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Abstract

Autonomously operating vehicles are being developed to take over human supervision

in applications such as search and rescue, surveillance, exploration and scientific data col-

lection. For a vehicle to operate autonomously, it is important for it to predict its location

with respect to its surrounding in order to make decisions about its next movement. Si-

multaneous Localization and Mapping (SLAM) is a technique that utilizes information

from multiple sensors to not only estimate the vehicle’s location but also simultaneously

build a map of the environment. Substantial research efforts are being devoted to make

pose predictions using fewer sensors. Currently, laser scanners, which are expensive, have

been used as a primary sensor for environment perception as they measure obstacle dis-

tance with good accuracy and generate a point-cloud map of the surrounding. Recently,

researchers have used the method of triangulation to generate similar point-cloud maps us-

ing only cameras, which are relatively inexpensive. However, point-clouds generated from

cameras have an unobservable scale factor. To get an estimate of scale, measurements from

an additional sensor such as another camera (stereo configuration), laser scanners, wheel

encoders, GPS or IMU, can be used. Wheel encoders are known to suffer from inaccuracies

and drifts, using laser scanners is not cost effective, and GPS measurements come with

high uncertainty. Therefore, stereo-camera and camera-IMU methods have been topics of

constant development for the last decade.

A stereo-camera pair is typically used with a graphics processing unit (GPU) to gen-

erate a dense environment reconstruction. The scale is estimated from the pre-calculated

base-line (distance between camera centers) measurement. However, when the environment

features are far away, the base-line becomes negligible to be effectively used for triangula-

tion and the stereo-configuration reduces to monocular. Moreover, when the environment

is texture-less, information from visual measurements only cannot be used. An IMU pro-

vides metric measurements but suffers from significant drifts. Hence, in a camera-IMU

configuration, an IMU typically is used only for short-durations, i.e. in-between two cam-

era frames. This is desirable as it not only helps to estimate the global scale, but also to

give a pose estimate during temporary camera failure. Due to these reasons, a camera-
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IMU configuration is being increasingly used in applications such as in Unmanned Aerial

Vehicles (UAVs) and Augmented/ Virtual Reality (AR/VR).

This thesis presents a novel method for visual-inertial odometry for land vehicles which

is robust to unintended, but unavoidable bumps, encountered when an off-road land vehicle

traverses over potholes, speed-bumps or general change in terrain. In contrast to tightly-

coupled methods for visual-inertial odometry, the joint visual and inertial residuals is split

into two separate steps and the inertial optimization is performed after the direct-visual

alignment step. All visual and geometric information encoded in a key-frame are utilized

by including the inverse-depth variances in the optimization objective, making this method

a direct approach. The primary contribution of this work is the use of epipolar constraints,

computed from a direct-image alignment, to correct pose prediction obtained by integrating

IMU measurements, while simultaneously building a semi-dense map of the environment in

real-time. Through experiments, both indoor and outdoor, it is shown that the proposed

method is robust to sudden spikes in inertial measurements while achieving better accuracy

than the state-of-the art direct, tightly-coupled visual-inertial fusion method. In the future,

the proposed method can be augmented with loop-closure and re-localization to enhance

the pose prediction accuracy. Further, semantic segmentation of point-clouds can be useful

for applications such as object labeling and generating obstacle-free path.
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Chapter 1

Introduction

Autonomous vehicles have found applications in areas such as mine exploration, extra-

terrestrial surface inspection, search and rescue operations, scientific data collection, etc.

More recently, there have been efforts to make our day-to-day commute completely au-

tonomous [67] [68]. At present, modern consumer cars use basic forms of autonomy such

as driver assist systems, lane keeping systems, advanced braking systems, etc. A fleet of

fully autonomous cars will not only make our daily rides safer [19], but also enhance traffic

flow, provide a smoother ride experience, remove the need for humans to constantly stay

alert. For a land-vehicle to achieve complete autonomy, it has to be equipped with capabil-

ities that enable perception, advanced control and planning, etc. The perception system of

an autonomous vehicle should provide good estimates of where the vehicle is located and

what is around it, so that control, planning and collision avoidance modules can operate

effectively [67].

Simultaneous Localization and Mapping (SLAM) [20] [3] is a probabilistic technique

that combines information from multiple sensors to predict both the robot location as well

as the landmark locations in the environment. Over the past decade, SLAM has become an

established technique for motion estimation of autonomous robots. Variants of SLAM have

been developed to estimate the robot-pose as well as features in the environment at the

current time step, using the measurements from just the last time step (filtering), or past
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few time steps (smoothing) [10]. SLAM combines information from various sensors such

as cameras, Inertial Measurement Unit (IMU), Global Positioning Systems (GPS), laser

scanners, wheel encoders, etc. However, equipping a vehicle with multitude of sensors not

only demands increased requirements for real-time data capture but also requires heavy

computational requirements for data fusion. Hence, there has been a desire to extract

information and make inferences by using fewer sensors.

Laser Scanners are an integral part of an autonomous-car sensor-suite as they generate

a point-cloud representation denoting the distance of objects in the environment around

the car [52]. However, they are quite expensive. Recently, point-clouds have been gen-

erated using conventional cameras [32] which not only encode the distance but also the

color/intensity of the object as well, and thus, opening up possibilities of improved semantic

segmentation and classification [53].

As cameras encode rich visual information about the environment, researchers have

developed techniques for camera-only odometry as well as environment reconstruction [18]

[13] [41]. In order to infer depth from cameras, a stereo-configuration (two cameras) can be

used [32] [35]. The range of depth estimation depends on the separation between the two

camera centers (base-line). More recently, depth inference has also been possible using only

a single (monocular) camera by probabilistically refining depth from a video sequence [18].

The ability of monocular systems to build point-cloud maps has from a video stream

has limited the utility of stereo cameras for dense mapping [32] and initialization [23].

Moreover, when the object distance is large (e.g, in high altitude flight), the base-line

becomes negligible and the stereo-configuration reduces to monocular. Due to this reason,

efforts are being made for non-stereo alternatives to infer depth [50]. Alternatively, some

cameras are equipped with a depth sensor which produce (Red Green Blue-Depth) RGB-D

images. The free availability of depth without the need for a separate estimation technique

has enabled development of RGB-D SLAM systems [1] [59] [72]. However, such sensors

usually perceive depth using infra-red waves which do not work in presence of sunlight;

thus limiting outdoor use.

Estimation of scale is not possible in monocular camera only SLAM, without the use of

a metric sensor [14]. In [24], a sonar is used to estimate the ground plane to predict scale.
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In [64] prior knowledge about the height of the camera is used to predict scale. Moreover,

monocular-camera only SLAM is known to suffer from scale-drift on large trajectories [65].

Further, in the presence of predominant rotational movements, monocular SLAM methods

usually fail due to insufficient epipolar stereo-correspondences [11].

Inertial Measurement Units (IMUs) provide both metric information and rotation esti-

mates. However, developing dead-reckoning methods using an IMU as the only sensor, is

infeasible as errors in pose estimation quickly accumulate and grow out of bounds. IMUs

are cheap and almost always present in modern camera phones. The two sensors, an IMU

and a monocular camera, complement each other well by addressing each other’s short-

comings [17]; IMU provides the missing scale and rotation information while the camera

helps in keeping IMU errors within acceptable bounds. For this reason, camera-IMU fu-

sion techniques have been developed and deployed in applications such as robotics [9] and

augmented/virtual reality (AR/VR) [43].

However, monocular visual-inertial fusion techniques have been limited to key-point

based methods [28] [56] [57] which build sparse environment maps, and when used with

autonomous systems they need to rely on other sensors, such as laser scanners and sonars,

to extract useful information about the environment for critical tasks such as naviga-

tion [70] [71]. Recently, direct methods [23] have been developed that build richer and more

visually informative semi-dense maps in real-time, providing promising prospects for nav-

igation using only visual and inertial sensors. More recently, the so-called tightly-coupled

approaches for visual-inertial fusion, developed originally for key-point based methods,

have been extended for the direct visual SLAM framework [17]. However, the joint opti-

mization framework, used in the tight-coupled technique, degrades when the measurements

from IMU are affected by sudden, unexpected spikes encountered when deployed on a land-

vehicle traversing over bumps, pot-holes or general change in terrain. As a land-vehicle is

very likely to traverse over uneven terrain, there is a need to develop a visual-inertial tech-

nique which predicts reliable pose estimates even in presence of sudden spikes in inertial

measurements.
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1.1 Problem Statement

The problem statement can be outlined as follows: The measurements obtained at every

time step are the camera measurements (Zc) encoded as pixels and the inertial measure-

ments (ZI := {ax, ay, az, gx, gy, gz}). The problem is to predict the pose of the camera-IMU

setup by utilizing both visual and inertial measurements to infer/refine the depth (encoded

in the inverse-depth representation(Dm)), under the following assumptions:

� There is a prior assumption of inverse-depth map; usually randomly initialized.

� The illumination does not change drastically

� All the measurements are temporally in sequence. i.e. measurements Zc,ZI at time

t > t0 do not appear before t0.

� The scene is predominantly static; i.e. no moving objects other than the vehicle

� The Lambertian assumption is valid. (uniform surface reflectance from all angles) [63]

� There is enough texture in the surface of the environment

� Camera, IMU or Camera-IMU calibration parameters do not change throughout the

experiment.

1.2 Contribution

In this thesis, a novel direct semi-tightly coupled visual-inertial fusion technique is pre-

sented which is robust in presence of sudden, unintended spikes in IMU measurements

experienced when the camera-IMU platform is mounted on a land-vehicle traversing a

bumpy terrain. The primary contribution of this thesis is the development of an opti-

mization framework that enforces epipolar constraints to correct pose priors, obtained by

integrating noisy IMU measurements, while taking into account geometric misalignment
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arising due to direct visual optimization. To the best of the author’s knowledge, this the-

sis is the first to handle sudden spikes in IMU measurements in a direct visual-inertial

framework.

1.3 Organization

This thesis starts with a discussion of relevant work in Section 2, followed by brief mathe-

matical preliminaries in Section 3. A background on direct state estimation techniques is

provided in Section 4, followed by a detailed description of the methodology in Section 5,

experiments in Section 6 and results in Section 7. A final conclusion is made along with

scope for future work in Section 8.
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Chapter 2

Related Work

The proposed approach for visual-inertial data fusion builds upon the existing frameworks

for direct monocular visual SLAM. In this chapter, discussion on relevant research starts

with vision-only SLAM in Section 2.1 to justify the visual optimization design choices,

followed by recent work on visual-inertial SLAM in Section 2.2.

2.1 Monocular-Vision only SLAM

Although stereo-based techniques for visual odometry have existed for quite sometime,

MonoSLAM [18] laid the foundation for monocular visual SLAM, where an Extended

Kalman Filter (EKF) based algorithm was used to track and map a few key-points. The

inverse-depth parametrization was introduced in [13]. The representation of depth in its

inverse-depth form made it possible to represent depths of points from unity to infinity.

The measurement model, along with its EKF update rule, is almost universally used in

visual SLAM techniques.

Parallel Tracking and Mapping (PTAM) [43] introduced the concept of parallelizing

tracking and mapping on separate cores on the same CPU, paving way for real-time ap-

plications. Dense Tracking and Mapping (DTAM) [1] introduced the concept of “direct-

tracking” and built a dense environment reconstruction by utilizing the parallel architecture
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of a GPU. Since then, [59], [73] and [72] have taken advantage of parallel GPU architecture

and 3D point cloud stitching using Iterative Closet Point (ICP) algorithm to achieve im-

pressive results. However, such methods require the use of GPU and depth cameras which

make them infeasible for real-time implementation on resource constrained systems.

The work of [6] builds upon [43] to fuse inertial information using a variant of EKF.

The tracking accuracy was further improved in [56] and later in [57] by developing a SLAM

framework, complete with loop closure and re-localization to achieve long term stability.

However, such techniques use key-point descriptors to first isolate a subset of pixels, which

not only demand computational overhead but also result in loss of rich visual information

by building only a sparse representation of the environment.

Direct Tracking and Mapping introduced in [1] was used in [23] to perform visual

SLAM on gradient-rich image regions to generate a much denser environment reconstruc-

tion. This approach avoids costly key point computations and generates a denser map

in real-time. This approach was further extended to omni-directional [12] and stereo [22]

and was later augmented with pose-graph optimization [21] of [46] to show very accurate

results. Dense Piecewise Planar Tracking And Mapping (DPPTAM) [16] used the concept

of super-pixels [15], to build an even denser map of the environment, under the assumption

that neighboring pixels with similar intensity are likely to lie on one plane. Unlike [16],

Multi-level Mapping [36] used a K-D tree to generate almost fully dense reconstruction.

In contrast, [28] further sparsifies high-gradient pixels by extracting corners to achieve

fast tracking while compromising the reconstruction density. The proposed method finds

a middle ground and builds upon [21] to achieve real-time results while not sacrificing

computational overhead required for dense reconstructions as in [16], [36] or not losing

out on the density reconstructed environment as in [28]. However, since the core visual-

tracking methodology is similar in all of these approaches, the proposed method can be

easily adapted to achieve trade-offs in either direction; to build dense maps or implement

faster tracking.
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2.2 Visual-Inertial Fusion

Although visual-inertial fusion techniques have been of interest to researchers for over a

decade [60] [42] [40], the work of [54] stands out. In this work, a state vector with current

and last few poses are augmented with landmark poses in the current field of view and

jointly updated using an Extended Kalman Filter (EKF). [74] is an extension of [54] that

is twice as fast. The gain in computational speed is a result of efficient representation

of the Hessian matrix in its inverse form, such that quick single-precision operations can

be performed. This representation has enabled [74] to be deployed in real-time resource

constrained embedded systems. In [51] an ensemble of EKFs were used for visual inertial

fusion. However, the method relies on a stereo-camera setup for depth estimation. [49] was

yet another improvement on [54] where observability of the linearized terms during the

EKF update were analyzed and camera-to-IMU parameters were corrected on the fly.

Recently, [62] proposed a method of on-the-fly scale estimation and camera-IMU extrin-

sic calibration but this method is based on sparse key points. As the number of landmark

poses in direct-methods is significantly larger than key-point methods, an equivalent ex-

tension of [54], [74] or [62] results in significant computational overhead. In [47], a tightly

coupled approach was used to optimize inertial terms with only “key-frame” images in a

sliding window non-linear optimization framework to demonstrate superior accuracy over

one-step filtering approaches.

In contrast, inertial-aided direct visual methods have been proposed only recently. In

[69], a tightly coupled approach for visual-inertial fusion was proposed using factor-graphs

[44]. The use of However, a stereo-camera set-up gives reliable depth estimation at the

start, as compared to a monocular setup which used random depth initialization. Since the

optimization framework requires estimates close to optimal points, a random initialization

as done in a monocular framework, makes the technique [69] give incorrect estimates.

Moreover, the fundamental assumptions of depth being an independent measurement gets

violated in a monocular setting. In [55], a method was proposed to estimate the scale

with high accuracy as well as to reduce drifts in previously mapped areas which was later

extended [9] for planning and map building for previously unexplored areas. However the
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method used sparse key-points which becomes computationally expensive when extended

for direct methods. An iterated extended Kalman filter based direct-visual inertial fusion

scheme was proposed in [7], where image patches were used as descriptors for photometric

feedback. However, the method generates a sparse map of the environment.

In [27], a method is described for unifying multiple IMU measurements into a single

factor and sparse landmark features in a structureless approach in a factor-graph [44]

framework. However, since the method is sparse and includes features only in a key-frame,

it does not scale up for direct-methods. [17] describes a method for joint optimization of

inertial and visual residuals (tightly-coupled) in real-time. However, it was noticed during

experiments that in the presence of sudden spikes in IMU measurements, its performance

degrades. Further, random initialization of inverse-depth renders the joint optimization

step sub-optimal. Epipolar constraints were exploited for aligning feature points with

ground-truth epipolar lines [8]. However, the technique is sparse and relies on extraction

of feature correspondences.

In this thesis, a novel visual-inertial technique is presented by formulating epipolar

constraints in a direct-image alignment framework, in contrast to sparse formulations such

as in [8]. Within the proposed inertial-epipolar optimization technique, each pixel’s inverse

depth variance is included and accounted for visual misalignment, to correct noisy pose

prior obtained from integration of IMU measurements. By isolating inertial terms from a

joint framework and performing inertial-epipolar optimization after direct-visual alignment,

the proposed method is able to tackle sudden, spurious spikes in IMU measurements. In the

experimental section, a comparison is made with the current state-of-the-art direct visual-

inertial method [17] to demonstrate the robustness and increased accuracy of the proposed

technique, in presence of sudden bumps experienced by the camera-IMU platform, when

mounted a moving land-vehicle. Further, due to the increased accuracy in pose-prediction,

the proposed method can be used to build a consistent semi-dense map of the environment.

In the next section, a brief description of some preliminary concepts used in visual-

inertial state estimation is presented.
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Chapter 3

Preliminaries

In this chapter, mathematical preliminaries are presented in brief. In Section 3.1 the

camera model is discussed along with its associated distortion models. In Section 3.2, Lie

Groups are briefly described which form the backbone of our optimization objective. In

Section 3.3, the IMU model used in this work, is discussed. Finally, in section 3.5, the

state vector along with all its associated variables is presented.

3.1 Camera Projection Model

The whole geometric process of a point reflecting the light source through the lens until

the final capture on the image-sensor is captured via a pin-hole projection model as shown

in Figure 3.1.

In the absence of lens distortion, the image formed on the sensor is not exactly of the

same size as that of the actual object. The real world object is transformed into a tiny

version of itself and encoded in the image sensor. Each element of the sensor array is

identifiable by its address. Larger the number of individual sensor elements greater is the

discretization. At any particular instant the intensity value captured by such a sensor

element is called referred to as a pixel (or picture cell). Each pixel maps to a part of the
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Figure 3.1: Pinhole Camera Model (Source: Wiki Images)

actual 3D space which is referred to as 3D points in the rest of this thesis. Hence, it can

be said that the camera encodes information about the 3D world in pixels. A relationship

of this transformation is given by:

x′ = π((X)) := KX =

 fz sy cx

sx fy cy

0 0 1


 X

Y

Z

 (3.1)

where π is called the Projection Function, X is the 3D world coordinate of the pixel, K

is called the Intrinsic Camera Matrix, x′ is the pixel coordinate in the image plane, fx, fy

transform refer to the focal length parameters in the x and y directions. cx, cy are called the

centering parameters, sx, sy are the skew parameters arising due to misalignment between

lens and the sensor. All these parameters are assumed to be fixed and are estimated as a

separate calibration step before the experiment.
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Alternate to the projection model, a point in the camera image-plane can be unprojected

onto the 3D space as:

x =K−1x′ (3.2)

with K−1 =


1
fx

1
cx
− cx
fx

1
sy

1
fy
− cy
fy

0 0 1

 (3.3)

Hence, if the depth value Z is known, the un-projection model, converts a pixel coordinate

to an actual 3D point using:

π−1(x, Z) := ZK−1x (3.4)

Distortion Lens distortion happens because of the spherical lens depending on how much

the rays get bent before getting absorbed on the sensor.

Large field of view (FOV) lenses capture larger information about the environment.

However, they suffer from distortion [25] [76]. A compact representation of pictorial in-

formation complicates spatial association and in-order to represent assign correct spatial

coordinates to the pixels, it is essential to undistort the images. The corrected coordinates

of pixels suffering from radial distortion is described in [25] [76] and given by :

xcorrected =x(1 + k1r
2 + k2r

4 + k3r
6 + ...) (3.5)

ycorrected =y(1 + k1r
2 + k2r

4 + k3r
6 + ...) (3.6)

where x and y are the original pixel coordinates and approximation till the second order

suffices in practical cases.

Tangential distortion arises from misalignment of the image sensor axis and the lens
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axis resulting in a tilt of the image [76]. This kind of distortion is modeled by the equations:

xcorrected =x+ (2p1xy + p2(r
2 + 2x2)) (3.7)

ycorrected =y + (p1(r
2 + 2x2) + 2p2xy) (3.8)

In the computer vision community both of these distortion are modeled approximately

by the 5 unknown parameters that collectively model the radial distortion.

Kdistortion = (k1 k2 p1 p2 p3) (3.9)

Figure 3.2: An image of an evenly spaced square grid suffering from lens distortion
(Source: Wiki Images)
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3.2 Lie Group and Lie Algebra

The Lie Group SE(3) is used to represent transformations and poses [27] which encode

the rotation as a rotation matrix R ∈ SO(3) and translation t ∈ R3. Lie Algebra is

the tangent space to the manifold at identity. The tangent space for the group SO(3) is

denoted by so(3) which coincides with the space of 3x3 skew symmetric matrices. Every

skew symmetric matrix can be identified with a vector in R3 using the hat operator, (.)∧:

ω∧ =

 ω1

ω2

ω3


∧

=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3) (3.10)

Similarly, a skew symmetric matrix is mapped to a vector in R3 using the vee operator

(·)∨: for a skew symmetric matrix S = ω∧, the vee operator is such that S∨ = ω.

The exponential map at identity exp : so(3) → SO(3) associates elements of the Lie

Algebra to a rotation:

exp(φ∧) = I +
sin (||φ||)
||φ||

φ∧ +
1− cos (||φ||)
||φ||2

(φ∧)2 (3.11)

The logarithm map (at identity) associates a matrix R ∈ SO(3) to a skew symmetric

matrix:

log (R) =
ϕ · (R−RT )

2 sin(ϕ)
with ϕ = cos−1

(
tr(R)− 1

2

)
(3.12)

It is also worthwhile to note that log (R)∨=aϕ, where a and ϕ are the rotation axes and

the rotation angle of R. The mapping is depicted in Figure 3.3.

The use lie algebra in optimization allows for smooth pose updates which obey the

properties of manifold operations.
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Figure 3.3: Lie group manifold operations (Source [27], ©2017 IEEE)

3.3 IMU Model

Let Rw
j ∈ SO(3) represent the rotation, twj ∈ R3 denote the translation vector and vwj ∈ R3

denote the velocity vector in the current frame j in the world reference frame w. This is

calculated from the previous frame i by forward Euler integration [17];

Rw
j = Rw

i R
i
j (3.13)

vwj = vwi + vwij (3.14)

twj = twi + twij (3.15)

where Ri
j denotes the relative rotations between frames i and j, vwij is the incremental

velocity and twij is the translation vector. These variables are computed from the IMU

measurements angular velocity, ωωω, and linear acceleration, a, with biases bω and ba re-
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spectively. The increments can be written in terms of measurements as:

Ri
j =

k+N−1∏
p=k

expSO(3)([ωωω(p) + bω(p)]∧δt) (3.16)

vwij =
k+N−1∑
p=k

(Rw
p (a(p) + ba(p))− g)δt (3.17)

twij =Nvwi δt+
1

2

k+N−1∑
p=k

(2(k +N − 1− p) + 1) (3.18)

(Rw
p (a(p) + ba(p))− g)δt2

where p denotes the instances where IMU measurements are available in between two

camera frames i and j. The IMU biases are modeled as random walk processes with

variances ηηηa and ηηηω:

ba(k + 1) = ba(k) + ηηηaδt (3.19)

bω(k + 1) = bω(k) + ηηηωδt (3.20)

3.4 Gravity Alignment

In order to obtain a correctly oriented world-frame map, a gravity alignment operation

is performed as an initialization step. A few IMU acceleration samples were recorded to

estimate the initial World frame to Body Frame orientation (WRB ∈ SO(3)). First, the

magnitude of the gravity vector is computed as:

|g| =
√
a2x + a2y + a2z (3.21)
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The initial pitch and roll angles are then computed as:

pitch = tan−1

(
ax√
a2y + a2z

)
(3.22)

roll = tan−1
(−ay
az

)
(3.23)

where ax, ay, az are the averaged accelerations over the first few frames in the x, y, z Carte-

sian directions. As the yaw is undetermined from the accelerations alone, initial yaw is

assumed to be zero. In the presence of a magnetometer, better initialization to the yaw

angle can be performed.

3.5 The State Vector

To aid in the estimation process, a state vector maintains the pose estimates, the updates on

velocity and bias estimates. More specifically, the state is defined as si := [TT
i vTi bTi ] ∈

R15 where, b ∈ R6 is a vector containing the bias in the 3D acceleration and 3D angular

velocity measurements of the IMU. The pose element, Ti ∈ SE(3), encodes the translation

and Ri ∈ SO(3) and ti ∈ R3.

The state-vector, in this work, does not maintain the past states or feature positions

unlike feature-based fusion methods due to the following reasons: 1) number of points in

dense optimization methods is much more than feature-based methods and including them

in the state adds significantly to the size and computational cost and a filtering based

approach is adopted over the smoothing approach [29]. The prior-pose estimate to our

optimization is obtained by forward Euler integration described in Section 3.3. Once an

estimate of the pose Tj is obtained using method described in Section 5.2, the state vector

is updated and used again for the next time step.
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Figure 3.4: Image pyramids shown with the least-resolution, lowest level pyramid at the
top to the highest resolution at the bottom. The optimization starts the top and moves
down after convergence at a particular level.

3.6 Image Pyramid

To avoid local minima, the optimization is performed over image pyramid (See Figure.

3.4). The bottom-most level of the pyramid is the resolution obtained from the camera

sensor (640x480, in our case). The next level is constructed by averaging out four neigh-

boring pixels. The least resolution image is at the top. The optimization starts at the top

and gradually moves down the pyramid upon convergence at that level. Finer features in

the image are averaged out gradually as one moves up the pyramid. As the optimization

objective is usually highly non-linear, such a pyramidal implementation avoids local min-

imas when optimization is performed from top to bottom [75]. In this work, 5 levels of

image-pyramids were used.
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Chapter 4

Direct Tracking

This chapter provides a brief background on direct visual tracking methods, upon which

the proposed technique is based on.

4.1 Lucas-Kannade Image Alignment

This technique seeks to minimize the photometric residual with an objective function

defined as:

min
∑
x

(I1(ω(x,p))− I0(x))2 (4.1)

where x is the coordinate of a pixel in the template image I0, w(.) is a warp function

that maps the pixel x to its corresponding location in the target image I1. The goal of

the optimization is to seek optimal parameters p such that the cost, defined in (4.1), is

minimized for a small patch of pixels around the original pixel, x. The vector p represents

the “warp parameters” encoding a transformation of the image patch in I0 to I1.
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4.2 Direct Image Alignment

This technique is a variant of the Lucas Kannade algorithm [4], where the warp func-

tion encodes unprojection of the pixel with an inverse depth Di (reciprocal of depth)

and reprojected back on to the target image, after applying transformation, T, to the

unprojected point. More recently, this method has been applied to visual odometry ap-

plications [21] [16] [28], yielding impressive results. Here, instead of computing feature

points, all pixels with a valid depth estimate (belonging to an inverse-depth map Dm) and

having enough intensity gradient are included in a single objective function and the sum

of squared intensity residuals is minimized.

min
∑

(rph)
2 (4.2)

= min
∑
x∈Dm

(I1(ω(x,T,K))− I0(x))2

where T ∈ SE(3) is the transformation encoding the rotation R ∈ SO(3) and translation

t ∈ R3 and K is the camera calibration matrix.

The formulation of the warp parameters as members of Lie Group allows for smooth

updates in the tangent space se(3). The minimum is calculated using variants of Gauss-

Newton algorithm with increments ∆ξ as:

∆ξ = −(JTWJ)−1JTWrph (4.3)

where J is the stacked Jacobian of all pixels for the residual rph with respect to the six

elements of Lie Algebra ∆ξ.

It is worth noting here that the relationship between the optimization variables to the

cost function (4.2) is highly non-linear due to mathematical operations such a matrix mul-

tiplication of the rotation matrix and homogenization in the projection model. Moreover,

a random inverse depth map is used to bootstrap the monocular slam process. Although,

a robust weighing function [38] is typically deployed to handle outliers, improper initializa-

tion of initial transformation estimate, T, can force the optimization to a local minima.
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4.3 Visual Inertial Direct Odometry

This technique adds an IMU to aid in the optimization process. The best results have

been achieved by ‘tightly-coupled’ approach, where the photometric residual (4.2) is jointly

optimized along with an inertial-residual given by:

rimu =



logSO(3)

(
(Ri

j)
T (Rw

i )TRw
j

)∨
twj − twij − twi

vwj − vwij − vwi

bwaj − bwai
bwgj − bwgi


(4.4)

where logSO(3)(.)
∨ denotes the retracted rotation residual from Lie Group SO(3) to Lie

algebra so(3), (.)ij is obtained by integrating IMU measurements from time frame i to j.

(.)w denotes world frame of reference. (.)wi is the state at the previous time frame i and (.)wj

is the parameter to be optimized. R, t,v,ba,bg denote the rotation, translation, linear

velocity, accelerometer bias and gyroscope bias, respectively.

Notice that the residual rimu is minimized when the predicted state parameters match

with the ones obtained from IMU measurements. In a joint estimation framework, where

both rph and rimu are minimized simultaneously, the updates in IMU pose, ∆ξimu, is

calculated first and used to “guide” the optimization of the photometric residual. This

is typically desirable as the measurements from IMU provide both the initial estimate

(by distorting the cost function to generate a new minima around the minima of the IMU

residual) and a direction for convergence (through Jacobian of IMU residual with respect to

photometric updates ∆ξph). However, in presence of unexpected but unavoidable bumps,

the new minima for this residual is highly offsetted from where it was desired. Since the

original cost function (4.2) is highly non-linear, such an offset makes it susceptible to local

minima.

In the next chapter, this issue is addressed by the proposed technique.
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Chapter 5

Methodology

In this chapter, the proposed method is described in detail. First, in Section 5.1, the

image alignment algorithm, used for visual-alignment, is briefly touched upon. In Section

5.2, a detailed description of the visual-inertial tracking method is presented. Finally, the

mapping technique is described in Section 5.3.

5.1 Inverse Compositional Image Alignment

As the first step, the visual residual, as formulated in Section 4.2, is minimized. Although,

there are several variants available [4] to minimize the objective function 4.2, the “Inverse

Compositional Method” was used in this thesis because of its faster convergence rate. The

algorithm is outlined in brief below. The reader is advised to refer to [4] for details.

Pre-compute :

1. Evaluate the gradient ∇I0 of the template I0(x)

2. Pre-compute the Jacobian ∂ω
∂ξ

at (x;0)

3. Compute the steepest descent images ∇I0 ∂ω∂ξ
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4. Compute the Hessian matrix using the Equation:

H =
∑
x

[
∇I0

∂ω

∂ξ

]T [
∇I0

∂ω

∂ξ

]
(5.1)

Iterate :

1. Warp I with ω(x;T) to compute I (ω(x;T))

2. Compute the error image I (ω(x;T))− I0(x)

3. Compute
∑

x

[
∇I0 ∂ω∂ξ

]T
[I (ω(x;p))− I0(x)]

4. Compute ∆ξ using Equation:

∆ξ = H−1
∑
x

[
∇I0

∂ω

∂ξ

]T
[I (ω(x;T))− I0(x)] (5.2)

5. Update warp ω(x;T)← ω(x;T) ◦ ω(x;Exp(∆ξ))−1 until ||∆ξ|| ≤ ε

Once converged, the epipolar alignment is performed as described in the next section.

5.2 Visual-Inertial Epipolar Constrained Odometry

In this novel formulation, the IMU residuals were decoupled from the direct visual image

alignment step (4.2), where the photometric cost function was allowed to converge with

respect to the randomly initialized unscaled inverse depth map. After convergence, all the

corresponding points on the target image were not perfectly aligned (but only a subset, the

ones which satisfy the brightness consistency asssumption). For the sake of simplicity, the

assumption that the optimization yeilds perfect matches (xLK) is made. This assumption

later relaxed in Section 5.2.1.
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Figure 5.1: Schematic for Visual Inertial Epipolar Constrained Odometry. Two threads
run in parallel. The tracking thread encodes the epipolar optimization and the mapping
thread uses the optimized pose (R∗, t∗) to update the map.

Using the prior transformation (described in Section 3.5) (T̂i
j,IMU

), for each pixel in the

key-frame image, an initial estimate can be computed for the epipolar line, (l′∗) through

the relation:

l̂′ =F̂IMUx (5.3)

=K−T [̂tIMU]×R̂IMUK
−1x (5.4)

where F̂IMU is the initial estimated guess for the Fundamental Matrix constructed through

T̂i
j,IMU

∈ SE(3) which encodes R̂IMU ∈ SO(3) and t̂IMU ∈ R3, and x ∈ R3 is the

homogenized pixel coordinate (u, v, 1). Using (5.4), the epipolar residual is defined as,

repl = dist(xT
LK, l̂

′) (5.5)

where, dist(p, l) is the function computing the euclidean distance between point, p and

line, l.

The epipolar constraint dictates that the best match pixel (xbm) correspondig to the
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source pixel (x) must lie on the corresponding epipolar line (l′∗). The aim was to obtain

the optimal transformation (T∗) by applying updates ∆ξ ∈ se(3) to T̂i
j,IMU

(obtained by

integrating IMU measurements), such that the perpendicular distance between the epipolar

line (l̂′) and xLK (correspinding point on target image after convergence of (4.2) ) on the

2D image plane is minimized. This step is referred to as “epipolar image alignment” in

the rest of the paper. The objective was: 1) to find l′∗ so that 1D stereo-search along this

line would give xbm and 2) to obtain T∗ as a result of this alignment.

Note however, that this alignment is 2D and the rank of Fundamental Matrix is 2 which

causes a loss of the scale information. This phenomenon can be imagined as “zooming

in/out” on a scene where there is perfect 2D epipolar alignment but absence of scale

information makes estimation of “zooming in/out” motion impossible.

To address this shortcoming, we formulate an inverse-depth residual to counter any scale

drift during the epipolar optimization. The initial scale was first estimated by obtaining

a coarse estimate of inverse depths for all pixels xLK due to the transformation T̂i
j,IMU .

This was done by finding xLK⊥, which was the perpendicular projection of xLK on l̂′. The

ratio of mean of all such inverse depths to the mean of our initial inverse depth assumption

gives a good initial scale estimate. This process of finding scale is inspired by [21] where

mean inverse depth is conserved to unity at each key-frame to prevent scale drift.

To conserve the scale drift during epipolar alignment, the following residual is formu-

lated.

rDi
=D̂i − g(D̂i,T) (5.6)

=D̂i − (Rrow3 •Kx + tz) (5.7)

where, D̂i is the initial estimate of the inverse depth of pixel i obtained as explained above,

Rrow3 is the third row of the current Rotation Estimate, (•) denotes dot product and tz is

the current translation estimate in ‘z’ direction.
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Our complete cost function becomes:

min
∑

(r2epl + r2D) (5.8)

=
∑

dist(xT
LK, l̂

′)2 + (D̂i − g(D̂i,T))2 (5.9)

=
∑

dist(xT
LK,K

−T[t]×RK−1x)2 + (5.10)

(D̂i − (Rrow3 •Kx + tz))
2

where dist(p, l) is the function computing the euclidean distance between point, p and

line, l.

At this point, one might observe that the inverse depth residual is zero at the start

and progressively grows with iteration. This effect is desirable and intended to counter

the scale drift as it becomes more and more prominent during minimization of epipolar

residual. The image of the epipole of the second image on the template (key-frame) image

during the optimization process is shown in Figure 5.2.

5.2.1 Robust Weighting

Earlier in Section 5.2, perfect alignment of pixels as a result of the visual-inertial optimiza-

tion step was assumed. However, due to random initialization at the start and general noise

in camera pixel measurements, this assumption is not valid. In-fact, only a subset of these

pixels ‘align’ themselves well. The extent of alignment dictates the extent of relaxation

allowed for a particular pixel in the epipolar alignment step (Section 5.2). In this section,

the extent of this alignment is modeled by normalizing the epipolar and the inverse depth

residuals (5.10). In addition, robust weighting function is employed to counter the effect

of outliers.
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Figure 5.2: The epipole positions plotted on the key-frame image during an optimization
process for a straight line motion. RED shows the epipole position due to noisy prior
due to integration of IMU measurements at the start of the optimization. GREEN shows
intermediate epipole positions during the optimization. BLUE is the final epipole position.
Since the trajectory is straight, the epipole’s image on the key-frame image should be at
the center of the image, which is where the initial noisy pose prior is driven to, as a result
of optimization.

Epipolar residuals for each pixel are normalized as follows:

ˆrepl =
repl
σrepl

(5.11)

σ2
repl

= (
∂repl
∂D

)σ2
D + σ2

c (5.12)

where σ2
D is the inverse depth variance, (

∂repl
∂D

) is the Jacobian of the epipolar residual with
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respect to the inverse depth and σ2
c is the camera pixel noise.

Similarly, inverse depth residual is normalized

r̂D =
rD
σrD

(5.13)

σ2
rD

= (
∂rD
∂D

)σ2
D (5.14)

where (∂rD
∂D

) is the Jacobian of the inverse depth residual with respect to the inverse depth.

A single Huber weighing function is applied to both the residuals considering the fact

that if one pixel is an outlier, both the residuals must be weighted less.

wx := ρ(r̂D
2 + ˆrepl

2) (5.15)

ρ(r2) :=

1 if |r| < δ

δ
|r| otherwise

(5.16)

The complete algorithm can be summarized below:

Initialize :

1. Use the IMU measurements from the last time-step of the state vector, si−1, (See

Section 3.5) to predict pose Tinit ∈ SE(3) by Euler forward integration as described

in Section 3.3.

Iterate :

1. Calculate the epipolar residual, repl (5.5) and the inverse depth residual rDi
(5.6)

using the current estimate of pose, T for all valid pixels

2. Compute the respective Jacobians of repl and rDi
w.r.t. pose updates, ∆ξ ∈ se(3)

(See Appendix B and C) for all valid pixels

3. Compute Jacobians of repl (B.10) and rDi
(C.4) w.r.t. respective inverse depths and

compute weights for all valid pixels
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4. Compute the Hessian H = JTWJ

5. Compute the pose update ∆ξ = H−1
∑

x J
Tw(rD + repl)

6. Update pose Tit ← Exp(∆̂ξ) ◦Tit−1, where ◦ denotes pose composition in SE(3)

and it denotes the iteration number.

5.3 Mapping

To enable real-time operation, both the Tracking and Mapping modules are implemented

in parallel threads.The mapping thread is blocked until the image is first tracked and has

a valid pose (Ti
∗), as depicted in Figure 5.1. Each valid pixel is transformed in the key-

frame” image (static for comparison with incoming image sequences and the image to which

inverse-depth map is assigned) on to a corresponding pixel in the successive ”reference”

image (each incoming image) and perform a one-dimensional search along five equidistant

points along the epipolar lines in both images (See Figure 5.3). Each successful stereo-

match is at the point where the Sum of Squared Difference (SSD) error is minimum (See

Figure 5.4) and corresponds to the best estimate of the original pixel in the key-frame

image (shown as box in Figure 5.3) on corresponding reference image.

We follow a similar methodology to [23] and employ geometric and photometric errors

in the stereo computations as briefly described below. The reader is encouraged to refer

to [23] for details.

σ2
d := α2(σ2

λ,photometric + σ2
λ,geometric) (5.17)

with;

σ2
λ,photometric =

2σ2
i

g2p
(5.18)

σ2
λ,geometric =

σ2
l

〈g, l〉2
(5.19)

where
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Figure 5.3: Epipolar stereo matching on key-frame and reference images. On the left are
five equidistant points on the key-frame image and on the right, are the same five points
being searched along the epipolar line (shown as RED line). The best match point, xbm

is shown as a box. The cost associated as this search is performed is shown in Figure 5.4

σi: camera-pixel noise

σl: variance of positioning error of the initial

point on epipolar line

gp: gradient along the epipolar line

g : normalized image gradient

Following each successful stereo observation, the depth and variance is updated as:

N (
σ2
pdo + σ2

odp

σ2
p + σ2

o

,
σ2
pσ

2
o

σ2
p + σ2

o

) (5.20)

where N (dp, σ
2
p) is the prior distribution and N (do, σ

2
o) is the observed distribution.
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Figure 5.4: Sum of Squared Difference Error as five equidistant points are checked along
the epipolar line in the reference image as shown in 5.3 The minima is the point of best
match..
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Chapter 6

Experimental Hardware Calibration

This chapter of the thesis describes the experiments. We start with the description of

the experimental setup in Section 6.1, followed by detailed description of the calibration

procedure in Section 6.2.

6.1 Setup

The experimental setup consist of a monocular camera (PointGrey BlackFly @50fps) with

a wide FOV lens (90°) to capture 640x480 monochrome images, and IMU (Microstrain

3DGX2 @100Hz) to capture 6-dof linear accelerations and angular velocity. Both of these

sensors were rigidly fixed on a base as shown in Figure 6.1. The processor used was a

Lenovo Z40 laptop equipped with intel i5 processor and 4GB of RAM, running Ubuntu

Linux pre-loaded with Robot Operating System (ROS). Additionally, a Vicon Motion

Capture System was used as Ground Truth for indoor experiments.

To highlight the advantages of the proposed method, it was essential to have a set-

up that could impart sudden unintentional bumps during movement. To realize that, a

makeshift trolley-cart with one misaligned wheel, was used to impart sudden bumps to the

set-up. Moreover, the inability to intentionally control the timing, duration or nature of
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Figure 6.1: Indoor experiment setup. The monocular camera and IMU fixed rigidly and
mounted on a trolley-cart with one misaligned wheel.

sudden spikes in IMU measurements, made our system mimic real world outdoor conditions

where land-vehicles would encounter sudden bumps or change in terrain.

For outdoor experiments, the camera-IMU platform was mounted at the front-end of

an off-road 6x6 vehicle, manufactured by ARGO, as shown in Figure 6.2.
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Figure 6.2: Outdoor experiment setup. The monocular camera and IMU fixed rigidly
and mounted on an off-road vehicle. The axis conventions are shown in Figure 6.3

Figure 6.3: Camera-IMU setup close-up view. Axis conventions shown for clarity.

34



6.2 Hardware Calibration

Before the start of the experiment, the camera-IMU system was calibrated offline in order

to determine the focal lengths (fx, fy) and camera center in pixels (cx, cy), radial distor-

tion parameters, the IMU-variances (using Allan Variance Analysis), IMU biases (ba, bg),

camera-IMU transformation matrix (Tci) and temporal offsets (time lag between each ap-

parently overlapping camera and IMU sample (See Figure. 6.4). The open-source package

Kalibr [31] [30] was used to perform this calibration. Since a large FOV camera was

used for the experiments, the radial distortion due to lens was corrected for each incoming

image using the distortion model available in the open-source undistorter package inside

PTAM [43]. The equations described in Section 5 assume a pre-rectified image, free from

radial distortion. The calibration parameters for our camera are shown in Table 6.1:

Table 6.1: Table summarizing calibration parameters for experiments.

PARAMETER : VALUE
IMU Variances: 0.01(m/s2) and 0.005(rad/sec)
Temporal Offset: 0.002 sec (See Figure 6.4)
Accelerometer Biases: bax : 0.132,

bay : 0.015,
baz : 0.002

Gyroscope Biases: bgx : −0.00022,
bgy : −0.00107,
bgz : 0.00042

(fx, fy, cx, cy) : 369.70, 367.81, 332.67, 248.46
Radial Distortion Coeff: −0.04,−0.017, 0.033,−0.019

6.2.1 IMU Calibration

Static calibration of IMU primarily refers to the alignment of both the sensors in all the

3 directions. For the accelerometer, it was first essential to estimate the gravity vector g.

This value was calculated as the norm of all three measurements at rest and found to be

−9.80556435m/s2.
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Figure 6.4: Temporal offset between Camera and IMU sampling.

Figure 6.5: Linear acceleration at rest
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Accelerometer Calibration

Note that in Figure 6.5 the gravity vector has been subtracted to obtain the normalized

accelerations in all the 3 directions at rest. They are not perfectly aligned because of

in-exact coincidence with the actual gravity vector. Although, it might seem erroneous at

first glance, it is actually advantageous as, one can obtain the “orientation” of the sensor.

This has been calculated and shown in Figure 6.6. Note that Yaw Pitch and Roll will

Figure 6.6: Orientation of the IMU at rest calculated from the misalignment with the
absolute gravity vector

coincide only when the base of the IMU is perfectly horizontal. This is almost never the

case, and we take advantage of the misalignment to estimate the initial orientation of the

IMU.
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Gyroscope Calibration

However, for the gyroscope, there was no physical signal correspondence to follow. Hence,

gyroscope data was calibrated to remove the drift and bias. At rest, the data should

coincide with the zero mean at rest. The calibrated angular velocity plot is shown in

Figure 6.7

Figure 6.7: Calibrated angular velocity plot

Allan Variance Analysis

Allan Variance Analysis(AVA) was useful to determine the noise parameters of the IMU.

To compute the plots a 30 minute stream of IMU data was captured at rest. AVA for our

experiment are shown below:
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Figure 6.8: Allan variance plot for the linear
acceleration in 3 directions

Figure 6.9: Allan variance plot of the gyro-
scope data in 3 directions

Figure 6.10: Power spectral density plots of
the linear acceleration data

Figure 6.11: Power spectral density plots of
the gyroscope data
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6.2.2 Camera Calibration

To estimate geometrical relationships between the environment and camera measure-

ments, known 2D/3D correspondences were matched with pixel-pixel distance measure-

ments and scale factors in each direction were established. After such a procedure, the

“Camera Model” could be used as fx, fy, cx, cy which remain fixed during the whole pro-

cedure.

To carry-out this calibration, a suitable calibration pattern with known point-point

correspondences was needed. Out of all the available options such as checkerboard and

circle-board, etc., the April-Tag calibration pattern was chosen as shown in Figure.6.12.

Figure 6.12: April-Tag calibration pattern used for static camera calibration

The bigger the pattern, the better the precision. To achieve this, we used a calibration

patter of 80cm X 80cm. Figure 6.13 shows the Seimens star patterns used to check the

focus of the cameras.

To estimate the accuracy of the calibration it is necessary to statistically evaluate the

results. The results of static calibration are listed below:
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Figure 6.13: Seimens star patterns used to test focused camera images

The Camera intrinsic parameters found from this calibration are as follows:

� distortion: [-0.05625918 0.03045371 -0.04082714 0.01728124] +- [ 0.00820038 0.03371133

0.05421623 0.02943633]

� projection: [ 367.27418734 367.19097289 324.16378311 254.77103486] +- [ 0.82395318

0.79900595 0.52245299 0.37383656]

� re-projection error: [-0.000000, 0.000000] +- [0.153252, 0.141225]
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Figure 6.14: Polar error between reprojected pixels after calibration over original ob-
served pixels

Figure 6.15: Azimuth error of the reprojected pixels after calibration over the original
observed pixels.
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Figure 6.16: Visualization of extracted corners and reprojected pixels errors
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6.2.3 Camera-IMU Calibration

By dynamic calibration we mean simultaneous estimation of the motion of the camera-

IMU system with respect to static image pixel-pixel correspondences. We use the Kalibr

toolbox which used high-degree b-spline functions as state variable to estimate continuous

motion. After the data is captured, batch-optimization of the data is performed iteratively

to calculate the best estimates of time-offsets and the Camera-IMU transformations. For

same reasons as static calibration, we list the statistics and results directly.

Accelerometer First the accelerometer overlay-ed on the original data-points are shown

in Figure 6.17 in the 3 axes.Figure 6.18 shows the estimation errors and Figure 6.19 shows

the estimated bias parameters

Figure 6.17: Accelerometer curves overlayed over estimated curves
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Figure 6.18: Estimated accelerometer bias curve

Figure 6.19: Accelerometer bias estimates shown along with upper and lower max-limits
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Gyroscope Similar to the analogy above, the estimated values of the gyroscope overlay-

ed on the original data-points are shown in Figure 6.20 in the 3 axes.Figure 6.21 shows the

estimation errors and Figure 6.22 shows the estimated bias parameters.

Figure 6.20: Gyroscope curves overlayed over estimated curves
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Figure 6.21: Estimated gyroscope bias curve

Figure 6.22: Gyroscope bias estimates shown along with upper and lower max-limits
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Finally the re-projection error of the dynamic calibration procedure is shown in Fig-

ure 6.23. Notice how, with increasing image index(Blue to Red), the re-projection error

reduces.

Figure 6.23: Dynamic calibration re-projection error

One thing to be note here is that this is the minimum error we are likely to encounter

in our actual estimation algorithm. Also note that this error is much more than only

camera re-projection error. This increase in re-projection error was due to the uncertainty

associated with the inaccuracy in estimation of camera-IMU transformation Matrix Tci.
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Chapter 7

Experimental Results

This chapter outlines the results obtained both indoors and outdoors. Experiments were

first conducted indoors where ground-truth was available and later a qualitative evaluation

was performed outdoors.

7.1 Indoor Environment

7.1.1 Vicon Room

The accuracy of our algorithm and the tightly coupled approach in the presence of ground-

truth data was analyzed The camera-IMU setup was mounted on a trolley with one mis-

aligned wheel which produced unpredictable bumps during movement. To ensure the same

conditions for both algorithms, Visual-Inertial Direct (abbreviated as VID) [17] and our

method (abbreviated as VIE), were initialized with the same random inverse depth map

and the accuracy was analyzed with reference to only one fixed key-frame. Note that the

primary motive of our experiment was to observe the initial errors which, in the absence

of loop-closure or pose-graph optimization, would persist and accumulate throughout the

experiment. The implementation of VID [17] is our own and built on top of [21] instead

of [16]. Also, superpixels as implemented in [16], are not included in this comparision.
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Table 7.1: Table summarizing accuracy (RMSE) Translation Errors of Visual Inertial
Direct Method (VID) [17] and the proposed method (VIE), denoted in italics. Also note
that the smaller error has been bold-faced for clarity.

Trajectory ID
X(m) Y(m) Z(m)

VID VIE VID VIE VID VIE
1 0.0381 0.0312 0.0933 0.0530 0.0569 0.0588
2 0.0273 0.0237 0.0059 0.0323 0.1154 0.1159
3 0.0564 0.0866 0.1979 0.0857 0.1305 0.1124
4 0.0841 0.0367 0.0526 0.0335 0.0709 0.0988
5 0.0792 0.0331 0.1333 0.0670 0.0554 0.0512
6 0.0939 0.0411 0.0739 0.0376 0.1203 0.0756

Table 7.2: Table summarizing accuracy (RMSE) Rotation Errors of Visual Inertial
Direct Method (VID) [17] and the proposed method (VIE), denoted in italics. Also note
that the smaller error has been bold-faced for clarity.

Trajectory ID
Yaw(rad) Pitch(rad) Roll(rad)

VID VIE VID VIE VID VIE
1 0.0213 0.0038 0.0635 0.0136 0.0426 0.0348
2 0.2805 0.0020 0.0456 0.0181 0.0284 0.0025
3 0.3528 0.0131 0.0832 0.0253 0.0628 0.1066
4 0.7987 0.0013 0.0567 0.0225 0.0416 0.0200
5 0.0138 0.0112 0.0295 0.0149 0.0243 0.0667
6 0.3134 0.0037 0.0269 0.0321 0.0175 0.0265

Since our long term objective was to develop this system for land-vehicles, the movement

was limited to the two-dimensional plane only. Moreover, complex 3D trajectories are

usually observed when mounted on drones or simply hand-held mapping systems, where

the noise profile due to wind-gusts or hand tremor is much different than what is observed

in land-vehicles.

The platform was moved several times in presence of ground-truth in different directions

and the results (RMSE errors) are summarized in Table 7.1 and 7.2.

On closer inspection of the results in Table 7.1 and 7.2, one can observe that overall,

better accuracy is achieved using our method than the state-of-the-art ( ∼26% improve-
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ment in translation and ∼ 55% improvement in rotation), in presence of sudden spikes in

accelerations due to bumps.

By looking at the raw IMU measurements Figures 7.2, 7.4, 7.6, 7.8, 7.10, 7.12, one can

easily spot the the time instants where the trolley cart experienced sudden bumps (areas of

high oscillations). One can observe from raw accelerometer readings in Figures 7.2a , 7.4a,

7.6a, 7.8a, 7.10a and 7.12a, that the magnitude of the noise is dominant in the downward

facing ‘Z’ direction, although the lateral ‘X’ and ‘Y’ direction measurements suffer as well.

By looking at the raw gyroscope readings in Figure 7.2b 7.4b, 7.6b, 7.8b, 7.10b and 7.12b,

one can deduce that the noise due to bumps affects angular measurements as well. Yaw

(gz) remains relatively noise free while pitch and roll are impacted greatly as a result of

bumps.

From the plots (Figures 7.1a and 7.1b), it is evident that as the cart progressively

experienced more bumps, the tightly-coupled system’s (VID) accuracy in pose estimation

degraded. At this point, qualitative correlation can be drawn between the raw IMU read-

ings in Figure 7.2 and the effect it had on accuracy of the two algorithms in Figure 7.1.

By decoupling the IMU from the joint optimization step, the noise could be reduced in Y

(pointing down) and X (pointing sideways from direction of motion). As the movement

of the cart was perpendicular to the observing surface (wall directly in front), our system

was unable to eliminate the noise component in the Z (direction of motion). It can also

be seen that noise due to bumps not only affected the translation but rotation as well (as

the optimization was jointly performed over SE(3)). Similar inferences can be drawn from

plots for other trajectories.

Further, it can be observed that trajectory 2 in Table 7.1 shows better translation

accuracy for the competing method. On comparision against IMU acceleration profile for

other trajectories, one can observe a lower magnitude of spike in Figure 7.4, suggesting that

in the absence of large spikes, the performance of the VID technique is better, as expected,

due to tight-coupling. Moreover, the subtle vibrations seen in the plots (Figures 7.1a and

7.1b) are a direct result of the camera capturing bumps at its frame-rate, which shows up

in both the techniques. However, vibrations induced in-between two camera frames could

be corrected using the proposed method in contrast to the VID technique.
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(a)

(b)

Figure 7.1: Trajectory 1:(a) Translation errors(m) versus image frame number (b)
Angular errors(rad) versus Image Frame number. Note: The coordinate frame expressed
here is Camera centric. Z-forward, Y-down and X-right.
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(a)

(b)

Figure 7.2: Trajectory 1:(a) Raw accelerometer reading and (b) Raw gyroscope reading
versus Image frame number. Note, that even though IMU sampling rate(100Hz) is twice
that of the camera(50Hz), the readings are plotted with respect to Image Frame No. for
easy comparison. Also note that the coordinate system in IMU centric. X-forward, Y-
Right, Z-Down

53



(a)

(b)

Figure 7.3: Trajectory 2:(a)Translation errors(m) versus image frame number (b) An-
gular errors(rad) versus image frame number. Note: The coordinate frame expressed here
is camera centric. Z-forward, Y-down and X-right.
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(a)

(b)

Figure 7.4: Trajectory 2:(a) Raw accelerometer reading and (b) Raw gyroscope reading
versus Image frame number. Note, that even though IMU sampling rate(100Hz) is twice
that of the camera(50Hz), the readings are plotted with respect to Image Frame No. for
easy comparison. Also note that the coordinate system in IMU centric. X-forward, Y-
Right, Z-Down
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(a)

(b)

Figure 7.5: Trajectory 3:(a) Translation errors(m) versus image frame number (b)
Angular errors(rad) versus image frame number. Note: The coordinate frame expressed
here is camera centric. Z-forward, Y-down and X-right.
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(a)

(b)

Figure 7.6: Trajectory 3:(a) Raw accelerometer reading and (b) Raw gyroscope reading
versus Image frame number. Note, that even though IMU sampling rate(100Hz) is twice
that of the camera(50Hz), the readings are plotted with respect to Image Frame No. for
easy comparison. Also note that the coordinate system in IMU centric. X-forward, Y-
Right, Z-Down
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(a)

(b)

Figure 7.7: Trajectory 4:(a) Translation errors(m) versus image frame number (b)
Angular errors(rad) versus image frame number. Note: The coordinate frame expressed
here is camera centric. Z-forward, Y-down and X-right.
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(a)

(b)

Figure 7.8: Trajectory 4:(a) Raw accelerometer reading and (b) Raw gyroscope reading
versus Image frame number. Note, that even though IMU sampling rate(100Hz) is twice
that of the camera(50Hz), the readings are plotted with respect to Image Frame No. for
easy comparison. Also note that the coordinate system in IMU centric. X-forward, Y-
Right, Z-Down
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(a)

(b)

Figure 7.9: Trajectory 5:(a) Translation errors(m) versus image frame number (b)
Angular errors(rad) versus image frame number. Note: The coordinate frame expressed
here is camera centric. Z-forward, Y-down and X-right.
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(a)

(b)

Figure 7.10: Trajectory 5:(a) Raw accelerometer reading and (b) Raw gyroscope read-
ing versus Image frame number. Note, that even though IMU sampling rate(100Hz) is
twice that of the camera(50Hz), the readings are plotted with respect to Image Frame No.
for easy comparison. Also note that the coordinate system in IMU centric. X-forward,
Y-Right, Z-Down
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(a)

(b)

Figure 7.11: Trajectory 6:(a) Translation errors(m) versus image frame number (b)
Angular errors(rad) versus image frame number. Note: The coordinate frame expressed
here is camera centric. Z-forward, Y-down and X-right.
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(a)

(b)

Figure 7.12: Trajectory 6:(a) Raw accelerometer reading and (b) Raw gyroscope read-
ing versus Image frame number. Note, that even though IMU sampling rate(100Hz) is
twice that of the camera(50Hz), the readings are plotted with respect to Image Frame No.
for easy comparison. Also note that the coordinate system in IMU centric. X-forward,
Y-Right, Z-Down
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7.1.2 Corridor

After validating our method in the indoor setting with ground-truth, the same trolley-

camera-IMU system was used to map a larger in indoor area. The map generated is

shown in Figure 7.13. The quality of the map, even in the presence of bumpy motion is a

demonstration of the pose-estimation accuracy of our approach.

Figure 7.13: A semi-dense map build of an indoor corridor.
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7.2 Outdoor Environment

The camera-IMU system was mounted on the ARGO 6x6 off-road land-vehicle. The set-up

was subject to high noise due to vibration of the vehicle chassis, due to sudden acceleration

and braking and during general motion on the road terrain.

Since there was no way to estimate the ground truth pose accurately, the results shown

here are only qualitative. A portion of the environment (a building) in the RGB image is

highlighted as seen in Figure 7.14a, the same region as reconstructed using tightly coupled

approach in Figure 7.14b and using our method in Figure 7.14c. A significant degradation

in map quality due to tight coupling in presence of high inertial noise can be noticed. As

mapping is done in a SLAM framework, the error in pose prediction affects the quality of

map that is built consequently. Since our approach is resilient to high inertial noise (as

shown in an indoor settings , refer to Section 7.1.1), the quality of the map built using our

technique was superior.
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(a)

(b)

(c)

Figure 7.14: Qualitative results of outdoor experiment. A portion of the 3D structure is
highlighted in RED in all three figures for comparison. (a) shows the sample RGB image
seen by the camera. (b) shows reconstruction quality for tightly-coupled system. (c) shows
reconstruction quality for the proposed method. Notice the improvement in map quality
due to increased accuracy of pose estimation.
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Chapter 8

Conclusion and Future Work

In this work, a semi-tightly coupled direct visual-inertial fusion scheme was presented to

handle sudden, unintended bumps encountered when the camera-IMU system was mounted

on a land-vehicle. The multitude of visual correspondences provided enough constraints

to correct large inter-frame IMU drifts. Further, by accounting for inverse-depth variances

in the optimization framework, we could include information from all valid pixels in our

inertial-epipolar optimization, making our fusion method a direct-approach. Although, an

IMU has traditionally been used to speed up the prediction in a tightly-coupled frame-

work, through experiments it was shown that a wrong prior at the start made the joint

optimization objective converge to a local minima. Hence, it was reasonable to isolate the

IMU measurements and correct it later by imposing epipolar constraints.

Experiments were first conducted indoors, in the presence of ground-truth and com-

pared with the current tightly-coupled state-of-the-art visual-inertial method to demon-

strate increase in accuracy of pose-prediction. To simulate unintended bumps, a make-

shift trolley with one mis-aligned wheel was used. The inability to control the duration

or timing of the bumps not only made each experiment unique but also mimic outdoor

scenarios. The experiments were repeated for six trajectories in an indoor environment, in

order to confirm the validity of this approach. On close inspection of the plots, not only

positional but also rotational accuracy improvement can be noticed.
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Experiments conducted outside were only quantitative as there was no way to measure

ground-truth. The camera-IMU setup suffered from high noise both because of vibrations

on the chassis and uneven road terrain. It was demonstrated that the proposed method

built a reasonable map of the environment when the competing method quickly diverged.

However, since the proposed approach uses two optimization objectives instead of one,

it required a minor computational overhead (∼ 10 iterations, 12±5ms), while still achieving

real-time speed. A trade-off in speed was the price paid to combat noise due to bumps. In

the future, the proposed technique can be equipped with loop closure and re-localization

to further improve the accuracy. Further, as visual point-cloud contains color/brightness

information, semantic segmentation can be done for object labeling, collision free-path

generation, etc.

The proposed technique is best suited for off-road land vehicles which are prone to

sudden bumps and change of terrain. However, in cases where computational resource is

limited and the noise due to motion can be appropriately modeled, the tightly-coupled

approach may be used. The author believes that this work will find useful application for

state-estimation of land vehicles, especially in off-road environments.
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Appendix A

Visual Tracking Jacobian

The Jacobian of last iteration and is calculated using the chain rule with respect to 6
components of the pose update vector ∆ξ in the se(3). The Jacobian calculated with an
unprojected point p = π−1(x̃, 1

DT (x̃)
)

Jx = ∇I|ω(x,Ti)
∂π

∂p

∣∣∣∣
Tip

∂Tp

∂T

∣∣∣∣
Ti

∂TTi

∂T

∣∣∣∣
I

∂exp(ξ̂)

∂ξ

∣∣∣∣
0

(A.1)

These Jacobian can be informally understood as:

� ∇I|ω(x,Ti): Derivative of the new image at the warped pixel position

� ∂π
∂p

∣∣
Tip

: Derivative of the projection function at the 3D point transformed with the
current pose estimate Tip

� ∂Tp
∂T

∣∣
Ti

: Derivative of the matrix vector multiplication of rigid body transformation
at the current pose estimate with the un-projected pixel position

� ∂TTi

∂T

∣∣∣∣
I

: Derivative of the rigid body transformation concatenation at the identity

with the current pose estimate.

� ∂exp(ξ̂)
∂ξ

∣∣∣∣
0

: Derivative of the exp-hat function at the zero vector( corresponding to

identity).
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And these Jacobian evaluate to:

∇I|ω(x,Ti) =(∇Ix,∇Iy) (A.2)

∂π

∂p

∣∣
Tip

=

(
fx

1
z′

0 −fx x
′

z′2

0 fy
1
z′
−fy y

′

z′2

)
(A.3)

∂Tp

∂T

∣∣
Ti

=

 x 0 0 y 0 0 z 0 0 1 0 0
0 x 0 0 y 0 0 z 0 0 1 0
0 0 x 0 0 y 0 0 z 0 0 1

 (A.4)

∂TTi

∂T

∣∣∣∣
I

=



r11 0 0 r21 0 0 r31 0 0 0 0 0
0 r11 0 0 r21 0 0 r31 0 0 0 0
0 0 r11 0 0 r21 0 0 r31 0 0 0
r12 0 0 r22 0 0 r32 0 0 0 0 0
0 r12 0 0 r22 0 0 r32 0 0 0 0
0 0 r12 0 0 r22 0 0 r32 0 0 0
r13 0 0 r23 0 0 r33 0 0 0 0 0
0 r13 0 0 r23 0 0 r33 0 0 0 0
0 0 r13 0 0 r23 0 0 r33 0 0 0
tx 0 0 ty 0 0 tz 0 0 1 0 0
0 tx 0 0 ty 0 0 tz 0 0 1 0
0 0 tx 0 0 ty 0 0 tz 0 0 1



(A.5)

∂exp(ξ̂)

∂ξ

∣∣∣∣
0

=



0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



(A.6)
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The final results obtained by matrix multiplication and simplification (e.g. by trans-
forming r11x+ r12y + r13z + tx = x′) is:

Jx =
1

z′
(∇Ixfx,∇Iyfy)

(
1 0 −x′

z′
−x′y′

z′
z′ + x′2

z′
−y′

0 1 −y′

z′
−z′ − y′2

z′
x′y′

z′
x′

)
(A.7)

For taking the depth noise into account, the derivative of the residual with regard to the
pixel’s estimated inverse depth at its current estimate is required:

∂rx(T)

∂DT

∣∣∣∣∣
DT (x)

= ∇I|ω(x,Ti)
∂π

∂p

∣∣∣∣
Tip

∂Tip

∂T

∣∣∣∣
p

∂π−1

∂Z

∣∣∣∣
1

DT (x)

∂ 1
x

∂x

∣∣∣∣
DT (x)

(A.8)

Hence, the new Jacobians are:

� ∂Tip
∂T

∣∣∣∣
p

: Derivative of the matrix-vector multiplication of rigid body transformations

at the un-projected point with the current pose estimate.

� ∂π−1

∂Z

∣∣∣∣
1

DT (x)

: Derivative of the un-projection function at the estimated depth with the

current pixel position

�
∂ 1

x

∂x

∣∣∣∣
DT (x)

: Derivative of the depth inversion at the current depth estimate

The pixel coordinates are denoted px and py. As above, x, y and z = 1
DT

respectively x′, y′

and z′ denote the components of the un-projected pixel before and after the transformation.
The inverse intrinsic camera parameters K−1 is represented in the matrix form as :

K−1 =

 k11 0 k13
0 k22 k23
0 0 1

 (A.9)

80



The Jacobians then evaluate to:

∂Tip

∂T

∣∣∣∣
p

=

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 (A.10)

∂π−1

∂Z

∣∣∣∣
1

DT (x)

=

 k11pz + k13
k21py + k23

1

 =

 x
y
z

DT (x) (A.11)

∂ 1
x

∂x

∣∣∣∣
DT (x)

=
−1

DT (x)2
(A.12)

The final result obtained by matrix multiplication and simplification (e.g. r11x + r12y +
r13z = x′ − tx) is:

∂rx(T)

∂DT

∣∣∣∣∣
DT (x)

=
1

DT (x)z′2
(∇Ixfx(txz′ − tzx′) + (∇Iyfy(tyz′ − tzy′)) (A.13)
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Appendix B

Epipolar Jacobian

The epipolar residual repl is defined in (5.5) as:

repl = dist(xT
LK, l̂

′)

The epipolar line due to the initial pose prediction (5.4) from IMU is :

l̂′ =F̂IMUx

On expansion of (5.4) ; al
bl
cl

 =

 ( 1
fx

)2[−tzr21 + tyr31] ( 1
fxfy

)[−tzr22 + tyr32] ( 1
fx

)[−tzr23 + tyr33]

( 1
fxfy

)[tzr11 − txr31] ( 1
fy

)2[tzr12 − txr32] ( 1
fy

)[tzr13 − txr33]
( 1
fx

)[−tyr11 + txr21] ( 1
fy

)[−tyr12 + txr22] [−tyr13 + txr23]


 x

y
1


(B.1)

where (x, y, 1) is the normalized pixel coordinate of the original key-frame image (with
only subtraction of cx, cy for simplicity). (al, bl, cl) is the epipolar line vector. fx, fy are the
camera focal parameters obtained through calibration. The parameters ti and rij denote
translation and rotational elements of the pose matrix T ∈ SE(3) and i, j are the indices
of the matrix.
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By substitution of (B.1) in (5.4)

repl =
aluLK + blvLK + cl√

a2l + b2l
(B.2)

Its worthwhile to note here that al, bl, cl are all functions of rij and ti which are elements
of the matrix representing the rigid body transformation T ∈ SE(3)

For the sake of notational simplicity , repl is represented as:

repl =
f(T)

g(T)
(B.3)

In order to compute Jacobian of repl, chain rule and substitution is applied.

∂repl
∂T

∣∣∣∣
Ti

=
f ′(T)g(T)− g′(T)f(T)

g(T)2
(B.4)

=
f ′(T)

g(T)
− g′(T)

g(T)
repl

=
f ′(T)

g(T)
− repl
g(T)

g′(T)

=
f ′(T)

g(T)
− repl
g(T)

[
∂g(T)

∂(a2l + b2l )

∂(a2l + b2l )

∂T
]

=
f ′(T)

g(T)
− repl
g(T)

[− 1

2g(T)
(2al

∂al
∂T

+ 2bl
∂bl
∂T

)]

=
Jf(T)

g(T)
+

repl
g(T)

(alJa(T) + blJb(T)) (B.5)

All the variables in (B.5) are known expect the Jacobians Jf(T), Ja(T) and Jb(T) which
are stated below:
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Jf(T) =



vLK( tz
fxfy

x− ty
fx
x)

−uLK( tz
f2x
x+ tx

fx
x)

uLK( ty
f2x
x)− vLK( tx

fxfy
x)

vLK( tz
f2y
y − ty

fy
y)

−uLK( tz
fxfy

y + tx
fy
y)

uLK( ty
fxfy

y)− vLK( tx
f2y
y)

vLK( tz
fy
− ty)

−uLK( tz
fx

+ tx)

uLK( ty
fx

)− vLK( tx
fy

)

−vLK( r31
fxfy

)x− vLK( r32
f2y

)y − vLK( r33
fy

)x+ ( r21
fx

)x+ ( r22
fy

)y + r23

uLK( r31
f2x

)x+ uLK( r32
fxfy

)y + uLK( r33
fy

)x− ( r11
fx

)x− ( r12
fy

)y − r13
−uLK( r21

f2x
)x− uLK( r22

fxfy
)y − uLK( r23

fx
)x+ vLK( r11

fxfy
)x+ vLK( r12

f2y
)y + r13

fy



T

(B.6)

where (uLK , vLK) are elements of xLK.

Ja(T) =



0
− tz
f2x
x

ty
f2x
x

0
− tz
fxfy

y
ty
fxfy

y

0
− tz
fx
ty
fx

0
r31
f2x
x+ r32

fxfy
y + r33

fx

− r21
f2x
x− r22

fxfy
y − r23

fx



T

(B.7)
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Jb(T) =



tz
fxfy

x

0
− tx
fxfy

x
tz
f2y
y

0
− tx
f2y
y

tz
fy

0
− tx
fy

− r31
fxfy

x− r32
f2y
y − r33

fy

0
r11
fxfy

x+ r12
f2y
y − r13

fy



T

(B.8)

Similar to A.1, the complete Jacobian with respect to pose updates in Lie Algebra se(3)
is obtained by chain rule.

Jepl =
∂repl
∂T

∣∣∣∣
Ti

∂TTi

∂T

∣∣∣∣
I

∂exp(ξ̂)

∂ξ

∣∣∣∣
0

(B.9)

where ∂TTi

∂T

∣∣∣∣
I

and ∂exp(ξ̂)
∂ξ

∣∣∣∣
0

are same as that stated in (A.5) and (A.6)

In order to calculate the weights, the Jacobian
∂repl

∂Di
is required which is:

∂repl
∂Di

=
al

g(T)

∂uLK
∂Di

+
bl

g(T)

∂vLK
∂Di

(B.10)

where g(T) is defined in (B.3) and

∂uLK
∂Di

=
txfx − tzuLK

(r31
x
fx

+ r32
y
fy

+ r33) + tzD̂i

(B.11)

∂vLK
∂Di

=
tyfy − tzvLK

(r31
x
fx

+ r32
y
fy

+ r33) + tzD̂i

(B.12)
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Appendix C

Inverse Depth Jacobian

The epipolar residual rDi
is defined in (5.6) as:

rDi
=D̂i − g(D̂i,T) (C.1)

=D̂i − (Rrow3 •Kx + tz)

=D̂i −
D̂i

(r31
x
fx

+ r32
y
fy

+ r33) + tzD̂i

The corresponding inverse depth Jacobian using chain rule is obtained as:

JrDi
=
∂rDi

∂T

∣∣∣∣
Ti

∂TTi

∂T

∣∣∣∣
I

∂exp(ξ̂)

∂ξ

∣∣∣∣
0

(C.2)
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where
∂rDi

∂T

∣∣∣∣
Ti

is:

∂rDi

∂T

∣∣∣∣
Ti

=



0
0

− g(D̂i,T)

(r31
x
fx

+r32
y
fy

+r33)+tzD̂i
( x
fx

)

0
0

− g(D̂i,T)

(r31
x
fx

+r32
y
fy

+r33)+tzD̂i
( y
fy

)

0
0

− g(D̂i,T)

(r31
x
fx

+r32
y
fy

+r33)+tzD̂i

0
0

− g(D̂i,T)

(r31
x
fx

+r32
y
fy

+r33)+tzD̂i
(D̂i)



T

(C.3)

where ∂TTi

∂T

∣∣∣∣
I

and ∂exp(ξ̂)
∂ξ

∣∣∣∣
0

are same as that stated in (A.5) and (A.6)

In order to calculate the weights, the Jacobian
∂rDi

∂Di
is required which is:

∂rDi

∂Di

=1− 1

(r31
x
fx

+ r32
y
fy

+ r33) + tzD̂i

+
tz

(r31
x
fx

+ r32
y
fy

+ r33) + tzD̂i

(C.4)

87


	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Contribution
	Organization

	Related Work
	Monocular-Vision only SLAM
	Visual-Inertial Fusion

	Preliminaries
	Camera Projection Model
	Lie Group and Lie Algebra
	IMU Model
	Gravity Alignment
	The State Vector
	Image Pyramid

	Direct Tracking
	Lucas-Kannade Image Alignment
	Direct Image Alignment
	Visual Inertial Direct Odometry

	Methodology
	Inverse Compositional Image Alignment
	Visual-Inertial Epipolar Constrained Odometry
	Robust Weighting

	Mapping

	Experimental Hardware Calibration
	Setup
	Hardware Calibration
	IMU Calibration
	Camera Calibration
	Camera-IMU Calibration


	Experimental Results
	Indoor Environment
	Vicon Room
	Corridor

	Outdoor Environment

	Conclusion and Future Work
	References
	APPENDICES
	Visual Tracking Jacobian
	Epipolar Jacobian
	Inverse Depth Jacobian

