Impacts of Climate Change and Controlled Tile Drainage on Water Quality and Quantity in Southern Ontario, Canada

by

Karlen Hanke

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirements for the degree of
Master of Science
in
Geography (Water)

Waterloo, Ontario, Canada, 2018
© Karlen Hanke 2018
Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public.
Abstract

Within the Great Lakes region, agricultural non-point source nitrogen (N) and phosphorus (P) contamination contribute to algal blooms and decreased water quality, particularly from tile-drained landscapes. These water quality challenges are accompanied by anthropogenically induced increases in greenhouse gases within the atmosphere, which are leading to changes in climate, which may in turn exacerbate water quality issues by changing hydrological and biogeochemical cycling. This may be particularly important during the non-growing season (NGS), during which most of the annual nutrient export and flow occurs in the Great Lakes region. However, hydrologic and biogeochemical processes during the NGS are less well understood compared to the growing season. The implementation of beneficial management practices (BMP) such as controlled tile drainage (CD) have the potential to mitigate both current and future water quality issues. However, there is little information on the potential water quality tradeoffs associated with this particular practice under both contemporary and future climates. Such information is necessary before CD may be widely recommended and adopted as a BMP. In this thesis, the Soil Water Assessment Tool (SWAT) model was used to demonstrate the potential for CD to reduce nutrient losses in midwestern Ontario, under both current and future climates, and to understand the processes affecting nutrient export responses through the analyses of the water balance, flow regimes, and weather patterns, and to examine seasonal differences in these variables. In this study, two Soil Water Assessment Tool (SWAT) models were applied at varying scales. One was generated for the Medway Creek watershed, near London, ON, to understand the impact of climate change on water quality and quantity by forcing the model with a bias corrected general circulation model (GCM) ensemble. The second SWAT model was run at the field scale, for a field site near Londesborough, ON to understand the potential water quality tradeoffs associated with CD for a field with low-sloped clay loam soil. Results indicate that future changes in climate will cause shifts in seasonal water budgets, resulting in much greater nutrient export during the NGS and an overall increase in annual nutrient losses by the 2080-2100 period. These changes will be driven by precipitation quantity, but also changing precipitation characteristics (timing, form, magnitude, and frequency) and temperature, which will influence runoff pathways. The use of CD will not mitigate water quality issues and will instead exacerbate TP losses in runoff by increasing soil moisture and consequently increasing surface runoff. Although reductions of tile flow were greater than the simulated increases in surface runoff, the approximately 10X greater TP concentrations in surface runoff resulted in an overall increase in simulated edge-of-field TP losses. This will be particularly problematic where CD is used both during the NGS and growing season. This thesis has provided an improved understanding of the impacts of climate change on water quality in the MCW, and has demonstrated that CD has little potential to mitigate water quality issues in the present or future. This thesis has also demonstrated that understanding nutrient export processes during the NGS will be increasingly important for increasing BMP efficacy, reducing NPS contamination, and the occurrence of harmful algal blooms.
Acknowledgements

This thesis was funded by the Quebec-Ontario Cooperation for Agri-Food research.

I would first like to acknowledge Dr. Merrin Macrae for the feedback and support she provided throughout my thesis. I am very thankful for her patience and extensive knowledge while I explored topics involving unaccustomed research methods, allowing me to further my career in the environmental field. Thank you to my committee members Dr. Nandita Basu, Dr. Aubert Michaud, and Dr. Derek Robinson for their valuable feedback on this thesis. Especially, Aubert, thank you for hosting me at your office in Quebec City, Nandita for your educative edits and invaluable experience, and both, thank you for keeping me on track and providing guidance throughout my thesis.

Then I would then like to thank Idhaya Chandhiran Ilampooranan and Dr. Mohamed Abu Niang for the intensive SWAT modeling support they provided throughout my thesis, and Craig Merkley from the UTRCA for his knowledge of the modelled watershed. Whenever I had questions they were very reliable sources and provided very helpful advice. In addition, I would like to thank Steph H. and James C. for their help with edits and the rest of my lab mates/friends for putting up with the modelling talk around the lab and in meetings.

Thank you to my parents Alex Hanke and Karen Coombs, and my girlfriend Sneha Sumanth; without their support and encouragement, this thesis would not have been possible.

Finally, we would acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 2.1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.
Table of Contents

Author’s Declaration ... ii

Abstract ... iii

Acknowledgements ... iv

List of Figures .. vii

List of Tables .. ix

Chapter 1 - Introduction and literature review ... 1
 1.1 Introduction, problem statement, and objectives ... 1
 1.2 Literature review ... 2
 1.2.1 Agriculture non-point source contamination and its role in eutrophication 2
 1.2.2 Nutrient forms and dominant pathways in agricultural landscapes 3
 1.3 Climate change and agriculture ... 10
 1.3.1 Climate change in southern Ontario ... 11
 1.3.2 Climate change effects on NPS contamination ... 12
 1.4 Controlled tile drainage ... 14
 1.5 Hydrological and NPS contamination modeling ... 15
 1.5.1 Quantifying the effect of climate change and agriculture on water quality 15
 1.5.2 Model development and assessment ... 16

Chapter 2 - Impacts of climate change on seasonal hydrology, nutrient, and sediment loads in the Medway Creek watershed in southern Ontario ... 18
 2.1 Overview .. 18
 2.2 Introduction ... 19
 2.3 Methodology .. 21
 2.3.1 Study area .. 21
 2.3.2 Watershed modelling ... 23
 2.3.3 SWAT set-up and calibration ... 25
 2.3.4 Future climate scenarios .. 27
 2.4 Results and discussion ... 28
 2.4.1 Model calibration and validation .. 28
 2.4.2 Future and baseline climate simulations .. 29
 2.4.3 Water balance and stream flow changes ... 31
 2.4.4 Nutrient and sediment loads in the future climate ... 37
 2.5 Conclusions ... 43
List of Figures

Figure 2.1. Location of the MCW in Canada__ 22

Figure 2.2. Probability density functions for daily precipitation and daily temperature for the ensemble of future climate scenarios (2080-2100) and baseline period (1990-2010)__ 30

Figure 2.3. Annual and seasonal precipitation, ET, and water yield for the historic (1990-2010) and future climate periods (RCP4.5 and 8.5 forcing; 2080-2100) _____________________________ 33

Figure 2.4. Annual and seasonal surface runoff, tile flow, and groundwater for the historic (1990-2010) and future climate periods (RCP4.5 and 8.5 forcing; 2080-2100) _____________________________ 34

Figure 2.5. Average stream flow changes by season for all scenarios with each individual scenario grouped by RCP. All were during the period 2080-2100 and values are the difference between the projected and the observed from 1990-2010__ 36

Figure 2.6. Flow duration curves for the watershed outlet with daily flow in 1990-2010 and for 2080-2100 in each season and future climate scenario__ 37

Figure 2.7. Boxplots for NO3- loads and FWMC at the watershed outlet in 2080-2100 and 1990-2010, grouped seasonally, annually, and by GCM forcing (RCP4.5 and 8.5) _____________________________ 39

Figure 2.8. Boxplots for SS loads and FWMC at the watershed outlet in 2080-2100 and 1990-2010, grouped seasonally, annually, and by GCM forcing (RCP4.5 and 8.5) _____________________________ 41

Figure 2.9. Boxplots for TP loads and FWMC at the watershed outlet in 2080-2100 and 1990-2010, grouped seasonally, annually, and by GCM forcing (RCP4.5 and 8.5) _____________________________ 43

Figure 3.1. Location of LON in Canada, other field site details (topography, observation station locations, and boundary), and climate stations used to supplement missing data at the field site __________ 48

Figure 3.2. Shows two typical CD management approaches used in southern Ontario.__________ 55

Figure 3.3. Graphical performance of surface runoff and tile flow after calibration of the LON HRU model. Also, monthly precipitation and average air temperatures over the 2012 to 2015 period ______ 57

Figure 3.4. Monthly changes in the water balance over the 2012 to 2015 period with continuously raised tiles (RTDcont). Also, indicates the growing season and NGS over the study period ____________ 59

Figure 3.5. Shows two different events (FTD, RTD, SM, TILEQ, and, SURQ), one event during the NGS (spring) and the other during the summer on a daily time step. (a) March 2013 was the month with the highest observed surface runoff in the NGS, while (b) July 2014 was an example of a typical event in summer ___ 60
Figure 3.6. Cumulative tile flow, surface runoff, and total runoff for CD management RTDGS and RTDNC over the 2012 to 2015 period

Figure 3.7. Shows the monthly cumulative loads and change in loads between RTDGS and RTDNC from 2012 to 2015 for TP and SRP in surface runoff and tile flow

Figure 4.1. (a) Shows the changes in the tile flow, surface runoff, and runoff annually in the LON field site transplanted into the MCW during the 1990-2010 period, 2080-2100 period, and 2080-2100 period with continuous CD. Also, shows tile flow seasonally (b) and surface runoff seasonally (c)
List of Tables

Table 2.1. General Circulation models used in this study after using K-means clustering to reduce the final number of future climate scenarios. Models were obtained from the World Climate Research Programme’s Coupled Intercomparison Project phase 5 (CMIP5). 28

Table 2.2. Performance statistics for each of the calibrated variables in the SWAT model 29

Table 3.1. Performance statistic values (NS, PBIAS, and R2) after calibration for surface runoff and tile flow 56

Table 3.2. Average annual water balance with permanent changes in the tile height for the 2012 to 2015 period 58

Table 3.3. Summarized TP and SRP FWMCs from the field site used to create estimates of TP export from the surface runoff and tile flow paths 62

Table A.1. Sensitive SWAT parameters used during calibration of the MCW model with the final fitted value 94

Table A.2. SWAT parameter ranges used during calibration of the LON model with the final fitted value 95

Table A.3. Soil profile details and calibration results. Brackets indicate the value before calibration 95

Table B.4. Average seasonal temperature and precipitation relative to the baseline period for each forcing scenario, two different periods showing the mean plus standard deviation. 96

Table C.5. Watershed annual average water balance changes relative to the historic period (1990-2010) for each climate projection in the ensembles future period (2080-2100). 97

Table D.6. Parameter values reported in the literature. 98

Table E.7. Average annual water balance changes for two HRUs with different soil types in the historic and future period 100
Chapter 1 - Introduction and literature review

1.1 Introduction, problem statement, and objectives

Phosphorus (P) loading to surface water bodies is a major problem because algae and cyanobacteria in freshwater environments are growth limited by P. Consequently, elevated loads can lead to the eutrophication of lakes, which can lead to harmful algae blooms (HAB) (Heisler et al., 2008) that degrade ecosystem health, create hypoxic zones, (Diaz, 2001; Ludsin et al., 2013) and affect economies that rely on good water quality (Bingham et al., 2015). In Lake Erie, numerous HABs, have been related to eutrophication caused by non-point source (NPS) contamination from agricultural systems (Scavia et al., 2014).

Within the Great Lakes watershed, the majority of nutrients are currently exported in the non-growing season (NGS; Macrae et al., 2007b; Royer et al., 2006; Van Esbroeck et al., 2016; Williams et al., 2018). Therefore, an improved understanding during this period is necessary to help reduce NPS contamination. However, with increased greenhouse gas (GHG) levels in the atmosphere, it is anticipated that there will be an intensification of the climate, which will include increased precipitation, higher intensity precipitation, increased temperatures, and more heat waves (Grillakis et al., 2011; McDermid et al., 2015; Rudra et al., 2015; Wang et al., 2014, 2015b). The resulting shift in the seasonality in southern Ontario may modify the efficacy of current BMPs and exacerbate water quality issues (Bosch et al. 2014). To mitigate the impact of agriculture on nutrient export while maintaining productive crops, BMP recommendations are adjusted as the understanding of these systems is improved. An improved understanding of the timing of runoff and nutrient transfer, and the pathways through which runoff occurs, will assist managers in recommending BMPs that will work both now and in future.

Hydrologic and water quality modeling will be increasingly important for understanding how the seasonality and pathways of nutrient export will change under a warmer climate, enabling targeted watershed and field management plans. After a model is created, it can then be easily altered to predict environmental responses to emerging and current BMPs. To fully understand the impacts of climate change
and BMPs on water quantity and quality, it is imperative to run models at a range of scales. The need for this was demonstrated by Sloan et al. (2017), who demonstrated that both spatial scale and tile drainage distribution modified stream flow regimes. To assist watershed stewards and managers in recommending appropriate BMPs to reduce nutrient loads from watersheds, both now and in future, model simulations are required that will provide insight into potential changes in runoff patterns, nutrient loads and BMP efficacy. Therefore, the objectives of this thesis were to:

1) Use a watershed scale SWAT model to determine the effects of changing precipitation patterns and temperatures on seasonal and annual water balances, flow regimes, total phosphorus, nitrate, and sediment export from an agricultural watershed in southwestern Ontario, Canada.

2) Develop a field scale SWAT model to determine the effects that drainage water management will have on seasonal flow paths and phosphorus export from an agricultural field in southwestern Ontario.

Objective 1 was addressed in “Impacts of climate change on seasonal hydrology and nutrient and sediment loads in the Medway Creek watershed in southern Ontario” (Chapter 2 of this thesis), while objective 2 is addressed in “Controlled tile drainage impacts on field scale runoff pathways and phosphorus losses in southern Ontario” (Chapter 3 of this thesis).

1.2 Literature review

1.2.1 Agriculture non-point source contamination and its role in eutrophication

Eutrophication occurs when there is an overabundance of nutrients in an aquatic ecosystem. In agricultural systems, P and N application as inorganic fertilizers or manure is necessary for the growth of economically viable crops (Sharpley et al., 2001). Consequently, these sources are significant contributors of NPS contamination and eutrophication (Arbuckle and Downing, 2001; Michalak et al., 2013). Depending on the type of water body receiving nutrients, the limiting nutrient will be different. Within fresh water ecosystems, P is not abundant; therefore, algae growth is uninhibited as long as this nutrient is present.
Conversely, N is the limiting nutrient in more coastal ecosystems (Correll, 1998). Due to the issues in Lake Erie, recently an international agreement (Great Lakes Water Quality Agreement) has been made with the goal to reduce springtime P loads by 40 percent (from 2008 levels) by 2025 (IJC, 2012).

1.2.2 Nutrient forms and dominant pathways in agricultural landscapes

Within agricultural systems, nutrient export can vary between nearby watersheds and even fields due to complex interactions between many factors. Climate is one of the major factors influencing hydrological and nutrient export responses, and it drives the other processes occurring in environment. Furthermore, interactions among the landscape, soil characteristics, and management practices can influence hydrologic transport pathways and biogeochemical cycling of nutrients. For example, in agricultural landscapes where soils are slow to drain or receive frequent floods, tile drains are installed within the subsurface to facilitate soil water drainage. This management practice is common in agricultural fields throughout the Lake Erie watershed, particularly in the southwestern end. Tiles benefit crops through earlier planting in spring, excessive plant water stress prevention, improved soil structure, and trafficability (Fraser & Fleming, 2001). Conversely, in tile drained soils, nutrient loss can also be greater because of the enhanced connectivity to streams, increased by soil macropores (Simard et al., 2000; Molder et al., 2015), which are large soil pores created by biological activity, environmental stressors (desiccation and freezing process), plant roots. The following sections will describe the major factors influencing nutrient transport pathways, and the speciation differences between these pathways.

1.2.2.1 Phosphorus dynamics in the environment

In agricultural systems, P losses in runoff have traditionally been associated with surface runoff and the erosion of P-rich surface soils (Carpenter et al. 1998). However, tile drains have also been shown to increase P losses from fields (King et al., 2015). The potential for tile drains to enhance P loss in runoff has resulted in significant debate regarding the installation of tile drains in fields. This is particularly important in the Lake Erie watershed, where tile drainage has been identified as a major driver of P loss
(Jarvie et al., 2017). However, there is a need for balance between agronomic and environmental impacts as food security is also an important issue.

There are two main fractions of total phosphorus (TP), one is dissolved reactive phosphorus (DRP), which consists of phosphorus forms in solution and is bio-available to algae. Conversely, the other fraction particulate phosphorus (PP) is typically reported as anything greater than 0.45 µm, and not as great a concern because it is not bioavailable (Simard et al., 2000); however, it can become available dependent on the environmental conditions affecting bacterial decomposition and desorption/dissolution processes (Spivakov et al., 1999). Within these two fractions, P can be either inorganic (i.e. orthophosphate or cation bound P) or organic phosphorus (contains carbon and bio-unavailable), each with their own chemical characteristics affecting transport dynamics. A key difference is their interaction with the soil. Organic P tends to have less affinity for the soil solid phase (George et al., 2017) and adsorption to soil particles because orthophosphate can have greater sorption capacity and strength (Bolster & Sistani, 2009; Lilienfein et al., 2004). Furthermore, microbes within the soil increase the dissolved inorganic P pool through mineralization of the organic matter. Conversely, they can also temporally decrease the DRP pool through the assimilation (immobilized) into their cells (Spivakov et al., 1999). This DRP pool is strongly adsorbed to the oxides of clay mineral subsoils resulting in slow percolation through the soil matrix and accumulation (McDowell et al., 2001).

Generally, phosphorus export tends to increase during high stream flow events (Gentry et al. 2007). High flow events are typically a result of rainstorms, or snowmelt events, or both during the NGS, which contribute significantly to the annual water yield (Macrae et al., 2007b); consequently, supplying a large proportion of the annual TP and DRP export to streams (Macrae et al., 2007a; Puustinen et al., 2007; Van Esbroeck et al., 2016). Between events in the NGS, there is variability in the magnitude of peak flows and overall loads that can be greatly influenced by the antecedent soil moisture conditions (Macrae et al., 2010; Vidon et al., 2009) and precipitation event characteristics (Vidon & Cuadra, 2010, 2011).
1.2.2.1.1 Phosphorus transport dynamics and forms in surface runoff

As noted above, surface runoff has been identified as a primary pathway for P loss from fields. Within surface runoff, PP is the dominant P fraction (Gentry et al. 2007; Hart et al., 2004; Van Esbroeck et al., 2016), and is greatly influenced by soil erosion (Eghbal & Gilley, 2001). Therefore, the proportion of TP as PP and P associated with sediment (typically inorganic P) is affected by factors that control the adsorption capacity such as soil characteristics (texture, mineral content, and organic content) and changing environmental conditions (i.e. redox and pH; Boström et al., 1984; Li et al., 2017; Moazed et al., 2010; Spivakov et al., 1999; Xiao et al., 2017), and field slope/topography. However, this may not always be the case, as manure application can increase the amount of PP that is organic (Leytem et al., 2002).

In tile drained systems, surface runoff is generally decreased due to the amount of flow redistributed to tile drains (Muma et al., 2016), and this helps to decrease the TP loads leaving in runoff (Ball Coelho et al., 2012; Bengtson et al., 1995). However, this pathway can still account for a large proportion of annual P loads to streams, since TP concentrations are typically higher in surface runoff (Haygarth et al., 1998; Sharpley et al., 2001). Although P losses are usually reduced in a tiled setting, P transport risk can be increased in surface runoff due to the connectivity of the field to streams, precipitation intensity, variable source areas, and lack of BMPs such as nutrient management (4Rs) and soil erosion control practices (Chapi et al., 2015; Reid, et al., 2012; Sharpley et al., 1999, 2008, 2011; Van Esbroeck et al., 2017; Uusi-Kämppä et al., 1998). For example, nutrient management influences the amount of P that accumulates in the near soil surface (0-5 cm). Fields with high nutrient inputs will have a greater risk of transporting increased P in surface runoff (Sharpley et al., 2001), especially as DRP with inorganic nutrient applications (i.e. fertilizer) before rainfall (Haygarth et al., 1998). Furthermore, no-tillage, which maximizes crop residue and reduces soil erosion can cause a subsequent increase of DRP in surface runoff (Ulén et al., 2010).
1.2.2.1.2 Phosphorus transport dynamics and forms in the subsurface: percolation and lateral movement

In the subsurface, P can take two pathways to streams: groundwater flow and tile flow. Groundwater flow will occur in all systems, and the transport of water is slow due to the long residence time in soils, which enables the adsorption of P (Sharpley et al., 2014). Generally, in tile drained landscapes, the annual water yield will increase because tiles drain the water typically stored in the subsurface and increase the infiltration capacity (King et al., 2015). This causes increased P availability and a decrease in P residence times, making tiles the dominant lateral pathway for P in the subsurface.

Within a tiled landscape, soil properties can control the impact on stream flow responses, P export magnitudes, and speciation. Through tile drain installation, typically in natural ecosystems they increase peak runoff rates, and in existing agricultural landscapes may cause a decrease in peak flows (Blann et al., 2009). However, this is not always the case and it is believed that soil texture will play a key role. For example, in sandy soils peak flows will increase with tile installation due to greater seepage rates through the soil matrix, to tiles. While clay soils, the increased infiltration combined slower seepage rates to tiles will attenuate the higher magnitude surface runoff events and decrease peak flows (Robinson, 1990; Robinson & Rycroft, 1999; Skaggs et al., 1994; Sloan et al., 2017).

In addition to matrix flow, macropores are another flow pathway and can form in all soils, but clay is of particular concern because large and deep desiccation and freeze thaw cracks can form (Peron et al., 2009). Consequently, agricultural landscapes with clay soils and macropores can also have greater peak flows after tile installation (Robinson & Rycroft, 1999; Schwab et al., 1985). However, exact quantification of the connectivity is difficult (Luo et al., 2010) and peak flows are dependent on many other factors such as management practices, slopes, and climate (Skaggs et al., 1994; Sloan et al., 2017; Wiskow & Van Der Ploeg, 2003). In other soils (i.e. sandy), macropores do not have the same issue with surface connectivity, only earthworm passages and roots are likely, and these will not increase infiltration and percolation rates as substantially.
Generally, depending on the degree of connectivity, macropore flow can account for the majority of the contaminants initially transported through tile drains because of a precipitation event (Kung et al., 2000). Typically, this results in clay soils having greater P loads exported via tiles due to greater macropore connectivity, (Beauchemin et al., 1998; King et al., 2015), and in most cases PP will be the dominant form of P in drains due to the macropores direct connection of the surface to tiles (Vidon, & Cuadra, 2011; Simard et al., 2000). This suggests that macropores are present since greater DRP proportion would be expected with matrix flow. Sandy soils have been shown to have a larger proportion of TP as DRP in tile flow (Eastman et al., 2010). This can mostly be attributed to the soil texture and macropore characteristics, as more subsurface flow will be routed through the soil matrix, which also has a lower sorption capacity (Daly et al., 2001; Dils & Heathwaite, 1999; Fox & Kamprath, 1970).

In addition to soil factors, some management practices interact with the soil macropores to further influence the P export and flow response in tiles. For example, tillage that disrupts the soil surface (i.e. conventional tillage) has been shown to decrease macropore flow (Andreini & Steenhuis, 1990). Consequently, tillage that cause minimal disruption to the soil surface (i.e. no-till or conservation tillage) has been associated with higher TP loads in tiles (Geohring et al., 2001) and increased DRP loads in runoff (Gaynor & Findlay, 1995). Although this is the case, depending on climate and biological activity macropores can be quick to reform (weeks to months) after tillage resulting in not much difference in P loads annually (Djodjic et al., 2002).

Nutrient management is another major factor influencing P loss in tiles. Poor management practices (i.e. over application of fertilizer) in the past have resulted in an accumulation of P in soils (Daloğlu et al., 2012), which can increase the risk of P export if soil P thresholds are exceeded (Sharpley et al., 2001, 2014). This is defined as a limit within the soil where nutrient application resulting in soil levels above the limit will result in increased P contamination in runoff due to a decrease in the number of sorption sites. Furthermore, organic nutrient sources, such as manure, are associated with increased P loss, which has been attributed to a decreased sorption capacity and strength promoting increased P leaching (McDowell et al.,
In addition, P loss in tiles generally increases with broadcast application, compared to incorporated application of P, depending on the source and degree of incorporation (King et al., 2015). However, irrespective of method or source, application rates have been shown to be the key driver of increased P loss in tiles (Kleinman et al., 2009; Elliott et al., 2001). Finally, the timing of application is increasingly important, as P export increases with precipitation after P application (Sharpley et al., 2001). Based on this, recently in Ontario, the province has embraced 4R Nutrient Stewardship, which stipulates right source, at the right rate, time, and place for proper management of nutrients to meet its environmental goals (Fertilizer Canada, 2016).

1.2.2.2 Nitrogen dynamics in the environment

Although P contamination is of foremost concern in Ontario, N contamination is also an issue that can have an adverse effect on the environment and even human health. N is a major nutrient applied to fields for proper plant growth. Consequently, within tile-drained settings, N has been shown to be a major factor contributing to an increase in both surface and groundwater contamination (Bengtson et al. 1984; Randall et al., 1997). This has potential to affect 30% of people in Ontario that rely on groundwater for drinking water (Goss et al., 1998) and many others that rely on clean water since it can also increase algae growth, especially in marine environments. In southern Ontario, nitrate (NO$_3^-$; plant available) leaching is the form of N of principal concern, especially for young infants because they are at increased risk of methemoglobinemia with augmented concentrations of NO$_3^-$ and nitrite (NO$_2^-$). These forms can naturally occur through ammonification of organic nitrogen to ammonium (NH$_4^+$) or ammonia (NH$_3$), or nitrogen fixation (i.e. gaseous nitrogen to NH$_3$ or NH$_4^+$), and subsequent nitrification. Furthermore, high concentrations of NO$_3^-$ and NH$_4^+$ in surface water has been linked with fish kills, and development anomalies in amphibians (Steenvoorden et al., 2002).

1.2.2.2.1 Nitrogen transport in the subsurface

Nitrate originates from manure, the mineralization and nitrification of organic matter, or inorganic fertilizers. Unlike orthophosphate and NH$_4^+$, it is much more mobile in the subsurface because it is an anion
and thus not attracted to negatively charged soil particles. This allows NO$_3^-$ to quickly travel through the soil matrix into tiles, which can contribute a large proportion of the annual runoff and N loads (Li et al., 2010; Rozemeijer et al., 2010). Tiles also decrease water residence times; further decreasing the opportunity for denitrification benefits (Panno et al., 2008). However, like P, most of the N export also occurs with flows that are part of the high stream flow regime (Petry et al., 2002; Macrae et al., 2007b).

In addition to tile flow, the texture of the soil also controls the intensity of leaching through the subsurface into tiles and groundwater. The transport of NO$_3^-$ is related to water volumes; therefore, clay soils will have reduced leaching through the soil matrix since they have a lower saturated hydraulic conductivity, greater water retention, and cation exchange capacity (Gaines & Gaines, 2008; Miner 1995). Conversely, the increase in macropores in fine-grained soils mentioned earlier also has potential to help to offset slower soil matrix leaching rates and can increase particulate associated N losses (Rasouli et al., 2014). The amount of residual soil nitrogen left in soil will be important factor contributing to the magnitude of NO$_3^-$ export. This is influenced by many components, including atmospheric N deposition, N management practices (source, rate, time, and place), crop residue, and cropping system (Rasouli et al., 2014). For example, corn is a large portion of the crop acreage in Ontario and requires high N inputs (up to 316 kg N/ha) for growth (Ministry of Agriculture and Rural Affairs, 2017). Consequently, this crop in continuous rotation is known to cause increased N leaching due to a buildup of residual soil nitrogen each year (Bolton et al., 1970; Fleming et al., 1998). This build up can contribute to a reduction in the observed effectiveness of BMPs due to the effect of legacy N (Van Meter et al., 2018). Additionally, climate variability between years will play a role in controlling the annual N loads in tiles and can cause large fluctuations. In dryer years, more N is stored in the soil profile, which can be flushed during subsequent wetter years (97 cm above the historic 30-year average; Gentry et al., 2009). Finally, once NO$_3^-$ leaches past the tiles it contributes to the groundwater, which has been shown to store a large proportion of the N inputs (Wang et al., 2015a), especially in aquifers with long residence times. Furthermore, NO$_3^-$ concentrations can be lower in groundwater because of denitrification, which occurs when soil conditions
are anaerobic causing microbes to respire forms of nitrogen bound with oxygen to produce dinitrogen (Petry et al., 2002).

1.2.2.2 Nitrogen dynamics in surface runoff

While tile drains export more N than surface runoff, losses in this pathway are still of concern. Runoff N loads and concentrations can quickly increase over a short period given the correct conditions, such as connectivity, manure application on frozen soils, timing of nutrient application, and intense rain (Neilsen et al., 1978; Smith et al., 2001). As previously mentioned NO$_3^-$ is more mobile and soluble in water. Therefore, after the start of a rainfall event most of the NO$_3^-$ will infiltrate into the soil; consequently, the dominant form of N remaining in the soil surface and in surface runoff is typically ammonium or organic N (Sharpley et al., 1987). Although, there are some cases where NO$_3^-$ can be a greater contributor in surface runoff (Jiao et al., 2012). In addition, NH$_4^+$ in the environment is mainly a result of the decomposition and mineralization of organic matter originating from crop residue or manure applications. NH$_4^+$ readily travels with sediment and is less prone to leaching due to its positive charge binding it with the fine-grained sediments or organic matter, and this results in NH$_4^+$ typically being mobilized during storm events and associated with surface runoff (Pärn et al., 2012).

1.3 Climate change and agriculture

Through human activities such as farming, energy generation, and transportation there has been a steady increase in greenhouse gas (GHG) concentrations in the atmosphere, which consist of three main gases: methane, carbon dioxide, and nitrous oxide (Intergovernmental Panel on Climate Change, 2015). As these GHG accumulate in the atmosphere, they increase the amount of incoming long-wave solar radiation retained within the earth’s atmosphere, increasing global mean air temperature and changing precipitation patterns (Intergovernmental Panel on Climate Change, 2015). Furthermore, through various terrestrial and aquatic feedback mechanisms that can be either positive (increase in GHG) or negative, the rate of GHG concentration increase will be modified. Climate change has already had wide-reaching impacts on human
and natural systems, and is projected to cause irreversible harm unless it is properly mitigated (Intergovernmental Panel on Climate Change, 2015).

General Circulation Models (GCM) are numerical models capable of forecasting the effects that changes in GHG concentrations have on the global climate system. GCMs are a useful tool for understanding climate responses to GHGs and allow us to better mitigate and adapt; however, there are some key sources of uncertainty to consider. First, future changes in global anthropogenic GHG emissions are unpredictable. Second, knowledge and predictability of system feed backs (natural emissions) in GCMs is still not perfect. Third, the downscaling and bias correction approach used to create regional climate models for smaller scale impact studies results in further uncertainty due to the assumptions made and all contribute to a cascade of uncertainty in climate change projections (Giorgi, 2010). Despite these challenges, the array of GCM simulations provide a reasonable way to reduce uncertainty and simulate future changes in climate.

1.3.1 Climate change in southern Ontario

Recently, Representative Concentration Pathways (RCP) were developed to describe plausible trajectories for net radiative forcing by the year 2100 relative to preindustrial conditions (Taylor, 2012). Each of the four emission scenarios range from best case (RCP2.6) to high emissions (RCP8.5), with two intermediate scenarios (RCP4.5 and RCP6). Within southern Ontario, all pathways indicate an increase in annual precipitation from 2040 onward, with the average annual precipitation increase varying from 99 to 123 mm by the 2080s in all RCPs. Furthermore, there will be clear increases in the average annual air temperature in all of the RCPs, and changes will range from 2.4 to 9 degrees Celsius by the 2080s (McDermid et al., 2015). In addition, there will be an increase in the magnitude and frequency of extreme precipitation events (Rudra et al., 2015; Wang et al., 2014, 2015b). This is expected to be coupled with an increase in the percent of time there will be extremely wet and then dry conditions (Grillakis et al., 2011).
This will affect seasonal climate characteristics. Based on the study by King et al. (2012) in the Upper Thames River Basin (UTRB), winter and spring will have definitive increases in precipitation volumes, while in summer there will be a bit more variability associated in percent change in precipitation, with ranges of -14.5 to 28.8 percent by the 2041 to 2070 period. High variability in summer for precipitation is mostly likely due to the GCMs limitations associated with capturing convective summer storms (Maraun, 2016). In winter, temperature changes will be the greatest and are projected to increase by 3.5 to 8.6 degrees Celsius on average by the 2080s (McDermid et al., 2015). Due to this increase in temperature in winter, more precipitation is expected as rain (Marianne et al., 2003; Golmohammadi et al., 2017); also reducing the snowpack melt and timing in spring (Demaria et al., 2016). In summer, in addition to increased temperatures, there is expected to be increased frequency and magnitude of heat waves (Li et al., 2017), which will mostly likely result in greater drought risk.

1.3.2 Climate change effects on NPS contamination

In southern Ontario, agriculture is a major driver of the economy and many jobs rely on its prosperity. In order to understand the long-term impacts that climate change will have on crop yield, water quality and quantity at a more local scale GCMs outputs are typically bias corrected and downscaled to be used as input with models (Carter et al., 1994). Through a better understanding, mitigation strategies can be developed to help adapt to the changes. Currently, in the Great lakes drainage area, most studies indicate that increased precipitation will lead to increases in the annual flow (Grillakis et al., 2011; Rahman et al., 2012), resulting in increased TP, SS, and NO₃⁻ loads (Bosch et al., 2014; Verma et al., 2015; Wang et al., 2018) by the late-century (2070-2100). With some mid-century (approximately 2020 to 2050) projections, indicating a decrease in precipitation will result in decreased annual flows (Golmohammadi et al., 2017; Verma et al., 2015). Contrary to this, one study has projected decreased flows and variable sediment load changes in the late century period with increased precipitation depending on the emission scenario and evapotranspiration rates (Cousino et al., 2015).
In southern Ontario, we know that the majority of nutrient loads are exported during peak flows and in the NGS (Macrae et al., 2007b; Royer et al., 2006; Van Esbroeck et al., 2016). Therefore, understanding the impact of climate change during the months in the NGS will be important in reducing NPS contamination. Due to the changes in climate characteristics noted earlier and expected in winter, we will start to see less snowpack in the Great Lake basin. This in turn will affect soil temperatures, which will get colder due to the insulating properties of snow (Isard et al., 1998). With the changes in snowpack, soil temperatures, soil moisture, and precipitation form and intensity there will potentially be a shift or increase in dominant flow path that runoff takes to streams. With increased potential for frozen soils, it is hypothesized that there will be more surface runoff in winter due to the decreased capability of infiltration (Marianne et al., 2003; Isard et al., 1998).

Some studies in the Great lake watershed, predict increased flows, TP, sediment, and NO$_3$ export during the NGS months due to climatic shifts (Crossman et al., 2013; Verma et al. 2015; Wang et al., 2018). Rahman et al. (2012) corroborate this hydrologic change for a watershed in southern Ontario and show that winter and spring flows increase along with surface runoff and base flow. Furthermore, in a study by Jyrkama et al., 2007 for southern Ontario they show infiltration and recharge to increase due to warming soil and air temperatures, reducing early spring runoff. This is indicative of the potential for spatial variability of NGS hydrology and the potential for unexpected flow path changes. Therefore, understanding of the soil freezing dynamics and climate behavior in different regions with different methods will be important in quantifying the impact that climate change has on flow path partitioning, flow regimes, and subsequent nutrient transport forms and magnitude, especially in tile-drained landscapes due to the connectivity they provide in the subsurface. Finally, with the climate intensification resulting in more erratic temperatures there will be an increase in the freeze-thaw cycles, which is factor controlling nutrient losses from crops, soil structure (increase in macropores), and microbial communities that should start to be considered in future studies (Henry, 2008).
1.4 Controlled tile drainage

In the past few sections there have been indications of the detrimental effects and complexity involved with tile drained systems. Due to the issues associated with hypoxia in the Gulf of Mexico, in the Midwest US controlled tile drainage (CD) has been recommended as a practice to reduce nitrate leaving in tile drains and entering the Mississippi river. CD involves the installation of a control structure at the tile outlets where inside a gate can be raised or lowered to control the water table height by forcing water to rise above the gate before leaving the tile outlet. Typically, CD installation is limited and more suitable to low sloped areas (<1%) that are slow to drain.

Due to the significance of the NGS recent research has focused on CD during this time and found that it will reduce nutrient loads (N and P) in tile drains through flow reductions (Skaggs et al., 2012; Sunohara et al., 2010; Williams et al., 2015). Also, in some cases increases denitrification causing further N reductions (Skaggs et al., 2010; Wesström & Messing, 2007). Although this benefits tile reductions, there is very little understanding of the tradeoffs associated with CD, like increased surface runoff and nutrient (N and P) export in runoff (Drury et al., 2009; Ross et al., 2016; Tan & Zhang, 2011; Zhang et al., 2017). Also, increased potential for anoxic condition promoting soluble P forms through increased potential for desorption and organic P mineralization (Ardón et al., 2010; Van Dijk et al., 2011; Yaghi & Hartikainen, 2013). For it to be extensively accepted as a BMP by managers in southern Ontario there needs to be more research related to the tradeoffs and the potential to function outside the typical criteria for certain field conditions.

Although the growing season (GS) is not as significant a season in terms of its contributions to nutrient transport, it contributes to plant growth, which may be impacted under a changing climate. For example, in spring, with less snowpack and snowmelt due to the shift in seasonality, farmers will be able to access fields earlier, resulting in a longer growing season and accelerated maturation due to increased CO₂ and temperatures. However, increased soil moisture stress may occur, which can have a detrimental effect on crop yields (Singh et al., 1998). To mitigate the effects that water stress has on crop yields recently
drainage water management has also been studied and shown to provide benefits during the GS (Sunohara et al., 2010).

1.5 Hydrological and NPS contamination modeling

1.5.1 Quantifying the effect of climate change and agriculture on water quality

As previously mentioned, numerous anthropogenic environment changes have resulted in water quality problems and these now require improved management and planning to help reduce the impact of their sources. Typically, experimental and observational field to watershed scale studies have been used to provide this; however, they require significant time, effort, and resources to obtain results. This makes modeling a useful tool in understanding agricultural systems across a range of scales and realities due to the ability to alter the simulated environment. However, to be successful, modelling efforts require field studies for proper development, making both approaches highly integrated and dependent on each other to develop proper mitigation strategies (Vadas et al., 2013).

Given the usefulness of models, numerous models have been created. These are typically described according to criteria found in the study by Tsakiris and Alexakis (2012). Model selection is determined by the purpose of the study, region characteristics (stressors and processes), data availability, time-step, and scale of analysis. Careful selection is necessary since there are many models that are able to simulate P in drains and NPS contamination, each with their own capabilities (Gao & Li, 2014; Qi & Qi, 2017; Tsakiris & Alexakis, 2012; Vadas et al., 2013). One frequently used model is the Soil Water Assessment Tool (SWAT), which has over 3350 peer-reviewed articles (https://www.card.iastate.edu/swat_articles/index.aspx). In agricultural landscapes, this model is frequently used in BMP and climate change impact assessments in the Great Lakes area (Ahmadi et al., 2014; Bosch et al., 2014; Liu et al., 2016; Robertson et al., 2016; Rahman et al., 2012; Wallace et al., 2017). This is a semi-distributed, process and empirically based watershed scale eco-hydrological model. The smallest spatial unit within SWAT is the HRU, which is not spatially referenced and is a unique combination of soil, slope and land use within a subbasin, each having a set of associated management practices. Precipitation
and temperature inputs drive landscape processes at the HRU scale, these are aggregated to the subbasin, then watershed scale. Outputs from the landscape are used to drive channel process, which determine outputs at the watershed outlet (Neitsch et al., 2011). As a result, in SWAT there is a large number of parameters, which first require calibration to observed conditions (i.e. stream flow), and validation to confirm the calibrated parameter set for a different set of observed conditions (Arnold et al., 2012b; Daggupati et al., 2015).

1.5.2 Model development and assessment

There is a constant need to redevelop SWAT to reduce the uncertainty in model predictions and improve performance to make policy decisions more reliable since they are made at the watershed scale (Beven, 2001). Experimental and observational studies are useful for identifying model limitations and improving the model through increased understanding of the small-scale processes. Since process are simulated in the HRU and scaled up, good performance starts here. However, during model building there are some inherent issues that complicate spatial consistency of HRUs, making it harder to analyze HRU outputs, confidently recommend model improvements, or inform decisions in the modeled area, especially if there is a lack of field scale data in the watershed to validate HRU processes.

A key issue affecting HRU consistency is equifinality, where a calibrated model can have multiple acceptable parameter sets, some causing the right results but for the wrong reasons (Beven & Binley 1992; Beven, 2006). Given that SWAT typically operates on a watershed scale, there is increased spatial heterogeneity in watershed properties and complex processes, which exacerbates this issue. Watershed scale models such as SWAT attempt to capture this increased complexity through the number of parameters; thereby enhancing the potential for equifinality (McDonnell et al., 2007). Calibration at the HRU scale using field scale hydrometric data is not frequently done, but permits the evaluation and testing of new model routines, which subsequently leads to model improvement, because testing the model at a small HRU scale removes the complications of large-scale heterogeneities.
This thesis uses SWAT models under present and future climate simulations, and at different scales to predict the impacts of climate change on nutrient transport from agricultural landscapes, and, to determine whether CD can mitigate some of these water quality issues. In addition to exploring changes in annual hydrologic and biogeochemical fluxes, this thesis investigates seasonality in these fluxes due to the importance of the NGS in nutrient export and our limited understanding of process during this time.
Chapter 2 - Impacts of climate change on seasonal hydrology, nutrient, and sediment loads in the Medway Creek watershed in southern Ontario

2.1 Overview
Within southern Ontario, climate change is expected to cause an increase in precipitation patterns and air temperature by the late century period (2080-2100). This is expected to cause changes to hydrological and biogeochemical cycling, further impacting losses from agricultural fields, which are currently a significant driver of non-point source contamination in Lake Erie. In this study a model was created using the Soil Water Assessment Tool (SWAT) for the Medway Creek watershed (200 Km²), a subwatershed within the Upper Thames River Watershed in Ontario, Canada, within the Lake Erie watershed. The objective of this chapter is to determine the effect that future climates will have on the seasonal characteristics of hydrology, suspended sediment, nitrate, and total phosphorus export. A climate ensemble was used to force the SWAT model, which consisted of six different quantile bias corrected general circulation models (GCM) obtained from the Coupled Model Intercomparison Project Phase 5 (CMIP5) using the 4.5, 8.5, or both representative concentration pathways (RCP). The climate ensemble indicates that temperate and precipitation quantity, magnitude and frequency will increase in all seasons, with the largest and least variable climatic changes projected to occur in winter. These shifts will cause a shift in the seasonal distributions of runoff and the relative contributions of flow paths. An increase in annual nutrient (N, P) loads is projected, driven not only by changing precipitation volumes but form, magnitude, and frequency, which will increase peak flows. In contrast, suspended sediment is mostly driven by changing average stream flows and surface runoff, which decrease in winter and spring due to changes in the seasonal water balance due to increased air temperatures. This work highlights the importance of understanding processes driving non-growing season (NGS) nutrient export with climate change in a tile-drained setting, and will assist land managers in the development of more effective watershed management plans.
2.2 Introduction

The eutrophication of inland lakes is a significant issue throughout North America that has environmental and societal consequences (Michalak et al., 2013). The occurrence of frequent Harmful Algal Blooms (HABs) and nuisance algae have been attributed primarily to non-point source pollution from agricultural watersheds, with particular emphasis on total phosphorus (TP) loading (EPA, 2015; Jarvie et al., 2013; Michalak et al., 2013). Consequently, considerable effort has been put into the development of Beneficial Management Practices (BMPs) and aggressive targets have been set for reductions in TP loads from agricultural systems. In addition, within the Great Lakes region of North America, climate change is expected to lead to higher temperatures and changes in the form, intensity, quantity, and timing of precipitation (McDermid et al., 2015; Rudra et al., 2015; Wang et al., 2014). This is anticipated to have consequences for hydrology through the modification of runoff pathways, quantity, and timing, and consequently, biogeochemical export from agricultural watersheds. To better understand BMP efficacy and the potential for current nutrient reduction targets to be met, an improved understanding of the impacts of climate change on runoff quantity and quality are needed.

Tile drainage is a BMP that is prevalent throughout much of southwestern Ontario. This flow pathway increases subsurface connection between fields and streams, reducing surface runoff and increasing the proportion of precipitation leaving as subsurface flow (Muma et al., 2016). Consequently, tile drainage reduces the contribution of surface runoff to annual TP, organic nitrogen, ammonium (NH$_4^+$), and suspended sediment (SS) loads (King et al., 2015, and Skaggs et al., 1994). Although surface runoff can be reduced following the installation of tile drains (Muma et al., 2016), this pathway can still provide an efficient transport mechanism for nitrate (NO$_3$) and P depending on soil characteristics such as slope and macroporosity (e.g. Kleinman et al., 2015), soil biogeochemistry (Plach et al., in press), land management practices such as nutrient management, tillage and P application strategies (e.g. Lam et al., 2016; Jarvie et al., 2017; Plach et al., 2018), and precipitation event duration, and intensity (Sharpley et al., 2008; Van Esbroeck et al., 2017; Chapi et al., 2015; Reid, et al., 2012; Vidon & Cuadra, 2010).
In southwestern Ontario, Canada, most nutrient export currently occurs during the NGS where contributions to annual loads from agricultural systems are often dominated by a few peak flow events (Ministry of the Environment and Climate Change, 2012; Macrae et al., 2007b, Van Esbroeck et al., 2016, 2017). Additionally, the timing and form of precipitation events influence antecedent hydrologic conditions (AHC), which play a key role in determining the nutrient form (Beauchemin et al., 1998), event response, and overall loads (Macrae et al., 2010; Vidon et al., 2009), in part due to their control over hydrologic flow paths (Van Esbroeck et al., 2017; Macrae et al., 2007a). Given the current behavior and projections for an intensification of the hydrologic cycle under a warmer climate (Wang et al., 2014), it is likely that the temporal distribution of runoff and the relative contributions of different hydrologic flow paths may change, which may impact nutrient loading from agricultural watersheds. Therefore, studies at the watershed scale that include the seasonal fluctuations in hydrology are needed to produce more accurate estimates of the impacts of agricultural land management on water quantity and quality (Labeau et al., 2015).

Field scale process studies are often costly and labor-intensive, and there is a paucity of long-term data sets, particularly those that include the NGS. To shed insight into longer time periods and the future, scientists employ hydrological and water quality models forced with general circulation models (GCM); however, careful parameterization, calibration and validation of the models using high-quality field data is crucial. The Soil Water Assessment Tool (SWAT) is frequently used around the world in agricultural watersheds to predict the impact of climate change on water quality (Marcinkowski et al., 2017; Mehdi et al., 2016; Woznicki & Nejadhashemi, 2012; Ye & Grimm, 2013; Zabaleta et al., 2014). Although this model was developed in a warm, dry region (Neitsch et al., 2011), it has been calibrated successfully in more northern regions with complex agricultural practices and hydro-climatic conditions to assess water quality issues associated with climate change (Gombault et al., 2015; El-khoury et al., 2015; Mehdi et al., 2015; Shrestha & Wang, 2018). However, to date, there have been few detailed modeling studies focusing on providing a better understanding of how future precipitation characteristics and temperature changes will influence flows, water balance, and water quality responses within the Great lakes region, particularly over
the different seasons (Ahmadi et al., 2014; Bosch et al., 2014; Robertson et al., 2016; Rahman et al., 2012; Wallace et al., 2017). Therefore, in this study, the objectives were to predict how climate change will affect the water balance, flow regimes, sediment, and nutrient loads in the Medway Creek Watershed (MCW) using the SWAT model at the (a) annual scale and (b) seasonal scale (Cousino et al., 2015; Crossman et al., 2013; Verma et al., 2015; Wang et al., 2018). Results from this study will assist other modelling efforts, watershed stewards, and managers in identifying suitable nutrient loss mitigation strategies, and will shed insight into the current potential to achieve nutrient reduction targets that have been set for the MCW through model simulations using future climates.

2.3 Methodology

2.3.1 Study area

The MCW is a small (205 Km²) watershed located in southwestern Ontario (43°00′52.9″N 81°16′36.6″W; Figure 1) and is one of 28 sub-watersheds that contribute to the Upper Thames River Basin (UTRB), which subsequently drains into Lake St. Claire, and eventually into Lake Erie. Managers and landowners within the Thames River watershed have been tasked with achieving a springtime P load reduction of 40% by 2025 (Environmental Protection Agency, 2015).
Land use within the watershed is primarily agricultural (83%), with some natural (11%) and urban (6%) areas. Since most of the land use is agricultural, a significant portion of the MCW has tile drainage (~65%) to facilitate field access in spring and improve crop yields. Major agricultural land uses within the watershed consist of corn, pasture, soybean, and winter wheat. There are many livestock operations within the watershed with an average density of 24 animals per hectare. Poultry represent the majority of livestock operations (97%) and manure P production in the watershed (31%), and swine operations represent 1% of livestock operations. Populations of dairy and beef cattle are relatively small in the watershed. Approximately 85% of the total soil area within the watershed consists of clay loam (33%), silty loam (32%), or silty clay loams (20%) (Upper Thames River Conservation Authority, 2012). The watershed has a mean slope of 2 degrees, with the northwestern part of the watershed increasingly sloped because the
watercourse is located between two moraines causing rolling topography. The southern portion of the watershed is also steep and mostly consists of urban land use, whereas the central portion is much flatter.

The climate in this region is classified as humid continental with an average 30-year historic normal monthly precipitation of 84 mm (1012 mm annually, 19% as snowfall; Environment and Climate Change Canada, 2018b). As is typical for the region of southern Ontario, there is a distinct seasonal pattern in annual runoff with maxima in spring associated with snowmelt and convective spring storms, and minima in summer due to high evapotranspiration (ET) rates. Although flow occurs throughout the year, the summer high average temperatures (19.6 °C) can occasionally result in the occurrence of drought conditions (Prodanovi & Simonovi, 2006).

2.3.2 Watershed modelling

2.3.2.1 The Soil Water Assessment Tool

SWAT is a semi-distributed physically based watershed model capable of continuous simulation over long periods (Neitsch et al., 2011). It uses a combination of empirical relationships and process-based equations. The user divides the watershed up into sub-basins, which can be further subdivided into hydrological response units (HRUs) which are unique combinations of land use, soils, and slope (Neitsch et al., 2011). Within the model structure, precipitation plays a key role and is a major driver of all other processes that occur. Hydrologic processes simulated by SWAT include surface runoff, infiltration, canopy storage, percolation, evapotranspiration (Hardgreves method; IPET=2), lateral subsurface flow, and base flow (Arnold et al., 2012a). Soil erosion is determined using the Modified Universal Soil Loss Equation (Williams 1975) which is influenced by rainfall and surface runoff, and estimated using the Soil Conservation Service (SCS) curve number method (Soil Conservation Service, 1972; ICN=1). Within the soil profile, the SWAT model is able to simulate nutrient transformations and movement using the P and nitrogen cycles. Once the nutrients reach the main hydrological channel, an adapted version of QUAL2E is used for nutrient routing (Neitsch et al., 2011).
Given that the SWAT model was developed in Texas, percolation through the soil profile is not as representative of what occurs in Canada, where soil textures, moisture conditions and precipitation patterns differ from those in Texas. Therefore, SWAT-MAC was used (modified version of SWAT 2012), as it is adapted to better simulate flow to tile drains by altering the hydrological algorithms influencing percolation through the subsurface (Michaud et al., 2008; Poon, 2013).

2.3.2.2 Data used in model parameterization

A DEM (10 m resolution) supplied by the Upper Thames River Conservation Authority (UTRCA) and derived using aerial imagery from the Southwestern Ontario Orthophotography Project (SWOOP) in 2010 was used (Ministry of Natural Resources and Forestry, 2015). Land use data was obtained from Agriculture and Agri-Food Canada’s (AAFC) annual crop inventory in 2014 (AAFC, 2016). These data are derived using satellite imagery taken during important plant growth stages and combined with ground truthing to identify crops present each year. Soil physical parameters, at a scale of 1:50000 were obtained from the soil map distributed through Land Information Ontario (LIO; Ministry of Agriculture, Food and Rural Affairs & Canadian Soil Information Service, 2015). This included soil texture, bulk density, soil depths, but did not include data for soil available water capacity or soil albedo. Soil available water capacity was estimated using the pedotransfer function developed by Saxton and Rawls (2006). Soil albedo was estimated using the ranges mentioned by Dobos (2003). Climate data, including gridded (10 km resolution) daily precipitation and daily maximum and minimum temperatures for 63 years (1950-2013) was generated by Natural Resources Canada (NRCAN) using thin-plate smoothing splines (McKenney et al., 2011; McKenney et al., 2013) and was provided by Ouranos, a consortium on regional climatology and adaptation to climate change.

Streamflow quantity (daily interval) and quality (monthly sampling interval) data for the MCW, collected between 1978-2014 at the watershed outlet, were provided by the UTRCA (Figure 1). Monthly load estimates of sediment and nutrients (TP, NO$_3$) were determined using Flux32 and a regression applied to individual daily flows (Method 6) based on the procedure developed by Walker (1996). The mean
Coefficient of variation was subsequently calculated as a measure of error to assess if SS, TP, and NO$_3^-$ would be suitable for modelling.

2.3.3 SWAT set-up and calibration

To delineate subbasins, the automatic watershed delineation option in ArcSWAT with the recommended threshold drainage area and a stream network created by the UTRCA. Land use, soil, and slope were subsequently overlain to create hydrologic response units (HRUs) and a minimum area threshold of 10/15/15 percent respectively was applied to reduce the number of HRUs to 318 with 19 subbasins. For the creation of the HRU management files, crop rotations were assumed to have minimal effect on the overall hydrology. Given that HRUs were not spatially explicit within the subbasin and eventually cycled back to the original crop, it was assumed that there would be minimal effect on nutrients over a longer term.

Using the AAFC crop inventory data from 2011-2014, a crop rotation map was created through ArcMap overlay and it was determined that the dominant crop rotation was corn-soybean-winter wheat. Representative tillage systems and fertilizer application rates for each crop were developed based on the dominant rotation (UTRCA and Wanhong Yang, personal comm.). Yearly estimates of manure production in the watershed were calculated based on livestock statistics for the MCW, and all manure was divided up amongst the corn HRUs to fulfill N needs. A tile drainage map obtained from LIO (Ministry of Agriculture, Food and Rural Affairs, 2015) was used to determine the distribution in the watershed. Given that the full extent of tile drainage within Ontario is not known and the abundance of tile drains in the watershed is not known, all cash cropped HRUs within the MCW were assumed to be tile drained. Tile drainage parameters including depth to subsurface tile drain (DDRAIN = 900 mm), time to drain soil to field capacity (TDRAIN = 24 hours), and tile drain lag time (GDRAIN = 12 hours) were set based on what is typically observed in Ontario.

For sensitivity analysis, calibration, and validation of the model, the SWAT- Calibration and Uncertainty Programs (SWAT-CUP) software package was used with the SUFI-2 algorithm for parameter calibration (Abbaspour, 2015). This program is a stochastic auto-calibration software, which is widely used
in studies around the world (Ekstrand et al., 2010; Rouholahnejad et al., 2014). The SWAT model has a large number of parameters that can be calibrated (Arnold et al., 2012a). To reduce the number of parameters used in calibration to only the most sensitive and avoid over-parametrization, global sensitivity analysis (GSA) and one-at-a-time sensitivity analyses (OATSA) were performed on 72 parameters. For GSA, SWAT-CUP uses multiple regression analyses and employs a p-value and t-stat statistic (Student's t-distribution) to indicate the sensitivity (Abbaspour, 2015). For OATSA, each parameter is tested individually; all other parameters remain fixed to the default values and the model is run three times. Parameter sensitivity is calculated with:

\[
ParSen_i = \frac{50 \times |Y_i - Y_{i-1}|}{(Y_i + Y_{i-1})} \tag{1}
\]

where \(Y_i\) is the value of the objective function for simulation run \(i\) (Veith & Ghebremichael, 2009). GSA parameters were selected for calibration if the p-value was less than 0.05 and the t-stat was larger than 1.5. Results from OATSA were also considered if the sensitivity was larger than 0.05 and it caused an increase in the objective function. Additional consideration was given to parameters that met at least half the above criteria from each of the sensitivity analysis types.

The data used for calibration were from 2006 to 2010, and the data used for validation were from 2011 to 2013, to capture both wet and dry years, both on a monthly time step with a 3-year warm up period to mitigate the effect of initial conditions. At the watershed outlet, observed flow, SS, NO₃⁻, and TP variables were calibrated sequentially with multiple iterations (3-5) using SWAT-CUP until there was only a marginal increase in the objective function, which was the Nash-Sutcliffe coefficient of model efficiency (NS). To measure the performance of the fitted parameters set and model during the calibration period, NS and the percent bias (PBIAS) was used and evaluated based on criteria developed by Moriasi et al. (2007b). PBIAS proved a useful statistic in conjunction with the NS because it provides a percentage describing how much the model over or under estimated a variable.
2.3.4 Future climate scenarios

To assess the impact that climate change will have on water quality and quantity, a bias corrected GCM ensemble was developed and coupled with the parameterized SWAT model simulated from 1980-2100, while keeping land use and management constant. A climate ensemble consists of multiple GCMs and (sometimes emission scenarios) that are combined and used in analysis to reduce the uncertainty associated with future climate projections (Fowler et al., 2007; Honti et al., 2014). The bias corrected GCM ensemble consisted of a 10km x 10km gridded daily temperature (max and min) and precipitation dataset provided by Ouranos, a consortium experienced in climate sciences, modelling, and developing regional climate projections for researchers (Ouranos, 2018).

To develop the climate change scenarios used in this study all available CMIP5 global climate models with precipitation, minimum temperature, and maximum temperature were obtained (Taylor et al., 2013). For each model, two emission scenarios known as Representative Concentration Pathways (RCP; Meinshausen et al., 2011) were used to drive each of the GCMs. Each RCP is named after the amount of net radiative forcing (W/m2) expected by 2100 due to projected GHG emissions. In this study, the two RCPs selected were RCP4.5 and RCP8.5, where RCP8.5 is the worst-case scenario (i.e. no implementation of policies to mitigate climate change) in terms of GHG emissions and concentration trajectories. The RCP4.5 emission scenario represents a stabilizing radiative forcing by 2100 due to implementation of GHG emission prices and represents a more optimistic representation of future GHG concentrations.

To reduce the number of scenarios and retain maximum uncertainty coverage in changes of temperature and precipitation in the future, k-means cluster analysis was used on all the CMIP5 GCMs with the RCP4.5 and 8.5 emission scenarios (Casajus et al., 2016). The 22 retained simulations were ordered in such a way that each subsequent scenario in the selection sought to maximize uncertainty coverage. To reduce SWAT model input/output processing time and still capture the uncertainty associated with climate model outputs, the first 10 scenarios from the final selection were chosen for the final ensemble and the remaining 12 in the 22 simulations were not used. The selected simulations are listed in Table 2.1.

To create
the ensemble of catchment-scale future climate scenarios, data was empirically downscaled using the gridded NRCAN (10 km) interpolated station data and the quantile mapping method (Mpelasoka and Chiew, 2009).

Table 2.1. General Circulation models used in this study after using K-means clustering to reduce the final number of future climate scenarios. Models were obtained from the World Climate Research Programme’s Coupled Intercomparison Project phase 5 (CMIP5).

<table>
<thead>
<tr>
<th>GCM abbreviation</th>
<th>Institute ID</th>
<th>RCP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INM-CM4</td>
<td>INM</td>
<td>4.5 and 8.5</td>
<td>Institute for Numerical Mathematics</td>
</tr>
<tr>
<td>GFDL-ESM2M</td>
<td>NOAA GFDL</td>
<td>4.5</td>
<td>NOAA Geophysical Fluid Dynamics Laboratory</td>
</tr>
<tr>
<td>MPI-ESM-LR</td>
<td>MPI-M</td>
<td>4.5 and 8.5</td>
<td>Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology)</td>
</tr>
<tr>
<td>CanESM2</td>
<td>CCCMA</td>
<td>4.5 and 8.5</td>
<td>Canadian Centre for Climate Modelling and Analysis</td>
</tr>
<tr>
<td>ACCESS1.3</td>
<td>CSIRO-BOM</td>
<td>4.5 and 8.5</td>
<td>Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology (BOM), Australia</td>
</tr>
<tr>
<td>BNU-ESM</td>
<td>GCESS</td>
<td>8.5</td>
<td>College of Global Change and Earth System Science, Beijing Normal University</td>
</tr>
</tbody>
</table>

2.4 Results and discussion

2.4.1 Model calibration and validation

After sensitivity analysis, the 73 parameters were reduced to those considered the most sensitive to flow at the watershed outlet (23) and sediment and nutrient loads (18; Table A.1). By adjusting these parameters within their realistic maximum and minimum ranges in SWAT-CUP, an acceptable model was achieved. For the calibration and validation periods, the timing of observed peak flows matched the simulated values. Based on the criteria devolved by Moriasi et al. (2007b) all calibrated and validated variables (Table 2.2) had a satisfactory performance rating or above, with flow having a very good performance rating with respect to the NS and a good rating based on the PBIAS. During calibration and validation, the overall performance rating for SS was good, while TP and NO₃⁻ were satisfactory with respect to the NS. The model’s PBIAS for sediment and nutrient variables had a very good performance rating in both the calibration and validation period.
Table 2.2. Performance statistics for each of the calibrated variables in the SWAT model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Calibration</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NS</td>
<td>PBIAS</td>
</tr>
<tr>
<td>Stream Flow</td>
<td>0.87</td>
<td>-10.2</td>
</tr>
<tr>
<td>Suspended Sediment</td>
<td>0.75</td>
<td>2.2</td>
</tr>
<tr>
<td>Nitrate</td>
<td>0.61</td>
<td>-0.2</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>0.62</td>
<td>17.9</td>
</tr>
</tbody>
</table>

2.4.2 Future and baseline climate simulations

In the analysis of the forecasted climate ensemble (2080-2100) relative to the baseline (1990-2010), the projected climate data provided by Ouranos was grouped by seasons, as the data displayed similar trends within a season. Although the climate simulations are not an output of the current study, they are briefly summarized here to provide context and explain simulated changes in water balance, flow, nutrient, and sediment export. The future climate scenarios used in the current study project mean annual temperatures to increase by 0.9 to 3 degrees Celsius by 2050, and 1.3 to 7.1 by 2100. Additionally, the downscaled GCM ensemble in the current study (Figure 2.2) shows greater temperature increases in winter than in summer (Table B.4). These estimates are comparable to previous research that projected mean annual air temperatures in the Lake Erie basin to increase by 2.4 to 7.2 °C by 2080 (McDermid et al., 2015). Climate change projections from the Canadian Coupled Global Circulation Model’s (CGCM2) A2 scenario also predict seasonal differences in air temperature changes, where the average change in temperature by 2080 will be 4-5 °C in winter and 2-3 °C in the summer seasons (Columbo et al., 2007).
Figure 2.2. Probability density function of the exponentially fitted distribution of daily precipitation (top panels) and kernel fitted distribution of daily temperature (bottom panels) for the ensemble of two future climate scenarios (red, green) from 2080-2100 compared to the average baseline observed from 1990-2010 (black).

As a result of temperature changes in southern Ontario, shorter winters, longer growing seasons, and more extreme heat waves in summer are expected (Reid et al., 2007). This is corroborated by the results of the current model projections (Figure 2.2), where there is a shift in the distribution to the right of the baseline for both groups, indicating an increase in the probability of extreme temperatures and a decrease in lower temperatures in all seasons.

Local GCM precipitation outputs have an inherent uncertainty and are difficult to compare because they vary depending on the climate model structure, scaling technique, geographical differences (i.e. landform, elevation, proximity to water, etc.), natural variability, and GHG emission scenario used (Giorgi, 2010). In addition, precipitation predictions (unlike temperature) from downscaled climate models tend to be controversial because they do not account for non-stationarity of climate model bias corrections (Chen et al., 2015). The above factors must be taken into consideration when interpreting the projected impacts of climate change and comparing studies in geographically dissimilar regions. Annual projections for the
Great Lakes Basin indicate an average annual increase of 106 mm for the RCP4.5 and RCP8.5 scenarios by 2080 (McDermid et al., 2015), which is comparable to the average of the ensemble projections in the current study (Figure 2.3a) that indicate a 90 mm annual precipitation increase (Table B.4). Although a mean annual increase of 90 mm is projected, there is considerable variability across the simulations (due to the biases described above).

Currently, climatic conditions in the NGS are an important factor contributing to total annual water yields and nutrient export in southern Ontario (Macrae et al., 2007; Van Esbroeck et al., 2017). The future climate ensemble in winter and spring unanimously predict increases in the frequency and magnitude of extreme precipitation events (Figure 2.2) and a significant increase in precipitation volumes (Figure 2.3b and c). Furthermore, due to temperature changes, there will be a greater proportion of precipitation as rain, with more snowmelt events (Marianne et al., 2003). There is more variability in precipitation projections for the summer period, where the ensemble average indicates an increase in precipitation volumes (Figure 2.3a), contrary to other studies (McDermid et al., 2015; Verma et al, 2015). However, this increase is not unanimous among all scenarios in the ensemble due to the variability associated with the change in frequency and magnitude of precipitation events relative to the baseline period (Figure 2.2), and the uncertainty associated with climate models during these seasons (Giorgi, 2010). This is corroborated by King et al. (2012) who projected that summer precipitation could either increase or decrease in the UTRB. Overall, the projected shifts in precipitation and temperature distributions in Figure 2.2 indicate a shift towards longer dry periods between events, further increasing drought risk, with drought periods interrupted by more extreme rainfall.

2.4.3 Water balance and stream flow changes

2.4.3.1 Annual and seasonal changes in flow paths

As noted above, the future climate ensemble projects that by the 2080-2100 period, the average annual precipitation will increase by 90 mm (range: 4 to 205 mm), and changes will be most pronounced
during winter. The SWAT model predicts ET to increase on average by only 50 mm (range: 6 to 88 mm), resulting in an increase in surplus water. Consequently, the model predicted that water yield would increase by an average of 38 mm (range: -4 to 114 mm) annually by the 2080-2100 period (Figure 2.3a, f, k, and Table C.5). Seasonally, the future climate ensemble predicted that water yield would increase in winter and summer, but decrease in the spring and fall (Figure 2.3) (with the exception of the RCP4.5 group that predicted an increase in spring, Figure 2.3m). In winter, the model predicted a large increase in subsurface flow through tiles and a simultaneous decrease in surface runoff for both RCP groups (Figure 2.4b, g, and l), whereas in spring projected changes are much smaller (Figure 2.4c, h, and m), although water surpluses are large (Precipitation change>ET). In contrast, projected water balance changes in summer and fall months are small relative to winter and spring, have greater variability, and are generally not significant, with the exception of fall ET and water yield, and summer tile flow (RCP8.5 group; Figure 2.3 and 2.4).
Figure 2.3. Annual and seasonal precipitation, ET, and water yield for the historic (0 forcing; 1990-2010) and future climate periods (RCP4.5 and 8.5 forcing; 2080-2100). Color indicates the climate model, when outside of the interquartile range. * indicates significant difference (p<0.05) from historic model based on two-tailed Student t-test and ^ indicates significant difference (p<0.05) between forcings from unpaired two-sample Student t-tests.

In winter, the model predicts increased tile flow because air temperatures in the future climate are warmer, which leads to modification of the soil frost extent and the dominant flow pathways in winter. As the surface air temperature becomes increasingly higher, there will be an increase in the number of days that soil temperatures are above freezing, which was corroborated for other areas in the region (Sinha & Cherkauer, 2010). Within the model, this will result in increased infiltration and subsurface activity causing surface runoff decreases and soil water storage depletion. This is also supported by Jyrkama & Sykes.
(2007), who predicted increased infiltration and groundwater recharge in a southern Ontario watershed due to decreased ground frost, making soil freezing dynamics an important factor controlling projected pathway losses (Xiuqing & Flerchinger, 2001).

Figure 2.4. Annual and seasonal surface runoff, tile flow, and groundwater for the historic (0 forcing; 1990-2010) and future climate periods (RCP4.5 and 8.5 forcing; 2080-2100). Color indicates the climate model, when outside of the interquartile range. * indicates significant difference (p<0.05) from historic model based on two-tailed Student t-test and ^ indicates significant difference (p<0.05) between forcings from unpaired two-sample Student t-tests.

Although there were large water surpluses in spring (precipitation > ET = 16 mm), a significant change in surface runoff was not observed during this period. This is likely a result of increased hydrologic activity in winter that lessens the potential for saturation overland flow in spring. Indeed, as temperatures
increase in winter, the amount of precipitation as snow and snowpack will decrease, spring melt will occur earlier (Demaria et al., 2016), and the large tile flow increases in winter will decrease the water availability in spring. This is somewhat corroborated by surface runoff increase in spring for the RCP4.5 GFDL-ESM2M scenario (Figure 2.4c), which had the smallest tile flow increase in winter (Figure 2.4l).

2.4.3.2 Annual and seasonal changes in flow

Overall, results indicate that there will be a definitive but varying flow magnitude increase for the high stream flow regime and decrease for the low flow regime in all seasons (Figure 2.6). This corresponds to an average annual flow decrease (12%), which has been similarly predicted in another study (Cousino et al., 2015). For all scenarios in winter and spring, flows occurring at 50% exceedance probability will decrease relative to the baseline period, indicating a reduction in the median flow (8% and 12% decreases respectively) and average flow (Figure 2.5). In summer, for all scenarios there will be much higher flows occurring up to 15 percent exceedance when compared to the baseline period, with all scenarios less than the baseline not until 40 percent exceedance. The extent of high stream flow regime increases are reflected by variability in the average flow projections (Figure 2.5). Fall behaves similarly to summer except there is a bit more variability for the flow magnitudes occurring from 30 to 80 percent exceedance (Figure 2.6). In this range, most of the flows become higher at around 50 percent exceedance indicating an overall median flow increase, which is contrary to the average flow (Figure 2.5), and therefore also indicative of variability.
Figure 2.5. Average stream flow changes by season for all scenarios (black line) with each individual scenario grouped by RCP. All were during the period 2080-2100 and values are the difference between the projected and the observed from 1990-2010.

In winter, considering the overall decrease in surface runoff and increase in subsurface flow, this will result in attenuation of the stream response time to a precipitation event, reducing stream flows. In spring, stream flow decreases the most due to the previously mentioned causes of the change in the winter and spring water balance combined with the changing precipitation patterns. In winter and spring, increased frequency and magnitude of more extreme daily precipitation events, will increase runoff intensity and the magnitude of the infrequent peak flows, which is opposing for the low flow regime that responds to smaller precipitation events decreasing in magnitude and frequency, but generally have a greater probability of occurring.

In summer, the precipitation magnitude and frequency changes seen in Figure 2.2 are not the only factors influencing the high flow regime given that all scenarios show increases over a large range of exceedance probabilities. Due to changes in the timing of precipitation, there could be potential for a greater segregation of extremely wet (increased precipitation) and dry periods resulting in surface runoff pattern changes. This corroborated by the large discrepancy between the baseline and future scenarios at low flow conditions, which indicates a potential increase in the risk of drought conditions and decrease in soil storage (Figure 2.6). SWAT uses the SCS curve number updated daily based off daily plant evapotranspiration
(PET) to estimate direct surface runoff. Therefore, in fall, the projected increase in ET greater than precipitation will result in water deficiency, reduced surface runoff volumes, and average flow. As a result, in comparison to summer, surface runoff will have less influence on the high stream flow regime, and the precipitation pattern changes will reduce the percent of time during which all of the scenarios have high flows that are greater than the baseline period from 15 to 3.5 percent of the time.

Figure 2.6. Flow duration curves for the watershed outlet with daily flow in 1990-2010 and for 2080-2100 in each season and future climate scenario

2.4.4 Nutrient and sediment loads in the future climate

2.4.4.1 Nitrate Export

The model predicted a significant increase in annual nitrate loads and flow-weighted mean concentrations (FWMC; Figure 2.7a and f). In winter, median nitrate loads increased from 8 Kg ha\(^{-1}\) to 14.1 Kg ha\(^{-1}\) (77% increase), and FWMCs from 4.5 mg/L to 8.6 mg/L (91% increase) in the 2080-2100 period. The median spring loads decreased from 9.2 Kg ha\(^{-1}\) to 8.8 Kg ha\(^{-1}\) (4.2% decrease), and increased FWMCs from 5.3 mg/L to 6.8 mg/L (28.3% increase), with changes in load varying from -3.6 to 2.6 Kg ha\(^{-1}\).
between scenarios (Figure 2.7c). In summer and fall, we see increases in the NO$_3^-$ loads, (1.1 and 1.5 Kg ha$^{-1}$ increases respectively), but these are much smaller changes than are predicted in winter.

The increase in the annual and seasonal loads and FWMCs can be attributed to the changes occurring in the NGS. Since NO$_3^-$ is highly mobile in the subsurface, tile drains are known to contribute a large proportion of the total NO$_3^-$ loads to streams (Arenas Amado et al., 2017). This results in increased NO$_3^-$ losses (Figure 2.7b) due to the large tile flow increase in winter (Figure 2.4l) and a shift in the timing of residual soil nitrogen (RSN) remobilization towards the winter months. In spring, results suggest that extent of tile flow increases and soil water depletion in winter will cause the variability in spring loads. For example, the RCP 4.5 GFDL-ESM2M scenario had the smallest winter tile flow increase (Figure 2.4l), which corresponds with the largest spring tile flow (Figure 2.4m) and NO$_3^-$ load increase (Figure 2.7c).

In summer, NO$_3^-$ loads increase slightly due to tile flow, small median flow increases at the outlet, and large increases in the FWMC because of potentially longer periods between precipitation events initiating subsurface flow and high flow conditions. This could cause greater accumulation of NO$_3^-$ in the soil before it is flushed during the next storm event and exported via tiles (Van Meter et al., 2016; Vidon et al., 2009). In fall, load and FWMC increases are similar to summer, yet most flow pathways are decreasing, which indicates that the interactive effects of mineralization and decomposition of organic matter, a dominant NO$_3^-$ process in SWAT (Mehdi et al., 2016), and timing of high flow conditions are important. However, more analysis is needed to understand changes in export patterns and the exact contribution each pathway or process is contributing to the majority of these changes throughout the season.
Figure 2.7. Boxplots for NO$_3^-$ loads and FWMC at the watershed outlet in 2080-2100 grouped seasonally, annually, and by GCM forcing (RCP4.5 and 8.5). With forcing “0” representing the historic period (1990-2100). Color indicates the climate model, when outside of the interquartile range. * indicates significant difference (p<0.05) from historic model based on two-tailed Student t-test and ^ indicates significant difference (p<0.05) between forcings from unpaired two-sample Student t-tests.

2.4.4.2 Suspended Sediment Export

In contrast to NO$_3^-$ loads, which the model predicted would increase in winter and decrease in spring by the 2080-2100 period, SS loads were predicted to decrease in both winter (8.1 Kg ha$^{-1}$; 10%) and spring (16.1 Kg ha$^{-1}$; 24%; Figure 2.8) along with FWMC (Figure 2.8). This reduction is mostly driven by reduced surface runoff and stream flow, which decreases hillslope sediment supply and sediment transport capacity in the stream. Within the model, surface runoff increases SS export from the HRUs. It is interesting to note that the model predicted that spring would have a substantial decrease in SS loads compared to winter, despite the smaller decrease in surface runoff. This may be partially driven by earlier crop growth in spring, which would lessen SS losses from fields. However, winter SS loads vary from -32 to 18 Kg ha$^{-1}$.
despite the fact that a substantial decrease in surface runoff is projected, which suggests that streamflow may be a more important controlling factor.

In contrast to the projected reductions in SS loads in winter and spring, the model predicted that summer and fall SS loads will increase, offsetting the winter/spring increases and resulting in no significant annual change (Figure 2.8a). In summer, there will be significant increase in the median SS loads (20 Kg ha\(^{-1}\); 340%) and FWMC by the 2080-2100 period (Figure 2.8d and i). This should be expected given the combination of increased surface runoff and average stream flow. In fall, loads have a significant median increase of 17.5 Kg ha\(^{-1}\) (195%) and this corresponds to a 25 mg/L (95%) FWMC median increase for all scenarios by the 2080-2100, despite the fact that flow and water balance changes are small and variable, which makes the reason for the fall changes less clear. These changes may be driven by higher intensity rainfall and shifts between wet and dry periods, which would not lead to an increase in overall flow but could lead to elevated losses of SS during peak flow events.
Figure 2.8 Boxplots for SS loads and FWMC at the watershed outlet in 2080-2100 grouped seasonally, annually, and by GCM forcing (RCP4.5 and 8.5). With forcing “0” representing the historic period (1990-2100). Color indicates the climate model, when outside of the interquartile range. * indicates significant difference (p<0.05) from historic model based on two-tailed Student t-test and ^ indicates significant difference (p<0.05) between forcings from unpaired two-sample Student t-tests.

2.4.4.3 Total phosphorus

In winter and spring, the model predicted a median increase in TP loads for all scenarios by 0.07 (31%) and 0.025 (19%) Kg ha\(^{-1}\) respectively (Figure 2.9b and c). Changes in TP would be expected to behave similarly to SS and surface runoff given that the SWAT model lacks a subsurface P transport component (Neitsch et al., 2011). Although TP loads and FWMC did not decrease, some similarities are found between SS and TP export. For example, the model scenario with the smallest decrease (or an increase) in SS and surface runoff were associated with increased TP export. Overall, results suggest an increased potential for changing climate to alter TP:SS export ratios in winter and spring, causing median FWMC in winter to increase by 0.05 (39%) and 0.033 (37%) mg/L in spring (Figure 2.9g and h). A plausible reason for these changes would be the increase in high flows, which are known to increase P transport.
(Royer et al., 2006). Large surface runoff and precipitation events associated with these increased peak flows could flush P accumulated in the soil between smaller events. It is possible that more fine-grained material, which is enriched in P, or, dissolved P species are being mobilized, which would not lead to an observed increase in SS. This is supported by the fact that there is a sensitivity of solution P export in SWAT to increased precipitation intensity (Michalak et al., 2013), and, there may be an increase in solution P resulting from increased decomposition and mineralization of organic residue due to temperatures and soil moisture increases.

In summer and fall, load changes are significantly greater relative what is typically observed in these seasons with increases of 0.023 (200%) and 0.02 (121%) Kg ha⁻¹, respectively (Figure 2.9d and e). Although these increases are large, they are considerably smaller than what is observed in the winter (200% greater). Results suggest that TP will primarily be exported with SS due to their coordinated increase. Within the MCW, water quality conditions are ranked using a standardized grading system developed by Conservation Ontario. The current overall surface water quality condition has a score of D with not much change occurring since 2005; however, P levels have improved but are still at levels 4 times the provincial aquatic life guidelines (0.03 mg/L). In the final period (2080-2100) concentrations are expected to increase by 0.042 mg/L in winter and spring, which is almost 1.4 times water quality guidelines.
Figure 2.9. Boxplots for TP loads and FWMC at the watershed outlet in 2080-2100 grouped seasonally, annually, and by GCM forcing (RCP4.5 and 8.5). With forcing “0” representing the historic period (1990-2100). Color indicates the climate model, when outside of the interquartile range. * indicates significant difference (p<0.05) from historic model based on two-tailed Student t-test and ^ indicates significant difference (p<0.05) between forcings from unpaired two-sample Student t-tests.

2.5 Conclusions

In this study, the SWAT model forced with an ensemble of future climate change scenarios were used to evaluate the implications of seasonal changes in climate on water quality in the MCW, in southwestern Ontario. Land use and management practice inputs were static through time, which is a limitation since population increases are expected (Ministry of Finance, 2017), followed by increased urbanization, which would increase the impervious surface area, further exacerbating surface runoff and the projected P loading problems we see (Labeau et al., 2014). Furthermore, as global needs change, prevailing crop types will shift and as a result changes in management practices and fertilizer application rates will change.
Given increased temperatures and precipitation, seasonal shifts in temperature, and increased frequency of extreme rainfall, SWAT predicted annual increase in water yield, NO$_3^-$ (9; Range: 4 to 11 Kg ha$^{-1}$), TP (0.14; Range: 0.01 to 0.47 Kg ha$^{-1}$), SS (5; Range: -17 to 52 Kg ha$^{-1}$), and decrease in average flow (12; Range: 5 to -23%) by the 2080-2100 period. Generally, these changes were controlled by changing precipitation characteristics and flow paths in the NGS that also affected stream flow regimes, increasing peak flows. In winter, there was a large increase in subsurface flow (mostly tile flow), potentially due a decrease in the soil frost extent and more precipitation as rain due to warmer temperatures, decreasing surface runoff and the average streamflow. While in spring, the shift in seasonality decreased surface runoff and streamflow, potentially due to less snowpack and water availability. These changes result in a shift in nutrient export timing towards winter, which had the greatest increase in nutrient export.

Due to the variability between some of the GCM outputs, this study highlights the importance of including multiple climate change scenarios to capture uncertainties in climate model projections. In addition, the resulting increase in loads during the NGS cannot be ignored. It is clear that we need to prioritize an increased understanding of the shift in seasonality and its effect on the NGS nutrient export behavior to reduce non-point source loads. Agricultural management practice development and reduction targets cannot be static, decision makers need to consider the effect a changing climate will have, especially in the NGS.
3.1 Overview
Agricultural fields are major contributors to non-point source nutrient contamination and eutrophication, resulting in more frequent occurrences of harmful algal blooms and degraded water quality. To address this issue, numerous best management practices (BMPs) have been implemented to mitigate nutrient export while maintaining agricultural productivity; however, the efficacy of individual BMPs is uncertain. Controlled tile drainage (CD) is one BMP that has the potential to reduce nitrate and phosphorus export via tile drains. However, with CD, little is known about water quality trade-offs, such as the increased potential for surface runoff and the associated nutrient export, and if different types of CD management may influence the potential for these trade-offs to occur. In this study, the Soil Water Assessment Tool (SWAT) was used to create a model for a clay loam field site in southern Ontario to examine the impact of CD on runoff pathways and edge-of-field total phosphorus (TP) export. CD management depths of 500 mm were compared to freely drained (840 mm) conditions, and the use of CD both continuously and seasonally was assessed. Results indicate that CD practices of keeping drain invert raised longer throughout the year will have a tendency to increase TP export in runoff (4 to 13% increase) due to increased overland flow. However, most of these losses occur during the non-growing season due to wetter soil conditions, increasing the potential for saturation excess overland flow. Due to drier soils, the use of CD only during the growing season can reduce this risk, but will do little to reduce edge-of-field losses given that tiles are not the primary TP pathway at the site. This work highlights the need for improved understanding of all water quality tradeoffs associated with BMPs, particularly during the non-growing season.

3.1 Introduction
The eutrophication of fresh water sources has become a major issue affecting ecosystem health and economic prosperity in southern Ontario (Bingham et al., 2015; Diaz, 2001; Ludsin et al., 2013). In freshwater systems, this issue is largely caused by non-point source (NPS) phosphorus (P) contamination, originating from agricultural landscapes (Scavia et al., 2014). In a large majority of agricultural fields
where soils are poorly drained, tile drains have become a necessary best management practice (BMP) used to drain the excess soil water to increase crop productivity and trafficability (Irwin, 1977; Skaggs et al., 1994). The introduction of this pathway modifies hydrology by increasing the proportion of annual precipitation transported through the subsurface to streams (King et al., 2015), reducing the amount of surface runoff (Muma et al., 2016), and therefore, often decreasing total edge of field TP losses (Ball Coelho et al., 2012; Haygarth et al., 1998). Indeed, higher concentrations of TP are typically found in surface runoff (McDowell et al, 2001; Van Esbroeck et al., 2017). However, subsurface flow can be enhanced by macropores that increase the connectivity between surface soils and tile drains (Simard et al., 2000), increasing concentrations of particulate phosphorus (PP) (Uusitalo et al., 2001) and soluble reactive phosphorus (SRP; Pease et al., 2018), and thus P loads through tiles (Kung et al, 2000). Tile drains can also have greater nitrate (NO3) loads (Royer et al., 2006) relative to surface runoff, which is problematic in the Mississippi River watershed as the hypoxia in the Gulf of Mexico is driven by nitrate (Rabotyagov et al., 2014). Thus, it has been argued that tile drains may exacerbate water quality issues, rather than improve them. Consequently, some managers and land stewards have recommended the use of controlled tile drainage (CD) to mitigate P losses.

Controlled drainage permits control of water table position and soil water storage using a series of gates installed near the tile network outlet that can be raised or lowered. This results in decreased tile flow, which leads to a reduction in P and NO3 loads from tiles (Ale et al., 2012; Lalonde et al., 1996; Lavaire et al., 2017; Skaggs et al., 2012; Sunohara et al., 2016; Tan & Zhang 2011; Wesström et al., 2014; Williams et al., 2015; Youssef et al., 2018) and fecal pollution (Wilkes et al., 2014). Additionally, when using CD during the growing season, this can decrease plant water stress, which increases crop yields (Poole et al., 2013; Sunohara et al., 2016), thereby providing economic benefits (Crabbé et al., 2012). Finally, CDs can provide N reduction benefits through increased denitrification due to the creation of anaerobic conditions (Skaggs et al., 2010; Wesström & Messing, 2007). Although CD has the potential to improve water quality in subsurface drainage, few studies have considered potential water quality tradeoffs such as increased...
surface runoff, which may increase total phosphorus (TP) loads and impact SRP:TP ratios (Riley et al., 2009; Ross et al., 2016; Tan & Zhang 2011; Zhang et al., 2017). Moreover, in cool temperate climates such as the Great Lakes region, many landowners do not employ controlled drainage during the non-growing season (NGS) due to the potential for ground frost to damage tile drains. Given that the majority of annual runoff and P loss in the Great Lakes region of North America occur during the NGS (Macrae et al., 2007b; Van Esbroeck et al., 2017; Williams et al., 2016), it is unclear if and how CD may affect year-round runoff and nutrient losses from fields.

The potential for CD to mitigate year-round nutrient losses can be investigated using modelling techniques such as the Soil Water Assessment Tool (SWAT; Arnold et al., 2012a), DRAINMOD (Skaggs, 1978), or the Agricultural Drainage and Pesticide Transport model (ADAPT; Alexander, 1988), as they permit simulation of the natural environment under variable conditions. Indeed, models are frequently used in conjunction with field observations to inform decision makers on the practicality of different BMPs. However, most models lack the combination of tile flow, macropore flow, controlled tile drainage, and subsurface TP and soluble reactive phosphorus (SRP) export routines (Qi & Qi, 2017), confounding our ability to determine how drainage management may impact water quality. A new tile drainage modeling routine (H-K-DC), recently added to SWAT (in Revision 495) was added improve our consistency in simulating tile drainage (and controlled drainage) in the SWAT model. The H-K-DC routine is based on equations developed by Kirkham (1957) and Hooghoudt (1940), which are used in DRAINMOD (Moriasi et al., 2007a). The new H-K-DC routine has not yet been employed extensively across different regions and scales (Bauwe et al., 2016; Boles et al., 2015; Guo et al., 2018; Ikenberry et al., 2017; Malagó et al., 2017; Moriasi et al., 2012, 2013). However, given that tile drains dominate the agricultural landscape in southern Ontario, confidence through testing of these routines will be important to future studies.

Therefore, the objectives for this study are to: (1) Calibrate a single HRU SWAT model of a field site in southern Ontario, Canada to demonstrate the capability of the SWAT and the H-K-DC routines to accurately simulate tile flow and surface runoff; and (2) Simulate the impact of CD on flow path partitioning
using the SWAT HRU model and estimate the impacts of these changes on edge-of-field TP and SRP losses using field data.

3.2 Methods

3.2.1 Field site description

The Londesborough site (LON) is a small ~8.1 ha field located in southwestern Ontario, Canada (43°38'33.0"N 81°24'42.6"W; Figure 3.1), within the Maitland Valley watershed that drains into Lake Huron. Londesborough has a humid continental climate with an elevation above sea level of ~350 m. Long-term (1981-2010) climate normal for the region are mean temperatures of -5.3 °C in winter (December to February), and 19.2 °C in summer (June-August), with mean annual precipitation amounts of 1245 mm (374 mm as snowfall from October to April) (Environment and Climate Change Canada, 2018a). The current study uses a dataset collected over the 2012-2015 water years (Oct 1 – Sept 30). Weather over this period was variable, with 3 of the 4 years receiving an average of 187 mm less than the 30-year average and one year receiving 241 mm more. Temperatures occurring throughout the study period were also variable, but consistent with long-term normals for the region.

Figure 3.1. Location of LON in Ontario (grey), Canada (left) and other field site details (right; topography, observation station locations, and boundary). Also shows the location of the climate station used to supplement missing data at the field site (Jamestown).
Soil in the field is classified as a Perth clay loam (Plach et al., 2018), which is imperfectly drained. The average slope of the field site ranges from 0.2 to 3.5%. Tile drains are installed within the field at ~75-90 cm depth with a spacing of 14 m. The tile drainage system is restricted to the field site and does not receive inputs from adjacent fields. Within the field, 10 cm lateral tiles drain into a larger header tile at the field edge. The crop rotation is a corn (Zea mays L.), soybean (Glycine max L.), and winter wheat (Triticum aestivum L.), a rotation that is common in southern Ontario. The field is managed with a rotational shallow conservation till (vertical tillage to 5 cm depth). Soil test P concentrations are 16 ppm (Olsen P) in the top 15 cm of soil. P is applied as monoammonium phosphate (MAP) via subsurface placement prior to corn (15 Kg P ha⁻¹), and via surface broadcast following winter wheat harvest (92 Kg P ha⁻¹), concurrent with the rotational till. Cover crops (red clover; Trifolium pretense L.) are planted in the spring (air seeded in April) in years during which winter wheat is cropped, and killed in October using an herbicide.

1.2.2. Field Data Collection

Hydrometric data are collected continuously (15-min intervals) at the field edge, year-round. Meteorological data (rainfall, air temperature, windspeed and direction, relative humidity, soil temperature and moisture) are recorded on-site using a standard meteorological tower (Onset Ltd.). Because the on-site weather station does not measure snowfall, precipitation data was obtained from a nearby weather station (Environment and Climate Change Canada, 2018b). Water table position is monitored continuously at the field edge using a pressure transducer in a 2 m deep well (ID 5 cm) (U20, Onset Ltd.). Surface runoff drains from the field via a single culvert (ID 45 cm) and tiles drain via a single header tile. Flow in both surface drainage and tile drainage are measured using depth-velocity sensors (Flo-tote, Hach Ltd.) and recorded on FL900 data loggers (Hach Ltd.). Water samples of surface and subsurface runoff are collected at high frequencies (2-8 hr intervals) during storm and thaw events, and periodically during baseflow (when tiles are flowing) using automated field samplers (ISCO) that are triggered by a flow response. Unfiltered samples are acidified to 0.2% H₂SO₄ (final concentration) and digested using acid persulphate digestions
and colorimetric analyses in the Biogeochemistry Lab at the University of Waterloo. For more detailed information on the field site and data collection, refer to Van Esbroeck et al. (2017).

3.2.2 SWAT model description

For the study, the SWAT2012, rev. 664 was used. SWAT is a semi-distributed, process/empirical, continuous time-step-based model capable of simulating hydrology, water quality, and plant growth (Arnold et al., 2012a). It requires detailed information related to climate, land use, soil, topology, and, depending on the watershed and project goals, detailed information about management practices. Management practices are added to the smallest spatial unit within the model, which is the HRU, a unique combination of soil, land use, and slope within each sub-basin.

Within the most recent versions of SWAT, a new tile drainage routine (H-K-DC routine) was added by the developers that uses a combination of either the Hooghoudt or Kirkham equations depending on the water table depth (Moriaisi et al., 2013). Tile flow only occurs once the perched water table rises above the drains (Neitsch et al., 2011). When the water table is below the soil surface and above the drains, the Hooghoudt equation (Hooghoudt, 1940) is used to calculate tile drainage flux:

\[q = \frac{8Km + 4km^2}{L^2} \] \[\text{[1]} \]

Where \(q \) is the drainage flux (mm h\(^{-1}\)), \(K \) is the lateral saturated hydraulic conductivity (mm h\(^{-1}\)), \(d \) is the depth from the drains to the impermeable layer (mm), \(m \) is the midpoint water table height above the tile drains (mm), and \(L \) is the distance between drains (mm). When the water table eventually rises above the soil surface SWAT will use the Kirkham equation (Kirkham, 1957):

\[q = \frac{4\pi K(t + b - r_e)}{gL} \] \[\text{[2]} \]

Where \(t \) is the perched water height above the soil surface (mm), \(b \) is the depth from soil surface to the tile drains (mm), \(r_e \) is the effective radius of the tile drain (mm), and \(g \) is dimensionless factor, see Kirkham.
Finally, when the drainage flux is greater than the drainage coefficient, tile flux is set equal to the drainage coefficient (DRAIN_CO; mm d⁻¹).

3.2.3 SWAT HRU model setup

3.2.3.1 Input data

To create the SWAT model for LON consisting of only one HRU and subbasin all input files needed for a single HRU model were created and altered to ensure the model was representative of the field site. Some initial modifications were made to parameters usually initialized in the ArcSWAT model builder based on the available field data. For example, in the .sub input file the subbasin area (SUB_KM) was set to be equivalent to the field site surface runoff area (8.1 ha) and the input files linked with the subbasin file (.sub) were set to one of each input type. In the HRU input file (.hru), the fraction of subbasin area contained in HRU (HRU_FR) was set to one and the slope (HRU_SLP) was changed to 1.6%. This value is the mean slope of the field site calculated using the SWOOP digital elevation model (2 m resolution; Ministry of Natural Resources and Forestry, 2015).

The soil input file (.sol) parameters were set and representative of the fields soil type (Perth clay loam), which was determined using the Ontario Soil Survey Complex data (1:50000 scale) obtained from the Land Information Ontario (LIO) database (Ministry of Agriculture, Food and Rural Affairs, & Canadian Soil Information Service, 2015). Soil layer data was available to a depth of 1100 mm, and had a bulk soil texture consisting of 27% clay and 25% sand. The pedotransfer function developed by Saxton and Rawls (2006) was used to estimate available water capacity, saturated hydraulic conductivity, and bulk density for each soil layer using the available texture data.

Climate input data sets were made using the field site (Figure 3.1) rain and temperature data. During the months with snow and the part of the year in 2015 when there was no precipitation data, more was obtained from a nearby climate station to supplement the field site data and make a continuous precipitation data set (Jamestown, ON, 25 Km away; Figure 3.1; 43°48'09.1"N 81°11'01.0"W, Environment and Climate
Agricultural management practices were input using reported field activities at the site (noted above), with the remainder of the parameters used in SWAT set to default before calibration.

3.2.3.2 Calibration software description

In this study, the Optimization Software Toolkit for Research Involving Computational Heuristics (OSTRICH) was used to auto-calibrate the SWAT model. This toolkit is able to function with any model that operates using text files and has many options to choose from with respect to the calibration and optimization algorithms available (Matott, 2017). During calibration, the Dynamically Dimensioned Search (DDS) algorithm was selected due to its computational efficiency and ability to determine a globally optimum solution within a selected number of iterations (Tolson and Shoemaker, 2007).

To auto-calibrate the model both the percent bias (PBIAS) and the Nash–Sutcliffe model efficiency coefficient (NS) within OSTRICH, the general-purpose Constrained Optimization Platform (GCOP) were used. Within the GCOP module, the multiplicative penalty method (MPM) was selected to calculate the overall objective function, which is a combination of the system cost and the penalty function (Chan-Hilton and Culver, 2000). To determine the system and penalty cost associated with the applied constraints a MATLAB script was developed to extract model outputs and calculate response variables to use within OSTRICH after each iteration.

3.2.3.3 Calibration and validation approach

Monthly tile (2012-2015) and surface runoff (2013 and 2015) depths were determined from the 15-minute field site data. Surface runoff (2013 and 2015) and tile flow (2012-2014) were calibrated together at a monthly time step using the field site data with a three-year warm up period. During calibration, the average NS for tile flow and surface runoff was used as the system cost, and the penalty cost was calculated by constraining the surface runoff and tile flow PBIAS to ± 25 and 20 percent respectively. The perturbation factor and maximum number of iterations were set to 0.2 and 1500 respectively, and after calibration, tile flow was validated using the data in 2015.
Some parameters that control calculation methods within the model were changed from default. These were the daily potential evapotranspiration calculation (PET), which now uses the Hargreeves method (IPET=2) and the Soil Conservation Service (SCS) curve number (CN), which now varies with accumulated plant ET (ICN=1; Arnold et al., 2012a). To use the new tile flow routine mentioned above, ITDRN was set to one. Additionally, the default value for the Manning’s overland flow roughness (OV_N) was too low so it was increased to 0.15 to be representative of the site, which used either no-till or vertical tillage, and leaves crop residue.

Parameters known to affect HRU runoff were included in the calibration (Abbaspour et al., 2007, 2015; Arnold et al., 2012b, Guo et al., 2018; Wang & Melesse, 2005; Table A.2 and A.3), as well as additional parameters required by the new H-K-DC routine. Site-specific information and collected agricultural management data were used to fix some of the parameters to improve the model. For example, the distance between drains (SDRAIN) was set to 14 m, pump capacity (PC; mm h$^{-1}$) was set to 0, and based on the results of Golmohammadi et al. (2016a) in Ontario, the effective radius (RE) was set to be 15 mm. The depth to drains (DDRAIN) was known to be between 750 to 900 mm and allowed to vary during calibration. Other tile specific parameters used in calibration include the drainage coefficient (DRAIN_CO; mm d$^{-1}$) and multiplication factor to determine lateral saturated hydraulic conductivity (LATKSATF; mm h$^{-1}$).

Due to the lack of soil data past 1100 mm, an unknown depth to the impervious layer, high sensitivity of the impervious layer depth, and its control over shallow aquifer seepage (Bauwe et al., 2016; Neitsch et al., 2011), an iterative approach was used to define reduced ranges for calibration. To ensure a realistic impervious layer depth after calibration, tiles were removed (DDRAIN = 0) and the layer depth was increased until the shallow aquifer recharge was between 15 to 20 percent of the average annual precipitation, which is typical in Ontario clay and silt soils (David Rudolph, personal comm.). This value was used as the maximum limit during calibration of the impervious layer depth (DEPIMP; range of 1500-3000 mm) and was similar to the ranges used by Guo et al. (2018). Additionally, some soil parameters were
added due to the uncertainty in actual conditions with depth and their importance in percolation and water table depth calculations (Neitsch et al., 2011). Using the available data, saturated hydraulic conductivity (SOL_K), bulk density (SOL_BD), and the available water capacity (SOL_AWC) were allowed to vary ± 25 percent of the initial value for the layers.

3.2.4 Tile drainage scenarios and TP load estimation

To determine the effect that tile drains have on the flow paths contribution to runoff two tile drain scenarios were created. The calibrated HRU model was used as the free tile drainage (FTD) scenario (DDRAIN= 840 mm). Tile height was subsequently raised (DDRAIN = 500 mm) to be representative of depths typically used for CD in southern Ontario (Upper Thames River Conservation Authority, personal comm.) for the continuously raised tile drainage (RTDcont) scenario over the study period. Each height was run during the calibration period (2012-2015) with no other modification of the parameters. Since SWAT is unable to change tile heights during a simulation, pseudo CD data sets were created for two typical management scenarios found in southern Ontario (Figure 3.2). Where HRU model outputs from the RTDcont and FTD scenarios were joined together based on the planting and harvest dates for the crops reported at the field. Monthly TP and SRP FWMCs were calculated for each flow path during the study period using field site data obtained using the methods mentioned in Van Esbrock et al. (2017). To calculate the monthly TP and SRP FWMC for surface runoff and tile flow the following equation was used:

\[
FWMC = \frac{\sum_h(C_i t_i q_i)}{\sum_h(t_i q_i)}
\]

[3]

Where \(C_i \) is the concentration, \(t_i \) is the time window, and \(q_i \) is the flow, all for the \(i^{th} \) sample, which is the total load divided by the total flow over the period (i.e. month). TP and SRP loads were then determined by multiplying the monthly FWMC by the corresponding surface runoff and tile flow volumes output in each scenario because nutrient reductions have been shown to be primarily driven by flow (Sunohara et al., 2010) and SWAT lacks the capability to model P subsurface loses through tile drains (Qi & Qi, 2017).
Figure 3.2. Shows two typical CD management approaches used in southern Ontario (#1 = RTD_{GS}; #2 = RTD_{NC}). Blue arrows represent the raising or lowering of the drain gate 3 weeks before planting and harvest, while blue lines represents a simplified representation of the water table depth changes. Major difference is the management during the NGS, which typically occurs from late fall to early spring for most crops.

3.2.5 HRU performance evaluation

To evaluate the performance of the HRU flow pathways, the NS (Nash & Sutcliffe, 1970), PBIAS (Gupta et al., 1999), and coefficient of determination (R^2) statistics were used in conjunction with graphical methods. The model evaluation criteria developed by Moriasi et al. (2007b) and based on the streamflow outputs, were used to provide performance ratings for NS and PBIAS statistic. For the R^2, performance was considered good if it was higher than 0.6 (Santhi et al., 2001).

3.3 Results

3.3.1 SWAT HRU performance: Surface runoff and tile drainage

Following calibration, the model performance was good (Table 3.1). The model simulated surface runoff more precisely than tile flow, despite the fact that there were fewer surface runoff events. The model evaluation criteria developed by Moriasi et al. (2007b) that uses NS and PBIAS to rate model performance, the ratings for surface runoff were very good and good respectively, while tile flow was satisfactory for both, with R^2 performance also well within the acceptable range (>0.6; Santhi et al., 2001; Table 3.1). Tile flow during the validation period slightly underperformed with respect to the NS and R^2, but had a satisfactory PBIAS.
Through visual assessment, the model reasonably captured the timing and magnitude of monthly surface runoff peaks, with slightly decreased performance for tile flow (Figure 3.3). Although the model generally simulated NGS surface runoff well, there were some irregularities in October of 2013 and 2015. The model simulation of tile drainage was erratic in summer and winter but was generally good in the spring and fall. There were several tile drain responses that the model had difficulty simulating (February 2013, January 2014, March 2014, and June 2012 and 2013). The winter events were associated with cold conditions/snowmelt. Despite these events that were missed by the model, runoff coefficients in 2013 and 2015 simulated by the model were 0.29, which is close to the observed runoff coefficients of 0.33.

Other water balance components were representative of southern Ontario conditions, where evapotranspiration (ET) was ~54% (42 to 66%) of the average annual precipitation over the 2012-2015 period (Table 3.2), which was within the range reported by Parkin et al., 1999. With tiles shallow aquifer recharge is 7% and when removed ~11.3% (range: 10 to 15%) of the annual precipitation over the 4 years, which is close to the ~15% expected for silt and clay soils in Ontario (Table 2; David Rudolph, personal comm.).

Table 3.1. Performance statistic values (NS, PBIAS, and R2) after calibration for surface runoff and tile flow

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>0.79</td>
<td>0.60</td>
<td>0.23</td>
</tr>
<tr>
<td>PBIAS</td>
<td>-12.7</td>
<td>17.3</td>
<td>15.6</td>
</tr>
<tr>
<td>R2</td>
<td>0.81</td>
<td>0.64</td>
<td>0.46</td>
</tr>
</tbody>
</table>
Figure 3.3. Graphical performance of surface runoff (top; SURQ) and tile flow (bottom; TILEQ) after calibration of the LON HRU model. In addition to performance, it shows monthly precipitation (top) and average air temperatures (bottom) over the 2012 to 2015 period. Arrow with ND indicates no data due to sensor failure.

3.3.2 Effects of modified tile depths on runoff and flow paths

The depth of tile drains was modified in the model to simulate the effects of (a) no tile drainage and (b) continuously controlled drainage (RTD\textsubscript{cont}) on both runoff magnitude and the reallocation of precipitation.
among the pathways (e.g. surface runoff, tile drainage, groundwater recharge). Altering the tile drain depths modified both the total water yield (RTD\textsubscript{cont}, 4% decrease) as well as the flow paths through which the runoff moved. Raising the tile drain depths from 84 cm to 50 cm resulted in reduced tile drainage by 41 mm (22%), of which 55% was redistributed to surface runoff and 24% to aquifer recharge, with minor changes in ET and lateral flow. A similar reallocation was observed when tile drains were removed from the model altogether, with the 224 mm change in tile flow largely redistributed to surface runoff (57%) and lateral flow (5%). However, there was a 4% decrease in the shallow aquifer redistribution, and 3% increase in tile flow redistributed as ET compared with the raised tile scenario.

Table 3.2. Average annual water balance with permanent changes in the tile height for the 2012 to 2015 period

<table>
<thead>
<tr>
<th>Water Balance</th>
<th>Free Tile Drainage (FTD; 840 mm)</th>
<th>Raised Tile Drainage (RTD\textsubscript{cont}; 500 mm)</th>
<th>No Tiles (0 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>%</td>
<td>mm</td>
</tr>
<tr>
<td>Precipitation</td>
<td>1097</td>
<td>100</td>
<td>1097</td>
</tr>
<tr>
<td>Surface runoff</td>
<td>86</td>
<td>8</td>
<td>109</td>
</tr>
<tr>
<td>Lateral soil Q</td>
<td>14</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Tile Q</td>
<td>224</td>
<td>20</td>
<td>183</td>
</tr>
<tr>
<td>Total aquifer recharge</td>
<td>77</td>
<td>7</td>
<td>87</td>
</tr>
<tr>
<td>Total water yield</td>
<td>342</td>
<td>31</td>
<td>328</td>
</tr>
<tr>
<td>ET</td>
<td>594</td>
<td>54</td>
<td>594</td>
</tr>
</tbody>
</table>

There were seasonal trends in how the reduced tile drainage was reallocated. For example, in general, most tile flow was redistributed to surface runoff during the winter, early spring, and late fall months (i.e. the NGS), whereas during the GS, the reduced tile flow was typically redistributed to aquifer recharge (Figure 3.4) and rarely resulted in increased surface runoff. Although this general pattern existed, there was variability among years within the NGS, demonstrating the complexity associated with simulating winter runoff generation. For example, more surface runoff was observed in the winter (JFM) months of 2012 (a dry year with 871 mm annual precipitation) than during a wetter year (2015, 1003 mm annual precipitation) due to the fact that temperatures were warm in 2012 (9 °C) and 71 mm more precipitation was received.
during the winter months of 2012 than 2015, despite the fact that both years received less winter precipitation than normal (Figure 3; Environment and Climate Change Canada, 2018a).

![Figure 3.4](image)

Figure 3.4. Monthly changes in the water balance over the 2012 to 2015 period with continuously raised tiles (RTD_{cont}). Bars show the difference between RTD_{cont} and the free tile drainage (FTD) scenario (840 mm). A positive value denotes an increase in flow and a negative denotes a reduction in flow. Black bars indicate the growing season over the study period and boxes showing the NGS.

Examples of seasonal differences in flow path responses to raised tile drains are illustrated in Figure 3.5, which contrasts a rain on snowmelt event, where temperatures were below freezing but rose in combination with a large precipitation event (Figure 3.5a), with a summer thunderstorm that was preceded by multiple smaller events (Figure 3.5b). With RTD, this increased surface runoff by 6.2 mm, and soil moisture by 5.9 mm. For the large precipitation event in summer (Figure 3.5b), tile drainage and soil moisture with RTD have opposing responses. However, contrary to Figure 3.5a, there was no difference in the surface runoff between FTD and RTD. Key dissimilarities between the two events include the temperature, which affects the PET. Average PET in the 2012 and 2014 event was 1 and 3.4 mm respectively. Additionally, the average soil moisture, which was on average 10 mm greater during the dates shown in March 2013.
Figure 3.5. Shows two different months, one event during the NGS (spring) and the other during the summer on a daily time step. (a) March 2013 was the month with the highest observed surface runoff (SURQ; red) in the NGS, while (b) July 2014 was an example of a typical event in summer. The free tile drainage (FTD; DDRAIN = 840 mm; dotted line) and raised tile drainage (RTD; DDRAIN =500 mm; solid line) scenarios were compared. Soil moisture content (SM; black) and tile flow (TILEQ; blue) responses are also plotted.

3.3.3 Effects of controlled tile drain management on runoff and phosphorus export

The patterns discussed previously in this study had the same treatment year-round (i.e. free-drainage, raised tiles or no tile). However, as noted earlier, controlled drainage can be managed differently across seasons. In the model, the RTD_{GS} scenario (free drainage within the NGS but raised to 500mm in the GS) and RTD_{NC} scenario (drainage controlled year-round near continuously, with tile depths raised to
500mm; Figure 3.2) both resulted in very small decreases in annual runoff (RTD\textsubscript{GS} = 2%, RTD\textsubscript{NC} = 5%) relative to the FTD scenario. The subtle difference in flow reduction between the RTD\textsubscript{NC} and RTD\textsubscript{GS} scenarios was because the increase in surface runoff (44 mm cumulative total over study period, largely during the NGS) offset the decrease in tile flow (cumulative decrease 84 mm over study period).

![Figure 3.6](image)

Figure 3.6. Cumulative tile flow (TILEQ; blue), surface runoff (SURQ; red), and total runoff (black) for RTD\textsubscript{GS} (solid line) and RTD\textsubscript{NC} (dotted line) over the 2012 to 2015 period

Because the SWAT model cannot yet simulate P in tile drainage, hypothetical changes in edge-of-field TP loss under different controlled drainage scenarios were estimated using observed field data (seasonal average flow-weighted mean concentrations, FWMC, Table 3.3) applied to the different flow paths (Figure 3.7). At the study site, FWMC of TP in surface runoff were typically ~10x greater than in tile flow (e.g. Van Esbroeck et al., 2017; Plach et al., 2018). Consequently, given that RTD\textsubscript{GS} and RTD\textsubscript{NC} have surface increases they have a 0.2 Kg TP ha-1 (8%) and 0.32 Kg TP ha-1 (13%) load increase respectively in runoff relative to the FTD scenario. Given that tile drainage P export was a smaller component of the edge of field loss to begin with and FWMC were smaller, tile flow reductions did little to reduce TP losses, whereas small increases in surface runoff increased TP losses considerably. Of the two CD scenarios, RTD\textsubscript{NC} increased surface runoff and TP export by more compared to RTD\textsubscript{GS} because this mostly occurred in the NGS. The increase in surface runoff under the RTD\textsubscript{NC} scenario (Figure 3.6) compared to the RTD\textsubscript{GS} scenario resulted in a cumulative increase in TP in surface runoff of 0.18 Kg TP ha-1 than was simulated.
under scenario RTD\(_{GS}\), Figure 3.7). In contrast, the tile flow reduction associated with scenario RTD\(_{NC}\) (Figure 3.6) only led to a cumulative reduction in tile flow TP export of 0.06 Kg TP ha\(^{-1}\) relative to RTD\(_{GS}\). While cumulative SRP losses were on average 29 and 45 percent of TP in tile flow and surface runoff for all scenarios, with runoff losses increasing almost correspondingly to TP (RTD\(_{GS}\) 12% and RTD\(_{NC}\) 15% increase relative to FTD).

Table 3.3. Summarized TP and SRP FWMCs from the field site used to create estimates of TP export from the surface runoff and tile flow paths

<table>
<thead>
<tr>
<th>Surface Runoff FWMC</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Season</td>
<td>TP (mg/L)</td>
<td>SRP (mg/L)</td>
<td>SRP:TP Ratio</td>
</tr>
<tr>
<td>Winter</td>
<td>0.54</td>
<td>0.10</td>
<td>0.18</td>
</tr>
<tr>
<td>Spring</td>
<td>0.68</td>
<td>0.41</td>
<td>0.60</td>
</tr>
<tr>
<td>Summer</td>
<td>0.80</td>
<td>0.24</td>
<td>0.30</td>
</tr>
<tr>
<td>Fall</td>
<td>0.25</td>
<td>0.12</td>
<td>0.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tile Flow FWMC</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>TP (mg/L)</td>
<td>SRP (mg/L)</td>
<td>SRP:TP Ratio</td>
</tr>
<tr>
<td>Jan</td>
<td>0.037</td>
<td>0.004</td>
<td>0.11</td>
</tr>
<tr>
<td>Feb</td>
<td>0.004</td>
<td>0.003</td>
<td>0.72</td>
</tr>
<tr>
<td>Mar</td>
<td>0.074</td>
<td>0.020</td>
<td>0.27</td>
</tr>
<tr>
<td>Apr</td>
<td>0.102</td>
<td>0.045</td>
<td>0.44</td>
</tr>
<tr>
<td>May</td>
<td>0.025</td>
<td>0.001</td>
<td>0.05</td>
</tr>
<tr>
<td>Jun</td>
<td>0.024</td>
<td>0.003</td>
<td>0.13</td>
</tr>
<tr>
<td>Jul</td>
<td>0.016</td>
<td>0.0001</td>
<td>0.01</td>
</tr>
<tr>
<td>Aug</td>
<td>0.023</td>
<td>0.007</td>
<td>0.32</td>
</tr>
<tr>
<td>Sep</td>
<td>0.050</td>
<td>0.003</td>
<td>0.06</td>
</tr>
<tr>
<td>Oct</td>
<td>0.054</td>
<td>0.018</td>
<td>0.33</td>
</tr>
<tr>
<td>Nov</td>
<td>0.105</td>
<td>0.066</td>
<td>0.63</td>
</tr>
<tr>
<td>Dec</td>
<td>0.170</td>
<td>0.034</td>
<td>0.20</td>
</tr>
<tr>
<td>Average</td>
<td>0.057</td>
<td>0.017</td>
<td>0.274</td>
</tr>
</tbody>
</table>
Figure 3.7. Shows the monthly cumulative loads (lines) and change in loads between RTD\textsubscript{GS} and RTD\textsubscript{NC} from 2012 to 2015 for TP and SRP in surface runoff (SURQ; a) and tile flow (TILEQ; b)

3.4 Discussion

3.4.1 SWAT HRU performance

The model performed adequately with respect to tile flow and surface runoff to perform the subsequent analysis. These results are comparable to a study by Guo et al. (2018) where tile flow performance with respect to the NS ranged from 0.53 to 0.61 and 0.50 to 0.81 for surface runoff. Some of the performance issues may be explained by model inputs. The uncertainty associated with soil conditions at depth and the location of the impervious layer impacted the calculations of percolation, water table depth, and tile flow (Neitsch et al., 2011). In winter, precipitation data was supplemented by the nearby Jamestown station data (43 km away from site, Figure 3.1) because snowfall was not measured continuously at the field site, and consequently, may have varied slightly from what occurred at the site.
Tile performance issues could also be explained through model structure. For example, in February 2013 there is no surface runoff probably because of precipitation being added to the snowpack. This should increase the soil temperatures and allow for the tile flow response that was observed because winter soils are typically at field capacity or saturated (Lam et al., 2016). However, within the model, when soil layer is frozen, water movement does not occur (Neitsch et al., 2011). This indicates that there might be issues with the soil temperature calculations in SWAT. The model is unable to capture this response due to the known simplicity of the empirically based soil temperature algorithm, and its inability to simulate soil temperatures in cold regions with regular of freeze-thaw conditions (Qi et al., 2016). As well, SWAT had performance issues in summer due to underperforming soil water estimation (Rajib & Merwade, 2016) and erratic water table estimation related to dryer soils (Moriasi et al., 2009).

In summer, it is uncertain if macropore flow is a large contributor to tile flow at the field site, which is a clay loam. Furthermore, there was no surface runoff data from the summer of 2014 to confirm if infiltration was overestimated. In October 2015, it is uncertain what caused the overestimation of surface runoff since precipitation data was from the nearby Jamestown station (Figure 3.1), which cannot be validated using field site data. However, similar precipitation events in October 2013 were validated with field data, and the small 4% difference indicates another reason. The poor validation performance is most likely due to the limited time span of the dataset that did not capture a range of wet, dry, and average years for validation.

3.4.2 Impact of CD on flow paths and TP export

The results of this study suggest that the use of CD throughout the NGS may increase annual TP losses in runoff (8 to 13%) and could exacerbate eutrophication; however, the use of CD during the GS has relatively little effect on TP losses. These results are in contrast to Tan and Zhang (2011) who predicted a 12% decrease in annual TP losses over their study period. The primary difference between the current study and the work of Tan and Zhang (2011) is that the current study was conducted in coarser textured soils on sloping ground, whereas the study by Tan and Zhang (2011) was conducted in lacustrine clays. Indeed, the
current study reported a very different water balance distribution than Tan and Zhang (2011) who reported that 97% of runoff (tile flow and surface runoff) occurred as tile flow with FTD. Other differences between the two studies include narrower tile spacing (3X narrower) and the use of sub-irrigation at the clay site.

The current study has shown that any decrease in tile depth (either no tiles, RTD$_{NC}$, or RTD$_{GS}$) will reduce the drainable soil water volume and lead to decreased tile flow, which increases the amount of soil water and precipitation redistributed as surface runoff. This finding is consistent with what has been shown in other studies (Ross et al., 2016; Skaggs et al. 2012; Tan & Zhang, 2011). Although, the extent of which this occurs will differ due to a number of field and climate related factors. With CD, the amount of precipitation redistributed as surface runoff will increase with slower aquifer recharge rates since less soil water will be lost through this pathway and soil moisture levels can remain higher. Furthermore, drain spacing, drain depth, and NGS management can significantly influence tile flow reductions; consequently, the surface runoff response (Ross et al., 2016). This is reflected by Golmohammadi et al. (2016b) where tile flow reductions were similar to RTD$_{NC}$ (2% difference); conversely, their surface runoff increase was much greater, which indicates other influencing factors like climate and soil storage capacity. Youseff et al. (2018) have also predicted larger increases in surface runoff (average 120%); however, FTD yearly average surface runoff was also only 39 mm yr$^{-1}$, and the initial tile distribution was almost double the spacing and depth. Additionally, even though the surface runoff increase was not as large as other studies or greater than the tile flow reduction, the larger FWMC in surface runoff offset the TP reductions from tile flow. With CD, typically it is installed and recommended on low sloping fields; nevertheless, there are many other factors to consider and these will also be key in making comparisons or deciding whether CD is feasible considering the large surface runoff increases reported in other studies.

In our study, RTD$_{GS}$ exported less TP in runoff than RTD$_{NC}$ relative to FTD because of reduced surface runoff in the NGS. Surface runoff increases in the RTD$_{NC}$ scenario during the NGS resulted from the higher soil water levels, decreasing the water table depth from the surface and making saturation excess surface runoff a greater risk. This response was typically spread out over the entire winter or did not occur.
in every year, because the southern Ontario climate facilitates multiple snowmelt events with a wide range of pre-event soil conditions and precipitation form variability in the NGS (Van Esbroeck et al., 2017). In the summer, surface runoff does not increase much, because the model calculates the surface runoff using the SCS-CN method (Soil Conservation Service, 1972) where the curve number (CN) and retention parameter is updated using PET and the previous day’s parameter (Neitsch et al, 2011). Therefore, high PET values result in a reduction of the CN compared to winter, increasing the infiltration for the day. As a consequence of increased PET, soil water levels are initially very low and even though precipitation intensity might be greater, it requires substantially more rain and reduced PET to trigger surface runoff. The positive increase of water in soil storage because of decreased tile flow with RTD (Figure 3.5a) confirms this, since surface runoff increases almost proportionally.

How tiles are managed during the winter NGS will be increasingly important since they can increase surface runoff and TP loads, contrary to the GS where there are benefits of using CDs (Sunohara et al., 2015, 2016). Furthermore, in humid climates, most N leaching occurs during the winter (Bohne, Storchenegger, & Widmoser, 2012) and P losses as well (Macrae et al., 2007b; Van Esbroeck et al., 2017; Williams et al., 2016). This will provide some management challenges due to the variability in responses to CD, and the clear benefits in NO3 export (Drury et al., 2009; Ross et al., 2016). In our study, CD results indicate that cumulative TP runoff losses could be reduced by 4% (or more) if tiles were free draining during a portion (Oct. to late May) of the time winter wheat is planted, which suggests that CD with winter wheat might not be beneficial for TP losses in LON. Furthermore, due to a large increase in FWMC because of the primary P application occurring at the end of wheat harvest CD during November 2014, RTD_{GS} loads could have been reduced further. Finally, due to the winter weather there will be variability in the 2012 (warm and dry) NGS versus 2015 (cold and dry) affecting surface runoff responses to CD and TP export, which suggests that prediction of precipitation form and quantity during the NGS will be useful in determining the management of controlled tile drains and impact on surface runoff.
Phosphorus load estimation was based on observed FWMCs that generally had low SRP:TP FWMC ratios (<0.5). Overall, this caused SRP export to be a smaller fraction of TP loads in both tile and surface runoff (Table 3.3; Figure 3.7). Both SRP and TP are projected to increase; however, there was very little effect on SRP:TP export ratios in runoff (0.5 to 1.5 % increase), which is important as more significant increases in SRP:TP ratios could further increase the risk of algae growth. Although P is mostly driven by flows (Sunohara et al., 2010), in the RTD scenarios, there is potential for increased SRP:TP ratios as prolonged waterlogged conditions create anoxic conditions, which could increase the desorption of Fe and Ca bound P and mineralization of organic P (Ardón et al., 2010; Van Dijk et al., 2011; Yaghi & Hartikainen, 2013).

3.4.3 Conclusion

In this study, SWATs new tile flow routines were assessed at the HRU scale. Then the impact of CDs on flow pathways, SRP, and TP export was analyzed for a clay loam soil in southern Ontario. The H-K-DC routine performed well, but the SWAT model still needs improvement simulating soil temperatures in the NGS. Overall, year round tile management (RTD_{NC}) causes an increase in average annual surface runoff (26%) and edge of field TP losses (13%) over the study period, specifically due to the increase in NGS (January to April) surface runoff. Tile management practices that keep the water table lower most of the year (RTD_{GS}) may not have as great an impact on TP losses in runoff (4 to 8% increase) or surface runoff volumes (8 to 13% increase). However, any TP increase still corresponds to increased potential for SRP losses, which is the P form with the greatest risks. Furthermore, controlled drainage management should not be planned strictly based on the rotation’s planting and harvest dates, but nutrient contaminant risks. Tile drain management during the NGS does have potential to reduce both N and P loads depending on the resulting water balance redistribution and FWMC in runoff pathways, which have been shown to be variable depending on many factors. In future CD and P assessments for this region, spatial variations in large-scale adoption over a varied landscape with predominantly low slopes (<1 %) and a longer period should be assessed. Controlled drainage may provide many benefits with respect to tile drainage water
quality; however, care should be taken when deciding on how to best manage the tile drains in the NGS considering the effects it can have on surface runoff P export.
Chapter 4 - Major conclusions of thesis

Within the Great Lakes drainage area non-point source (NPS) nutrient contamination from agricultural activities has been attributed to increased eutrophication sometimes causing harmful algae blooms impairing water quality (EPA, 2015; Jarvie et al., 2013; Michalak et al., 2013). Currently, most of the annual nutrient export occurs during the non-growing season (NGS), specifically early spring (Macrae et al., 2007b; Van Esbroeck et al., 2017; Williams et al., 2016). Furthermore, due to climate change the hydrological and biogeochemical cycles are expected to be impacted, further affecting water quantity and quality. Therefore, the objectives in Chapter 2 were to use the Soil Water Assessment Tool (SWAT) to quantify the seasonal export of nutrients and sediment with climate change and to understand the processes driving the projected changes to make watershed management more effective over the long-term.

Results from Chapter 2 suggest that there will be a decrease in average annual streamflow. However, despite this decrease, changing precipitation characteristics and temperature will still cause increases in annual nutrient export and runoff. This is in contrast to other studies that report increases in nutrient export due to climate change causing increased streamflow and precipitation volumes (Bosch et al., 2014; Crossman et al., 2013; Verma et al., 2015). The apparent increase in nutrient fluxes under decreased annual flows can partially be attributed to the increase in the magnitude and frequency of extreme precipitation events that can also increase the size of the peak flows. Chapter 2 also showed that air temperatures will increase in all seasons, particularly in winter. This will decrease the number of soil frost days (Sinha & Cherkauer, 2010) and increase the amount of snow expected as rain (Marianne et al., 2003). In the Medway Creek watershed (MCW) this will modify the flow paths and streamflow, where less soil frost will allow more water to pass through the vadose and saturated soil zones, reducing surface runoff volumes, stream flow response times for most events, and the average stream flow in winter. Furthermore, the potential for less snow and more drainage in winter will reduce water availability and surface runoff in spring. Due to this shift in seasonality, the timing of residual nutrient export will also shift towards the winter months causing the largest nutrient export increases (nitrate and TP). Suspended sediment (SS) export at the
watershed outlet will be limited by surface runoff, the transport capacity of the stream, and average streamflow, resulting in decreased SS export in winter and spring.

Within agricultural settings, best management practices (BMP) are implemented to help reduce contamination while still maintaining productive crops (i.e. tile drainage). Recently, controlled tile drainage (CD) has been used in some areas to help reduce tile flow phosphorus and nitrogen export (Lavaire et al., 2017; Skaggs et al., 2012; Sunohara et al., 2016). However, little is known about the export response when all runoff pathways are considered. Recent work, including this thesis, suggests that understanding the water balance and nutrient export responses during the NGS will be important. Therefore, the objective of Chapter 3 was to simulate the effects of CD management on runoff quantity and flow paths using SWAT, and to quantify potential water quality tradeoffs such as increased surface runoff P export associated with CD management.

Results from Chapter 3 shows that total phosphorus (TP) and soluble reactive phosphorus export will increase if tiles are managed, in contrast to other studies that have explored TP export in tile drainage and surface runoff (Tan & Zhang, 2011; Zhang et al., 2017). The difference between the current study and the work of Tan and Zhang, 2011 and Zhang et al., 2017, is that their work was conducted in flat, lacustrine clays whereas the current study was conducted in a sloping clay loam. This suggests that the effects of CD as a BMP may vary regionally. This thesis showed that although the decreases in tile flow exceeded the increases in surface runoff volume when CD management was employed, the significantly greater FWMC in surface runoff resulted in an overall increase in runoff TP. Thus, the use of CD exacerbated water quality issues in the model simulations. In the model, most of the TP export occurred over the NGS, as this was when most of the surface runoff increases occurred in response to CD, wetter soils, and decreased water demand. Consequently, the use of CD during the GS only offset the water quality issues associated with elevated surface runoff during the NGS, but did little to improve water quality as so little flow occurs during the GS.
Overall, both chapters indicated that weather characteristics in the NGS will have a major impact on the behavior of the flow paths and nutrient export. However, the assimilation of both CD and climate change on nutrient export is yet to be determined. Therefore, the field scale SWAT model was forced with the MCW historical and future climate to speculate on what may occur to nutrients and sediment at the edge of field if CD were used in a future climate.

![Figure 4.1](image)

Figure 4.1. (a) Shows the changes in the tile flow, surface runoff, and runoff (tile flow + surface runoff) annually in the LON field site transplanted into the MCW during the 1990-2010 period (blue), 2080-2100 period (red), and 2080-2100 period with continuous CD (green). Also, shows tile flow seasonally (b) and surface runoff seasonally (c).

On an annual basis, water balance changes due to CD and climate change are very similar to what was observed in Chapters 2 and 3. Since runoff remains greater with CD in the future climate due to water surpluses, this suggests that CD will most likely exacerbate annual TP export trends. Indeed, the increase in surface runoff caused by CD (Figure 4.1a) and will only increase the potential for greater and more occurrences of saturation excess overland flow events, which is a major factor in TP export from fields. In the case of NO$_3^-$, average NO$_3^-$ concentrations were almost equivalent between tile flow and surface runoff pathways at Londesborough. Therefore, because the decrease in tile flow is greater than the increase in surface runoff, there could be a net reduction in NO$_3^-$ export under a future climate. Although, CD promotes
anaerobic conditions that increase the potential for denitrification (Skaggs et al., 2010; Wesström & Messing, 2007) the exact effect of climate change on denitrification is unknown (Barnard et al., 2005). When combined, we could expect further decreased nitrate losses due to increased denitrification rate from increased soil moisture and temperature; however, there are many other complex feedbacks to consider (Karmakar et al., 2016; Singh et al., 2010; Veraart et al., 2011). Consequently, either CD management scenario will provide nitrate reductions and near continuous management (RTD\textsubscript{NC}) will have the greatest reduction due to larger tile flow reductions throughout the year.

Similar to Chapter 2 and 3 we will see the majority of the hydrologic changes occurring in the winter, with surface runoff increases due to CD in a future climate (Figure 4.1c). Considering the large-scale adoption of CD in the MCW, based on the above and the watershed characteristics, RTD\textsubscript{NC} might not be feasible for the reduction of P in the MCW. Furthermore, considering CD installed selectively on agricultural land that was low sloped (<1%) and nutrient losses at the watershed scale. If surface runoff losses were minimal during the NGS and the tile flow reductions managed to reduce TP losses, it might not make a significant difference relative to the projected future increases in TP when also considering that only 23% of the tiled-drained land has low slopes. Finally, during the summer hydrological changes are much smaller in comparison to winter and spring. Therefore, if losses can be reduced when it matters most (i.e. winter) the risk of using RTD\textsubscript{GS} might be increasingly necessary to prevent economic and excessive crop yield losses due to drought. With increased potential for heat waves (Li et al., 2017), CD can provide crop yield benefits through water storage (Poole et al., 2013; Sunohara et al., 2016).

More work is needed on this topic as the precise responses of fields and watersheds to CD and climate change will be spatially variable given that runoff and nutrient loss are dependent on many field specific characteristics such as tile spacing and depth, NGS management depth, FWMC runoff ratios, slope, soil characteristics and specific land management practices. Therefore, future work should confirm the effect of large-scale adoption of CD and climate change on TP export in watersheds that have fields with different characteristics (i.e. tile layouts and NGS management) and in combination with other BMPs.
However, in order to do this, SWAT needs some improvement, mainly to the soil temperature and TP tile routing algorithm given the winter season responses found in this study.

Overall, this study has demonstrated the importance of understanding the effects of future climates and BMPs on NPS contamination so that management strategies can be implemented more effectively now and in future. Moreover, this thesis has further enforced the importance of understanding the processes and factors controlling the NGS nutrient export responses. Finally, it is clear that BMPs limiting NGS nutrient export will be increasingly important in reducing eutrophication. Specifically reducing their availability for transport (i.e. cover crops) and balancing crop nutrient needs (4Rs) within the soil due to the decreased mitigation efficacy caused by future climatic drivers. Controlled drainage as a mitigation strategy should be used with caution given its potential to exacerbate water quality issues under larger flow events due to greater surface runoff.
References

82

APPENDIX A
Calibrated Parameters and Final Values

Table A.1. Sensitive SWAT parameters used during calibration of the MCW model with the final fitted value

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Fitted Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>River Flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v__GW_REVAP.gw</td>
<td>Groundwater revap coefficient</td>
<td>0.29</td>
</tr>
<tr>
<td>v__ALPHA_BF.gw</td>
<td>Baseflow alpha factor</td>
<td>0.89</td>
</tr>
<tr>
<td>v__GW_DELAY.gw</td>
<td>Groundwater delay time (days)</td>
<td>6.45</td>
</tr>
<tr>
<td>v__GWQMN.gw</td>
<td>Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O)</td>
<td>490</td>
</tr>
<tr>
<td>v__RCHRGP_DP.gw</td>
<td>Deep aquifer percolation fraction</td>
<td>0.38</td>
</tr>
<tr>
<td>v__TSTMP.bsn</td>
<td>Snow pack temperature lag factor</td>
<td>0.71</td>
</tr>
<tr>
<td>v__GWQMN.bsn</td>
<td>Snow melt base temperature (°C)</td>
<td>-0.56</td>
</tr>
<tr>
<td>v__SFTMP.bsn</td>
<td>Snowfall temperature (°C)</td>
<td>0.72</td>
</tr>
<tr>
<td>v__SMFMX.bsn</td>
<td>Melt factor for snow on June 21 (mm H2O/°C-day)</td>
<td>4.2</td>
</tr>
<tr>
<td>v__SMFNM.bsn</td>
<td>Melt factor for snow on December 21 (mm H2O/°C-day)</td>
<td>8.9</td>
</tr>
<tr>
<td>v__SNOCOMX.bsn</td>
<td>Minimum snow water content for 100% snow cover (mm H2O)</td>
<td>23.3</td>
</tr>
<tr>
<td>v__SNOSOCOV.bsn</td>
<td>Fraction of snow volume represented by SNOCOVMX that corresponds to 50% snow cover</td>
<td>0.13</td>
</tr>
<tr>
<td>v__CH_K2.rte</td>
<td>Effective hydraulic conductivity in main channel alluvium (mm/hr)</td>
<td>268</td>
</tr>
<tr>
<td>v__CH_N2.rte</td>
<td>Manning’s “n” value for the main channel</td>
<td>0.15</td>
</tr>
<tr>
<td>v__CH_K1.sub</td>
<td>Effective hydraulic conductivity in main channel alluvium (mm/hr)</td>
<td>106</td>
</tr>
<tr>
<td>v__ESCO.hru</td>
<td>Soil evaporation compensation factor</td>
<td>0.37</td>
</tr>
<tr>
<td>v__EPCO.hru</td>
<td>Plant uptake compensation factor</td>
<td>0.3</td>
</tr>
<tr>
<td>r__OV_N.hru</td>
<td>Manning’s “n” value for overland flow</td>
<td>0.18</td>
</tr>
<tr>
<td>v__CANMX.hru</td>
<td>Maximum canopy storage (mm H2O)</td>
<td>49</td>
</tr>
<tr>
<td>r__CN2.mgt</td>
<td>Initial SCS runoff curve number for moisture condition II</td>
<td>0.05</td>
</tr>
<tr>
<td>r__SOL_BD().sol</td>
<td>Soil bulk density</td>
<td>-0.37</td>
</tr>
<tr>
<td>r__SOL_AWC().sol</td>
<td>Available water capacity of the soil layer (mm H2O/mm soil)</td>
<td>-0.21</td>
</tr>
<tr>
<td>v__SOL_EC().sol</td>
<td>Macropore connectivity factor</td>
<td>0.22</td>
</tr>
<tr>
<td>Suspended Sediment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v__ADJ_PKR.bsn</td>
<td>Peak rate adjustment factor for sediment routing in the subbasin</td>
<td>1.9</td>
</tr>
<tr>
<td>v__SPXEP.bsn</td>
<td>Channel re-entrained exponent parameter</td>
<td>1.4</td>
</tr>
<tr>
<td>v__SPCON.bsn</td>
<td>Channel re-entrained linear parameter</td>
<td>0.0015</td>
</tr>
<tr>
<td>v__PRF_BSN.bsn</td>
<td>Peak rate adjustment factor for sediment in the main channel</td>
<td>0.42</td>
</tr>
<tr>
<td>v__USLE_K().sol</td>
<td>USLE equation soil erodibility (K) factor</td>
<td>-0.49</td>
</tr>
<tr>
<td>v__USLE_P.mgt</td>
<td>USLE support practice factor</td>
<td>0.42</td>
</tr>
<tr>
<td>v__CH_COV2.rte</td>
<td>Channel cover factor</td>
<td>0.43</td>
</tr>
<tr>
<td>Nitrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v__CDN.bsn</td>
<td>Denitrification exponential rate coefficient</td>
<td>1.03</td>
</tr>
<tr>
<td>v__SDNCO.bsn</td>
<td>Denitrification threshold water content</td>
<td>0.85</td>
</tr>
<tr>
<td>v__NPERCO.bsn</td>
<td>Nitrate percolation coefficient</td>
<td>0.6</td>
</tr>
<tr>
<td>v__N_UPDIS.bsn</td>
<td>Nitrogen uptake distribution parameter</td>
<td>12.9</td>
</tr>
<tr>
<td>v__BC1_BSN.bsn</td>
<td>Rate constant for biological oxidation of NH4 to NO2 in the reach at 20° C in well-aerated conditions (day-1)</td>
<td>0.69</td>
</tr>
<tr>
<td>v__ANION_EXCL.sol</td>
<td>Fraction of porosity (void space) from which anions are excluded</td>
<td>0.37</td>
</tr>
<tr>
<td>v__CH_ONCO.rte</td>
<td>Organic nitrogen concentration in the channel (ppm)</td>
<td>57.8</td>
</tr>
<tr>
<td>Total P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v__BC4.swq</td>
<td>Rate constant for mineralization of organic P to dissolved P in the reach at 20° C (day-1)</td>
<td>0.37</td>
</tr>
<tr>
<td>v__ERORGP.hru</td>
<td>Phosphorus enrichment ratio for loading with sediment</td>
<td>2.12</td>
</tr>
<tr>
<td>v__P_UPDIS.bsn</td>
<td>Phosphorus uptake distribution parameter</td>
<td>96.6</td>
</tr>
<tr>
<td>v__PHOSKD.bsn</td>
<td>Phosphorus soil partitioning coefficient (m3/Mg)</td>
<td>144.9</td>
</tr>
</tbody>
</table>

*Only calibrated agricultural land use for this parameter

*letters before parameter name represents the replacement method used during calibration
Table A.2. SWAT parameter ranges used during calibration of the LON model with the final fitted value

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Calibration Range</th>
<th>Fitted Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW_REVAP.gw</td>
<td>Groundwater "revap" coefficient</td>
<td>0.02 to 0.6</td>
<td>0.56</td>
</tr>
<tr>
<td>ALPHA_BF.gw</td>
<td>Baseflow alpha factor</td>
<td>0 to 1</td>
<td>0.06</td>
</tr>
<tr>
<td>GW_DELAY.gw</td>
<td>Groundwater delay time (days)</td>
<td>0 to 70</td>
<td>47</td>
</tr>
<tr>
<td>GWQMN.gw</td>
<td>Threshold depth of water in the shallow aquifer required for return flow to occur (mm H₂O)</td>
<td>0 to 1900</td>
<td>447</td>
</tr>
<tr>
<td>RCHRG_DP.gw</td>
<td>Deep aquifer percolation fraction</td>
<td>0 to 0.6</td>
<td>0.23</td>
</tr>
<tr>
<td>REVAPMN.gw</td>
<td>Threshold depth of water in the shallow aquifer for "revap" to occur</td>
<td>0 to 400</td>
<td>245</td>
</tr>
<tr>
<td>TIMP.bsn</td>
<td>Snow pack temperature lag factor</td>
<td>0 to 1</td>
<td>0.315</td>
</tr>
<tr>
<td>SMTMP.bsn</td>
<td>Snow melt base temperature (°C)</td>
<td>-3 to 3</td>
<td>1.3</td>
</tr>
<tr>
<td>SFMTP.bsn</td>
<td>Snowfall temperature (°C)</td>
<td>-3 to 3</td>
<td>-1.6</td>
</tr>
<tr>
<td>SMFMX.bsn</td>
<td>Melt factor for snow on June 21 (mm H₂O/°C-day)</td>
<td>-1 to 10</td>
<td>2.4</td>
</tr>
<tr>
<td>SMFMN.bsn</td>
<td>Melt factor for snow on December 21 (mm H₂O/°C-day)</td>
<td>-1 to 10</td>
<td>6.5</td>
</tr>
<tr>
<td>SNOCOVMX.bsn</td>
<td>Minimum snow water content for 100% snow cover (mm H₂O)</td>
<td>0 to 100</td>
<td>8.8</td>
</tr>
<tr>
<td>SNO50COV.bsn</td>
<td>Fraction of snow volume represented by SNOCOVMX that corresponds to 50% snow cover</td>
<td>0 to 0.9</td>
<td>0.17</td>
</tr>
<tr>
<td>DEPIMP.bsn</td>
<td>Depth to the impervious layer (mm)</td>
<td>1500 to 3000</td>
<td>2967</td>
</tr>
<tr>
<td>DDRAIN.bsn</td>
<td>Depth to the sub-surface drain (mm)</td>
<td>750 to 900</td>
<td>841</td>
</tr>
<tr>
<td>DRAIN_CO.bsn</td>
<td>Drainage coefficient (mm/day)</td>
<td>10 to 51</td>
<td>16.5</td>
</tr>
<tr>
<td>LATKSATF.bsn</td>
<td>Multiplication factor to determine lateral hydraulic conductivity (mm/h)</td>
<td>0.01 to 4</td>
<td>1.87</td>
</tr>
<tr>
<td>SSTMAXD.bsn</td>
<td>Static Maximum depressional storage (mm)</td>
<td>0 to 25</td>
<td>24</td>
</tr>
<tr>
<td>ESCO.hru</td>
<td>Soil evaporation compensation factor</td>
<td>0 to 1</td>
<td>0.835</td>
</tr>
<tr>
<td>EPCO.hru</td>
<td>Plant uptake compensation factor</td>
<td>0 to 1</td>
<td>0.005</td>
</tr>
<tr>
<td>CANMX.hru</td>
<td>Maximum canopy storage (mm H₂O)</td>
<td>5 to 20</td>
<td>9.6</td>
</tr>
<tr>
<td>SURLAG.hru</td>
<td>Surface runoff lag time in the HRU (days)</td>
<td>0.01 to 6</td>
<td>5.9</td>
</tr>
<tr>
<td>CN2.mgt</td>
<td>Initial SCS runoff curve number for moisture condition II</td>
<td>30 to 85</td>
<td>51.2</td>
</tr>
<tr>
<td>SOL_BD.sol</td>
<td>Soil bulk density (g/cm³)</td>
<td>± 25% *</td>
<td>1.57-1.72</td>
</tr>
<tr>
<td>SOL_AWC.sol</td>
<td>Available water capacity of the soil layer (mm H₂O/mm soil)</td>
<td>± 25% *</td>
<td>0.15-0.20</td>
</tr>
<tr>
<td>SOL_KSAT.sol</td>
<td>Saturated Hydraulic Conductivity (mm/hr)</td>
<td>± 25% *</td>
<td>2.75-10</td>
</tr>
</tbody>
</table>

*For each soil parameter and layer the parameter was allowed to vary between ±25 percent of its original value

Table A.3. Soil profile details and calibration results. Brackets indicate the value before calibration

<table>
<thead>
<tr>
<th>Soil Layer</th>
<th>Cumulative Depth (mm)</th>
<th>Organic Matter (%)</th>
<th>Clay (%)</th>
<th>Sand (%)</th>
<th>Bulk Density (g/cm³)</th>
<th>Available Water Capacity (mm/mm)</th>
<th>Saturated Hydraulic Conductivity (mm/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td>2.1</td>
<td>21</td>
<td>35</td>
<td>1.72 (1.45)</td>
<td>0.16 (0.15)</td>
<td>10 (13.1)</td>
</tr>
<tr>
<td>2</td>
<td>360</td>
<td>0.6</td>
<td>27</td>
<td>33</td>
<td>1.59 (1.41)</td>
<td>0.17 (0.15)</td>
<td>8 (8.38)</td>
</tr>
<tr>
<td>3</td>
<td>480</td>
<td>0.5</td>
<td>38</td>
<td>25</td>
<td>1.57 (1.36)</td>
<td>0.15 (0.14)</td>
<td>4.4 (3.56)</td>
</tr>
<tr>
<td>4</td>
<td>1100</td>
<td>0.1</td>
<td>28</td>
<td>20</td>
<td>1.61 (1.51)</td>
<td>0.2 (0.16)</td>
<td>2.75 (2.79)</td>
</tr>
</tbody>
</table>
APPENDIX B

Climate Characteristics in the Historic and Future Period

Table B.4. Average seasonal temperature and precipitation relative to the baseline period for each forcing scenario, two different periods showing the mean plus standard deviation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Season</th>
<th>Baseline 1990-2010</th>
<th>RCP 4.5 2040-2060</th>
<th>RCP 8.5 2080-2100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>\bar{x}</td>
<td>std</td>
<td>\bar{x}</td>
</tr>
<tr>
<td>Temperature</td>
<td>Winter</td>
<td>-4.0</td>
<td>5.6</td>
<td>-2.4</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>6.9</td>
<td>7.5</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>19.8</td>
<td>3.4</td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td>9.8</td>
<td>6.6</td>
<td>11.4</td>
</tr>
<tr>
<td>Year</td>
<td></td>
<td>8.1</td>
<td>5.8</td>
<td>9.6</td>
</tr>
<tr>
<td>Precipitation</td>
<td>Winter</td>
<td>234</td>
<td>44</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>234</td>
<td>45</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>230</td>
<td>67</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td>264</td>
<td>84</td>
<td>283</td>
</tr>
<tr>
<td>\sum Year</td>
<td></td>
<td>962</td>
<td>153</td>
<td>1010</td>
</tr>
</tbody>
</table>

* Not significantly different relative to the baseline $\alpha>0.05$

b Significantly different relative to the baseline $\alpha<0.05$
Table C.5. Watershed annual average water balance changes relative to the historic period (1990-2010) for each climate projection in the ensemble's future period (2080-2100).

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Precipitation</th>
<th>ET</th>
<th>Surface Runoff</th>
<th>Tile Flow</th>
<th>Interflow</th>
<th>Groundwater Flow</th>
<th>Transmission Loss</th>
<th>Snow Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic Sim. (1980-2100)</td>
<td>963</td>
<td>604</td>
<td>163</td>
<td>105</td>
<td>1.3</td>
<td>166</td>
<td>74</td>
<td>181</td>
</tr>
<tr>
<td>RCP</td>
<td>GCM</td>
<td>+/- Change from present (2080-2100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>INM-CM4</td>
<td>4</td>
<td>8</td>
<td>-36</td>
<td>14</td>
<td>0.2</td>
<td>3</td>
<td>-12</td>
</tr>
<tr>
<td></td>
<td>GFDL-ESM2M</td>
<td>55</td>
<td>31</td>
<td>-6</td>
<td>17</td>
<td>0.2</td>
<td>10</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>CanESM2</td>
<td>41</td>
<td>34</td>
<td>-31</td>
<td>20</td>
<td>0.3</td>
<td>8</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>MPI-ESM-LR</td>
<td>99</td>
<td>38</td>
<td>8</td>
<td>30</td>
<td>0.2</td>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>ACCESS1.3</td>
<td>128</td>
<td>61</td>
<td>-8</td>
<td>40</td>
<td>0.4</td>
<td>28</td>
<td>-4</td>
</tr>
<tr>
<td>Average</td>
<td>65</td>
<td>34</td>
<td>-15</td>
<td>24</td>
<td>0.2</td>
<td>16</td>
<td>-4</td>
<td>-44</td>
</tr>
<tr>
<td>8.5</td>
<td>INM-CM4</td>
<td>51</td>
<td>37</td>
<td>-46</td>
<td>28</td>
<td>0.4</td>
<td>13</td>
<td>-16</td>
</tr>
<tr>
<td></td>
<td>MPI-ESM-LR</td>
<td>156</td>
<td>71</td>
<td>-20</td>
<td>56</td>
<td>0.6</td>
<td>36</td>
<td>-9</td>
</tr>
<tr>
<td></td>
<td>CanESM2</td>
<td>91</td>
<td>70</td>
<td>-45</td>
<td>32</td>
<td>0.4</td>
<td>11</td>
<td>-19</td>
</tr>
<tr>
<td></td>
<td>ACCESS1.3</td>
<td>205</td>
<td>88</td>
<td>-14</td>
<td>70</td>
<td>0.7</td>
<td>50</td>
<td>-7</td>
</tr>
<tr>
<td></td>
<td>BNU-ESM</td>
<td>70</td>
<td>64</td>
<td>-74</td>
<td>34</td>
<td>0.6</td>
<td>15</td>
<td>-30</td>
</tr>
<tr>
<td>Average</td>
<td>115</td>
<td>66</td>
<td>-40</td>
<td>44</td>
<td>0.5</td>
<td>25</td>
<td>-16</td>
<td>-103</td>
</tr>
<tr>
<td>Average All</td>
<td>90</td>
<td>50</td>
<td>-27</td>
<td>34</td>
<td>0.4</td>
<td>20</td>
<td>-10</td>
<td>-74</td>
</tr>
</tbody>
</table>
APPENDIX D

Parameter Values from Literature

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Fitted Values</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW_REVAP.gw</td>
<td>Groundwater revap coefficient</td>
<td>0.06, 0.19, 0.066</td>
<td>Zhang et al. (2015), Zabaleta et al. (2014), Merriman et al. (2018)</td>
</tr>
<tr>
<td>ALPHA_BF.gw</td>
<td>Baseflow alpha factor</td>
<td>0.64, 0.021</td>
<td>Zhang et al. (2015), Zabaleta et al. (2014)</td>
</tr>
<tr>
<td>GW_DELAY.gw</td>
<td>Groundwater delay time (days)</td>
<td>40, 14, 30</td>
<td>Zabaleta et al. (2014), Merriman et al. (2018), El-khoury et al. (2015)</td>
</tr>
<tr>
<td>GWQMN.gw</td>
<td>Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O)</td>
<td>700, 618, 987</td>
<td>Zabaleta et al. (2014), Malagó et al. (2017), Ikenberry et al. (2017)</td>
</tr>
<tr>
<td>RCHRG_DP.gw</td>
<td>Deep aquifer percolation fraction</td>
<td>0.0, 0.09</td>
<td>Zabaleta et al. (2014), Malagó et al. (2017)</td>
</tr>
<tr>
<td>REVAPMN.gw</td>
<td>Threshold depth of water in the shallow aquifer for “revap” to occur (mm)</td>
<td>500, 196, 750</td>
<td>Merriman et al. (2018), Malagó et al. (2017), Ikenberry et al. (2017)</td>
</tr>
<tr>
<td>TIMP.bsn</td>
<td>Snow pack temperature lag factor</td>
<td>0.24, 0.6, 0.77</td>
<td>Poon (2013), Moriasi et al. (2013), Ikenberry et al. (2017)</td>
</tr>
<tr>
<td>SMTMP.bsn</td>
<td>Snow melt base temperature (°C)</td>
<td>4.9, 0.31</td>
<td>Merriman et al. (2018), Poon (2013)</td>
</tr>
<tr>
<td>SFTMP.bsn</td>
<td>Snowfall temperature (°C)</td>
<td>1.7, -4.46</td>
<td>Merriman et al. (2018), Poon (2013)</td>
</tr>
<tr>
<td>SMFMX.bsn</td>
<td>Melt factor for snow on June 21 (mm H2O/C°-day)</td>
<td>3.2, 3.72</td>
<td>Merriman et al. (2018), Poon (2013)</td>
</tr>
<tr>
<td>SMFMN.bsn</td>
<td>Melt factor for snow on December 21 (mm H2O/C°-day)</td>
<td>2.6, 2.72</td>
<td>Merriman et al. (2018), Poon (2013)</td>
</tr>
<tr>
<td>SNOCOVMX.bsn</td>
<td>Minimum snow water content for 100% snow cover (mm H2O)</td>
<td>48, 102</td>
<td>Merriman et al. (2018), Poon (2013)</td>
</tr>
<tr>
<td>SNO50COV.bsn</td>
<td>Fraction of snow volume represented by SNOCOVMX that corresponds to 50% snow cover</td>
<td>0.05, 0.528</td>
<td>Poon (2013), Moriasi et al. (2013)</td>
</tr>
<tr>
<td>DEPIMP.bsn</td>
<td>Depth to the impervious layer (mm)</td>
<td>1300, 2900, 3100</td>
<td>El-khoury et al. (2015), Guo et al. (2018), Malagó et al. (2017)</td>
</tr>
<tr>
<td>DRAIN_CO.bsn</td>
<td>Drainage coefficient (mm/day)</td>
<td>51, 24, 10</td>
<td>Moriasi et al. (2013), Malagó et al. (2017), Ikenberry et al. (2017)</td>
</tr>
<tr>
<td>LATKSATF.bsn</td>
<td>Multiplication factor to determine lateral hydraulic conductivity (mm/h)</td>
<td>1-1.4, 3.8, 1.22</td>
<td>Guo et al. (2018), Moriasi et al. (2013), Malagó et al. (2017)</td>
</tr>
<tr>
<td>SSTMAXD.bsn</td>
<td>Static Maximum depressional storage (mm)</td>
<td>12</td>
<td>Guo et al. (2018)</td>
</tr>
<tr>
<td>ESCO.hru</td>
<td>Soil evaporation compensation factor</td>
<td>0.81, 0.9, 0.95</td>
<td>Zhang et al. (2015), Zabaleta et al. (2014), Merriman et al. (2018)</td>
</tr>
<tr>
<td>EPCO.hru</td>
<td>Plant uptake compensation factor</td>
<td>0.01-1, 0.001</td>
<td>Stark and Moriasi (2009), Moriasi et al. (2013)</td>
</tr>
<tr>
<td>CANMX.hru</td>
<td>Maximum canopy storage (mm H2O)</td>
<td>8, 216.25</td>
<td>Zabaleta et al. (2014), El-khoury et al. (2015)</td>
</tr>
<tr>
<td>SURLAG.hru</td>
<td>Surface runoff lag time in the HRU (days)</td>
<td>1-6, 1, 0.3</td>
<td>Stark and Moriasi (2009), Zabaleta et al. (2014), Guo et al. (2018)</td>
</tr>
<tr>
<td>OV_N.hru</td>
<td>Manning’s “n” value for overland flow</td>
<td>0.6</td>
<td>Zabaleta et al. (2014)</td>
</tr>
<tr>
<td>CN2.mgt</td>
<td>Initial SCS runoff curve number for moisture condition II</td>
<td>47-76, 65, -19%</td>
<td>Stark and Moriasi (2009), Zhang et al. (2015), Merriman et al. (2018)</td>
</tr>
<tr>
<td>SOL_BD.sol</td>
<td>Available water capacity of the soil layer (mm H2O/mm soil)</td>
<td>0.97</td>
<td>Zhang et al. (2015)</td>
</tr>
<tr>
<td>SOL_AWC.sol</td>
<td>Effective hydraulic conductivity in main channel alluvium (mm/hr)</td>
<td>0.25</td>
<td>Zhang et al. (2015)</td>
</tr>
<tr>
<td>CH_K2.rie</td>
<td>Effective hydraulic conductivity in main channel alluvium (mm/hr)</td>
<td>53.43, 100</td>
<td>Zhang et al. (2015), Zabaleta et al. (2014)</td>
</tr>
<tr>
<td>CH_N2.rie</td>
<td>Manning’s “n” value for the main channel</td>
<td>0.03, 0.075</td>
<td>Zhang et al. (2015), Merriman et al. (2018)</td>
</tr>
<tr>
<td>CH_K1.sub</td>
<td>Effective hydraulic conductivity in main channel alluvium (mm/hr)</td>
<td>0.5, 12.8</td>
<td>Stark and Moriasi (2009), Poon (2013)</td>
</tr>
<tr>
<td>ADJ_PKR.bsn</td>
<td>Peak rate adjustment factor for sediment routing in the subbasin</td>
<td>0.5, 1.2</td>
<td>Merriman et al. (2018), Guo et al. (2018)</td>
</tr>
<tr>
<td>SPEXP.bsn</td>
<td>Channel re-entrained exponent parameter</td>
<td>1.5, 1.4</td>
<td>Zabaleta et al. (2014), Merriman et al. (2018)</td>
</tr>
<tr>
<td>SPCON.bsn</td>
<td>Channel re-entrained linear parameter</td>
<td>0.0001, 0.0008</td>
<td>Zabaleta et al. (2014), Merriman et al. (2018)</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Values</td>
<td>References</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>PRF_BSN.bsn</td>
<td>Peak rate adjustment factor for sediment in the main channel</td>
<td>1.8, 1.9</td>
<td>Merriman et al. (2018), Me et al. (2015)</td>
</tr>
<tr>
<td>USLE_Ki().sol</td>
<td>USLE equation soil erodibility (K) factor</td>
<td>0.35, 0.1</td>
<td>Zabaleta et al. (2014), El-khoury et al. (2015)</td>
</tr>
<tr>
<td>USLE_P.mgt</td>
<td>USLE support practice factor</td>
<td>1, 0.5</td>
<td>El-khoury et al. (2015), Me et al. (2015)</td>
</tr>
<tr>
<td>CH_COV2.rte</td>
<td>Channel cover factor</td>
<td>0.6</td>
<td>Me et al. (2015)</td>
</tr>
<tr>
<td>CDN.bsn</td>
<td>Denitrification exponential rate coefficient</td>
<td>0.317, 0.3, 0.06, 1.24</td>
<td>Merriman et al. (2018), Me et al. (2015), Moriasi et al. (2013), Ikenberry et al. (2017)</td>
</tr>
<tr>
<td>SDNCO.bsn</td>
<td>Denitrification threshold water content</td>
<td>0.991, 0.02</td>
<td>Merriman et al. (2018), Me et al. (2015)</td>
</tr>
<tr>
<td>NPERCO.bsn</td>
<td>Nitrate percolation coefficient</td>
<td>0.161, 0.0003, 0.15, 0.2</td>
<td>Merriman et al. (2018), Me et al. (2015), Gao et al. (2018), Ikenberry et al. (2017)</td>
</tr>
<tr>
<td>N_UPDIS.bsn</td>
<td>Nitrogen uptake distribution parameter</td>
<td>32.4, 0.5</td>
<td>Merriman et al. (2018), Me et al. (2015)</td>
</tr>
<tr>
<td>BCI_BSN.bsn</td>
<td>Rate constant for biological oxidation of NH4 to NO2 in the reach at 20˚C in well-aerated conditions (day-1)</td>
<td>1. 4.15</td>
<td>Me et al. (2015), El-khoury et al. (2015)</td>
</tr>
<tr>
<td>ANION_EXCL.sol</td>
<td>Fraction of porosity (void space) from which anions are excluded</td>
<td>0.2, 0.50</td>
<td>Merriman et al. (2018), Ikenberry et al. (2017)</td>
</tr>
<tr>
<td>CH_ONCO.rte</td>
<td>Organic nitrogen concentration in the channel (ppm)</td>
<td>0.01</td>
<td>Me et al. (2015)</td>
</tr>
<tr>
<td>BC4.swq</td>
<td>Rate constant for mineralization of organic P to dissolved P in the reach at 20˚C (day-1)</td>
<td>0.34, 0.3</td>
<td>El-khoury et al. (2015), Me et al. (2015)</td>
</tr>
<tr>
<td>ERORGP.hru</td>
<td>Phosphorus enrichment ratio for loading with sediment</td>
<td>0, 0.1, 2.5</td>
<td>El-khoury et al. (2015), Malagó et al. (2017), Me et al. (2015)</td>
</tr>
<tr>
<td>P_UPDIS.bsn</td>
<td>Phosphorus uptake distribution parameter</td>
<td>98.3, 0.5</td>
<td>Merriman et al. (2018), Me et al. (2015)</td>
</tr>
<tr>
<td>PHOSKD.bsn</td>
<td>Phosphorus soil partitioning coefficient (m3/Mg)</td>
<td>188, 5, 174</td>
<td>Merriman et al. (2018), El-khoury et al. (2015), Me et al. (2015)</td>
</tr>
</tbody>
</table>
APPENDIX E

Water Balance for Two Different HRUs

Table E.7. Average annual water balance changes for two HRUs with different soil types in the historic and future period

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Texture</td>
<td>SiCL</td>
<td>SiL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>29</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>25</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrologic group</td>
<td>C</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation (mm)</td>
<td>964.8</td>
<td>964.8</td>
<td>91.1</td>
<td>91.1</td>
</tr>
<tr>
<td>ET (mm)</td>
<td>628.9</td>
<td>624.6</td>
<td>53.0</td>
<td>53.3</td>
</tr>
<tr>
<td>Surface runoff (mm)</td>
<td>199.3</td>
<td>172.3</td>
<td>-67.7</td>
<td>-91.0</td>
</tr>
<tr>
<td>Tile Flow (mm)</td>
<td>113.8</td>
<td>106.0</td>
<td>84.1</td>
<td>80.8</td>
</tr>
<tr>
<td>Percolation (mm)</td>
<td>24.0</td>
<td>60.8</td>
<td>20.4</td>
<td>45.5</td>
</tr>
<tr>
<td>Transmission loss (mm)</td>
<td>93.5</td>
<td>82.8</td>
<td>-27.1</td>
<td>-42.1</td>
</tr>
<tr>
<td>Interflow (mm)</td>
<td>0.0</td>
<td>2.5</td>
<td>0.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Groundwater (mm)</td>
<td>73.3</td>
<td>89.5</td>
<td>-4.2</td>
<td>2.2</td>
</tr>
</tbody>
</table>