect, the stream trace distance in the RH scenario for the 

last observation point is approximately 1900 m, which was moderately underestimated by 

the analytical method with 1300m. However, this under-estimation grows larger for the AH 

model and even more for the DH scenario, making the difference in travel times estimated 

from both methods to grow proportionally. From all the homogeneous scenarios SH is the 

one that is least affected by underestimation. Therefore, it is a combination of the watershed 

geometry and the location of this area with respect to the dominant regional groundwater 

flow that creates the disparity in flow path lengths and travel times along transect 3. The 

deviation caused by regional groundwater flow pattern is especially reinforced in the DH 
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scenario, likely due to the enhanced momentum exerted by a larger water mass. However, if 

the transect was drawn in a more extensive regional model, and considering that the 

deviation of the flow paths occurred largely on the last two observation points of the 

transect, that is, at the edge of the model’s boundary, these flow paths would have likely 

discharged into another stream outside the Alder Creek watershed. For the current model, 

this general area seems to be ‘compressed’ towards the model boundary by the incoming 

groundwater from the northwest portion of the watershed driven by a locally deep 

groundwater table. Regional groundwater flow is not at play in areas located west 

highlighted for scenario 24 (Ixy=300m, 𝜎𝑌
2 =2.0), for ‘location set 2’ (Figure 2-7b). Then it is 

both heterogeneity and regional groundwater flow that are creating the largest disparities 

between stream traces distances and travel times in the numerical model. These disparities 

lead to underestimations in travel time using the analytical model. 

    In transect 4, the correlation is the worst of all, and it does not depart from nowhere near 

the origin, indicating that the flow direction of the entire transect was not captured by the 

analytical method by any of the flow paths. Likewise, in transect 5, this also occurs for the 

first two flow paths closer to the point of discharge, however, the flow path length 

correlation improves significantly for locations farther away from it. In this transect, almost 

undiscernible changes in flow paths for the RH scenario, created a significant difference in 

travel times from other actual topography scenarios, which in turn, provided similar travel 

times all along the transect regardless of the subsurface geometry applied to them. This 

indicates that this region is strongly controlled by topography, and potentially by 

heterogeneity, which is not evaluated in this section. The effect of geometry is mostly 

evident at mid-range and longer travel times (see transects 1, 2, 6, and 7), which is expected 

considering the lengths of their stream traces and the likelihood of sensing the aquifer 

depths along their trajectory. Especially in transect 6 this observation is more evident for the 

last three flow paths, where they intercept a surface water feature located further 

downstream from the point of discharge of other flow paths, yielding longer travel times 

(Figure A6c).  
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    The analytical method applies one single bulk velocity (Uo) to the entire watershed which 

may result in a different response at various locations in the watershed. The effect of this 

response on each transect can be seen in the plots comparing median travel times. Those 

observation points with travel times depicting a trend line with slope lower than unity (1:1) 

would have required a lower bulk velocity; whereas, a larger slope  means that a lower 

velocity would have been a better fit locally. The areas that would require a lower bulk 

velocity for better agreement in median travel times are those around transect 4 and 6, both 

located east and west at the middle of the watershed.  

    In summary, after considering correcting analytical flow paths for potentially strong 

deviation caused by regional groundwater flows, there is a relatively good agreement 

between the methods at the transect scale, for all transects except for transect 4 that 

systematically missed the local groundwater flow direction.  
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Appendix B 

Supplementary Material: Chapter 3 

Introduction 

The supplementary material provides further analysis on: i) multiple linear regression 

models applied to both analytical model parameters (i.e., SF, Uo, a, and a·b), ii) wMTT using 

geomorphological indexes from study sites as predictors, iii) the performance of the 

analytical method with respect to the approach developed by Haitjema (1995). In addition, 

this supplementary material also includes figures of some of the geomorphological indexes 

estimated from study sites. The material herein is presented in the order as it was 

introduced in the main text. 

Geomorphological Features as Predictors of Analytical Model Performance 

In order to ease future implementations of the analytical model used here, the 

geomorphological indexes (Table 3-2) were used as predictors of its potential performance, 

once implemented. This was accomplished by plotting the estimates of these indexes (Table 

B1) against the goodness of fit (r2) between the numerical and analytical pMTT. It was 

sought to identify ranges in these indexes estimates where the analytical model would yield 

an acceptable performance. In practice, this meant defining a range of values that excluded 

the hillslope-dominated watersheds: Thomas Creek (ThC), Rattlesnake Flat (Rat), and 

Pamilco Canyon (Pam). A small portion of indexes yielded an exclusive range, whereas 

others either yielded a non-exclusive range or did not show any discernable pattern. A non-

exclusive range is that where either one of the hillslope-dominated watersheds is within the 

range of values or one of the watersheds with acceptable performance does not fall within 

the specified range. This non-exclusivity adds a degree of uncertainty to the prediction of 

acceptable performance. 
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Table B1. Estimates of geomorphological indexes for study sites. For details in their 

definition and estimation refer to Table 3-2 and section 3.2.3 in the main text. 

 

  

Index

des 

Anglais 

River

Ganaraska 

River

Alder 

Creek

Upper 

Laurel 

Creek

Upper 

Nith River

Pamilco 

Canyon

Rattlesnake 

River

Sagehen 

River

Thomas 

Creek

ID dAn Gan Alc uLc uNr Pam Rat Sag ThC

Dd [km
-1

] 1.51 0.60 1.79 1.47 1.32 2.66 4.88 1.28 1.28

Tex [km
-1

] 1.01 0.25 0.71 0.57 1.02 1.91 2.97 1.02 1.45

DF [km
-2

] 2.71 0.46 2.79 0.90 3.72 6.20 25.1 1.13 1.57

HDd   [-] 0.011 0.006 0.028 0.162 0.087 0.121 0.200 0.008 0.006

Relief [m] 121 373 317 1065 927 790 1211 73 66

TexPer [km
-1

] 0.57 0.22 0.50 0.39 0.74 1.44 2.51 0.27 0.58

MnChL [m] 25550 71690 45199 26461 12379 11800 41665 11512 37461

cSlope [deg] 2.57 1.04 3.67 9.53 11.7 8.62 15.4 3.27 1.17

Schan [%] 1.05 0.9 1.66 4.11 6.78 8.13 8.09 2.26 0.58

mGrad [%] 0.79 0.94 1.01 5.10 9.11 8.00 3.70 0.88 0.25

R C        [-] 0.23 0.07 0.11 0.19 0.37 0.45 0.13 0.38 0.11

P LR     [-] 0.67 0.57 0.59 0.72 0.76 0.84 0.73 0.64 0.57

FormF  [-] 0.33 0.45 0.28 0.31 0.48 0.38 0.19 0.45 0.42

Er      [-] 0.58 0.67 0.53 0.56 0.69 0.62 0.43 0.67 0.65

C       [-] 6.06 6.57 7.15 5.75 4.87 4.63 6.76 5.84 6.70

RDV  [km] 0.65 0.82 0.62 0.68 0.88 0.80 0.42 0.83 0.77

D BCst [1/m] 1.671 1.556 1.518 1.728 1.619 1.803 1.801 1.669 1.762

d BCst [1/m] 1.054 1.037 1.078 1.034 1.029 1.085 1.143 1.082 1.050

D BCp [1/m] 0.741 0.630 0.760 0.733 1.094 1.054 0.560 0.953 0.812

D WDp [1/m] 1.057 1.061 1.059 1.034 1.038 1.042 1.046 1.061 1.041

LnkSlp [%] 0.48 0.40 0.54 0.70 0.80 0.37 0.33 0.76 0.61

R B  [-] 2.8 3.9 3.1 3.8 5.7 3.3 3.7 5.1 2.6

R L   [-] 2.6 3.2 3.3 6.6 9.7 4.7 4.6 2.8 3.0

R S   [-] 3.6 4.7 4.6 3.0 3.9 3.4 3.4 4.5 4.4

LvAa [-] 0.92 0.92 0.89 0.80 0.93 0.78 1.16 1.00 1.13

LvAb  [-] 0.75 0.70 0.73 0.72 0.69 0.78 0.61 0.71 0.63

LvAab [-] 0.69 0.64 0.65 0.58 0.64 0.61 0.71 0.71 0.71
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Texture Topography 

Not all the texture topography indexes behave similarly with respect to the performance of 

the analytical model. Texture ratio (Tex), for instance, did not exhibit a discernable pattern 

(Figure B1a), whereas Dd (Figure 3-6b) did (Dd<2.7 [1/km]), even though Tex is clearly 

related to Dd (Figure 3-6c). 

 

Figure B1. a) Relationship between texture ratio (Tex) and the goodness of fit between 

numerical and analytical models, and, b) relationship between Dd and DF.  

 

 

  

a) b) 
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Elevation Measures 

The frequency of occurrences of the DEM-cell size slopes within the watershed can show 

both the shape distribution of slopes present and the range of the most dominant slopes that 

could be controlling how the analyticam method performs. These histograms are shown 

here in terms of probability of occurrence (Figure B2, Appendix B). The study watersheds 

exhibit a wide variety of spectra of slopes. The histograms vary from clear narrow peaks to 

very flat and even distributions. For the latter case, Thomas Creek is unique among these 

watersheds and shows a flat distribution. The modes of the distribution for Pamilco 

Canyon, Rattlesnake Flat, and Sagehen River are around 3, 4, and 5 degrees, respectively. 

The distribution of DEM-cell size slopes for des Anglais River is almost exponential as most 

of its terrain is flat, only rising at by the headwaters around Covey Hill. Watersheds that 

yielded the best NumAn goodness of fit are mostly spread around lower DEM-cell size 

slopes (<2.5 deg). However, this geomorphological measure did not provide an exclusive 

range of DEM-cell size slopes. 

    The hypsometric curve is associated with the stage of the geological evolution of the 

watershed (Figure B3). This structural characteristic of the watershed, tells on the interaction 

of the geological forcings experienced by the watershed, namely: uplifting, tectonic-build-

up, and erosion. A particular behavior of the hypsometric curves was not recognized in 

these watersheds. 

    The link concentration plot constitutes of a three-dimensional representation of texture 

topography (i.e., drainage density-related indexes), by examining how the density of 

streams changes with elevation. No distinctive region in this plot was dominated by high 

values of pMTT correlations between the numerical and analytical methods (Figure B4). 



 

 191 

 

Figure B2. Probability histograms of slopes in degrees derived from available digital 

elevation model (DEM) data. The correlation between numerical and analytical model 

(NumAn) is shown on top of the curve. The region of best NumAn goodness of fit is 

highlighted in purple. 
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Figure B3. Hypsometric curves for study sites. Particle MTT correlations between numerical 

and analytical methods (NumAn correlations) are shown on top of respective curve.  
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Figure B4. Link concentration plot for study sites. Particle MTT correlations between 

numerical and analytical methods (NumAn correlations) are shown at the peak of each 

curve. 
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Shape Measures 

Several shape measures have yielded non-exclusive ranges: PLR, Er, C, and RDV (Figure B5 

and Figure B6). In two of these indexes, PLR and C, Sagehen River (Sag) has fallen outside of 

the non-exclusive range, sharing similar index estimates with hillslope-dominated 

watersheds. According to these indexes, Sag is the most compact among the examined 

watersheds, (i.e., lowest C estimate) and its perimeter is the most similar to that of a 

lemniscate branch (i.e., closest value to unity). It is interesting to notice that Alder Creek 

(Alc) always occupies a median value in all shape measures and among all watersheds.  

    The lemniscate ratio (PLR) was defined by Chorley et al. (1957) and involves in its 

calculation the area of the loop, the longest diameter of the loop (l), and the perimeter of the 

loop, which corresponds to a complete elliptic integral of the second kind: 

𝑃 = 2𝑙  √1 − 𝐾2𝑠𝑖𝑛2𝜑 

𝜋
2⁄

0

 𝜑 

where, K = √(k2 − 1)/k,  k = l2 /4A, and   varies from 0 to  /2 radians. This equation was 

solved using the function ellipticE in MATLAB. Another measure of compactness was 

applied, different from the perimeter-area ratio, called the relative distance variance (RDV).  

The RDV is a dispersion measure of compactness for which the shape of the watershed is 

comprised by infinitesimal elements of area dA (MacEachren, 1985). Dispersion of these dA 

elements is measured with respect to the watershed’s centroid. In that, it is similar in 

physics to the moments of area, but an alternative formulation is used in terms of the 

variance of the distance of these elements in the x and y –direction: 

 𝐷𝑉 =
 

2 (𝜎 
2 + 𝜎 

2)
 

Where, 𝜎 
2 and 𝜎 

2 are the variance of the x and y distances to each dA element. 
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Figure B5. Measures of shape as determined by circularity ratio (RC), lemniscate ratio (PLR), 

elongation ratio (ER), and compactness (C) for study sites. Uncertain ranges of these 

parameters are highlighted in blue for values with best NumAn correlations.  
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Figure B6. Measures of shape as determined by relative distance variance (RDV) for study 

sites. Uncertain ranges of these parameters are highlighted in blue for values with best 

NumAn correlations. 
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Fractal Dimensions 

The interpretation of fractal dimension of stream networks as classifying the feature as 

space-filling has been challenge by other researchers (Phillips, 1993; Veltri et al., 1996). 

Phillips (1993) suggested that the fractal dimension of stream networks does not have a 

physical representation on the processes occurring in geomorphic systems and that could 

rather be interpreted as a degree of geological constraints on network evolution. Other 

researchers (Beauvais and Montgomery, 1997) had also tested the principle of self-similarity in 

stream networks and found that they are not statistically self-similar at all scales but only at 

specific ranges. These earlier findings in mono-fractal analysis paved the way to develop a 

multifractal analysis that recognizes stream networks as multifractal objects, characterized 

by non-plane filling structures with a fractal dimension less than 2 (De Bartolo et al., 2006a; 

De Bartolo et al., 2006b). This multifractal analysis provides a whole array of fractal 

dimensions relative to multiple river structures, each yielding different scale patterns. This 

latter approach was not utilized here as it does not allow for simple response comparisons 

among watersheds relative to both NumAn goodness of fit and geomorphological 

parameters.  

    Fractal dimensions estimated with the box-counting method applied on streams (DBCst, 

Figure B7) indicated that, under the umbrella of the space-filling theory, the stream 

networks of Thomas Creek (ThC) and Sag are the most space-filling among these 

watersheds. Whilst, Ganaraska River (Gan) and des Anglais River (dAn) are the least space-

filling, meaning that their stream networks do not properly drain their drainage area. DBCst 

did not provide a range, exclusive or otherwise. The DBCst value of Alder Creek falls also 

within the median range of all watersheds. 

    The fractal dimension of the watershed’s perimeter was estimated using: the box-counting 

method (DBCp) and the walking-divider method (DWDp) (Figure B8). The walking-divider 

method uses a chord length (step) and quantifies the number of chords required to cover the 

entire fractal curve. The result is an estimate of the length of the entire curve for a finite 

number of selected steps. Plotting the estimated length against the step size, the data 
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increasingly underestimates the total length as step size increases, depicting a negative slope 

with values slightly above unity. The slope of this line corresponds to the fractal dimension 

in the walking divider method (DWDp, Figure B8). From these methods, the most appropriate 

to define the fractal dimension for this feature is the walking-divider method. This method 

‘walks’ the feature by also following changes in direction in a more rigorous fashion than 

the box-counting method could do. 

 

Figure B7. Mono-fractal dimensions estimated from the box counting technique (DBCst) 

applied on stream networks. Values correspond to slopes of power function (exponent) 

fitted to the relationship: log Nboxes vs. log Box size.  
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Figure B8. Mono-fractal dimensions estimated using the Walker Divider method, and the 

box counting technique applied on watershed’s perimeter. Values correspond to slopes of 

power functions fitted to log Perimeter vs. log step size. A non-exclusive range for better 

NumAn correlation is highlighted based on the walking divider estimates. 

The Walking-Divider Method  -  MATLAB Code 

This MATLAB code is based on the FORTRAN code put together by Lam and De Cola (1993) 

from previous work of other researchers. 

load 'XY.mat'     % XY data matrix, x-coord and y-coord in 1,2 

columns 
IX= XY(:,1); 
IY= XY(:,2); 

  
% 

========================================================================= 
SumCL=0; 
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% I=I+1; 
X(1)=IX(1); 
Y(1)=IY(1); 
np=length(IX);           %number of points 

   
for p=2:np 
    X(p,1)=IX(p); 
    Y(p,1)=IY(p); 
%     if ~i==1 
    X1(p-1,1)=X(p)-X(p-1); 
    Y1(p-1,1)=Y(p)-Y(p-1); 
    DIST(p-1,1)= sqrt(X1(p-1)^2 + Y1(p-1)^2); 
    SumCL(p-1,1) = sum(DIST(1:end,1)); 
%     else 
%     end 
end 

  
AVD=SumCL(end,1)/(np-1); 
STDIST = sqrt((X(1)-X(np))^2 + (Y(1)-Y(np))^2); 
SINUO = SumCL(end,1)/STDIST; 

  
fprintf('No. of points = %f   Mean Distance = %f\n',np,AVD) 
fprintf('Total Length = %f   Sinuosity = %f\n',SumCL(end,1), SINUO) 

  
% Factor=input('\n Enter the starting Chord Length ==>> \n'); 
% READ(*,'(F)') FACTOR        FACTOR is variable in input file 

  
NW=input('\nEnter number of walks  ==>> '); 
% READ(*,'(I)') NW          NW not in input file. 

  

 
% MEASURE THE TOTAL LENGTHS OF THE LINE WITH DIFFERENT DIVIDER OPENINGS 

  
File6 = []; 
% File6 columns:  'WALKS    CL  LOG(CL)  STEPS   LENGTH   LOG(LENGTH)' 

  
CL = AVD*0.5; 

  
for j=1:NW 
    CL = CL*1.1;       
    K=2; 
    IPNUM = 0; 
    X1 = X(K-1); 
    Y1 = Y(K-1); 
    while K < np 
        X2 = X(K);  
        Y2 = Y(K);    
        Proceed = true; 
        DISTA = sqrt((X2-X1)^2+(Y2-Y1)^2); 
        while (DISTA >= CL && Proceed ==true)  
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            DISTA = sqrt((X2-X1)^2+(Y2-Y1)^2); 
            Xnew = X1 +(CL/DISTA) * (X2-X1); 
            Ynew = Y1 +(CL/DISTA) * (Y2-Y1); 
            IPNUM = IPNUM + 1; 
            X1 = Xnew; 
            Y1 = Ynew; 
            continue          
        end 
        while DISTA < CL 
            X3 = X(K+1);              
            Y3 = Y(K+1); 
            X2 = X(K); 
            Y2 = Y(K); 
            DISTC=sqrt((X3-X1)^2 + (Y3-Y1)^2); 
            if DISTC < CL                       
                INDICA = np - 1; 
                if K < INDICA  
                    K = K+1;                  
                else 
                    K = K+1; 
                    break 
                end 
                continue 
            else 
                DISTB=sqrt((X3-X2)^2 + (Y3-Y2)^2); 
                DISTA=sqrt((X2-X1)^2 + (Y2-Y1)^2); 
                if ~DISTB==0 || ~DISTA==0          
                    F = (DISTA^2 + DISTB^2 - DISTC^2) / (2*DISTA*DISTB); 
                    if F >0.999  ||  F<-0.999 
                       DIST = CL - DISTA;           
                    else 
                        C = acos(F); 
                        A = asin(DISTA*sin(C)/CL); 
                        B = 3.14159 - A - C; 
                        DIST = DISTA * sin(B) / sin(A); 
                    end 
                else 
                    DIST = CL - DISTA; 
                end 
                Xnew =  X2 + (DIST/DISTB) * (X3-X2); 
                Ynew =  Y2 + (DIST/DISTB) * (Y3-Y2); 
                IPNUM = IPNUM + 1;  
                X1 = Xnew; 
                Y1 = Ynew; 
                K = K+1; 
                Proceed = false; 
                break 
            end 
        end 
    end     

 
    FLENGTH = (CL * IPNUM + sqrt((X(np)-X1)^2 + (Y(np)-Y1)^2))/1000;   
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    PX(j) = log10(CL/1000); 
    PY(j) = log10(FLENGTH); 
    File6(j,1)=j;       File6(j,2)=CL;      File6(j,3)=PX(j);  
    File6(j,4)= IPNUM;  File6(j,5)=FLENGTH; File6(j,6)=PY(j); 
end   

  
fold1 ='C:\Folder\'; 
savfil=strcat(fold1,'pfix_File6.mat'); 
save(savfil,'File6') 

 
XD = 0.0; 
YD = 0.0; 
XY = 0.0; 
XA = 0.0; 
YA = 0.0; 

  
for m = 1:NW 
    XA = XA + PX(m)^2; 
    YA = YA + PY(m)^2; 
    XD = XD + PX(m); 
    YD = YD + PY(m); 
    XY = XY + PX(m)*PY(m); 
end 
B = (XY-XD*YD/NW) / (XA-XD^2/NW); 
D = 1 - B; 

  
ABOVE = (XY - XD*YD/NW)^2; 
BELOW = (XA - XD^XD/NW) * (YA - YD*YD/NW); 
RSQ = ABOVE/BELOW; 

 

figure('position',[10 550 380 360],'name','Log[Length vs CL]') 
plot(File6(:,3),File6(:,6),'o','color',or2,ms,4) 
hold on 
xlabel('\bf Log(Chord Length [km])',fs,9) 
ylabel('\bf Log(Length [km])',fs,9) 
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Multiple Linear Regressions for Analytical Model Parameters 

Multiple linear regressions (MLRs) were developed to better constraining analytical model 

parameters (Figure B9). The solutions defined by the MLR were estimated with six 

independent observations. For each parameter, several MLRs were available from different 

configurations of indexes. However, the ones selected here incorporated a wide range of 

predictor values to increase their applicability to a larger variety of possible environmental 

settings. They were also selected because they predict the analytical parameter in a 

continuous fashion without favoring a limited range of the independent variables. The 

MLRs presented here achieved at least a 96% probability allowing neglecting the null 

hypothesis. This hypothesis corresponds to that of the F-statistic and it is neglected when 

the model is a better fit than the intercept-only model. In other words, the model’s 

prediction is better than the mean of the dependent variable. The probability of each 

predictor to reject the null hypothesis (rho) is also included (Figure B9), which provides 

insight on the degree of significance of the contribution from each predictor to the entire 

MLR. The stochastic behavior in the residuals of these MLRs was not thoroughly verified 

considering the difficulty in identifying potential deterministic patterns on a six-point 

scatter plot. However, no definite deterministic patterns were recognized. In some cases, the 

form of the MLR includes an interaction term of the product between predictors. A 

collinearity test was performed for each set of predictors in any given MLR. This test 

estimated the condition index (nj) for a set of predictors based on their singular values 

(𝑛𝑗 = 𝜇𝑚𝑎 /𝜇𝑗), for which high nj values are indicative of separate near dependencies in the 

data (Belsley et al., 1980). The number of nj-values equals the number of near dependencies. 

A condition index tolerance (i.e., nj<10) was used as threshold to select values of variance 

decomposition proportions (πij) higher than 0.5 to identify predictors with some degree of 

collinearity (Belsley et al., 1980). When dependencies among predictors are identified, a ridge 

regression technique was applied to estimate whether or not the collinearity should be 

corrected, which can also be done by the same technique. This technique reduces the 

variance of the coefficient estimates, which in turn, may reduce the mean square-error 

(MSE) when collinearity exists. Taking advantage of this tell-tale, an increase in the MSE, 
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after applying this technique, was used as an indicator of no significant collinearity among 

predictors (Belsley et al., 1980).  

The Lasso technique (Tibshirani, 1996) was implemented to help identify potential predictors 

which are likely more significant in explaining the response parameter of an MLR. With 

twenty-seven potential indexes to consider, the stepwiselm function in MATLAB simplified 

the process of including and excluding predictors to the working MLR model. The results 

from the stepwiselm function were optimized with manual pairing of predictors. In general, 

the stepwiselm function provided an MLR model with as many as four predictors, with 

highly significant fit, given by the root mean-squared error (RMSE), the R-squared, and the 

p-value of the F-statistic. Additionally, the quality of these models was measured using 

information theory indexes such as the Akaike information criterion (AIC) and the Bayes 

information criterion (BIC). Models with larger numbers of parameters are always better 

fitted, but both AIC and BIC penalizes them, as models with fewer predictors are sought. 

The resulting models with better fit are associated with having low AIC and BIC indexes 

and RMSE values. Predictors in a model with not significant p-values (>0.10) were removed 

and in some cases replaced with the product of the remaining two predictors. Predictors 

suggested by the Lasso technique as significant, were brought into the model to evaluate 

their contribution. In reducing the amount of predictors, the use of interactions between the 

remaining predictors increased the model performance. These interactions either decreased 

or increased collinearity, which was maintained below 30 for the models presented here 

(Table B2). This threshold is a typical condition index value that separates weak (< 30) from 

moderate to high dependencies (30<nj<100). The ridge regression analysis deemed these 

weak dependencies as not significant for the final models. By reducing the number of terms 

to two in the final models, their overall significance as dictated by RMSE, AIC and BIC 

estimates was also reduced. However, considering that the number of observations was 

limited and that a significant fit was attained with lower number of predictors, the MLR 

models are satisfactory for the purpose of serving as guidelines in estimating the analytical 

model parameters. 
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The MLR model for SF includes the RC and LvAa indexes (Figure B9a). From the calibration 

process it was noticed that the SF varies the slope of the watershed: the greater the slope the 

smaller the SF would be. The SF is positively correlated with the coefficient of the Hack’s 

law LvAa (r2=0.69) whereas it has no correlation with RC (r2=0.01). The strong correlation 

with LvAa remains unexplained, as LvAa, at the most, it can represent a planar distribution 

factor of the watershed, which is different from the association between watershed slope 

and the SF. A near dependency was identified between LvAa and the model’s intercept but 

it was a weak one (nj=23.8) and no correction was required based on the ridge regression 

analysis. 

Texture topography indexes (Figure B9b, Dd and DF) are predictors of U0, and their 

individual contribution is also significant. The parent of this model included an interaction 

term that yielded better AIC and BIC indexes but its own contribution to the entire model 

was not relevant (pDd∙DF=0.16), which motivated its removal. A weak collinearity was present 

between Dd and DF (nj=21.5), but the ridge regression analysis did not force a correction. 

The dependence of U0 on texture (Dd, DF, and dBCs) and shape (LvAb) measures rather than 

gravity-oriented indexes such as cSlope, Relief, and mGrad, is telling on the importance of the 

stream frequency and the watershed shape in controlling subsurface flow and travel times. 

A second best option for this model included dBCs and LvAb, where U0 specifically grew with 

greater LvAb and dBCs values. Greater LvAb values are characteristic of elongated watersheds. 

A wider range of growth for U0 is achieved with the selected model.  

    The macrodispersion function for prospective watersheds is described by the λLb and the 

product λLab from the power function that typically defines it. The exponent of this function, 

λLb, is predicted (Figure B9c) with Tex and C (Compactness). The fact that λLb is predicted by 

shape and texture topography measures is expected as it heavily depends on the flow path 

distances constrained by the shape of the watershed, externally, and internally by the 

interception of streams along the flow paths. Another model included the indexes: TexPer, 

PLR, DBCp, and LvAa all contributing in a significant way with minimum RMSE, AIC, and 

BIC estimates, and where, again, texture topography and shape measures are predictors. Tex 
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Figure B9. Multiple linear regression of a) smoothing factor (SF), b) mean flow path velocity 

(U0), c) λL power function exponent (b), and d) λL power function product (a∙b). The 

probability of neglecting the null hypothesis of the F-statistic is shown for entire MLR and 

for each of its predictors. 

 

 

and C, in the selected model, exhibited a weak, near dependency (nj=15.4), which did not 

require a correction of the terms according to the ridge regression analysis. The model for 

λLab is predicted by two texture topography measures: HDd and Tex. The model exhibited 

some collinearity (nj=28.1) between HDd and the interaction term but it was not deemed 

significant. 

Table B2. MLR models to predict analytical model parameters for future applications. Model 

quality measures are also included.  

Analytical 
Parameter 

Expression R2  RMSE  AIC BIC 
Condition 

number 

SF SF =  -138.6+52∙Rc + 155.9∙LvAa 0.97 3.58 34.2 33.6 23.9 

Uo Uo = 0.23 - 0.19∙Dd + 0.05∙DF 0.88 0.02 -29.9 -30.5 21.5 

λLb 
λLb = -2.83 + 1.86∙Tex + 0.48∙C  
          - 0.23∙Tex∙C 

0.98 0.05 -17.2 -18.0 15.4 

λLab 
λLab = 3.66 - 2.31∙Tex - 0.10∙HDd  
           + 5.53e-2∙Tex∙HDd 

0.98 0.22 0.03 -0.80 28.1 

 

MLRs for wMTT 

Applying similar steps in the creation of MLR models as for the analytical parameters 

several models predicting wMTT were developed. The Pearson correlation among wMTT 

from the numerical and analytical models as they relate to the geomorphological indexes 

(Figure B10) were used with the stepwise technique to create the initial models. These 

models included up to four predictors (Table B3) which were reduced using the Lasso 

technique together with the goodness of fit measures(R-square, RMSE, AIC, and BIC 

indexes) and the collinearity analysis (condition index and ridge regression technique). 
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Elevation, texture topography, and analytical parameters are among the predictors: λLab, 

HDd, DF, Schan, RB, RC, MnChL, and LnkSlp. The coefficient product a∙b of the λL power 

function is the base of three reduced models (Table B3) indicating its strong predictive 

value, which is shared with HDd, DF, and Schan in separate models. The analytical 

parameter λLab can be derived from the SLR and MLR relationships defined in the previous 

section for future watershed applications. From these indexes, Schan is a measure of slope, 

DF of texture topography, HDd, of texture with an elevation component, and RB, RC, and 

LnkSlp are Horton’s law measures. After reducing the models to two terms, the collinearity 

was diminished from a strong to either moderate (first three models) or weak (last two 

models) dependencies. The interaction term tended to increase collinearity in the final 

models and was excluded, with the exception of model 5. The moderate dependency in the 

first three models is mainly dominated by λLab and the model’s intercept. Note that Relief’s 

predicting abilities were not significant enough to appear in the reduced models. 

Considering the goodness of fit measures employed to evaluate the quality of the models, 

the model with HDd and λLab was the best fitted among the reduced models (Figure B11). 

However, this model appears to limit its predictive capacity to watersheds with MTTs lower 

than 83 years, as indicated by its intercept and the negative signs of the following terms in 

the model. For this reason, and for exhibiting moderate collinearity, the LnkSlp- and RB- 

based model is a better option (i.e., model 4 in Table B3). LnkSlp is also a predictor of the 

wMTT SLR model (Figure 3-14), whereas, RB is weakly (r2=0.22), and negatively correlated 

with wMTT. Both indexes are similar measures in the way a watershed converges 

headwaters to lowlands. A weak (nj=10) collinearity is present in this model between RB and 

the intercept. The ridge regression analysis did not deem it necessary to correct this 

dependency. 
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Figure B10. Pearson correlations between watershed MTTs and geomorphological indices. 
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Table B3. MLR models to predict wMTT presented together with their respective goodness 

of fit measures. Models 4 and 5 were created without considering analytical model 

parameters as predictors. Initial [I] and final [F] models are presented. 

Model Expression R2 RMSE AIC BIC 
Condition 

Index 

1 

wMTT = 76.2 - 0.36∙HDd + 8.7e-3∙Relief + 

8.2∙DBCp - 14.9∙λLab [I] 

wMTT = 83 – 288.5∙HDd – 14.45∙λLab   [F] 

         [p=1e-6;             6e-5;              6e-5] 

1.0 

1.0 

0.01 

0.82 

-39 

16 

-40 

16 

345 

62 

2 

wMTT = 84.5 – 0.4∙DF - 0.27∙HDd – 18.3∙Uo - 14 

∙λLab 1 [I] 

wMTT = 93.6 – 6.8∙DF – 17.1∙λLab    [F]  

         [p=3e-4;        1.1e-2;          8e-3] 

1.0 

0.94 

0.01 

4.54 

-38 

37 

-39 

36 

109 

55 

3 

wMTT = 65.9 – 3.4∙Schan + 25∙LnkSlp + 4.2e-

2∙SF – 11.3∙λab  [I] 

wMTT = 84.2 – 4.33∙Schan – 13.6∙λLab    [F] 

          [p=1e-4;           9e-3;              8e-2] 

1.0 

0.95 

3e-3 

4.2 

-52 

36 

-53 

35 

232 

56 

4 

wMTT = -11.3 + 259 LnkSlp + 7.8 RB – 32.5 

LvAa  

                  – 31.9  LnkSlp*RB [I] 

wMTT = 41.3 + 109.7 LnkSlp – 10.7 RB  [F] 

         [p=2.2e-3;           6.7e-4;             2.6e-3] 

1.0 

0.99 

3e-2 

2.1 

-26 

28 

-27 

27 

224 

10 

5 

wMTT = 81.2 – 1.2e-3∙MnChL – 86.3∙RC + 

28.7∙LnkSlp  

             + 1.6e-3∙MnChL∙LnkSlp  [I] 

wMTT = 166.1 – 1.058e-3∙MnChL – 151.6∙RC  

             - 6.9e-3∙MnChL∙RC  [F] 

         [p=1.2e-2;           4e-2;          4.1e-2;      0.18] 

1.0 

0.95 

0.06 

4.96 

-17 

37 

-18 

37 

55 

21 

1Model terms highlighted in bold font are terms involved in dependency identified by the respective condition 

index. 
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Figure B11. Selected MLR model to predict wMTT using λLab and DF as predictors. The p-

value for each predictor is also shown with the r2 value of the function. 
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Predictive Models Applied to Verification Watersheds 

Using the tools developed to select watersheds where the analytical model could potentially 

perform well, three verification watersheds were selected (Figure B12). The selection process 

followed the ranges of values specified for Tier 1 and Tier 2 indexes (Table 3-3). A numerical 

model for each of these sites was also build, following similar specifications used for 

previous watersheds evaluated in this study.  

An analytical model was applied to each watershed employing the predicted parameter 

values for SF, Uo, and λL (from a, and a·b, for the power function of λL) from both SLR and 

MLR models (Table B4). Some of the initially proposed models did not work properly and 

alternative models were used that did not score high initially. See main text for details.  

 

 

Figure B12. Verification study sites selected by using predictive tools based on 

geomorphological indexes for applying the analytical model. a) Carroll Creek, b) Schneider 

Creek, and c) Nith River. 

The pMTT estimated from the analytical model were compared with its numerical 

counterpart. Both the spatially-bound comparison (Figure 3-14) and the comparison of the 

distribution of these estimates (Figure B13) yielded similar results to those from which the 

predictive tools were developed. When predicting wMTT from their geomorphological 
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indexes, not all the proposed models delivered comparable estimates against the numerical 

model estimates (i.e., indexes LvAab and LnkSlp in SLR model). Different MLR models 

generated similar wMTT predictions, but all seemed insensitive to the geomorphological 

changes in the watershed. However, the implemented analytical model predictions fell 

within 3.2%, 9.8%, and 74%, for Carroll Creek, Nith River, and Schneider Creek, respectively 

(Table B5). 
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Table B4. Predicted analytical model parameters (SF, Uo, λLb, and λLab) using SLR and MLR 

models developed in previous sections. Expressions for secondary models that performed 

better than originals are also provided. 

Predicted Indexes Carroll Creek Schneider Creek Nith River 

Single Linear Regressions (SLRs) 

SF 

Relief 146 129 86 

SF 17 20 31 

LvAab L = 1.24*A
0.565

 L = 0.504*A
1.01

 L = 0.504*A
0.715

 

SF 29 0 0 

Uo 

dBCst 1.059 1.043 1.064 

Uo 0.077 0.110 0.069 

DF1 Using,  Uo = 8.9e-2*DF-0.35 

Uo 0.067 0.076 0.065 

λLb 
TexPer 0.432 0.379 0.483 

λLb 0.61 0.59 0.64 

λLab 

Dd 1.63 1.05 1.63 

λLab 0.48 1.01 0.48 

DF1 Using,  λLab = 1.08*DF-1.10 

λLab 0.44 0.66 0.40 

Multiple Linear Regressions (MLRs) 

SF 
Relief & LvAab        Using, SF = -1647.7-2.4*Relief+2298.3*LvAab+4.4*Relief*LvAab 

SF 62 -498 -890 

Uo 
DF and Dd Using,  Uo = 0.23 - 0.19*Dd + 0.05*DF 

Uo 0.032 0.109 0.044 

λLb 

C 6.18 5.91 6.41 

Tex 0.44 0.54 0.79 

λLb 0.33 0.28 0.55 

λLab 

Tex & HDd Using,  λLab = 3.66 – 2.3∙Tex – 0.1∙HDd + 0.05 Tex∙HDd 

HDd 0.014 0.007 0.009 

λLab 2.65 2.41 1.84 
1: Recommended models instead of those presented in Figure 12b and 12c. These are secondary 

models that provided better estimates in verification watersheds of analytical model parameters. 
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Figure B13. Verification study sites selected by using predictive tools based on 

geomorphological indexes for applying the analytical model. a) Carroll Creek, b) Schneider 

Creek, and c) Nith River.  
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Table B5. SLR and MLR models predicting watershed MTT from geomorphological indexes 

for verification study sites. Estimates of watershed MTT from numerical and analytical 

models are also presented. 

Indexes Carroll Creek Schneider Creek Nith River 

Single Linear Regressions (SLRs) 

Relief [m] 146.2 128.8 85.5 

wMTT = 163.8*Relief-0.19 

wMTT (a) 63.5 65.1 70.4 

LnkSlp 0.56 0.34 0.39 

wMTT = 94.4*LnkSlp0.65 

wMTT(a) 65.1 47.0 50.8 

LvAa 1.24 0.50 0.50 

LvAb 0.56 1.01 0.71 

LvAab 0.70 0.51 0.36 

wMTT = 204.4*LvAab3.0 

wMTT (a) 70.3 27.0 9.6 

Multiple Linear Regressions (MLRs) 

wMTT = 41.3 + 109.7 LnkSlp – 10.7 RB  [Model 4] 

LnkSlp 0.41 0.35 0.60 

RB 3.62 5.77 3.31 

wMTT (a) 48 18 72 

wMTT = 93.6 – 6.8 DF – 17.1*λLab    [Model 2] 

DF 2.24 1.56 2.47 

λLab 0.44 0.66 0.40 

wMTT (a) 71 72 70 

wMTT = 84.2 – 4.33 Schan – 13.6 λLab   [Model 3] 

Schan 2.06 1.37 0.94 

λLab 0.44 0.66 0.40 

wMTT (a) 69 69 75 

Analytical model 65 50 82 

Numerical model 63 87 90 
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Comparison to Haitjema’s Approach 

A brief description of this approach is included in section 1.3.1. In Haitjema (1995)’s 

approach, the TTD is a function of porosity (θ=0.35), recharge rate (r=6.5e-4 m/d) and 

saturated thickness (H) of the aquifer. In order to compare this method to the modeling 

conditions for this study, both porosity and recharge rate were kept constant for the study 

watersheds. For the estimation of the saturated thickness for each study site, the water table 

was approximated by the hydraulic head in FEFLOW to calculate an average H value for 

the watershed. Considering that the ratio r[7.3x10-9 m/s]/Kavg [6.09 x 10-5 m/s] = 1.2x10-4 is 

similar to the plotted output of residence time in his Figure 7 for r/Kavg = 1.0x10-4, a 

corrected expression for unconfined aquifers was not necessary to be applied as the 

difference with the original equation is minimum for this range of r/Kavg values. Using 

equation 1.1, the TTD was estimated for each study site (Figure B14), as well as the value of 

T, which corresponds to the wMTT given by the centroid above the CDF exponentially-

based curve. These CDF curves are not directly comparable with the gamma-like 

distribution curves generated by the Soltani & Cvetkovic (2013)’s equation nor the 

breakthrough curve of travel time output by FEFLOW, only the derived wMTT can be 

compared (Figure B15). The Haitjema-based wMTT exhibited some correlation (r2=0.50) 

with the numerical model when including the entire set of watersheds, which was reduced 

to nil (r2=0.0) after excluding the RPT watersheds where the numerical model did not 

provide reliable results. While the analytical method explained 71 and 89 % of the target 

wMTT, in both instances, respectively.   
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Figure B14. Watershed-scale travel time distributions estimated using the Haitjema (1995) 

method. The centroid of the highlighted area corresponds to T̅(θH/r) or wMTT. 
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Appendix C 

Supplementary Material: Chapter 4 

Estimation of N Requirement for Corn 

Corn is part of a common row cropping practice in the Grand River basin together with 

soybeans and winter wheat (Liu et al., 2016). According to OMAFRA (2017), the 

recommended annual N requirement for corn depends on: the type of cultivated soil (Table 

C1), crop yield, crop heat exposure, and previous crop cultivated on land (i.e., soybeans). 

The areas of the soil types overlying the row crop land use category was used to estimate a 

mean value for annual N requirement for corn.  

Table C1. Area-weighted estimation of N requirement for corn as per soil type overlying the 

row crop land use category in Carroll Creek (OMAFRA, 2017). 

       1 Recommended N requirement for corn as per soil type. Taken from OMAFRA (2017) for southwest  
         and central Ontario. 

Using values provided by OMAFRA (2017), the determination of the total N requirement for 

corn is given by the following adjustments: 

Base mean N requirement based on soil type:  43.8 kg/ha 

Assuming a mid-range Yield:     10.5 t/ha 

Yield adjustment:      142.8 kg/ha 

Guelph Crop Heat Unit [CHU-M1]:    2828 

Soil Type Area [ha] 
Base N Requirement 

[kg/ha]1 

Clay loam till 696.3 40 

Fine sand and silt 19.9 38 

Fine sand over grave 7.6 52 

Gravel 118.6 52 

Loam till 497.4 36 

Medium sand 85.5 52 

Organic 526.9 53 

Row Crops –Land Use 1952.2 43.8 
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Heat Unit adjustment:     1.148 kg/ha 

Previous crop adjustment [Soybeans]:    30 kg/ha 

Price ratio adjustment for mid-range N ($1.50) 

relative to mid-range Corn Price ($170/t):   26 kg/ha 

   Suggested Total N requirement for Corn = 142 kg/ha 

Litterfall and Crop Residue Production 

Representative litterfall rates data for septentrional forests were sought in the literature 

(Table C2), as well as crop residue rates for row crops in the Carroll Creek watershed. In the 

study site, coniferous, deciduous, and mixed forests are found mostly as extensions of the 

riparian zone. The thesis work by Raimbault (2011) identified a litterfall rate that is twice as 

high as that of deciduous forest stands in New Hampshire (Yang et al., 2017). These rates 

can be used as a range for this N flux. 

Table C2. Total litterfall density and N litterfall density in deciduous, riparian, and mixed 

forests. 

Reference for 
Forested Land 

Use 
Site Description 

Litter 
Density 
[g/m2] 

Litter 
Density 
[kg/ha] 

Litter N 
Density    

[kg N/ha] 

Yang et al. (2017)  
Mean annual litterfall mass [New 
Hampshire] 

299.4 2994 26.3 

Vogt et al. (1986) 
Cold temperate broadleaf 
deciduous [World forests] 

385.4 3854 33.9 

Vogt et al. (1986) 
Cold temperate needle leaf 
deciduous [World forests] 

359.0 3590 31.6 

Raimbault (2011) 
Natural forest, riparian zone South 
Ontario 

-- -- 53.0 

Jerabkova et al. 
(2006) 

Conif, Decid, Mixed forest in North 
Alberta 

170.2 1702 15.0 

 

Table C3. Annual rate of crop residue for corn, soybeans, and winter wheat. 
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References for Agricultural Land Use Corn Soybean Winter Wheat 

Crop Residues 
   

OMAFRA and University of Guelph 
(2012) [kg N/ha] 

28.33 16.63 15.53 

Smil (1999) [US crops, kg N/ha] 50 -- 25 

N concentration 
   

OMAFRA and University of Guelph 
(2012) [% N] 

0.74 1.05 0.63 

 

Variation of δ15N in Liquid and Solid Manure with Temperature 

Karr et al. (2003) measured the change of δ15N in liquid manure from a secondary slurry 

manure lagoon in North Carolina. It varied from +10‰, at the peak of winter (9th of 

February), to +30.8‰ in early summer (4th of June), period during which the mean daily 

temperatures oscillated from -1 to 31 oC. While mean daily temperatures in the area of 

Waterloo, Ontario changed from -10 to 25 oC (Figure C1). Considering that similar isotopic 

compositions are unavailable locally, Karr et al. (2003)’s values were used unaltered for 

liquid manure. For solid manure the range of δ15N was modified to follow instead: +3.4 to 

+20.4 ‰, obtained from Bateman & Kelly (2007). These data allowed the development of a 

relationship of δ15N with rising and declining limbs whose rate of change with time for 

liquid and solid manure are presented in Table C4.  

Table C4. Rising and declining limbs of the relationship between δ15N and mean daily 

temperature.  

Manure Rising Limb Declining Limb 

Liquid 0.171*Days + 10 -0.069*Days + 39 

Solid 0.149*Days + 3.4 -0.067*Days + 28 
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Figure C1. δ15N and temperature data measured by Karr et al. (2003) in liquid manure from 

a slurry lagoon in North Carolina. Mean daily temperature in Waterloo, Ontario (gray 

circles) and temperature from a concrete manure storage near Drayton, Ontario at 5 cm 

(blue x) and at 1m (orange squares) from the surface (Johannesson et al., 2017).  


