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Abstract

Predictive dynamic simulation is a useful tool for analyzing human movement and
optimizing performance. Such simulations do not require experimental data collection
and provide the opportunity to analyze a variety of potential scenarios. This presents
interesting possibilities for investigating the optimal technique in sports applications, such
as cycling. Much of the previous research on modeling and simulation of cycling has focused
on seated pedaling and models the bicycle or ergometer with an effective resistive torque
and inertia. This study was focused on modeling standing starts, a component of certain
track cycling events in which the cyclist starts from rest and attempts to accelerate to top
speed as quickly as possible. A useful model would need to incorporate bicycle dynamics,
including tire models, and complete cyclist dynamics, including the upper body.

A ten degree-of-freedom, two-legged cyclist and bicycle model was developed using
MapleSim and utilized for predictive simulations of standing starts. A joint torque model
was incorporated to represent musculoskeletal dynamics, including scaling based on joint
angle and angular velocity to represent the muscle force-length and force-velocity rela-
tionships. Tire slip for the bicycle model was represented by the Pacejka tire model for
wheel-ground contact. GPOPS-II, a direct collocation optimal control software, was used
to solve the optimal control problem for the predictive simulation.

First, a modified version of this model was used to simulate ergometer pedaling. The
model was validated by comparing simulated ergometer pedaling against ergometer pedal-
ing performed by seven Olympic-level track cyclists from the Canadian team. A kinematic
data tracking approach was used to assess the abilities of the model to match experi-
mental data. Following the successful matching of experimental data, a purely predictive
simulation was performed for seated maximal start-up ergometer pedaling with an objec-
tive function of maximizing the crank progress. These simulations produce joint angles,
crank torque, and power similar to experimental results, indicating that the model was a
reasonable representation of an Olympic cyclist.

Subsequently, experimental data were collected for a single member of the Canadian
team performing standing starts on the track. Data collected included crank torque, ca-
dence, and joint kinematics. Predictive simulations of standing starts were performed using
the combined cyclist and bicycle model. Key aspects of the standing start technique, in-
cluding the drive and reset, were captured in the predictive simulations. The results show
that optimal control can be used for predictive simulation with a combined cyclist and
bicycle model. Future work to improve upon the current model is discussed.
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Chapter 1

Introduction

1.1 Background

Track cycling is a highly competitive sport, especially at the Olympic level, with races
often being decided by fractions of seconds. Track cycling takes place in a velodrome, an
arena (usually indoors) that consists of an oval-shaped track with steeply banked ends. For
a velodrome that meets Olympic standards, the track is 250 meters long with 42-degree
banked bends and 13-degree banked straights. For indoor velodromes, the track itself is
typically made of pine. Figure 1.1 shows the velodrome at the Mattamy National Cycling
Centre in Milton, Ontario, one of two velodromes in North America capable of hosting
Olympic, Paralympic, and elite world championship events.

Figure 1.1: The velodrome at the Mattamy National Cycling Centre in Milton, Ontario [5]
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Figure 1.2: A track cycling sprint bicycle [6]

There are various different events in track cycling, some of which are performed as a
team and some individually. Track cycling events can generally be split into two categories:
sprint events and endurance events. Sprint events are shorter and much more focused on
speed so the cyclists are trying to generate as much power as possible. In endurance events,
efficiency and pacing are a greater concern.

The bicycles used in track cycling are a feat unto themselves, with engineers and de-
velopers always striving to make their bicycles as lightweight and efficient as possible.
For Olympic-level cyclists, the frame is typically made of carbon fiber, which is rigid and
lightweight (see Figure 1.2). Track cycling wheels are also predominantly made of carbon
fiber, although aluminum spokes are often used during practice. The Union Cycliste In-
ternationale (UCI), track cycling’s governing body, mandates that bicycles must exceed a
minimum total weight of 6.8 kg. Most bicycle manufacturers are capable of manufacturing
bicycles at less than that weight, so a track bicycle is usually designed to that specification.
Aerodynamics plays an important role in track cycling, as the cyclists can achieve speeds
of over 70 km/h. In addition to riding a bicycle that has been designed to be as aerody-
namic as possible, cyclists will wear tight-fitting aerodynamic suits and helmets. In track
cycling, bicycles with a fixed high gear ratio are used so the cyclists can generate as much
power as possible at high speeds. The fixed gear ratio means the pedal motion is directly
connected to the wheel motion (i.e. there is no “freewheeling”). The cyclists clip their feet
into the pedals, ensuring their feet are always in contact with the pedals. The tires used
in track cycling are tubular tires that are typically inflated to approximately 200 psi to
reduce rolling resistance (for comparison, road cycling tires are usually inflated to 90-125
psi). They are made to be as light as possible and are made from a softer compound that
has better grip than road tires.
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(a) Pre-launch (b) Gate Release (c) Drive (d) Reset

Figure 1.3: A standing start performed by a member of the Canadian team

In certain events, such as the team sprint, the cyclists start from a stand-still and then
accelerate to their top speed as quickly as possible, a maneuver referred to as a standing
start. The lead cyclist on each team starts in the gate, which fixes the bicycle position
(Figure 1.3a). During the pre-launch, the cyclist rocks their hips back and then launches
forward in an attempt to have as much forward momentum as possible when the countdown
reaches 0 and the bicycle is released from the gate (Figure 1.3b). As they launch out of the
gate, they drive their hips forward relative to the bicycle (Figure 1.3c). This allows them to
get their hips over the bottom bracket, thus using their weight to generate more torque at
the crank. As the crank approaches a vertical position (referred to as top dead center), they
enter a mechanically inefficient position. It is difficult to generate torque with the crank
in this position, so the cyclist wants to spend as little time as possible in this position. To
overcome this mechanically inefficient position, they shift their hips backwards relative to
the frame, in the process pushing their bike forward underneath them and propelling the
crank through the top dead center position (Figure 1.3d). After passing through top dead
center, the cyclist drives forward again, getting up over the bottom bracket. The cyclist
will complete this periodic motion several times, growing less pronounced with each pedal
stroke, until they have increased the angular velocity of the crank to its top speed.

1.2 Motivation and Research Goals

Over the years, significant work has been put into optimizing track cycling performance by
studying the effects of various bicycle designs and cycling techniques. Much of the research
has been focused on making the bicycle more mechanically efficient (e.g. reducing the weight
of the bicycle) and making the cyclist and bicycle more aerodynamic. Previously, there
have been few efforts to model the multibody dynamics of both the cyclist and bicycle
together.
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The overarching goal of this work was to develop a dynamical model of a cyclist and
bicycle that can be used for predictive simulations of cycling. The idea is that such a model
would be reasonably easy to adapt to various cycling questions. The development of a pre-
dictive dynamic simulation of cycling would allow for various aspects of cycling such as seat
and handlebar positions, gear ratios, pedaling rates, and general biomechanical technique
to be tested much more quickly than with experiments. Predictive computer simulation
is useful in this regard because it allows for numerous trials under various conditions in a
relatively short period of time, and it does not rely on previous experimental data. The
challenge with a forward dynamics model is in finding the appropriate simplifications to
get a useful model: too much detail and the model is overly complex; too simple and the
model is not an accurate representation of real life.

The focus of this project was prompted by discussions with members of Cycling Canada,
who are interested in two main points regarding standing starts in track cycling. They want
to know, in general, what defines the “optimal” kinematics in a standing start. They are
also interested in finding the optimal crank angle at which to start. The standing start can
be broken down into two phases: pre-launch and launch. The pre-launch phase consists
of the portion up until the gate release, and the launch phase is the portion from gate
release up until the cyclist enters the first turn (approximately 30 m). The goals within
the pre-launch are to (1) maximize initial forward velocity at the time of gate release, (2)
time the gate release so that forward progress begins as the gate releases, and (3) optimize
the body position for the start of the launch phase [7]. The goals for the launch phase are
much less concrete at this time. In general, the goal is to rise from the seat and use the
additional degrees of freedom to maximum advantage. By shifting the body relative to the
crank, one can optimize the body relative to the crank in a position best for producing
torque. Another hypothesis is that the ability to engage different muscle groups might play
an important role for maximizing torque production during the standing start [7].

To summarize, the goal was to model a standing start to gain a better understanding
of the optimal kinematics, including aspects such as the initial pose. The initial objective
was to develop a model that is a faithful representation of a cyclist and bicycle. Once
the model was developed, it was validated using results from experimental analysis of
ergometer pedaling and a model representing those experimental conditions. The bicycle
and cyclist model was then utilized for predictive simulations of standing starts. These
simulation results were compared against experimental results for a standing start on the
track.
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1.3 Thesis Structure

• Chapter 1 provides background on track cycling, discusses the motivation and re-
search goals, and outlines the main contributions of this work.

• Chapter 2 contains a review of relevant literature regarding modeling of cycling and
bicycle dynamics.

• Chapter 3 contains details on the development of the cyclist and bicycle model, and
describes the optimal control process used in all the predictive simulations.

• Chapter 4 contains experimental results from ergometer testing for members of the
Canadian track cycling team. It explains how the model was modified to represent
ergometer pedaling. A data tracking approach was utilized to test the model’s ability
to match experimental results. Predictive simulations were performed to compare
how the optimal result for the ergometer pedaling model compared to experiments
performed under similar conditions.

• Chapter 5 contains the experimental methods and results from standing starts on the
velodrome track. The cyclist and bicycle model was utilized for predictive simulations
of standing starts. The results from the experiments and simulations are compared.

• Chapter 6 contains a summary of the work and a discussion of the key findings. It
concludes with suggestions for future work.

1.4 Contributions

• A multibody dynamics model of a cyclist and bicycle that reflects the capabilities of
an Olympic cyclist and bicycle

• A predictive simulation of ergometer pedaling using direct collocation optimal control

• An implementation of a tire model with a bicycle model that includes a dynamic
cyclist

• An experimental analysis of a standing start including crank torque, crank kinemat-
ics, and joint kinematics

• A predictive simulation of a track cycling standing start using direct collocation
optimal control

5



Chapter 2

Literature Review

2.1 General Competitive Track Cycling Research

There are several different aspects of cycling that can be analyzed to understand the factors
that contribute to performance. These could generally be broken down into two categories:
optimization of the cyclist (e.g. technique, strategy, and physiological capabilities) and
optimization of the equipment (e.g. bicycle, suit, and helmet). With the suit and helmet,
the primary goal is to make them as aerodynamic as possible. With the bicycle, the
goals are to be aerodynamic and mechanically efficient (e.g. optimizing the weight of the
bicycle, rolling resistance, frame stiffness, bearing and chain efficiency, etc.). For the cyclist,
researchers have investigated factors affecting power production and fatigue, with the goal
usually focused on optimizing cycling position and pacing strategies.

Several mathematical models [8, 9, 10, 11] have been developed that look at fatigue
and pacing strategies, in addition to examining the effect of changing bicycle parameters.
These generally use an experimentally-measured power as the input to the model and
neglect cyclist biomechanics. Flyger et al. [12] took the work of Martin et al. [9] and
replaced the power data input with a model of physiological energy supply. Again the
dynamics of the cyclist were not analyzed, and they simply utilized the torque that the
cyclist was generating at the crank. One of their modifications was to add an initial
velocity for the center of mass that essentially represents the outcome of the pre-launch in
the standing start technique. There have been relatively few studies focused specifically
on the starting technique in track cycling. Janssen and Cornelissen [13] collected pedal
forces during standing starts for BMX and track cyclists and reported the maximum forces
during each of the first two pedal strokes. The experimental studies most relevant to

6



this work were the experiments of Padulo et al. [14, 15], who investigated the starting
conditions for track cycling, but were limited to two conditions for starting crank angle
(71◦ and 47◦), hand position, and seated/standing. Of the configurations they tested, the
best performance was achieved when in the standing position with the hands on the upper
bar of the handlebar and an initial crank angle of 71◦.

The limitation of experimental analysis is that numerous tests have to be conducted
and it is not always clear how various factors affect each other. A limitation of the power-
based and energy-based mathematical models is that they do not aid in understanding how
the cyclist is interacting with the bicycle. In many cases, extensive testing is required to
understand this interaction and ongoing testing is still required. A biomechanical model
is useful in this regard because it allows one to investigate the biomechanics of the cyclist
and the interactions between the cyclist and the bicycle. The idea is that once testing
has been conducted and the model has been validated, numerous different experimental
conditions could be tested.

2.2 Multibody Dynamic Analysis: Inverse Dynamics

versus Forward Dynamics

Relatively little work has been done regarding musculoskeletal modeling and dynamic
simulations specific to competitive track cycling. One of the key distinctions to make for
biomechanical analysis is between inverse dynamics and forward dynamics. Both inverse
and forward dynamics can be useful, depending on the questions you are trying to answer.
For inverse dynamics, one uses experimentally-measured external kinetics and kinematics
to find the torques and forces acting on various joints. For forward dynamics models on
the other hand, the model is driven using torques or forces. Forward dynamics usually
requires some form of optimization to find the actuations that achieve the desired goal.
Within forward dynamics, there are different methods of driving the simulations. One is
to collect experimental data and then drive the model to match this data; this is referred
to as “data tracking” simulation in this thesis. With the use of experimental data, it is
closer in nature to inverse dynamics and is often used to find the muscle activations and
forces required for a given experimentally-measured motion. Alternatively, one can have
simulations that are purely predictive in nature. In such simulations, no experimental data
are used to drive the simulation, and the model is driven using a representative objective
function, such as achieving the maximum distance.
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2.2.1 Inverse Dynamics of Cycling

Inverse dynamics is not the focus of this work, so only a brief overview of relevant literature
will be discussed. In 2009, Bini and Diefenthaeler [16] conducted a review of the various
studies on mechanical work in cycling. One of the findings they discussed was that different
joints should be playing different roles during the pedaling motion; each joint is not focused
only on force production. For example, at times in pedaling, the primary use of the ankle
joint seems to be to provide stiffness and transmit the mechanical energy produced by the
hips and knees to the crank. Wangerin et al. [17] conducted inverse dynamics analysis for
four cyclists who were were asked to maintain a power output of 350W at a cadence of 90
revolutions per minute (rpm). They were investigating the influence of pedaling rate and
power on joint moments. Martin and Brown [18] were interested in the effects of fatigue on
joint kinematics and power. In their study, thirteen trained cyclists performed a 30-second
maximal cycling trial at 120 rpm. They found that changes in power were related to the
decrease in amount of time spent extending the legs due to fatigue, as the extending motion
is more powerful than the flexing motion. More recently, in 2016, Yamazaki and Matsuda
found the inverse dynamics for amateur male cyclists producing 200W at 90 rpm [19].

This is just a sample of the inverse dynamics analyses that have been conducted. Pure
inverse dynamics analysis has somewhat reduced in popularity, as now there is more focus
on what is happening at the muscular level, rather than only the joint level. The main
limitations of inverse dynamics are the potential for errors in data collection and the
simplifications made in developing the model. Furthermore, data collection can be time-
consuming and expensive. For example, one of the primary interests in experimental
data collection for cycling, and a key necessity of inverse dynamics, is pedal force data.
This requires pedal force sensors, which can be expensive, especially for ones that give
accurate and reliable measurements. This example is used to show that there are limitations
to inverse dynamics and reliable results can be difficult, time-consuming, and expensive
to obtain. Forward dynamics is more dependent on accurate modeling, but can be less
dependent on experimental data. When it comes to optimization and trying to improve
performance, forward dynamics and predictive simulation is more useful.

2.2.2 Musculoskeletal Modeling and Forward Dynamics of Cy-
cling

In forward dynamics, the model is driven using a force or torque activation as the inputs.
The kinematics are then solved for from these forces or torques. In their paper on de-
veloping musculoskeletal models, Hicks et al. [1] present the flowchart in Figure 2.1 that
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Figure 2.1: Flowchart of forward dynamics presented by Hicks et al. [1]. Reproduced with
permission from American Society of Mechanical Engineers.

displays the forward dynamics process in a straightforward manner. One of the challenges
with forward dynamics is determining the best place to enter the process flow. There are
two main ways to drive a biomechanical model using forward dynamics. One is to include
individual muscles and to activate them using muscle excitations (entering at the far left of
the flow chart in Figure 2.1). Using forward dynamics on a musculoskeletal level allows one
to identify individual muscle contributions and investigate muscle coordination [20, 21, 22].
However, this can become computationally intensive when using optimal control methods
because of the increased number of state variables. An alternative is to use applied torques
(entering in the middle of the process flow, at the step labeled “Moments” in Figure 2.1) to
represent the combination of muscle forces on a joint and activate them using a represen-
tative excitation. This reduces the number of variables and simplifies the optimal control
problem.

Muscle models

Various muscle models have been developed starting with the simple muscle model de-
veloped by Hill [23]. Advancements and adaptations have been made over the years (see
[24] for one version), but the focus of these models is accurately capturing musculotendon
dynamics. Muscle models usually consist of a contractile element representing the muscle
body, a series elastic component representing the tendon and everything acting in series
to the muscle, and a parallel elastic component representing the ligament, connective tis-
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sue around the muscle, and other passive elastic components. Muscle forces are scaled
based on the muscle force-length and force-velocity curve that has been experimentally
determined. Activation dynamics are included as well to represent the neural excitation
to muscle activation process.

In lower limb models developed specifically for cycling [20, 22, 25, 26, 27, 28], generally
9-15 muscles per leg have been included in the model. This has been accepted as an
accurate method of modeling the lower limb. The primary drawback of this approach is
the number of variables it entails. In predictive simulations, the number of excitations
is the number of controls that need to be computed. Improving the fidelity by modeling
individual muscles means there are more controls to consider in the problem. As the model
increases in number of segments (e.g. adding upper body movement), the more redundant
actuators would be required, resulting in a more complex optimization problem and long
simulation times.

Joint torque models

An alternative to modeling individual muscles is to use applied torques to represent the
combination of muscle forces on a joint. This reduces the number of variables and simpli-
fies the optimal control problem. Generally, the joint torque model consists of a passive
and active torque. The active torque represents the combination of active muscle forces
acting on a joint and is scaled based on joint angle and angular velocity to represent the
force-length and force-velocity relationship of muscles. Alexander [29] was one of the first
to employ this method when it was used to study the take-off technique for high and long
jumps. Subsequent researchers expanded on this model to include detailed passive torque
models, which represent the forces produced by the passive stretching of muscle tissue, ten-
dons, and ligaments. Joint torque models have been implemented previously in predictive
simulation of human movement, especially with sports applications [30, 31, 32, 2].

The key trade-off with joint torque models, as with many models, is between accuracy
and computation time. Muscle models are more realistic and are the standard in muscu-
loskeletal modeling. However, for some studies such as this one, it is not reasonable based
on the increased computation time it would require. In general, the extra parameters make
the model that much more difficult to work with, tune, and debug, which was a major issue
already based on the simulation times. Additionally, the primary focus of this work was on
finding the optimal kinematics of the standing start, and there was less concern with the
individual muscles forces required to achieve the motion. For this reason, a detailed muscle
model was not required, only sufficient constraints to limit the movements and torques to
what is physiologically possible.
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Once the musculoskeletal model has been developed and validated, it is time to use it
in simulations. The key for the simulations is determining the best way to solve for the
activations, i.e. the method of driving the simulation. Generally this is formulated as an
optimization problem with an objective function of trying to match experimental data or
to achieve a certain goal.

2.3 Forward Dynamics Applications to Human Move-

ment: Kinematic Data Tracking versus Predictive

Simulation

Various methods have been used to actuate forward dynamic simulations of human move-
ment. A commonly used approach in forward dynamic simulations of human movement is
to employ optimal control methods.

2.3.1 Optimal Control

Two frequently-used numerical approaches to solving optimal control problems are direct
methods and indirect methods. Indirect methods utilize Pontryagin’s minimum principle
and the problem becomes a boundary value problem. One downside is that the co-state
equations have to be derived. It can be challenging to solve because it needs an initial
guess for the co-state variables, which often do not have a physical meaning.

Direct methods do not require analytical derivation of the co-state equations. In direct
methods, the control and/or state variables are approximated with a polynomial func-
tion, and the optimal control problem is transcribed to a non-linear programming problem
(NLP). The NLP problem is then solved using a NLP solver. Direct methods can be further
broken down into shooting methods (single or multiple shooting) and collocation (local or
global orthogonal) methods. In shooting methods, only the control variables are parame-
terized. In collocation methods, both the control and state variables are parameterized. In
collocation methods, the differential equations are essentially treated as constraints such
that the derivatives of the states from the polynomial functions must be equal to the state
derivatives calculated from the model dynamics.

In direct shooting, the dynamic equations are simulated by solving sequentially. This
can lead to issues with states being very sensitive to the controls due to the time duration
of a simulation. Solving sequentially often leads to longer computation times as well. In
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2001, Anderson and Pandy [33] used direct shooting for gait and took 10,000 hours for
half the gait cycle. Also in 2001, Kaplan compared direct collocation with a numerical
gradient approach and found that direct collocation was more efficient and converged to a
solution in fewer iterations. Later, Porsa et al. [34] compared direct shooting and direct
collocation for maximum-height jumping. They found that direct collocation converged to
essentially the same optimal solution up to 249 times faster than direct shooting. These
results indicated the advantages of direct collocation over direct shooting and subsequent
researchers have used direct collocation in other applications. DeGroote et al. [35] evaluated
the capabilities of direct collocation optimal control with human movement for solving the
muscle redundancy problem. They used GPOPS-II, an orthogonal collocation optimal
control software, with two and three dimensional models of human gait in a formulation
they refer to as “muscle dynamic optimization.” In this approach they performed an inverse
dynamics analysis to obtain the skeletal dynamics, which were then prescribed in the
optimization. They were able to obtain much shorter computation times than previously
seen, but some of the decrease in computation time was a result of only evaluating muscle
dynamics in the optimization. They achieved promising results, and they recommended
future work to assess the capabilities for predictive simulations involving skeletal dynamics.

Using optimal control has the benefit of finding optimal profiles for the inputs. It is free
to take any value within the given bounds. An alternative approach is to have the joints
maximally activated every time [31, 30, 36, 28]. In these approaches, the on/off activation
times are solved for, and the force or torque profiles are defined based on those activation
times. This can produce effective simulations for shorter or repetitive motions, but solving
for multiple different activation times over a longer or more complex simulation becomes
cumbersome and less effective. Based on the advantages of optimal control, it can be an
effective tool for simulations of human movement. There are many robust and ready-to-
use optimization algorithms (NLP solvers) available. Optimal control has previously been
applied to forward dynamics simulations of pedaling [20, 26, 2], which is ideal for such
methods due to the constrained nature of the movement. However, one challenge with
pedaling models in these types of setups is that the legs + crank form a closed kinematic
chain, which results in dynamic equations that are differential algebraic equations (DAEs)
rather than ordinary differential equations (ODEs).

2.3.2 Forward Dynamics Utilizing Experimental Data

Some forward dynamics simulations are formulated as an experimental data tracking prob-
lem. This is classified as forward dynamics, but it still requires experimental data to run
the simulation so it is not predictive in nature. As with inverse dynamics, it is reliant on
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collecting accurate experimental data. Essentially, the forward dynamic optimization is
run to determine what combination of muscle forces cause a given movement. With the
inclusion of muscles and their forces, this type of setup can be useful for understanding
what is happening internally during an experiment and give better estimates of joint reac-
tion forces and stress on different internal structures such as ligaments. Several researchers
have used this method or similar methods [26, 27, 22, 37, 38] in a range of applications like
gait, jumping, and pedaling. They use several different optimization techniques, but their
approaches are similar in that they are driving a model to match experimental results.

Hull and his colleagues were involved in several of the pioneering studies in cycling
biomechanics throughout the 1980s and 1990s. In 1986, Redfield and Hull [38] utilized a
single leg model with a fixed hip joint center to predict pedal forces with an optimization
routine. Their kinematic inputs were the experimentally measured angular position, veloc-
ity, and acceleration of the crank and the angular position, velocity, and acceleration of the
foot relative to the crank. An additional constraint prevented the knee joint from extend-
ing past the straight leg position. Optimized pedal force profiles based on a Fourier series
were determined for two cost functions: one based on joint moments and one based on
muscle stress. They removed the complication of handling the muscle redundancy problem
by lumping the muscles into functional groups (i.e. flexors and extensors). After comparing
to experimental pedal forces it was determined that both cost functions offered reasonable
predictions of pedal forces; however, the muscle stress cost function better predicted joint
moments. A few years later, Gonzalez and Hull [39] used experimental data and a model
to examine the optimal pedaling rate, crank arm length, seat tube angle, seat height, and
longitudinal foot position on the pedal.

In the 1990s, Fregly and Zajac [40] were interested in how energy was generated and
transferred between segments during the pedaling motion. They developed a three degree-
of-freedom, two-legged model of stationary ergometer pedaling. Each leg was a five bar
mechanism with hip center and crank center both fixed. Their degrees of freedom were
the crank angle and the angles of the feet. The ergometer was modeled by a resistive
torque that represented the inertia of the flywheel, along with other resistive torques that
would be experienced by a cyclist. They calculated net muscle joint torques using an
inverse dynamics analysis and then utilized a parameter optimization algorithm to track
the experimental joint torques. They presented interesting results regarding the roles of
each joint in generating, absorbing, or transferring energy throughout the pedaling motion.
The general result was that the hip joint torques are generating energy and delivering it to
the limb segments, and the ankle joint torque serves to transfer that energy to the crank.

In a continuation of Hull’s cycling research, Kautz and Hull [41] simulated sub-maximal
steady-state cycling at 90 rpm and 225 W for a two-legged model with hip joint centers
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fixed and the feet rigidly attached to the pedal. The pedal angle was prescribed as the
experimental pedal angle, leaving the crank angle as the only degree of freedom. The hip
and knee torques were the inputs. They used Fregly and Zajac’s method of modeling the
ergometer where the ergometer was modeled by an effective resistance. One application
they considered for their model was optimizing the shape of the chainring to see if an
ellipsoidal chainring could reduce the joint moments. They used a direct shooting-type
approach, in which the controls were parameterized. Neptune and Hull [22] followed up
on the work of Kautz and Hull using a similar model; however, the knee was given two
translational degrees of freedom that were defined based on the knee flexion angle. Instead
of joint torques, it was driven by 15 muscle actuators per leg. Their optimization was set up
to find the muscle excitations that resulted in matching the experimental data for seven
different combinations of the crank and pedal kinetics and kinematics, joint moments,
and timing of muscle excitations. They converted the optimal control formulation into
a parameter optimization problem and utilized a simulated annealing algorithm. They
had the most success utilizing the objective function matching all the experimental data
(kinetic and kinematic data and electromyography (EMG) timing).

Kaplan and Heegaard [26] focused on a new algorithm they developed using direct
collocation. Their model consisted of 7 total segments with the hip joint center fixed and
18 independent muscle groups (9/leg). They were trying to find the muscle activations
that maintained a constant cadence of 60 rpm and matched pedal angles experimentally
determined by Ting et al. [25]. Kaplan and Heegaard were comparing their method against
the work previously done by Ting et al. [25], who used a numerical gradient approach on
a model with 9 muscles and 27 unknowns. As mentioned previously, the direct collocation
performed better than the numerical gradient approach. Various optimal control softwares
have become available since then, so these types of problems can now be analyzed without
developing one’s own optimal control formulation.

Thelen et al. [27] demonstrated an implementation of their computed muscle control
using a pedaling model. They included 15 muscles per leg and even included the patella
in their model of the lower leg. The hip and ankle were revolute joints, but, similar to
Neptune and Hull, their knee joint was a planar kinematic joint that allowed two degrees of
freedom that were defined based on the knee flexion angle. The pelvis location was fixed,
leaving the model with 3 degrees of freedom. Based on Fregly and Zajac [40], the load was
modeled by an equivalent inertial and resistive torque. The objective in their optimization
was to find the muscle excitations that drive the model to match the pedal angles, crank
angle, and radial pedal forces.

Lai et al. [42] investigated the effects of including multiple types of motor units in
the muscles controlling the ankle during pedaling. Previous musculoskeletal models did
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not account for the activation dynamics of different types of motor units (slower or faster
activations). These models often had to have their force-producing capabilities scaled up
in order to match experimental data for tasks requiring high force outputs. Lai et al.
modeled the ankle as a universal joint with the appropriate musculature surrounding it,
but now both fast and slow motor units were included. They neglected the thigh motion
and prescribed the translations and rotations of the shank using the experimental results.
Their forward dynamic simulations were run for cadences ranging from 60 to 140 rpm and
a constant average crank torque. They found that the excitation required to match the
ankle kinematics was reduced by as much as 23% when they included the two types of
motor units. These results suggest that incorporating multiple types of motor units can
increase the force-producing capabilities of a model.

Farahani et al. [37] utilized what they refer to as an inverse-inverse dynamics method.
They also refer to this approach as predictive dynamics, although it is not entirely pre-
dictive in nature. In this approach, the movement is the independent variable and is
parameterized using functions that specify the motion of the various degrees of freedom.
The muscle excitations are determined that result in the kinematics and external forces
that are specified by the parameterization functions. They developed a similar model to
previous researchers with a fixed upper body, and their degrees of freedom were crank an-
gle and ankle angle. The independent inputs of the cycling optimization problem were the
foot motion and crank torque. To simplify the problem, they assumed the crank angular
velocity was constant and the foot motion was symmetric and offset by 180 degrees. These
simplifications allowed them to neglect the crank inertial load and to only optimize for
one set of variables. These assumptions are reasonable for the steady-state pedaling in
this study, but for start-up pedaling, there is too much variation from one pedal stroke to
the next to make these simplifications. The foot motion was described by a Fourier series
due to its cyclic nature. Crank torque was described by a sinusoidal function, which is a
reasonable approximation for their experimental power output and constant cadence. The
objective function was the minimization of muscle activity. While their simulations could
be considered predictive in terms of the muscle activations required and the fact they are
not directly using experimental data, the independent inputs have a predefined form that
can only change based on the parameters.

A variety of approaches have been used in modeling the biomechanics of pedaling,
ranging from two legs with 15 muscles per leg to models that focus specifically on the ankle
but include multiple types of motor units. These methods are all useful for understanding
the muscle forces required for a movement, but they can only examine what is happening
in previously recorded movements. They are unable to study what would happen under
different conditions or how the existing movements could be improved.
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2.3.3 Predictive Simulation of Human Movement

Forward dynamics using experimental data tracking can be contrasted with purely predic-
tive simulation, in which there is no experimental data used. Purely predictive simulation
is useful because it does not necessarily require the detailed data collection that experimen-
tal tracking does. Additionally, numerous different simulations can be run with various
different parameters to see how the optimal solution changes. Predictive simulation is
useful for running “What if?” simulations to get an idea of what happens when various
components of the model are changed. This can be used to reduce the number of physical
experiments that need to be run and therefore find the best techniques more quickly.

One of the challenges of predictive simulations, regardless of the optimization method
used, is determining an approximate objective function. Predictive simulation of sub-
maximal movements will generally have objective functions that include both high-level
and low-level objectives (e.g. maintain a certain cadence while minimizing energy expen-
diture). For walking, objective functions such as maintaining a certain metabolic energy
per unit distance have been used. In maximal exertion movements, the objective function
is usually a maximization of a final condition. Ashby and Delp [43] studied maximal long
jump and maximized the horizontal postion of the toe at landing. Pandy et al. [44] used
the vertical position and velocity of the CoM at moment of take-off for maximum-height
vertical jumping. Raasch et al. [20], a study that will be discussed further in the following
paragraphs, used total crank progression as the objective function for maximal start-up
pedaling on an ergometer. Essentially, in maximal exertion studies, the primary, and often
only, objective is to maximize some final condition.

Around the time of the Fregly and Zajac analyses using kinematic data, Raasch and
Zajac were also investigating pedaling. In 1993, Raasch et al. [20] used optimal control with
a musculoskeletal model for maximal start-up pedaling (i.e. starting with zero velocity).
Their model had two legs with the hip positions fixed and the feet rigidly attached to the
pedals, similar to the other models that have been discussed. All the joints were revolute
joints except the knee, which had two translational degrees of freedom that were defined
based on the knee flexion angle. Initially, they were seeing large amounts of ankle dorsiflex-
ion in the first downstroke, so there was additional stiffness added at the boundaries of the
normal range of motion to prevent this. The method used by Fregly et al. [40] for modelling
the effective ergometer load was implemented in this model as well. They used 15 muscles
per leg that were broken into 9 muscle sets, or synergies. Activations were applied to a set
so all the muscles in a set received the same signal. They utilized a constrained optimal
control algorithm to find the excitations to the muscle sets that maximized the total crank
progress. The initial state for the simulation was found by allowing the musculoskeletal
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model to come to rest with all muscles off. In 1999, Raasch and Zajac [21] followed up on
this work using the same model and looked at the muscle groups further to find the func-
tional muscle groups and the neuromuscular strategy for pedaling. Mehrabi and McPhee
[45] also used muscle synergies to reduce the optimal control problem for the predictive
simulation of pedaling. They included muscle fatigue in their simulations to examine the
effects of fatigue on steady-state cycling, as opposed to the start-up pedaling investigated
by Raasch and Zajac.

The work of Van Soest and Casius [36] is an example of predictive simulation not using
optimal control. They used a parallel genetic algorithm for their optimization. Their
goal was to maximize the average power for pedaling at a designated fixed crank angular
velocity. They prescribed the crank angular velocity, which allowed them to mechanically
decouple the crank and only model one leg, actuated by eight muscle groups. The joints
were all frictionless revolute joints, and, as with other models, the hip joint center and
upper body orientation were fixed. The inputs to the model were the muscle excitations.
They made the assumption that the muscles were always maximally activated anytime
they were stimulated. Their optimization was attempting to find the on/off crank angle
for each muscle group that maximized average power output over a full pedal stroke at a
constant crank angular velocity. The optimization method used by van Soest and Casisus,
and subsequently by Bobbert et al., works well for steady state pedaling. It does not work
as well for start-up pedaling because the on/off angles will be changing with each pedal
stroke as the cadence increases.

Bobbert et al. [28] followed up on VanSoest’s work using the same simulation model
and optimization approach, now looking specifically at why the relationship between pedal
force and crank angular velocity was not hyperbolic like the relationship between muscle
force and contraction velocity. They simulated at different crank angular velocities and
varied inertial properties and model dynamics to see what effect they had on the relation-
ship between pedal force and crank angular velocity. They were investigating a previous
hypothesis that the linear relationship between pedal force and crank angular velocity was
a result of segmental dynamics canceling out muscle forces as velocity increased. The re-
sults of Bobbert et al. indicated segmental dynamics were not playing a noticeable role in
pedal force reduction in cycling. What they noticed, rather, was the linear relationship
between torque and cadence seemed to be a result of the activation/deactivation dynam-
ics. Because the model needed time to deactivate the muscles, they had to be deactivated
earlier in the pedal stroke as cadence increased, which led to a reduction in the maximum
amount of pedal force that could be produced. Both studies by this group reached simi-
lar conclusions that activation dynamics have a major effect on the optimal pedaling rate
and the maximum pedal force that can be produced. This effect is captured in the model
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Figure 2.2: Model developed by Zignoli et al. [2]. Reproduced with permission from
Springer Nature. Similar components are seen in other models such as the fixed hip location
and rigid connection between the pedal and the toe.

presented in this thesis.

Zignoli et al. [2] recently used optimal control with a joint torque-driven model for
predictive dynamics of sub-maximal ergometer cycling. Figure 2.2 displays the framework
of their model. They implemented a joint torque model with active and passive torques
applied to each of the joints. The hip position was fixed and all joints were revolute joints
with a damping of 0.1 N·m/(rad/s). Similar to previous researchers, the crank-load was
modeled by an effective inertial and resistive torque. In a change from what had previously
been commonly used in optimal control, they used indirect methods rather than direct
methods. They focused on sub-maximal exertion and tried to match a cadence while
minimizing joint torques and jerks. They achieved good agreement with experimental
results indicating that indirect methods can also be an effective method for predictive
simulations of human movement.

A common theme among previous dynamic models is that many have focused on er-
gometer pedaling or steady-state cycling and have used some form of equivalent resistive
torque and/or effective inertia to provide the resistance at the crank [20, 22, 27, 2]. They
do not model the bicycle itself because, for steady-state cycling and ergometer pedaling,
the resistance at the crank can be modeled more easily in the aforementioned ways. Fur-
thermore, they all considered the hip to be fixed and did not include upper body motion in
their models. There has been limited research done in which both the cyclist and bicycle
are modeled.
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2.4 Bicycle Dynamics

Modeling the bicycle allows one to incorporate the bicycle dynamics when examining the
effects of the cyclist shifting body positions. This becomes important when considering
standing starts in track cycling. Schwab and Meijaard [46] conducted a review on previous
bicycle dynamics research, which is largely focused on bicycle stability and control methods
for balance and steering. The Carvallo-Whipple model has been the basis of models for
studying bicycle dynamics since the early 1900s.

2.4.1 Carvallo-Whipple Model

The Carvallo-Whipple model consists of a rear frame, steering assembly (front fork +
handlebars) and two wheels. These four rigid bodies are connected by three revolute
joints. The model is simplified by making several assumptions. The wheels are treated
as contacting the ground at a knife-edge, and it is assumed there is no longitudinal or
lateral tire slip. In many cases, the rider is ignored or treated to be rigidly attached to
the frame at the seat. If given movement, the model was typically only given upper body
lean for stability and not lower limb movement for propulsion. Although fairly simple, the
Carvallo-Whipple is a reasonably accurate model of a rider-less bicycle, and Kooijman et
al. [47] were able to validate it for speeds ranging from 3 to 6 m/s. Subsequent researchers
added to the model by incorporating various different components such as toroidal wheels
and forward acceleration. The Carvallo-Whipple model and other models of a similar
nature are accurate at lower speeds and can give a general idea of bicycle dynamics under
ideal conditions. However, it does not consider the effect of the rider’s movement, and the
simplified tire model is not accurate at higher speeds.

There has been considerable research done into the process by which the rider steers
the bike. Various controllers have been developed that aim to accurately represent steering
and balancing. When developing a controller for a cyclist, it is often desired that there is
both balancing and path following, so a multi-loop controller is required for such studies.
Some models have added a degree of freedom for upper body lean and control this with
the controller as well. Schwab et al. [48] used optimal control in their study and allowed
for upper body lean, but treated the legs as being fixed.

As mentioned, most previous researchers ignore the cyclist or treat the cyclist as be-
ing fixed when investigating bicycle dynamics. Part of the reason this is done is due to
the difficulties caused by adding moving legs. The pedaling motion means the leg masses
are constantly oscillating. This leads to resultant moments about the frame’s longitudinal
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axis. Connors and Hubbard [49] investigated the effects of leg movement on the steering
controller. As the cyclist pedals, the bicycle rolls side-to-side as a result of the leg move-
ment, and the bicycle will tend to oscillate in relation to the pedaling frequency. Connors
and Hubbard found that by shifting gears the cyclist could minimize the oscillations and
make the bicycle easier to control. They incorporated a geared bike that would allow for
lower pedaling rates at higher speeds, but this is not possible for track cycling models due
to their fixed gear ratio. In general, during the standing start, the cyclist is moving in a
straight line with the bicycle frame upright. Developing a controller that accurately models
a cyclist steering and balancing can be complex, so for the purposes of this project focused
on straight-line cycling, it was ignored. The additional complexity of the controller would
increase computation time, which is already large due to the nature of the model.

2.4.2 Tire Modeling

An important aspect of modeling a bicycle is accurately modeling the wheel-ground contact.
Researchers often make the assumption there is no slip and use nonholonomic constraints
for the wheel-ground contact. This is not a good assumption when studying an accelerating
bicycle, especially when looking at start-up cycling. A study by Sharp [50] showed that at
higher speeds the simplified nonholonomic tire models employed in the Carvallo-Whipple
model are not accurate. For more detailed wheel-ground contact, researchers employ a tire
model. Various different tire models are available, but the most common for multibody
vehicle dynamics is the Pacejka tire model. The Pacejka tire model fits model parameters to
experimentally-measured tire forces and moments acting on the wheel hub. Implementing
a Pacejka tire model for a bicycle would allow for more accurate representation of the tire
dynamics than that of the basic Carvallo-Whipple model. It is a highly accurate model,
but requires experimental testing to determine the parameters.

Unfortunately, there is relatively little research that has been done on bicycle tires and
their force properties. Two of the more recent studies are those by Dressel and Rahman
[51] and by Doria et al. [52], but these were primarily for road bicycles. The study by
Doria et al. collected tire data and used a curve-fit approach to find parameters for the
basic form of the Pacejka tire model. Bulsink et al. [53] investigated rider stability with a
fixed rider and utilized the results of Doria et al. to implement the Pacejka tire model for
wheel-ground contact, a novel method for bicycle dynamics. Bulsink et al. [53] is one of
the only ones to use the Pacejka tire model in a model of bicycle dynamics, partially due
to the difficulties of obtaining the necessary data.
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2.5 Opportunities for Novel Research

Based on the analysis of previous literature and the research interests of Cycling Canada,
there are several opportunities for novel research. Studies focused on musculoskeletal mod-
eling of the cyclist have not considered bicycle dynamics and generally focus on ergometer
pedaling. Studies focused on bicycle dynamics have not included the cyclist dynamics and
generally treat the cyclist as being rigid. There is a lack of models that take into account
both cyclist and bicycle dynamics simultaneously. Furthermore, with regards to modeling
the bicycle, there has been limited application of tire models. This is important for ma-
neuvers involving significant longitudinal acceleration. Adding a tire model presents an
expansion on the work done in modeling bicycle dynamics. These gaps in literature mean
there is the potential need for modeling and simulation that take both cyclist and bicycle
dynamics into account. There is also the need for more detailed experimental studies of
standing starts on the track. This includes high-frequency torque and power measurements
as well as a kinematic analysis of the cyclist. Gathering such data is important for making
comparisons and drawing conclusions from the results of predictive simulations.

There have been several studies, but not an extensive use of predictive simulation for
pedaling. There is the potential for novel applications of direct collocation, specifically
the software GPOPS-II, to predictive simulation. An additional benefit of this work is the
use of predictive simulation of human movement in a more unique application such as the
standing start. Hopefully this work can be used by future researchers as a resource when
approaching their own project involving predictive simulation of human movement.

The purpose of this work was to develop a model of a cyclist and bicycle that can
be used for predictive simulations of Olympic-level track cycling using optimal control
methods. To our knowledge, there is no previous modeling and simulation study of track
cycling standing starts. The model should be able to replicate experimental joint angles
for seated start-up pedaling on an ergometer and observe similar patterns in crank torque,
cadence, and power. During standing starts, cyclists are off the seat and shift their bodies
longitudinally relative to the bicycle to obtain more efficient positions to generate more
torque. For this reason, it is necessary to include the upper body in any model of a standing
start. The goal is to use predictive simulations to gain a better understanding of what the
optimal full body kinematics might look like for standing starts, including the starting
pose.
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Chapter 3

Bicycle and Cyclist Model
Development and Optimal Control
Formulation

The model was developed using MapleSim because its multi-domain capabilities allowed
the bicycle and cyclist to be modeled in the same software. Additionally, its optimized
code generation capabilities make it an excellent choice for developing and exporting
computationally-efficient forward dynamics models. Two primary versions of the model
were used, one including the bicycle representing cycling on the track (referred to as the
combined cyclist and bicycle model or the track model) and one without the bicycle rep-
resenting ergometer pedaling (referred to as the ergometer model).

3.1 Bicycle Model

The bicycle model consisted of four bodies: the rear wheel, the front wheel, the crank
and the frame/fork/handlebars (see Figure 3.1). Revolute joints connected the rear wheel
to the frame and the front wheel to the fork. The crank was modeled as a single link
connected to the frame by a revolute joint. The rear wheel motion was connected to the
crank motion using an ideal gear with a 50:14 (3.57:1) gear ratio that was the same as the
fixed gear ratio used by the cyclist in the on-track experiments. The focus for this model
was on the initial portion of the team sprint event up until the cyclist enters the first turn.
During a standing start, the cyclist is in the straightaway of the track and is traveling in
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Figure 3.1: Image of the bicycle model in MapleSim.

a relatively straight path. To simplify the model for straight-line cycling, a revolute joint
was not included between the frame and the front fork/handlebars, and the bicycle was
constrained to remain upright and follow a straight path. These simplifications were made
to eliminate the need for steering or balancing controllers. Adding a steering or balancing
controller was not the main focus of the study and would have added complexity to the
problem, thus increasing computation time. With these simplifications, the bicycle model
had five degrees of freedom: crank rotation, front wheel rotation, longitudinal and vertical
translation, and pitch (frame rotation about the y axis).

The setup of the bicycle model, including overall bicycle dimensions as well as handlebar
position and crank length, was set to match that of the bicycle used by the cyclist in the
experiments. The dimensions of the bicycle frame were determined from the Look L96
track cycling bicycle frame used by the cyclist and from dimensions given on the Look
product website. Moment of inertia and center of mass locations were determined using
a SolidWorks model of a bicycle frame that was developed using these dimensions. The
only moment of inertia that has an effect is the moment of inertia about the y-axis (pitch).
The bike is undergoing minimal pitch so slight errors in this value were not a significant
concern. Center of mass location for the frame also does not play a significant role as the
cyclist mass is more than 10x that of the bicycle.

To simplify the model, several factors such as aerodynamic drag, frame compliance,
and chain and bearing efficiency were ignored. In reality, there is some energy lost due to
chain and bearing inefficiencies, and a bicycle frame would have some level of compliance.
However, Olympic cyclists, especially sprinters, use very stiff frames so the energy losses
are relatively small, with a previous study estimating frame efficiency at approximately
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99% [8]. The efficiency of the chain drive train is between 95% and 98.5% and the bearing
efficiency is between 99.64-99.84% according to [8]. Overall, these various factors would
affect the performance, but with such high efficiencies, it is not anticipated that they would
significantly affect the selected technique for a standing start. For these reasons, they were
neglected in this project.

Aerodynamic drag was also not considered in this model as the effects are negligible
when traveling at low speeds during start-up cycling. The basic equation for drag force is

FD =
1

2
ρv2CDA (3.1)

where ρ is the air density, v is the relative velocity, CD is the drag coefficient, and A is
the cross sectional area. To give an idea of the drag forces, a quick calculation can be
done with some approximate values of ρ = 1.225 kg/m3 and CDA = 0.33 m2 [66]. After
15 meters the cyclist will typically have a velocity of approximately 7 m/s. At this speed,
the drag force is approximately 10 N, for a resistive power of 70 W. When compared to
an average power output typically over 1200 W at the same point in the standing start,
the aerodynamic drag force is not a major factor. In order for the drag forces to affect the
optimal standing start technique found in the simulations, the drag equations would need
to take into account different body positions and segment velocities for both upper body
and lower body. Having a simple drag force solely dependent on overall velocity would not
affect the technique being used, only the overall performance in terms of distance covered.
Even with more complex drag models, the effects would be minimal at low speeds, so drag
was neglected in order to reduce the level of complexity of the model.

3.2 Tire Model

One of the key differences that separates this work from previous cycling models is the
implementation of a tire model for modeling wheel-ground contact. MapleSim contains
built-in tire model components that were used for formulating the tire force and moment
equations. For the purpose of this project, a tire model was chosen with the goal of being
as accurate as possible using model parameters that were available in literature. The
Pacejka model is the most commonly used tire model in literature for modeling multibody
vehicle systems. Unfortunately, the lack of testing done on bicycle tires meant the available
results were limited. Pacejka parameters have not been reported for track cycling tires so
parameters for road tires from Bulsink et al. were used [53], with the exception of the
rolling resistance coefficient, which has been experimentally determined for track cycling
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tires [54]. Tire parameters from Bulsink et al. were for road tires, which are high-durability
tires usually inflated to around 90-125 psi. Tires used on the track are tubular tires that
are typically inflated to around 200 psi. They are made to be as light as possible and are
made from a softer compound that has better grip. The different bonding agents used
to attach the tires to the rims likely have an effect on tire parameters as well. Based on
these differences, there are likely noticeable differences in the slip parameters between road
cycling tires and track cycling tires, but it is unknown to what extent and whether they
would have a noticeable effect on the results of the simulation.

For a purely longitudinal model (2D with no lateral forces), the forces and moments
that come into play are the vertical reaction force, longitudinal force, and rolling resistance
moment. A velodrome has a sloped surface throughout the entire track (42-degree banked
bends and 13-degree banked straights for an Olympic-category velodrome) so there is
always a camber angle, even in the straights. For simplicity, the surface for the straights
was modeled as being flat in this study. Camber forces could have been included, but they
would have had minimal effect when the model was constrained to remain upright.

MapleSim implements the 2002 Pacejka tire model [55], which requires 117 parameters
that are determined by linear regression to experimental data. This can make it difficult
to work with, but it can give highly accurate tire models when the appropriate data are
available. The parameters reported by Bulsink et al. were not for the 2002 Pacejka tire
model but rather a simplified version of the Pacejka tire model. The equations for the
basic Pacejka model are of the form in Equation 3.2.

Fx(ε) = FzD sin(C arctan(Bε− E(Bε− arctan(Bε)))) (3.2)

Table 3.1: Pacejka tire model parameters used by Bulsink et al. [53]

B C D E K
K
CD

1 1.642 N 0 12 N

where Fx is the longitudinal force acting on the wheel; Fz is the vertical force acting
on the wheel; ε is longitudinal slip; and C, D, E, and K are the parameters determined
experimentally. C is the shape factor for longitudinal force, D is the longitudinal friction
µx at the nominal wheel load Fz0, K is the longitudinal slip stiffness at Fz0, and E is the
longitudinal curvature at Fz0. The parameter values used in these equations were those
reported by Bulsink et al. (see Table 3.1).
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The Pacejka tire model also contains equations for determining the tire vertical force,
Fz, and the tire slip, ε, that are required for calculating the longitudinal force in Equation
3.2. The simplified equation for the tire vertical force is

Fz = kzρ+ czρ̇ (3.3)

where kz is the linear vertical tire stiffness, cz is the tire damping, and ρ is the tire deflection.
The basic equation for tire slip is

ε =
ΩReff − Vx
|Vx|

(3.4)

where ε is longitudinal slip, Reff is the effective tire radius, Vx is the translational velocity
of the wheel center, and Ω is the spin rate of the tire. However, when performing starting
maneuvers, the zero initial translational velocity results in a slip that is infinity. To use the
tire models when starting at zero velocity, relaxation lengths have to be included, which is
demonstrated in equation 3.5

dε

dt
=

ΩReff − Vx
Blong

− ε|Vx|
Blong

(3.5)

where Blong is the relaxation length. For simplicity, constant relaxation lengths of 0.3 were
used in this study. A more complex model for determining the relaxation lengths known as
a stretched string model [55] was considered, but ultimately not used in the final simulation
because there were no experimentally determined parameters for the model available for
bicycle tires.

In the 2002 Pacejka model, the parameters C, D, E, and K are a function of other
parameters and variables. They are generally determined using linear regression from
experimental results and do not necessarily have a physical meaning. Ideally, by simplifying
the 2002 Pacejka model, a direct relationship between 2002 Pacejka parameters and basic
Pacejka parameters can be found. This would be done by setting some parameters in the
2002 Pacejka model to 0 or 1 to reduce the number of parameters that show up in the
equations. For example, the rolling resistance moment used by the Pacejka model is

My = R0Fz[qSy1 + qSy3
Fx
Fz0

+ qSy3

∣∣∣∣ VxVref

∣∣∣∣+ qSy4(
Vx
Vref

)4] (3.6)

which can be simplified as
My = R0FzCrr (3.7)
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where R0 is the unloaded tire radius, qSy1 is the rolling resistance moment coefficient Crr,
and qSy3 and qSy4 are assumed to be 0. Generally, the parameters qSy3 and qSy4 are quite
small so that is a reasonable assumption. The coefficient of rolling resistance for track
cycling tires is approximately 0.0023-0.0024 depending on the brand of tire being used
[8, 54]. This simplification process was applied to the other Pacejka 2002 equations in
MapleSim and was made more straightforward by the fact that side-slip and camber were
ignored so only the longitudinal force equations needed to be simplified.

The tire body component in MapleSim contains stiffness and damping parameters to
represent the stiffness and damping of the tire. The appropriate stiffness was based on the
properties for radial structural behaviour of racing bicycle wheels reported by Petrone and
Giubilato [56]. They found radial stiffness was in the range of 1.7e5 to 2e5 N/m, while
the damping was not experimentally determined. Bulsink et al. used a damping of 5.4e3
N/(m/s) to achieve supercritical responses, and this value was used as a reference when
determining the range of values to consider. The tire damping was included as part of the
optimization, with bounds being 1e2 to 1e5 and an initial guess of 2.5e3 N/(m/s).

3.3 Cyclist Model

The cyclist model consisted of ten rigid bodies: two feet, two shanks, two thighs, upper
arm, forearm, hand, and the head + trunk (see Figure 3.2). Based on video analysis of
a standing start, the upper limb motion was assumed to be symmetric so the arms were
lumped together into one upper arm, one forearm, and one hand. Revolute joints were
used to represent the shoulder, elbow, wrist, hips, knees, and ankles. To approximate the
spinal curvature that was observed in the cyclist during the standing start, there was a
fixed angle of 25 degrees between the abdomen and the thorax in the trunk segment. The
cyclist’s hands were rigidly fixed to the handle bars at a 45-degree angle. The cyclists feet
were clipped into the pedals using toe clips, thus allowing the foot/pedal to be constrained
to the crank with a revolute joint. The combined cyclist and bicycle track cycling model
was modeled by fourteen generalized coordinates coupled by four algebraic constraints,
resulting in ten degrees of freedom (for a list of the degrees of freedom, see Appendix A).
Limb properties, including segment length, mass, center of mass location, and moment
of inertia, were set using anthropometric data from de Leva [57]. The anthropometric
properties were scaled to match one of the subjects (from here on referred to as Cyclist
X) in an attempt to have a more relevant comparison between simulation results and
experimental results.

The sign conventions and joint coordinate systems for the cyclist model are detailed in
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Figure 3.2: The combined cyclist and bicycle model in MapleSim

Figure 3.3 and Table 3.2. The zero joint angles were considered to be when the body was
in the neutral position. The neutral position was defined as the position corresponding to
having both feet flat on the ground, the legs straight, and the arms hanging straight at the
sides. This meant that for all joints except the ankle, the zero degree angle corresponded
to a straight limb. The zero degree angle for the ankle corresponded to the bottom of the
foot being perpendicular to the shank.

3.4 Joint Torques

3.4.1 Active Joint Torques

The cyclist model was driven using active joint torques, which represent the combination of
muscle forces acting on a joint. Anderson et al. [58] developed a joint torque model for the
lower limb that was implemented here. In Anderson et al.’s model, the active joint torque
that can be applied at the joint is scaled based on the joint angle and angular velocity,
representing the muscle force-length and force-velocity relationship. The scaling function
is piecewise to account for both concentric and eccentric muscle contractions. Concentric
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Figure 3.3: Diagram of the cyclist in the track model

Table 3.2: Sign conventions for each joint in the model

Joint Movement Torque Angle

Wrist
Radial Deviation + > 0, increasing
Ulnar Deviation - < 0, decreasing

Elbow
Flexion + increasing

Extension - decreasing

Shoulder
Flexion + increasing

Extension - decreasing

Hip
Flexion + increasing

Extension - decreasing

Knee
Flexion + increasing

Extension - decreasing

Ankle
Dorsiflexion + > 0, increasing

Plantar Flexion - < 0, decreasing
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contractions are when the muscle is contracting and shortening (i.e. when the joint torque
and angular velocity have the same sign). Eccentric contractions are when the muscle is
contracting and lengthening. This occurs when the muscle is counteracting a motion in the
opposite direction (i.e. when the joint torque and angular velocity have different signs).
Equation 3.8 contains the torque scaling equations and Table 3.3 contains the parameters
that were used. Figure 3.4 displays the torque scaling profiles for each of the lower limb
movements.

The parameters for Anderson et al. were for “average” 18-25 year old males. Olympic
cyclists are far from average so it is not clear how well these scaling parameters represent
the force-velocity and force-length relationships of their muscles. For the maximum torque
values, Kordi et al. [59] measured the maximum isometric joint torques for competitive
cyclists for the hip extensor, knee flexor and extensor, and ankle extensor. Values were
chosen at the upper end of these ranges as these would likely be the approximate capabilities
of an Olympic-level cyclist. For the hip flexor and ankle flexor, the extensor torque limits
were scaled from values in Kordi et al. based on the relationship seen in Anderson et al.[58]

A simpler joint torque scaling model that only scales based on joint angular velocity was
used for the upper limb joint torques. This torque scaling method has been implemented
in previous upper limb joint torque applications [31] and was based on the work done by
van Soest et al. [60]

Tactive =


Tiso(

θ̇max−θ̇
θ̇max+Γθ̇

) θ̇ ≥ 0

Tiso(
(1−Tr)θ̇max+Sθ̇Tr(Γ+1)

(1−Tr)θ̇max+Sθ̇(Γ+1)
θ̇ < 0

(3.9)

where Tiso is the isometric torque, θ̇ is the maximum angular velocity where torque can be
applied, Γ is a shape factor, S is the slope factor, which determines the slope of the tran-
sition between concentric and eccentric torque, and Tr is the ratio between the maximum
eccentric and isometric force. A slope factor of 2 and a force ratio of 1.5, values determined
by van Soest et al. [60], were used in this model. The shape factor was 3, the value used
by Alexander [29]. For simplicity, it was assumed the maximum angular velocity of the
joint is the same for both concentric and eccentric contractions and a value of 10 rad/s
was used. Maximum upper limb joint torque values were taken from Garner and Pandy’s
study of the upper limb [61].

Each joint for both upper and lower limbs had its own maximum torque rate of change
that was based on muscle activation and deactivation time constants [24]. For simplicity, it
was assumed maximum rates of change were the same for both activation and deactivation.
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Tactive =


C1cos(C2(θ − C3)) 2C4C5+θ̇(C5−3C4)

2C4C5+θ̇(2C5−4C4)
θ̇ ≥ 0

C1cos(C2(θ − C3)) 2C4C5−θ̇(C5−3C4)

2C4C5−θ̇(2C5−4C4)
(1− C6θ̇) θ̇ < 0

(3.8)

Table 3.3: Active torque scaling parameters obtained from Anderson, et al. [58].

Units Definition
C1 N·m Maximum isometric joint torque

C2 –
π divided by the theoretical range of joint angles in which active
muscle force is present

C3 rad Joint angle at maximum isometric torque
C4 rad/s Angular velocity when torque is 75% of isometric torque
C5 rad/s Angular velocity when torque is 50% of isometric torque
C6 – Defines eccentric torque relative to concentric torque

Hip Ext. Hip Flex. Knee Ext. Knee Flex. Plantar Flexion Dorsiflexion
C1* 380 320 330 225 210 90
C2 0.958 0.738 1.258 0.869 1.391 1.510
C3 0.932 -0.214 1.133 0.522 0.408 -0.187
C4 1.578 2.095 1.517 2.008 0.987 0.699
C5 3.190 4.267 3.952 5.233 3.558 1.940
C6 0.242 0.218 0.095 0.304 0.295 0.828

*Row C1 is based on values from Kordi et al. [59], which better represent the strength of
an Olympic track cyclist
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(a) Hip extension (b) Hip flexion

(c) Knee extension (d) Knee flexion

(e) Ankle plantar flexion (f) Ankle dorsiflexion

Figure 3.4: Torque scaling for the lower limbs. The color is for visualization purposes only.
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Figure 3.5: Torque scaling for the upper limbs

In actuality, the deactivation time is approximately two to three times that of activation
depending on the muscle type, and both occur in an exponential fashion [62]. The bounds
here allow for linear activation (although the exact rate could be less than linear if found
to be more desirable) and the activation and deactivation rates were assumed to be the
same to avoid separating the torques into flexion and extension and thus increasing the
number of controls.

3.4.2 Passive Joint Torques

In addition to the active joint torques, passive joint torques were also included for each joint.
Passive torques represent the passive forces that are generated by the stretching of muscle
tissue, tendons, and ligaments. Although the passive torques perform a separate role to the
active torque scaling and represent different physiological components, there is the potential
that models based on fitting to experimental data have some amount of overlap between
the phenomena the two torque models are capturing. Despite the difficulties in quantifying
the degree to which the passive structures influence active torque scaling, passive torques
were included because there are clearly distinguishable effects at the limits of the joint
range of motion that were important to capture in the model. Riener and Edrich’s [3]
model for lower limb passive joint stiffness was chosen based on its ability to take into
account adjacent joint angles, accounting for some of the effect of biarticular muscles. The
equations for Riener and Edrich’s lower limb passive joint torques are included below in
Equations 3.10-3.12.

TA = e(2.016−0.0843θA−0.0176θK) − e(7.9763+0.1949θA+0.0008θK) − 1.792 (3.10)
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TK = e(1.8−0.046θA−0.0352θK+0.0217θH) − e(3.971−0.0004θA+0.0495θK−0.0128θH) − 4.820 + e(0.220−0.15θK)

(3.11)
TH = e(1.4655−0.0034θK−0.00750θH) − e(1.3403−0.0226θK+0.0305θH) + 8.072 (3.12)

where TA is the passive torque for the ankle in N·m, TK is the passive torque for the knee,
TH is the passive torque for the hip, θA is the ankle joint angle in degrees, θK is the knee
joint angle, and θH is the hip joint angle. The plots in Figure 3.6 show the passive torque
profiles for various adjacent joint angles. The active and passive joint torques were summed
to get a total joint torque applied to each joint.

3.5 Dynamic Equations and Optimal Control: Imple-

menting the Problem in GPOPS-II

The goal for this project was to identify the optimal joint torque activations for achieving
the maximum distance in a fixed amount of time. In some previous joint torque mod-
els, the joint torque is fully activated every time it is excited. Rather than using this
method, it was desired to find an optimal torque profile that did not require the joints
being maximally activated every time. The General Purpose Optimal Control Software,
Version II (GPOPS-II) optimal control package from Rao et al. [63] was used together
with an interior-point optimizer (IPOPT) to solve the optimal control problem. GPOPS-
II uses orthogonal collocation, which is a direct optimization method. In direct collocation,
both the control and state variables are parameterized, which means the state and control
are both approximated with a polynomial function. GPOPS-II turns the optimal control
problem into a non-linear programming problem, which is then solved by the non-linear
programming solver IPOPT.

One of the difficulties in working with this model was the cyclist and bicycle together
form a closed kinematic chain due to the feet being fixed to a single crank and the hands
being fixed to the handlebars (or in the case of the ergometer model, the hips being fixed
at the seat location). This means that there are more coordinates than there are degrees of
freedom. Therefore, the dynamic equations are a system of differential algebraic equations
(DAEs) of the form

Mq̈ + φTq λ = F , φ(q) = 0 (3.13)

where q are the generalized coordinates, M is the mass matrix, λ are the Lagrange mul-
tipliers, φq = ∂φ

∂q
is the Jacobian matrix, and F are the torques and forces being applied.

The combined cyclist and bicycle was modeled by fourteen generalized coordinates coupled
by four algebraic constraints resulting in ten degrees of freedom. It was actuated by nine
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Figure 3.6: Passive torque plots generated using the passive torque functions from Riener
et al. [3]. The ankle angle was 0 degrees for all knee passive torque tests.
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active torque inputs applied at the cyclist model coordinates, meaning there were more
actuators than degrees of freedom for the cyclist due to the closed kinematic chain. The
problem was formulated such that the constraints were the position constraints for the
foot/pedal joints.

Generally, the presence of the algebraic equations make DAEs more difficult to solve
than ordinary differential equations (ODEs). In GPOPS-II, the dynamic equations can be
left as DAEs with the constraint equations being handled as path constraints. This es-
sentially separates the algebraic constraint equations from the differential equations. The
differential equations with the reaction forces are included as the dynamic constraints. The
next issue is handling the reaction forces. If they are included as states in the formulation,
then a derivative is required. This derivative would have to be obtained by isolating the
reaction force variables and then differentiating them, a process which is time-consuming
due to the complexity of the model. Instead, the derivatives of the reaction forces were
treated as controls, which allowed GPOPS-II to freely determine the reaction force deriva-
tives, and therefore the reaction forces, that satisfy the dynamic equations and constraint
equations at each time point.

The optimal control problem was formulated as such: find the states and controls
that minimize the cost function subject to the dynamic constraints, event constraints,
path constraints and integral constraints. Setting up the problem in GPOPS-II required
specifying bounds and initial conditions for the 43 states (generalized coordinates and their
derivatives, tire slip, active joint torques, and reaction forces) and 13 controls (joint torque
rates of change and the reaction force derivatives). The dynamic equations for the model
that were exported from MapleSim were input for the dynamic constraints in GPOPS-
II. The desired objective function and the event constraints (constraints for continuation
between phases in multi-phase problems) were also designated. The event constraints were
set that the end of the pre-launch phase coincided with the beginning of the launch phase
and all states were continuous from the end point of the pre-launch phase. The constraint
equations were treated as path constraints with bounds of ± 0.05 mm. It is also required
to specify an initial and final guess for the control and state variables, along with any
intermediate guesses. In all the simulations, the initial and final guesses were set based on
the experimental results, to give a reasonable starting point for the optimization. For some
problems, such as matching known movements, intermediate guesses would be appropriate
as well. However, since the problem in question was purely predictive, no intermediate
guesses were used to avoid driving the simulation to a particular result. The mathematical
statements of the optimal control problem for each simulation is given in the respective
sections of the following chapters.

One of the difficulties with GPOPS-II is determining the correct number of mesh it-
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erations and number of iterations within each mesh, as well as the tolerances for both
of these. Additional parameters in the optimization setup include the initial number of
mesh intervals, initial number of collocation points, scaling method, and mesh refinement
method, among others. The state and control bounds and the initial guesses for the state
and control and any intermediate guess points also must be determined. All of these fac-
tors affect how quickly the solver is able to converge on a solution, and trial and error was
required to find the settings that work best.

An important final point to note was that the duration of the trial (e.g. simulating a six
second trial) also affects the time required to find an optimal solution. This played a role in
the length of simulations chosen. Furthermore, there is no fatigue built into the model so,
for longer simulations, the model might assume techniques that are not physically realistic
due to the energy expenditure required to maintain them.
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Chapter 4

Ergometer Pedaling: Experiments
and Simulations

4.1 Experimental Methods

To quantify the dynamics and kinematics of start-up ergometer pedaling, active marker
motion capture technology (Optotrak Certus, Northern Digital Inc.) and an instrumented
ergometer (SRM ergometer, SRM) were used to analyze seven (four male, three female)
members of the Canadian Olympic program who take part in the team sprint event. All
testing took place at the Mattamy National Cycling Centre in Milton, Ontario, and equip-
ment was provided by Cycling Canada, except for the motion capture equipment. For
motion capture, the right side of the cyclist was studied with markers placed on the hip,
knee, ankle, heel, and toe (approximately where the center of the pedal was located), as
well as the shoulder, elbow, wrist, and hand (see Figure 4.1). Two motion capture cameras
collecting at 150 Hz were placed at approximately 45-degree angles to ensure no markers
were occluded.

The SRM ergometer measured total torque applied to the crank from both legs at
200Hz. It has the ability to measure cadence as well, but can only do so once per pedal
stroke. This may be sufficient when pedaling at a constant cadence, but during start-up
pedaling, higher frequency measurements are needed to capture the variations throughout
the entire pedal stroke. For this reason, the ergometer was outfitted with a modification
developed by Jensen [64] that allowed for the measurement of crank angle, and therefore
cadence, every five degrees. With the combination of these systems, high-frequency torque
and cadence could be measured. This allowed for the calculation of a high-frequency
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Figure 4.1: Experimental setup for ergometer pedaling

power, which is important for analyzing start-up pedaling. For the data collection, it was
attempted to synchronize the motion capture system with the crank data automatically
using a trigger. However, the trigger did not work properly, so the motion capture data
start shortly after the trial has begun. Due to the limited availability of Olympic cyclists,
and the time requirements of these tests, it was not feasible to repeat testing for these
data. The motion capture data were manually synchronized with the ergometer data by
aligning the crank angle and the position of the foot marker from the motion capture data.

The cyclists performed several tests as part of a larger study designed and conducted by
Cycling Canada. Prior to starting the trials, the cyclists completed a self-selected warm-up
routine. The ergometer was adjusted to match the setup of each cyclist’s track bicycle in
terms of the crank length and the saddle and handlebar position relative to the bottom
bracket. The trials varied in length, ergometer settings (the ergometer has the ability to
control the cadence, if desired), and cyclist position (seated vs. standing). In some tests
the only resistance from the ergometer was the inertia of the flywheel. In other tests, the
ergometer resistance would adjust so that the cyclist could not surpass a certain cadence,
essentially matching the torque output of the cyclist. Each cyclist completed seven total
trials, broken down as follows, with time to rest between each trial:

1. 2 six-second seated starts. In each of these trials the cyclist was instructed to remain
seated and accelerate from a standstill to maximum cadence as quickly as possible.
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The resistance at the crank was the flywheel inertia only.

2. 2 six-second standing starts. The objective was the same as the seated starts, but
now the cyclist was instructed to get up off the seat and use the extra degrees of
freedom to their advantage. Again, the only resistance was the flywheel inertia.

3. 1 fifteen-second seated start capped at 160 rpm. In these trials, the cyclist would
accelerate from stand-still with only the resistance of the flywheel until they reached
160 rpm, at which point the ergometer would apply resistance to limit the cadence
from going above 160 rpm.

4. 2 ten-second seated rolling starts capped at 50 rpm. The cyclist began pedaling and
was instructed to pedal just below the 50 rpm threshold, then provide a countdown
at which point they would maximally exert for 10 seconds controlled at 50 rpm by
the ergometer.

For start-up pedaling, cyclists started in a self-selected stationary position. A digital
clock counted down from 10 to 0, at which point they attempted to accelerate to top speed
as quickly as possible. In the six second tests, the flywheel itself was the only resistance.
The trial of interest for model validation and comparison was the six-second seated start.
This test most closely replicated the ergometer pedaling model in which the hip position
was fixed.

All joint angles reported here are the 2D angles in the sagittal plane. This is for
direct comparison to the model, which was also limited to 2D motion in the sagittal plane.
There was minimal concern with the angle of the trunk/pelvis during the seated ergometer
pedaling. For this reason, hip angles were measured between the thigh vector and the
vertical (see Figure 4.7). The knee angle was the angle between the thigh vector and shank
vector defined by the 2D lines between the corresponding markers. The ankle angle was
measured between the bottom of the foot (vector between heel and toe markers) and the
shank vector (ankle and knee markers).

For the comparisons between simulation and experiment throughout this thesis, the
correlation coefficient is used to assess the similarity between simulated and experimental
curves. The correlation coefficient measures the linear dependence of two variables and is
defined by equation 4.1

R =
1

N − 1

N∑
i=1

(
Ai − µA
σA

)(
Bi − µB
σB

)
(4.1)
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where A and B are the two variables, N is the number of samples, µA and µB are the means
of the two variables, and σA and σB are the standard deviations. For all calculations
of the correlation coefficient throughout this thesis, the variables are compared relative
to the total crank angle. Comparing versus the crank angle is better for making direct
comparisons of the cycling biomechanics because it gives a common scale even when there
are different pedaling rates, which is the case for the predictive simulations.

4.2 Data Tracking Simulation

The first set of ergometer simulations performed were to test the ability of the model
to match experimental data. Oftentimes the first step in multibody modeling when ex-
perimental kinematic and dynamic data are available is to perform an inverse dynamics
analysis. It was not possible in this case due to the lack of the required experimental data,
namely the pedal forces. The SRM ergometer only measures total crank torque. Therefore,
it is unknown how this torque breaks down between right and left sides, and the amount
of radial forces (i.e. “wasted” forces) applied. At a minimum, 2D pedal forces would be re-
quired to conduct an inverse dynamics analysis. Additionally, due to the limitations of the
experimental setup and number of cameras available, motion capture was only performed
on the right leg and not both legs. The intent at the time of the data collection was not
to use the data for inverse dynamics, only to give a general idea for comparison to models
and simulations. The model was still able to be tested to assess its ability to match the
available experimental data.

4.2.1 Modifications for the Ergometer Model

To model the ergometer, the bicycle frame and wheels were removed from the model, and
the bottom bracket location was fixed, thus forcing the system to remain in the designated
location. Extra inertia was then added to the crank to represent the effective load that the
cyclist experiences from the inertia of the flywheel. The effective flywheel inertia was found
as part of the optimization in the data tracking simulation. Finding the effective inertia
was done by using the crank inertia as a parameter in the optimization with the objective
to match the experimental kinematics and dynamics (crank torque and crank angle as well
as right leg joint angles). The upper limbs were included in the same manner as the track
bike simulations to allow the hip joint center to translate in the sagittal plane, as the hip
joint center does have some movement, even during seated pedaling. These degrees of
freedom in the cyclist model allowed for the matching of all three experimentally measured
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joint angles. If the hip position had been fixed, only two of the four angles between the
crank, right hip, knee, and ankle can be matched, as it would be a closed kinematic chain.

4.2.2 Problem Formulation and GPOPS-II Setup

Here the problem was formulated to drive the solution to match the experimental data
from a single trial by Cyclist X. The objective function was different from the predictive
simulations, but the formulation in GPOPS-II was essentially the same otherwise. The
model was driven to match the experimental data for the right leg joint angles, the crank
angle, and the crank torque, while minimizing the joint torques. The minimization of joint
torques is included to drive the simulation towards a solution that represents the cyclist
pedaling in a more efficient manner. The effective inertia was included as a parameter in
the optimization to determine the value that best represents the experimental conditions.
The objective function was

J =
WθC (θC − θC,exp)2

σ2
θ,exp

+
WT (TC − TC,exp)2

σ2
T,exp

+
3∑
i=1

Wq,i(qi − qi,exp)2

σ2
q,exp

+WM

9∑
i=1

M2
i (4.2)

• qi are the three joint angles (right hip, right knee, right ankle)

• θC is the crank angle

• TC is the crank torque

• Mi are the joint torques for each of the nine joints in the model

• W are weighting factors

• σ2 are the variances for the experimental data used for normalizing the differences

• subscripts ‘exp’ correspond to experimental data

Left leg joint angles were ignored in the objective function because there was no knowl-
edge about the left leg kinematics. In the simulation, the left leg was essentially driven by
the hip position, which is the same as the right hip, and by matching the crank angle and
crank torque. Based on this, there was essentially one lower body degree of freedom left
uncontrolled. The bounds for the joint angles and angular velocities were set at the range
of the experimental data plus 0.25 radians (≈15 degrees) to allow for the simulation to go
outside the kinematic data as necessary. The iteration tolerance was met in the final mesh
with a total computation time of 88 minutes on an Intel Core i7-6700 CPU at 3.40GHz
with 16GB RAM.
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4.2.3 Simulation Results

Figures 4.2, 4.3, and 4.4 demonstrate that the simulation is able to match the experimental
data for Cyclist X. The correlation coefficients between the ergometer data tracking sim-
ulation and experiment are displayed in Table 4.1. All correlation coefficients are greater
than 0.97, and the correlation coefficients for the tracked variables are all greater than
0.995. The optimal effective inertia for matching the experimental results was found to be
33.5 kg·m2, which is within the expected range for an ergometer. For the joint kinematics,
the only significant difference is in the knee angle when the crank is at top dead center and
the knee is flexed. It also can be noted that matching the crank torque does not result in
a match in crank angular velocity. In reality, there is the likelihood of there being bearing
friction and other forces that would cause the net torque to be negative at times. The dif-
ferences could also be due to measurement errors, not necessarily the simulation. If there
are measurement errors between the different data streams, this would create difficulties
in matching all the experimental results.

Table 4.1: Correlation coefficients between the ergometer data tracking simulation and
experiment

Cadence Crank Torque Power Hip Angle Knee Angle Ankle Angle
0.987 0.996 0.978 0.996 0.997 0.996

(a) Crank angle (b) Crank angular velocity

Figure 4.2: Crank kinematics for the ergometer data tracking simulation
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(a) Crank torque (b) Crank power

Figure 4.3: Crank torque and power for the ergometer data tracking simulation

(a) Right hip joint angle (b) Right knee joint angle

(c) Right ankle joint angle

Figure 4.4: Joint angles for the ergometer data tracking simulation
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(a) Hip torque activation (b) Hip torque

(c) Knee torque activation (d) Knee torque

(e) Ankle torque activation (f) Ankle torque

Figure 4.5: Joint torques for the ergometer data tracking simulation. Ts refers to the
scaled torque, Tpre refers to the pre-scaled torque (i.e. before scaling based on joint angle
and angular velocity), and Tiso refers to the isometric torques for flexion and extension.
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In Figure 4.5, the joint torques and torque activations are plotted. The torques are
being maximally activated for most excitations, especially for the knee joint. The ankle
seems to take a more unique torque profile in the initial few pedal strokes. With the ankle
there is also noticeable eccentric contractions as the muscles around the ankle joint act in a
stabilizing manner. There was some difficulty in determining the weighting parameter for
the joint torque term in the objective function. Based on this, it is reasonable to assume
that future experimentation could result in a solution that can achieve the same outputs
with smaller joint torques.

The main goal in this formulation was to ensure the model is capable of performing
the task in a similar manner as the cyclist did in the experiments. We can see that the
cyclist model is capable of completing the task and can be used to obtain the joint torques
that were required. This confirmed that the parameters being used were reasonable and
the torque capabilities of the model are in the correct range. Following the success of this
setup, the next step was to perform purely predictive simulations of ergometer pedaling.

4.3 Predictive Simulation

4.3.1 Modifications for the Ergometer Model

The model used in the data tracking simulations was further modified and simplified for
the predictive simulations of ergometer pedaling. For the predictive simulations, the head,
arms, and trunk (HAT) were lumped together and fixed in a constant orientation (see
Figure 4.6) because these segments do not move significantly relative to one another during
seated pedaling. The hip joint centers were fixed at the location of the seat, as the cyclist
remained seated while pedaling. This is the modeling approach used by many previous
researchers, and it assumes the upper body has a negligible effect on seated pedaling. The
orientation of the upper body only had an effect on the passive hip torque, for which a fixed
45 degrees was added to the hip joint angle. In the ergometer model, the joint coordinate
system and sign convention is different for the hip angle than in the track model (see Figure
4.7). There is limited concern with the upper body motion, so the hip angle is measured
relative to the vertical rather than the pelvis or trunk. The same method was used for
modeling the ergometer as in the data tracking simulations. The effective inertia was set
using the value found in the data tracking simulation. This fixed hip ergometer model had
three degrees of freedom and was modeled using seven generalized coordinates coupled by
four algebraic constraints.
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Figure 4.6: Picture of the ergometer model in MapleSim

Figure 4.7: Diagram of the cyclist in the ergometer model
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4.3.2 Problem Formulation and GPOPS-II Setup

The ability of the model to predict ergometer pedaling was tested and results are included
here. The simulation was free to choose its fixed hip position within the given bounds, as
well as its initial joint angles. The bounds were set so that there was no initial angular
velocities for any of the joints or the crank itself. Initial torque bounds were set at ± 20
N·m to allow for the initial torques required to support the limbs in a stationary position.
Initial state guesses were based on the crank angle being at 75 degrees. The bounds for
joint angles and joint angular velocities throughout the simulation were set at values that
would not restrict the natural motion of the cyclist. The time duration of the simulation
was 5.5 seconds, a sufficient amount of time for comparisons with the experimental results
while maintaining a reasonable computation time. The objective for the simulations was
to achieve the maximum crank angle in the given time period. This was the objective for
the cyclists in the ergometer experiments and also represents the objective on the track.
Therefore, the following cost function was minimized, where θc,f is the final total crank
angle.

J =
1

θc,f
(4.3)

Other cost functions have been used in optimizing pedaling that include some form of
minimization of jerks and/or minimization of joint torques. These were considered, but
ultimately not used for the predictive simulations because minimization of these led to less
distance covered, which was the ultimate goal. The computation time was 127 minutes
on an Intel Core i7-6700 CPU at 3.40GHz with 16GB RAM for the ergometer predictive
simulation.

4.3.3 Simulation Results

The crank angle, cadence, crank torque, and power profiles were in a similar range and
showed similar oscillatory patterns for the simulation and experiment on the ergometer
(Figures 4.8 and 4.9). The correlation coefficients were 0.988, 0.952, and 0.873 for the
cadence, crank torque, and power, respectively, when plotted versus the total crank angle
(Table 4.2). The crank torque and power were plotted versus time and versus the total
crank angle. Plotting versus time is useful for comparing the performance over time, and
it can show how two cyclists differ if one is outperforming the other. However, in some
cases, plotting versus time makes it more difficult to directly compare the biomechanics
due to differing pedaling rates. Plotting versus the crank angle is better for making direct
comparisons between the predictive simulation and the experimental result because it gives
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(a) Crank angle (b) Crank angular velocity

Figure 4.8: Crank kinematics for the ergometer predictive simulation

a common scale that allows for a direct comparison. When plotting versus crank angle,
the trends relative to the crank angle can be easily compared even if they are pedaling at
different rates.

It was interesting to see the similarities in the initial crank angle between the simulation
and experiment. The model started with a slightly lesser crank angle than the experiment.
It started with a crank angle of 0.806 rad (46.2 degrees) whereas in the experiment the
cyclist chose to start with a crank angle of 0.873 rad (50.0 degrees). The guess for the
initial crank angle was 1.15 rad so the simulation indeed found the smaller initial crank
angle to be more optimal. The initial crank angle chosen would likely be dependent on the
position in which the maximum torque can be generated and the position that allows for
the most torque to be generated during the first downstroke. One hypothesis would be that
the model tends toward the position that allows for maximum torque throughout the first
downstroke, not necessarily for the maximum torque to be generated in the initial position.
While the initial position might be less powerful, the extra torque is more important.
Additionally, the model could be positioning in this way so that joint torques are maximum
when the crank is in position for generating the maximum torque. It is important to note
that the position in which maximum torque can be generated is dependent on the joint
angle scaling. Differences in this would lead to different maximum torque positions for
the cyclist. The crank angular velocity remained slightly above the experimental cadence,
resulting in a greater final crank angle (79.4 versus 73.2 rad, or just under one full pedal
stroke). The simulated oscillations in the cadence were smaller and not as sharp as in the
experimental results.

One of the more noticeable aspects of these plots in Figure 4.9 is that the first crank
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(a) Crank torque versus time (b) Crank torque versus total crank angle

(c) Power versus time (d) Power versus total crank angle

Figure 4.9: Crank torque and power for the ergometer predictive simulation

Table 4.2: Correlation coefficients between the ergometer predictive simulation and exper-
iment

Cadence Crank Torque Power Hip Angle Knee Angle Ankle Angle
0.988 0.952 0.873 0.937 0.977 0.717
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torque peak is larger in the simulation. In the simulation, the peak crank torque is approx-
imately 400 N·m, whereas in the experiment the crank torque reaches a maximum around
325 N·m. This could be due to differences in the torque parameters versus the actual
strength of the cyclist. The subsequent peaks seem to be similar, if slightly less in some
cases. The valleys also seem to be slightly deeper as well. Some of these differences could
be attributed to the simplified method of modeling the ergometer. The similar trends in
crank torque and cadence naturally lead to a similar power profile as well.

Figure 4.10 contains joint angles over time and joint angles versus the total crank
angle. The hip angle profiles are fairly similar between the experiment and simulation,
with a correlation coefficient of 0.937. For both experiment and simulation, the hip range
of motion increases from approximately 45 degrees to approximately 50 degrees as the trial
goes on, with the most noticeable change being an increase in flexion angles. The maximum
extension occurs in the first pedal stroke, and extension decreases for several pedal strokes
before increasing slightly towards the end. The first push results in a greater extension,
as the model is trying to generate maximum torque in the first downstroke, but then the
model becomes more controlled in subsequent pedal strokes. There is less knee extension at
bottom dead center in the first few pedal strokes in the model than in the experiment, by
about 15 degrees. Following from that observation, there is a decrease in the experimental
range of motion by about 15 degrees over the course of the trial as the cyclist transitions
to less knee extension. In general, there is about 10 degrees more knee flexion at top dead
center than in the experiment. Despite the initial pedal strokes, the correlation coefficient
of 0.977 indicates the curves are quite similar for the duration of the trial. Overall, the
simulations seem to take a more consistent approach throughout the simulation, whereas
there is a noticeable change in the experimental knee and hip kinematics after the first
three pedal strokes.

The ankle goes through a larger range of motion in the simulations than in the experi-
ments. This is evidenced by the correlation coefficient of 0.717, which is the lowest of the
three joint angles. Initially, they are more similar, with ranges of motion of 67 degrees
and 60 degrees for the simulation and experiment respectively. The discrepancy in range
of motion is more noticeable later in the simulation when the ankle is still going through
a range of motion of approximately 45 degrees while the experimental range of motion has
decreased below 30 degrees. The simulated ankle continues to display greater plantar flex-
ion when the crank is at bottom dead center. The results seem to indicate that the cyclists
in the experiments are not incorporating the ankle as much as would be advantageous. To
follow up on this point it must be determined whether there are assumptions being made
in the model that would account for why the ankle is moving in this manner rather than
the technique used in experiments. This could possibly be due to the passive torque model
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(a) Right hip angle versus time (b) Right hip angle versus total crank angle

(c) Right knee angle versus time (d) Right knee angle versus total crank angle

(e) Right ankle angle versus time (f) Right ankle angle versus total crank angle

Figure 4.10: Comparison of the lower limb joint angles between the ergometer experiment
and predictive simulation
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or the method of active torque scaling. In reality, it can be difficult to continuously exert
that much force in the ankle. At higher cadences, it can be difficult to control the ankle
through a large range of motion in a stabilized manner due to the rapid, precise movements
that would be required. Instead, a more controlled and more easily repeatable movement
is used. This is seen in both the simulation and experiment with the transition from more
ankle motion to more hip motion over the course of the trial.

Figure 4.11 contains a comparison of average simulated joint angles for ergometer ped-
aling to the average joint angles from the six-second seated experimental trials as well as
the joint angles from a single trial for Cyclist X. The averages and standard deviations
reported in Figure 4.11 include each cyclist’s two six-second seated starts (14 trials total
among all the cyclists). The averages are found over each 5 degree increment of the crank
angle. This is done to show how the simulation compares to the average, as well as how
it compares to the cyclist on which the model is based. Overall, there are similar trends
in the joint angles between the ergometer simulations and experiments, with the largest
differences seen in the ankle angle. The greatest variability between the experimental trials
is for the ankle angle, so it would be reasonable to expect to see the largest differences
between the experiments and simulations for the ankle angle as well. The hip and knee
are fairly similar between simulations and experiments, especially in the upstroke. Both
see greater flexion in the downstroke. The simulated ankle on the other hand has greater
amounts of plantar flexion in general.

The optimal kinematics are sensitive to the limb lengths and the fixed hip position. A
primary cause of differences between the simulations and experiments is the constraint on
the hip joints to remain fixed. Even during seated pedaling, the hips are moving, which
affects the biomechanics. Start-up pedaling from a seated position is a difficult task so a
cyclist prefers to rise from the seat to attain a mechanically efficient body position and
use their mass to aid in driving the pedal downward. In this simulation, however, the
cyclists hips are fixed, which makes start-up pedaling significantly more difficult because
they cannot adjust their body position and use gravity to their advantage.

In Figure 4.12, the torque activations showed that in the initial few pedal strokes, each
limb was generating close to the maximum possible torque when the muscles were activated.
There does seem to be a bit of noise at the peaks of the active joint torques so it is possible
that with a lower iteration tolerance this would reach the maximum at all points. As the
cyclist increased pedaling rate, the torque activations did not reach maximum as they did
not have time to activate fully before being deactivated again. At around 3.5 seconds into
the simulation, the hip flexor torque activations decrease greatly. This is likely indicating
that at higher cadences the primary focus is on generating maximum extensor torque for
the downstroke, and there is less of a contribution from the leg pulling up on the pedal.
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(a) Average right hip joint angle (b) Average right knee joint angle

(c) Average right ankle joint angle

Figure 4.11: Average joint angles for each 5 degree increment of the crank angle for the
ergometer experiments and predictive simulation. The shaded area represents ±1 standard
deviation for the average of all the cyclists’ trials (N=14).
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(a) Hip torque activation (b) Hip torque

(c) Knee torque activation (d) Knee torque

(e) Ankle torque activation (f) Ankle torque

Figure 4.12: Joint torques for ergometer predictive simulation. Ts refers to the scaled
torque, Tpre refers to the pre-scaled torque, and Tiso refers to the isometric torques for
flexion and extension.
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This corresponds with the findings of Martin and Brown [18] who noted that favoring the
more powerful extension movements increases power production in cycling. An additional
point they mention is that it is common to see people reduce the complexity of their
movements when fatigued. In cycling, this can help explain the reduced ankle movement
as cyclists primarily focus on hip and knee flexion and extension.

The net joint torques decreased as the joint angular velocity increased and the joint
angle became less optimal for generating torque (Figure 4.12). The ankle motion is gen-
erally ≈45 degrees out of phase with the hip and knee so at times the ankle torque acts
opposite to joint rotation in a stabilizing manner. This eccentric torque causes the active
torque to spike, especially later in the simulation (around 3.5 seconds and on). Another
important point to consider is that the torque scaling model is not necessarily designed to
handle large joint angular velocities such as those being seen here. It is difficult to achieve
those angular velocities for an isolated joint on a dynamometer, so the scaling at higher
angular velocities is primarily an extrapolation of the scaling that occurs at lower angular
velocities. This could result in some inaccuracies in the joint torque scaling. For additional
plots containing the passive joint torques, the pedal forces, and the constraint errors, see
Appendix B.

The primary purpose of these simulations was to ensure the cyclist model was a rea-
sonably accurate representation of a real-life cyclist. These results indicate that the nature
of the model, the bounds chosen, and the parameters being used are representative. The
next step was to analyze cycling on the track.
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Chapter 5

Standing Starts: Experiments and
Simulation

5.1 Standing Start Experiments

5.1.1 Experimental Methods

Experimental data were collected on a single male member of the Canadian track cycling
team who participates in the team sprint event. The team had limited availability so it
would be of interest to test more cyclists in the future. Electrogoniometers from Biometrics,
Ltd. (pictured in Figure 5.1) were used with adapters from Delsys (Trigno Wireless EMG,
Delsys Inc.) to wirelessly transmit the data. Electrogoniometers were attached at the
joints of interest in the model (both ankles, knees, and hips, single elbow and wrist).
While it would have been interesting to see the kinematics of both arms, it would have
required purchasing additional goniometers, and it was deemed that the cost would have
outweighed the benefit of having the additional measurements, which were assumed to be
similar. Electrogoniometers cannot measure shoulder angles so there was no reliable way
to measure it. Attempts were made to estimate the joint angle from video, but the video
quality was not high enough. The cyclist performed six standing starts on the track at the
Mattamy National Cycling Centre in Milton, ON. The automatic gate and track timing
system was used, which records time stamps at track landmarks (start/finish line, front
pursuit line, 200 m, 100 m, etc.). For these purposes, the only ones that were within the
trial were the start/finish line and front pursuit line so the time stamps available were the
gate release and 15 m.
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Figure 5.1: An example of the electrogoniometers from Biometrics, Ltd. that were used in
the experiments [4]

Crank data were collected at 80 Hz using instrumented cranks from 4iiii Innovations,
Inc. The crank sensors operated independently of each other so independent right and left
side crank torques were collected. These were then summed together to get the total crank
torque that is displayed in the figures. Inertial Measurement Units, or IMUs, (Mbientlab,
Inc.) containing a magnetometer, three-axis accelerometer, and three-axis gyroscope col-
lecting at 100Hz were placed on the crank and on the frame. The angular velocity from
the IMU on the crank was used for a high-frequency cadence measurement. This was in-
tegrated to get the crank angle and was adjusted based on a magnetic reed switch in the
4iiii’s system to account for measurement drift over time. The reed switch was triggered
once per pedal stroke so the IMU data were able to be calibrated accordingly. The accel-
eration data from the IMU on the frame was integrated to get an approximation of frame
position and velocity. These curves were not calibrated with other measurements so there
is a potential for some integration drift in these approximations.

Prior to the experiments, the cyclist completed a self-selected, typical warm-up routine
to ensure he was completely warm and loose for the tests. The cyclist used his personal
bicycle, a Look L96 model. The cyclist’s feet were clipped into the pedals, as is typical
in track cycling. The bicycle started fixed in the gate, which uses a pneumatic clamping
mechanism that clamps the bike on the seat post, just below the seat. The bicycle was
then released automatically as the clock hit zero. The cyclist was quite familiar with this
setup as it closely resembles the starting conditions of a team pursuit race and is a setup
that is used in their practices. The cyclist was instructed to use his normal technique and
give high effort up until the first turn (approximately the first 25 meters). After each trial,
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Figure 5.2: Experimental setup for standing starts

the cyclist was given time to rest so fatigue would not play a role. Figure 5.2 displays the
setup used in the experiments.

One of the challenges with this data collection was synchronizing all the data streams.
Post-testing, the data streams were synchronized using the accelerometer data. An EMG
sensor from the Delsys system was placed on the crank to allow for the synchronization of
electrogoniometer data through the accelerometer in the EMG sensor. This meant that the
IMU, crank arms, and Delsys (i.e. electrogoniometer) streams all had accelerometer data
in their data streams. The track timing system was visually synchronized by attempting
to match the point where the crank began moving to the time stamp of the gate release.

There are several points to note regarding the electrogoniometers used. These electro-
goniometers are strain gauge based so the output is a voltage. This voltage then has to be
converted to a joint angle, a calibration process that was performed manually. The next
point is that the angle obtained from the voltage output is a relative angle between the
two endblocks. This means the angles are highly dependent on accurate placement of the
endblocks. To account for differences in placement, a calibration measurement was ob-
tained where the cyclist was asked to place each joint in a neutral angle (standing straight
up with arms straight at sides). The offsets measured in these positions was subtracted
from all the joint angle measurements so that the neutral position would correspond to
zero joint angles.

The ankle angle was difficult to measure in these experiments because the distal end-
block had to be attached to the heel of the shoe. This is not an ideal surface because
of the nature of the cyclist’s shoes so the attachment was slightly loose. Furthermore,
the two ankle goniometers appeared to be faulty, so the ankle measurements were not
successful. A comparison to the simulation could be made from measurements that were
obtained from previous standing start experiments, under similar conditions. The ankle
angle measurements displayed here for comparisons with the predictive simulation are from
previous testing that was conducted to assess the efficacy of electrogoniometers for track
cycling standing starts. These conditions were not identical, but the other joint angle
ranges appear to be similar so it can give an idea of what these joint angles look like in
experiments.
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There are several difficulties with using electrogoniometers; however, there are limited
tools available for measuring joint angles in the field over a 30 m distance. IMUs were
considered, but drift was an issue. Electrogoniometer measurements would not be rec-
ommended for conducting an inverse dynamics analysis or for comparing small differences
between cyclists or between different days of the same cyclist. However, for a single cyclist
on a single set of experiments it is a useful tool for comparison and to get a general idea
of the kinematics being used.

5.1.2 Experimental Results

A selection of experimental results are displayed here. In trial 1, the cyclist momentarily
lost balance during the trial, causing the bicycle to swerve and slow down. This was
not representative of an effective standing start so trial 1 was ignored for data analysis.
Additionally, due to the faulty ankle electrogoniometers, there was no ankle joint data to
analyze for these experiments.

Figure 5.3 contains the measured bicycle positions, bicycle velocities, crank angular
velocities, and crank angles for trials 3 and 4. Due to a faulty IMU, there were no IMU
data recorded for the other trials so results are not available for those. For the frame x
position in Figure 5.3a, the markers represent the measured times from the time stamps
in the track timing system. A time stamp was recorded at 15 m so the ∗ markers in
the figures are the times at which the 15 m line was crossed. In comparison with the time
stamps obtained from the track timing system, the position curve approximation is a slight
underestimation of the actual position due to integration drift.

One of the first things to notice with the experimental results is the cyclist’s consistency.
Figure 5.4 displays the joint angles for trials 2-5, and they are quite similar for all the trials,
especially for the hips and knees. An Olympic-level cyclist will have practiced this motion
many times and have developed the “muscle-memory” to be able to consistently repeat
the technique. The largest variability is seen in the wrist angle. Some of this variability
can be attributed to measurement error, as the endblock on the hand was difficult to keep
secured so there was the possibility of slight movement over the duration of the six trials.
The secondary peaks seen in the hip angles correspond to the cyclist thrusting the hips
back in the reset motion. Interestingly, these peaks were more pronounced in the right side
than the left side, indicating that while the cyclist was consistent, he was not performing
the motions symmetrically. This leads into the second point of interest in these results.

The second thing to note is that there are noticeable asymmetries between the right
and left side. In Figure 5.5 one can see asymmetries in the hip and knee joint angles. As
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(a) Frame x position (b) Frame x velocity

(c) Crank angle (d) Crank angular velocity

Figure 5.3: Experimental kinematics for the bicycle
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(a) Right hip joint angle (b) Left hip joint angle

(c) Right knee joint angle (d) Left knee joint angle

(e) Wrist joint angle (f) Elbow joint angle

Figure 5.4: Experimental joint angles for the standing starts
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(a) Right and left hip joint angles (b) Right and left knee joint angles

Figure 5.5: Experimental hip and knee joint angles: comparison between legs

(a) Right and left crank torque

(b) Combined crank torque (c) Power

Figure 5.6: Experimental crank torque and power
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mentioned there are intermediate peaks in the right hip joint angles that are not seen in
the left hip joint angles. In general, the range of motion for the right knee is greater. The
right knee is fully extended close to bottom dead center, where as the left leg does not
undergo as much extension. When making comparisons between the legs, it is important
to keep in mind there is potential for measurement errors due to sensor placement and
the initial calibration. The calibration is an inexact process so the measured joint angles
could be offset from the actual joint angles. However, the overall range of motion is not
susceptible to that error, as sensor placement errors result in a shift of the entire curve
and not distortion of the curve. For this reason, the electrogoniometer measurements are
more useful for comparing ranges of motion and the shapes of the curves as opposed to the
exact values.

Figure 5.6 displays an additional asymmetry with the right side producing more torque
than the left side. Both are following similar patterns; however, the peaks for the right
side are larger, even in the subsequent pedal strokes. The decrease in torque is expected
as the angular velocity increases, but the left crank torque is still consistently smaller. All
of these asymmetries are potentially related in that the greater torque being generated in
the right leg results in a greater range of motion for the right leg joints.

The key takeaways are that an Olympic-level cyclist is able to perform the standing
start technique in a repeated manner. This indicates that if an optimal technique was
suggested, it would be possible for this technique to be repeated consistently. However,
the primary challenge with adopting any changes in technique would be in overcoming the
existing “muscle-memory.” The noticeable asymmetries are a second takeaway from these
experimental results. This is not something that is incorporated in the model, as both
sides are given equal torque parameters.

5.2 Predictive Simulation

5.2.1 Problem Formulation and GPOPS-II Setup

Simulations were run using the combined cyclist and bicycle model and GPOPS-II for
solving the optimal control problem as discussed in Chapter 3. The problem was formulated
as a two-phase problem, separated into the launch and pre-launch phases (refer to Chapter
1 for a more detailed description of these standing start phases). In the pre-launch phase,
the bicycle is treated as being completely fixed, leaving the model with only the cyclist
degrees of freedom. This assumption is not entirely true, as from video analysis one can
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see the bicycle actually pivots slightly about the fixation point when the cyclist rocks back
and launches forward. The gate contains a pressurized clamping mechanism that clamps
down on the main post several centimeters below the seat. It is fairly rigid, but does
not completely fix the bicycle in place, as there is some movement of the entire gate and
also some slight rotation within the clamp. It was attempted to more accurately model
the bicycle in the pre-launch phase by incorporating the vertical movement and pitch.
However, when using this formulation, GPOPS-II ran out of memory, so this modeling
approach was abandoned.

The time duration of the simulation was 5 seconds, with the pre-launch designated to
last 1 second and then continuing into 4 seconds of the launch phase. Initial state guesses
for both phases were based on the crank angle being at 75 degrees and the bicycle being
stationary. The initial guesses for the cyclist should only play a role in how the cyclist
starts the pre-launch phase, which seems to be largely irrelevant as they proceed into a
similar “coiled” position regardless of where they start. The initial guesses for the launch
phase could also play a role in the solution, but the optimal solution of the pre-launch
phase seems to be uninfluenced by the initial guess for the launch phase. The bounds
for joint angles and joint angular velocities were set at values that would not restrict the
natural motion of the cyclist. However, during both phases, path constraints were placed
on the position of the hip joint center that limited it going through the seat or seat post.
The most important initial states and bounds were for the frame vertical position/velocity
and pitch angle/angular velocity. The bicycle needed to be starting in a vertical position
that is quite precise in terms of the bicycle resting on the track. Otherwise the stiffness
and damping of the tire would cause significant oscillations for the frame position and
orientation in the initial seconds of the simulation. These oscillations can be seen in the
tire normal forces, which then affects the amount of tire slip and the amount of longitudinal
tire forces. From there, these oscillations propagate throughout the results and oscillations
are seen in the other states such as crank angular velocity and overall frame horizontal
velocity.

There was a tuning process required in generating these simulations in order to find the
bounds, mesh numbers, tolerances, and other parameters in the GPOPS-II setup. These all
affected the solution that was obtained and the time it took to achieve that solution. They
were tested in a trial and error type formulation during the tuning process, but they were
not tested as extensively as desired due to the length of the simulation. Disconcertingly,
the results seemed to vary with some changes to these parameters. For a large problem
such as this, GPOPS-II seems to be fairly sensitive to the bounds and parameters. An
alternative explanation is that the problem was set up in such a way that it was not able
to sufficiently converge to an optimal solution in every simulation.
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The objective for the simulation was to achieve the maximum distance in the given
time period. This represents the objective on the track, where the cyclist wants to cover
the maximum distance possible in the initial portion of the event to get up to top speed
as quickly as possible. Therefore, the following cost function was minimized, where xf is
the final distance traveled.

J =
1

xf
(5.1)

As mentioned with the ergometer simulation, other cost functions have been used in opti-
mizing pedaling that include some form of minimization of jerks and/or minimization of
joint torques. As with the ergometer simulation, these were considered but ultimately not
used because minimization of these led to less distance covered, which was the ultimate
goal. These additional objectives would play more and more of a role the longer the sim-
ulation continues. In a standing start, the primary objective is to achieve top speed as
quickly as possible. The lead cyclist only completes one lap and their teammates look for
them to get out in front quickly and set the pace. For this reason, efficiency of the motion
is not as much of a concern for the first few seconds of the standing start. Beyond the
first few seconds, fatigue becomes more of a factor to consider so the cyclist begins to take
efficiency into account more.

An additional component of the objective function was considered for the pre-launch
phase in order to help drive the solver to the optimal solution for the pre-launch. In the
end, this was not needed because the solver was able to find that launching forward at the
end of the pre-launch helped achieve maximal distance. It is rather interesting to see the
ability of the solver to find key characteristics of a standing start solely based off the goal
of achieving maximal distance. Entering the project, it was anticipated that more complex
objective functions might be needed. More complex objective functions could still give
results that more closely match the experiments, but a fairly representative simulation can
be achieved with a simple objective function.

The computation time was 670 minutes (≈11 hours) on an Intel Core i7-6700 CPU at
3.40GHz with 16GB RAM for the track standing start simulation. The subsequent figures
contain the results of the simulation. After seeing some variabililty among the solutions
obtained during the tuning process, the conclusion was reached that it is likely these results
have not completely converged to an optimal solution. While they may not be a global
optimal result, they still present a highly-effective method of completing a standing start.
These uncertainties with the results are largely due to the lengthy computation time and
the difficulties posed by tuning the GPOPS-II setup.

One of the challenges with this simulation was the interface between the two phases.
The state trajectories found by GPOPS-II tended to have an unnatural jump at the end
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of each phase, especially with the joint kinematics for the pre-launch phase, which causes
issues for the start of the next phase. Additional difficulty seems to be coming from the
tire vertical stiffness and damping. As mentioned, if the bicycle does not begin with the
correct initial conditions there tends to be oscillations in the frame vertical position and
pitch angle. The solution that is found seems to be more sensitive to these variables than
would be expected. It seems that the solver has some difficulty finding solutions that meet
the bounds for the vertical position/velocity and pitch angle/angular velocity, states that
are heavily dependent on the tire stiffness and damping.

A final note is that the optimal trajectories towards the end of the simulated trial are
less reliable and less meaningful than those during the main portion of the trial. The initial
portion was fairly consistent throughout the tuning process, but results varied somewhat
in terms of the hip positions later in the simulation. Based on the objective function, at
the end of a trial, the model may attempt to maneuver itself in a way that will increase the
final distance slightly at the expense of future performance (e.g. driving the bicycle frame
forwards in the last second of the simulation). An updating prediction horizon would be
needed for longer simulation lengths.

5.2.2 Simulation Results

Figure 5.7 contains still frames of standing starts in the experiment and simulation. This
gives a side-by-side, qualitative comparison of the experiment and simulation from the
pre-launch through the initial drive and reset of the launch phase. There are qualitative
similarities between the two. Both rock their hips back in the pre-launch in a similar
nature. It seems in the experiment, the cyclist may extend back slightly farther, with
greater shoulder and elbow extension.

One of the most noticeable differences between simulation and experiment is that the
simulation tends to be farther forward, with a more elevated hip position at gate release
than the actual cyclist during the experiments. This difference is likely due to the fact that
the simulation can time the gate release perfectly. In experiments on the other hand, the
cyclist would tend to err on the side of caution to make sure the gate is fully released at
the end of their pre-launch. They do not want to have fully launched themselves forward
only for the gate not to have been released and to have lost all forward momentum in an
inefficient position.

The drive phase is fairly similar between the two, but this is where the planar nature
of the model results in some differences. The cyclist tends to have a more out of plane
elbow flexion, coming from shoulder rotation. While the trunk is in a similar position and
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(a) Pre-launch

(b) Gate Release

(c) Drive

(d) Reset

Figure 5.7: Images from standing start simulation and experiment
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orientation for both, the arm kinematics to achieve it are different. Furthermore, we can
see the angle of the spine changing in the experiments as well, which cannot be captured by
this model. Continuing from the drive to the reset position, the cyclist has shifted the hips
back to assume a more mechanically efficient position. Here the general pose is also similar
between the two and seems to be occurring at a similar 45-degree crank angle. From this
qualitative comparison, we can see the technique being used is fairly similar between the
two, with the most noticeable area for improving the real-life technique being the timing
of the pre-launch. This model is not able to provide suggestions on better ways to achieve
that timing.

Moving on from those images, a more quantitative comparison of the simulation and
experiment can be presented. The general notation for all plots will be to use solid blue
curves for simulation and dashed red curves representing experimental results. The black
vertical dashed line represents the gate release, separating the end of the pre-launch phase
and beginning of the launch phase. Table 5.1 contains the correlation coefficients, which
will be discussed for the corresponding figures. Additional plots not presented in this
chapter for the standing start simulation can be found in Appendix C. Figure 5.8 contains
the bicycle kinematics, including the x position and speed of the frame center of mass.
The experimental speed of the frame was obtained by integrating the acceleration from
the accelerometer that was fixed to the frame. With the bicycle kinematics, we can see
the simulation clearly outperforming the experiments. This is primarily due to the ability
of the simulation to almost perfectly transfer all of its initial momentum generated in the
pre-launch phase to the bicycle when it is released from the gate. The cyclist weighs more
than 10x that of the bicycle, so the velocity of the trunk is mostly converted to translational
velocity of the combined system. The correlation coefficient for the bicycle speed is 0.973,
indicating that when compared relative to the crank angle, the simulation and experiment
are strongly related for this variable.

The transfer of momentum is optimized because the simulation is able to abruptly stop
the upperbody motion relative to the frame. This is unrealistic due to the complicated
nature and difficult timing of such a maneuver. One difficulty with predictive simulations
is that the model can be manipulated in very precise ways to maximize performance that
might not be feasible in real life due to the precision that would be required for such
a movement. Another example of this is the possibility the simulated cyclist could be
manipulating the bicycle to have optimal wheel normal forces. By manipulating the body
position and bicycle orientation to reduce the front wheel normal force, the simulation
could be experiencing less resistance at the front wheel while being able to generate larger
amounts of torque at the rear wheel. This is something that a human cyclist would have
more difficulty executing precisely. Looking at the wheel normal forces plotted in Appendix
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(a) Frame x position (b) Frame x velocity

Figure 5.8: Frame kinematics

C, this does not appear to be the case in this simulation, but there were instances in
other simulations that indicated this might be occurring. In some simulations, oscillations
occurred at the beginning so the bicycle was not always perfectly balanced on the ground.
In general, caution must be taken in utilizing the results because the simulation can be
quite precise with its movements.

The peaks in the bicycle velocity and crank angular velocity correspond to the cyclist
reset maneuver. The cyclist shifting the weight backward thrusts the bicycle forward
underneath them. At the same time, this motion is driving the crank forward, both
through the pushing against the crank and through the fixed gear connection. Due to the
nature of the fixed gear ratio, the crank angular velocity and bike velocity are directly
related. Figure 5.9 contains the crank kinematics, including total crank angle and crank
angular velocity, or cadence. The crank angular velocity displays a similar initial jump
as the bicycle movement as a result of the fixed gear ratio. After the initial jump, the
crank angular velocity seems to follow a similar trend to the experiments, with peaks and
valleys as the cyclist goes through the drive and reset process. The similar trends between
the two result in a correlation coefficient of 0.962 for the crank angular velocity. In these
results and some subsequent results, there will be the appearance of some “noise” in the
simulated data. This is caused by the bicycle bouncing slightly, as was mentioned in the
previous section.

When examining the crank kinematics we can look at one of the key points of interest
for Cycling Canada: what should the initial crank angle be? The initial crank angle chosen
by the simulation was 83 degrees. The initial crank angle for the cyclist in the experiments
was approximately 75 degrees. It is unclear what are the driving factors determining the
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(a) Crank angular velocity versus time (b) Crank angular velocity vs. total crank angle

(c) Crank angle versus time

Figure 5.9: Crank kinematics
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optimal initial crank angle being computed in the simulation. Various initial crank angles
were seen throughout the parameter tuning process, all starting with the same initial
guess of 75 degrees. A sensitivity analysis would be useful to examine what parameters
are having the strongest effect on the initial crank angle. One might expect that the
initial crank angle chosen should be the crank angle that allows for the most torque to be
generated throughout the first downstroke. The predominant factors for this would be the
joint angles that are optimal for generating torque and what crank angle puts the body in
the most efficient position for transferring propulsive energy to the crank. An additional
factor in the initial crank angle could be at what point after the gate release the initial
reset motion has to take place. Since there is such a large initial velocity in the simulation,
this could be playing a larger role than it should be.

For more insight into what is occurring at the crank, we can look at Figure 5.10, which
contains the crank torque and power. Here the correlation coefficient is 0.828 for the crank
torque and 0.765 for the power. From the experimental results it was noted there was a
significant right and left asymmetry in the torque production. This is something that is
not included in the model so the crank torque profile is more consistent. The simulation
generate greater crank torque than in the experiments at the beginning and less crank
torque than in the experiments towards the end. It is possible this is due to the nature
of the torque scaling with angular speed, and that an Olympic cyclist may have less of
a decrease in torque production at higher angular velocities. As mentioned before, the
simulated behavior at the end is not necessarily indicative of what should be done to
achieve success beyond five seconds.

Figures 5.11 and 5.12 contain the right and left leg joint angles plotted versus time and
versus the total crank angle, respectively. Plotting with respect to time is useful for seeing
how the joint angles change during the pre-launch and to see the time differences in the
profiles due to the higher cadences seen in the simulation. Plotting against the total crank
angle is more useful for a direct comparison of the joint kinematics between the simulation
and experiment as it aligns them on a common scale. The correlation coefficients for
the hip angles are 0.748 and 0.708 for the right and left hip, respectively. Comparisons
between experimental and simulated hip angles can be difficult due to the nature of the
trunk. In the model, the spine was given a fixed angle of 25 degrees. In reality, this
angle is varying, which would affect the pelvis angle, resulting in different hip angles. One
of the key features of the hip angle is the intermediate peaks that result from the reset
motion. For the right hip, there is a larger intermediate peak at a 45-degree crank angle,
and a smaller intermediate peak at 225 degrees. In the simulation, this intermediate peak
only occurs once versus the multiple times that are seen in the experiments, indicating the
cyclist performed more reset motions in the experiment than the simulation did.
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(a) Crank torque versus time (b) Crank torque versus total crank angle

(c) Power versus time (d) Power versus total crank angle

Figure 5.10: Comparison of simulated and experimental crank torque and power for stand-
ing starts

Table 5.1: Correlation coefficients between the standing start simulation and experiment

Speed Cadence Crank Torque Power
0.973 0.962 0.828 0.765

R. Hip L. Hip R. Knee L. Knee R. Ankle Elbow Wrist
0.748 0.708 0.930 0.872 -0.102 0.067 -0.105
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(a) Right hip angle versus time (b) Left hip angle versus time

(c) Right knee angle versus time (d) Left knee angle versus time

(e) Right ankle angle versus time (f) Left ankle angle versus time

Figure 5.11: Lower limb joint angles versus time for standing starts
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(a) Right hip angle versus total crank angle (b) Left hip angle versus total crank angle

(c) Right knee angle versus total crank angle (d) Left knee angle versus total crank angle

(e) Right ankle angle versus total crank angle (f) Left ankle angle versus total crank angle

Figure 5.12: Lower limb joint angles versus total crank angle for standing starts
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Figure 5.13: Lower limb joint angles for the standing start simulation

The knee and ankle angles are the best for comparison; unfortunately, the ankle angle
measurements were not successful. Comparing with the ankle angles from the preliminary
testing, there was more ankle dorsiflexion in the simulation. The experimental ankle joint
angle is not perfectly aligned with the crank angle since it came from a different experi-
ment. As a result, the correlation coefficient of -0.102 for the right ankle indicates there is
no relationship between the experiment and simulation. The main use of this experimen-
tal ankle angle is for comparison of the range of motion and general trends of the joint
kinematics. The knee has the most similarity between the experiment and simulation with
correlation coefficients of 0.930 and 0.872 for the right and left knee, respectively. For the
knee, there is less flexion in the experiments than at the end of the simulation due to the hip
position gradually trending lower over the course of the simulation. Overall, the simulation
appears to be more symmetric than the experimental results, a characteristic that is made
clearer in Figure 5.13. A final point to note is that the size of the cyclist relative to the
bicycle could play a role in the optimal kinematics as well. The cyclist model was scaled
using anthropometric data to match the experimental cyclist, but it is possible the cyclist’s
relative limb lengths were not the same as those for the average population. Overall, these
joint angles are useful to see as a comparison and confirm that the simulation is in similar
ranges.

Figure 5.14 contains the upper limb joint angles for all three joints. There are signif-
icant differences seen between the upper limb joint angles in the simulation and in the
experiment. Correlation coefficients for the elbow and wrist were 0.067 and -0.105, respec-
tively. The upper limbs go out of plane much more than the lower limbs so the planar
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modeling is much more effective for the lower body, but not as good of a representation for
the upper body. The physiological nature of the shoulder, elbow, and wrist joints allows
for significantly more movement out of plane than what is included in the model. The fix-
ation method of the hand also constrains the attachment angle, when in reality, the hand
orientation can change on the handlebars in addition to the wrist deviation. To further
compare with the lower limb, the foot being clipped into the pedal gives a much better
representation in the model so that is one fewer potential source of discrepancy in the joint
angles due to modeling for the lower limb joints.

For the elbow and wrist, the joint angles do seem to be in a similar range despite these
modeling issues. The experimental results are showing less elbow flexion, likely because
the arms are able to go out of the plane. The wrist angle is difficult to measure using
the electrogoniometers, so of all the joints, it has the greatest likelihood of measurement
error. There is limited surface to fix the endblocks and the cyclist sweating made it
difficult to secure in place. These joint angles may be significantly different between the
simulation and experiment, but that does not say anything definitively about the hip
joint center translational kinematics, which matters more than the individual upper limb
joint angles when it comes to being in the optimal position for overcoming the mechanical
inefficiencies. The same hip position could be obtained with different combinations of joint
angles depending on whether they are going out of the plane versus staying in the plane.
Ideally, an exact measure of hip position and velocity during the experiments would be
used for comparison, but this was not possible using the existing sensors.

A final observation about the upper limb joint angles is that it seems like the elbow
is somewhat redundant. The wrist and and shoulder angles follow oscillatory patterns
that relate to the hip movement, whereas the elbow angle seems to have other oscillatory
movements as well. Figure 5.14f shows the upper limb joint angles plotted together to
get a sense of the trends relative to each other. The torques for the upper limbs (Figure
5.15) are primarily the shoulder torques, as they are the strongest of the three. The torque
values displayed in Figure 5.15 represent the combined torque of both arms due to the
simplification made to lump the arms together for symmetric movement.

Figure 5.16 contains the joint torques and torque activations for each lower limb joint.
The torques are being close to maximally activated for most excitations of the hip and knee
joints. There are certain points during extension in the first pedal stroke that each joint
undergoes a slight decrease in activation before returning to maximal activation. For the
ankle joint torques there is a period of eccentric contraction as was seen in the ergometer
simulation, indicating there are times when it is acting in a stabilizing manner. This would
correspond with the findings of previous researchers [40] that during portions of the crank
cycle, the ankle is acting primarily as an energy transfer mechanism.
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(a) Wrist angle versus time (b) Wrist angle versus total crank angle

(c) Elbow angle versus time (d) Elbow angle versus total crank angle

(e) Shoulder angle versus time (f) All upper limb joint angles

Figure 5.14: Upper limb joint angles
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(a) Upper limb torque activations (b) Wrist torque

(c) Elbow torque (d) Shoulder torque

Figure 5.15: Upper limb joint torques and activations. Ts refers to the scaled torque,
Tpre refers to the pre-scaled torque, and Tiso refers to the isometric torques for flexion and
extension.
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(a) Hip torque activation (b) Hip torque

(c) Knee torque activation (d) Knee torque

(e) Ankle torque activation (f) Ankle torque

Figure 5.16: Lower limb joint torques and activations. Ts refers to the scaled torque, Tpre

refers to the pre-scaled torque, and Tiso refers to the isometric torques for flexion and
extension.
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The hips tend to utilize the maximum activation rate when switching from flexion
to extension. However, it undergoes a more gradual activation going from extension to
flexion, indicating the hip torque is not as much of a driving factor during the upstroke.
We can see similar trends with the knee torques. The results of vanSoest and Casius [36]
and Bobbert et al. [28] indicated the importance of activation/deactivation dynamics to
the results and this can be seen here. A faster activation and deactivation rate would allow
for faster transition from flexion to extension, which plays a role in the maximum amount
of torque that can be produced.

Figure 5.17 is the hip joint center kinematics. The simulation starts by rocking the
hips back and stretching the upper body so that the hips are above the seat and almost as
far back as possible. The simulation then launches the body forward to its forward-most
position. The simulation tends to reach its peak reset position at approximately 45 degrees
past top dead center (TDC) with each leg. It begins the reset motion at about 45 degrees
prior to reaching top dead center (crank angle of 315 degrees). The reset motion takes
place as the crank passes through TDC so that the simulated cyclist can overcome the
mechanical inefficiency. In this reset motion, the cyclist shifts the bike forward underneath
them, a motion that can be seen in the peaks in translational bike velocity. Completing
this motion, it is in the full reset position at a crank angle of 45 degrees and is prepared
for driving the hips forward again.

From the earlier qualitative comparison with the still images of the experiments, the
experimental crank angle also appeared to be at approximately 45 degrees when in the
reset position. The patterns in the hip joint angles seem to confirm this as well. Visually,
it seems like the cyclist in the experiments may be farther back when in the reset position.
The higher crank angular velocity means we do not see the same amount of hip movement
in the simulation as in the experiments. At higher crank angular velocities, the technique
becomes less effective as it is more difficult to go through the drive-reset motion at that
speed in that amount of time. Unfortunately, a limitation for these comparisons is the lack
of quantitative experimental measures of the hip position relative to the crank, so a direct
comparison can not be made to the experiments.

Looking at the overall outcome of the simulation gives an idea of the optimal standing
start technique. Based on the results of these experiments and simulation, it seems that the
standing start technique being currently used is close to what was found by the optimal
simulation. It seems that this cyclist in particular might be able to improve his starts
by better timing his pre-launch with the gate release. From analyzing the experimental
results, the cyclist may also improve performance by reducing the right/left asymmetries
that were observed. This could be done by focusing on strengthening the weaker leg. Both
seem to be performing the drive and reset motion at similar points in the pedal stroke.
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(a) Hip position versus time (b) Hip position versus relative crank angle

(c) Hip position in the vertical (sagittal) plane (d) Hip velocity relative to the bicycle

Figure 5.17: Hip joint center kinematics for the standing start simulation
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The simulation and experiments are close enough in nature that any differences seen can
not be clearly distinguished as improvements that should be made without questioning the
effects of the assumptions and simplifications that have been made in the model.
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Chapter 6

Conclusions

6.1 Project Summary

A two-legged cyclist and bicycle model was developed for predictive simulations using
optimal control methods. First, the cyclist model was validated by simulating maximal
start-up pedaling on an ergometer while in a seated position. The validation of the model
appeared to be successful in that it could successfully replicate experimental results using
an experimental data tracking approach, and produced similar results when using a pre-
dictive simulation. Predictive simulations were then performed for start-up cycling on a
track bicycle. The model was able to replicate key features of the standing start technique,
including the pre-launch, drive, and reset motions. A shortcoming of the predictive sim-
ulation is long CPU times, which is expected for the optimal control solution of complex
multibody dynamics

The purposes of this study were two-fold. One was to provide feedback to the Canadian
track cycling team on the technique being used in standing starts. The second was to
evaluate the modeling and simulation methods being used to determine whether they are
an effective way of modeling human movement. The secondary objective was successful
in terms of its ability to find a technique that resembles that being used in real life. In
one sense this was a positive because it indicated that our model was working well, but
on the other hand, it was not going to produce groundbreaking changes to the standing
start technique. The expectation was to find smaller details of the technique that could be
corrected. It was expected for a sport that has been around for many years, the big-picture
technique is fairly refined, but details need to be refined and better understood.
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In its current form the model can be a useful tool. Additional uses of the model could
be in testing cyclist set up such as handlebar position and crank length, or seat position
in steady-state pedaling. It can provide insight into which groups of muscles are being
used predominantly in which phases of the pedaling motion. There is the potential to
observe the effects of varying joint strengths and how that affects the optimal technique.
Additional benefits could be gained from understanding which joint torques are playing
the largest roles throughout the standing start.

6.2 Limitations

There are some limitations to the results presented in this study. One is the use of joint
torques rather than a full musculoskeletal model for the lower limbs. The joint torque
model simplifies the neuromuscular components of a musculoskeletal model, in the pro-
cess ignoring individual muscle properties and simplifying the activation dynamics, force-
length scaling, and force-velocity scaling. Furthermore, the method of scaling the active
joint torques does not take into account the effects of biarticular muscles. To represent
a biarticular muscle, a joint torque would need to be scaled based off the joint angle and
angular velocity of both joints that the muscle is acting on. Developing such a torque
scaling function for all joints in the model would require a more comprehensive protocol
for the dynamometer experiments than what has previously been used. There is also some
uncertainty in the joint torque model with regards to the inclusions of passive torques and
joint damping along with the active torques. Distinguishing the separate effects of each
of these during dynamometer experiments can be difficult, so it is possible active torque
scaling is already incorporating some of the effects of the passive torques and joint damp-
ing. Using a full musculoskeletal model would help solve some of these issues, but the
additional state variables required make a full musculoskeletal model impractical for use
in a predictive simulation of this scale.

More testing is needed on Olympic-level cyclists, as well as their bicycles, to ensure
the model accurately represents their characteristics. One of the challenges of studying
Olympic cyclists is knowing their capabilities. Their body types and muscle strength
would be on the extreme end when compared to the average population, so more data are
needed on Olympic-level athletes to create more representative models. To obtain more
accurate results, it is desirable to obtain dual-energy X-ray absorptiometry (DXA) scans
of the athletes, which would allow for the determination of person-specific anthropometric
information, including limb segment lengths, masses, center of masses, and moments of
inertia [65].
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As mentioned, there were several assumptions and simplifications that were made in
the development of the bicycle model. Center of mass and moment of inertia are estimated
based on the geometry of the SolidWorks bicycle model so there is likely some error there.
These errors were not a significant concern because the bicycle is fixed to remain upright,
so only x location of the center of mass comes into play for the normal force experienced
by wheels. Even then, the mass of the cyclist is ten times the frame mass so it likely would
not have significant effects. Other aspects such as chain friction, bearing friction, wheel
drag, and frame stiffness could also have an effect, although it is likely minimal and would
not affect the optimal technique. The lack of aerodynamic drag forces is also a limitation
of this work. However, as mentioned previously, these forces are small for the low velocities
seen during the standing.

Some of the biggest uncertainties in the bicycle model lie with the tire model. For
traveling in a straight line as this model does, the tire models are probably sufficiently
accurate. The default tire model assumes the tires are traveling on a flat surface so there
was no camber included as would be seen on the track. The tire stiffness and damping
parameters should also be examined further. At times it seemed like the optimal result was
overly dependent on meeting the bounds for vertical position. While it was not entirely
accurate, the bicycle model was a reasonable approximation of a generic track bicycle.

The primary limitation of developing a more complex and accurate model is the com-
putation time required. The longer simulation times are a result of looking at start-up
pedaling, not steady-state pedaling, and using predictive simulation as opposed to data
tracking. There was not a sensitivity study or convergence study to analyze how close
to optimal these results truly are. The conclusion reached was that they give a general
picture of the optimal technique, but conclusions can not be drawn without some degree
of uncertainty. The “sub-optimal” results that were output were sometimes different from
one simulation to the next. It is also possible, or even very likely, that similar results with
similar objective function values could be attained with shorter run time. Extensive addi-
tional effort was not able to be put into finding the optimal number of meshes, iterations
and tolerances as this would have been a time consuming process based on the simulation
lengths.

6.3 Future Work

One of the main drawbacks to this method is the length of the optimal control process. As
optimal control techniques continue to improve and take advantage of improved computing
power, this will become less of an issue. Some of these recommendations for future work
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would be dependent on faster run times, because simulations are already taking quite long,
so adding to the complexity of the model is not recommended at the moment.

The primary recommendation is to investigate methods of improving the CPU times.
Direct collocation seems to be the best method for optimal control of human movements,
but there could be alternative methods available that work well. One possibility is to try
using optimal control via indirect methods to see if it is more efficient. Currently, with
the method of exporting the dynamic equations, automatic differentiation with adiGator
does not work. Investigating a method to allow for the use of automatic differentiation
with adiGator would be useful to increase computational efficiency. Another possibility for
improving computation time is to examine additional modeling simplifications that would
make the problem easier to solve. A large part of the difficulties with the optimal control
seem to be coming from the stiffness and damping of the tires. It is possible that alternative
methods of modeling these would allow for more efficient simulations. In addition to, and
in the process of investigating methods of running simulations faster, more time should be
spent exploring and understanding the nuances of the GPOPS-II software. This would help
place more faith in the results that are being achieved and in deeming them the optimal
technique that should be used by the team, as well as finding the optimal setup for finding
the optimal solution efficiently.

Future work could be done to address some of the limitations that were presented.
DXA scans could be used to get subject-specific mass and moment of inertia properties.
A dynamometer could be used to develop a subject-specific torque scaling model for an
Olympic cyclist. Passive torque functions could also be obtained. At a minimum, the
maximum isometric torque values could be obtained to use as the bounds for the joint
torques in the optimization. The primary challenge with this is the availability of the
athletes. Olympic cyclists have busy training schedules so it can be difficult to find time
to do experimental testing.

In addition to the dynamometer testing, a muscle model could be implemented in place
of the joint torque model. The first step in this process would likely be to add the muscles
but have them grouped into flexors and extensors so the number of controls stays the same.
This would still increase the number of states, but maintaining the same number of controls
could help keep computation times reasonable. The most practical method would be to
only include lower limb muscles and leave the upper limbs actuated by joint torques. With
regards to skeletal dynamics, the fidelity could be improved by adding a more complex
knee joint that has translational degrees of freedom as a function of knee flexion angle, as
was used in some previous pedaling models.

For tires, experimental testing could be done to obtain parameters specifically for track
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cycling tires, rather than the parameters for road cycling tires that have previously been
reported. This would require the development of a test rig specifically for bicycle tires. For
the bicycle frame, work could be done to more accurately determine moment of inertia and
center of mass locations for the frame. For an even more accurate bicycle model, a method
of approximating energy lost due to bicycle frame deformation could be incorporated. Track
cycling frames are designed to be quite stiff though, so this would likely have minimal effect
and would not be a top priority.

It would be of interest to do more extensive testing with the cyclists on the track.
Testing with more cyclists would enable a comparison between different cyclists to see how
much the technique varies. In addition to measuring crank torque as was done in this
study, it would be interesting to measure the exact pedal forces to study the forces that
are directed radially inwards on the crank arm, as well as lateral forces out of the sagittal
plane. The radial forces could be compared to simulations to see how the two compare in
terms of efficiency of force production. More work could be done to evaluate using IMUs
for measuring joint kinematics. Improved sensor fusion techniques would allow for more
accurate kinematic measurements with minimal drift, while being less invasive and more
durable than electrogoniometers.

The model could be tested in some of the applications mentioned previously using
various aspects of the bicycle design and setup as part of the optimization: handlebar
position, crank length, gear ratio or, in the case of steady-state pedaling, seat position.
Varying physiological parameters could help for analyzing the effects of varying muscle
strengths and how that affects the optimal technique. The key with these applications is
knowing that the solver has converged and that the differences in the optimal solutions are
due to the change in parameter and not just that the solver is converging to a different local
optimum. Beyond using it for standing starts, this model could be fairly easily adapted
to various other cycling applications by changing the height/weight, torque bounds, and
bicycle setup.

Progressing into more complex modeling modifications, one could add a degree of free-
dom for bicycle roll and a controller for balance. While adding a single degree of freedom
might not sound complicated initially, the incorporation of roll would add several compli-
cations. A controller for balancing and steering would be required, which would be difficult
due to the oscillating leg masses and the trunk oscillating front to back. Doing so might
also require a controller for lean to accurately incorporate the cyclist’s ability to balance.
These additions would present added difficulties with the tire models, as they would require
lateral dynamics and camber forces to be included. The slope of the track would need to
be considered as well, as tire forces would change with the addition of a camber angle. This
starts getting quite complicated very quickly, and would likely cause a significant increase
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in computation times.

Aerodynamics could be included within the standing start to get a more accurate es-
timation of distance traveled. Applying a generic aerodynamic drag to the entire model
would not affect the technique being used, only the performance output. A proper aero-
dynamic model that could affect the technique would have to account for different body
positions. One interesting potential application for a model such as this would be to inves-
tigate the optimal cycling position. In their review on aerodynamics in cycling, Crouch et
al. [66] mention the lack of research on the relationship between aerodynamics and biome-
chanical efficiency for determining the optimal body position. Certain body positions are
more aerodynamic but are less conducive to maximum power generation. Making this
modification would be necessary for carrying out the simulation to study track cycling
beyond the first 5-10 seconds of the race.
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Appendix A

Additional Details on Model
Development and Optimal Control

A.1 Model Degrees of Freedom

For the model used in the ergometer pedaling predictive simulation, the legs+crank form a
closed kinematic chain with three total degrees of freedom. This is generally thought of as
one for each leg (either the hip, knee, or ankle) and one for the crank angle. For the model
used in the ergometer pedaling data-tracking simulation, the upper body was included to
allow for the matching of all three right leg joint angles. The cyclist has five degrees of
freedom among the two legs and the upper body and there is one degree of freedom for the
crank. For the data-tracking approach it makes the most sense to think of these degrees of
freedom being the right hip, knee, and ankle (which are tracking the experimental data),
the crank (also tracking the experimental data). This leaves two degrees of freedom among
the upper body and the left leg that are essentially up to the model to find the best values
for tracking the previously mentioned experimental data as well as the crank torque while
minimizing the joint torques required. The combined cyclist and bicycle model has ten
total degrees of freedom. Just as with the data-tracking model, the cyclist has five degrees
of freedom. The bicycle has five degrees of freedom, with the rear wheel connected to the
crank by an ideal gear
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Ergometer data-tracking model

1. Crank

2. Right hip

3. Right knee

4. Right ankle

5. Left ankle

6. Wrist

Ergometer predictive model

1. Crank

2. Right ankle

3. Left ankle

Combined bicycle and cyclist model

1. Horizontal frame translation

2. Vertical frame position

3. Frame pitch

4. Front wheel

5. Crank

6. Wrist

7. Elbow

8. Shoulder

9. Right ankle

10. Left ankle
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A.2 GPOPS-II Bounds

Table A.1 contains the state bounds that were used in GPOPS-II. In some cases, the
bounds are not necessarily physical or physiological bounds, but were set in such a way
to allow the solver to find the optimal solution more quickly. Reducing the bounds to the
expected ranges limits the range of possible solutions that could be searched by the solver,
thus speeding up the computation time. However, if the bounds are too restrictive, the
solver may have difficulty finding the optimal solution due to the restrictive nature of the
bounds.

Table A.1: Bounds used in GPOPS-II

State Lower Upper
Frame x Position (m) 0 60

Frame x Velocity (m/s) 0 25
Frame z Position (m) -0.005 0.001

Frame z Velocity (m/s) -0.1 0.1
Frame Pitch Angle (rad) -0.03 0.03

Frame Pitch Angular Velocity (rad/s) -0.7 0.7
Front Wheel Angle (rad) 0 190

Front Wheel Angular Velocity (rad/s) 0 75
Crank Angle (rad) 0 55

Crank Angular Velocity (rad/s) 0 20
Wrist Angle (rad) 0.45 1.75

Wrist Angular Velocity (rad/s) -6 6
Elbow Angle (rad) 0 1.45

Elbow Angular Velocity (rad/s) -8 8
Shoulder Angle (rad) 0.1 2

Shoulder Angular Velocity (rad/s) -9 9
Hip Angle (rad) 0.5 2.7

Hip Angular Velocity (rad/s) -9 9
Knee Angle (rad) 0.05 2.7

Knee Angular Velocity (rad/s) -10 10
Ankle Angle (rad) -0.8 0.65

Ankle Angular Velocity (rad/s) -9 9

99



Appendix B

Additional Plots for the Ergometer
Simulations

B.1 Additional Plots for the Ergometer Data Track-

ing Simulation

Figure B.1 contains the passive torques for the lower limbs. The hip and knee have less
than 20 N·m of passive torque so it is not playing a significant role. The right ankle has
slightly more, peaking at around 40 N·m. The left ankle has large amounts of passive
torque in the first few pedal strokes. This is likely because there were no data recorded for
the left leg, so it is being partially driven by the right leg hip position. This results in the
left leg needing to produce joint angles that are somewhat more unnatural.

Figure B.2 contains the pedal forces in the crank reference frame. The forces are pre-
sented in the frame of the crank, with the radial direction referring to parallel to the crank
arm, and propulsive referring to perpendicular to the crank arm. There were surprisingly
large amounts of radial forces being applied, in some cases reaching peaks that were as
much as twice the propulsive force peaks.

Figure B.3 displays the constraint error. The constraints were for the revolute joint
connecting the foot/pedal to the crank. There is no noticeable constraint error for a
majority of the simulation; however, there was a sharp jump to 0.6 mm of error at the last
time point. It was noticed in most simulations that the solver had trouble maintaining the
constraints at the final time point. It was unclear why this was an issue.
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Figure B.1: Passive hip, knee, and ankle torques for data tracking simulation

Figure B.2: Pedal forces for data tracking simulation

Figure B.3: Constraint error for data tracking simulation
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B.2 Additional Plots for the Ergometer Predictive

Simulation

Figure B.4 contains the passive torques for the lower limbs. When given freedom, the
model uses a technique that does not result in large passive torques. Hip and knee passive
torques both remain less than 10 N·m. There is more ankle passive torque, but it remains
under 35 N·m.

Figure B.4: Passive hip, knee, and ankle torques for the ergometer predictive simulation

Figure B.5 contains the pedal forces in the crank reference frame. As with the data-
tracking simulation, there were larger radial pedal forces than propulsive pedal forces.
This was more inefficient than was expected, as it was thought that minimizing the wasted
forces would be optimal. An experimental analysis of pedal forces would be useful to
further investigate pedal forces in maximal start-up cycling.

Figure B.6 displays the constraint error. The constraint error remains under 1x10−10

mm throughout the 5-second portion of the simulation that was displayed in all plots.
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Figure B.5: Pedal forces for the ergometer predictive simulation

Figure B.6: Constraint error for the ergometer predictive simulation
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Appendix C

Additional Plots for the Standing
Start Simulation

C.1 Additional Plots for the Bicycle

Figure C.1 is the vertical position and frame rotation (frame pitch angle). There are
oscillations of approximately 2mm in the vertical position of the frame center of mass.
Very small oscillations in the frame pitch angle are seen as well. The most concern is with
the initial spikes seen in both. This is due to the position and orientation starting in a
position where the tire spring stiffness is compressed, resulting in transient behavior.

(a) Vertical position of the frame center of mass (b) Pitch angle of the frame

Figure C.1: Bicycle frame motion

104



Figure C.2 are the wheel normal forces plotted versus time and versus the crank angle
relative to TDC throughout the standing start simulation. The bicycle is not included
in the pre-launch phase so the vertical forces prior to gate release are plotted as being
the same as the instant of gate release, even though that is not actually the case. The
vertical forces would be changing throughout the pre-launch phase. There are fairly large
oscillations in the vertical forces as the cyclist model shifts its weight longitudinally relative
to the bicycle.

(a) Wheel normal forces versus time (b) Wheel normal forces versus crank angle

Figure C.2: Wheel normal forces

Figure C.3 is the tire slip. The large amounts of slip are seen in the driven wheel (i.e.
the rear wheel). The rear wheel slip follows a profile similar to the crank torque, as it is the
applied torque that results in acceleration and wheel slip. The front wheel has considerably
less slip as it is the non-driven wheel.
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(a) Tire slip versus time (b) Tire slip versus the relative crank angle

Figure C.3: Tire slip
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C.2 Additional Plots for the Cyclist

Figure C.4 contains the velocity of the center of mass of the entire system (cyclist+bicycle).
This shows that the velocity of the center of mass of the system is continuous between
phases. The jump in bicycle velocity is coming from the transfer of the momentum from
the cyclist to the bicycle when the bicycle is released from the gate.

Figure C.4: System center of mass velocity

Figure C.5 contains the lower leg joint angles plotted against the crank angle relative
to TDC. This shows whether or not the motion is repetitive. The experimental results
indicate the cyclist was fairly repetitive from one pedal stroke to the next. The simulation
was much less repetitive in nature, but the profiles generally followed the same trend in
each pedal stroke.

Figure C.6 contains the upper limb joint angles plotted against the crank angle relative
to TDC. Similar to the lower limb, the experimental results indicate the cyclist was fairly
repetitive from one pedal stroke to the next. The simulation was much less repetitive
in nature, but the profiles generally followed the same trend in each pedal stroke. The
elbow did not seem to follow a consistent pattern between pedal strokes, indicating that
its motion may be redundant to the overall motion. Generally in all the figures, the
peaks/valleys are seen at approximately 45 degrees and 225 degrees for the crank, when
the cyclist is in the reset position. The first two pedal strokes in the simulation are the only
ones with a noticeable reset maneuver. The drive and reset maneuver is not as visibile in
the experimental wrist and elbow angles. It seems these joints are generally more stable,
and it is likely the drive/reset would be more visible in the shoulder angle if it could be
accurately measured for the experiments.
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(a) Right hip angle versus crank angle (b) Left hip angle versus crank angle

(c) Right knee angle versus crank angle (d) Left knee angle versus crank angle

(e) Right ankle angle versus crank angle (f) Left ankle angle versus crank angle

Figure C.5: Lower limb joint angles versus relative crank angle
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(a) Wrist angle versus relative crank angle (b) Elbow angle versus relative crank angle

(c) Shoulder angle versus relative crank angle

Figure C.6: Upper limb joint angles
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Figure C.7 has the lower limb joint torques plotted against the crank angle relative to
TDC. The joint torques follow a fairly consistent pattern in the simulations. They are
not being maximally activated in later pedal strokes, potentially because of the difficulty
in controlling the motion at higher speeds and applying that large of a torque and then
deactivating to a lower torque is difficult to perform.

Figure C.8 contains joint angles and angular velocities of for the lower limbs. From
Figure C.8a there does not appear to be any noticeable asymmetries. The simulation
seems to be fairly consistent between pedal strokes as well (Figure C.8b). Similarly, the
angular velocities seem to be fairly consistent between legs as well (Figure C.8c).

Figure C.9 contains the passive joint torques for the lower limbs in the standing start
simulation. The largest passive torques occurred in the ankle right at the gate release. The
simulation was attempting to use the full range of motion for the ankle, which resulted in
the larger ankle passive torques. As with the ergometer pedaling, there were less than 20
N·m of passive torque for the hips and knees.

Figure C.10 displays the crank torque and power versus the crank angle relative to
TDC. The profiles for both the experiment and simulation follow the expected double-
peak pattern. The peaks in the torque occur for each leg during the downstroke. The
peaks in the simulation are slightly after the peaks in the experiments. This could be
experimental error, as the crank angle is approximated from the cadence. It could also be
due to a difference in technique. The cyclist seems to trend slightly farther forward, which
would result in a larger crank angle being the most optimal for generating torque.

Figure C.11 is the pedal forces for both pedals in the propulsive (perpendicular to the
crank arm) and radial (parallel to the crank arm) directions. Unlike in the ergometer
pedaling, the propulsive pedal forces are greater than the radial pedal forces. In the first
few pedal strokes, the opposite leg is able to pull up during the upstroke to add to the
propulsive torque. As the cadence increases, this is no longer possible and the drive leg is
responsible for nearly all the propulsive force.

Figure C.12 contains the constraint error. There were some issues with the interface
between the pre-launch and launch phases. The initial mesh fraction after the phase switch
has the largest constraint error, before the constraint error is reduced throughout the rest
of the launch phase.
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(a) Hip joint torque activation (b) Hip joint torque

(c) Knee joint torque activation (d) Knee joint torque

(e) Ankle joint torque activation (f) Ankle joint torque

Figure C.7: Lower limb joint torques and activations versus relative crank angle
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(a) All lower limb joints versus time (b) All lower limb joints versus crank angle

(c) Angular velocities for all lower limb joints

Figure C.8: Lower limb joint angles and angular velocities

Figure C.9: Passive hip, knee, and ankle torques for track predictive simulation
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(a) Crank Torque (b) Power

Figure C.10: Crank torque and power versus relative crank angle

(a) Pedal forces (b) Pedal forces

Figure C.11: Pedal forces for the predictive simulation

Figure C.12: Constraint error for track predictive simulation
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