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Abstract

The ability of external magnetic fields to precisely control micromanipulator systems

has received a great deal of attention from researchers in recent years due to its off-board

power source. As these micromanipulators provide frictionless motion, and precise motion

control, they have promising potential applications in many fields. Conversely, major

drawbacks of electromagnetic micromanipulators, include a limited motion range compared

to the micromanipulator volume, the inability to handle heavy payloads, and the need for

a large drive unit compared to the size of the levitated object, and finally, a low ratio of the

generated magnetic force to the micromanipulator weight. To overcome these limitations,

we designed a novel electromagnetic finger micromanipulator that was adapted from the

well-known spherical robot.

The design and optimization procedures for building a three Degree of Freedoms (DOF)

electromagnetic finger micromanipulator are firstly introduced. This finger micromanip-

ulator has many potential applications, such as cell manipulation, and pick and place

operations. The system consists of two main subsystems: a magnetic actuator, and an

electromagnetic end-effector that is connected to the magnetic actuator by a needle. The

magnetic actuator consists of four permanent magnets and four electromagnetic coils that

work together to guide the micromanipulator finger in the xz plane. The electromagnetic

end-effector consists of a rod shape permanent magnet that is aligned along the y axis and

surrounded by an electromagnetic coil.

The optimal configuration that maximizes the micromanipulator actuation force, and

a closed form solution for micromanipulator magnetic actuation force are presented. The

model is verified by measuring the interaction force between an electromagnet and a per-

manent magnet experimentally, and using Finite Element Methods (FEM) analysis. The
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results show an agreement between the model, the experiment, and the FEM results. The

error difference between the FEM, experimental, and model data was 0.05N .

The micromanipulator can be remotely operated by transferring magnetic energy from

outside, which means there is no mechanical contact between the actuator and the micro-

manipulator. Moreover, three control algorithms are designed in order to compute control

input currents that are able to control the position of the end-effector in the x, y, and z

axes. The proposed controllers are: PID controller, state-feedback controller, and adaptive

controller. The experimental results show that the micromanipulator is able to track the

desired trajectory with a steady-state error less than 10 µm for a payload free condition.

Finally, the ability of the micromanipulator to pick-and-place unknown payloads is

demonstrated. To achieve this objective, a robust model reference adaptive controller

(MRAC) using the MIT rule for an adaptive mechanism to guide the micromanipulator

in the workspace is implemented. The performance of the MRAC is compared with a

standard PID controller and state-feedback controller. For the payload free condition, the

experimental results show the ability of the micromanipulator to follow a desired motion

trajectory in all control strategies with a root mean square error less than 0.2mm. However,

while there is payload variation, the PID controller response yields a non smooth motion

with a large overshoot and undershoot. Similarly, the state-feedback controller suffers from

variability of dynamics and disturbances due to the payload variation, which yields to non-

smooth motion and large overshoot. The micromanipulator motion under the MRAC

control scheme conversely follows the desired motion trajectory with the same accuracy.

It is found that the micromanipulator can handle payloads up to 75 grams and it has a

motion range of ±15mm in all axes.
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Chapter 1

Introduction

1.1 Background

Micromanipulation is the technique of using small devices called micromanipulators to

move and manipulate small objects. Micromanipulator systems have been proposed to

address several applications and needs, especially those requiring high-precision, such as

industrial and medical fields. There are several important design factors that need to

be taken into consideration in order to develop effective and robust micromanipulation

systems. These factors can be summarized as follows:

• Actuator type: choosing of actuator type is one of the important design factors in

order to obtain the required force and motion at the micromanipulator end-effector.

Micromanipulator systems can be driven using several actuation methods. The most

common methods include: Motorized micromanipulators, hydraulic and pneumatic

micromanipulators, piezoelectric micromanipulators, and electromagnetic microma-

nipulators. When selecting an actuator to drive micromanipulator systems, many
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factors need to be taken into consideration such as coupling method, generated force,

workspace (the micromanipulator workspace is defined as the set of all three dimen-

sional points that can be reached by a reference point located on the micromanipu-

lator end-effector), and motion accuracy.

• Actuation force: actuation force is an important design parameter and it plays a very

important role in determining the micromanipulators applications and tasks.

• Workspace volume: although micromanipulator systems are used to interact with

miniature objects, having a larger space of interaction is always preferable. In eye

surgery for example, it is required to have a workspace of a 25mm diameter sphere,

which corresponds to the interior volume of a human eye [1]. Similarly other surgeries

require even larger workspace. Industrial micromanipulations in hazardous environ-

ments, on the other hand, require a manipulator with larger workspace. As a result,

the volume of the workspace has a significant effect on the range and variety of

applications that these micromanipulators can work with [2].

• Portability and weight: In many applications, a portable and light micromanipulator

design is preferable to accomplish given tasks, therefore a large and bulky design is

not desired.

• Controllability: controllability is a useful design tool, which means the micromanipu-

lator can go from one point to another point smoothly, and follow the desired motion

trajectory with almost the same accuracy. Controlling electromagnetic systems is

not an easy task, due to the inherent nonlinearity of the magnetic field and force. As

found in literature, one of the greatest challenges in development of electromagnetic

systems is designing a robust control strategy.

2



1.2 Shortcomings and Motivation

Micromanipulator systems that are driven by electromagnetic actuators have several ad-

vantages over other types of actuation methods. Electromagnetic micromanipulators, on

the other hand, suffer from the fact that they are difficult to model and control, in addition

to limited motion range compared to the micromanipulator volume, and the requirement

for a large drive unit compared to other types of actuation methods. The design of a

portable magnetically actuated micromanipulator with a large workspace area and high

output force is still a significant challenge for the development of these actuators for po-

tential applications. This problem has motivated exploration of the possibility of building

a novel magnetically actuated micromanipulator that is small and portable, produces no

backlash, can move rapidly in different environments, and still has a large working space.

In this work, the design and optimization procedures for building a portable magnetically

actuated manipulator are presented. The development and experimental characterization

for building the system are also introduced.

The proposed magnetic micromanipulator has 3 DOF, and consists of a combination

of electromagnetic coils and permanent magnets that can move the micromanipulator to

perform specific tasks. The magnetic force between a cylindrical permanent magnet and

a cylindrical thick coil is usually found using the finite element method (FEM) or using

numerical integration methods. In real-time applications, the use of complex numerical and

integration calculations might affect the controller performance, especially in a magnetic

system that has a fast response time. Therefore, part of this study focuses on finding the

closed form model of the magnetic actuation force symbolically, so that the controller can

execute the magnetic force faster and more efficiently. The magnetic force can be calculated

faster, then fed back to the controller to find the required excitation current. Finally, as
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controlling electromagnetic systems is very challenging, the last part of this work focuses

on designing a robust control strategy to guide the micromanipulator in the workspace.

1.3 Objectives

This research project has been motivated by the increasing needs for multi-degree of free-

dom (M-DOF) electromagnetic micromanipulators that are capable of providing a precise

force and motion control. The overall goal of the project is to design, optimize, and build

a portable M-DOF magnetically actuated finger micromanipulator. This goal is accom-

plished by fulfilling the following research objectives:

• To develop a finger micromanipulator that can handle objects up to 75 grams at the

end-effector.

• To design and fabricate a portable finger micromanipulator with a large workspace

area compared to the micromanipulator volume.

• To optimize the design and the dimensions in order to maximize the generated mag-

netic force at the end-effector.

• To find the closed form model of the magnetic actuation force symbolically, so that

the controller can execute the magnetic force faster and more efficiently.

• To develop a real-time control strategy to guide the micromanipulator in the workspace

in the presence of payload at the end-effector tip.

• To investigate the use of the proposed micromanipulator in industrial applications.
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1.4 Thesis Contributions

Designing and developing a novel and portable finger micromanipulator using electromag-

netic actuation principles is the main goal of this thesis. The novelty of this work lies

in the coupling of magnetic levitation systems with small-scale industrial manipulators.

The design has many advantages over other designs presented in the literature as it has

a smaller drive unit and larger workspace. In addition, the micromanipulator can be re-

motely operated by transferring magnetic energy from outside, which means there is no

mechanical contact between the drive unit and the micromanipulator.

Use of complex numerical and integration calculations affects the controller perfor-

mance especially in magnetic systems. Therefore, the second contribution of this thesis is

developing a closed form model of the magnetic actuation force symbolically, so that the

controller can execute the magnetic force faster and more efficiently.

For the third contribution of this thesis, a robust manipulator has been developed

in which it can handle various payloads with unknown masses to address pick-and-place

operations. By implementing an adaptive control algorithm, the controller guides the

micromanipulator in the workspace smoothly, precisely, and independently of the payload.

1.5 Thesis Outline

This proposal is divided into seven chapters, structured as follows: Chapter 1 presents

an overview of micromanipulation in general, with more focus on electromagnetic micro-

manipulation. Chapter 2 provides a literature review concerning micromanipulation using

electromagnetic actuation. Chapter 3 provides detailed information about the system and

the different components of the integrated system. In addition, this chapter outlines the
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kinematic, jacobian and dynamic of the proposed micromanipulators. Chapter 4 describes

the modeling portion and the optimization procedures for the proposed electromagnetic

micromanipulator. Chapter 5 presents the controllers design, while Chapter 6 covers the

experimental and simulation results. In addition, this chapter covers the validation of

the obtained magnetic force model. Lastly, chapter 7 presents the thesis summary and

recommendations.
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Chapter 2

Micromanipulation Using

Electromagnetic Actuation

2.1 Introduction to Micromanipulation

There are several actuation methods to drive micromanipulators found in the literature,

the most common types include:

• Mechanical micromanipulators.

• Motorized micromanipulators.

• Hydraulic and pneumatic micromanipulators.

• Piezoelectric micromanipulators.

• Electromagnetic micromanipulators.
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Mechanical micromanipulators have similar design to large scale robot arms that can

move, rotate, and manipulate small objects. An example of mechanical micromanipulators

is shown in Figure 2.1a. Motorized or ‘lead screw’ micromanipulators are used to produce

incremental movements and rotations in one or more degrees of freedom. A general mo-

torized micromanipulator consists of mechanical arms driven by motors in one or more

axes. Position of the micromanipulator is controlled in the x, y, or z directions using a

step movement of a motorized lead screw actuator. Although motorized manipulators have

been used to address several applications and needs, they still have some limitations and

drawbacks in some applications [3]. An example of motorized micromanipulator is shown

in Figure 2.1b. Generally, micromanipulators driven by conventional mechanical actuators

and motorized lead screw actuators have some disadvantages, such as backlash, friction,

and singularities due to gears and mechanical arms, which makes them non-ideal for use

in micro-scale manipulation.

In hydraulic micromanipulators, the hydraulic power is used to guide and control the mi-

cromanipulator. Figure 2.1c shows an example of a hydraulic micromanipulator. Hydraulic

micromanipulators provide high force to weight ratio [4] but suffer from slow response time

and also a temperature drift which makes them less favourable in micro-scale applications.

In the same way, micromanipulators driven by pneumatic actuators can provide a high

actuation force and travel range [5, 6] but their fabrication is complex and costly, and they

are bulky.

Piezoelectric micromanipulators (Figure 2.1d) provide a high actuation force and a

fast response time [7], but have a short travel range and exhibit nonlinearity [8]. Also, the

control and modeling of piezoelectric actuators is very complex because of their nonlinearity

and hysteresis [9, 10]. Other actuation methods that can provide high force-to-weight ratios

either suffer from high initial cost or nonlinearity (e.g. shape memory alloy actuators).
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(a) Sutter instrument MM-33 micromanipulator.

Image reproduced from [11].

(b) Three-axis Motorized Micromanipulator.

Image reproduced from [12].

(c) Hydraulic joystick driven micromanipulator.

Image reproduced from [13].

(d) Miniature Piezo Micromanipulator. Image

reproduced from [14].

Figure 2.1: Several actuation methods for driving micromanipulators.

Electromagnetic micromanipulators composed of a combination of electromagnetic coils

and permanent magnets, have been in the spotlight recently because of several advantages:

they are small in size, contactless, frictionless, and electric motor-free, they also have low

power consumption, and have wireless control features. The most important advantage
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of magnetically actuated manipulators is that they can perform tasks in different environ-

ments, such as hazardous areas or fluid environments. Table 2.1 summarizes the advantages

and disadvantages of the actuation methods used to drive micromanipulators.
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Table 2.1: Summary of advantages and disadvantages of the actuation methods used to

drive micromanipulators.

advantages disadvantages

Mechanical

micromanipulators

High output force

High output motion range

Backlash

Friction

Motorized

micromanipulators

High output force

High output motion range

Backlash

Friction

Jumpy Movements

Hydraulic

micromanipulators

High output force

High travel range

Bulky design

Temperature drift

Slow response time

Pneumatic

micromanipulators

High output force

High travel range

Bulky design

Fabrication is complex and costly

Piezoelectric

micromanipulators

High actuation force

Fast response time

Short travel range

Nonlinearity and hysteresis

Control and modeling is very complex

Electromagnetic

micromanipulators

Contactless

Frictionless

Small in size

High output force

Fast response time

Electric motor-free

Low power consumption

Wireless control feature

Workspace is small

Control and modeling is hard

Drive unit is very large compared

to the micromanipulator weight
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2.2 Electromagnetic Micromanipulation

Among all of the actuation methods mentioned before, electromagnetic actuation has ad-

vantages in terms of motion accuracy and actuating force [15]. In addition, no mechanical

coupling such as gears is required and the micromanipulator can be controlled remotely

[16], by applying external magnetic fields [17, 18]. Remotely controlled micromanipulators

are more preferable in many applications as there is no contact between power supply

and microminipulator arms [19, 20]. In addition, the lack of mechanical gears eliminates

backlash and friction [21], which makes electromagnetic actuation methods very suitable

for micro-scale manipulation.

Electromagnetic actuation has been used very successfully in several applications and

needs [22, 23, 24, 25, 26]. Generally, the electromagnetic actuator consists of a group of

electromagnetic coils and permanent magnets. They might be stationary or moving, how-

ever, usually manipulator systems consist of a permanent magnet surrounded by stationary

electromagnet coils. Using the electromagnetic actuation method, a magnetic drive unit

generates magnetic energy in a small air gap to navigate the manipulator[27]. Foremost

problems with this technique are the facts that they have a limited motion range [28], and

they require large drive units.

There has been much research on micromanipulators and microrobot systems based on

electromagnetic actuation principles in the literature. Choi et al. [29] developed a two

dimensional space electromagnetic actuated microrobot using two pairs of Helmholtz and

Maxwell coils. Xiao and Li presented an electromagnetic actuated XY micromanipulator

[30] and an electromagnetic actuator [31] using a microdisplacement module. In similar

work by Go et al. [32], an electromagnetic actuated microrobot was designed and fabri-

cated to be used for manipulation of micro-particles. Most of the presented designs in the
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literature, however, have limited motion range and low load capacity. Moreover, most of

the proposed electromagnetic manipulators have a large drive unit that consists of a group

of electromagnetic coils in a planar array, which limits the range of applications of these

systems and restricts their use commercially.

Voice Coil Actuators (VCA) which are electromechanical linear devices that work based

on Lorentz force, are well known as an example of electromagnetic actuators. VCA consist

of two separate parts; the magnetic part and the solenoid part. VCA has one DOF either

by moving the magnetic part or by moving the solenoid part. An example of a cylindrical

VCA is shown in Figure 2.2.

Figure 2.2: Cylindrical Frameless VCA. Image reproduced from [33].

In order to build a micromanipulator with more than one DOF using voice coil actua-

tors, more than one VCA are needed to be linked together. This makes the micromanipula-

tor design very bulky, not frictionless, and might create a backlash problems. In addition,

VCA travel range is short which is not suitable for many applications such as pick and

place operations. The workspace length of the VCA in Figure 2.2 is around 0.5mm, while

the output force is around 0.7N and the VCA weight is around 0.01 kg.
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2.3 Introduction to Magnetic Field and Magnetic Force

Much research has been conducted on the use of external magnetic fields to control mi-

cromanipulators in the past decade. Magnetic repulsive or interaction forces can be used

as an actuation method for micromanipulators. The main benefit of this technique is that

it has no contact with the manipulator; this eliminates the backlash problems associated

with gear-actuated manipulators or motorized lead screws actuators, and allows the ma-

nipulator to be controlled wirelessly [1, 34]. The magnetic force can be used for micro-scale

applications, such as micro-machining, [35] and biomedical applications, such as cell ma-

nipulation [36]. On a larger scale, the magnetic force can be used to exert forces into

environments or to manipulate large objects [37].

The source of the magnetic force applied to the manipulator (usually a permanent mag-

net material) can be produced by the use of electromagnetic coils or permanent magnets.

In the former, the force is obtained by changing the distance between the electromagnetic

coils and the manipulator or by changing the excitation current of the coils. Usually, the

distance between the coil and the permanent magnet is fixed, and therefore the force is

most commonly controlled by changing the excitation current. In such applications, the

magnitude of the force depends on the gradient of the magnetic field and sequentially on

the excitation current of the coil. In the latter, the only way to change the magnitude of

the magnetic force between permanent magnets is by changing the distance between them.

Therefore, this method is not widely used in the industry because of the difficulty asso-

ciated with changing the distance between any two magnets, which requires mechanical

moving parts that are usually driven by a motor for their operation.

The magnetic attraction or repulsive force in the magnetically-actuated manipulators

is usually produced by the Lorentz force [38, 39, 40, 41, 42], or the dipole moment prin-
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ciple [43]. Voice coil actuators are a well-known example of Lorentz force actuators. Be-

cause of these many advantages and potential applications, micromanipulation based on

wirelessly-controlled magnetic force has recently become a popular topic in the literature.

For example, two-pole magnetic tweezers [44] and three-pole magnetic tweezers [45] were

designed to maneuver small magnetic probes inside living cells. Dkhil et al. [46] achieved

high speed manipulation using a magnetic field to manipulate micro-objects. Niu et al. [47]

used six orthogonally-aligned electromagnetic coils to wirelessly control a single magnetic

bead. In [30], a 2 DOF micromanipulator for micro and nano manipulation was proposed.

In most of the proposed systems, the manipulator workspace volume is small relative to the

manipulator volume, and the ratio of generated magnetic force to manipulator weight is

also small. However, a large and growing body of literature focuses on untethered magnetic

manipulator systems, especially those that address medical applications. In these appli-

cations, a micromanipulator (a permanent magnet material) is guided inside the human

body through an external magnetic field. Maxwell coils, which are capable of producing

a uniform gradient field in a larger space than other kinds of coils, are usually placed

around the human body to generate the required actuation and to guide the micromanipu-

lator. This type of actuation consumes a low amount of energy, but the micromanipulator

working area is also small relative to the volume of the system (micromanipulator and

electromagnetic coils). Many industrial applications (e.g., tweezers) require non-contact

manipulation: the manipulator needs to be able to hold, move, pick, and place small ob-

jects in a large working area. The Magnetic Levitation “MagLev” research team at the

University of Waterloo has been working toward the goal of building small manipulator

systems, based on magnetic principles, that can perform several types of manipulations

in large working spaces. Khamesee, et al. [27] built a 3 DOF microrobot that can be

remotely operated in an enclosed environment, using an external magnetic field that can
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produce translational forces on the microrobot. The same research group proposed a novel

magnetic-haptic micromanipulation platform; the authors developed and experimentally

verified a mathematical force model of the magnetic actuation mechanism [48]. Motion

control of these magnetically-actuated manipulators has been investigated and studied in

other works [49, 50, 51]. A major problem associated with magnetically-actuated micro-

manipulators is that attaching force and motion sensors is impractical because of the size

restrictions of these types of manipulators. Therefore, the University of Waterloo MagLev

research team has proposed and experimentally verified new methodology to determine

the position [52] and contact forces [53]. Furthermore, they have studied the arrangement

of electromagnetic coils and the optimum structure of magnetically-actuated manipula-

tors [54].

2.4 Magnetic Levitation

In recent years, there has been an increasing interest in the development of magnetic

levitation technology. Magnetic levitation systems have demonstrated the capability of

this technology in many fields, including medical applications [55, 3, 56], magnetic bearing

[57, 58], industrial manipulation [59, 60], high-speed maglev trains [61], and teleoperation

[48]. A variety of micromanipulator systems with various designs, applications, and drive

types have been reported in the literature [62, 63, 64, 65, 30, 66, 67, 68, 69, 70, 71].

Magnetic levitation systems can be remotely operated, making them suitable for in-

dustrial manipulations such as pick-and-place operations which require a smooth motion

in the working area without suffering from friction problems and singularities.

Magnetic levitation systems usually consist of a levitated robot in the 3D space that is

guided by many electromagnetic coils. In literature, several studies have used the magnetic
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levitation ball system which is a benchmark example of freely levitated systems [72, 73, 74].

In this system, electromagnetic coils produce a magnetic force to levitate an iron ball in the

air. Although freely levitated robots have been used successfully in many applications, they

suffer from some serious drawbacks, including limited manipulation with a motion range

less than a few millimeters, the inability to handle heavy payloads more than 10 grams,

and their incapability of applying large forces. Moreover, they require a large drive unit

compared to the size of the levitated object.

One way to overcome these problems is to incorporate magnetically actuated micropo-

sitioning stage systems [75, 76, 77, 78]. They have higher payload capabilities and higher

motion range but they consist of several moving parts which introduces friction problems

and other constraints. To overcome this problem, a design that combines magnetic levita-

tion and small-scale industrial manipulators was implemented. The novelty of this work

lies in the coupling of magnetic levitation systems with small-scale industrial manipulators.

The design has a levitated rod that was adapted from the well-known spherical robot de-

sign, and its lack of gears allows it to be controlled remotely without any contact between

the levitated rod and the drive unit. The proposed manipulator consists of a drive unit, a

levitated rod with permanent magnets fitted inside, and a position feedback sensor. The

main advantage of this magnetically levitated manipulator compared to other magnetic

levitation systems is that it can handle payloads up to 75 grams and it has a motion range

of ±15mm in each axis.

2.4.1 Magnetic Levitation Benchmark

The magnetic levitation ball system, which is a benchmark example of freely levitated

systems, is shown in Figure 2.3 below. The system consists of an electromagnetic coil
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carrying a current I, an iron ball with a mass m, separated by a distance h, with a

position sensor for measuring the position of the iron ball. The system is nonlinear and

unstable due to inherent nonlinearity in the electromagnetic force. Motion range of this

system is very limited and many works have been reported in the literature to improve this

system by adding more electromagnetic coils. Adding more electromagnetic coils increases

the motion range but at the cost of additional complexity in terms of the control process

and portability.

Figure 2.3: Magnetic levitation ball system

Early examples of research into designing magnetically actuated micromanipulators was

proposed by [79]. The schematic representation of the ring and the end-effector is shown in

Figure 2.4a, while the workspace representation is shown in Figure 2.4b. The system has

been developed over time and refinements have been added to it. For example, a haptic

interface, called PowerMouse (Figure 2.5) related to the system was proposed by the same

research group [80] afterward.
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(a) Ring schematic representation. (b) Workspace representation.

Figure 2.4: Schematic representation of the Maglev wrist proposed by Salcudean [79].

The wrist consists of a hexagonal box structure containing flat copper coils and position

sensing structure with mounted magnet assemblies. The device can be mounted to a robot

or can be manipulated by hand. This 6 DOF electromagnetic manipulator can provide up

to 1mm travel range. However, this system was implemented for very few applications due

to its small positioning range and the design complexity. In many applications, a portable

and light micromanipulator design is preferable to accomplish given tasks, therefore a large

and bulky design is not desired.
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Figure 2.5: PowerMouse, a desktop magnetically levitated haptic interface

Another example of research into design of magnetically actuated micromanipulators

was proposed by the magnetic levitation research team at the University of Waterloo [27].

The schematic design of the magnetic drive unit for this magnetically-actuated microma-

nipulator is shown in Figure 2.6.

Figure 2.6: MagLev magnetic drive unit [48].

As shown in Figure 2.6, The magnetic drive unit of this magnetically-actuated mi-
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cromanipulator is 830mm long, 450mm wide, with approximately 400mm depth. The

workspace volume of this magnetically-actuated micromanipulator is 29 × 29 × 25mm3.

The system is employed for cell injections and cell micromanipulations. However, the ratio

between drive unit volume to the system workspace volume needs to be decreased. In

addition, having a large magnetic drive unit restricts the use of this micromanipulator for

commercial use.

2.5 Finger Mechanism

Machining and handling of small objects are of great interest in the industry. Microma-

nipulators have proved to be the best choice for such applications. Micromanipulators

may be classified according to type of the kinematics arrangement into serial multi-links

micromanipulators, parallel multi-link micromanipulators, and finger micromanipulators.

Finger design is the only mechanism that is capable of eliminating the backlash problems

associated with multi-link micromanipulators. There are different designs proposed in the

literature regarding finger mechanism micromanipulators. In (2000), Tatsuya Nakamura

proposed the design of a finger micromanipulator (Figure 2.7) with a lever mechanism and

magnetic actuators [81]. The finger micromanipulator mechanism is able to handle small

mechanical parts.
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Figure 2.7: Structure of the finger mechanism proposed in [81].

The finger consists of two links, three joints, three electromagnetic coils, and three

permanent magnets at each joint. Each permanent magnet and electromagnetic coil drive

and rotate the mechanism in one DOF. The weight of the mechanism is 1 kg, and the

workspace is 5 × 5 × 5mm3. The size of the mechanism including the magnetic drive unit

is 320 ×110 ×175mm3. However, there are certain problems with the use of the multi-link

and multi-joint design. One of these is that this finger mechanism design is not able to

eliminate the backlash problems associated with the joint link mechanism. Hence building

a finger mechanism with fewer joints is desirable in the micro scale applications.

In 2007, Krishnan and Saggereet proposed a new design for a micromanipulator with

multiple fingers that is capable for both gripping and positioning of micro-scale objects [82].

A major problem with this design is that it has a short travel range and is not capable in

assembly of micro-scale components and devices [83].
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There are other proposed designs in the literature, but either they are bulky, or have

a small workspace, or they are not able to generate the required force at the end-effector

tip. Designing a finger mechanism with fewer joints and links while still having a large

workspace and large generated force at the end-effector tip is still a challenge for researchers.

In this research, the ability of designing a portable finger mechanism that has 3 DOF and

is still not bulky, and provides the required force for micro-scale applications in a large

workspace is investigated.
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Chapter 3

System Overview

3.1 Introduction

This chapter introduces the components of the micromanipulator system, and how they

are organized in the design. Thereafter, the kinematics and dynamics modeling procedures

of the micromanipulator are calculated. In addition, the transformation between the mi-

cromanipulator end-effector velocity and the joint velocity are presented in this chapter.

Finally the micromanipulator workspace is found based on the micromanipulator geometry.

3.2 System Overview

The micromanipulator consists of a magnetic actuator and a finger mechanism. The pro-

posed micromanipulator is a three DOF micromanipulator that moves along the x and z

axes, and also moves linearly along the y axis. The finger consists of two concentric rods.

The main rod is connected to the permanent magnets using a four way connector. Two
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revolute joints are connected also to the main rod to allow the micromanipulator finger

to rotate around the x and z axes. The drive unit consists of four stationary electromag-

netic coils aligned with four moving permanent magnets (two permanent magnets with

a fixed gap between them in the x and z directions). In addition, an axial electromag-

netic coil is located around the main rod to allow the smaller rod (which is a permanent

magnetic material) to move in the y direction. A simple CAD drawing and a photograph

with all components of the proposed micromanipulator are shown in Figures 3.1 and 3.2

respectively.

Figure 3.1: CAD drawing of the proposed micromanipulator.
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Figure 3.2: Photograph of the proposed micromanipulator.

3.3 Micromanipulator Design Components

The proposed micromanipulator with an optimized geometry, shown in Figure 3.3, has two

main subsystems: a magnetic actuator and an electromagnetic end-effector connected to

the magnetic actuator by a needle with length l.

3.3.1 Magnetic Drive Rotational Actuator

The rotational magnetic actuator consists of four permanent magnets and four electromag-

netic coils to guide the micromanipulator finger in the xz plane. The main objective of
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Figure 3.3: Main components of the proposed micromanipulator.

the magnetic actuator design is to produce the magnetic force required to lift and move

the manipulator finger in the workspace. Several configurations were tested to find the

optimum configuration as shown in Figure 3.4.

The spherical permanent magnet shown in Figure 3.4a was not suitable for our design

because of the complexity of modeling the magnetic force and the magnetic sphere magne-

tization. The electromagnetic coils in the overlap design (Figure 3.4b) were not symmetric;

this would affect the manipulator stability and the magnetic force calculations. The mag-

netic force in both the rectangular (Figure 3.4c) and cylindrical (Figure 3.4d) permanent

magnet design was assessed. As a result of the multiple edges presented in the rectangular

design, a higher magnetic force in the cylindrical permanent magnet design was achieved,

and therefore it was selected for our design.
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(a) Spherical design. (b) Overlapping rectangular design.

(c) Rectangular design. (d) Cylindrical design.

Figure 3.4: Different configurations of the magnetic actuator.

The permanent magnets configuration was simulated in COMSOL multi-physics to

obtain the best materials configuration. The two-dimensional geometry of the actuator is

shown in Figure 3.5a. Three cases representing three configurations were studied as shown

in Figure 3.5: in case 1 (Fig 3.5b), material A is a permanent magnet and material B is

an iron material; in case 2 (Figure 3.5c), material A is a permanent magnet and material

B is air; in case 3 (Figure 3.5d), materials A and B are both iron. The simulation results

for the magnetic field calculation are shown in Figures 3.5b, 3.5c, and 3.5d. The magnetic
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flux density norm (Tesla) was also simulated for the different configurations of the three

cases. The magnetic flux density norm in case 3 was very low compared to cases 1 and 2.

The value for case 1 was slightly higher than case 2, but the actuator weight in case 1 was

also higher. The magnetic flux density norm difference is less than 0.22 Tesla, therefore

case 2 was selected for our application.

(a) Two dimensional geometry of the actuator. (b) Case 1 (A=Permanent Magnet, B=Iron).

(c) Case 2 (A=Permanent Magnet, B=Air). (d) Case 3 (A=Iron, B=Iron).

Figure 3.5: Magnetic flux density norm (Tesla) for different materials configurations.
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3.3.2 Magnetic Drive Linear Actuator

The linear magnetic actuator (Figure 3.6) consists of a single electromagnetic coil and a

permanent magnetic. Both are aligned and concentric along the y axis.

β

x

yPM

Electromagnetic coil

Figure 3.6: Schematic of the magnetic drive linear actuator.

3.4 Micromanipulator Kinematics

The position of the end-effector is q = [Xq, Yq, Zq], while the joint variables are θ = [α, γ, β].

Figures 3.7 and 3.8 depict the relation between the end effector position and joint angles.

Figure 3.7: Kinematic of the proposed micromanipulator (Right view).

l represents the distance between the center of the revolute joint and the end of the

large rod. Joint variables are defined as follows:
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Figure 3.8: Kinematic of the proposed micromanipulator (Top view).

• The angle between the x axis and the micromanipulator needle is defined as α.

• The angle between the xy plane and the micromanipulator needle is defined as γ.

• The prismatic joint displacement along the micromanipulator needle is defined as β.

Based on Figures 3.7 and 3.8, the micromanipulator’s forward kinematic equations can

be found as follows:

Xq = (l + β)cos(α)cos(γ) (3.1)

Yq = (l + β)sin(α)cos(γ) (3.2)

Zq = (l + β)sin(γ) (3.3)
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3.5 Micromanipulator Jacobian

The Jacobian defines the transformation between the micromanipulator end-effector ve-

locity and the joint velocity. In the previous section, we found the relation between the

position and orientation of the micromanipulator end-effector with respect to the joint an-

gles; therefore, we can differentiate the position with respect to time to obtain the Jacobian

matrix. By differentiating equations (3.1), (3.2), and (3.3) we yield:

Ẋq = −(l + β)sin(α)cos(γ)α̇− (l + β)cos(α)sin(γ)γ̇ + cos(α)cos(γ)β̇ (3.4)

Ẏq = (l + β)cos(α)cos(γ)α̇− (l + β)sin(α)sin(γ)γ̇ + sin(α)cos(γ)β̇ (3.5)

Żq = (l + β)cos(γ)γ̇ + sin(γ)β̇ (3.6)

If we rewrite the equations above using matrix notation, we yield the following:


Ẋq

Ẏq

Żq

 =


−(l + β)sin(α)cos(γ) −(l + β)cos(α)sin(γ) cos(α)cos(γ)

(l + β)cos(α)cos(γ) −(l + β)sin(α)sin(γ) sin(α)cos(γ)

0 (l + β)cos(γ) sin(γ)



α̇

γ̇

β̇

 (3.7)

Fundamentally q̇ = Jq(θ)θ̇; therefore based on this relationship the Jacobian matrix for

the micromanipulator is:

Jq(θ) =


−(l + β)sin(α)cos(γ) −(l + β)cos(α)sin(γ) cos(α)cos(γ)

(l + β)cos(α)cos(γ) −(l + β)sin(α)sin(γ) sin(α)cos(γ)

0 (l + β)cos(γ) sin(γ)

 (3.8)
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3.6 Micromanipulator Dynamics

The free body diagram of the finger micromanipulator mechanism with all forces applied

to the micromanipulator is illustrated in Figure 3.9. The forces in Figure 3.9 are:

• Wpm: Weight of permanent magnet including the holder.

• Fcx: Magnetic force generated between permanent magnets and electromagnetic coils

in the x direction.

• Fcz: Magnetic force generated between permanent magnets and electromagnetic coils

in the z direction.

• FJ : Revolute joint internal forces.

• Wc: Weight of the electromagnetic coil aligned in the y direction.

• Wr: Weight of the rod including the permanent magnet in the y direction.

• Fox: The end-effector force in the x direction.

• Foz: The end-effector force in the z direction.

a, represents the distance between the center of the permanent magnet and the center

of the revolute joint. b is the distance between the center of the revolute joint and the

rod center of mass. c is the distance between the rod center of mass and the rod end

(linear electromagnetic coil center of mass). Finally, Fox and Foz are located at the end-

effector end which is β away from the edge of the rod. The dynamic model of the proposed

micromanipulator can be derived using Newton’s law as follows:
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Figure 3.9: Free body diagram of the finger micromanipulator mechanism.

∑
Ti = Iiθ̈i (3.9)

∑
Fi = Mq̈i (3.10)

Where Ii is the moment of inertia around axis i, M is the total mass, Ti are the torques

around axis i, Fi are the forces in the direction of axis i, θi represents the angular position

around axis i, and qi is the position along axis i. There are no torques along the y axis,

also the finger mechanism has 3 DOF so only three equations are needed in order to obtain

the micromanipulator dynamic model. Substituting forces and torques in the previous

equations, one can obtain the following dynamic model of the proposed micromanipulator.

Fox(b+ c+ β)− Fcx(a) = Izα̈ (3.11)
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Foz(b+ c+ β) + Fcz(a) +Wc(b+ c)

+Wr(b)−Wpm(a) = Ixγ̈ (3.12)

∑
Fy = Mβ̈ (3.13)

The weight of permanent magnet including the holder Wpm is 7.26 N , the weight of the

electromagnetic coil aligned in the y direction Wc is 1.39 N , and finally the weight of the

rod including the permanent magnet in the y direction Wr is 0.5 N . The dimensions of

the system are as follows: a = 6 cm, b = 4.5 cm, and c = 10.5 cm. At equilibrium position,

the relation between input and output forces is:

Fox = Fcx
a

b+ c+ β
(3.14)

Foz =
Fcz(a) +Wc(b+ c) +Wr(b)−Wpm(a)

b+ c+ β
(3.15)

It is found that the effect of the Coriolis and centrifugal terms is neglected.

3.7 Micromanipulator Workspace Calculations

As mentioned previously, the needle and end-effector dimensions have not been optimized

yet. However, the workspace of the micromanipulator can be found based on Figure 3.10.
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Xoz

β

l1

a

Xiz

Xix

X
ox

Figure 3.10: Three dimensional workspace representation of the finger micromanipulator

mechanism.

Xix and Xiz are the permanent magnets movement in the x and z axes respectively. The

workspace vector in the x, y, and z axis respectively is defined by [Xox, β,Xoz]. Given that

a = 6 cm, and l1 = 15 cm, the workspace vector components can be found as follows:

Xox = Xix
l1 + β

a
(3.16)

Xoz = Xiz
l1 + β

a
(3.17)

β can be found by solving the electromagnetic force between the permanent magnet and

the electromagnetic coil in the y direction.
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3.8 Conclusion

In this chapter the main components of the micromanipulator system and the way they are

organized were introduced. In addition, the kinematics, Jacobian, and dynamics models

of the micromanipulator were calculated based on the micromanipulator geometry and the

applied forces. Lastly, the micromanipulator workspace was found based on the microma-

nipulator dimensions.
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Chapter 4

Analytical Modeling and

Optimization

4.1 Introduction

Electromagnetic force modeling is the first step required to obtain the optimal geometry

for the finger micromanipulator. Accordingly, this chapter demonstrates the magnetic field

and magnetic force calculations, after that the optimization procedures are presented. The

objective of geometry optimization is to find the optimal values for the micromanipulaor

design parameters in order to achieve the stated objectives. Lastly, fully symbolic magnetic

force modeling is presented.
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4.2 Magnetization Configuration

The total magnetic actuation force is the vector sum of the generated magnetic forces

between any electromagnetic coil and permanent magnet in the actuator. The actuator

design has four electromagnetic coils and four permanent magnets, and this resulted in 16

generated forces. The permanent magnet configuration was designed to have an opposite

magnetization vector in the same axis (Figure 4.1). As shown in the figure, if coil 2 (C2)

is energized, the generated magnetic force between C2 and permanent magnets 1 and 3

(PM1 and PM3 respectively) will have the same magnitude and opposite direction. This

magnetization vector configuration reduced the total magnetic force vector sum from 16

to 8. The distance between any coil and the center of the nearest permanent magnet

in the same axis was much larger than the distance between that coil and the center of

the farthest permanent magnet in the same axis. Therefore the magnetic force between

that coil and the nearest permanent magnet was much higher than the magnetic force

between that coil and the farthest permanent magnet. As a result, one can consider only

the magnetic force between any coil and the nearest permanent magnet in the calculation

of the total magnetic force. This also reduced the total magnetic force vector sum from

8 to only 4. The electromagnetic coils could be energized in a way to sum the magnetic

force in the same axis, and therefore guide the manipulator finger to any location in the

xy plane, based on the input electromagnetic coil currents Ii, where i is coil number i.
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PM3
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C2
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Ci = Coil number i

PMi = Permanentmagnet number i

x

z

M M

M

M

Figure 4.1: Magnetization vector configuration.

4.3 Magnetic Field Calculations

4.3.1 Magnetic Field Calculations Generated by Electromagnetic

Coils

The external magnetic field was produced by using four coreless and theoretically identical

electromagnets, and four cylindrical permanent magnets with axial magnetization. All of

the components were evenly distributed over the xz plane (see Figure 4.1). According to

the Biot–Savart’s law, the z-component magnetic field, produced by a thick and coreless

solenoid (Figure 4.2), at a point P (x, y, z) is [52]:
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Bz(x, y, z) =
µ0σI

4π

Rco∫
Rci

0.5lc∫
−0.5lc

2π∫
0

r[(y − ym − rsinφ)sinφ+ (x− xm − rcosφ)cosφ]

|Rm|3
dφdzdr

(4.1)

Rco

x

z

y
lc

xm

P (x, y, z)

zm

Rci

ym

Rm

Figure 4.2: Magnetic field calculation generated by electromagnetic coil.

where µ0 is the relative permeability of free space, σ is the winding density of the electro-

magnet, I is the current passing through the electromagnetic coil (A), Rco, Rci, and lc are

the outer radius, inner radius, and length of electromagnetic coil respectively, xm and ym

are the x and y locations respectively of the electromagnetic center point, and Rm is the

distance between the point P (x, y, z) and the center point of the electromagnetic coil. The

x-component magnetic field can be calculated in a similar way as in equation(4.1).
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4.3.2 Magnetic Field Calculations Generated by Permanent Mag-

nets

The magnetic field, produced by a permanent magnet (Figure 4.3) at a point P (x, y, z) is

[84]:

B(x, y, z) =
µ0Qm

4π

[
~r2

|r2|3
− ~r1

|r1|3

]
(4.2)

where Qm is the surface magnetic charge, and r1 and r2 are the distances to the point

P (x, y, z) from the top and bottom of the permanent magnet respectively.

r2

x

z

y

P (x, y, z)

r1

Figure 4.3: Magnetic field calculation generated by permanent magnet.

The total magnetic field at any point at the xz plane can be found by the superposition

principle:
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B(x, y, z) =
n=4∑
n=1

{BMn(x, y, z) + BCn(x, y, z) } (4.3)

where BMn is the magnetic field generated by permanent magnet number n, and BCn is

the magnetic field generated by electromagnetic coil number n, n = 1, 2, 3, 4.

4.4 Magnetic Force Calculations

In this section, the magnetic force between any coil and the nearest permanent magnet is

calculated. As discussed in the literature, a closed form solution for the magnetic force

between two cylindrical magnets or electromagnetic coils is very difficult to obtain. Several

approaches have been used by scholars to model the magnetic force between two cylindri-

cal magnets or electromagnetic coils, including numerical integration [85] and numerical

discretization [86, 87]. Ravaud et al. [88] used elliptic integrals to find a closed form so-

lution for the magnetic forces between radially-aligned cylindrical magnets. Robertson et

al. [89] proposed a simplified solution for the Ravaud elliptic integral method, that can

be executed faster in real time applications to find the attractive or repulsive magnetic

forces between cylindrical magnets and thin coils [89], or the axial attractive or repulsive

magnetic force between a coaxial cylindrical magnet and a thick electromagnetic coil that

consists of many radial and axial turns [90]. In this work, the “shell method” discussed

in [90] is used. By this method, the axial attractive or repulsive magnetic force between

a thick electromagnetic coil and a cylindrical magnet can be found by representing each

radial layer of turns as a separate thin coil. The total magnetic force between them is the

summation of the forces between each thin coil and the cylindrical magnet.
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4.5 Optimization

The axial magnetic force Fm between a cylindrical permanent magnet and electromagnetic

coil, as shown in Figure 4.4, is a function of many parameters (Appendix A):

Fm = f (Br, I, Nr, Nz, Rm, lm, Rci, Rco, lc, z, Rw, lw, ρ) (4.4)

lc

Rco

lm

Rm

z

Rci M

Figure 4.4: Schematic diagram of electromagnetic coil and permanent magnet configura-

tion.

where Br is the residual flux density (T ), I is the current passing through the electro-

magnetic coil (A), Nr and Nz are the number of turns in the radial and axial directions

respectively, Rm and lm are the radius and length of the permanent magnet in meters, Rco,

Rci and lc are the outer radius, inner radius, and length, respectively, of the electromagnetic

coil in meters, z is the axial air gap distance between the edges of electromagnetic coil and

the cylindrical magnet (m), Rw and lw are the radius and length respectively of the wire

used to wind the electromagnetic coil (m), and ρ is the resistivity of the wire (Ω.m). The

proposed actuator was expected to move in the xz plane to a maximum distance of 1 cm;

therefore the axial air gap distance z between the edges of the electromagnetic coil and

the cylindrical magnet was fixed at 1 cm to decrease the complexity of the optimization
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process. Similarly, the number of turns was kept constant at 1760 turns (Nr×Nz = 1760).

This number could subsequently be adjusted slightly to fit the electromagnetic coil dimen-

sions. The wire parameters (Rw , lw, and ρ) could be calculated after the optimization

based on the total number of turns and the standardized American Wire Gauge (AWG).

Br is constant and depends on the type of the permanent magnets. To obtain a large

magnetic force, Neodymium magnets of a higher grade were used, therefore Br was fixed

at 1.32 Tesla, which matched a Neodymium magnet grade of N42. After removing the

fixed parameters, the axial magnetic force Fm between a cylindrical permanent magnet

and electromagnetic coil in ( 4.4) is:

Fm = f (Rm, lm, Rci, Rco, lc) (4.5)

To optimize eq 4.5, the volume of the permanent magnet was fixed at Vm = 20 cm3,

the volume of the electromagnetic coil at Vc = 47 cm3, and the difference between the coil

outer and inner radii at 0.5 cm. The optimization parameters were the magnetic geometry

ratio:

α =
lm
Rm

(4.6)

and the coil geometry ratio:

γ =
Rco

lc
(4.7)

The simulation result is shown in Figure 4.5. The maximum magnetic force Fm was

10.7N . The optimized magnetic and coil geometry ratios α and γ were 0.25 and 1 respec-

tively. Solving for the actuator geometry, the following dimensions were obtained:
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(lm Rm lc Rco Rci) = (0.73 2.94 4 4 3.5) cm (4.8)

Figure 4.5: Magnetic force versus magnet (α) and coil (γ) geometry ratios.

A notable problem with this design was its bulkiness, since the permanent magnet had a

diameter of approximately 6 cm. Additionally, it was very difficult to obtain commercially

a permanent magnet with these dimensions. The optimization process was changed so

that the dimensions of the permanent magnet were fixed and only the coil dimensions were

changed to obtain the required force. To obtain the required coil geometry, a permanent

magnet (which was available commercially) was used with a length and radius of 3.17 and

1.58 cm, respectively. The volume of this permanent magnet was Vm = 25 cm3, and the
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volume of the electromagnetic coil in this new optimization was also fixed at Vc = 47 cm3.

The new optimization parameters consist of the coil geometry ratios as follows:

α =
Rco

Rci

(4.9)

β =
lc

2Rco

(4.10)

Assuming the number of turns is also constant, the axial magnetic force Fm between a

cylindrical permanent magnet and electromagnetic coil in eq 4.5 is:

Fm = f (Rci, Rco, lc, Rm = 1.58 cm, lm = 3.17 cm) (4.11)

The simulation result is shown in Figure 4.6. The maximum magnetic force Fm is ap-

proximately 14.4N . The optimal values for the optimization parameters α and β were 2

and 0.25 respectively. Solving for the actuator geometry, the following dimensions were

obtained:

(lc Rco Rci) = (1.7 3.4 1.7) cm (4.12)
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Figure 4.6: Magnetic force versus coil geometry ratios α and β.

The generated magnetic force (14.4N) was large enough compared to the end-effector

desired force (approximately 2N). Additionally, the manipulator needle length l in Fig-

ure 3.3 could be adjusted to create a large workspace area and large force ratio. In order

to build the electromagnetic coil with the previous dimensions, several parameters needed

to be determined. Given that the current passing through the coil was fixed at 1A, and

the total number of turns was fixed at 1760 turns, the only AWG wire that can fit these

dimensions is AWG26. In this case, the radius Rw of the AWG26 wire is 0.2025mm; this

value was used to solve for the wire length lw required to allow 1760 turns in the following

equation:
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lw = 2πN(Rci +NrRw) (4.13)

The wire length lw was calculated to be 282 m. The number of turns in the radial (Nr)

and axial (Nz) directions was 42 turns. Finally, given that the resistivity of copper ρ is

1.68× 10−8 Ω ·m, the DC resistance R was calculated to be 36.8 Ω using the equation:

R =
ρlw

π(Rw)2
(4.14)

The AWG26 wire cannot handle more than approximately 1A, and that limits the sub-

sequent actuator controlling process. Therefore, the number of ampere-turns was changed

to allow a smaller AWG that can handle a larger current (e.g., AWG22 can handle up

to 3.5 A). The radius Rw of the AWG22 wire is 0.322 mm. In this case, the number of

turns in the radial (Nr = (Rco −Rci) / (2Rw)) and axial (Nz = lc/(2Rw)) directions that

can fit the coil dimensions is 26 turns. Solving for the wire length lw using eq 4.13 gives

lw = 111 m, and the DC resistance R is 5.57 Ω. To find the current I that passes through

the electromagnetic coil, the power in both AWGs (26 and 22) needs to be the same. Using

the following energy equation:

I1
2R1

∣∣
AWG=26

= I2
2R2

∣∣
AWG=22

(4.15)

where, I1 is the current passing through AWG26 (1A), resistance R1 is 36.8Ω, and resistance

R2 is 5.57Ω, we can solve for the new current that will produce the same interaction

magnetic force (Fm = 14.4N): I2 = 2.52A. The optimization results are summarized in

Table 4.1.
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Table 4.1: Summary of the optimization results

Axial interaction magnetic force Fm 14.4N

Axial distance z 1 cm

Coil specifications Permanent magnet specifications

lc 1.7 cm lm 3.17 cm

Rci 1.7 cm Rm 1.58 cm

Rco 3.4 cm Br 1.32Tesla

Vc 47 cm3 Vm 25 cm3

Wire and winding specifications

AWG26 AWG22

Rw 0.2025mm 0.322mm

Nz 42 turn 26 turn

Nr 42 turn 26 turn

N 1764 turn 676 turn

lw 282 meter 111 meter

R 36.8 Ω 5.57 Ω

I 1A 2.52A

4.6 Magnetic Force Modeling

The axial interaction magnetic force Fm was plotted for different axial distances z between

the edges of the electromagnetic coil and the cylindrical permanent magnet using Ansys

Maxwell FEM software. For both wire gauges, AWG22 and AWG26, the interaction mag-
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netic force Fm was plotted for a range of 1 to 5 cm between the edges of the electromagnetic

coil and the cylindrical permanent magnet. The simulation results are shown in Figures 4.7

and 4.8.

Figure 4.7: Magnetic force versus air gap for AWG26 at 1A.
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Figure 4.8: Magnetic force versus air gap for AWG22 at 2.52A.

It can be seen from Figures 4.7 and 4.8 that both AWG results are in agreement. The

error between the analytical and FEM is plotted in Figure 4.9 for AWG26 and in Figure

4.10 for AWG22.
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Figure 4.9: Magnetic force error for AWG26 at 1A.

Figure 4.10: Magnetic force error for AWG22 at 2.52A.

Using the AWG22 wire gauges, the magnetic force Fm was obtained using the ”shell

method” for the following ranges: current I from 0 to 5 A, and axial gap z from 10 to

53



60 mm. The magnetic force is plotted in Figure 4.11.

Figure 4.11: Magnetic force versus axial air gap and excitation current.

It was observed that it is possible to model magnetic force and axial distance relation-

ship at different current values; therefore the relationship between magnetic force and axial

distance at current values between 0 and 5 A was plotted in Figure 4.12.
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Figure 4.12: Magnetic force versus axial air gap for different excitation currents.

Additionally, we can model the relationship between the magnetic force and the axial

distance by a sum of decaying exponential functions:

Fm (z) = Aebz +Dedz (4.16)

This equation is valid for an axial distance range of 0 to 60 mm. We plotted the relationship

between the magnetic force and the excitation current at different axial distances between

0 and 60 mm (Figure 4.13).
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Figure 4.13: Magnetic force versus excitation current at different axial air gaps.

The relationship between the magnetic force and the excitation current can be modeled by

a linear function:

Fm (I) = k1I + k0 (4.17)

For the purposes of controlling the actuator, a symbolic representation of the magnetic

force as a function of the axial distance and the excitation current Fm (z, I) is required.

Based on eqs 4.16 and 4.17, Fm (z, I) can be modeled by a nonlinear function:

Fm (z, I) = (Aebz + Cedz )I + (A2e
b2z + C2e

d2z ) (4.18)

To find the coefficients in eq 4.18, a linear fit between the given current and axial

distance ranges was performed. The coefficients are:
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A = −10.03, b = −0.07127, C = −0.7159, d = −0.01854, A2 = −4.664 × 10−14,

b2 = −0.06019, C2 = −3.511× 10−17, d2 = 0.1111.

4.7 Conclusion

This chapter focused on the analytical modeling and optimization procedures for building

the micromanipulator. First, the magnetic field and magnetic force were calculated, then

the optimization procedures were presented. Lastly, a fully symbolic magnetic force model

was found.
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Chapter 5

Controller Design

5.1 Introduction

Controlling magnetic levitation systems is not an easy task. Due to the inherent non-

linearity of magnetic levitation systems, one of the greatest challenges in development of

these systems is designing a robust control strategy. In addition, working in unknown en-

vironments with unknown parameters such as payloads makes the controller process even

more difficult. A considerable amount of literature has been published on designing robust

controllers for magnetic levitation systems. The well-known PID control method has been

successfully implemented to control various magnetically levitated systems [91, 92, 93, 94].

Controlling a nonlinear system using a PID control strategy requires linearizing the

dynamic model around an operating point, which limits the PID control strategy to a

small working area. The sliding mode control technique has also been used to control

magnetic bearings and magnetic levitation systems [95, 96, 97, 98]. Using this approach,

researchers have been able to control several magnetic systems for various applications.
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Conversely, previous experimental work indicated that the sliding mode control method

has a key problem regarding the need for a high sampling frequency [99]. Thus, the

main limitation with sliding mode control in magnetic levitation systems is that magnetic

systems in general have inherent delays. Such delays affect the sliding mode control action,

which may result in an undesired response and chattering [100].

A considerable body of literature has grown up around the use of the state-feedback lin-

earization control method to control magnetic levitation systems [101, 102, 103, 104, 105].

The purpose of the state-feedback linearization is to transform the dynamics of a nonlinear

system to behave like a linear system [106]. In order to convert a nonlinear dynamic model

into a linear one, state-feedback linearization requires full pre-knowledge of the system’s

dynamic model. In most magnetic levitation systems, the dynamic model changes in real-

time. This is either because of the process of operation as magnetic levitation systems are

commonly used in industry to levitate unknown payloads with unknown masses [107], or

because of the disturbance in the magnetic field which affects the magnetic force modeling.

This problem means that the feedback linearization is not the best option for magnetic

levitation systems. To overcome the problem of unknown parameters in the dynamic

model of magnetic levitation systems, researchers have used adaptive control algorithms

[108, 109, 110, 111, 112, 113]. Adaptive control techniques do not need pre-knowledge of

the system’s dynamic model, as they adapt and learn the unknown dynamic and sequen-

tially adjust the control signal to overcome the issue of variation in the system’s dynamic

model.

Due to the nonlinear dynamic of the actuator electromagnetic force, the manipulator

motion in all axes is non-linear. Hence, it is crucial that the proposed controller should be

designed with robust performance. An overview of the position control loop is presented

in simplified form in Figure 5.1. The plant model is non-linear. In addition it changes in
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real time with the payload variation. In the following sections, the proposed controllers

are presented. The proposed controllers are: PID controller, state-feedback controller, and

adaptive controller.

Figure 5.1: Schematic of the position control loop.

5.2 PID Controller

The motion of the micromanipulator will not be accurate and stable without a control

strategy. Therefore a linear PID controller is designed in order to regulate and control

the micromanipulator end-effector position in the workspace. The PID controller is imple-

mented with the general form shown in (5.1).

IPID(t) = Kt[Kp e(t) +Ki

∫ τ

0

e(t)dt+Kdė] +KW (5.1)

where IPID is the output of the PID controller that represents the excitation current.

e(t) is the error signal at time t, KW is the weight compensation gain, and Kt is the
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position to current gain. Kp, Ki and Kd represent proportional, integral, and derivative

gains, respectively. The PID controller gains can be tuned using standard methods such

as Ziegler-Nichol tuning rules.

5.2.1 Electromagnetic Force linearization

When the rod is centered with the drive unit, the axial air gap between any pair of per-

manent magnets and electromagnetic coils is 10mm. The maximum motion range for

the permanent magnets in the x and z directions is ±10mm. The electromagnetic force

between one electromagnetic coil and one permanent magnet was measured using an ATI

force sensor for different excitation currents and different axial air gaps. First, the elec-

tromagnetic force versus the axial air gap was measured when the excitation current was

1Ampere. The results are shown in Figure 5.2a. The root-mean-square error value was

0.2 N and the coefficient of determination R2 was 0.96. As seen in this Figure, the electro-

magnetic force in the controlled area can be approximated as a linear function. In addition,

the magnetic force was measured versus the excitation current when the axial air gap was

10mm. The results provided in Figure 5.2b show that the relation between the magnetic

force and the excitation current is linear.

Based on these results, the electromagnetic force Fm (z, I) as a function of the axial air

gap distance z and the excitation current I can by modeled by:

Fm (z, I) = (α1z + β1)I (5.2)

where α1 and β1 are numerical constants.

In addition, to show that the linearization is valid in the controlled region, a 2D Ansys

simulation for the magnetic flux density was added in that region as shown in Figure 5.3.
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(a) Electromagnetic force vs axial air gap. (b) Electromagnetic force vs excitation current.

Figure 5.2: Electromagnetic force experimental results.

As seen, the magnetic flux density is almost uniform in the region between the coil and

the permanent magnet.

Figure 5.3: Magnetic flux simulation.
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5.2.2 PID Controller Design in the z Axis

The dynamic equation in the z axis was already found in eq (3.12). For a small γ, and

assuming no contact force at the end-effector, eq (3.12) can be rewritten as:

F (z, I)(a) +Wc(b+ c) +Wr(b)−Wpm(a) = Ixaz̈ (5.3)

The equation of the magnetic force that was found earlier in eq (5.2), can be rewritten

as:

F (z, I) = f1(z)I (5.4)

where:

f1 (z) = α1z + β1 (5.5)

rearranging the dynamic model in eq (5.3), the feed-forward current Iff at saturation

position z0 is:

Iff =
Wc(b+ c) +Wr(b)−Wpm(a)

f1(z0)a
(5.6)

This model is not linear, and in order to design a PID controller, the system needs to

be linearized around an operating point. A linearized model is valid only when the system

operates in a sufficiently small range around an equilibrium point. Linearizing the dynamic

motion equation in eq (5.3) at (z0, I0), the linearized model will follow:
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z̈ = g(z0, I0) +
∂g

∂z
(z − z0) +

∂g

∂I
(I − I0)

=
∂f1(z0)
∂z

I0

Ix
(z − z0) +

f1(z0)

Ix
(I − I0)

(5.7)

which represents a linear model:

z̈ = k1(z0, I0)(z − z0) + k2(z0, I0)(I − I0) (5.8)

where k1 and k2 are constants that depend on the desired position z0.

5.2.3 PID Controller Design in the x Axis

As found in eq (3.11), and assuming no contact force at the end-effector, the equation of

dynamic motion in the x axis is:

− Fcx(a) = Izα̈ (5.9)

Using both electromagnetic coils in the x axis as shown in Figure 5.4:

Figure 5.4: Free body diagram in the x axis.
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where M/2 is the distance between coils and permanent magnets when x = 0, Ir and

Il are the excitation currents in the right and left coils respectively. Based on that, the

dynamic equation becomes:

Izα̈ = Flr − Frr (5.10)

The equation of the right and left magnetic forces (Fr and Fl) respectively were found

before in eq (5.2). Rewriting here for a small α:

Izrẍ = Ilf1(xl)r − Irf1(xr)r (5.11)

As it is shown in Figure 5.4, the distance between the finger and right and left elec-

tromagnetic coils (xr and xl respectively) depends on M/2. After inserting these in the

previous equation, the dynamic equation in the x axis results as:

ẍ =
Il
Iz
f1(

M

2
+ x)− Ir

Iz
f1(

M

2
− x) (5.12)

Each coil has a bias current I0 plus a controlling current I. The relation between left

and right currents can be found as:

Il = I0 + I (5.13)

Ir = I0 − I (5.14)

Substituting eq (5.13) and eq (5.14) in eq (5.12), the dynamic model becomes:

ẍ =
I0 + I

Iz
f1(

M

2
+ x)− I0 − I

Iz
f1(

M

2
− x) (5.15)
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Similar to the motion in the z axis, the motion in the x axis is also not linear. Therefore,

the first step in linearizing the equation is to approximate I and x around the saturation

point (xss,Iss) as follows:

x̂ = x− xss (5.16)

Î = I − Iss (5.17)

Substitute these in the dynamic equation:

¨̂x =
I0 + Î + Iss

Iz
f1(

M

2
+ x̂+ xss)−

I0 − Î − Iss
Iz

f1(
M

2
− x̂− xss) (5.18)

At (x, I) = (0, 0), the linearized model will follow:

¨̂x = (
I0 + Iss
Iz

∂f1(
M
2

+ xss)

∂x̂
+
I0 − Iss
Iz

∂f1(
M
2
− xss)

∂ x̂
)x̂

+ (
f1(

M
2

+ xss) + f1(
M
2
− xss)

Iz
)Î (5.19)

which represents a linear model:

¨̂x = K1x̂+K2Î (5.20)

where K1 and K2 are constants that depend on the desired position xss.
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5.2.4 PID Controller Design in the y Axis

The permanent magnets in the x and z directions are not moving inside the electromagnetic

coils, while the permanent magnet in the y axis moves inside the electromagnetic coils that

surround the finger. The dynamic equation in the y axis can be found based on the free

body diagram shown in Figure 5.5 as follows:

Fm − Ff = Mÿ (5.21)

where Fm and Ff are the electromagnetic and friction force respectively, and M is the

mass of the permanent magnet.

Figure 5.5: Free body diagram in the y axis.

The equation of the magnetic force in the y axis was found in (4.18). When eq (5.21)

is rearranged to obtain the dynamic equation in the y axis, we have:

ÿ =
f1(y)I

M
− Ff
M

(5.22)

This model is not linear since it includes product of a state variable with the input

excitation current. The system therefore is linearized around an operating point in order

to design the control law. A linearized model is valid only when the system operates in
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a sufficiently small range around an equilibrium point at (y0, I0). After linearizing the

dynamic motion equation in eq (5.22), we have a linear model as follows:

ÿ = ky(y0, I0)(y − y0) + ki(y0, I0)(I − I0) (5.23)

where ky(y0, I0) and ki(y0, I0) are the position and current stiffness respectively, and their

values depend exclusively on the parameters of the system.

The block diagram for the system in the x, y, and z axes with the PID Controller is

shown in Figure 5.6.

Figure 5.6: Schematic of the control system including the PID controller.

5.3 State-Feedback Controller

The manipulator dynamic model in the z axis as found earlier is:

z̈ = fz(z)I −W (5.24)
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Defining the state space variables x = [x1, x2, x3] as the position, velocity, and inte-

gration of the error between the desired and actual position of the manipulator, the state

space equation of the system is:


ẋ1

ẋ2

ẋ3

 =


x2

−W

−x1

+


0

fz(x1)

0

 I (5.25)

The output is:

y = [1 0 0] xT (5.26)

As seen in this equation, the system’s model contains a product of state variables with

the input variable; therefore, a state-feedback linearization is required. The purpose of the

state-feedback linearization is to transform the dynamics of a nonlinear system to behave

like a linear system [106]. By choosing the feedback control law as:

I =
W + (K1x1 +K2x2 +K3x3)

fz(x1)
(5.27)

the closed loop system is described by the following state differential equation:


ẋ1

ẋ2

ẋ3

 =


0 1 0

K1 K2 K3

−1 0 0



x1

x2

x3

 (5.28)

where K = [K1 K2 K3] is a constant state-feedback gain matrix.

The state-feedback gain matrix can be found using any of the state-feedback controller

design methods such as the pole placement method, the Linear Quadratic Regulator (LQR),
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or an eigenvalue assignment method. The state-feedback gain matrix can be chosen to

achieve the desired design requirements.

5.4 Adaptive Controller

The dynamic equation of the system in the z axis was already found in (5.3). Linearizing

the system shows that it is a marginally stable system with imaginary poles. The values for

the poles depend on the weight constant W . However, in our application the manipulator is

used for pick-and-place operations. Therefore different unknown payloads lead to different

unknown values of W . In this case, k1, and k2 in (5.29) are unknown due to weight

parameter variations during operation.

z(s)

I(s)
=

k1
s2 + k2

(5.29)

In order to adjust for this variation of the payload, a Model Reference Adaptive Control

(MRAC) using the MIT rule is implemented. The MRAC scheme uses a reference plant

model zm that behaves like an ideal plant to adjust the controller parameter. A second

order reference model was used, and therefore the following reference model was chosen:

zm(s)

zd(s)
=

ω2
n

s2 + 2ωnζs+ ω2
n

(5.30)

where zd(s) is the desired position, ωn, and ζ are the natural frequency and the damping

ratio, respectively. The MIT rule was used to design the controller with a cost function

defined by:

J(θ) =
1

2
e2 (5.31)
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The tracking error e is the difference between the actual position za and the refer-

ence plant model zm. The control law for the system excitation current using controller

parameters θ = [θ1, θ2] is defined as follows:

I = θ1zd − θ2za (5.32)

Based on this, the tracking error as a function of θ1 and θ2 is:

e =
θ1

s2 + k2 + k1θ2
zd −

ω2
n

s2 + 2ωnζs+ ω2
n

zd (5.33)

The tracking error in (5.33) depends on θ1 and θ2, also since the desired position is not

a function of both parameters, one can differentiate the tracking error with respect to θ1

and θ2 as follows:

∂e

∂θ1
=

1

s2 + k2 + k1θ2
zd (5.34)

∂e

∂θ2
=

−θ1k1
(s2 + k2 + k1θ2)2

zd =
−k1

(s2 + k2 + k1θ2)
za (5.35)

As the system characteristics are not known, i.e. k1, and k2 are unknown, and to ensure

that the system approaches the reference model, one can substitute the system model in

equations (5.34) and (5.35) with the reference model. According to the MIT rule, the

change in the parameter θ is kept in the direction of the negative gradient of J ; therefore,

∂θ

∂t
= −γe∂e

∂θ
(5.36)

Substituting equations (5.34) and (5.35) in equations (5.36) yields:
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∂θ1
∂t

= −γe ω2
n

s2 + 2ωnζs+ ω2
n

zd (5.37)

∂θ2
∂t

= γe
ω2
n

s2 + 2ωnζs+ ω2
n

za (5.38)

Figure 5.7 shows the block diagram of the MRAC.

Figure 5.7: Schematic of the MRAC.
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Chapter 6

Results and Validations

Some results regarding the magnetic force modeling were previously presented and dis-

cussed in chapter 4. This chapter presents the rest of the results and system validation,

inducing the magnetic force model validation, the experimental results using the control al-

gorithms with and without payload variations, the FEM results, the load capacity analysis

at the end-effector tip, and lastly the workspace analysis.

6.1 Model Validations

The magnetic force model obtained in eq 4.18 and the absolute error between this model

and the initial simulation data previously obtained in Figure ?? are plotted in Figure 6.1.

The error between the model and the simulation data is less than 0.06 N (Figure 6.1b).

Based on the configuration in Figure 6.2 and super-position principle, the total magnetic

force on the actuator is the total vector sum of the four magnetic forces.
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(a) Model data. (b) b. Error between simulation and model data.

Figure 6.1: Magnetic force versus axial air gap and excitation current.

The design was selected to maximize the total magnetic force in each direction. To

obtain this, the current in electromagnets in the same axes should have the same magnitude

and opposite directions (I1 = −I3 = Ix) and (I2 = −I4 = Iz ). After inserting these values

into eq 4.18, the total magnetic force applied to the actuator can be found using eq 6.1:

Fm (x, z, Ix, Iz) = (Aebx + Cedx )Ix + A2e
b2x + C2e

d2x +

(Aeb(x−20) + Ced(x−20) )Ix + A2e
b2(x−20) + C2e

d2(x−20) +

(Aebz + Cedz )Iz + A2e
b2z + C2e

d2z +

(Aeb(z−20) + Ced(z−20) )Iz + A2e
b2(z−20) + C2e

d2(z−20)

(6.1)

where x is the distance (mm) between C1 and PM1, and z is the distance (mm) between

C4 and PM4 in Figure 6.2.
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Figure 6.2: Configuration of the magnetic actuator at all axial air gaps.

6.2 Force Measurement Results

To validate the model, the results obtained from the closed form model eq 4.18 are com-

pared with those of the experiment. The magnetic force between an electromagnetic coil

and a cylindrical permanent magnet was measured using an ATI force sensor. The exper-

imental setup is shown in Figure 6.3.

An electromagnetic coil and permanent magnet were used to validate the force model,

having the following dimensions and specifications:
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Figure 6.3: Force measurement experimental setup.

Table 6.1: Dimension and specifications of experimental setup.

Coil specifications Permanent magnet specifications

lc 3.5 cm lm 2.54 cm

Rci 2 cm Rm 1.27 cm

Rco 3.25 cm Br 1.32Tesla

Vc 71.12 cm3 Vm 12 cm3

Wire and winding specifications

AWG17

Rw 0.575mm

Nz 30 turn

Nr 8 turn

N 240 turn
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The same procedures were used to obtain the coefficients in eq 4.18 for the new con-

figuration. Figure 6.4 shows a comparison of the experimental results, FEM results, and

results obtained from the model in eq 4.18.

Figure 6.4: A comparison of magnetic force versus excitation current for different axial air

gaps based on experimental, analytical, and FEM results.

The model data are in good agreement with the experimental and FEM results over the

selected range. The error difference between simulation, experimental, and model data is

less than 0.05 N . These findings demonstrate that the proposed model can be used with an

acceptable error to calculate the magnetic force between a cylindrical magnet and a thick

electromagnetic coil. Coefficients in eq 4.18 depend on the geometry of the electromagnetic

coil and permanent magnet, and future work will focus on the modeling of these coefficients

for any given geometry.
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6.3 Design Advantages

In this work, a new design of an electromagnetic manipulator was presented which has a

high actuation force, large workspace, and small drive unit. The system can be considered

as a modified version of magnetically levitated robots with a larger workspace and a smaller

drive unit. The design has many advantages over other electromagnetic micromanipulators

presented in the literature as it has a smaller drive unit and larger workspace. Only five

electromagnetic coils were used which is fewer compared to other similar works found in

literature.

To demonstrate the effectiveness of the design, comparison of the magnetic levitation

ball system which is a benchmark example of freely levitated systems shown in Figure 6.5a

below with our system shown in Figure 6.5b is presented.

(a) Magnetic levitation ball system. (b) Our system.

Figure 6.5: General magnetic levitation system.

Researchers were able to control the magnetic levitation ball system through a range

of approximately 1 cm in the vertical axis. This range, in our system, represents Xix and
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Xiz in equations (3.16) and (3.17). By multiplying this by 15+β
6

, given that β = 3, one

can achieve a three times larger workspace. In addition, the proposed manipulators in

other similar works found in the literature are levitated inside the magnetic field, i.e., the

control area is the same as the workspace area, while in our system the end-effector is

completely isolated from the controlled magnetic field. In many medical applications this

is preferable as the external magnetic field might disturb or interact with other devices or

affect the human body. Additionally, due to our design having an isolated workspace from

the controlled magnetic field there is lower heating effect in the workspace. Heating effect

might affect the manipulated objects in industrial manipulation or affect cells in medical

applications.

6.4 Position Tracking without payload variations

6.4.1 Simulation Results

The dynamic model for the z axis in Eq (5.8) with the PID controller was simulated using

the MatLab-Simulink environment. The PID controllers gains are: KT = 0.6, KP = 300,

KI = 5000 and KD = 1.8. The system response for step inputs is shown in Figure 6.6.

The response is a second order with a bit of oscillation before reaching the steady state

value.
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Figure 6.6: Simulation results in the z axis for the whole workspace.

Similarly, the dynamic model for the x axis in Eq (5.20) and the dynamic model for

the y axis in Eq (5.23) were simulated for step inputs. The PID controllers gains in the x

axis are: KT = 1, KP = 600, KI = 9500 and KD = 1.45, and in the y axis are: KP = 85,

KD = 0.05, KI = 7500, KT = −0.5. The system response for step inputs is shown in

Figures 6.7 and 6.8. In both axes, the system is stable and is able to reach the final

desired position.

Figure 6.7: Simulation results in the x axis for the whole workspace.
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Figure 6.8: Simulation results in the y axis for the whole workspace.

6.4.2 Experimental Setup

The schematic of the experimental setup shown in Figure 6.9 consists of four main compo-

nents. A main workstation computer that has LabVIEW software to analyze signals and

control the instrumentation was used. The computer consists of a National Instrument

(NI) 8 slot controller (model PXI-1042) that was used to generate and receive signals.

Two laser sensors from KEYENCE (model LK-2101) were used to detect the position of

the finger in all axes. Also, a current amplifier that was developed at the University of

Waterloo was used to drive the electromagnetic coils.
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Figure 6.9: Schematic of the experimental setup.

6.4.3 PID Controller Experimental Results

The results of the experiment for the z axis are shown in Figures 6.10, 6.11, and 6.12.

Figure 6.10, shows the system response for step inputs similar to the simulation. In gen-

eral, the response is similar to the simulation results shown in Figure 6.6. However, the

oscillation period in the experimental results is a bit larger than the simulation response.

This difference may have been caused by incorrect modeling for moment of inertia Ix.
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Figure 6.10: Experimental results in the z axis for the whole workspace.

The system response for ramp type inputs is presented in Figures 6.11 and 6.12. The

reference increases from −1 to 1mm in 40 seconds as shown in Figure 6.11, and from

−2 to 2mm in 40 seconds as shown in Figure 6.12. As can be seen in both Figures, the

micromanipulator is able to follow the reference position with a smooth motion over the

whole range of operation.

Figure 6.11: Experimental results in the z axis for a ramp input (2mm increase).
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Figure 6.12: Experimental results in the z axis for a ramp input (4mm increase).

Similarly, the motion of the micromanipulator is also verified experimentally in the

x axis. Figure 6.13 shows the system response for step inputs similar to the simulation

presented in Figure 6.7. It is shown that the micromanipulator can follow the desired

reference position in the x axis in a fast and smooth motion with an overshoot and with

a zero steady-state error. The response is a second order system as can be seen from

eq (5.20).

Figure 6.13: Experimental results in the x axis for the whole workspace.
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Figures 6.14 and 6.15 present the motion of the micromanipulator in the x axis following

ramp inputs. In both Figures, the micromanipulator is able to follow the desired path of

movement within a negligible error.

Figure 6.14: Experimental results in the z axis for a ramp input (2mm increase).

Figure 6.15: Experimental results in the x axis for a ramp input (4mm increase).

Experimental results for the y axis are shown in Figures 6.16. Figure 6.16, shows the

system response for step inputs similar to the simulation. In general, the response is similar
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to the simulation results shown in Figure 6.8. However, the difference between the laser

sensor sampling time and the simulation sampling time may explain the undesired motion

in the experimental results.

Figure 6.16: Experimental results in the y axis for the whole workspace.

Table 6.2 compares the performance of the motion in the x, y, and z axes, where, Tp, Tr,

and Ts are peak time, rise time, and settling time, respectively. P.O% is the percentage of

overshoot and RMS is the root mean square error in m. The results, as shown in Table 6.2,

indicate that the micromanipulator can follow the desired path and was able to follow rapid

movements quickly and with a good response. The tracking error in all axes converges to

less than 10 µm. PID controller gains can be further tuned to improve the settling and

peak times at the expense of increased overshoot.
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Table 6.2: Performance comparison in x, y, and z motion.

Performance Criteria x axis z axis y axis

Tp [s] 0.16 0.19 0.22

Tr [s] 0.10 0.11 0.13

Ts [s] 0.95 0.6 3.5

P.O [%] 52 77 20

RMS [m] 0.21× 10−3 0.24× 10−3 0.3× 10−3

Steady-state error [µm] < 10 < 10 < 10

6.4.4 Workspace Analysis

In the x and z axes, the controlling variable is the distance between the permanent magnet

and the four way connector which is Xix and Xiz in equations 3.16 and 3.17 respectively.

The maximum controlled motion obtained experimentally was ±5mm, and based on that,

the micromanipulator end-effector can achieve up to ±15mm of workspace in the x and

z axes. The results obtained show an improvement in motion accuracy and stability com-

pared to similar works mentioned in Chapter 2.

6.4.5 Frequency Domain Analysis

Experiments have been conducted for a range of frequencies less than 20Hz. The micro-

manipulator was programmed to follow the following sine waves: 0.5 sin(ωt), 1 sin(ωt),

and 2 sin(ωt). For each sine wave, the experiment was conducted with the following

frequencies: f = [0.1, 1, 2, 4] Hz. In each experiment the excitation signal and the mico-
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manipulator position were plotted. In addition, each time the magnitude and phase shift

were also plotted. The results are shown in Figures 6.17 to 6.22. Based on them, the

micromanipulator bandwidth was found to be 4Hz.

Figure 6.17: Experimental results in the z axis for 0.5sin(ωt) input.

Figure 6.18: Experimental results in the z axis for 1sin(ωt) input.
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Figure 6.19: Experimental results in the z axis for 2sin(ωt) input.

Figure 6.20: Experimental Bode plot in the z axis for 0.5sin(ωt) input.
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Figure 6.21: Experimental Bode plot in the z axis for 1sin(ωt) input.

Figure 6.22: Experimental Bode plot in the z axis for 2sin(ωt) input.

6.5 Position Tracking with payload variations

6.5.1 PID Controller Experimental Results

The system response without any payloads is shown in Figure 6.23. As shown in this

Figure, the PID controller is stable and able to guide the micromanipulator to the desired

position. As seen in Figures 6.24, and 6.25, when payloads are 25, and 75 g respectively,

any changes in the payload affect the performance of the PID control strategy. As noted,
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the PID controller suffers from large overshoot, and in order to reduce this overshoot,

real-time tuning is required to avoid this undesired performance.

Figure 6.23: Experimental results showing the performance of the PID controller without

payload.

Figure 6.24: Experimental results showing the performance of the PID controller when

payload is 25 g.
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Figure 6.25: Experimental results showing the performance of the PID controller when

payload is 75 g.

6.5.2 State-Feedback Controller Experimental Results

The system response without any payloads is shown in Figure 6.26. As shown, the micro-

manipulator motion is stable and smooth, and the micromanipulator follows the desired

trajectory with minimum tracking error.
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Figure 6.26: Experimental results showing the performance of the state-feedback control

algorithm without payload.

As seen in Figures 6.27, and 6.28, when payloads are 25, and 75 g respectively, the

motion of the micromanipulator becomes not smooth, in addition to having large overshoot.

The reason for this undesired motion is that a state-feedback controller requires full pre-

knowledge of a system’s dynamic model and linearises it to behave like a linear system.

When the payload varies, the system’s dynamic model is changed and that means the

state-feedback linearization is not valid anymore, which sequentially affects the motion

accuracy and positioning performance.
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Figure 6.27: Experimental results showing the performance of the state-feedback control

algorithm when payload is 25 g.

Figure 6.28: Experimental results of the performance of the state-feedback control algo-

rithm when payload is 75 g.

As a conclusion, the state-feedback controller that was derived in 5.3 depends on the

dynamic model when there is no payload, thus the accuracy of this control strategy affects

the overall positioning performance which can be seen in the large overshoot when payloads

increase.
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6.5.3 Adaptive Controller Experimental Results

Figures 6.29, 6.30, and 6.31 show the results of the MRAC adaptive controller when pay-

loads are 0, 25, and 75 g respectively. As seen in these Figures, MRAC response follows

the step response regardless of any change in payload. The parameters for the MRAC

controller are tuned in the first step response (when time is less than 30 seconds) to com-

pensate for any payload variation. The design parameters chosen for the reference model

in eq (5.30) are as follows: ωn = 1.88 rad/s, and ζ = 0.71. Lastly, the adaptation gain in

eq (5.36) was chosen to be γ = 0.5.

Figure 6.29: Experimental results showing the performance of the adaptive controller with-

out payload.
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Figure 6.30: Experimental results showing the performance of the adaptive controller when

payload is 25 g.

Figure 6.31: Experimental results showing the performance of the adaptive controller when

payload is 75 g.

6.5.4 Comparison

Table 6.3 compares performance criteria of the PID and the MRAC controllers when the

payloads are 0 and 75 g. Tp, Tr, and Ts are peak time, rise time, and settling time, respec-
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tively. Also, P.O%, and P.U% are the percentage of overshoot and undershoot respectively,

and RMS is the root mean square error in mm. The results, as shown in Table 6.3, in-

dicate that the manipulator follows the desired position in both control strategies with an

acceptable root square error less than 0.2mm. Despite the fact that the PID controller is

faster as can be seen from Tp, Tr, and Ts, it tends to have very large overshoot and under-

shoot compared to the MRAC controller. Payload variations influence the PID controller

response and yield a non smooth motion and may even produce an unstable system. The

performance of the MRAC controller, conversely remains almost the same with payload

variations. The motion of the manipulator under the MRAC control strategy is smooth

regarding the payload variations. Most of the pick-and-place operations require a smooth

motion and high stability which make the MRAC controller more preferable compared to

the PID controller. As the damping ratio ζ in the reference model was chosen to be 0.71,

the RMS using the MRAC controller was high. This value can be decreased in order

to lower the RMS error, however, this would be at the cost of having an underdamped

system.

6.5.5 Adaptive Controller using the MIT Rule

As found in the literature, MRAC using MIT rule is dependent on the amplitude of the

desired input [114, 115]. In order to overcome this problem, a modified MIT rule was used

to make the adaptive law independent of the desired input. Using the modified MIT rule,

the adaptive law in (5.36) is:

∂θ

∂t
=
−γe∂e

∂θ

α + ∂e
∂θ

T ∂e
∂θ

(6.2)

where the parameter α is a positive number that is used to avoid zero division when ∂e
∂θ
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Table 6.3: Comparison of performance criteria using PID and MRAC controllers.

Performance Criteria
Without Payload 75 g Payload

PID Adaptive PID Adaptive

Tp [s] 0.48 3.69 1.46 3.22

Tr [s] 0.09 1.4 0.65 1.68

Ts [s] 2.27 3.11 2.0 3.67

P.O [%] 3 1.5 30 13

P.U [%] 6 3 124 15

RMS [mm] 0.096 0.129 0.085 0.195

is small. To verify this, we test the performance of the MRAC and the MRAC using the

modified MIT rule when following a sinusoidal trajectory with a period of 20 seconds and

peak-to-peak amplitude of 6mm. Figure 6.32 shows the experimental results using the

MRAC and the MRAC using modified MIT rule after the learning and self adaptive time

(time > 30 s). It can be seen that the manipulator tracks the given sinusoidal trajectory

path using the MRAC with modified MIT rule. Figure 6.32 also indicates that the MRAC

controller is sensitive to the change in the desired inputs as the manipulator was not able to

follow the desired trajectory. Overall, these results indicate that the MRAC using modified

MIT rule can guide the manipulator to the desired location regardless of the variation in

the desired trajectory.
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Figure 6.32: Experimental results of MRAC and MRAC with modified MIT rule subjected

to a sinusoidal input.

As stated earlier, one of the potential applications of the manipulator is in pick-and-

place operations. In order to show the robustness of the system, the system performance

for picking and placing an object was tested between two points in the workspace. In

this experiment, the manipulator was programmed to pick a 25 g object and move in a

straight line from point (−0.01, 0,−0.01)m to point (0.01, 0, 0.01)m. Figure 6.33 shows

the experimental results using the MRAC controller with modified MIT rule. As seen in

the figure, the manipulator reached the final position in a stable and smooth motion.
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Figure 6.33: Pick-and-place experimental results when payload is 25 g.

6.6 Load Capacity Analysis

To validate the load capacity capabilities of the presented system, an experiment was

conducted to validate equation 3.15. The output force at the end-effector tip was measured

using a force sensor with different excitation currents at a fixed air gap of 10mm. The

results were compared with the model from equations 3.15, and 5.2, and the results are

shown in Figure 6.34. Overall, these results indicate that the system can manipulate

objects up to 160 gram.
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Figure 6.34: Load capacity comparison.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

In several applications, electromagnetic actuators are most desirable when performing spe-

cific tasks. As found in the literature, most of the proposed magnetically actuated micro-

manipulators are designed to have a large volume of electromagnetic coils surrounded by a

micro-size permanent magnet micromanipulator. In these cases, the micromanipulator has

a small workspace area relative to the overall system volume, in addition to the inability

to handle heavy payloads, and the need for a large drive unit compared to the size of the

levitated object. To overcome these limitations, a novel magnetically levitated manipulator

was designed that was adapted from the well-known spherical robot design.

The design has no mechanical gears, which eliminates friction and singularities, and

ensures smooth motion in the working environment. As there is no mechanical contact

between the drive unit and the levitated manipulator, the system has the ability to be

controlled remotely. The overall goal of this research project was to design, optimize, and
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build a portable M-DOF magnetically actuated finger micromanipulator, that is small and

portable, produces no backlash, can handle heavy loads, and still has a large working space.

The overall system consists of two main subsystems: a magnetic actuator and an elec-

tromagnetic end-effector that is connected to the magnetic actuator by a needle. The

magnetic actuator consists of four permanent magnets paired with four electromagnetic

coils. A finger mechanism with two revolute joints was designed to allow the microma-

nipulator to move in the workspace. The system is a three DOF micromanipulator that

moves along the x and z axes, and also moves linearly along the y axis. Firstly, the de-

sign and optimization procedures of the magnetic actuator part was introduced in order to

maximize the actuation force. Using the optimized geometry, the generated magnetic force

(14.4 N) was large enough compared to the end-effector desired force. The manipulator

needle length is also adjustable to allow a large workspace area and large force ratio. Ad-

ditionally, a closed form model was developed for the magnetic actuation force. The model

was compared and validated with experimental and FEM results. The error difference

between the FEM, experimental, and model data was approximately 0.05 N .

The development and experimental characterization for building the micromanipula-

tor were also introduced. The micromanipulator system can be used to address several

applications and needs, especially those requiring high-precision, such as, pick-and-place

operations, micro assembly, and cell manipulation. The micromanipulator system can

be remotely operated by transferring magnetic energy from the outside drive unit. The

micromanipulator Jacobian, the micromanipulator workspace, and the micromanipulator

kinematic and dynamic models were calculated. The dynamic model was not linear and it

was linearized around the operating point. In addition, the position of the end-effector in

the x, y, and z axes was controlled. Therefore, three control algorithms were designed to

compute control input currents that are able to control the position of the end-effector in
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all axes. The designed controllers were: the PID controller, the state-feedback controller,

and the adaptive controller. The experimental results showed that the micromanipulator

was able to track the desired trajectory in the x, y, and z axes with a steady-state error

less than 10 µm.

Lastly, control algorithms were implemented in order to demonstrate the ability of the

proposed micromanipulator to address pick-and-place operations for unknown payloads.

The manipulator motion under various payloads was tested using PID control, state-

feedback control, and model reference adaptive control. For payload free conditions, the

experimental results showed the ability of the micromanipulator to follow a desired motion

trajectory in all control strategies with a root mean square error less than 0.2mm. More-

over, the results demonstrated a strong effect of payload variations on the PID controller

performance and the state feedback controller, while it had no effect on the performance

of the model reference adaptive controller.

The micromanipulator successfully handled payloads up to 75 grams and the motion

range was ±15mm in each axis. Importantly, the results provided evidence for using the

proposed system as a potential manipulator that targets industrial manipulation. Future

studies are recommended to allow replication of results at the micro scale level.
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7.2 Recommendations

Electromagnetic actuation technology, providing frictionless motions and precise motion

control, has promising potential applications in many fields. Although the proposed micro-

manipulator was successfully tested experimentally to address pick-and-place operations

for unknown payloads and the obtained results are promising, it is evident that much fu-

ture research is required to be done in order to improve the micromanipulator performance

in terms of motion, speed, and accuracy.

First, the position controller loop can be enhanced with a 3D position sensor attached

to the micromanipulator in order to track the location of the end-effector position. Using

separate laser sensors in each axis would positively influence the motion coupling accuracy.

Second, force model correction schemes in the case of motion coupling can be designed

that would improve the controller performance. The controller herein used the derived

force model to guide the micomanipulator in the workspace. The axial magnetic force

between a cylindrical magnet and electromagnetic coil was modeled, but during motion

the force is not axially aligned and therefore implementing a force model correction would

enhance the motion and force accuracy.

Third, the micromanipulator can be used as a mass or force sensing device at the end-

effector tip. Therefore, implementing robust techniques to estimate the payload variations

at the end-effector tip and indirectly include them in the position control loop would

definitely improve the manipulation motion and accuracy. In addition, a hybrid position

and force controller could be applied and that would broaden the application range of the

system.
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Appendix A

The Shell Method Calculations

The axial magnetic force Fm between a cylindrical magnet and electromagnetic coil can be

found using the shell method as follows in A.1:

Fm =
1

Nr

Nr∑
nr=1

Fs(Rm, r(nr), lm, lc, z +
lm + lc

2
) (A.1)

Where:

r(nr) = Rci +
nr + 1

Nr + 1
(Rco −Rci) (A.2)

Fs(Rm, r, lm, lc, z +
lm + lc

2
) =

J1J2
2M0

e1=2∑
e1=1

e2=4∑
e2=3

e1e2m1m2m3Fx (A.3)

J2 =
µ0NzI

lc
(A.4)
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J1 = Br (A.5)

Fx = K(m4)−
1

m2

E(m4) + [
m1

2

m3
2
− 1]

∏
(

m4

1−m2

|m4 ) (A.6)

m1 = z +
lm + lc

2
− 1

2
e1lm +

1

2
e1lc (A.7)

m2 =
(Rm − r)2

m1

+ 1 (A.8)

m3 =

√
(Rm + r)2 +m1

2 (A.9)

m4 =
4Rmr

m3

(A.10)
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Appendix B

The Micromanipulator CAD Drawing

The micromanipulator complete CAD drawing is shown in the following Figure B.1:

Figure B.1: Schematic CAD drawing of the micromanipulator.
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