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Abstract

Human pose estimation and action recognition in ice hockey are one of the biggest
challenges in computer vision-driven sports analytics, with a variety of difficulties such as
bulky hockey wear, color similarity between ice rink and player jersey and the presence
of additional sports equipment used by the players such as hockey sticks. As such, deep
neural network architectures typically used for sports including baseball, soccer, and track
and field perform poorly when applied to hockey. This research involves the design and
implementation of deep neural networks for both pose estimation and action recognition
can effectively evaluate the pose and the actions of a hockey player.

First, a pre-trained convolutional neural network, known as the stacked hourglass net-
work, is used to determine a hockey player′s body placement in video frames, also known
as pose estimation. The proposed method provides a tool to analyze the pose of a hockey
player via broadcast video which aids in the eventual assessment of a hockey player′s
speed, shot accuracy, or other metrics. The algorithm demonstrated to be successful since
it identifies on average 81.56% of the joints of a hockey player on a set of test images.

Furthermore, inspired by the idea that modeling the pose of a hockey stick can improve
hockey player pose estimation, a novel deep learning computer vision architecture known
as the HyperStackNet has been designed and implemented for joint player and stick pose
estimation. In addition to improving player pose estimation, the HyperStackNet archi-
tecture enables improved transfer learning from pre-trained stacked hourglass networks
trained on a different domain. Experimental results demonstrate that when the Hyper-
StackNet is trained to detect 18 different joint positions on a hockey player (including the
hockey stick), the accuracy is 98.8% on the test dataset, thus demonstrating its efficacy
for handling complex joint player and stick pose estimation from video.

Extending from pose recognition, this research involves the development of an algo-
rithm for accurate recognition of actions for hockey. To perform this action recognition,
a convolutional neural network estimates actions through unifying latent pose and action
recognition. The action recognition hourglass network, or ARHN, is designed to interpret
player actions in ice hockey video using estimated pose. ARHN has three components.
The first component is the latent pose estimator, the second transforms latent features to
a common frame of reference, and the third performs action recognition. Since no bench-
mark dataset for pose estimation or action recognition is available for hockey players, we
first had to generate such an annotated dataset. Experimental results show action recogni-
tion accuracy of 65% for four types of actions in hockey. When similar poses are merged to
three and two classes, the accuracy rate increases to 71% and 78%, proving the potential
of the methodology for automated action recognition in hockey.
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Chapter 1

Introduction

Computer vision, especially human pose estimation and action recognition are exciting
fields of research due to the potential applications and the challenges arising in this field.
Applications include security to identify people’s intent based on gait and actions, health
and safety to identify poor technique or assess practices in the work place and sports to
analyzing player performance. Human pose estimation is defined by estimating the par-
ticular body configuration of a human; to identify the location of limbs when a human
performs a pose (standing, sitting, jumping, etc.). Human action recognition is the es-
timation of identifying a person’s actions, albeit walking, jumping, sitting, running, etc.
Challenges from pose estimation and action recognition include foreground being similar
to the background, irregular movements, occlusion through bulky clothing or equipment
and scene. The plethora of applications and the difficult challenges in these fields makes
it attractive for researchers to study and contribute to these fields. One application that
exudes excitement and a challenge is ice-hockey.

Hockey is a sport where the study of pose estimation and action recognition can benefit
players, coaches and analysts alike because this field of research provides a scientific way
to evaluate team and player performances. Current methods for hockey analytics, such as
statistics, are typically derived manually by watching live or recorded hockey games and are
restricted to shot-based or goal-orientated statistics thus limiting the evaluation of player
performance such as player speed and technique. These statistics and models mentioned
do not assess the abilities and capabilities of a player, which, do not explain how a player
can improve; the statistics only portray the effects of the player with respect to a goal.
The need for new methods to evaluate player performance in addition to explaining the
capabilities of a hockey player is paramount.
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Computer vision provides an alternative view. The use of pose estimation for hockey
players provides a tool used within the hockey analytics field to later assess player abilities
and performance by assessing player statistics such as speed and technique. Practitioners
want more accurate information centered on the actual player (i.e., speed and technique)
while also using less time consuming methods. Hockey player pose estimation and hockey
action recognition are valuable pieces of information that potentially can help coaches in
assessing player performance.

Pose estimation provides valuable information since it can be continuously derived from
game video as opposed to goal or shot statistics that only occur periodically during the
game for only the individual with the puck. Also, pose information can be derived from
all players viewed in the video as opposed to the limited gathering of statistics based
only on the player shooting. Pose estimation helps in determining a player’s actions and
evaluating player performance; the ability to understand the pose of a player leads to the
overall analysis of that player’s performance. Only a small amount of research in pose
estimation in ice hockey has been published [38].

In addition, action recognition in computer vision also contributes to understanding
player performance. By understanding the actions of each individual player throughout the
entire game, coaches and analysts can use this information to evaluate player effectiveness
on a team, or even use this information to determine the strength of a team. In addition,
understanding how a player acts during many scenarios of the game, such as offense,
defense, puck possession, and scrum will help evaluate the level of performance of that
player. Although only a limited amount of action recognition or even computer vision
research has been done in the field of hockey, action recognition can be applied to hockey
analytics to analyze characteristics of hockey players and teams.

1.1 Motivation

The motivation of this thesis is to solve challenging problems inherent in pose estimation
and action recognition. Challenges include: bulky equipment, foreground/background
similarity, occlusion and motion blur. Typical deep learning models cannot accurately
identify human pose and action recognition from hockey datasets using hockey players
because of the bulkiness of hockey player equipment that deforms players’ body-shape and
occlude joints and limbs, causing inaccuracies. Another challenge is that the color of the
player’s equipment is often similar to the background causing occlusions of joints and limbs;
one team’s hockey player uniform is white, which is similar in color to the ice and boards
background which are also white. Also high speed of movement from skating or shooting
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leads to motion blurring in the image that also needs to be compensated. In addition, most
research of pose estimation and action recognition utilize 3D pose information, however,
due to the nature of hockey, that information is not available, thus posing a tougher problem
as only relative 2D joint information is used. All of these challenges cause the problem of
pose estimation and action recognition in hockey challenging and are the motivation for
this research.

1.2 Statement of Thesis

The goal of this thesis is to tackle the inherent challenges of pose estimation and action
recognition which are commonly seen in hockey datasets by studying and developing novel
deep learning architectures found in computer vision. Deep learning architectures are
applied to automatically identify the pose and actions of a hockey player from game video
in order to eventually assess the capabilities of that player. To accomplish this goal, three
tasks are evaluated: pose estimation without the use of hand-held object (e.g., hockey
stick), pose estimation with a stick, and action recognition. A convolutional neural network
(CNN), a computer vision algorithm that is able to learn patterns based on game video
is utilized for these goals. The algorithm is designed to estimate the “pose” information
of the player, namely the joint (e.g., wrist, shoulder, pelvis, knees, elbows, neck) as well
as the hockey stick locations and associated limb positions. After the pose is established,
then the hockey action recognition is tested and evaluated.

1.3 Thesis Contributions

The thesis dissertation presents a study to prove the efficacy of pose estimation in various
cases and action recognition in the challenging field of hockey. The primary contributions
of the dissertation include the following:

• Introduces pose estimation in hockey via the stacked hourglass architecture [40] using
broadcast images;

• Introduces novel idea of modelling pose of a hockey stick using transfer learning and
latent heat maps;

• Introduces how the use of pose estimation in hockey is extended to action recognition
thus implementing the action recognition hockey network (ARHN);
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• Provides experimental results in pose estimation for hockey player pose estimation;

• Provides experimental results in modeling pose of the hockey stick for improved
hockey player and stick pose estimation; and

• Provides experimental results in the extension of action recognition using pose esti-
mation in hockey using ARHN.

The secondary contributions of the dissertation include:

• Creation of the HARPE dataset [22]; and

• Present novel architectures which include latent heatmaps as feature extractors.

The aforementioned contributions present an important role in proving the efficacy of
pose estimation and action recognition in hockey.

1.4 Outline of Thesis

To address the aforementioned thesis contributions, the thesis will begin by providing
background information in computer vision techniques in hockey, pose estimation and
action Section in Chapter 2. A system overview of the hockey pipeline will follow in Section
3. Chapters 4, 5, and 6 will discuss pose estimation, pose estimation with added joints
locations for a hand-held object and action recognition using pose estimation features.
Finally, Chapter 7 will describes the conclusions of the thesis.
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Chapter 2

Background

The background composes of sections describing the advancements in computer vision ap-
plied to hockey (Section 2.1), pose estimation (Section 2.2) and action recognition (Section
2.3). Within the pose estimation section, discussion on traditional computer vision meth-
ods for pose estimation in Subsection 2.2.1 and deep learning methods Subsection 2.2.2 will
be discussed. Finally the action recognition section is composed of two subsections: current
pose-based action recognition techniques used in sports (Subsection 2.3.1) and computer
vision research applied to ice hockey (Subsection 2.3.2).

2.1 Computer Vision in Hockey

Computer vision has been applied to hockey for a limited number of tasks such as, player
tracking [4] [44] [43], rectification of noisy broadcast videos [25], puck possession event
classification [56], dataset development for spectator categorization/people counting [15]
and a few results in action recognition [36, 35, 37]. Within various hockey applications,
some methods were completed using traditional computer vision methods, while others
were completed using deep learning methods.

Cai et al. [4] implements player tracking using a particle filter framework and a lin-
ear optimization algorithm to track multiple players. Tora et al. [56] implements puck
possession event classification using a pre-trained convolutional neural network (CNN) to
extract features, which is fed to a long short-term memory neural network (LSTM) for
event classification. Okuma et al. [44] combines particle filter with Adaboost and also uses
a self learning approach in [43]. Lu et al. [36, 35, 37] in his three papers, uses histogram
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of oriented gradients (HOG) descriptors along with hidden Markov model and particle
filtering for action recognition.

To conclude, the only extensive research in hockey has been done in player tracking
and action recognition. Most of the techniques used in previously mentioned results use
HOG and scale-invariant feature transformer (SIFT) features and probabilistic graphical
models without deep neural networks (DNN). In fact, this thesis explores the idea of deep
neural networks in pose estimation specifically in hockey.

2.2 Pose Estimation

2.2.1 Traditional Computer Vision Methods

Generally, traditional computer vision methods for pose estimation employs deformable
parts models, appearance models, conditional random fields, mixture models and linear/non-
linear classifiers. In addition, research involved involved in computer vision used histogram
of orientated gradients (HOG) and various methods of support vector machines for pose es-
timation. This section will describe some important methods found in traditional computer
vision.

The early beginnings of pose estimation began employing parts based models or pixel-
based approaches in a variety of forms. Ramanan [52] applies an edge-based deformable
model (using a CRF), to obtain soft estimates of body part positions by defining pixel
labels into region types (background, torso, left lower arm, etc.) by learning low-level seg-
mentation cues to build part-specific region models, but also computing no segmentation.
Other methods use similar deformable part models and modify the algorithm through em-
ployment of grabcuts, a foreground extractor and Gaussian mixture models [24], and SVM
and HOG descriptors used as detection [24, 23, 67].

Other models incorporate poselets which are a part or body part of one’s pose that
are tightly clustered in both appearance and configuration space. In this work, Bourdev
et al. [2] uses 3D human pose annotations as references for determining the pose. Also,
each poselet has examples used for training an SVM classifier used over a tested image to
determine the pose of a human.

Some models sought to improve the shortcomings of Felzenszwalb et al. [23] and Bour-
dev et al. [2] by improving on the existing algorithm. Johnson et al. [30] uses a pictorial
structure model (PSM) which models a person as a connected collection of 10 parts (head,
torso, upper and lower body limbs). This method employs a mixture of linear SVMs to
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capture part appearances represented by HOG descriptors. This paper improves the han-
dling of self-occlusions by clustering the training images in pose space to form a mixture
of trees that were not captured in [23]. In addition, to improve [2], a flexible mixture
of parts model that captures contextual co-occurrence relations between parts rather than
using articulated limb parts was created [67]. In the aforementioned research, each method
implements a mixture of deformable parts and uses HOG descriptors as well as a structure
SVM to detect pose.

One unique method proposes a multimodal, decomposable graph model for human pose
estimation in monocular images that captures a variety of pose modes [53]. It captures
pose modes by using two variables, one for the left side and one for the right side of the
body. The authors employ a standard linear pairwise conditional random field.

In addition, pose estimation started with improving existing models by tweaking some
modular systems, then it continued by combining known parts based models in addition
to pixel-based models [49, 31]. Pischulin et al. [49] combines flexible spatial models, from
[67], and image-conditioned spatial models and incorporates a basic human body model
tree-structure in addition to incoporating a pictoral structure model. In addition, both
a part based approach for layout type problems such as a PSM, and an image labelling
technique involving optimizing a random field graph defined on the image for pixel-wise
evaluation were combined in research using HOG descriptors [31].

2.2.2 Deep Learning

The movement in research that shifted research in pose estimation from traditional methods
of computer vision was first highlighted through ’DeepPose’ by Toshev et al. [57] by
regressing x,y coordinates of joints using a cascade regression of deep neural networks.
This research leads to further research using deep learning using using graphical models,
iterative predictions and depth motion cues began.

Typical methods in deep learning use of convolutional neural networks and graphical
models [7, 21, 51, 55]. Variations occur based on unary score generation and pairwise
comparison of adjacent joints. Iterative predictions for pose estimation include Carreira
et al. [6] which utilizes Iterative Error Feedback as a method where each pass through
the network further refines predictions such that the input are predictions thus requiring
multi-stage training, and share weights for each iteration. Another method is to incorporate
multi-stage pose machines using convolutional neural networks for feature extraction [61].

Depth and motion cues such as optical flow are used in conjunction with deep learning
methods to solve the pose estimation problem [28, 54, 47]. In addition, other methods
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such as simultaneous annotations of people are also explored [51, 8]. In addition, work
such as performing human part segmentation using fully convolutional networks are also
incorporated to improve human pose estimation [45, 34].

Although each neural network method aforementioned contributes to the pose estima-
tion problem, in recent years, state-of-the-art methods solely use heatmaps for pose esti-
mation. The heat map method of using convolutional neural networks was first introduced
by Tompson et al. [55] that incorporated deep learning methods, such as convolutional
neural networks to solve a regression problem of joint locations using Gaussian probability.
The network regresses on x,y coordinates by assuming that at each coordinate pair there
exists a 2D Gaussian with a small variance and mean centered at that joint location. This
regression problem can be visualized using heatmaps, where the probability of the existence
of a joint location would be indicated on the region as red, while, the probability that there
is no joint located would be indicated on that region by the color blue. Although Tompson
et al. [55] incorporates in this paper a graphical model, current research with heatmaps
utilize deep learning structures to improve performance.

Heat maps in pose estimation is involved in many deep learning architectures. Most
commonly, heat maps are used in many flavours of convolutional neural networks [14, 40,
42, 64]. One popular pose estimation architecture which uses heatmaps is the stacked
hourglass architecture by Newell et al. [40]. The stacked hourglass network incorporates
a convolutional network with a multi-context attention mechanism for pose estimation
through the use of residual layers. The approach uses convolutional modules in a bottom-
up, top-down configuration resembling hourglasses which are then stacked. One variant
of the stacked hourglass network attempts to further improve the stacked hourglass by
applying a conditional random field (CRF) to fine tune the performance [14]. In addition,
Chu et al. designed an hourglass residual unit as apposed to maintaining the residual layer
in the original stacked hourglass network to leverage heatmaps which are then used as a
latent feature and as the output [14]. To further improve the stacked hourglass network,
another method incorporates inception-residual networks in replacement of convolutional
layers for a more robust feature representation to form what the authors call a fractal
network (combination of hourglass networks, residual and inception layers) [42]. Finally,
Pyramid Residual Module method is used to enhance invariance [64] while also employing
the stacked hourglass network by Newell et al. [40].

Another implementation of the heatmaps is using Generative Adversarial Networks
(GANs) [9, 13], part-affinity fields [5] and graph modeling [26]. Employs a generative
adversarial network using the same stacked hourglass architecture by Newell et al. [40] as
both the descriminator and generator [13]. Chou et al. [9] uses an adversarial approach
method that utilizes priors to ensure the network is more structure-aware through the

8



use of a pose generator, a pose descriminator and a confidence discriminator used as the
structure. The output of the network are heatmaps. Cao et al. [5] utilizes part affinity
fields to detect multi-person 2D pose estimation in addition to confidence maps. Cao
et al. employs a variant of heat maps called confidence maps which employs a similar
mathematical function to a Gaussian distribution where a mean and standard deviation
are the inputs. One advantage of this method is that it can detect multiple people in
the same scene. Employs a multi-person estimator through the use of a spatial-temporal
edge detector with unary costs thus sparsifying the body-part relationship graph to detect
and associate body joints of the same person even in a clutter by leveraging temporal
information for crowded scenes [26].

Some state-of-the-art research implement the stacked hourglass network by Newel et
al. in their architecture [13, 14, 42, 64]. One reason is that the hourglass network was
able to beat the state-of-the-art in the MPII dataset [1] of that time, and was also able
to maintain spatio information by using skip connections, thus opening more research for
pose estimation.

2.3 Action Recognition

2.3.1 Pose-based Action Recognition

Many works in action recognition use dense trajectory features including HOG, HOF, and
MBH [12, 29, 41, 50, 60] in addition to pose estimation. Pishchulin et al. [50] explore com-
binations of dense trajectories and pose estimation noting that combinations may improve
accuracy of action recognition given that the pose estimates are unable to accurately label
the pose of a person. Jhuang et al. [60] compare dense trajectory, a low/mid-level method,
separately against pose estimation, a high-level method, determining that methods incor-
porating pose features outperform low/mid level feature methods.

One method to incorporate dense trajectories and pose estimation is using AND-OR
graph models [29, 41]. One implementation incorporates motion, geometry of joints (pose)
and appearance [29]. The model uses HOF/HOG for motion appearance as a part node.
The pose node has a projected 3D view and then it is placed into ’different’ view nodes
(difference viewpoints); this approach is tested using 2D video input and is to help eval-
uate actions in various viewpoints. Another model incorporates poselets in addition to
HOG/HOF within the And-Or graph model [41].

Similarily to incorporating poselets, Desai et al. [16] presents an approach based on
combining three compositional models (i.e., poselets, visual phrases, and pictorial structure
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models) for modeling human pose and interacting objects. Phraselets are introduced and
employed in a Flexible Mixture of Parts (FMP) framework to capture relations between
parts and a separate compositional model per action class is defined. Output of the model
are action labels, articulated human pose, object pose, and occlusion flags. Phraselets, like
most of the methods in action recognition, are designed for recognizing coarse actions that
are quite different in nature (such as horse riding verses taking photo), not for fine action
recognition (e.g., discriminating between two different movements of a hockey player).

Iqbal and Gall [58] introduce a method for repeatedly alternating between pose estima-
tion and action recognition. They adopt standard pictorial structure model (PS model) for
human pose estimation and condition it on action types to do efficient inference. Starting
with uniform prior on all action classes, the pose in each frame is predicted, and by using
the estimated poses, the probabilities of the actions are estimated.

Recently, deep structures have dominated most of previous descriptors and models for
pose estimation and are giving promising results in action recognition.

Chéron et al. [12] developed a pose based CNN that incorporates a descriptor for
action recognition tasks. Pose estimation is performed using a method given by Cherian
et al. [11], and is utilized for determining four different regions or body parts in images.
Next, optical flow and raw image pixels over patches of body parts are given to separate
CNNs to generate motion and appearance descriptors for each frame. Descriptors per
frame, and their consecutive differences in successive frames, are aggregated by max and
min pooling over time and normalized to generate static and dynamic video descriptors,
which are concatenated to form P-CNN descriptor. Besides P-CNN descriptors, three
different Improved Dense Trajectory features (i.e., HOG, HOF,and MBH) with Fisher
vector coding are also computed. Action recognition is performed using a linear SVM
over P-CNN descriptors and IDT features. This method as explained does not use the
pose estimation directly as a feature but rather employs it for determining the region of
interest for patch selection from images, while pose information, if determined precisely, is
intrinsically a strong clue for action recognition.

Similar research in action recognition in sports uses pose estimation as a latent variable
in a unified action recognition in still images [65]. Like Yang et al. [65], the authors seek to
unify pose estimation and action recognition to improve action recognition performance.

This literature review shows pose can be used as a strong feature for action recognition
and employing power architectures such as deep networks will increase the accuracy of pose-
based action recognition. Therefore, in this work a pose-based deep network incorporating
latent pose estimation is implemented for action recognition.
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Zhou et al. [70] incorporates privilege information which is a shape-based representa-
tion data used solely in training using a support vector machine (SVM) with radial basis
function (RBF) kernels. This method creates a dense human pose as apposed to high-
lighting specific joints. This method is trained on still images and action recognition is
performed.

Fan et al. [20] is similar to the previous research as they use what they term as ’high-
level pose features’, which, instead of using shapes they incorporate other higher level pose
information by relation of pairs and triplets of joints as well as trajectories. In addition,
they model the energy change, the relative position of joints and the spatial and temporal
space by calculating the inner product of triplet of joints. Fan et al. uses videos and
applied a k-means codebook and an SVM with RBF kernel to train the classifiers for
action recognition.

Du et al. [17] uses an end-to-end model that captures both pose estimation features and
action recognition for videos. The recurrent pose-attention network (RPAN) implements
a recurrent neural network (RNN) to apply to temporal features. The network extracts
human-part features, in which a pose loss from the attention heat maps are refined and in
which that information is applied to an LSTM which predicts the actions. This end-to-end
model simultaneous predicts pose and utilizes pose for action recognition.

Papadopoulos et al. [46] implements a dense trajectories approach to extract spatio-
temporal characteristics using a bag-of-words implementation of action recognition for
video to estimate 2D poses.

2.3.2 Computer Vision and Action Recognition in Hockey

Within the sport of hockey, computer vision research has been limited to tracking [4, 33,
36, 43, 44] , rectification of broadcast hockey video [25], crowd analysis [15] providing a
hockey crowd dataset, and very few results in action recognition [35, 36, 37].

In the three papers by Lu et al. [35, 36, 37], HOG descriptors are used with various
training methods such as support vector machines, prior information is extracted from
videos and sequences of images are implemented as input for action recognition. The
mentioned papers, however, do not describe methods for extracting higher level features
such as pose. The activities evaluated from the aforementioned papers are based on actions
of skating such as skating left, skate right, skate in, skate out, skate left 45, and skate right
45 rather than other actions of hockey that focus on the whole body.

This summary represents the limited extent of the published research in the field of
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computer vision applied to ice hockey. In this work, a significant state-of-the-art contribu-
tion by developing a methodology to automatically determine actions of a hockey player
based on latent pose estimation derived from video frames is presented.
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Chapter 3

System Overview - Hockey Analysis
Pipeline

To understand the how pose estimation and action recognition can be implemented within
ice-hockey, the general framework is discussed in Section 3.1. In addition a discussion
on the type of data required to be processed within the hockey pipeline is in Section
3.2. Following the hockey data section, the pose estimation, in Section 3.3, and action
recognition, in Section 3.4, pipeline in hockey is explained. The output of the data pipeline,
Section 3.5, is also discussed.

3.1 Hockey System Overview

Hockey analytics in computer vision uses a general data pipeline system shown in Figure
3.1 to extract data such as actions and pose. The general pipeline begins by inputting
images, and then using that information to infer pose. In some cases, raw data can be
used to infer actions of players or pose from a pose estimator can be used to infer actions.
Both pose estimation and action recognition are then used for analytics to be used in the
hockey industry.

The pose and action portions of the general pipeline are systems themselves. The
overall goal of this system is to create statistical information or visualization tools to
effectively assess a player’s ability, skill level and potential for many application which
include coaching, health assessments and scouting.
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Figure 3.1: Image Data (a) is first extracted from raw images or video sequences found
from video sources including broadcast and training videos, then fed to either (b) a pose
estimation system or (c) action recognition system. In addition, the pose estimation sys-
tem may also be used in the action recognition system. The result from both the pose
estimator and the action recognizer produce (d), the analytics of the player, line or team
for assessment.
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3.2 Hockey Data

Hockey data is an integral part of the hockey analytics pipeline as it is the information
that will be passed from each portion of the pipeline. Hockey data, in a computer vision
context, is comprised of images or sequence of images with some meta data if any. With
hockey as an application of computer vision, that same guideline applies. Images used in
the data range from single player or goalie to teams. In addition, various types of images
such as broadcast images or still action shots of players can also be used for data. Images
in a dataset for hockey typically range from images of a single hockey player or goalie,
to multiple players of the same team or opposing teams. In addition, the data can be
composed of images comprised of action shots of live games or of skills and drills player
practice. Also, images can be extracted from broadcast images with wide and steep angle
of view to images taken from other sources of video cameras such as a phone or hand-held
camera with a smaller field of view and at an angle close to parallel of the ice. Examples
of each aforementioned portion of images are shown. Some metadata of an image could
include added information to aid the algorithm which could include xy coordinates of
the center of each player, a player jersey number and name associated with the player in
question, the player’s team affiliation and line affiliation.

The data is the input to the next portions of the hockey pipeline, which include a pose
estimator and an action recognizer. The data is processed specifically for these inputs and
may vary depending on the algorithm used for the estimator and recognizer. In addition,
some information such as xy tracking coordinates may be used in addition to help the
estimator or recognizer.

3.3 Hockey Pose Estimation

Pose estimation is the act of estimating the body configuration of a hockey player by
estimating the location from a 2D image of joints. Generally, within the pose estimator,
either an image or hand-crafted features are used as an input in the estimator and xy
coordinates of the amount of joints estimated are the output. With respect to the most
common and current method of pose estimation, the following figure demonstrates in the
basic pipeline. The pipeline consists of an input, which is generally a raw image, followed
by a computer algorithm or machine learning neural network of choice then the output
are heatmaps of joint locations, which the xy coordinates are then extracted. The pose
pipeline is shown in Figure 3.2.
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Figure 3.2: The pose estimation pipeline consisting of an image input extracted from video
of hockey players, the estimator composed of classical computer vision algorithms or a deep
neural network, and the estimated pose as the output.

3.4 Hockey Action Recognition

The action recognition system is very simple in its structure and can be shown in Figure 3.3.
The action recognizer begins by an input which is normally of an image or feature extracted
by hand or via a computer algorithm or machine learning neural network, followed by the
action recognizer algorithm then outputting a class label of a specific action.

3.5 Hockey Output

The output of the general hockey pipeline is the analytics resulted from using the hockey
data and processed via computer algorithms. The output are quantifiable metrics for
player’s, lines, teams or other important aspects of a hockey game. The metrics are to im-
prove the qualitative visual inspections most analysts, scouts and other hockey personnel.
Metrics composed from actions and pose can be the following:

• player’s speed

• player’s technique

• player interaction
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Figure 3.3: General action recognition pipeline consists of an input that can be a combi-
nation of raw image data, estimated pose or other features fed into an action recognizer
composed of classical computer vision algorithms or a deep neural network that then out-
puts a classification of an action.

• situation awareness

• actions of a player during game play

• passing accuracy

• shooting accuracy

• player’s shot speed

In this thesis, this section is assumed to be completed elsewhere, and the first two
portions of the hockey analytics pipeline are expanded and conversed upon.
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Chapter 4

Pose Estimation

Extracting the pose of a player is the gateway to provide analysts and coaches with the
ability to automatically assess player performance via performance statistics based on
speed and technique to evaluate the capability of a player. The goal of this section is to
automatically determine the pose of a hockey player from game video in order to eventually
assess the capabilities of that player. To accomplish this goal, a convolutional neural
network (CNN) is utilized as described in this section which learns patterns based on game
video and still images. The algorithm is designed to estimate the “pose” information of
the player, namely the joint (e.g., wrist, shoulder, pelvis, knees, elbows neck) locations
and associated limb positions. Architectural overview (Section 4.1) will then be discussed
followed by the evaluation and testing and results (Section 4.2).

4.1 Architectural Overview

As seen in Figure 4.1, to estimate the pose of a hockey player, six processes occur. An
image is first captured from a broadcast hockey video, then the location of the player’s
body center is automatically determined through a computer vision algorithm that tracks
the body center. The image and the coordinate of the body center are then rescaled to an
optimal resolution for the CNN (i.e., 720 x 1280 pixels) and cropped to isolate the desired
player. Next, the scaled and cropped image, along with body center point is delivered
into the hourglass network for pose estimation. The output of the network are 16 joint
coordinates that indicated the predicted place for a joint. Afterwards, the body limbs are
obtained by connecting related joints together. Finally, an output is visually seen with
color-coded limbs in the image.
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The output of joint coordinates for players in each frame are valuable pieces of infor-
mation that can later be used to evaluate player performance such as a player’s position,
movement, speed, and reaction to a play for a whole broadcasted hockey game. At this
aim, the vehicle to determine the joint placement is a convolutional neural network for
finding places of joints of a hockey player in each frame of a hockey video or in a single
image of a hockey player.

The employed convolutional neural network, shown in Figure 4.2a, is called the stacked
hourglass network [40], and is composed of several layers of artificial neurons that are
interconnected to each other. The weights of the interconnections, are previously learned
from a dataset is the MPII Human Pose Dataset, which is composed of 40,000 images,
annotated for 16 body-joints [1]. This network is trained to learn the place of joints for
images of people doing daily activities. The output of the network is a set of heatmaps.

Heatmaps are first introduced in Toshev et al. [57] and are a regression strategy in
neural networks used to isolate a specific point in an image. The network’s input is an
image, while the regression output is a set of x and y coordinates of joint locations. Figure
4.2b shows an example of a heatmap. Heatmaps are named that way to refer to the
visualization process. The final point assumes a Gaussian distribution with a specified
standard deviation. This regression can be visualized by using heatmaps where the blue
refers to no probability of joint locations, while the red indicates a high probability of a
joint location. The higher the probability, the more red it becomes. Thus, it is similar
to how infrared or thermal imaging cameras work by indicating red as ’hot’ and blue as
’cold’. Regression is completed by the prescribed neural network.

Each heatmap is an image which gives the predicted probability of a joint’s presence
at each and every image pixel [1]. In Fig. 4.2 an example of a heatmap is provided that
predicts the location of left shoulder in the image. Here, pixels with blue color are less
probable to be assigned to the left elbow, while for the pixels that are near the elbow
location, the heatmap color gradually grows from blue to yellow and finally to red. The 16
body joints that are identified by this network are listed in Table 4.1.

4.2 Experimental Testing and Results

In this part, different experiments are conducted to show the accuracy and effectiveness
of the proposed methodology by evaluating the efficacy of the stacked hourglass network
in determining the estimated pose of a hockey player. The results are categorized in three
groups: results on still images, results on videos, and finally numerical results.
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Figure 4.1: The proposed framework for hockey pose estimation. The input to the CNN
is a set of trained properly scaled images and a known tracked body center for the player.
The CNN output is the 16 joint coordinates color coded for ease of viewing.

(a) (b)

Figure 4.2: a) The stacked hourglass network which is the employed CNN for this research.
b) Instance of a heatmap that shows the predicted joint placements for the left shoulder
of a hockey player.
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Table 4.1: Joint locations used in pose estimation

Joint Location Joint Location
Right Ankle 1 Upper Neck 9
Right Knee 2 Head Top 10
Right Hip 3 Right Wrist 11
Left Hip 4 Right Elbow 12

Left Knee 5 Right Shoulder 13
Left Ankle 6 Left Shoulder 14

Pelvis 7 Left Elbow 15
Thorax 8 Left Wrist 16

4.2.1 Test Results on Still Images

In the first part of experiments, the framework of Figure 4.1 is applied on 20 still images
of hockey players from a corpus of images with various body poses. Four example output
images along with their corresponding heatmaps are given in images of Figure 4.3. From
these images, joints have been found successfully in each. The 16 heatmaps that are
provided for each image, show the predicted probability for location of each joint, with the
same order that is given in Table 4.1. In the heatmaps, the color blue corresponds to low
probability, while growing to yellow and then red shows the increment of probability for a
joint to be situated in a specific position in the image.

From visual inspection, the predictions are accurate; each image demonstrates by the
color-coded limbs the general pose of the hockey player. In fact, hockey sticks and bodies of
other players do not affect or skew the accuracy of the results; the limbs and hockey sticks
of other players are not recognized as the limbs of the player being evaluated. Some joints,
however, are not accurately identified such as the ankle joints of the player in question;
the equipment of a hockey player may obscure the joints from the CNN. Although, some
of the joints may not be accurately located, the CNN successfully identifies the general
pose of the hockey player being evaluated without interference from other players within
the still image.
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(a) (b)

(c) (d)

Figure 4.3: Visual demonstration of hockey pose estimation along with corresponding
heatmaps for four still images of hockey players from a corpus of images collected.
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Table 4.2: Accuracy of joint detection for 20 hockey player test images

Joint Name Head Shoulder Elbow Wrist Hip Knee Ankle Total
Accuracy 90% 87.5% 70% 65% 80% 82.5% 90% 81.56%

4.2.2 Test Results on Video

In the second experiment conducted, Figure 4.1 is applied on a video of 114 frames, (with
frame size of 640 x 480, and frame rate of 25 f/sec). Some of the output frames are
illustrated in images of Figure 4.4, for visual assessment. In Figure 4.4, most of the body
joints are detected with high accuracy even in the frames where the right arm is hidden
behind the player’s body (i.e., frames 13, 16, 19, and 22). There are still some inaccurate
joint locations, but in general, the player’s pose is accurately assessed. Therefore, the test
video demonstrates the capability of the proposed procedure in pose estimation.

4.2.3 Numerical Results

The percentages of correctly identified joints for 20 still images of hockey players are
reported in Table 4.2. According to Table 4.2, the highest accuracies of detection achieved
are for head and ankle joints, which are both 90%, while, wrists and elbows are detected
with lowest precisions, i.e., 65% and 70% respectively. Generally, the equipment a player
wears, namely skates and gloves, hides the joints from the algorithm that adversely affects
the precision of the estimated pose. However, as given in the last column of Table II, the
average of correct detections for all body-joints is 81.56%. Since the overall percentage
indicates that most of the limbs are detected per image, pose estimation is a valuable tool
to extract data from video and still images.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: Visual demonstration of hockey pose for eight frames of a 114 frame hockey
video. Images (a - h) correspond to frames 1, 4, 7, 10, 13, 16, 19, and 22.
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Chapter 5

Pose Estimation with Added Joints

From the previous section, pose estimation plays an important part in sports by providing
data and analysis to aid in determining a player’s actions and evaluating player performance
in ice hockey [38]. Many challenges are associated with ice hockey in pose estimation
such as bulky equipment, limited number of datasets, motion blur, foreground/background
similarities. All of these challenges affect the performance of pose estimation. To improve
the quality of pose estimation mentioned in the previous section, a new approach is needed
to continue to tackle ice hockey.

That approach is to improve pose estimation in ice hockey by utilizing a unique feature
found in the hands of hockey players - the hockey stick. This handheld object is an
extension to the human body used to control, steal, pass, or shoot the puck. By modeling
additional joints representing the pose of a hockey stick, that information extracted can
be used to infer other joints from the hockey player; by adding a hockey stick, a player’s
arms are usually constrained to holding that object. Estimating the pose of hockey stick
locations not only can improve the pose estimation of hockey players, but it can also
help assess a player’s actions and performance. By knowing the location of a hockey stick,
technique of a player can be evaluated more finely such as hand-eye-coordination, shooting,
and passing. Hockey sticks, however, pose certain challenges such as motion blur in video
because they are much harder to identify due to their thinness (see Figure 5.1). Inspired
by the idea that the position of a hockey stick is useful for both improving player pose
estimation and assessing player performance, a novel HyperStackNet network architecture
[39] is proposed for joint player and stick pose estimation in this paper.

Yao et al. [68] claim that handheld objects (such as bats, balls and rackets) and body
can help infer the location of each other for pose and action recognition. Although research

25



(a) (b)

(c) (d)

Figure 5.1: Results for different player poses (a) - (c). Note the excessive size of equipment
posing difficulty for pose estimation. The final image (d) is a case of excessive motion blur.
Also note that the jersey color matches with the background, causing difficulty in pose
estimation.
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Figure 5.2: The network architecture of HyperStackNet. In the HyperStackNet network
architecture, an initial stacked hourglass network (a) is used to model a subset of keypoints.
The output tensor of each hourglass network module (b) in this initial stacked hourglass
network combines into a latent vector (c), which acts as an intermediate connection to
a second stacked hourglass network module that jointly models the previous subset of
keypoints plus additional keypoints. In this particular implementation of HyperStackNet,
the initial stacked hourglass network module consists of eight hourglass modules modeling
16 joints, resulting in a latent pose vector that combines eight tensors of size 3x16x64x64.
The second stacked hourglass network module also consists of eight hourglass modules
modeling not only the 16 joints on a player but also an additional two joints associated
with the hockey stick, resulting in a final output of 18 different joints.

has been done to detect/track the position of a handheld racket itself [19, 18], to our best
knowledge, there is currently no published research that uses an external handheld object
for human pose estimation, which would include objects used for playing sports such as
sticks and rackets.

Therefore, two additional joints for the hockey stick for pose estimation is considered.
This differs from Yao et al. [68] in the way that our work focuses on the handheld object
(stick) as a dependent part/joint of the human body, so that the mutual information can
be exploited.

The stacked hourglass architecture [40] is extended to incorporate two additional joints
(total of 18). The reason for using this architecture is that it does not require a separate
graphical model as in Chen et al. [7], or separate pipeline for resolutions [55], or separate
pipeline to associate body parts as in Pishchulin et al. [51]. It also finds other applications
in [3, 62] and extensions in [14, 63]. In Section 5.1, the details of a unique transfer learning
that extends the capacity/domain of the network is introduced. This same concept of
extending pose to include a hockey stick can be extended to other racket/bat based sports
such as field hockey, cricket and baseball.

The main contribution of this section is the introduction of the HyperStackNet for
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Figure 5.3: Some results of HyperStackNet on the test dataset with various player poses.

improved joint hockey player and stick pose estimation. Using the HARPE dataset [22], the
HyperStackNet architecture extends significantly upon the stacked hourglass architecture
[40] by enabling the latent modeling of pose from pre-trained stacked hourglass networks
while at the same time augmenting additional stick pose information to provide improved
player pose estimation through the use of novel transfer learning. See Figure 5.2 for the
overall architecture.

Section 5.1 will be by providing the architectural overview and Section 5.2 will be the
experimental testing and results.

5.1 Architectural Overview

5.1.1 Overview

The HyperStackNet architecture is comprised of three components in the network and will
be discussed as follows: 1) the original stacked hourglass network proposed by Newell et
al. [40] with the input being an image and center of body (Secction 5.2.2), 2) the final
output of the first half of the architecture being the latent pose vector which concatenates
each hourglass module’s output (Section 5.2.3) and 3) a modified stacked hourglass net-
work which takes the latent pose vector of 16 joints as input and trains two more joints
locations, outputting 18 joint locations (Section 5.2.4). These three components compose
the HyperStackNet as shown in Figure 5.3. The method of transfer learning (Section 5.2.5)
will also be discussed in addition to the dataset used (Section 5.2.6) and training details
(Section 5.2.7).
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5.1.2 Original Stacked Hourglass Network

The first half of the HyperStackNet architecture is similar in structure to the stacked
hourglass network described by Newell et al. [40]. The network is comprised of eight
hourglass modules in sequential order where the input for the first module is an image
with an x and y coordinate indicating the center of mass. The output of each hourglass
module is a heatmap of the original 16 joints. The final heatmap is formed by applying
two consecutive rounds of 1x1 convolutions. To connect modules together, the output of
each module, being heatmap predictions of each joint, are then used as inputs for the next
hourglass module. The intuition is to train the architecture to model a subset of keypoints
at each hourglass module to be used later to improve pose estimation over a larger set of
joint locations.

Each hourglass module is comprised of convolutional, max-pooling, and up-sampling
layers in addition to skip connections in a bottom-up and then top-down configuration.
The bottom-up portion of the hourglass utilizes the convolutional layers and the max
pooling layers to spatially decrease the feature maps to 4x4 pixels. From then, the top-
down sequence up-samples the feature maps using nearest neighbour. To maintain the
spatial information during up-sampling, skip connections are used between the bottom-up
and top-down portions of the hourglass.

The network used is a pre-trained model of the original stacked hourglass network
trained using the MPII [1] dataset.

5.1.3 Latent Pose Vector

After the final heatmap tensor is computed of the hourglass module in the first stage of
the HyperStackNet, each predicted heatmap that is resulted from all eight of the hourglass
modules are placed in a latent pose vector to be used for the final stage of the architecture.
Each hourglass module output is of the size:

size(heatmap) = batchsize× 16 × 64 × 64 (5.1)

where the batchsize in the testing case is of size 3, the number of joints estimated is 16
and the image size is 64 by 64. By incorporating eight predicted heatmaps, the size of the
latent pose vector (Vlp) is:
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Table 5.1: Joint locations used in the HyperStackNet (see Figure 5.4).

Joint Location Joint Location
Right Ankle 1 Head Top 10
Right Knee 2 Right Wrist 11
Right Hip 3 Right Elbow 12
Left Hip 4 Right Shoulder 13

Left Knee 5 Left Shoulder 14
Left Ankle 6 Left Elbow 15

Pelvis 7 Left Wrist 16
Thorax 8 Stick Upper 17

Upper Neck 9 Stick Lower 18

size(Vlp) = 8 × 3 × 16 × 64 × 64 (5.2)

The heatmaps from each hourglass module were extracted at the end of their respective
modules. By concatenating the pose information from the output of each hourglass module
into a latent pose vector, the next stage of the network has information of successive
refinement periods of the stacked hourglass network and can use the pose from each module
to infer a more accurate pose.

5.1.4 Modified Stacked Hourglass Network

After the latent pose information concatenates to the latent pose vector a modified stacked
hourglass network is then applied to determine the final pose estimation of 18 joints (16
human pose joints and two external joints representing the handheld object). The input of
this stage of the network is the latent pose vector, while the output are heatmaps of the 18
joints. Identical to the stacked hourglass network, the final network prediction is produced
by applying two consecutive rounds of 1x1 convolutions. Figure 5.4 and Table 5.1 show
where the joints are located and the label of each joint. The final stage has weights that
are randomly initialized and, similar to the original stacked hourglass network by Newell
et al. [40], this latter half of the network also has an eight hourglass configuration.

The idea of the HyperStackNet is to infer more joint locations than what the original
network can output. The intuition is to use existing joint information to learn additional
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Figure 5.4: Corresponding positions of various joint locations (see Table 5.1).
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(a) (b)

Figure 5.5: (a) Estimated pose overlayed on the image. (b) Heatmaps generated for the
18 joints. Note that the last row corresponds to the stick joints.

joints. Although the original stacked hourglass network was pretrained, the network as a
whole is trained thereby finetuning the weights of the original stacked hourglass network
from hockey data and improving the weights of the latter stacked hourglass module. In this
application, the original network can infer 16 body joints, but not an additional two stick
joints. Hence the importance of the latent pose vector which extracts 16 joint locations
and is an input to the latter stacked hourglass network. By including the features from all
eight modules in the first stage, one can continually infer information from each hourglass
at different refinement periods. Therefore, by keeping all eight pose features and using that
as an input latent feature to extract the final 18 joints, more information and therefore
accuracy results. Figure 5.5 shows an example of the result of the HyperStackNet with the
image accompanying heatmaps.

5.1.5 Transfer Learning Method

By incorporating the latent feature vector into the network, the overall architecture employs
a method of transfer learning. The architecture uses latent features found within each
module of the initial stacked hourglass network, with optimized weights associated with
each hourglass module for estimating 16 joint locations, and uses that information to
improve the estimation of the 16 joints on a hockey player in addition to two more points
from the handheld object. As such, the method of transfer learning is novel because to
the best knowledge of the authors, no research has been conducted thus far that extends
a pose estimator from its original joint locations to that of more joints using latent pose
as a feature with an extended network.
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5.1.6 Dataset

The first half of the network is pre-trained using the MPII dataset, while the HyperStackNet
as a whole was trained using the HARPE dataset [22]. The HARPE dataset consists of
886 images1. The dataset has annotated x and y coordinates of 18 joints, 16 of the body
pose and two of the stick pose. The dataset consists of a single hockey player in their full
equipment, on ice, with their hockey stick in the image. The players wore either blue or
white jersey colors.

The dataset is partitioned randomly into three categories: training, validating, and
testing. The data was partitioned into 70% training, 15% validation and 15% testing,
giving the training set 620 images and validation and testing 133 images. The images in
the dataset each shows the hockey player performing some type of skills (i.e., shooting,
skating) or a drill (i.e., jumping, skate transitioning). Within those skills and drills, are
active shots of a hockey player. The dataset is challenging because (1) similarity of the
foreground (player) to the background (ice and boards), (2) bulky equipment occludes
joints, and (3) motion blur prevents clear observability of the hockey stick. The dataset
provides some unique challenges in pose estimation that differ from datasets found in
previous publications.

5.1.7 Training Details

Training of the whole network was done with one epoch and with 8000 iterations per epoch.
The training batch size was set to three. The input resolution of network is 256×256 pixels
while the output resolution is 64 × 64 pixels. Images are preprocessed with .25 degrees
of scale augmentation and 30 degree rotation of augmentation to reduce overfitting of the
network. The network is trained using rmsprop for optimization with a learning rate of
2.5e-4. Batch normalization is implemented to improve training. The GPU used to train
the network was an Nvidia Titan X.

5.2 Experimental Testing and Results

PCKh accuracy metric is used in the results because the metric reports the percentage
of detections that fall within a normalized distance of the ground truth [1]. The PCKh

1Images collected to form the HARPE dataset were extracted from HOCKEY USA Skills and Drills
DVD from Hockey USA, 2010
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Table 5.2: PCKh comparison between the HyperStackNet and the (pre-trained) stacked
hourglass network on the image test set for each joint location. In bold are the values
that have the highest accuracy in each joint category. Averages are also computed for each
network. From the results, the HyperStackNet outperforms the stacked hourglass in all
joint categories.

Joint HyperStackNet(PCKh) Stacked Hourglass (PCKh)
Head 100 91.9

Shoulder 99.6 90.6
Elbow 99.2 80.4
Wrist 98.4 78.9
Hip 99.2 86.4

Ankle 100 91.9
Knee 99.6 93.6

Stick Upper 100 N/A
Stick Lower 87.3 N/A

Average 98.8 85.4

measure for individual joints of HyperStackNet and the stacked hourglass network using
the same image test set are shown in Table 5.2. From the table, the HyperStackNet has
relatively low PCKh values for wrist and elbow joints due to the motion blur effect during
player actions. Perfect accuracy is obtained for head and ankle joints. The PCKh value
for the top of the stick is accurately estimated because the top of the stick tends to be held
consistently in the glove of the hockey player. The PCKh value for the lower end of the
stick, however, is quite low, the reason for this can be attributed to the excessive amount
of motion blur present in the stick movement as shown in Figure 5.6. Other failure cases
include the presence of self occlusion shown in Figure 5.7.

To understand visually how the HyperStackNet compares to the stacked hourglass
network, Figure 5.8 provides three test images from the HARPE dataset and displays their
respective pose estimates of each architecture; each section (i.e., left arm, right arm, torso,
left leg, right leg and stick) is colour coded and overlayed on the image. From the figure,
the HyperStackNet correctly identifies almost every joint location on the hockey player and
on the stick, whereas, the stacked hourglass network, as apparent in the first comparison
image in Figure 5.8, does not correctly identify a portion of joint locations. At times,
the stacked hourglass network does not correctly identify the left arm, or fails to correctly
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(a) (b)

(c)

Figure 5.6: (a) A typical failure case which is due to motion blur plus look-alike. Note
that even for human annotators, the stick joint locations are difficult to locate. (b) Cor-
responding pose prediction. (c) Corresponding heatmap. Note that the second heatmap
corresponding to the stick is not present due to motion blur.
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(a) (b)

Figure 5.7: (a) A typical failure case where the stick is not identified due to self occlusion
(b) Corresponding heatmap of the image on left.

identify an ankle. What is most apparent is that the stacked hourglass network is not
viewpoint invariant in contrast to the HyperStackNet that accurately identifies pose on
hockey players where the viewpoint is angled steeply down onto the ice as shown in the
first image comparison of Figure 5.8.

Compared to the pre-trained stacked hourglass network, the HyperStackNet trained
using transfer learning, a larger dataset and one epoch achieves a better average accuracy
of joints by a margin of 13.4 percent as shown in Table II. The three lowest PCKh values
for the stacked hourglass network were the wrist, elbow and hip, which, the PCKh value
significantly improved by a margin of 19.5%, 18.8% and 12.8% when using the HyperStack-
Net.
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Figure 5.8: Comparison between some test results of HyperStackNet model (left) and
the original pre-trained stacked hourglass network (right). Evidently, the HyperStackNet
model does better at wrists, ankle and pelvis joints.
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Chapter 6

Action Recognition using Pose
Estimation Features

In the previous chapter, the efficacy of applying pose estimation to ice hockey was validated
thus demonstrating that pose estimation provides valuable pieces of information that can
potentially help players and coaches. In addition, the use of action recognition in computer
vision is another method to help.

Action recognition in computer vision is an important and popular problem in the
application of analyzing sport videos. Action recognition provides a benefit to coaches,
analysts and spectators by providing content for coaches and analysts to evaluate player
performance and for spectators to view content. Although only a limited amount of action
recognition or even computer vision research has been done in the field of hockey, action
recognition can be applied to hockey analytics to analyze characteristics of hockey players
and teams.

In this article, videos captured by a single camera is employed, and a convolutional neu-
ral network (CNN), called Action Recognition Hourglass Network (ARHN), is introduced
that extracts pose features from hockey images and videos and utilizes them for action
recognition. Although the use of depth sensors can be employed, that method is expensive
and the data gathered is too noisy. Action recognition for broadcast videos, although more
challenging, is more desirable and more realistic.

A dataset of annotated hockey images was generated; to the best of our knowledge,
there is no publicly available benchmark hockey dataset for action recognition and pose
estimation. In this dataset, video frames of hockey players performing four types of activ-
ities (namely, cross-overs, straight skating, pre-shot, and post-shot) are labeled and body
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joint locations are annotated.

The main contributions include the following: 1) ARHN architecture overview which
includes the general framework and discussion on the pieces of the architecture (Section
6.1), and 2) experimental testing and results (Section 6.2). This research focuses on utiliz-
ing pose information for action recognition and does not employ temporal features for two
reasons. First, a player’s pose, as a static feature, is a strong clue for action recognition,
and, second, incorporating temporal information like motion descriptors arises the need for
a much bigger dataset to be used for training a deep structure that incorporates temporal
information.

6.1 Architectural Overview

As indicated earlier, this research involves the development, implementation, and testing
of a new method to perform action recognition. This method is applied to recognizing
actions of ice hockey players as an example. The ARHN uses features based on latent pose
estimation to estimate action recognition using single video frames of hockey players. An
overview of the framework is demonstrated in Figure 6.1 and is described in Section 6.2.2.

6.1.1 Proposed General Framework

The proposed action recognition framework in video is illustrated in Figure 6.1. As shown
in Figure 6.1, a hockey video-segment is converted to a sequence of frames. In each frame
a player is tracked, and a coordinate of their body center is determined. Next, the frame
resolution is adjusted to the proper input size (i.e., 720 × 1280) of the network. Then
a region of interest (with size 250 × 250), centered at a player’s body-center is cropped
from the image and is given to the ARHN network. The network, by finding heatmaps
(where each heatmap corresponds to the predicted probability of a joint’s presence at each
image-pixel [40]), generates the pose estimation which is then used to estimate player
action. Four different types of hockey player actions are considered which are: cross-over,
straight skating, pre-shot, and post-shot. Details of the ARHN structure are presented and
discussed in the next subsection.
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Figure 6.1: Implemented framework for hockey action recognition through pose estimation
for hockey images/video frames. The framework begins by extracting video frames as
input, the body-center of the player is determined using tracking means, then the image
size is scaled and fed into the network. The network then classifies the action and overlays
the estimated pose on the image.

6.1.2 Network Architecture

The general structure of the ARHN is presented in Figure 6.2 and broken into three com-
ponents. The first component is the stacked hourglass network [40], which inputs the raw
image and generates a set of heatmaps that defines the pose as the latent feature. The
second component of the network is the latent feature transformer that receives the latent
features and transforms them to a common frame of reference. The third component is
the action recognition classifier which is composed of six fully-connected layers and classi-
fies a hockey player’ s action type. Sequencing these three parts, as shown in Figure 6.2,
constructs the ARHN network as a unified deep structure.

The pose estimator component implicitly learns the pose of a hockey player through the
use of a generated set of statistical probability heatmaps that identify the joint locations of
a hockey player in a still image. Then, the latent feature transformer scales and shifts the
learned pose, forming a feature vector. The fully connected layers in the third component
perform the action recognition task.

To understand the ARHN, a brief overview of the original hourglass network, in con-
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Figure 6.2: Proposed ARHN for action recognition identifying the three components. Com-
ponent 1: pose estimation using an hourglass network. Component 2: feature transforma-
tion to transform poses into a common frame of reference Component 3: action recognition
represented by fully connected layers.

junction with a description of latent feature transformer and fully-connected layers are
provided respectively in Subsections 6.2.3, 6.2.4, and 6.2.5.

6.1.3 Latent Pose Estimation via Stacked Hourglass Network

The stacked hourglass network is a deep convolutional network architecture composed of
multiple hourglass modules put together in series [40]. Each hourglass module has convo-
lutional, max-pooling, and up-sampling layers as its basic elements to realize a bottom-up,
top-down mechanism for generating feature maps. In bottom-up sequence, successive con-
volution and max pooling layers are engaged to bring the resolution of feature maps to
4x4 pixels. In the top-down sequence, feature maps are up-sampled using nearest neigh-
bor. The major elements of this architecture are skip connections between bottom-up and
top-down sections of the hourglass, which are shown by dashed arches in Figure 6.2. These
skip connections preserve information of high resolution feature maps, in the first section of
network, to be combined with features of other scales, in the second section. The hourglass
network generates a set of 16 statistical heatmaps. Figure 6.3 provides instances of some
heat maps for the right ankle, right knee and right hip of a hockey player. These heatmaps
actually form the latent pose features for the ARHN network.
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Figure 6.3: Statistical heat maps demonstrating the probability of the location of the right
ankle, right knee, and right hip (left to right) for a hockey player.

6.1.4 Latent Feature Transformer

The second component is a feature transformer that transforms pose heatmaps to a common
frame of reference by performing spatial translation and scaling in 2-D plane. The location
of a peak in a heatmap gives the predicted coordinate of a joint for the input image. A
specific constellation of joints (i.e., geometrical arrangement of a set of joints) shows the
pose of a player. A player’s pose potentially should represent a particular type of action,
that is performed; typical poses for four types of actions in hockey are indicated in Figure
6.4. However, poses that represent the same action type can vary significantly in the joint
position, orientation, and sizes. To generate a more consistent representation for poses,
referred to as canonical poses, the feature transformer is used. This component generates
the canonical poses from the heatmaps to generate a better pose representation to be used
as input into the action recognition component.

The latent feature transformer, is demonstrated in Figure 6.5(a). All joint coordinates
are shifted with respect to a point defined as the body center (x0, y0), namely, the point
halfway between the thorax and pelvis keypoints indicated by “O” on the stickmen in
Figure 6.4. Joint coordinates are scaled by scaling ratio S as per Eq. (6.1). S is the ratio
of the average head size of players in all training images (N) and Hn is the head size of
the player in the nth image. Head size is the distance between the “head top” and “upper
neck” keypoints (Fig. 4).

S =

∑N
n=1Hn

Hn

(6.1)

As shown in Figure 6.5, besides transformed coordinates (i.e., [xi, yi]
T ) of 16 body-joints,

angles (αj) between some joints are also calculated. Angles which are computed are be-
tween (right & left)- shoulder, (right & left)-elbow, (right & left)-hip, and (right & left)-
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cross-over straight skating

pre-shot post-shot

Figure 6.4: Typical poses for 4 different actions of a hockey player
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Figure 6.5: (a) Latent feature transformer, which generates canonical pose vector by shift-
ing and scaling joint coordinates and computing the joint angles. (b) Angle of joint “j”
(i.e., αj) is the smaller angle between vectors ja and jb.

knee joints. The output of the latent feature transformer is a 40-dimensional vector named
the canonical pose (pc) given in Eq. (6.2). This vector is formed by concatenation of joint
angles and transformed keypoint coordinates. The canonical pose is the feature that is
next evaluated by the third component of the ARHN to perform action recognition.

pc =
[
α X Y

]
(6.2)

X =
[
x1, x2, ..., xi, ... x16

]
, Y =

[
y1, y2, ..., yi, ... y16

]
, α =

[
α1, α2, ..., αj, ... α8

]
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Figure 6.6: Action recognition component consisting of 6 fully connected layers beginning
with a layer of 100 neurons to 50, 90, 20, 40 and ending with a fully connected layer of 4
to perform action recognition.

6.1.5 Action Recognition Component

The last component of the network is illustrated in Figure 6.6. This component is composed
of six fully connected layers to recognize activities. The fully connected layers receive the
40-dimensional feature vector from the latent feature transformer, passing it through five
fully connected layers with sigmoid activation functions and a final layer of four neurons
with a hard-limit function to recognize one of the four types of activities for the input
image. The number of neurons in each layer is indicated in Figure 6.6. Note that the
number of layers and the number of neurons per layer are determined empirically.

6.2 Experimental Testing and Results

Experiments that are conducted here assess the performance of ARHN for action recogni-
tion in the context of hockey. Both visual and numerical evaluations are provided.

6.2.1 Dataset Preparation

In machine learning, and particularly deep learning problems, having access to a proper
dataset is a crucial requirement. Deep networks generally use supervised or semi-supervised
algorithms for learning, which heavily rely on annotated data during training. Deep net-
works are designed to extract information from raw input data, therefore, performance
relies on the data samples presented to deep networks. If the provided data are not repre-
sentative of the problem, or the number of training samples is limited, the machine learning
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method fails to properly tune its parameters and cannot provide an accurate model for
solving the problem.

In the context of hockey, no standard set of annotated hockey images for pose estimation
or action recognition is available. Therefore, in this work, a dataset, named HARPE, has
been collected and annotated for this purpose.

• Video segments are captured from a set of hockey videos and converted to video
frames.

• Video frames are categorized into classes based on the four hockey actions: cross-
overs, straight skating, pre-shot, and post-shot.

• Very low quality frames, and frames unrepresentative of classes, are manually de-
tected and discarded.

• Spatial resolution of each frame is adjusted to the proper size for delivering to the
network i.e., 720 × 1280.

• A hockey player is tracked in all frames to determine his body center in pixel coor-
dinates.

• For each frame, the positions of 16 body joints (Table 6.1) for the player of interest
is annotated and the action type is labeled.

• The two ends of the hockey sticks are also annotated in each frame for future use.

In summary, keypoints are annotated in 887 frames with an associated action label.
The dataset has 1676 frames of cross-overs, 271 frames of straight skating, 245 frames
of pre-shooting, and 203 frames of post-shooting. The dataset is planned to be publicly
available.

6.2.2 Accuracy of Action Recognition

To evaluate the accuracy of action recognition the images are randomly divided into three
groups: 70% training, 15% validation, and 15% validation. Training images are passed
through the ARHN network and the parameters of network are tuned accordingly. Due
to the limited size of the provided data, parameters of hourglass layers are hardly affected
(weights of hourglass layer are pre-trained by general human poses on MPII dataset [1]),
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Table 6.1: List of annotated key-points for each frame.

# Key-point # Key-point

1 Right ankle 10 Head top
2 Right knee 11 Right wrist
3 Right hip 12 Right elbow
4 Left hip 13 Right shoulder
5 Left knee 14 Left shoulder
6 Left ankle 15 Left elbow
7 Pelvis 16 Left wrist
8 Thorax 17 top of stick
9 Upper neck 18 end of stick

while parameters of the fully connected layers are the ones that are mainly learned during
the training phase. This process has been repeated with fifteen randomly selected groups,
and the average performance of ARHN network for action recognition is reported. The
70/15/15 splitting of data and averaging over 15 runs, is validated in Subsection 6.3.3.

For this purpose, precision and recall rates for training, testing, and validation images
are computed and provided respectively in Tables 6.2, 6.3, and 6.4 for each of the four class
types; where 1 represents cross-overs, 2 represents straight skating, 3 represents pre-shot,
and 4 represents post-shot.

The precision and recall rates of Table 6.4, for the test data, show that the network has
precision of about 65% for each class. However, in many cases, a hockey players’ pose in
cross-over and straight skating (the two first classes) are quite similar to each other. It is
also the case for pre-shot and post-shot (the two last classes). For each type of action, some
examples of correctly classified and misclassified images are illustrated in Figures 6.7 and
6.8. In Figure 6.7, all images follow the typical action poses shown in Fig. 6.4, so they are
all correctly classified by the ARHN. In contrast, images of Figure 6.8 are all misclassified
because they deviate from their true class and mimic a different class. Considering player
poses, misclassification of Figure 6.8 by ARHN can be justified. This subject is further
investigated in the next experiment.
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Table 6.2: Performance of ARHN for training.

Class # 1 2 3 4

Precision (%) 68.3 7.18 75.9 79.5
Recall (%) 68.6 74.1 77.0 73.0

Table 6.3: Performance of ARHN for validation.

Class # 1 2 3 4

Precision (%) 64.5 68.8 72.6 64.1
Recall (%) 69.5 68.9 68.4 64.1

6.2.3 Effect of Merging Classes

The purpose of this experiment is to show that by merging similar classes, accuracy of
classification can be improved. In Figure 6.9, a confusion matrix for one run on training
data is provided.

The confusion matrix in Figure 6.9 shows that most misclassifications occur between
classes 3 and 4 (pre-shot and post-shot), as well as classes 1 and 2 (cross-over and straight
skating); shooting classes are clearly distinct from the skating classes. Therefore, in Table
6.5, the effect of merging similar classes on accuracy of action recognition is investigated.
Mean classification accuracy averaged over 15 and then 1000 runs are reported for three
different testing conditions.

In the first test none of the classes are merged together. In the second test the two
last classes (i.e., pre-shot and post-shot) are merged together. Finally, in the third test

Table 6.4: Performance of ARHN for testing.

Class # 1 2 3 4

Precision (%) 61.7 67.0 68.3 63.1
Recall (%) 61.7 67.0 68.1 63.1

48



Cross-over Straight skating

Pre-shot Post-shot

Figure 6.7: Examples of activities, correctly classified.

Table 6.5: Accuracy of action recognition over 15 and 1000 runs for three testing conditions:
evaluating classes 1,2,3 and 4 as separate classes, evaluating class 1 and 2 separately with
classes 3 and 4 as a single class, and evaluating classes 1 and 2 as one separate class and
classes 3 and 4 as another class.

Class Indices 1,2,3,4 1,2,(3,4) (1,2),(3,4)
Mean 15 runs(%) 65.14 71.13 78.32

Mean 1000 runs(%) 65.47 69.08 78.49
Variance 1000 runs 0.0064 0.0043 0.0030
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Cross-over –> Straight
skating

Straight skating–
>Cross-over

Pre-shot–>Post-shot Post-shot–>Pre-shot

Figure 6.8: Examples of missclassified activities. In each case the true class-type followed
by the predicted class-type are shown under the image in question.
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Figure 6.9: Confusion matrix of action recognition for one run.

the first two classes (i.e., cross-over and straight skating) are also combined. Accuracy
of recognition for each of these testing conditions are provided in the three columns of
Table 6.5. Table 6.5 demonstrates that by unifying similar classes, the mean accuracy
increases. Also, Table 6.5 shows that the mean accuracy over 15 runs is close to the mean
accuracy over 1000 runs. The low variance over 1000 runs validates that fewer runs (e.g.,
15) should be sufficient for representative results. The result of this test for 1000 runs are
also demonstrated in the form of histograms in Figure 6.10 ??or each of the three testing
conditions. The histograms show that by merging the classes, mean accuracy increases
and variance decreases resulting in the histogram to look more concentrated.

51



Figure 6.10: Histograms of accuracy over 1000 runs for random selection of test samples.
(a) all 4 classes as separate classes (b) classes 3 and 4 acting as one class and class 1 and
2 as separate classes and (c) classes 1 and 2 are a single class as well as classes 3 and 4.
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Chapter 7

Conclusions

In this work, an automated method to determine the pose of a hockey player with and
without a hockey stick from broadcast game video in addition to performing action recog-
nition via pose is achieved. In this dissertation, experiments using the stacked hourglass
network proved the efficacy of deep learning in challenging scenarios like hockey videos,
where severe occlusions (i.e., bulky clothing and high speed of players due to skating),
exist for pose estimation. In addition, the successful numerical and visual outcomes of the
HyperStackNet prove that the employed convolutional neural network, along with using
hand-held objects further improve the estimated pose of a hockey player. The deep struc-
ture called ARHN network is designed and implemented which also successfully performs
action recognition in the sport of hockey using latent pose estimation features.

The results of this research provide a contribution to hockey analytics. By estimating
the pose of a player through a convolutional neural network, coaches and analysts can
utilize the joint data received to evaluate a hockey player based on their capability as a
player rather than based on the effects of a hockey player’s performance.

7.1 Potential for Future Research

The researched presented in this dissertation provides a basis for future research in pose
estimation and action recognition. There are two potential research topics that can build
upon the research presented in this dissertation:

• Temporal pose estimation
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• Temporal action recognition

Within temporal pose estimation and temporal action recognition, many avenues of
research can be explored. Modifying the neural network to incorporate temporal features
is the first step. One method could include testing long-short term memory (LSTM)
networks. In pose estimation, experimenting on the use of extra-join location in temporal
pose estimation may also be of interest; by knowing the movement of a hand-held object,
one can infer the joint locations holding the object. In action recognition, one can refine
the action recognition pipeline by including other latent features which may include joint
locations, or angle references of joints with respect to a key coordinate.

The research presented provided experimental results in pose estimation and action
recognition in hockey using still images. The system proved to be effective in the field
of hockey, however, some challenges still arose. For example, some joint locations due to
occlusion were inaccurate and for action recognition some actions were very similar to each
other. To improve occlusion in pose estimation and similarity in action recognition, the
employment of temporal features would be solve these problems.

7.2 Thesis Applicability

The experiments and results in this thesis has provided a practical solution to pose estima-
tion and action recognition using convolutional neural networks. From the experimental
results, pose estimation and action recognition using the stacked hourglass, HyperStack-
Net and the ARHN are excellent architectures for performing pose estimation and action
recognition on still images. The experiments that these networks can effectively perform
pose estimation and action recognition tasks in challenging scenarios that include occlu-
sion, bulky equipment and background/foreground similarity. This work can therefore be
applied to other forms of fields that need accurate information which include, health care
and security.

7.3 Thesis Impact

There are many contributions from the dissertation. This dissertation introduces pose es-
timation in hockey using broadcast images while also introducing a novel idea of modelling
pose of a hockey stick. In addition, the extension of pose estimation in hockey to action
recognition was also discussed. Experimental results in pose estimation, modeling of pose
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of the hockey stick and the extension of hockey pose estimation in action recognition was
also established.
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Appendix A

Code Base Pose Estimation

Section 4 and Section 5 detail code that is used in hockey pose estimation with 16 body
locations in one section and with body joint locations in addition to 2 hockey stick lo-
cations. Code used for Section 4 are from the stacked hourglass network by Newell et
al. [40] and the code can be found in the Michigan Vision Learning Lab’s github ac-
count. The demo code can be found in the following url: https://github.com/umich-vl/
pose-hg-demo. The test code can be found in the following url: https://github.com/

umich-vl/pose-hg-train.

Experiments used for Section 5 use a modified version of the stacked hourglass net-
work that can be found on this author’s github account at https://github.com/neherh/
HyperStackNet. The following sections provide a code summary of the files that were mod-
ified from the original stacked hourglass network for training and testing. Files modified in
the train code include hg.lua, harpe.lua, and model.lua. In the demo code, files modified
include main.lua, util.lua, and img.lua. The following sections provide the training code
(Section A.1) and the demo code (Section A.2) and explanations of each modifications.

A.1 HyperStackNet Training Code

The following subsections are explanations of the various lua language files modified for
the HyperStackNet training.
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A.1.1 harpe.lua

This file was created and used to load the HARPE dataset for training.

1 local M = {}

2 Dataset = torch.class('pose.Dataset',M)

3

4 function Dataset:__init()

5 self.nJoints = 18

6 self.accIdxs = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}

7 self.flipRef = {{1,6}, {2,5}, {3,4},

8 {11,16}, {12,15}, {13,14}}

9 -- Pairs of joints for drawing skeleton

10 self.skeletonRef = {{1,2,1}, {2,3,1}, {3,7,1},

11 {4,5,2}, {4,7,2}, {5,6,2},

12 {7,9,0}, {9,10,0},

13 {13,9,3}, {11,12,3}, {12,13,3},

14 {11,17,1}, {17,18,1},

15 {14,9,4}, {14,15,4}, {15,16,4}}

16

17 local annot = {}

18 local tags = {'index','person','imgname','part','center','scale',

19 'normalize','torsoangle','visible','multi','istrain'}

20 local a = hdf5.open(paths.concat(projectDir,'data/harpe/annot_corrected.h5'),'r')

21 for _,tag in ipairs(tags) do annot[tag] = a:read(tag):all() end

22 a:close()

23 annot.index:add(1)

24 annot.person:add(1)

25 annot.part:add(1)

26

27 -- Index reference

28 if not opt.idxRef then

29 local allIdxs = torch.range(1,annot.index:size(1))

30 opt.idxRef = {}

31 opt.idxRef.test = allIdxs[annot.istrain:eq(0)]

32 opt.idxRef.train = allIdxs[annot.istrain:eq(1)]

33

34 if not opt.randomValid then
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35 -- Use same validation set as used in our paper (and same as Tompson et al)

36 tmpAnnot = annot.index:cat(annot.person, 2):long()

37

38 tmpAnnot:add(-1)

39

40 local validAnnot = hdf5.open(paths.concat(projectDir, 'data/harpe/annot/valid.h5'),'r')

41 local tmpValid = validAnnot:read('index'):all():cat(validAnnot:read('person'):all(),2):long()

42 opt.idxRef.valid = torch.zeros(tmpValid:size(1))

43 opt.nValidImgs = opt.idxRef.valid:size(1)

44 opt.idxRef.train = torch.zeros(opt.idxRef.train:size(1) - opt.nValidImgs)

45 -- Loop through to get proper index values

46 local validCount = 1

47 local trainCount = 1

48 for i = 1,annot.index:size(1) do

49 if validCount <= tmpValid:size(1) and tmpAnnot[i]:equal(tmpValid[validCount]) then

50 opt.idxRef.valid[validCount] = i

51 validCount = validCount + 1

52 elseif annot.istrain[i] == 1 then

53 opt.idxRef.train[trainCount] = i

54 trainCount = trainCount + 1

55 end

56 end

57 else

58 -- Set up random training/validation split

59 local perm = torch.randperm(opt.idxRef.train:size(1)):long()

60 opt.idxRef.valid = opt.idxRef.train:index(1, perm:sub(1,opt.nValidImgs))

61 opt.idxRef.train = opt.idxRef.train:index(1, perm:sub(opt.nValidImgs+1,-1))

62 end

63

64 torch.save(opt.save .. '/options.t7', opt)

65 end

66

67 self.annot = annot

68 self.nsamples = {train=opt.idxRef.train:numel(),

69 valid=opt.idxRef.valid:numel(),

70 test=opt.idxRef.test:numel()}

71

72 -- For final predictions
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73 opt.testIters = self.nsamples.test

74 opt.testBatch = 1

75 end

76

77 function Dataset:size(set)

78 return self.nsamples[set]

79 end

80

81 function Dataset:getPath(idx)

82 return paths.concat(opt.dataDir,'images',ffi.string(self.annot.imgname[idx]:char():data()))

83 end

84

85 function Dataset:loadImage(idx)

86 return image.load(self:getPath(idx))

87 end

88

89 function Dataset:getPartInfo(idx)

90 local pts = self.annot.part[idx]:clone()

91 local c = self.annot.center[idx]:clone()

92 local s = self.annot.scale[idx]

93 -- Small adjustment so cropping is less likely to take feet out

94 --c[2] = c[2] + 15 * s

95 s = s * 1.8

96 return pts, c, s

97 end

98

99 function Dataset:normalize(idx)

100 return self.annot.normalize[idx]

101 end

102

103 return M.Dataset

A.1.2 hg.lua

The function createModel in lines 35 - 81 are added lines of code which creates a new
model based on the input of 16 concatenated heatmaps rather than an image.
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1 paths.dofile('layers/Residual.lua')

2

3

4 local function hourglass(n, f, inp)

5 -- Upper branch

6 local up1 = inp

7 for i = 1,opt.nModules do up1 = Residual(f,f)(up1) end

8

9 -- Lower branch

10 local low1 = nnlib.SpatialMaxPooling(2,2,2,2)(inp)

11 for i = 1,opt.nModules do low1 = Residual(f,f)(low1) end

12 local low2

13

14 if n > 1 then low2 = hourglass(n-1,f,low1)

15 else

16 low2 = low1

17 for i = 1,opt.nModules do low2 = Residual(f,f)(low2) end

18 end

19

20 local low3 = low2

21 for i = 1,opt.nModules do low3 = Residual(f,f)(low3) end

22 local up2 = nn.SpatialUpSamplingNearest(2)(low3)

23

24 -- Bring two branches together

25 return nn.CAddTable()({up1,up2})

26 end

27

28 local function lin(numIn,numOut,inp)

29 -- Apply 1x1 convolution, stride 1, no padding

30 local l = nnlib.SpatialConvolution(numIn,numOut,1,1,1,1,0,0)(inp)

31 return nnlib.ReLU(true)(nn.SpatialBatchNormalization(numOut)(l))

32 end

33

34

35 function createModel(inp)

36 print('==> In create model ')

37 if opt.trainType == 'inception' then

38 pretrained = inp
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39 inp = nn.Identity()()

40 mapping = nnlib.SpatialConvolution(8,opt.nFeats,1,1,1,1,0,0)(inp)

41 else

42 inp = inp()

43 summed_heatmaps = nn.CAddTable()(inp)

44 mapping = nnlib.SpatialConvolution(ref.nOutChannels,opt.nFeats,1,1,1,1,0,0)(summed_heatmaps)

45 end

46

47

48 local out = {}

49 local inter = mapping

50

51 for i = 1,opt.nStack do

52 local hg = hourglass(4,opt.nFeats,inter)

53

54 --Residual layers at output resolution

55 local ll = hg

56 for j = 1,opt.nModules do ll = Residual(opt.nFeats,opt.nFeats)(ll) end

57 --Linear layer to produce first set of predictions

58 ll = lin(opt.nFeats,opt.nFeats,ll)

59

60 -- Predicted heatmaps

61 local tmpOut = nnlib.SpatialConvolution(opt.nFeats,ref.nOutChannels,1,1,1,1,0,0)(ll)

62 table.insert(out,tmpOut)

63

64 -- Add predictions back

65 if i < opt.nStack then

66 local ll_ = nnlib.SpatialConvolution(opt.nFeats,opt.nFeats,1,1,1,1,0,0)(ll)

67 local tmpOut_ = nnlib.SpatialConvolution(ref.nOutChannels,opt.nFeats,1,1,1,1,0,0)(tmpOut)

68 inter = nn.CAddTable()({inter, ll_, tmpOut_})

69 end

70 end

71

72 --Final model

73 local model = nn.gModule({inp}, out)

74

75 if opt.trainType == 'inception' then

76 return pretrained , model
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77 else

78 return model

79 end

80

81 end

82

83

84 function createModelFresh()

85 print('==> Creating a fresh one without pretraining ')

86

87

88 -- print("In cREATE MODEL")

89 local inp = nn.Identity()()

90 -- Initial processing of the image

91 local cnv1_ = nnlib.SpatialConvolution(3,64,7,7,2,2,3,3)(inp) -- 128

92 local cnv1 = nnlib.ReLU(true)(nn.SpatialBatchNormalization(64)(cnv1_))

93 local r1 = Residual(64,128)(cnv1)

94 local pool = nnlib.SpatialMaxPooling(2,2,2,2)(r1) -- 64

95 local r4 = Residual(128,128)(pool)

96 local r5 = Residual(128,opt.nFeats)(r4)

97

98 local out = {}

99 local inter = r5

100

101 for i = 1,opt.nStack do

102 local hg = hourglass(4,opt.nFeats,inter)

103

104 -- Residual layers at output resolution

105 local ll = hg

106 for j = 1,opt.nModules do ll = Residual(opt.nFeats,opt.nFeats)(ll) end

107 -- Linear layer to produce first set of predictions

108 ll = lin(opt.nFeats,opt.nFeats,ll)

109

110 -- Predicted heatmaps

111 local tmpOut = nnlib.SpatialConvolution(opt.nFeats,ref.nOutChannels,1,1,1,1,0,0)(ll)

112 table.insert(out,tmpOut)

113

114 -- Add predictions back
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115 if i < opt.nStack then

116 local ll_ = nnlib.SpatialConvolution(opt.nFeats,opt.nFeats,1,1,1,1,0,0)(ll)

117 local tmpOut_ = nnlib.SpatialConvolution(ref.nOutChannels,opt.nFeats,1,1,1,1,0,0)(tmpOut)

118 inter = nn.CAddTable()({inter, ll_, tmpOut_})

119 end

120 end

121

122 -- Final model

123 local model = nn.gModule({inp}, out)

124

125 return model

126

127 end

A.1.3 model.lua

Lines 18-19 were added pieces of code that loads a pre-trained network of the stacked
hourglass network, adds up the 16 heatmaps in hg.lua createModel function, builds a new
stacked hourglass on network on top of the pre-trained model and then jointly trains the
whole model.

1 --- Load up network model or initialize from scratch

2 --require('mobdebug').start()

3 paths.dofile('models/' .. opt.netType .. '.lua')

4

5

6 -- Continuing an experiment where it left off

7 if opt.continue or opt.branch ~= 'none' then

8 local prevModel = opt.load .. '/final_model.t7'

9 print('==> Loading model from: ' .. prevModel)

10 model = torch.load(prevModel)

11

12

13 -- Or a path to previously trained model is provided

14 elseif opt.loadModel ~= 'none' then

15 assert(paths.filep(opt.loadModel), 'File not found: ' .. opt.loadModel)

16 print('==> Loading model from!!!!!!: ' .. opt.loadModel)
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17 pretrained_8 = torch.load(opt.loadModel)

18 pretrained_12 = torch.load('/home/neherh/models_mpii/model_56.t7')

19 model = createModel(pretrained)

20

21 model = modelTrained

22

23 -- Or we're starting fresh

24 else

25 print('==> Creating model from file: models/' .. opt.netType .. '.lua')

26 print(modelArgs)

27 model = createModelFresh(modelArgs)

28 end

29

30 -- Criterion (can be set in the opt.task file as well)

31 if not criterion then

32 criterion = nn[opt.crit .. 'Criterion']()

33 end

34

35 if opt.GPU ~= -1 then

36 -- Convert model to CUDA

37 print('==> Converting model to CUDA')

38 model:cuda()

39 criterion:cuda()

40

41 cudnn.fastest = true

42 cudnn.benchmark = true

43 end

A.2 HyperStackNet Testing Code

The following subsections are explanations of the various lua language files modified for
the HyperStackNet training.
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A.2.1 main.lua

The only line modified is line 81 where the function drawOutput is called from util.lua
which draws and saves the skeleton of the image while also saving the heatmaps.

1 require 'paths'

2 paths.dofile('util.lua')

3 paths.dofile('img.lua')

4

5 ffi = require 'ffi'

6 --------------------------------------------------------------------------------

7 -- Initialization

8 --------------------------------------------------------------------------------

9

10 if arg[1] == 'demo' or arg[1] == 'predict-test' then

11 -- Test set annotations do not have ground truth part locations, but provide

12 -- information about the location and scale of people in each image.

13 a = loadAnnotations('annot_corrected')

14 local allIdxs = torch.range(1,a['index']:size(1))

15 test_idxs = torch.sort(allIdxs[a['istrain']:eq(0)])

16

17 elseif arg[1] == 'predict-valid' or arg[1] == 'eval' then

18 -- Validation set annotations on the other hand, provide part locations,

19 -- visibility information, normalization factors for final evaluation, etc.

20 a = loadAnnotations('valid')

21

22 else

23 print("Please use one of the following input arguments:")

24 print(" demo - Generate and display results on a few demo images")

25 print(" predict-valid - Generate predictions on the validation set (MPII images must be available in 'images' directory)")

26 print(" predict-test - Generate predictions on the test set")

27 print(" eval - Run basic evaluation on predictions from the validation set")

28 return

29 end

30

31 m = torch.load('hyperstacknet.t7') -- Load pre-trained model

32

33 if arg[1] == 'demo' then
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34 idxs = test_idxs

35 else

36 idxs = torch.range(1,a.nsamples)

37 end

38

39 if arg[1] == 'eval' then

40 nsamples = 0

41 else

42 nsamples = idxs:nElement()

43 -- Displays a convenient progress bar

44 xlua.progress(0,nsamples)

45 preds = torch.Tensor(nsamples,18,64,64)

46 end

47

48 --------------------------------------------------------------------------------

49 -- Main loop

50 --------------------------------------------------------------------------------

51

52 for i = 1,nsamples do

53 -- Set up input image

54 local im = image.load('images/' .. ffi.string(a['imgname'][idxs[i]]:char():data()))

55 local center = a['center'][idxs[i]]

56 local scale = a['scale'][idxs[i]]

57 scale = 1.8 * scale

58

59 local inp = crop(im, center, scale, 0, 256)

60

61 -- Get network output

62 local out = m:forward(inp:view(1,3,256,256):cuda())

63 out = applyFn(function (x) return x:clone() end, out)

64 local flippedOut = m:forward(flip(inp:view(1,3,256,256):cuda()))

65 flippedOut = applyFn(function (x) return flip(shuffleLR(x)) end, flippedOut)

66 out = applyFn(function (x,y) return x:add(y):div(2) end, out, flippedOut)

67 cutorch.synchronize()

68 local hm = out[#out][1]:float()

69 hm[hm:lt(0)] = 0

70

71 -- Get predictions (hm and img refer to the coordinate space)
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72 local preds_hm, preds_img = getPreds(hm, center, scale)

73 preds[i]:copy(hm)

74

75 xlua.progress(i,nsamples)

76

77 -- Display the result

78 if arg[1] == 'demo' then

79 preds_hm:mul(4) -- Change to input scale

80

81 drawOutput(inp, hm, preds_hm[1],a,i)

82 end

83

84 collectgarbage()

85 end

86

87 -- Save predictions

88 if arg[1] == 'demo' then

89 local predFile = hdf5.open('preds/harpe_pred.h5', 'w')

90 predFile:write('preds', preds)

91 predFile:close()

92 elseif arg[1] == 'predict-test' then

93 local predFile = hdf5.open('preds/test.h5', 'w')

94 predFile:write('preds', preds)

95 predFile:close()

96 elseif arg[1] == 'demoo' then

97 w.window:close()

98 end

99

100 --------------------------------------------------------------------------------

101 -- Evaluation code

102 --------------------------------------------------------------------------------

103

104 if arg[1] == 'eval' then

105 -- Calculate distances given each set of predictions

106 local labels = {'valid-example','valid-ours'}

107 local dists = {}

108 for i = 1,#labels do

109 local predFile = hdf5.open('preds/' .. labels[i] .. '.h5','r')
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110 local preds = predFile:read('preds'):all()

111 table.insert(dists,calcDists(preds, a.part, a.normalize))

112 end

113

114 require 'gnuplot'

115 gnuplot.raw('set bmargin 1')

116 gnuplot.raw('set lmargin 3.2')

117 gnuplot.raw('set rmargin 2')

118 gnuplot.raw('set multiplot layout 2,3 title "MPII Validation Set Performance (PCKh)"')

119 gnuplot.raw('set xtics font ",6"')

120 gnuplot.raw('set ytics font ",6"')

121 displayPCK(dists, {9,10}, labels, 'Head')

122 displayPCK(dists, {2,5}, labels, 'Knee')

123 displayPCK(dists, {1,6}, labels, 'Ankle')

124 gnuplot.raw('set tmargin 2.5')

125 gnuplot.raw('set bmargin 1.5')

126 displayPCK(dists, {13,14}, labels, 'Shoulder')

127 displayPCK(dists, {12,15}, labels, 'Elbow')

128 displayPCK(dists, {11,16}, labels, 'Wrist', true)

129 gnuplot.raw('unset multiplot')

130 end

A.2.2 img.lua

The only function added was compileImages18 in lines 199-230. This function modifies the
original compileImages function by accommodating 18 heatmaps and joints as apposed to
the original 16.

1 -------------------------------------------------------------------------------

2 -- Coordinate transformation

3 -------------------------------------------------------------------------------

4 function applyFn(fn, t, t2)

5 -- Apply an operation whether passed a table or tensor

6 local t_ = {}

7 if type(t) == "table" then

8 if t2 then

9 for i = 1,#t do t_[i] = applyFn(fn, t[i], t2[i]) end
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10 else

11 for i = 1,#t do t_[i] = applyFn(fn, t[i]) end

12 end

13 else t_ = fn(t, t2) end

14 return t_

15 end

16

17 function getTransform(center, scale, rot, res)

18 local h = 200 * scale

19 local t = torch.eye(3)

20

21 -- Scaling

22 t[1][1] = res / h

23 t[2][2] = res / h

24

25 -- Translation

26 t[1][3] = res * (-center[1] / h + .5)

27 t[2][3] = res * (-center[2] / h + .5)

28

29 -- Rotation

30 if rot ~= 0 then

31 rot = -rot

32 local r = torch.eye(3)

33 local ang = rot * math.pi / 180

34 local s = math.sin(ang)

35 local c = math.cos(ang)

36 r[1][1] = c

37 r[1][2] = -s

38 r[2][1] = s

39 r[2][2] = c

40 -- Need to make sure rotation is around center

41 local t_ = torch.eye(3)

42 t_[1][3] = -res/2

43 t_[2][3] = -res/2

44 local t_inv = torch.eye(3)

45 t_inv[1][3] = res/2

46 t_inv[2][3] = res/2

47 t = t_inv * r * t_ * t
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48 end

49

50 return t

51 end

52

53 function transform(pt, center, scale, rot, res, invert)

54 -- For managing coordinate transformations between the original image space

55 -- and the heatmap

56 local pt_ = torch.ones(3)

57 pt_[1] = pt[1]

58 pt_[2] = pt[2]

59 local t = getTransform(center, scale, rot, res)

60 if invert then

61 t = torch.inverse(t)

62 end

63 local new_point = (t*pt_):sub(1,2):int()

64 return new_point

65 end

66

67 -------------------------------------------------------------------------------

68 -- Cropping

69 -------------------------------------------------------------------------------

70 function crop1(img, center, scale, rot, res)

71 local ndim = img:nDimension()

72 if ndim == 2 then img = img:view(1,img:size(1),img:size(2)) end

73 local ht,wd = img:size(2), img:size(3)

74 local tmpImg,newImg = img, torch.zeros(img:size(1), res, res)

75

76 -- Modify crop approach depending on whether we zoom in/out

77 -- This is for efficiency in extreme scaling cases

78 local scaleFactor = (200 * scale) / res

79

80 if scaleFactor < 2 then scaleFactor = 1

81 else

82 local newSize = math.floor(math.max(ht,wd) / scaleFactor)

83 if newSize < 2 then

84 -- Zoomed out so much that the image is now a single pixel or less

85 if ndim == 2 then newImg = newImg:view(newImg:size(2),newImg:size(3)) end
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86 return newImg

87 else

88 tmpImg = image.scale(img,newSize)

89 ht,wd = tmpImg:size(2),tmpImg:size(3)

90 end

91 end

92

93 -- Calculate upper left and bottom right coordinates defining crop region

94 local c,s = center:float()/scaleFactor, scale/scaleFactor

95 local ul = transform({1,1}, c, s, 0, res, true)

96 local br = transform({res+1,res+1}, c, s, 0, res, true)

97 if scaleFactor >= 2 then br:add(-(br - ul - res)) end

98

99 -- If the image is to be rotated, pad the cropped area

100 local pad = math.ceil(torch.norm((ul - br):float())/2 - (br[1]-ul[1])/2)

101 if rot ~= 0 then ul:add(-pad); br:add(pad) end

102

103 -- Define the range of pixels to take from the old image

104 local old_ = {1,-1,math.max(1, ul[2]), math.min(br[2], ht+1) - 1,

105 math.max(1, ul[1]), math.min(br[1], wd+1) - 1}

106 -- And where to put them in the new image

107 local new_ = {1,-1,math.max(1, -ul[2] + 2), math.min(br[2], ht+1) - ul[2],

108 math.max(1, -ul[1] + 2), math.min(br[1], wd+1) - ul[1]}

109

110 -- Initialize new image and copy pixels over

111 local newImg = torch.zeros(img:size(1), br[2] - ul[2], br[1] - ul[1])

112 if not pcall(function() newImg:sub(unpack(new_)):copy(tmpImg:sub(unpack(old_))) end) then

113 print("Error occurred during crop!")

114 end

115

116 if rot ~= 0 then

117 -- Rotate the image and remove padded area

118 newImg = image.rotate(newImg, rot * math.pi / 180, 'bilinear')

119 newImg = newImg:sub(1,-1,pad+1,newImg:size(2)-pad,pad+1,newImg:size(3)-pad):clone()

120 end

121

122 if scaleFactor < 2 then newImg = image.scale(newImg,res,res) end

123 if ndim == 2 then newImg = newImg:view(newImg:size(2),newImg:size(3)) end
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124 return newImg

125 end

126

127

128 function crop(img, center, scale, rot, res)

129 -- Crop function tailored to the needs of our system. Provide a center

130 -- and scale value and the image will be cropped and resized to the output

131 -- resolution determined by res. 'rot' will also rotate the image as needed.

132

133 local ul = transform({1,1}, center, scale, 0, res, true)

134 local br = transform({res,res}, center, scale, 0, res, true)

135

136 local pad = math.floor(torch.norm((ul - br):float())/2 - (br[1]-ul[1])/2)

137 if rot ~= 0 then

138 ul = ul - pad

139 br = br + pad

140 end

141

142 local newDim,newImg,ht,wd

143

144 if img:size():size() > 2 then

145 newDim = torch.IntTensor({img:size()[1], br[2] - ul[2], br[1] - ul[1]})

146 newImg = torch.zeros(newDim[1],newDim[2],newDim[3])

147 ht = img:size()[2]

148 wd = img:size()[3]

149 else

150 newDim = torch.IntTensor({br[2] - ul[2], br[1] - ul[1]})

151 newImg = torch.zeros(newDim[1],newDim[2])

152 ht = img:size()[1]

153 wd = img:size()[2]

154 end

155

156 local newX = torch.Tensor({math.max(1, -ul[1]+1), math.min(br[1], wd) - ul[1]})

157 local newY = torch.Tensor({math.max(1, -ul[2]+1), math.min(br[2], ht) - ul[2]})

158 local oldX = torch.Tensor({math.max(1, ul[1]+1), math.min(br[1], wd)})

159 local oldY = torch.Tensor({math.max(1, ul[2]+1), math.min(br[2], ht)})

160

161 if newDim:size()[1] > 2 then

73



162 newImg:sub(1,newDim[1],newY[1],newY[2],newX[1],newX[2]):copy(img:sub(1,newDim[1],oldY[1],oldY[2],oldX[1],oldX[2]))

163 else

164 newImg:sub(newY[1],newY[2],newX[1],newX[2]):copy(img:sub(oldY[1],oldY[2],oldX[1],oldX[2]))

165 end

166

167 if rot ~= 0 then

168 newImg = image.rotate(newImg, rot * math.pi / 180, 'bilinear')

169 if newDim:size()[1] > 2 then

170 newImg = newImg:sub(1,newDim[1],pad,newDim[2]-pad,pad,newDim[3]-pad)

171 else

172 newImg = newImg:sub(pad,newDim[1]-pad,pad,newDim[2]-pad)

173 end

174 end

175

176 newImg = image.scale(newImg,res,res)

177 return newImg

178 end

179

180 function twoPointCrop(img, s, pt1, pt2, pad, res)

181 local center = (pt1 + pt2) / 2

182 local scale = math.max(20*s,torch.norm(pt1 - pt2)) * .007

183 scale = scale * pad

184 local angle = math.atan2(pt2[2]-pt1[2],pt2[1]-pt1[1]) * 180 / math.pi - 90

185 return crop(img, center, scale, angle, res)

186 end

187

188 function compileImages(imgs, nrows, ncols, res)

189 -- Assumes the input images are all square/the same resolution

190 local totalImg = torch.zeros(3,nrows*res,ncols*res)

191 for i = 1,#imgs do

192 local r = torch.floor((i-1)/ncols) + 1

193 local c = ((i - 1) % ncols) + 1

194 totalImg:sub(1,3,(r-1)*res+1,r*res,(c-1)*res+1,c*res):copy(imgs[i])

195 end

196 return totalImg

197 end

198

199 function compileImages18(imgs, nrows, ncols, res)
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200 -- Assumes the input images are all square/the same resolution

201 local totalImg = torch.zeros(3,nrows*res,ncols*res)

202

203 for i = 1,#imgs do

204 local r = torch.ceil((i)/ncols)

205 if i%ncols == 0 then

206 c = 4

207 else

208 c = ((i) % ncols)

209 end

210

211 totalImg:sub(1,3,(r-1)*res+1,r*res,(c-1)*res+1,c*res):copy(imgs[i])

212 end

213 return totalImg

214 end

215

216 -------------------------------------------------------------------------------

217 -- Non-maximum Suppression

218 -------------------------------------------------------------------------------

219

220 -- Set up max network for NMS

221 nms_window_size = 3

222 nms_pad = (nms_window_size - 1)/2

223 maxlayer = nn.Sequential()

224 if cudnn then

225 maxlayer:add(cudnn.SpatialMaxPooling(nms_window_size, nms_window_size,1,1, nms_pad, nms_pad))

226 maxlayer:cuda()

227 else

228 maxlayer:add(nn.SpatialMaxPooling(nms_window_size, nms_window_size,1,1, nms_pad,nms_pad))

229 end

230 maxlayer:evaluate()

231

232 function local_maxes(hm, n, c, s, hm_idx)

233 hm = torch.Tensor(1,16,64,64):copy(hm):float()

234 if hm_idx then hm = hm:sub(1,-1,hm_idx,hm_idx) end

235 local hm_dim = hm:size()

236 local max_out

237 -- First do nms
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238 if cudnn then

239 local hmCuda = torch.CudaTensor(1, hm_dim[2], hm_dim[3], hm_dim[4])

240 hmCuda:copy(hm)

241 max_out = maxlayer:forward(hmCuda)

242 cutorch.synchronize()

243 else

244 max_out = maxlayer:forward(hm)

245 end

246

247 local nms = torch.cmul(hm, torch.eq(hm, max_out:float()):float())[1]

248 -- Loop through each heatmap retrieving top n locations, and their scores

249 local pred_coords = torch.Tensor(hm_dim[2], n, 2)

250 local pred_scores = torch.Tensor(hm_dim[2], n)

251 for i = 1, hm_dim[2] do

252 local nms_flat = nms[i]:view(nms[i]:nElement())

253 local vals,idxs = torch.sort(nms_flat,1,true)

254 for j = 1,n do

255 local pt = {idxs[j] % 64, torch.ceil(idxs[j] / 64) }

256 pred_coords[i][j] = transform(pt, c, s, 0, 64, true)

257 pred_scores[i][j] = vals[j]

258 end

259 end

260 return pred_coords, pred_scores

261 end

262

263 -------------------------------------------------------------------------------

264 -- Drawing functions

265 -------------------------------------------------------------------------------

266

267 function drawGaussian(img, pt, sigma)

268 -- Draw a 2D gaussian

269 -- Check that any part of the gaussian is in-bounds

270 local ul = {math.floor(pt[1] - 3 * sigma), math.floor(pt[2] - 3 * sigma)}

271 local br = {math.floor(pt[1] + 3 * sigma), math.floor(pt[2] + 3 * sigma)}

272 -- If not, return the image as is

273 if (ul[1] > img:size(2) or ul[2] > img:size(1) or br[1] < 1 or br[2] < 1) then return img end

274 -- Generate gaussian

275 local size = 6 * sigma + 1
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276 local g = image.gaussian(size) -- , 1 / size, 1)

277 -- Usable gaussian range

278 local g_x = {math.max(1, -ul[1]), math.min(br[1], img:size(2)) - math.max(1, ul[1]) + math.max(1, -ul[1])}

279 local g_y = {math.max(1, -ul[2]), math.min(br[2], img:size(1)) - math.max(1, ul[2]) + math.max(1, -ul[2])}

280 -- Image range

281 local img_x = {math.max(1, ul[1]), math.min(br[1], img:size(2))}

282 local img_y = {math.max(1, ul[2]), math.min(br[2], img:size(1))}

283 assert(g_x[1] > 0 and g_y[1] > 0)

284 img:sub(img_y[1], img_y[2], img_x[1], img_x[2]):add(g:sub(g_y[1], g_y[2], g_x[1], g_x[2]))

285 img[img:gt(1)] = 1

286 return img

287 end

288

289 function drawLine(img,pt1,pt2,width,color)

290 -- I'm sure there's a line drawing function somewhere in Torch,

291 -- but since I couldn't find it here's my basic implementation

292 local color = color or {1,1,1}

293 local m = torch.dist(pt1,pt2)

294 local dy = (pt2[2] - pt1[2])/m

295 local dx = (pt2[1] - pt1[1])/m

296 for j = 1,width do

297 local start_pt1 = torch.Tensor({pt1[1] + (-width/2 + j-1)*dy, pt1[2] - (-width/2 + j-1)*dx})

298 start_pt1:ceil()

299 for i = 1,torch.ceil(m) do

300 local y_idx = torch.ceil(start_pt1[2]+dy*i)

301 local x_idx = torch.ceil(start_pt1[1]+dx*i)

302 if y_idx - 1 > 0 and x_idx -1 > 0 and y_idx < img:size(2) and x_idx < img:size(3) then

303 img:sub(1,1,y_idx-1,y_idx,x_idx-1,x_idx):fill(color[1])

304 img:sub(2,2,y_idx-1,y_idx,x_idx-1,x_idx):fill(color[2])

305 img:sub(3,3,y_idx-1,y_idx,x_idx-1,x_idx):fill(color[3])

306 end

307 end

308 end

309 img[img:gt(1)] = 1

310

311 return img

312 end

313
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314 function colorHM(x)

315 -- Converts a one-channel grayscale image to a color heatmap image

316 local function gauss(x,a,b,c)

317 return torch.exp(-torch.pow(torch.add(x,-b),2):div(2*c*c)):mul(a)

318 end

319 local cl = torch.zeros(3,x:size(1),x:size(2))

320 cl[1] = gauss(x,.5,.6,.2) + gauss(x,1,.8,.3)

321 cl[2] = gauss(x,1,.5,.3)

322 cl[3] = gauss(x,1,.2,.3)

323 cl[cl:gt(1)] = 1

324 return cl

325 end

326

327

328 -------------------------------------------------------------------------------

329 -- Flipping functions

330 -------------------------------------------------------------------------------

331

332 function shuffleLR(x)

333 local dim

334 if x:nDimension() == 4 then

335 dim = 2

336 else

337 assert(x:nDimension() == 3)

338 dim = 1

339 end

340

341 local matched_parts = {

342 {1,6}, {2,5}, {3,4}

343 }

344

345 for i = 1,#matched_parts do

346 local idx1, idx2 = unpack(matched_parts[i])

347 local tmp = x:narrow(dim, idx1, 1):clone()

348 x:narrow(dim, idx1, 1):copy(x:narrow(dim, idx2, 1))

349 x:narrow(dim, idx2, 1):copy(tmp)

350 end

351
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352 return x

353 end

354

355 function flip(x)

356 require 'image'

357 local y = torch.FloatTensor(x:size())

358 for i = 1, x:size(1) do

359 image.hflip(y[i], x[i]:float())

360 end

361 return y:typeAs(x)

362 end

A.2.3 util.lua

Two functions were modified in this network. The first function, drawSkeleton in lines
55-93, draws skeleton features from the predictions overlaying on the original image. The
second function, drawOutput in lines 95-110, saves the drawn skeleton while also creating
and saving the heatmap images of the 18 joint locations.

1 require 'torch'

2 require 'xlua'

3 require 'nn'

4 require 'nnx'

5 require 'nngraph'

6 require 'image'

7 require 'hdf5'

8 require 'sys'

9

10 require 'cunn'

11 require 'cutorch'

12 require 'cudnn'

13

14 function loadAnnotations(set)

15 -- Load up a set of annotations for either: 'train', 'valid', or 'test'

16 -- There is no part information in 'test'

17

18 local a = hdf5.open('annot/' .. set .. '.h5')
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19 annot = {}

20

21 -- -- Read in annotation information from hdf5 file

22 local tags = {'part','center','scale','normalize','torsoangle','visible','imgname','index','istrain'}

23 for _,tag in ipairs(tags) do annot[tag] = a:read(tag):all() end

24 annot.nsamples = annot.part:size()[1]

25 a:close()

26 return annot

27 end

28

29 function getPreds(hms, center, scale)

30 if hms:size():size() == 3 then hms = hms:view(1, hms:size(1), hms:size(2), hms:size(3)) end

31

32 -- Get locations of maximum activations

33 local max, idx = torch.max(hms:view(hms:size(1), hms:size(2), hms:size(3) * hms:size(4)), 3)

34 local preds = torch.repeatTensor(idx, 1, 1, 2):float()

35 preds[{{}, {}, 1}]:apply(function(x) return (x - 1) % hms:size(4) + 1 end)

36 preds[{{}, {}, 2}]:add(-1):div(hms:size(3)):floor():add(1)

37 local predMask = max:gt(0):repeatTensor(1, 1, 2):float()

38 preds:add(-.5):cmul(predMask):add(1)

39

40 -- Get transformed coordinates

41 local preds_tf = torch.zeros(preds:size())

42 for i = 1,hms:size(1) do -- Number of samples

43 for j = 1,hms:size(2) do -- Number of output heatmaps for one sample

44 preds_tf[i][j] = transform(preds[i][j],center,scale,0,hms:size(3),true)

45 end

46 end

47

48 return preds, preds_tf

49 end

50

51 -------------------------------------------------------------------------------

52 -- Functions for setting up the demo display

53 -------------------------------------------------------------------------------

54

55 function drawSkeleton(input, hms, coords)

56
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57 local im = input:clone()

58

59 local pairRef = {

60 {1,2}, {2,3}, {3,7},

61 {4,5}, {4,7}, {5,6},

62 {7,9}, {9,10},

63 {14,9}, {11,12}, {12,13},

64 {13,9}, {14,15}, {15,16},

65 {17,18}

66 }

67

68 local partNames = {'RAnk','RKne','RHip','LHip','LKne','LAnk',

69 'Pelv','Thrx','Neck','Head',

70 'RWri','RElb','RSho','LSho','LElb','LWri'}

71 local partColor = {1,1,1,2,2,2,0,0,0,0,3,3,3,4,4,4,5}

72

73 local actThresh = 0.000

74

75 -- Loop through adjacent joint pairings

76 for i = 1,#pairRef do

77 if hms[pairRef[i][1]]:mean() > actThresh and hms[pairRef[i][2]]:mean() > actThresh then

78 -- Set appropriate line color

79 local color

80 if partColor[pairRef[i][1]] == 1 then color = {0,.3,1}

81 elseif partColor[pairRef[i][1]] == 2 then color = {1,.3,0}

82 elseif partColor[pairRef[i][1]] == 3 then color = {0,0,1}

83 elseif partColor[pairRef[i][1]] == 4 then color = {1,0,0}

84 elseif partColor[pairRef[i][1]] == 5 then color = {1,0,0}

85 else color = {.7,0,.7} end

86

87 -- Draw line

88 im = drawLine(im, coords[pairRef[i][1]], coords[pairRef[i][2]], 4, color, 0)

89 end

90 end

91

92 return im

93 end

94
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95 function drawOutput(input, hms, coords,a,i)

96

97 local im = drawSkeleton(input, hms, coords)

98 im = image.scale(im,756)

99 image.save('preds/image_skeletons/' .. ffi.string(a['imgname'][idxs[i]]:char():data()), im)

100

101 local colorHms = {}

102 local inp64 = image.scale(input,64):mul(.3)

103 for i = 1,18 do

104 colorHms[i] = colorHM(hms[i])

105 colorHms[i]:mul(.7):add(inp64)

106 end

107 local totalHm = compileImages18(colorHms, 5, 4, 64)

108 totalHm = image.scale(totalHm,756)

109 image.save('preds/heatmaps/' .. ffi.string(a['imgname'][idxs[i]]:char():data()), totalHm)

110 end

111

112 -------------------------------------------------------------------------------

113 -- Functions for evaluation

114 -------------------------------------------------------------------------------

115

116 function calcDists(preds, label, normalize)

117 local dists = torch.Tensor(preds:size(2), preds:size(1))

118 local diff = torch.Tensor(2)

119 for i = 1,preds:size(1) do

120 for j = 1,preds:size(2) do

121 if label[i][j][1] > 1 and label[i][j][2] > 1 then

122 dists[j][i] = torch.dist(label[i][j],preds[i][j])/normalize[i]

123 else

124 dists[j][i] = -1

125 end

126 end

127 end

128 return dists

129 end

130

131 function distAccuracy(dists, thr)

132 -- Return percentage below threshold while ignoring values with a -1

82



133 if not thr then thr = .5 end

134 if torch.ne(dists,-1):sum() > 0 then

135 return dists:le(thr):eq(dists:ne(-1)):sum() / dists:ne(-1):sum()

136 else

137 return -1

138 end

139 end

140

141 function displayPCK(dists, part_idx, label, title, show_key)

142 -- Generate standard PCK plot

143 if not (type(part_idx) == 'table') then

144 part_idx = {part_idx}

145 end

146

147 curve_res = 11

148 num_curves = #dists

149 local t = torch.linspace(0,.5,curve_res)

150 local pdj_scores = torch.zeros(num_curves, curve_res)

151 local plot_args = {}

152 for curve = 1,num_curves do

153 for i = 1,curve_res do

154 t[i] = (i-1)*.05

155 local acc = 0.0

156 for j = 1,#part_idx do

157 acc = acc + distAccuracy(dists[curve][part_idx[j]], t[i])

158 end

159 pdj_scores[curve][i] = acc / #part_idx

160 end

161 plot_args[curve] = {label[curve],t,pdj_scores[curve],'-'}

162 end

163

164 require 'gnuplot'

165 gnuplot.raw('set title "' .. title .. '"')

166 if not show_key then gnuplot.raw('unset key')

167 else gnuplot.raw('set key font ",6" right bottom') end

168 gnuplot.raw('set xrange [0:.5]')

169 gnuplot.raw('set yrange [0:1]')

170 gnuplot.plot(unpack(plot_args))
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171 end
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Appendix B

Code Base For Action Recognition

As previously mentioned in pose estimation, the initial pose estimation was provided by
using the stacked hourglass network by Newell et al. [40]. To perform the action recogni-
tion, a transformer layer and feed forward layers were needed. The following code provides
resources for the transformer layer as the stacked hourglass network can be found online
whilst the feed forward layers were programmed using MATLAB Neural Network Tool-
box. The transformation layers were programmed in Matlab and comprises of three files:
FeatureCalculation(40D).m, RelativeAngl.m and VecAngl.m, where the last two files are
helper functions for the main code (FeatureCalculation).

B.1 FeatureCalculation.m

This file is the main file that loads predicted results, calculates the relative angles between
vectors of body parts, normalizes the angle with respect to the average head size and then
concatenates the results with the joint locations to output a total of 40 features.

1 clc

2 clear all

3 % load all of the predictions

4 data1_ = h5read('~\Results\hockey-cross-turn.h5','/preds');

5 inds1 = xlsread('~\Results\Cross-Turn_GoodFrmNum.xlsx');

6 %--------------------------------------------------------------------------------

7 data2_ = h5read('~\Results\hockey-firmFeet.h5','/preds');
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8 inds2 = xlsread('~\Results\frimFeet_GoodFrmNum.xlsx');

9 %-------------------------------------------------------------------------------

10 data3_= h5read('~\Results\hockey-post-shot.h5','/preds');

11 inds3 = xlsread('~\Results\PostShoot_GoodFrmNum.xlsx');

12 %-------------------------------------------------------------------------------

13 data4_ = h5read('~\Results\hockey-pre-shot.h5','/preds');

14 inds4 = xlsread('~\Results\PreShoot_GoodFrmNum.xlsx');

15 %-------------------------------------------------------------------------------

16 data1 = data1_(: , : , inds1);

17 data2 = data2_(: , : , inds2);

18 data3 = data3_(: , : , inds3);

19 data4 = data4_(: , : , inds4);

20 %-------------------------------------------------------------------------------

21 [m1 ,n1 , p1] = size(data1);

22 [m2 ,n2 , p2] = size(data2);

23 [m3 ,n3 , p3] = size(data3);

24 [m4 ,n4 , p4] = size(data3);

25 vec = zeros(p1+p2+p3+p4 , 41);% 8 angles, (16 *2) joints coordinates, and 1 class

26 Ang = zeros(p1 , 8);

27 for i = 1 : p1

28 joints = data1(: , : , i);

29 %joint between 2 limbs has been considered the center, O, for calculating the angle

30 %-------------------------------------

31 % R-knee angle

32 a = joints(: , 1);% R-ankle

33 o = joints(: , 2);% R-knee

34 b = joints(: , 3);% R-hip

35 v1 = a - o;

36 v2 = b - o;

37 Ang(i,1)= RelativeAngl(v1 , v2);

38 %-------------------------------------

39 % L-knee angle

40 a = joints(: , 4);% L-hip

41 o = joints(: , 5);% L-knee

42 b = joints(: , 6);% L-ankle

43 v1 = a - o;

44 v2 = b - o;

45 Ang(i,2)=RelativeAngl(v1 , v2);
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46 %-------------------------------------

47 % R-hip angle

48 a = joints(: , 2);% R-knee

49 o = joints(: , 3);% R-hip

50 b = joints(: , 7);% Pelvis

51 v1 = a - o;

52 v2 = b - o;

53 Ang(i,3)=RelativeAngl(v1 , v2);

54 %--------------------------------------

55 % L-hip angle

56 a = joints(: , 7);% Pelvis

57 o = joints(: , 4);% L-hip

58 b = joints(: , 5);% L-knee

59 v1 = a - o;

60 v2 = b - o;

61 Ang(i,4)= RelativeAngl(v1 , v2);

62 %-------------------------------------

63 % R-elbow angle

64 a = joints(: , 11);% R-wrist

65 o = joints(: , 12);% R-elbow

66 b = joints(: , 13);% R-shoulder

67 v1 = a - o;

68 v2 = b - o;

69 Ang(i,5)= RelativeAngl(v1 , v2);

70 %-------------------------------------

71 % L-elbow angle

72 a = joints(: , 14);% L-shoulder

73 o = joints(: , 15);% L-elbow

74 b = joints(: , 16);% L-wrist

75 v1 = a - o;

76 v2 = b - o;

77 Ang(i,6)= RelativeAngl(v1 , v2);

78 %-------------------------------------

79 % R-shoulder angle

80 a = joints(: , 12);% R-elbow

81 o = joints(: , 13);% R-shoulder

82 b = joints(: , 8);% thorax

83 v1 = a - o;
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84 v2 = b - o;

85 Ang(i,7)= RelativeAngl(v1 , v2);

86 %-------------------------------------

87 % L-shoulder angle

88 a = joints(: , 8);% thorax

89 o = joints(: , 14);% L-shoulder

90 b = joints(: , 15);% L-elbow

91 v1 = a - o;

92 v2 = b - o;

93 Ang(i,8)= RelativeAngl(v1 , v2);

94 %------------------------------------

95 end

96

97 %%

98 vec(1:p1 , 1:8)= Ang;

99 %%

100 Ang = zeros(p2 , 8);

101 for i = 1 : p2

102 joints = data2(: , : , i);

103 %joint between 2 limbs has been considered the center, O, for calculating the angle

104 %-------------------------------------

105 % R-knee angle

106 a = joints(: , 1);% R-ankle

107 o = joints(: , 2);% R-knee

108 b = joints(: , 3);% R-hip

109 v1 = a - o;

110 v2 = b - o;

111 Ang(i,1)= RelativeAngl(v1 , v2);

112 %-------------------------------------

113 % L-knee angle

114 a = joints(: , 4);% L-hip

115 o = joints(: , 5);% L-knee

116 b = joints(: , 6);% L-ankle

117 v1 = a - o;

118 v2 = b - o;

119 Ang(i,2)=RelativeAngl(v1 , v2);

120 %-------------------------------------

121 % R-hip angle
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122 a = joints(: , 2);% R-knee

123 o = joints(: , 3);% R-hip

124 b = joints(: , 7);% Pelvis

125 v1 = a - o;

126 v2 = b - o;

127 Ang(i,3)=RelativeAngl(v1 , v2);

128 %--------------------------------------

129 % L-hip angle

130 a = joints(: , 7);% Pelvis

131 o = joints(: , 4);% L-hip

132 b = joints(: , 5);% L-knee

133 v1 = a - o;

134 v2 = b - o;

135 Ang(i,4)= RelativeAngl(v1 , v2);

136 %-------------------------------------

137 % R-elbow angle

138 a = joints(: , 11);% R-wrist

139 o = joints(: , 12);% R-elbow

140 b = joints(: , 13);% R-shoulder

141 v1 = a - o;

142 v2 = b - o;

143 Ang(i,5)= RelativeAngl(v1 , v2);

144 %-------------------------------------

145 % L-elbow angle

146 a = joints(: , 14);% L-shoulder

147 o = joints(: , 15);% L-elbow

148 b = joints(: , 16);% L-wrist

149 v1 = a - o;

150 v2 = b - o;

151 Ang(i,6)= RelativeAngl(v1 , v2);

152 %-------------------------------------

153 % R-shoulder angle

154 a = joints(: , 12);% R-elbow

155 o = joints(: , 13);% R-shoulder

156 b = joints(: , 8);% thorax

157 v1 = a - o;

158 v2 = b - o;

159 Ang(i,7)= RelativeAngl(v1 , v2);
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160 %-------------------------------------

161 % L-shoulder angle

162 a = joints(: , 8);% thorax

163 o = joints(: , 14);% L-shoulder

164 b = joints(: , 15);% L-elbow

165 v1 = a - o;

166 v2 = b - o;

167 Ang(i,8)= RelativeAngl(v1 , v2);

168 %------------------------------------

169 end

170 %%

171 vec(p1+1:p1+p2,1:8)= Ang;

172 %%

173 Ang = zeros(p3 , 8);

174 for i = 1 : p3

175 joints = data3(: , : , i);

176 %joint between 2 limbs has been considered the center, O, for calculating the angle

177 %-------------------------------------

178 % R-knee angle

179 a = joints(: , 1);% R-ankle

180 o = joints(: , 2);% R-knee

181 b = joints(: , 3);% R-hip

182 v1 = a - o;

183 v2 = b - o;

184 Ang(i,1)= RelativeAngl(v1 , v2);

185 %-------------------------------------

186 % L-knee angle

187 a = joints(: , 4);% L-hip

188 o = joints(: , 5);% L-knee

189 b = joints(: , 6);% L-ankle

190 v1 = a - o;

191 v2 = b - o;

192 Ang(i,2)=RelativeAngl(v1 , v2);

193 %-------------------------------------

194 % R-hip angle

195 a = joints(: , 2);% R-knee

196 o = joints(: , 3);% R-hip

197 b = joints(: , 7);% Pelvis
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198 v1 = a - o;

199 v2 = b - o;

200 Ang(i,3)=RelativeAngl(v1 , v2);

201 %--------------------------------------

202 % L-hip angle

203 a = joints(: , 7);% Pelvis

204 o = joints(: , 4);% L-hip

205 b = joints(: , 5);% L-knee

206 v1 = a - o;

207 v2 = b - o;

208 Ang(i,4)= RelativeAngl(v1 , v2);

209 %-------------------------------------

210 % R-elbow angle

211 a = joints(: , 11);% R-wrist

212 o = joints(: , 12);% R-elbow

213 b = joints(: , 13);% R-shoulder

214 v1 = a - o;

215 v2 = b - o;

216 Ang(i,5)= RelativeAngl(v1 , v2);

217 %-------------------------------------

218 % L-elbow angle

219 a = joints(: , 14);% L-shoulder

220 o = joints(: , 15);% L-elbow

221 b = joints(: , 16);% L-wrist

222 v1 = a - o;

223 v2 = b - o;

224 Ang(i,6)= RelativeAngl(v1 , v2);

225 %-------------------------------------

226 % R-shoulder angle

227 a = joints(: , 12);% R-elbow

228 o = joints(: , 13);% R-shoulder

229 b = joints(: , 8);% thorax

230 v1 = a - o;

231 v2 = b - o;

232 Ang(i,7)= RelativeAngl(v1 , v2);

233 %-------------------------------------

234 % L-shoulder angle

235 a = joints(: , 8);% thorax
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236 o = joints(: , 14);% L-shoulder

237 b = joints(: , 15);% L-elbow

238 v1 = a - o;

239 v2 = b - o;

240 Ang(i,8)= RelativeAngl(v1 , v2);

241 %------------------------------------

242 end

243 %%

244 vec(p1+p2+1:p1+p2+p3,1:8)= Ang;

245 %%

246 %%

247 Ang = zeros(p4 , 8);

248 for i = 1 : p4

249 joints = data4(: , : , i);

250 %joint between 2 limbs has been considered the center, O, for calculating the angle

251 %-------------------------------------

252 % R-knee angle

253 a = joints(: , 1);% R-ankle

254 o = joints(: , 2);% R-knee

255 b = joints(: , 3);% R-hip

256 v1 = a - o;

257 v2 = b - o;

258 Ang(i,1)= RelativeAngl(v1 , v2);

259 %-------------------------------------

260 % L-knee angle

261 a = joints(: , 4);% L-hip

262 o = joints(: , 5);% L-knee

263 b = joints(: , 6);% L-ankle

264 v1 = a - o;

265 v2 = b - o;

266 Ang(i,2)=RelativeAngl(v1 , v2);

267 %-------------------------------------

268 % R-hip angle

269 a = joints(: , 2);% R-knee

270 o = joints(: , 3);% R-hip

271 b = joints(: , 7);% Pelvis

272 v1 = a - o;

273 v2 = b - o;
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274 Ang(i,3)=RelativeAngl(v1 , v2);

275 %--------------------------------------

276 % L-hip angle

277 a = joints(: , 7);% Pelvis

278 o = joints(: , 4);% L-hip

279 b = joints(: , 5);% L-knee

280 v1 = a - o;

281 v2 = b - o;

282 Ang(i,4)= RelativeAngl(v1 , v2);

283 %-------------------------------------

284 % R-elbow angle

285 a = joints(: , 11);% R-wrist

286 o = joints(: , 12);% R-elbow

287 b = joints(: , 13);% R-shoulder

288 v1 = a - o;

289 v2 = b - o;

290 Ang(i,5)= RelativeAngl(v1 , v2);

291 %-------------------------------------

292 % L-elbow angle

293 a = joints(: , 14);% L-shoulder

294 o = joints(: , 15);% L-elbow

295 b = joints(: , 16);% L-wrist

296 v1 = a - o;

297 v2 = b - o;

298 Ang(i,6)= RelativeAngl(v1 , v2);

299 %-------------------------------------

300 % R-shoulder angle

301 a = joints(: , 12);% R-elbow

302 o = joints(: , 13);% R-shoulder

303 b = joints(: , 8);% thorax

304 v1 = a - o;

305 v2 = b - o;

306 Ang(i,7)= RelativeAngl(v1 , v2);

307 %-------------------------------------

308 % L-shoulder angle

309 a = joints(: , 8);% thorax

310 o = joints(: , 14);% L-shoulder

311 b = joints(: , 15);% L-elbow
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312 v1 = a - o;

313 v2 = b - o;

314 Ang(i,8)= RelativeAngl(v1 , v2);

315 %------------------------------------

316 end

317 %%

318 vec(p1+p2+p3+1:p1+p2+p3+p4,1:8)= Ang;

319 vec( isnan(vec)) = 0;% for nan angles put 0

320 %%

321 %--------------------------------------------------------------------------------------------------------------

322 for i = 1 : p1

323 head = data1(: , 9:10 , i);

324 hsz1(i) = sqrt(sum( (head(:, 1)- head(: , 2)).^2) );

325 end

326 %-----------------------------------------------------

327 for i = 1 : p2

328 head = data2(: , 9:10 , i);

329 hsz2(i) = sqrt(sum( (head(:, 1)- head(: , 2)).^2) );

330 end

331 %------------------------------------------------------

332 for i = 1 : p3

333 head = data3(: , 9:10 , i);

334 hsz3(i) = sqrt(sum( (head(:, 1)- head(: , 2)).^2) );

335 end

336 %-----------------------------------------------------

337 for i = 1 : p4

338 head = data4(: , 9:10 , i);

339 hsz4(i) = sqrt(sum( (head(:, 1)- head(: , 2)).^2) );

340 end

341 %------------------------------------------------------

342 Mhsz = mean([hsz1 , hsz2 ,hsz3, hsz4]);

343 scale1 = Mhsz ./ hsz1 ;

344 scale2 = Mhsz ./ hsz2 ;

345 scale3 = Mhsz ./ hsz3 ;

346 scale4 = Mhsz ./ hsz4 ;

347 %-----------------------------------------------------

348 % do scaling and find the new position of origin

349 for i = 1 : p1
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350 data1(: , : , i) = data1(: , : , i) * scale1(i);

351 bd = data1(: , 7:8 , i);

352 O1 = bd(: , 1) + (bd(:, 2) - bd(: , 1))/2;

353 data1 ( : , : , i) = data1 ( : , : , i) - repmat(O1 , [1,16]);

354 tmp = data1( : ,: , i);

355 vec(i , 9 : 40)= tmp(:);

356 vec(i , 41)= 1;

357 end

358 for i = 1 : p2

359 data2(: ,: ,i) = data2(: , : , i) * scale2(i);

360 bd = data2(: , 7:8 , i);

361 O2 = bd(: , 1) + (bd(:, 2) - bd(: , 1))/2;

362 data2 ( : , : , i) = data2 ( : , : , i) - repmat(O2 , [1,16]);

363 tmp = data2( : ,: , i);

364 vec(p1 + i , 9 : 40)= tmp(:);

365 vec(p1 + i , 41)= 2;

366 end

367 for i = 1 : p3

368 data3(: ,: ,i) = data3(: , : , i) * scale3(i);

369 bd = data3(: , 7:8 , i);

370 O3 = bd(: , 1) +(bd(:, 2) - bd(: , 1))/2;

371 data3 ( : , : , i) = data3 ( : , : , i) - repmat(O3 , [1,16]);

372 tmp = data3( : ,: , i);

373 vec(p1 + p2 + i , 9 : 40)= tmp(:);

374 vec(p1 + p2 + i , 41)= 3;

375 end

376 for i = 1 : p4

377 data4(: ,: ,i) = data4(: , : , i) * scale4(i);

378 bd = data4(: , 7:8 , i);

379 O4 = bd(: , 1) +(bd(:, 2) - bd(: , 1))/2;

380 data4 ( : , : , i) = data4 ( : , : , i) - repmat(O4 , [1,16]);

381 tmp = data4( : ,: , i);

382 vec(p1 + p2 + p3 + i , 9 : 40)= tmp(:);

383 vec(p1 + p2 + p3 + i , 41)= 4;

384 end

385 %--------------------------------------------------

386

387 save('~\Results\vector.mat','vec')
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B.2 RelativeAngle.m

This file contains the RelativeAngl function that calculates the relative angle of two vectors,
which, in this case are body/stick parts. This calculation is done within the image frame.

1 function theta = RelativeAngl(v1 , v2)

2

3 theta1 = VecAngl(v1);

4 theta2 = VecAngl(v2);

5 theta = abs(theta1 - theta2);

6 if theta > 180

7 theta = theta - 360;

8 end

9

10 end

B.3 VecAngle.m

This file contains the VecAngl function that calculates the angle between two joints relative
to the first joint. This calculation is done within the image frame.

1 function alpha = VecAngl(v)

2 %quarter identification

3 if ( v(1)> 0 && v(2)> 0) %qI

4 alpha = (180/pi) * atan(v(2)/v(1));

5

6

7 elseif ( v(1)< 0 && v(2)> 0)%qII

8 alpha = 180 + (180/pi) * atan(v(2)/v(1));

9

10

11 elseif ( v(1)< 0 && v(2)< 0)%qIII

12 alpha = 180 + (180/pi) * atan(v(2)/v(1));

13

14

15 else%( v(1)> 0 && v(2)< 0)%qIV
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16 alpha = 360 + (180/pi) * atan(v(2)/v(1));

17 end

18

19 end

97



References

[1] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. Human pose estimation: New
benchmark and state of the art analysis. In Proceedings IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), Columbus, USA, June 2014.

[2] L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose
annotations. In 2009 IEEE 12th International Conference on Computer Vision, pages
1365–1372, Sept 2009.

[3] A. Bulat and G. Tzimiropoulos. Human pose estimation via convolutional part
heatmap regression. In 14th European Conference on Computer Vision, 2016.

[4] Y. Cai. Robust visual tracking for multiple targets. In 2006 Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 107–118, Graz,Austria, 2006.

[5] Z. Cao, T. Simon, S. E. Wei, and Y. Sheikh. Realtime multi-person 2d pose estimation
using part affinity fields. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1302–1310, July 2017.

[6] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik. Human pose estimation with
iterative error feedback. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[7] X. Chen and A. Yuille. Articulated pose estimation by a graphical model with image
dependent pairwise relations. In Advances in Neural Information Processing Systems
(NIPS), 2014.

[8] X. Chen and A. L. Yuille. Parsing occluded people by flexible compositions. In CVPR,
pages 3945–3954. IEEE Computer Society, 2015.

98



[9] Y. Chen, C. Shen, X. Wei, L. Liu, and J. Yang. Adversarial PoseNet: a structure-
aware convolutional network for human pose estimation. In International Conference
on Computer Vision (ICCV’17), 2017.

[10] L. Cheng, Y. Guan, K. Zhu, and Y. Li. Recognition of human activities using machine
learning methods with wearable sensors. In 2017 IEEE 7th Annual Computing and
Communication Workshop and Conference (CCWC), pages 1–7, Las Vegas, USA, Jan
2017.

[11] A. Cherian, J. Mairal, K. Alahari, and C. Schmid. Mixing body-part sequences for
human pose estimation. In 2014 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2361–2368, Columbus, USA, June 2014.
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