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In many physical systems, the system’s full state cannot be measured. An observer is designed to recon-
struct the state from measurements. Disturbances often contribute to the dynamics of the system, and
the designed observer must account for them. In this paper, a modified sliding model observer (SMO), a
robust observer, is proposed that combines the efficiency of a nonlinear observer with the robustness of a
SMO. The estimation error is proven to converge to zero under natural assumptions. This improved ob-
server is compared with an extended Kalman filter and an unscented Kalman filter, as well as a standard
SMO for three different versions of heat equation: a linear, a quasi-linear, and a nonlinear heat equation.
The comparisons are done with and without an external disturbance. The simulations show improved
performance of the modified SMO over other observers.
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1. Introduction

In many physical systems, the full state of the system is important; however, it cannot be measured.
Observer design is a well-known approach for reconstructing the state vector from some measured
quantities. The observer dynamics are composed of a copy of the system’s dynamics and a feedback
term.

Although the observer design for the systems represented by linear ordinary differential equations
(ODEs) is well studied (see Misawa and Hedrick (1989) for a review), it can be challenging for
nonlinear systems. A comparison of nonlinear observers for ODEs can be found in Walcott, Corless,
and Żak (1987) and Chen and Dunnigan (2002). Some nonlinear systems can be transformed into
a linear form for which the observer can be adjusted as in Kazantzis and Kravaris (1998), Xia
and Gao (1989), Noh, Jo, and Seo (2004), Ding, Frank, and Guo (1990), Rigatos (2011), Rigatos
(2015a), and Rigatos (2015b). Checking the necessary and sufficient conditions for the existence of
such a transformation is not easy; this transformation might not exist in a general case. Among
different nonlinear observers, extended Kalman filter (EKF) and unscented Kalman filter (UKF)
are two nonlinear efficient yet simple estimation techniques (see Grewal and Andrews (2011) and
Wan and Van Der Merwe (2000) for details).

The existence of disturbances in most physical models is inevitable and adds more complica-
tions to the observer design. A robust observer is intended to compensate for the disturbances;
examples can be found in Kai, Wei, and Liu (2010), Kai, Liangdong, and Yiwu (2011), Einicke
and White (1999), and Reif, Sonnemann, and Unbehauen (1999). These observers are efficient in
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compensating for multiplicative disturbances and zero mean bounded noises. A different approach
is implementing sliding mode techniques in which the disturbances are modeled by some unknown
inputs. In this case, no restriction except for boundedness is made on the disturbances. Sliding
mode techniques were first employed for observation in the 1980’s (see Walcott and Zak (1987))
and were incorporated in the design of a robust observer called a sliding mode observer (SMO).
A good review of sliding mode observation methods for both linear and nonlinear systems can be
found in Spurgeon (2008). The idea is to use a discontinuous output feedback to drive the estima-
tion state vector towards a reference manifold. The main advantages of the SMO are insensitivity
to unknown inputs, robustness, and providing an equivalent output error injection that can also
be used as a source of information Fridman, Shtessel, Edwards, and Yan (2008). An important
challenge is how the disturbances can be included in the observer design. In general, the consider-
ation of the disturbances induces either structural conditions or matching assumptions to ensure a
finite time convergence towards the sliding surface Veluvolu, Soh, and Cao (2007a). Different de-
signs handle the disturbances and system nonlinearities in different ways; see Drakunov and Utkin
(1995), Utkin (1999), Xiong and Saif (2001), Drakunov (1992), Drakunov and Reyhanoglu (2011),
Xiong and Saif (2001), and Koshkouei and Zinober (2004).

As a robust estimation technique, a Luenberger observer is usually used with the SMO; for
instance, see Spurgeon (2008), Koshkouei and Zinober (2004), and Veluvolu, Soh, and Cao (2007b).
For a nonlinear system, the Luenberger observer must overcome the nonlinearities and stabilize
the error dynamics on the sliding surface. Generally, a linear matrix inequality (LMI) problem is
solved to obtain the Luenberger observer as in Koshkouei and Zinober (2004) and Veluvolu et al.
(2007b). The LMI problem is not easy to solve; in fact, it might have no solution.

In this paper, a modified version of the SMO is developed. Instead of the Luenberger observer,
the modified SMO combines an exponentially stabilizing nonlinear observer with the sliding mode
observation to increase the estimation performance. The exponential convergence of the estima-
tion error to zero is proven. The improved observer can compensate for both nonlinearities and
disturbances coming from an unknown input.

In some physical processes, such as diffusion, the system’s behavior is distributed in space. These
systems are known as distributed parameter systems (DPSs) and are modeled by partial differen-
tial equations. Observer design for linear DPSs has been well studied; for instance, see Sallberg,
Maybeck, and Oxley (2010), Smyshlyaev and Krstic (2005), Hidayat, Babuska, De Schutter, and
Nunez (2011), Liu and Lapldus (1976), Miranda, Chairez, and Moreno (2010), Orlov (2008), Cur-
tain (1982), Demetriou (2004), Meirovitch and Baruh (1983), and also the book Curtain and Zwart
(1995). However, observer design has not been well explored for nonlinear DPSs. Some examples
of observer design for the nonlinear DPSs can be found in Wu and Li (2008), Wu and Li (2011),
and Castillo, Witrant, Prieur, and Dugard (2013).

A major issue in the observer design for DPSs is that the original partial differential equations
cannot in general be used in the observer dynamics. The usual way of dealing with this problem is
to approximate the system by a system of ODEs via some approximation method, such as the finite
element method. This approximation introduces errors into the observer’s dynamics because the
higher modes are neglected. In this paper, this truncation is treated as a disturbance to an ODE
model. It is proven that for a wide class of nonlinear PDEs, the modified SMO provides estimation
with an error that goes to zero as the order of approximation of the observer is increased.

The performance of the modified SMO is compared with two well-known nonlinear observers, the
EKF and UKF and a standard SMO for three different versions of the diffusion equation: a linear,
a quasi-linear, and a nonlinear model. Two sources of uncertainties are introduced in the observer
design: the disturbances coming from the unknown input ξ(t) and the modeling uncertainty due
to the order reduction in the observer design. The simulation results show that the modified
SMO performs better than the other observers in the presence of external disturbances and model
truncation.
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2. Observer design

Consider the following ordinary differential equation model consisting of n differential equations:

dzorig(t)

dt
= f(zorig(t)) +Bu(t) + g(zorig(t))ξ(t), zorig(0) = zorig,0,

y(t) = Czorig(t)
(1)

where zorig(t) ∈ Rn is the state variable, u(t) ∈ R is the control, ξ(t) ∈ R is the disturbance input
and y(t) ∈ R is the measured output. Here B ∈ Rn×1, C ∈ R1×n, f(·) and g(·) are smooth vector
fields on Rn . The vector field g(·) is called the distribution vector and indicates the disturbance
spatial distribution. The disturbance input is assumed to be bounded, that is a positive number
Mξ exists such that |ξ| ≤Mξ.

For simplicity of exposition, consider a discrete-time implementation

zk+1 = fd(zk) +Bduk + νk

yk = h(zk) + ωk
(2)

where zk, uk, and yk are, respectively, the state vector, input variable, and output at time step
t = tk, νk is the system noise, and ωk is the measurement noise.

The EKF algorithm is summarized in Table 1 where z0 is the state vector at time t = t0,
s̄ = E(s) represents the mean value of the random vector s, and a > 0 defines the rate of
exponential convergence. More details on this estimation technique can be found in Grewal and
Andrews (2011). The exponential convergence, provided that certain assumptions are satisfied, of
the EKF is shown to hold in Reif and Unbehauen (1999) and Reif, Sonnemann, and Unbehauen
(1998).

(Table 1 near here)
The UKF is another candidate often used for nonlinear systems to provide an accurate estimation.

In this technique, the variance is updated at each step via some sample points. For a random vector
of dimension N , 2N + 1 sample points, which are also called sigma points, are used. Details can be
found in Wan and Van Der Merwe (2000). The sigma points and their corresponding weights are

zs,0 = z̄

zs,i = z̄ ± (
√

(N + λ)P z)i i = 1, · · · , N

Wm
0 =

λ

N + λ
, W c

0 =
λ

N + λ
+ (1− α2

0 + β)

Wm
i = W c

i =
1

2(N + λ)

(3)

where zs,i for i = 0, · · · , 2N are sample points, Wm
i for i = 0, · · · , 2N are associated weights for

calculation of the means, W c
i for i = 0, · · · , 2N are associated weights for the covariance calculation,

λ = α2
0(N +κ)−N is a scaling parameter, and α0, κ are tuning parameters. The algorithm is given

in Table A.
(Table A near here)
Unmodelled disturbances are often present. A robust observer is required to compensate for the

disturbances. A potential way of including robustness in the observer design is to employ sliding
mode techniques in which no assumption except for boundedness is made on the unknown input
to compensate for its presence.

The first step in the SMO design is to transform the system representation (1) into a standard
form as in Xiong and Saif (2001). The transformation divides the system into two parts: the part
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which is directly affected by the unknown input and the part which is not.
The following assumptions on the system are required.

Assumption 1: The functions f(·) and g(·) are smooth vector fields up to the nth order. In other
words, they are continuously differentiable of the nth order with respect to their arguments.

Assumption 2: Let a standard definition of relative degree for the system (1) be used as in Isidori
(1995). The relative degree of the system (1) from the input ξ(t) to the output y(t) is independent
of zp ∈ Rn.

If Cg(zp(t)) 6= 0 for every zp(t) ∈ Rn the system has the relative degree one and satisfies
Assumption 2. This is not a hard condition to check and often holds in the observer design.

Let the relative degree be q. If Assumption 2 holds, q ≤ n (Isidori, 1995, Prop. 5.1.2). Set

φ1(zorig(t)) = Czorig(t)

φ2(zorig(t)) = LfCzorig(t)

...

φq(zorig(t)) = Lq−1
f Czorig(t).

If q < n, n − q functions, φq+1(zorig(t)), · · · , φn(zorig(t)), can be found such that the Jacobian
matrix of the mapping

zc(t) = φ(zorig(t)) = col(φ1(zorig(t)), · · · , φq(zorig(t)), φq+1(zorig(t)), · · · , φn(zorig(t))) (4)

is nonsingular at every zp(t) ∈ Rn. Define the new state vector zTc (t) = [zTd (t), zTr (t)] where

zd(t) = col(φ1(zorig(t)), · · · , φq(zorig(t)))
zr(t) = col(φq+1(zorig(t)), · · · , φn(zorig(t))).

Define functions ad(·), c(·), and bk(·) produced by the transformation (4) as

ad(zd(t), zr(t)) = Lqf(zorig(t))Czorig(t) |zorig(t)=φ−1(zd(t),zr(t))

c(zd(t), zr(t)) = Lg(zorig(t))L
q−1
f(zorig(t))Czorig(t) |zorig(t)=φ−1(zd(t),zr(t))

bk(zd(t), zr(t), u) = LBuL
k−1
f(zorig(t))Czorig(t) |zorig(t)=φ−1(zd(t),zr(t));

(5)

the Frobenius Theorem implies that the system’s description becomes

dzc(t)

dt
= f̄(zc(t)) + ḡ(zc(t), u(t)) + Γ(zc(t))ξ(t)

y(t) = zd,1(t)
(6)

where

f̄(zc(t)) = col(zd,2(t), . . . , zd,q(t), ad(zd(t), zr(t)),ar(zd(t), zr(t)))

ḡ(zc(t), u(t)) = col(b1(zd(t), zr(t), u(t)), . . . , bq−1(zd(t), zr(t), u(t)),

bq(zd(t), zr(t), u(t)), br(zd(t), zr(t), u(t)))

Γ(zc(t)) = col(0, . . . , 0, c(zd(t), zr(t)),01×(n−q)),

(7)
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and ar(·) and br(·) are vector fields of dimension n − q obtained from transformation (4). The
transformation (4) decomposes the system into two subsystems so that only zd(t) is directly affected
by the disturbances. More details on this transformation can be found in Isidori (1995).

Assumption 3: The input terms in the transformed equations can be put into the form

b1(zd(t), zr(t), u(t)) = b1(y(t), u(t))

b2(zd(t), zr(t), u(t)) = b2(zd,2(t), y(t), u(t))

...

bq−1(zd(t), zr(t), u(t)) = bq−1(zd,2(t), · · · , zd,q−1(t), y(t), u(t)).

Assumption 4: The system with representation (1) and its corresponding transformed form (6)
are bounded-input bounded-output (BIBO) stable for the output operator being the identity operator.

The SMO design forces the system’s states towards a sliding surface followed by stabilization of
the error on the sliding surface. Some lemmas are required to establish convergence of the observer.
First, Lipschitz continuity of the functions (5) follows from smoothness of the original system (1).

Lemma 1: Let Assumption 1 be satisfied. There exist Ma,Mb,M1, · · · ,Mq ∈ R+ such that for

every zTc (t) = [zTd (t), zTr (t)] and ẑTc (t) = [ẑTd (t), ẑTr (t)] with ‖zc(t)− ẑc(t)‖ ≤ εL where εL > 0,

‖ad(zd(t), zr(t))− ad(ẑd(t), ẑr(t))‖ ≤Ma‖zc(t)− ẑc(t)‖
‖c(zd(t), zr(t))− c(ẑd(t), ẑr(t))‖ ≤Mc‖zc(t)− ẑc(t)‖

‖bk(zd(t), zr(t), u(t))− bk(ẑd(t), ẑr(t), u(t))‖ ≤Mk‖zc(t)− ẑc(t)‖
(8)

for k = 1, . . . , q.

Proof: The proof followed from Assumption 1, the transformation zc(t) = [zTd (t), zTr (t)]T =
φ(zorig(t)) given by (4) being a diffeomorphism, and the Mean Value Theorem. �

Now, a method for estimation of the undisturbed nonlinear system will be combined with a SMO
to obtain an observer for the disturbed system. Define the state vector z̃Tc (t) = [z̃Td (t), z̃Tr (t)]; the
undisturbed system is defined as

dz̃c(t)

dt
= f̄(z̃c(t)) + ḡ(z̃c(t), u(t))

y(t) = z̃d,1(t)
(9)

The representation (9) is assumed to be detectable in the sense that an exponentially convergent
observer can be designed for this system.

Define ẽ(t) = z̃c(t) − ẑc(t) = [ẽ1(t), · · · , ẽq(t), ẽq+1(t), · · · , ẽn(t)]T and ẽ1(t) = z̃d,1(t) − ẑd,1(t);
indicate the observer gain by K(·). The observer dynamics using the transformed equations (6)
become

dẑc(t)

dt
= f̄(ẑc(t)) + ḡ(ẑc(t), u(t)) +K(ẑc(t), ẽ1(t)) (10)

where KT (ẑc(t), ẽ1(t)) = [K1(ẑc(t), ẽ1(t)), . . . ,Kn(ẑc(t), ẽ1(t))] is designed such that

‖K(ẑc(t), ẽ1(t)) ‖≤ k ‖ ẽ1(t) ‖ . (11)
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If the disturbance ξ = 0 the error dynamics take the form

dẽ(t)

dt
= f̄(z̃c(t))− f̄(ẑc(t)) + ḡ(z̃c(t), u(t))− ḡ(ẑc(t), u(t))−K(ẑc(t), ẽ1(t)). (12)

Assumption 5: Let the observer dynamics and its corresponding error dynamics be given by
equations (10) and (12), respectively. There exists a continuously differentiable Lyapunov function
V : D → R such that

β1 ‖ ẽ(t) ‖2≤ V (ẽ(t)) ≤ β2 ‖ ẽ(t) ‖2 (13)

‖∂V (ẽ(t))

∂ẽ(t)
‖ ≤ β4‖ẽ(t)‖ (14)

for some β1, β2, β3, β4 > 0 and along trajectories

dV (ẽ(t))

dt
= V0(ẽ(t)) ≤ −β3 ‖ ẽ(t) ‖2 . (15)

If the disturbance ξ 6= 0, the observer is modified by adding some sliding mode terms. Combining
an exponential convergent nonlinear observer satisfying Assumption 5 with a sliding mode term
reduces the effect of chattering associated with some sliding mode observers.

Define e1(t) = zd,1(t) − ẑd,1(t) where ẑTc (t) = [ẑTd (t), ẑTr (t)] is the observer state vector, ē1(t) =
e1(t), and ēk(t) = (λk−1 sign(ēk−1(t)))eq for k = 2 · · · q where (λk−1 sign(ēk−1(t)))eq are equivalent
signals obtained by low pass filtering the signals λk−1 sign(ēk−1(t)) with an antipeaking structure
introduced in Drakunov (1992); this filter is designed to avoid peaking phenomenon in a way
that the information regarding the observation error ek−1(t) is not used till the sliding manifold
ek−1(t) = 0 assigned with this information is reached. In other words, ēk(t) is set to zero till the
sliding manifolds ek−1(t) = 0 are reached one by one in a recursive manner. The observer dynamics
are

dẑd,1(t)

dt
= ẑd,2(t) + b1(y(t), u(t)) +K1(ẑ(t), e1(t)) + λ1 sign(e1(t))

...

dẑd,q−1(t)

dt
= ẑd,q(t) + bq−1(ẑd,2(t), · · · , ẑd,q−1(t), y(t), u(t)) +K2(ẑ(t), e1(t)) + λq−1 sign(ēq−1(t))

dẑd,q(t)

dt
= ad(ẑd(t), ẑr(t)) + bq(ẑd(t), ẑr(t), u(t)) +Kq(ẑ(t), e1(t)) + λq sign(ēq(t))

dẑr(t)

dt
= ar(ẑd(t), ẑr(t)) + br(ẑd(t), ẑr(t), u(t)) +Kq+1:n(ẑc(t), e1(t)).

(16)
This observer can also be written

dẑc(t)

dt
= f̄(ẑc(t)) + ḡ(ẑc(t), u(t)) +K(ẑc(t), e1(t)) + ur(t) (17)

where

ur(t) = col(λ1 sign(e1(t)), . . . , λq sign(ēq(t)),01×(n−q)).
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Lemma 2: Let Assumptions 1, 4, and 5 be satisfied. The estimation error provided by the observer
(16) is bounded on every time interval [t0, tf ] where tf > 0. The bound is given by

‖e(t)‖ ≤ max((β4Md)/β3,
√
V (e(0))/β1) (18)

where β3, β4, and V (·) are defined in Assumption 5, and

Md = M0 + sup
t∈[t0,tf ]

(‖ur(t)‖) ≤M0 +
√
qmax

i
(λi) (19)

with M0 > 0 representing the upper bound of ‖Γ(zc(t))ξ(t)‖.

Proof: Define the error vector e(t) = zc(t) − ẑc(t); the error dynamics can be obtained from
equations (6) and (17) as

de(t)

dt
= f̄(zc(t))− f̄(ẑc(t)) + ḡ(zc(t), u(t))− ḡ(ẑc(t), u(t))

−K(ẑc(t), e1(t)) + Γ(zc(t))ξ(t)− ur(t) .
(20)

Consider a continuously differentiable Lyapunov function V (·) satisfying Assumption 5. Along
trajectories,

dV (e(t))

dt
= V0(e(t)) +

∂V (e(t))

∂e(t)
(Γ(zc(t))ξ(t)− ur(t)) ;

employing inequalities (14) and (15) leads to

dV (e(t))

dt
≤ −β3‖e(t)‖2 + β4‖Γ(zc(t))ξ(t)− ur(t)‖‖e(t)‖. (21)

From the definition of Γ(zc(t)), equation (7), Lemma 1, Assumption 4, and the boundedness of
the vector ur(t) and unknown input ξ(t), it can be concluded that

‖Γ(zc(t))ξ(t)− ur(t)‖ ≤Md

where Md > 0 is defined in (19). Therefore,

dV (e(t))

dt
≤ −β3‖e(t)‖2 + β4Md‖e(t)‖. (22)

If ‖e(t)‖ < β4Md

β3
the error vector is of course bounded and the proof is complete. Suppose then

that ‖e(t)‖ ≥ β4Md

β3
. From inequalities (13) and (22), this implies that

dV (e(t))

dt
≤ 0, and ‖e(t)‖ ≤

√
V (e(t))

β1
≤

√
V (e(0))

β1
.

In this case, the error vector is bounded by (18) �
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Theorem 1: Suppose that Assumptions 1-4 hold and also the error dynamics for the undisturbed
system ( ξ = 0) defined in (12) satisfy Assumption 5 with

β3 > β4(1 +Ma +Mq)

where Ma,Mq > 0 are defined in Lemma 1. Then there exists λ1, · · · , λq > 0 such that the modified
sliding mode observer (16) provides an exponential convergence of the estimation vector ẑc(t) to
the state vector zc(t).

Proof: If the disturbance input ξ(t) is zero, the result follows trivially from the assumptions.
Consider then a non-zero disturbance term ξ(t) 6= 0. The proof involves several steps.

Step 1: This step is along the lines of the proof of (Xiong and Saif, 2001, Theorem 1). Let e(t) =
[eTd (t), eTr (t)]T = zc(t) − ẑc(t) where ed(t) = [e1(t), . . . , eq(t)]

T , and eq(t) = [eq−1(t), . . . , en(t)]T .
The error dynamics of the vector ed(t) are expanded as

de1(t)

dt
= e2(t)−K1(ẑc(t), e1(t))− λ1 sign(e1(t)) (23)

de2(t)

dt
= e3(t) + b2(zd,2(t), y(t), u(t))− bq−1(ẑd,2(t), y(t), u(t)) (24)

−K2(ẑc(t), e1(t))− λ2 sign(ē2(t)) (25)

...

deq−1(t)

dt
= eq(t) + bq−1(zd,2(t), . . . , zd,q−1(t), y(t), u(t))− bq−1(ẑd,2(t), . . . , ẑd,q−1(t), y(t), u(t))

−Kq−1(ẑc(t), e1(t))− λq−1 sign(ēq−1(t)) (26)

deq(t)

dt
= ad(zd(t), zr(t))− ad(ẑd(t), ẑr(t)) + bq(zd(t), zr(t), u(t))− bq(ẑd(t), ẑr(t), u(t))

−Kq(ẑc(t), e1(t)) + c(zd(t), zr(t))ξ(t)− λq sign(ēq(t)). (27)

Consider the first dynamical equation (23) of the error dynamics. Defining the Lyapunov function
V1(e1) = 1/2e2

1,

dV1(e1)

dt
= e1e2 − e1K1(ẑc, e1)− λ1|e1|. (28)

From (28) and inequality (11), it is concluded that

dV1(e1)

dt
≤ (|e2|+ k|e1| − λ1)|e1|. (29)

The estimation error is bounded by Lemma 2 in two possible ways; in (18), if
√
V (e(0))/β1 ≥

β4Md/β3, the error vector e is bounded by
√
V (e(0))/β1, so (|e2|+ k|e1|) has an upper bound. In

this case, choose λ1 > (1 + k)
√
V (e(0))/β1. Otherwise, the upper bound is β4Md/β3 where Md

is defined by (19) in which, by definition, ur = col(λ1 sign(e1), 0, . . . , 0) and ‖ur‖ = λ1 since the
sliding manifold e1 = 0 has not reached yet. In (29), let |e2| be replaced by this upper bound; it is
derived that

dV1(e1)

dt
≤
(β4M0

β3
− (1− β4

β3
)λ1 + k|e1|

)
|e1|. (30)

By assumption, β4/β3 < 1. Furthermore, by continuity |e1| < L1 for some L1 > 0 on a finite time
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interval [t0, t0 + εt] for some εt > 0; choose λ1 > β3/(β3 − β4)(β4M0/β3 + kL1).
Following both possibilities for choosing λ1, define

β5 = λ1 −max

(
(1 + k)

√
V (e(0))

β1
,

β3

β3 − β4
(
β4M0

β3
+ kL1)

)
and note β5 > 0. Thus, inequality (29) and (30) become

dV1(e1)

dt
≤ −β5|e1|. (31)

From this inequality, it is obvious that |e1| is decreasing; thus, εt > 0 can be chosen arbitrarily
large, and (31) is true for every t ≥ t0. From (31), it is also concluded that the system reaches the
switching surface e1 = 0 after a finite time t1. After this ideal sliding motion takes place, e1 = 0
and de1/dt = 0 for t > t1. The second equation (24) becomes

de2

dt
= e3 + b2(zd,2, y, u)− bq−1(ẑd,2, y, u)−K2(ẑc, e1)− λ2 sign(e2).

Furthermore, for t > t1, ur = col(e2, λ2 sign(e2), 0, . . . , 0) till the system reaches the switching
surface e2 = 0 by definition. Followed by the same procedure as before, let |e2| ≤ L2 on [t1, t1 + εt];
Given Lemma 2, inequalities (11) and (8) as well as the boundedness of e1 and e2, one can choose

λ2 > max

(
(1 + k +M1)

√
V (e(0))

β1
,

β3

β3 − β4
(
β4(M0 + L2)

β3
+ kL1 +M1L2)

)
for which, as was shown before for |e1|, |e2| is decreasing; thus, εt > 0 can be chosen arbitrarily
and the system reaches the switching surface e2 = 0 after a finite time t2 > t1. Following the same
reasoning implies that after finite time T > tq > . . . > t2 > t1 the system reaches the sliding
surfaces e1 = 0, . . . , eq = 0 one by one.

Step 2: Once the motion is along the intersection of the sliding surfaces, e1 = 0, . . . , eq = 0,
the discontinuous vector ur in equation (17) can be replaced by its equivalent smooth counterpart
Edwards and Spurgeon (1998)

ueq = col(e2, . . . , eq, cd(zd), zr, u, ξ),0(n−q)×1)

cd(zd), zr, u, ξ) = ad(zd, zr)− ad(zd, ẑr)+
bq(zd, zr, u)− bq(zd, ẑr, u) + c(zd, zr)ξ

(32)

where ueq forces the system’s motion to stay along the intersection of some sliding surfaces; then,
the error dynamics of the system take the form

de

dt
= f̄(zc)− f̄(ẑc) + ḡ(zc, u)− ḡ(ẑc, u)−K(ẑc, e1) + Γ(zc)ξ − ueq. (33)

From equation (32) and the inequalities (8),

‖Γ(zc)ξ − ueq‖ ≤ (1 +Ma +Mq)‖e‖. (34)

Step 3: The observer K(ẑc, e1) was proven in Lemma 2 to provide a bounded error even for a
system with disturbances. In sliding mode, which occurs after finite time, the error dynamics are

9
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given by equation (33). Differentiating the Lyapunov function V (·) satisfying Assumption 5 leads
to

dV (e)

dt
= V0(e) +

∂V (e)

∂e
(Γ(zc)ξ − ueq). (35)

Inequalities (14), (15), and (34) imply that

dV (e)

dt
≤ −β3‖e‖2 + β4(1 +Ma +Mq)‖e‖2 . (36)

Since β3 > β4(1 +Ma +Mq), for some β6 = β3 − β4(1 +Ma +Mq) > 0

dV (e)

dt
≤ −β6‖e‖2 (37)

and the estimation error e goes to zero exponentially. �
Theorem 1 shows that an exponentially convergent observer for the undisturbed nonlinear system

can be combined with the sliding mode observer. The result is an exponentially convergent observer
in the presence of disturbances coming from an unknown input. A number of estimation methods
can be used for the undisturbed systems. In the simulations below, the EKF is used.

There are two ways of handling the transformation of the observer states to the original co-
ordinates: finding the state space representation of the observer in the original coordinates, or
transforming the estimated state back into the original coordinates. Direct transformation of the
estimated state back into the original coordinates is a practical choice when the observer dynamics
can be sampled for its solution. In this paper, the observer state in the original coordinates is
obtained by ẑorig = φ−1(ẑc).

3. Observer design for distributed parameter systems

Consider a distributed parameter system with state in a separable Hilbert space H and model

∂z

∂t
= F(z) + Bu(t) + G(z)ξ(t), z(0,x) = z0 ∈ H

y(t) = Cz
(38)

where z ∈ H , x ∈ Rm is the spatial variable, F(·) : D(F) ⊂ H → H is a nonlinear operator,
B : R→ H is the input operator and bounded, G(·) : R→ H is the disturbance operator, u ∈ R is
the input signal, ξ ∈ R is the disturbance input, y ∈ R is the output signal, and C : H → R is the
output operator and linear bounded.

Let {vi}∞i=1 be a basis for H. Now, define the finite-dimensional subspace

HM = span{vk, k = 1 . . .M}.

The orthogonal projection of H onto HM is

PMz =

M∑
i=1

zivi (39)

for z ∈ H and zi ∈ R. Let the state vector be decomposed into two parts z = zM + zcM with
zM = PMz, z

c
M = (I −PM )z.

10
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The projection (39) can be used to approximate the system (38) by a finite-dimensional system
of the form

∂z̄M
∂t

= FM (z̄M ) + BMu(t) + GM (z̄M )ξ(t)

y(t) = Cz̄M .
(40)

The state variables z̄M and zM are different: the state zM is the projection of the solution to (38)
onto HM while z̄M satisfies the finite-dimensional system (40). An ODE representation on RM
equivalent to (40) can be obtained via multiplying both sides of (40) by vi for i = 1 . . .M in the
sense of H inner product (·, ·)H. This leads to

dzorig,M
dt

= fM (zorig,M ) +BMu(t) + gM (zorig,M )ξ(t)

y = CMzorig,M

(41)

where fM (·) and gM (·) are functions defined on RM and BM is a column matrix of dimension M .
The observer dynamics are composed of a copy of the system approximate dynamics (41) with

N ≤M and a filtering feedback operator. Define

zorig,N = col(z̄1, z̄2, . . . , z̄N ), zcorig,N = col(z̄N+1, z̄N+2, . . . , z̄M ).

The system (41) is rewritten as

dzorig,N
dt

= fN (zorig,N ) +BNu(t) + gN (zorig,N )ξ(t) + hN (zorig,N , zorig,M )

dzcorig,N
dt

= f cN (zorig,M ) +Bc
Nu(t) + gcN (zorig,M )ξ(t)

y = CMzorig,M

(42)

where

hN (zorig,N , zorig,M ) = fN (zorig,M )− fN (zorig,N ) + (gN (zorig,M )− gN (zorig,N ))ξ(t).

Next, the following change of coordinate

zc,M =

[
zc,N
zcc,N

]
= TM (zorig,M ) =

[
φN (zorig,N )

zcorig,N

]
is applied wherein φN (zorig,N ) is defined as in (4) with f(·) and g(·) respectively replaced by fN (·)
and gN (·).

In the new coordinates, the system takes the form

dzc,N
dt

= f̄N (zc,N ) + ḡN (zc,N , u(t)) + ΓN (zc,N )ξ(t) + h̄N (zc,N , zc,N )

dzcorig,N
dt

= f cN (zc,M ) +Bc
Nu(t) + gcN (zc,M )ξ(t)

y = [1, 0, . . . , 0]zc,M

(43)

where f̄N (·), ḡN (·), ΓN (·), and h̄N (·) are transformed forms of fN (·), BN , gN (·), and hN (·)
through mapping (4). Note that f̄N (·), ḡN (·), and ΓN (·) have the same structures as but different

11
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dimensions from f̄(·), ḡ(·), and Γ(·) since the mappings φN (·) and φ(·) are constructed based on
the same logic.

Define ẑc,N = [ẑc,1, ẑc,2, . . . , ẑc,N ]T . The general observer dynamics have the form

dẑc,N
dt

= f̄N (ẑc,N ) + ḡN (ẑc,N , u(t)) +KN (ẑc,N , y − ẑc,1) + ur,N (44)

where KN (·) is the filtering gain and ur,N is defined in the same way as ur in (17) for n = N .
Define eN = [eN,1, eN,2, . . . , eN,N ]T = zc,N − ẑc,N . The error dynamics become

deN
dt

= f̄N (zc,N )− f̄N (ẑc,N ) + ḡN (zc,N , u(t))− ḡN (ẑc,N , u(t))

−KN (ẑc,N , eN,1) + ΓN (zc,N )ξ(t)− ur,N + h̄N (zc,N , zc,M )

dzcorig,N
dt

= f cN (zc,M ) +Bc
Nu(t) + gcN (zc,M )ξ(t).

(45)

Lemma 3: Suppose that Assumptions 1-3 hold for f(·) = fN (·), g(·) = gN (·), n = N , and
q = 1, and the system (42) satisfies Assumption 4. Furthermore, for zcorig,N = 0, ur,N = 0, and

ξ(t) = 0, let the error dynamics (45) satisfy Assumption 5 with n = N . Furthermore, suppose that
h̄N (zc,N , zc,M ) is bounded for every N . In other words,

‖h̄N (zc,N , zc,M )‖ ≤Mh

for some Mh > 0. The state estimate provided by the observer (44) is bounded.

Proof: The proof is given in the appendix. �
Boundedness of the estimation error is provided by the following theorem.

Theorem 2: Suppose that Assumptions 1-3 hold for f(·) = fN (·), g(·) = gN (·), n = N , and
q = 1, and the system (42) satisfies Assumption 4. Furthermore, for zcorig,N = 0, ur,N = 0, and

ξ(t) = 0, let the error dynamics (45) satisfy Assumption 5 with n = N and

β3 > β4(1 +Ma +Mq)

where Ma,Mq > 0 are defined in Lemma 1. Suppose that h̄N (zc,N , zc,M ) is uniformly bounded
for every N . Then there exists λ1, · · · , λq > 0 such that the approximate observer (44) provides
bounded estimation error compared with the higher order approximated system (43). More precisely,
defining β6 = β3 − β4(1 +Ma +Mq),

‖e‖ ≤ ‖eN‖+ ‖zcorig,N‖ ≤
2β4 supt(‖h̄N (zc,N , zc,M )‖)

β6
+ ‖zcorig,N‖. (46)

Proof: The proof is given in the appendix. �
The constants in Lemma 3 and Theorem 2 depend on the functions fN (·), gN (·), and hN (·) and

thus on N . In addition, the observer dynamics (44) depend on the nonlinear filtering gain KN (·).
In other words, proving that the solution to the approximate observer converges to the true state as
the order of approximation increases requires adding some conditions on the upper bounds of these
constants as well as some conditions necessary to show the convergence of the involved functions.
Finding these conditions is not straightforward for general nonlinear PDEs.

According to Theorem 2, the estimation error bound depends on the model truncation defined
by h̄N (zc,N , zc,M ) and zcorig,N . If the norms of these terms converge to zero as the order of approx-
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imation increases, the estimation error norm converges to zero. This convergence is observed in the
numerical simulation in the next section.

4. Simulations

In this section, the modified sliding mode observer is compared with different estimation methods
for variations of the heat equation; linear, quasi-linear, and fully nonlinear versions are considered
as well as versions with and without a disturbance input. In the following simulations, the EKF and
the modified SMO are designed in the transformed coordinates defined by equations (4). The UKF
is designed in the original coordinates. Two sources of uncertainties are introduced: the disturbance
coming from the unknown input ξ(t) and the modeling uncertainty due to the order reduction in
the observer design.

The finite element method with piece-wise linear functions was used to approximate all three
versions of the heat equation. The order of approximation is defined as the number of employed
elements. The “true” system was simulated in COMSOL with seventeen linear elements to imi-
tate true measurements and states. Increasing the number of elements beyond seventeen showed
negligible changes in the system’s solution.

In the continuous-time EKF, a differential Riccati equation must be solved simultaneously with
the system’s dynamical equations. It is faster to use the discrete-time version of the EKF. In order
to use the discrete-time EKF, the time span of interest is divided into sub-intervals of the same
size ∆t where ∆t is faster than the observer’s dynamics so that the effect of time discretization
can be neglected. The value ∆t = 0.01 was found to be adequate.

The observer parameters were chosen by trial and error to achieve the best performance for each
observer. This tuning was done separately for every observer. For example, the parameter a in
the EKF algorithm (Table 1) provides control over the rate of convergence. The best value for a
was found by increasing it to a point that the covariance matrix remained bounded and no further
improvement of the performance was obtained. The same approach was used to find the SMO gain.
In the standard SMO, which was added for the sake of comparison, the a Kalman filter was tuned
using just the linear part of the system. In the modified SMO, the EKF was combined with the
sliding mode observer. The UKF parameters were also chosen for the best performance too.

On every sub-interval, the observer’s dynamical equations (44) were solved with KN (t) set to
zero. Next, the discrete-time EKF was used to provide the state estimate at every time step; the
observer gain KN (t) acts as a correction to the state prediction. The observer equations were
solved using MATLAB ODE15s. Let the solution at the time step k + 1 be

zk+1 = χ(∆t, zk, u[tk,tk+1], ξ[tk,tk+1]) (47)

where χ(·) is an evolution operator. The connection between the linearization around the estimated
state ẑ in the continuous-time and sampled-time system is provided by Theorem 3 in Appendix A.
Theorem 3 was used to calculate the linearization of χ(·) around the state estimate ẑ as the linear
operator F zk

in Table 1.
Simulations were run first with a zero disturbance ξ and then with a non-zero ξ. In both sets, as

a non-persistent source of disturbances, a fraction of the initial condition profile ωz(0, x) for ω > 0
was added to the system’s state at every time step. This type of disturbance was added to keep
the system’s modes excited in time. For linear and quasi-linear heat equations, ω = 0.1, and for
nonlinear equation, ω = 0.3.

Letting zM be the “true” state calculated with approximation order M , and ẑN the estimated
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state using an approximation of order N, the estimation error is defined as

eest =

√∫ 1

x=0
e2dx

where e = zM − ẑN . The system’s initial condition is

z(0, x) = 0.5 sin(πx) sech(3(x− 0.5))

and the observer’s initial condition is ẑ(0, x) = 0. The shared observer’s parameters are chosen as,
for the EKF,

P ν = 0.1IN×N , P ω = 0.1, P z0
= 0N×N ;

for the UKF,

P ν = 0.1IN×N , P ω = 0.1, α = 0.05, κ = 0, β = 2, P z0
= 10−6IN×N ;

and for the modified SMO,

P ν = 0.1IN×N , P ω = 0.1, P z0
= 0N×N .

The linear heat equation was

∂z

∂t
=

∂

∂x
(α1

∂z

∂x
) + b(x)u(t) + g(x)ξ(t) (48)

∂z

∂x
(0, t) = 0, z(1, t) = 0, (49)

and localized observation

y =
1

δ

∫ 1

2
+δ

1

2
−δ

z(x)dx (50)

where α1 = 6 is the diffusivity coefficient, z ∈ L2(0, 1) is the state variable, u(t) is the control
input, ξ(t) is an unknown input attributed to the disturbances, g(x) ∈ C([0, 1]) is the spatial
distribution of the unknown input, and b(x) ∈ C([0, 1]) is the spatial distribution of the control. In
the simulations,

g(x) = sin(πx), ξ(t) = 20 sin(t), b(x) = sin(2πx), u(t) = 10 sin(t), δ = 10−4.

The observer parameters are a = 20, λ1 = 50.
(Figures 1, 2, 3, and 4 near here)
The simulation results are shown in Figures 1, 2, and 3. These figures show that for all meth-

ods, the estimation error not surprisingly decreases by increasing the order of approximation. In
the absence of an external disturbance input, both EKF and UKF show the same performance.
Furthermore, the modified SMO performs closely to the EKF.

When the disturbance input is added, that is, ξ 6= 0, the EKF offers slightly better estimation
error than the UKF. In the presence of the disturbance input, the modified SMO provides much
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smaller estimation error than the other estimation methods. The modified SMO shows a consid-
erable decrease in error for higher orders of approximation. The error for different observation
techniques with a fixed approximation order N = 5 is shown in Figure 4 and Table 3.

The next model considered was a reaction-diffusion system, the quasi-linear heat equation

∂z

∂t
=

∂

∂x
(α2

∂z

∂x
) +R(z) + b(x)u(t) + g(x)ξ(t) (51)

where α2 = 4,

R(z) = η1z(η2 − z),

η1 = 0.2, and η2 = π2. The boundary conditions are again (49), and the observation is defined by
equation (50). In the simulations,

g(x) = sin(πx), ξ(t) = −18(2 + 1.5 sin(t)), b(x) = sin(2πx), u(t) = 10 sin(t).

The observer parameters are a = 2, λ1 = 40 for the EKF and the modified SMO and λ1 = 60 for
the standard SMO.

(Figures 5, 6, 7, and 8 near here)
The simulation results are shown in Figures 5, 6, and 7. Again, the estimation error decreases as

the order of approximation increases. Figures 5 and 6 indicate that in the absence of a disturbance
input, the estimation error provided by both EKF and UKF is nearly the same. Moreover, adding
the sliding term to the EKF does not change its performance when there is no disturbance.

However, the estimation error of the UKF in the existence of the disturbance input is more than
two times larger than that of the EKF. According to Figure 7, the modified SMO reduces the
estimation error four times more than EKF. This improvement can be seen in Figure 8 and Table
3 where different observation techniques, all with approximation order N = 5, are compared. It is
also observed that the modified SMO produces an error that is almost a third of the one produced
by the standard SMO.

The last model considered was a nonlinear heat equation. The system is similar to the linear
equation (48) except that the diffusivity is a function of the state:

α3(z) = θ1(1 + θ2z
2)

where θ1 = 6 and θ2 = 0.02. The governing equation is

∂z

∂t
=

∂

∂x
(α3(z)

∂z

∂x
) + b(x)u(t) + g(x)ξ(t) (52)

The same boundary conditions (49) hold, and the observation is again defined by (50). In the
simulations,

g(x) = sin(πx), ξ(t) = 5.45(−2 + 1.5 sin(t)), b(x) = sin(2πx), u(t) = 10 sin(t).

The observer parameters are a = 20, λ1 = 10 for the EKF and the modified SMO and λ1 = 30 for
the standard SMO.

(Figures 9, 10, 11, and 12 near here)
The simulation results are shown in Figures 9, 10, and 11. The same pattern of reduction in

error as the order of approximation increases can be seen in the absence of a disturbance input.
The estimation error of both EKF and UKF are almost the same in the absence of the disturbance
(Figures 9 and 10). However, the estimation error associated with the UKF is larger than that of
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the EKF when the disturbance is present. Like the previous two examples of the heat equations,
the modified SMO performs similarly to the EKF when there is no disturbance. However, when
the disturbance is present, with the modified SMO, the error is up to four times smaller than the
EKF (Figure 11). This is illustrated in Figure 12 and Table 3 where all the observation methods
are compared with the order of approximation N = 5. It is also observed that the modified SMO
produces an error around four time smaller than the error produced by standard SMO.

5. Conclusions

The main contribution of this paper was a modified SMO where an EKF was combined with a
SMO. This modified SMO combines an exponential stabilizing nonlinear observer with the sliding
mode observation to increase the estimation performance. Unlike standard versions of the SMO,
the modified version handles both nonlinearities and disturbances. The exponential convergence
of the estimation error to zero was proven in Theorem 1. The modified SMO was compared with
two nonlinear filtering methods, the EKF and UKF, as well as a standard SMO for estimation of
three different versions of heat equation: linear, quasi-linear, and nonlinear. The simulations were
run for each model and estimator with and without an external disturbance.

Although chattering is less of an issue in a sliding mode observer than in a sliding mode control,
and was not an issue in our computations, discontinuities in the observer dynamics may cause
complications. Specifically, large discontinuities may lead to an increase in computation time to
solve the observer equations. However, the modified SMO provides the possibility of using smaller
sliding gains, which reduce chattering. Table 3 shows that the computation time of the modified
SMO did not increase significantly compared with the EKF and UKF.

In the simulations, the order of approximation used to design the observer was smaller than the
order used for the “true” system to simulate the effect of neglected modes. Therefore, the error was
expected to be only bounded as given by Theorem 2. In the absence of the external disturbance,
increasing the order of approximation decreases the error, which is not surprising. Increasing the
order of approximation results in a closer approximation to the true system.

When the disturbance was present, the performance of the modified SMO was better than that
of the other observers, including EKF and standard SMO. Exponential convergence to zero of the
error norm, proved in Theorem 1, can be observed for high orders of approximation in Figures
3, 7, and 11. Furthermore, increasing the order of approximation reduces the estimation error, as
prediced by Theorem 2. According to this theorem, the estimation error bound is defined by the
norm of model truncation denoted by h̄N (zc,N , zc,M ) and zcorig,N ; the decreasing estimation error
norm observed in the simulations is assigned with the convergence of these terms to zero as the
order of approximation increases.

The performance of the modified SMO was examined with different versions of the heat equation.
The heat equation is structurally stable and satisfies the conditions of the Theorem 1 and 2; how-
ever, the wave equation has different dynamics and stability properties which limit the application
of the SMO. Future work involves development of observers for DPSs such as weakly damped waves
where the decline in energy with each mode is much slower than for diffusion equations.
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Appendix A. Appendix

Proof of Lemma 3:
Consider a continuously differentiable Lyapunov function V (·) similar to what is chosen in Lemma
2 satisfying Assumption 5. Followed by the same procedure as in Lemma 2, along the trajectories
given by (45),

dV (eN )

dt
≤ −β3‖eN‖2 + β4‖ΓN (zc,N )ξ − ur,N + h̄N (zc,N , zc,M )‖‖eN‖. (A1)

From the definition of ΓN (zc,N ); equation (7); Lemma 1; Assumption 4; and the boundedness of
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the vector ur,N , unknown input ξ, and h̄N (zc,N , zc,M ), it can be concluded that for some Md > 0,

‖ΓN (zc,N )ξ − ur,N + h̄N (zc,N , zc,M )‖ ≤Md +Mh.

Therefore,

dV (eN )

dt
≤ −β3‖eN‖2 + β4(Md +Mh)‖eN‖,

and

‖eN‖ ≤
β4(Md +Mh)

β3
.

Since the error vector and the system state are bounded so is the observer state, and the proof is
complete. �

Proof of Theorem 2:
If the disturbance input ξ is zero, the result follows trivially from the assumptions. Consider then
a non-zero disturbance term ξ 6= 0. The proof is similar to that of Theorem 1. Followed by the
same procedure as in the step one of the proof of this theorem, for q = 1, there exists λ1 > 0 such
that the observer reaches the sliding surface in finite time; the equivalent signal is

ueq,N =


C̄N (f̄N (zc,N )− f̄N (ẑc,N ))+

C̄N (ḡN (zc,N , u(t))− ḡN (ẑc,N , u(t)))+
C̄NΓN (zc,N )ξ(t)+
C̄N h̄N (zc,N , zc,N )

0(n−1)×1

 , (A2)

where C̄N = [1, 0, . . . , 0] is a row matrix of dimension N . From equation (A2) and the inequalities
(8),

‖ΓN (zc,N )ξ − ueq,N‖ ≤ (1 +Ma +Mq)‖e‖+ ‖h̄N (zc,N , zc,M )‖. (A3)

In sliding mode, which occurs after a finite time, differentiating the Lyapunov function V (·),
which satisfies Assumption 5 leads to

dV (eN )

dt
= V0(eN ) +

∂V (eN )

∂eN
(ΓN (zc,N )ξ − ueq,N + h̄N (zc,N , zc,M )). (A4)

Inequalities (15), (14) and (A3) imply that

dV (eN )

dt
≤ −β3‖eN‖2 + β4(1 +Ma +Mq)‖eN‖2 + 2β4 sup

t
(‖h̄N (zc,N , zc,M )‖)‖eN‖. (A5)

Since β3 > β4(1 +Ma +Mq), for some β6 = β3 − β4(1 +Ma +Mq) > 0

dV (eN )

dt
≤ −β6‖eN‖2 + 2β4 sup

t
(‖h̄N (zc,N , zc,M )‖)‖eN‖ (A6)

and the estimation error e is bounded by (46).
�
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Theorem 3: Assume that the nonlinear function f(·) given in equation (1) is second-order dif-
ferentiable, and (1) has a solution on [tk, tk+1] in an evolution form (47) in which χ(·) is also
second-order differentiable with respect to the vector zk. Let the linearization of f(·) be defined by

Az̄ =
∂f(z)

∂z
|z̄

for some z̄ ∈ Rn. Furthermore, let the linearization of the evolution operator be defined as

F z̄(∆t, u[tk,tk+1]) =
∂χ(∆t, zk, u[tk,tk+1], ξ[tk,tk+1])

∂z
|(∆t,z̄,u[tk,tk+1],0) .

Then, the operator F z̄k
(·) is the evolution operator generated by the linear operator Az̄ when the

disturbance term is set to zero. In addition,

∂F z̄(∆t, u[tk,tk+1])

∂u[tk,tk+1]
= 0.

Proof: Let z(t) be a solution to the system dynamical equation (1); the time differentiation of
this signal at time t can be defined as

dz(t)

dt
= lim

∆t→0

z(t+ ∆t)− z(t)

∆t
. (A7)

Now, by substituting equation (47) and (1) into (A7) and setting ξ(t) = 0, it is obtained that

f(z(t)) +Bu = lim
∆t→0

χ(∆t, z(t), u[t,t+∆t], 0)− z(t)

∆t
. (A8)

The expansion of the nonlinear function f(z) around the arbitrary vector z̄ reads as

f(z(t)) =f(z̄(t)) +Az̄(z(t)− z̄(t))+∑
i,j

∂

∂zi

∂f

∂zj
|ž1

(zi(t)− z̄i(t))(zj(t)− z̄j(t)) (A9)

ž1(t) ∈ [z̄(t), z(t)] for every t. Similarly, the evolution operator can also be expanded around the
arbitrary vector z̄ as

χ(∆t, z(t), u[t,t+∆t], 0) =

χ(∆t, z̄(t), u[t,t+∆t], 0)+

F z̄(t)(∆t, u[t,t+∆t])(z(t)− z̄(t))+∑
i,j

∂

∂zi

∂χ

∂zj
|(∆t,ž2,u[t,t+∆t],0) (zi(t)− z̄i(t))(zj(t)− z̄j(t))

(A10)

where ž2(t) ∈ [z̄(t), z(t)] for every t.
Substituting equations (A9) and (A10) into (A8) and employing equation (A8) for z = z̄ result
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in

Az̄(z(t)− z̄(t))+∑
i,j

∂

∂zi

∂f

∂zj
|ž1

(zi(t)− z̄i(t))(zj(t)− z̄j(t)) =

lim
∆t→0

F z̄(t)(∆t, u[t,t+∆t])(z(t)− z̄(t))− (z(t)− z̄(t))

∆t
+

lim
∆t→0

∑
i,j

∂
∂zi

∂χ
∂zj
|(∆t,ž2,u[t,t+∆t],0) (zi(t)− z̄i(t))(zj(t)− z̄j(t))

∆t
.

(A11)

Since equation (A11) is satisfied for all z, z̄ ∈ C1([0, T ],Rn), it can be concluded that

Az̄(z(t)− z̄(t)) =

lim
∆t→0

F z̄(t)(∆t, u[t,t+∆t])(z(t)− z̄(t))− (z(t)− z̄(t))

∆t

which simply indicates that Az̄(z(t)− z̄(t)) generates F z̄(t)(∆t, u[t,t+∆t])(z(t)− z̄(t)) and is inde-
pendent of the input vector u(t). �
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Table 1. Extended Kalman filtering algorithm

Initialize at k = 0:
ẑ0 = E[z0],
P z0

= E[(z0 − ẑ0)(z0 − ẑ0)T ],
P ν = E[(ν − ν̄)(ν − ν̄)T ],
P ω = E[(ω − ω̄)(ω − ω̄)T ].

For k = 1, 2, · · · ,∞,
Prediction step:

Calculate the state variables prediction ĉ−N (tk+1), ϕ̂−M (tk+1), and θ̂
−

(tk+1) from (??)-(??).
Calculate the covarience matrix prediction P−N (tk+1) from (??).

Correction step:
Calculated the filtering gain from (??).

Update the state variables estimate ĉN (tk+1), ϕ̂M (tk+1), and θ̂(tk+1)

Table 2. Unscented Kalman filtering

Initialize at k = 0:
ẑ0 = E[z0],
P z0

= E[(z0 − ẑ0)(z0 − ẑ0)T ].
P ν = E[(ν − ν̄)(ν − ν̄)T ],
P ω = E[(ω − ω̄)(ω − ω̄)T ].

For k = 1, · · · ,∞,
Calculate Sigma points via equation (3), zs,i
Prediction step:
z−s,i = fd(zs,i) +Bdu, i = 0, . . . 2N,

ẑ−k =
∑2N

i=0W
m
i (Zs,i),

P−zk
=
∑2N

i=0W
c
i ((zs,i)− ẑ−k )((zs,i)− ẑ−k )T + P ν ,

ys,i = h(zs,i), i = 0, . . . 2N

ŷ−k =
∑2N

i=0W
m
i (ys,i).

Correction step:

P yk =
∑2N

i=0W
c
i (ys,i − ŷ−k )(ys,i − ŷ−k )T + P ω,

P zkyk =
∑2N

i=0(zs,i − ẑ−k )(ys,i − ŷ−k )T ,
Kk = P zkykP

−1
yk ,

ẑk = ẑ−k +Kk(yk − ŷ−k ),

P zk
= P−zk

−KkP ykK
T
k .
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Table 3. Estimation error for different observation methods after transient period.

Undisturbed Disturbed

L
in

ea
r

h
ea

t Method Computation time Error max Computation time Error max

EKF 77.6289 0.0022 135.4456 0.3227

UKF 114.9613 0.0075 184.2440 0.3975

SMO 82.0645 0.0053 193.6996 0.0480

Q
u

a
si

-l
in

ea
r

h
ea

t

EKF 200.6813 0.0053 207.3505 0.0886

UKF 246.0649 0.0086 255.1652 0.3562

SMO-EKF 102.7612 0.0060 117.8632 0.0190

SMO 69.4914 0.0090 73.3460 0.0491

N
on

li
n

ea
r

h
ea

t

EKF 168.2633 0.0019 177.9907 0.0566

UKF 209.0683 0.0060 215.6899 0.1797

SMO-EKF 178.3828 0.0036 186.0943 0.0138

SMO 167.7243 0.0053 177.4914 0.0532
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Figure 1. Estimation error of the EKF against time applied to the linear heat equation with different orders of approximation

N . In the absence of a disturbance input, the error is very small even for N = 5. When the disturbance is present, the error is

significant.
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Figure 2. Estimation error of the UKF against time applied to the linear heat equation with different orders of approximation

N . In the absence of a disturbance input, the error is very small even for N = 5. When the disturbance is present, the error is
significant.
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Figure 3. Estimation error of the modified SMO against time applied to the linear heat equation with different orders of

approximation N . In the absence of a disturbance input, the error is very small even for N = 5. When the disturbance is
present, the error is still small.
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Figure 4. Comparison of different estimation methods, the EKF, UKF, and modified SMO, in estimating the state vector of
the linear heat equation for the order of approximation N = 5.
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Figure 5. Estimation error of the EKF against time applied to the quasi-linear heat equation with different orders of approx-

imation N . In the absence of a disturbance input, the error is very small even for N = 5. When the disturbance is present, the
error increases.
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Figure 6. Estimation error of the UKF against time applied to the quasi-linear heat equation with different orders of approx-
imation N . In the absence of a disturbance input, the error is very small even for N = 5. When the disturbance is present, the

error is significant.

0 1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

er
ro

r 
no

rm

Undisturbed

 

 

N=15
N=10
N=5
N=3

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

time (s)

er
ro

r 
no

rm

Disturbed

Figure 7. Estimation error of the modified SMO against time applied to the quasi-linear heat equation with different orders
of approximation N . In the absence of a disturbance input, the error is very small even for N = 5. When the disturbance is

present, the error is still small.
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Figure 8. Comparison of different estimation methods, the EKF, UKF, and modified SMO in estimating the state vector of
the quasi-linear heat equation for the order of approximation N = 5.
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Figure 9. Estimation error of the EKF against time applied to the nonlinear heat equation with different orders of approxi-
mation N . In the absence of a disturbance input, the error is very small even for N = 5. When the disturbance is present, the

error increases.
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Figure 10. Estimation error of the UKF against time applied to the nonlinear heat equation with different orders of approxi-

mation N . In the absence of a disturbance input, the error is very small even for N = 5. When the disturbance is present, the

error is significant.
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Figure 11. Estimation error of the modified SMO against time applied to the nonlinear heat equation with different orders
of approximation N . In the absence of a disturbance input, the error is very small even for N = 5. When the disturbance is
present, the error is still small.
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Figure 12. Comparison of different estimation methods, the EKF, UKF, and modified SMO in estimating the state vector of
the nonlinear heat equation for the order of approximation N = 5.
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