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Abstract 

The development of Additive Manufacturing (AM) has reached a point where it is positioned to be 

disruptive for the manufacturing sector, with a majority of manufacturers having leveraged the use of 

AM in their operations. Laser powder bed fusion (LPBF) is one subclass of AM in particular that has 

seen tremendous growth and adoption in the past decade. This is due to the increased needs for 

customized metallic parts and the demand for light-weighting and performance optimization. 

However, the adoption of LPBF (and in extension, AM) is challenging because of numerous issues 

that affect the quality of LPBF-built parts, where the complex interactions between parameters make 

it difficult to predict part quality behaviour. To ensure low risk of deployment of this technology, 

progress still needs to be made in the design of strategies for process window identification of new 

materials, of process predictive tools, and of process control strategies to ensure process stability and 

traceability. 

Within this work, the optimization of LPBF-built parts is performed for a novel material for LPBF, 

such that it may be possible to garner new insights into process development for future material 

adoption in the AM space. The material in question is Invar36, which is an iron-nickel alloy that is 

known for its low thermal expansion behaviour, and it is used in applications that require such 

dimensional stability over a temperature range. Its applications include metrology, cryogenic storage, 

and precision mounting applications. However, the material is known to have challenges with 

manufacturability. The material has a tendency to crack during solidification and reheating, and its 

high nickel content results in unfavorable work hardening characteristics that increase machining 

costs. Through the use of LPBF and its unique capabilities, it may be possible to sidestep the 

manufacturing difficulties of the material, and potentially further improve on the material’s uses by 

reducing costs through optimized design strategies. 

The work performed within uses a gas-atomized blend of Invar36 powder. After characterization, 

the powder was found to conform to the particle size distribution, as specified by the manufacturer 

and defined by ASTM standards. It is also found that the powder size distribution adhered to a 

bimodal distribution with centers about 27 𝜇m and 40 𝜇m. The rheology of the powder was also 

examined, with overall observations suggesting that the material displays good flowability behaviour. 

The experimentation work was split into two separate experiments. The first experiment was 

structured to develop a process map and then identify an optimal process window for the LPBF of 
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Invar36 that could characterize the performance of the material on the following process outcomes: 

density, and thermal expansion. The parameters of focus within this experiment were chosen such 

that they directly affect the energy input within the material. These parameters are laser power, point 

and hatch distance, and laser exposure time. Techniques used for this experiment included detailed 

pore space analysis through computed tomography (CT) and thermal expansion measurements 

through thermomechanical analysis (TMA). The experiments were created using factorial design 

metholodology and were analyzed using statistical techniques. 

From the results, it was found that the material tended towards optimal solid fraction at lower 

power levels (250 W), larger point and hatch distances (80 𝜇m), and lesser exposure times (60 𝜇s), 

with the best performing parts reaching ≈99.92% solid fraction. However, upon observation it was 

found that a large number of pores within the samples were biased towards the border region of 

samples, and appeared to be affected by parameters that were uncontrolled in the first experiment. Re-

analysis of the results without these uncontrolled areas showed that, within the core regions, optimal 

samples had solid fractions of 99.99% once a minimal power threshold was met (>250 W). In terms 

of thermal expansion, the material was found to have ideally low thermal expansion at lower energy 

density ranges, and as a whole, all parts performed better than conventional Invar36. 

The second experiment focused on eliminating the pores created at the border regions. From 

observations, it was found that parameters such as power, border power, fill contour offset, and hatch 

compensation are significant parameters in the aforementioned regions. CT analysis was once again 

employed in this experiment, and parts were fabricated adhering to a factorial design. 

As a result, it was found that the general trend for low porosity parts had low power (275 W), low 

border power (250 W), low fill contour offsets (50%), and low hatch compensations (25%). The 

improvement on the solid fraction in the overall part increased to 99.99%. When considering only the 

border regions, the majority of pores were eliminated, with the border solid fraction increasing to up 

to 99.94%. However, one difficulty during analysis is that the errors were not normally distributed; 

and thus, the results presented for this chapter may not have been entirely representative of the 

complexity of the process and process parameter interactions at the border of the parts. 

As a final study, a numerical modelling approach that was taken to investigate the possibility of 

using simulations to predict part quality behaviour (through melt pool analysis) of Invar36 parts. The 

results show that the model under-predicts the melt depth, and is most likely due to the 

approximations made within the model. 
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Chapter 1 Introduction 

Additive Manufacturing (AM) is a technology that has seen tremendous growth since its inception, 

and it is poised towards disruption in the manufacturing sector. Based on the AM corporate annual 

industry growth in 2016, the AM industry grew by 17.4% to $6.063 billion, with reports indicating 

that more than 70% of manufacturers have adopted or leveraged AM processes in their operations [1]. 

The underpinning cause of this paradigm shift can be understood by the core operating principle 

behind all AM processes, which is the “process of joining materials to make parts from [three-

dimensional] model data, usually layer upon layer, as opposed to subtractive manufacturing and 

formative manufacturing methodologies" [2]. From this definition, it is clear to see why the 

technology is so alluring. Within today’s competitive economy, a product’s success can be dictated 

by even the minutest of details. For example, the launching of a product before a competitor or the 

improvement of a product’s efficiency can position a company to secure valuable market share. AM 

can cater to this environment by reducing the steps required in the design-to-manufacturing cycle. 

During the prototyping stage, AM offers the ability to quickly shift from design to fabrication, 

possibly within a single step. The resulting prototypes give engineers important visual and tactile 

indicators to more effectively improve on the design iterations of their products. Moreover, the AM 

process and its layer-by-layer approach can also offer significant savings associated with material 

usage, since unused material during the process can be re-used for future builds. Arguably, the most 

important and unique advantage of AM is that it is conceivable to fabricate complex geometries 

unachievable by more conventional methods—such as casting, forming, or machining. This allows 

engineers to design more efficient geometries or system configurations. Companies like General 

Electric (GE) are already leveraging the advantages of AM in their designs. For example, before 

utilizing AM, GE was manufacturing jet engine fuel nozzles that had extraordinarily complex 

interiors, which required over 20 distinct parts that had to be welded and brazed together [3]. After 

optimization for AM, GE was able to print a fuel nozzle that limited the assembly into a single 

component, with a weight reduction of 25% and a fivefold durability increase [3]. Moreover, the 

company continued its endeavors with AM and was able to consolidate the components in its 

advanced turboprop engine from 855 to a dozen parts, reduce the engines weight, increase fuel 

efficiency by 25%, and give the engine 10% more power [4]. The mentioned parts by GE were 

created using a rapidly growing subcategory of AM known as powder bed fusion. 

Powder bed fusion (PBF) is an AM technology that involves the solidification of powder laid upon 

a substrate into solid material. When the solidification is performed using a laser through thermal 

interaction, the technology is known as laser powder bed fusion (LPBF). LPBF was first developed at 
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the University of Texas in the 1980s, and at the time it was referred to as selective laser sintering 

(SLS) [5]. Since then, many similar technologies have arisen, such as selective laser melting (SLM), 

which uses more powerful lasers than SLS, and electron beam melting (EBM), which uses an electron 

beam instead of a laser as the heat source. However, all PBF systems function using the same 

fundamental principles; layers of powder are spread across a build bed and are then fused together, 

typically with a focused beam of electromagnetic radiation. As well, a method of controlling the 

location of melting regions is employed based on a raster pattern generated from input three-

dimensional (3D) computer-aided design (CAD) models. Although polymer based AM technologies 

have been dominating the market, metal AM technologies such as LPBF have seen tremendous 

growth within the past decade. In 2017 alone, the metal AM sector grew by 79.8% with the sales of 

over 1768 systems compared to 983 in 2016 [6]. A key driver for the growth in the metal AM space is 

with the aerospace and automotive industry. With the increased need of customized metallic parts, as 

well as the demand for light-weighting and performance optimization, metal AM provides the 

necessary tools to fill the gap in the industry. Even with the positive sentiment towards LPBF (and 

AM, in general) there is still a lot of progress to be made before the technology can be widely 

accepted in the industry.  

Even with the unique advantages that AM provides, there are many challenges with finding optimal 

process parameters and with designing for AM. Although AM can theoretically offer increased design 

complexity and flexibility, there are currently many factors that must be taken into account when 

designing complex shapes and optimizing the process parameters for AM to ensure manufacturability. 

For LPBF processes in particular, the part orientation and layout play an important role in overall part 

quality and material properties. As well, overhanging features often need sacrificial support structures 

to prevent failure during fabrication. This is because the absorption and dissipation of energy varies 

between powder and solid substrate. Interior channels and chambers within parts must also consider 

the method for removal of unprocessed material and internal support structures from the final 

solidified part. For LPBF processes, there may be hundreds of other material and process 

considerations that play a role in the final part quality [7]. Because of this, significant time and 

financial investment may be required before a feasible design, coupled with a set of ideal process 

parameters, can be considered production-ready. In general, LPBF-built part quality is often inhibited 

by failures to meet dimensional tolerances, high surface roughness, internal defects, and anisotropy in 

compositional and mechanical properties [8], [9]. Presently, there are many research and industrial 

efforts to enhance the understanding behind the complex laser-material interaction of LPBF processes 
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in order to quickly iterate and identify process windows and designs that can leverage the benefits of 

AM while maximizing part performance. Without significant headway in the understanding of the 

LPBF process, adoption in the industry may be hindered. For example, when considering the case of 

AM technology adoption for GE, it required over a decade of engineering before a suitable product 

was achieved [3]. Part of the difficulty with producing components for LPBF is with the different 

scales of phenomena that occur during processing. Parts designs are manufactured over time frames 

that span hours/days, in a layer-by-layer fashion, with materials experiencing cyclic thermal loading 

with each manufactured layer. On the other hand, the laser interaction time, the melt pool formation, 

and the laser speed occur in orders of magnitude between 10 𝜇s – 100 𝜇𝑠, 10 𝜇m – 100 𝜇m, and ≈1 

m/s ranges, respectively [7]. Depending on the material used and the design employed, the multi-

physics phenomena, combined with the disparity in scale, make it difficult to accurately predict part 

quality behavior [7]. Due to this, there have been challenges with the identification of process 

windows and the development of robust design-specific process window optimization strategies, 

ultimately resulting in a limited portfolio of established materials for LPBF AM [10].  

1.1 Problem Statement 

Laser powder bed fusion is a technology that will be a major disruptor in the industry, however 

adoption of this technology has been challenging due to the numerous issues that affect part quality. 

This is because of the large number of parameters that may affect the final outcome of the process. As 

well, the complex interactions between these parameters make it difficult to predict part behaviour. 

As a result, the manufacturing design cycle and optimized process parameter development requires 

iterative empirical manufacturing runs. For this technology to be more successful, significant progress 

must be made in the development of strategies for process window identification for new materials, 

process predictive tools, and process control strategies to ensure process stability and traceability. 

1.2 Motivation and Objective 

The motivation for this thesis is to lower the barrier for adoption of LPBF, by applying a strategy for 

process mapping and process window identification based on part quality characteristics. This 

strategy is deployed for a novel LPBF material. In this context, the material of interest is an iron-

nickel alloy, Invar36. This material is known for having a low coefficient of thermal expansion, with 

a direct application in aerospace industries. Since this material has challenges in terms of 

machinability, the selection of this material for LPBF makes it possible to highlight the capabilities of 
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LPBF, and garner new insights into process development for future material adoption in the AM 

space. In terms of the objective, this work aims to look at optimizing AM-built parts in process 

regions that obtain part quality that are near to conventionally-built parts. Through the use of 

comprehensive microcomputed tomography, thermomechanical analysis (TMA), and statistical 

design techniques, the goal is to reveal details of the process at a more refined level.  

1.3 Thesis Outline 

The scope of work discussed in this thesis highlights several different areas of the research. 

Chapter 2 discusses relevant background on the pertinent aspects of the LPBF process, relevant 

material characteristics, and theory required to understand the research material. Topics within this 

chapter include a thorough review of the LPBF process, Invar36, previous work of AM on Invar36, 

and of the application of statistical design of experiments for AM. Chapter 3 describes work 

investigating the characterization of Invar36 powder, with analysis into chemical composition using 

inductively coupled plasma atomic emission spectroscopy (ICP-AES), particle size analysis through 

optical imaging, particle morphology observations through scanning electron microscopy (SEM), and 

powder rheology characteristics. Chapter 4 describes the manufacturing plan, design of experiments 

(DOE), and analysis of part characteristics, with a focus on developing a process map and optimal 

process window for process parameters that maximize the performance of manufactured artefacts. 

Within this chapter, the effects of input process parameter variation on density and thermal expansion 

were established using statistical analysis techniques, and the overall part performance was found 

using a weighted decision-making model. In Chapter 5, an appropriate process window is identified 

from the process map developed in Chapter 4, with a shifted focus on process parameters for features 

nearby and at the border region of samples. In this chapter, the parameter of focus is only on the part 

density. To investigate the potential for process validation and part quality prediction purposes, a 

finite element modelling approach was developed and discussed in Chapter 6. The model is intended 

to reduce the number of empirical tests to construct a process map and narrow-down a process 

window of interest. 0 provides concluding remarks and recommendations for future work. 
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Chapter 2 

Background 

Within this chapter, an overview of the laser powder bed fusion process will be discussed, including 

critical design considerations concerning the system, the material, the build setup, and the process 

parameters. Background information discussing the history, the material properties, and the potential 

applications of Invar36 (the material of focus) for LPBF is also presented. This chapter continues 

with the demonstration of the analysis techniques used within this work, and through the introduction 

of these concepts, the goal of this chapter is to provide a comprehensive summary to supplement 

understanding of this work. To conclude, this chapter introduces relevant terminology and definitions 

for LPBF process optimization that will be useful in describing the experimental methods and results 

within this work. These terms have been defined previously by Evan Wheat (Research Associate, 

Multi-Scale Additive Manufacturing Lab) as standard nomenclature to be used for the group. 

2.1 Laser Powder Bed Fusion 

The origins of laser powder bed fusion (LPBF) began in the 1980s at the University of Texas in 

Austin, USA, where the first system was developed and named as selective laser sintering (SLS) for 

its ability to induce sintering of powders through laser-material interaction [5]. Since then, many 

LPBF technologies have been developed, such as selective laser melting (SLM), laser cusing, and 

direct metal laser sintering (DMLS) [5]. Although each of these technologies has its own variation on 

the LPBF process, they function using the same core methodology, as described in Figure 1. 

 

Figure 1. Generic layout for describing core functionalities of LPBF systems. 
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As with all AM processes, the first step involves the translation of 3D CAD data to a file format 

that can be understood by the AM machine. The models are first oriented in a space that parallels 

their ensuing physical location within the build volume of the machine. Depending on the location 

and orientation, support features may be required to provide structural integrity and serve as heat 

dissipaters for overhanging features or free-floating parts. Afterwards, a build file is created that 

describes the laser scan path characteristics, layer thickness, and other manufacturing details based on 

the selected machine capabilities and design features of the part. To facilitate the layer-by-layer 

manufacturing approach, the build file is discretized along the part height in increments equal to the 

thickness of each printed layer. The data is then exported and transferred to the AM machine, where a 

build file interpreter and execution engine are deployed using industrial controllers. Before executing 

a build, powder material needs to be supplied to the build volume using a powder feed system. Figure 

1 shows a piston-based feed system that raises to provide material; however, additional technologies 

such as gravity-fed hopper systems exist as well. Currently, the market is split 64% for piston-based 

systems (EOS, Concept Laser, 3D Systems), 34% for hopper based systems (Arcam, Renishaw, 

Realizer), and the remaining 2% for other system types [11]. The supplied powder is carried from the 

feed bed to the build bed powder chamber using a recoater system. The recoater often takes the form 

of a blade or roller. Excess material from the build bed powder chamber is carried off to a collection 

system for material recycling. Resting at the bottom of the build bed powder chamber is a build plate, 

which serves as the structural foundation for the build as well as a heat sink during thermal 

processing. To provide height clearance for additional powder layers, the build plate is able to 

translate in the vertical direction. The material is melted at select locations by a laser beam that is 

directed by a system of optical lenses. The process of layer spreading and selective laser melting is 

repeated until the entire build is completed. Although the principles described here appear simple, the 

process parameter selection and design considerations for LPBF are complex and multifaceted. 

2.1.1 Manufacturing and Design Considerations for LPBF 

Process parameter selection and optimal design for LPBF is challenging due to the many machine and 

process specific factors that must be taken into account. These factors include, but are not limited to, 

the physical differences between LPBF technologies, the size distribution, morphology, and rheology 

of powder feedstock, the multitude of processing parameters, the geometry of parts and their spatial 

orientation in a build, and lastly, the post-processing considerations.  
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2.1.1.1 System considerations 

Several of the most important system considerations, as relevant to this thesis, are described below. In 

this work, a commercial LPBF system from Renishaw is used, and all of its relevant specifications 

pertaining to this section can be found in section 2.1.2. 

Recoater: The choice of material and method for the recoater has been shown to be noteworthy. If 

there are layer fabrication defects resulting in raised features in the build bed, a recoater blade may 

impact those features, resulting in powder re-coating damage, part quality issues, or the dislodging of 

the underlying part. These defects can potentially propagate through subsequent layers. On the 

contrary, a roller-based recoater, may roll over raised features without damaging them [12]. 

Additionally, a roller based recoater has the advantage of providing powder compaction, with the 

disadvantage of being more complex than blade systems due to the number of moving parts. A soft 

polymeric recoater blade is often deployed in machines, as it is less sensitive to underlying surface 

irregularities and may prevent recoater or part damage when striking raised edges, but may not spread 

powder layers as consistently [13]. 

Feed system: There are differing types of feed systems for LPBF, such as with raised platform 

systems or gravity-fed hopper systems [11]. Compared to the former, hopper systems provide the 

advantage of being able to hold large volumes of material, to quickly supply the material, and to 

isolate materials in a controlled gas atmosphere. In some systems, the hopper is connected with a 

powder re-circulation circuit, capable of recovering powders from the build zone. However, with 

hopper systems the rheological characteristics of the feedstock powder are of critical importance, 

since the powder is gravity-driven and resistances in flow will interrupt ideal hopper behaviour. In 

particular, effects such as internal vibrations in the equipment, hopper temperature, humidity, 

electrostatic charge buildup, particle aeration, and container surface effects have been shown to 

influence the consistency of powder flow through hopper systems [14]. Thus, careful consideration 

must be given to powder characteristics to ensure a uniform and continuous hopper flow regime. 

Build Plate: When selecting a build plate, the material and its thickness must be taken into 

account. Using separate materials for the build plate and specimen has benefits for post-processing. 

For example, when using a Stainless Steel 304 build plate for Ti-6Al-4V parts, the brittle interface 

created between the part and substrate facilitates the ease of part removal [15]. However, the use of 

different materials also means that there is a difference in coefficients of thermal expansion, which 

causes interfacial stress from unequal shrinkage rates [16]. Ultimately this may cause warping or 
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delamination due to thermal residual stress development during solidification [16], [17]. To counter-

act warping of the build plate, increasing the thickness can offer further structural integrity. Other 

considerations within literature include the use of rougher build plate surfaces to increase first layer 

densification and adhesion, vibrating build plates to increase powder compaction, and heated build 

beds to reduce thermal shock [14].  

Powder Collection and Re-circulation: Many commercial machines employ the usage of 

recirculation systems to capture unused powder for future prints. Although reusing material can 

potentially reduce costs, there are several factors that must be taken into account with their repeated 

material use. Upon layer spreading, for example, particles that are larger than the layer thickness or 

powders that are agglomerated do not get distributed within the build area and are pushed away for 

re-use. Because of this, it has been found that over repeated builds, the distribution of particle size 

becomes more shifted towards larger particle sizes [18]. Also, re-used powders become less spherical 

with increased usage cycles, possibly due to the compounding presence of partially melted powder or 

powder satellites from processing [19]. Lastly, some materials suffer surface chemical composition 

changes with re-use. For example, with titanium, the powder may encounters embrittlement issues 

due to increases in oxygen absorbed in the material during processing [19]. 

Laser: The use of lasers is ubiquitous in powder bed fusion processes, due to the ability of lasers to 

deliver energy in a focused area with precision and high intensity. This ability is derived from the 

spatial coherence of laser radiation, which allows lasers to be focused into high resolution beams that 

can be propagated over long distances. Specifications such as the laser wavelength, intensity, 

efficiency, the operating mode, and the beam shape, quality, and focused spot size are all important 

parameters for the LPBF process, however many of these are machine dependent and cannot be 

controlled for a process. For reference, a full review of these parameters and their effects can be 

found in [20], while in this work, only several critical aspects will be discussed. 

One of the most important factors to consider for a laser for LPBF is the operating wavelength. The 

reason for this is because materials interact differently to varying laser wavelengths. As a comparison, 

Figure 2 shows the absorptivity of various materials as a function of wavelength. For efficiency, 

higher absorptivity is desired for LPBF, since less input energy would be required to melt the 

material. Within AM, there are different types lasers used for LPBF, with the most notable being CO2 

gas lasers, neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers, and ytterbium-doped (Yb-

doped) fiber lasers [20]. Table 1 shows the lasers used for LPBF and their representative specifi-  
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cations. CO2 lasers can potentially achieve high output powers, but have issues maintaining stable 

power output, and this is because pumping energy into a large volume of CO2 gas results in 

turbulence that causes volume fluctuations in the laser system [21]–[23]. As well, their higher 

operational wavelengths are not well absorbed by some materials (Figure 2). Nd:YAG lasers operate 

at a much lower wavelength than CO2 lasers, and can thus be used for a wider range of materials 

because of higher laser absorption. Additionally, the lower wavelength operation allows Nd:YAG 

lasers the ability to be delivered through optical fibers, and this makes it possible to have more 

compact and efficient systems than CO2 lasers [23]. However, when pumping Nd:YAG lasers using 

xenon lamps, they are known to have low power efficiency due to thermal losses, and the resulting 

thermal effects negatively influence beam quality [24]. The usage of diode-pumped lasers has since 

been used to mitigate these disadvantages [25], [26]. Recently, Yb-fiber lasers have been replacing 

Nd:YAG lasers in additive manufacturing due to their high efficiency and compactness [20]. 

 

Figure 2. Wavelength dependency of absorptivity for (a) various metal and (b) polycarbonate 

and copper [20], [27], [28]. 

The amount of power is also another critical factor to consider for lasers, as it quantifies the energy 

output delivered by the laser. All materials must be excited to a certain energy threshold before they 
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can be melted and fused, and higher laser powers allow this threshold to be met quicker. However, it 

should be noted that with higher energy inputs, obtaining high feature resolution becomes an issue. 

This is because the input energy may penetrate deeper and melt more material than expected. The role 

of laser power as a processing parameter is further discussed in section 2.1.1.3. 

Table 1. Representative specifications of laser types in laser powder bed fusion [20]. 

Laser Type CO2 Nd:YAG Yb-fiber 

Operation 

wavelength 
9.4 & 10.6 𝜇m 1.06 𝜇m 1.07 𝜇m 

Efficiency 5 – 20% 
Lamp pump: 1– 3% 

Diode pump: 10 – 20% 
10 – 30% 

Output power 

(continuous-

wave mode) 

≤20 kW ≤15 kW ≤10 kW 

Pump source 
Electric 

discharge 

Flashlamp or laser 

diode 
Laser diode 

Operation mode Continuous-wave or pulsed 

Pulse duration 

(order of 

magnitude) 

100 ns – 10 𝜇s 10 ns – 10 ms 10 ns – 10 ms 

Beam quality 

factor (mm⋅ rad) 
3 – 5 0.4 – 20 0.3 – 4 

Fiber delivery Not possible Possible 

Maintenance 

periods 
2, 000 hrs 

200 hrs (lamp life) 

10, 000 hrs (diode life) 
25, 000 hrs 

Aside from the power output, a laser’s operational mode affects the method of energy delivery and 

the mode can be classified into two different types: continuous-wave and pulsed emission. 

Continuous-wave lasers emit their radiation at a constant rate, independent of time, while pulsed 

emission lasers send discrete packets in repeating intervals. Compared to continuous-wave lasers, 

pulsed emission lasers offer the benefit of increased process control with the ability to exactly specify 

the location and amount of heat input for any particular location within a build [29]. However, due to 

its intermittent nature, pulsed lasers are prone to generating melt pool instabilities [30]. Depending on 

the laser technology, the mode of pulsed lasers can also vary [20]. However with current fiber laser 

technology, pulsed emission is generated through direct power modulation of the laser by controlling 

the electrical current sent to the pumping diodes [29]. 

Lastly, the beam quality is an important factor to consider when trying to achieve optimal part 

precision. The Beam Parameter Product (BPP) is commonly used to measure beam quality and it is 



 

 11 

defined as, “the product of beam radius (measured at the beam waist) and the half angle of beam 

divergence (measured in the far field) with the units of mm⋅mrad” [20]. Generally, the lowest possible 

BPP is desired. Another indicator of beam quality is the M2 factor (beam quality factor), which is the 

BPP divided by 
𝜆

𝜋
, where 𝜆 represents the wavelength and 𝜋 is Archimedes’ constant. The output of 

this calculation gives the comparison of the laser beam to a perfect Gaussian beam, where a value of 

one is generally desired. Depending on the application, smaller spot diameters may be preferred due 

to the ability to create finer geometric features. Unfortunately, obtaining high quality laser beams is 

difficult due to disparaging influences in-situ, such as optical surface deformations and gradients in 

refractive index [20]. 

Build Chamber Atmospheric Conditions: The use of controlled build atmospheres are vital to the 

success of the LPBF process, especially because many materials are prone to accelerated oxidizing 

conditions under high temperatures. To control the atmosphere, inert gas environments are typically 

used. With many LPBF systems, inert environments consist of either argon or nitrogen, with the gas 

flowing through the process chamber to reduce oxygen content to a set threshold. As well, the gas is 

directed to flow immediately above the build surface to ensure melt pool stability by further inhibiting 

oxidation, by dispersing fumes and ejected particles, and by reducing the size of plasma [15]. The use 

of a vacuum environment has also been used in other PBF processes, such as Electron Beam Melting, 

where a vacuum environment is required to maintain electron beam quality [15]. Similarly to inert gas 

environments, vacuum environments for LPBF reduce the oxygen content and inhibits oxidation, and 

it also presents the benefit of improving reducing scatter of the laser beam from refractive index 

transitions [15]. However, vacuum environments also present several difficulties. The use of vacuum 

environments increase the heat input within the system, and also removes the method of heat removal 

to the ambient environment. Due to this, melt pool depths and widths are much larger in vacuum 

environments, which may decrease feature resolution [31]. The amplified heat input also results in 

increased melt vaporization, which may condensate and damage the optics system [31]. 

2.1.1.2 Material Considerations 

The outcome of a LPBF process is also dependent on the characteristics of the feedstock material. 

Due to challenges in process window identification, and in development of robust design-specific 

process window optimization strategies, there is a limited portfolio of established materials for LPBF 

AM [10]. For reference, Table 2 shows a catalogue of materials available from four different 
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commercial LPBF system providers; Concept Laser, EOS, Renishaw, and Trumpf. It should be noted 

that the exact blend and chemical composition of powders vary between suppliers, and that not all 

suppliers provide the full range of alloys described in Table 2. The reason behind the limited portfolio 

is because the chemical composition and morphological characteristics of the input powder affect the 

thermophysical properties, which in turn influences melt pool behaviour and solidification processes 

[7], [32]. In addition, the blend, morphology, size, and rheological characteristics of the feedstock 

powder are key influencers as well.  

Table 2. List of available powders from several representative LPBF suppliers [33]–[36]. 

Type of Material 

Variety of CrCo alloys 

Variety of Stainless Steel alloys 

Maraging Steel 

AlSi12 

AlSi10Mg 

Pure Titanium 

TiAl6V4 

Inconel 625 

Inconel 718 

Hastelloy X 

Bronze 

Gold 

Platinum 

Silver 
Note: List of materials available as of July 

2018 from online catalogue of Concept Laser, 

EOS, Renishaw, and Trumpf [33]–[36]. 

Within the context of this work, a gas atomized Invar36 powder is used in the development of a 

process map and in the process window identification for various product quality metrics. The 

additional specifications for this powder can be referenced in Chapter 3. 

Powder Production Method: Various methods are used to produce powders which include, but 

are not limited to, gas atomisation, water atomisation, plasma atomisation, and plasma rotating 

electrode process (PREP). Images gathered from [37] and [38] are shown in Figure 3 and Figure 4, 

and highlight the differences between water atomized, gas atomized, plasma atomized, and PREP 

powders, respectively.  
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Figure 3. Example SEM images of powders obtained from (a) gas atomization, (b) plasma 

atomization, and (c) plasma rotating electrode process [37]. Not to scale, for visualization of 

powder morphologies only. 

 

Figure 4. Example SEM images of powders obtained from (a) plasma rotating electrode 

process, (b) rotary atomization, and (c) gas atomization, and a comparison between (d) gas 

atomization and (e) water atomization [38]. 
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Gas atomisation is the commonly used method of atomisation for LPBF because of the high 

particle sphericity obtained [39].  However, gas atomized powders are also prone to the occurrence of 

satellites,  as well as internal pores due to entrapped inert gasses [15], [38], [40]. Water atomisation is 

another technique that is commonly used due to its ease and low cost [39]. However, because of the 

rapid cooling and high impact energies associated with using water, powders generated using this 

technique can be irregularly shaped [39]. PREP is known to create highly spherical particles, but with 

increased costs. In addition to the size considerations presented here, many other considerations must 

be taken into account with the production method, including the cost, productivity, acquired particle 

distribution range, and compatibility with specific chemical compositions. Typical particle sizes of 

powders created using different atomization techniques are described in Table 3. 

Table 3. Typical particle size ranges for a variety of powder atomization techniques [37]. 

Manufacturing Process Particle Size Range [𝝁m] 

Water atomization 0 – 500 

Gas atomization 0 – 500 

Plasma atomization 0 – 200 

Plasma rotating electrode process 0 – 100 

Powder Material Type: The use of pre-alloyed powders are generally used for LPBF processes 

because of their homogeneous composition, but blended powders can be used as well. Blended 

powders create a specific composition by mixing different powder materials (e.g. a blended Invar36 

powder would contain 36-wt. % of nickel powder, and 64-wt. % iron powder). Since it is costly to 

obtain custom compositions of pre-alloyed powders for material development, the use of blended 

powders is sometimes used for material development [41]. The idea of in-situ alloy blending has also 

been investigated as an option to print functionally graded materials [41]. A common concern with 

blended powders is in obtaining homogeneous compositions. Even before processing, if a blended 

powder is poorly mixed or becomes segregated, it is possible to obtain inhomogeneity upon LPBF 

processing. Furthermore, the mixing of blended powders occurs on a meso-scale, and thus enough 

energy and time must be supplied during processing to ensure that the material fully homogenizes 

upon melting and solidification. Lastly, since blended powders exist as separate powder materials, the 

interaction of the powder with the environment may be different than if the powder was pre-alloyed. 

For example, some materials are prone to oxidation, but become corrosion resistant when alloyed.  

Size Distribution and Morphology: In addition to the previously mentioned factors, the size 

distribution and morphology play a critical role in LPBF. When considering the morphology of 
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powders, spheres can achieve the greatest packing density, and thus any irregularities will serve to 

decrease powder bed compaction [42], [43]. The flowability of particles are also affected by their 

morphology, with deviations from perfect spheres negatively influencing particulate flow [43]–[45]. 

In terms of particle size, larger particles require more energy input to melt, due to the lower surface-

to-volume ratio and the higher reflectivity [46]–[48]. Additionally, because of their larger volumes 

they also fill spaces less efficiently than smaller particles when spread onto a substrate. In the context 

of powder spreading, larger particles tend to flow better than smaller particles, because small particles 

are known to have issues with agglomerations and are more influenced by electrostatic charge [14], 

[49]. Although finer particles are more proficient at absorbing energy than larger particles, they also 

present a risk to vaporize upon laser interaction [14]. Other than with quality concerns, the fineness of 

powders also presents as a safety hazard, where powders may combust during processing. Also, finer 

powders can potentially diffuse through and damage machine components, and cause biological harm 

if inhaled [14]. The distribution of particles also has a role as well. Particularly, wider distributions of 

particles have been shown to have improved packing density, since smaller particles can fill the voids 

created by larger particles [50]. Bimodal distributions also increase packing density in a similar 

fashion. Thus, an optimal powder distribution has to be identified for the material system at hand with 

flowability, powder packing, absorptivity, and safety considerations in mind.  

2.1.1.3 Build Setup and Process Parameter Considerations 

There are a multitude of distinctions that need to be made when considering the process parameters 

and build setup. While this section covers several of these influencing factors, it does not serve as a 

comprehensive summary. More complete lists can be referenced in literature, such as in [51] or [52].  

Build File Setup: Depending on the spatial orientation and geometry of parts within the build 

volume, the quality of the final part may be affected. For example, material anisotropy is a well-

known issue, with tensile properties significantly affected by the build direction of components or by 

the scanning strategy [53]–[56]. To account for anisotropy related to the scanning direction, a 

parameter known as ‘hatch angle’ is used (Figure 5), which offsets the scanning direction of the laser 

in any individual layer by an angle, 𝜃. To minimize the chance that any particular layer has the same 

orientation as a previous layer, an angle such as 67° can be used, where a layer orientation is repeated 

only every 360 layers [55]. Anisotropy due to build direction may be unavoidable and thus must be 

carefully considered before manufacturing. Figure 6 illustrates a possible range of build orientations. 
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Figure 5. Schematic demonstrating the effect of hatch angle on consecutive layers. 

 

Figure 6. Schematic demonstrating build orientation. 

Depending on the local orientation of the part, additional support structures may be required as 

well, and the purpose of support structures is twofold. Similar to the build plate, they provide 

structural integrity and serve as heat sinks to conduct heat away from the melting region [51]. They 

can also facilitate part removal by creating scaffolds that can be easily removed from the part upon 

solidification. Since support structures cannot conduct heat away as effectively as a solid part, and 

since they present as an additional post-processing step, it is still ideal to prevent the need for support 

structures when possible through design considerations and part orientation in the build layout [51].  

The orientation of the part within the build layout is important as well. Upon solidification, the 

edges of parts may become more raised than the core regions of parts, and it may be possible for the 

recoater blade to strike these edges upon layer deposition [57]. In particular, to minimize the part 

contact with the recoater, multiple part edges or long singular edges that are parallel to the recoater 

blade can be rotated by several degrees (Figure 7). Similarly, it may be possible for the recoater to 



 

 17 

propagate defects as it spreads new layers, and thus it may be beneficial to avoid aligning parts 

directly behind another.  

 

Figure 7. Schematic demonstrating recoater offset angle. 

When considering the geometry of parts, it is highly dependent on the situation. For instance, it was 

mentioned previously that overhanging or angled features may require support structures. Support 

structure removal depends on the geometry of the part, and parts should be designed such that support 

structures can be easily accessed. In addition, thin walls solidify quickly and are more prone to issues 

related to residual stress. Thin walls are also limited by the resolution of the laser beam spot diameter. 

Height resolution is also limited by the layer thickness on deposition. Depending on if there are 

hollow chambers within a part, features must be designed to allow de-powdering or to allow internal 

support material removal, where gaps that are too small may result in material being trapped within 

the part. 

To reiterate, described above are only several factors that must be taken into account, and more 

complete lists can be found in literature, such as with [51] or [52]. 

Process Parameters: The choice of process parameters during printing is essential, with over one 

hundred parameters that have an influence on LPBF part quality outcomes [14]. Studies have shown, 

however, the most important factors have been limited to the oxygen level, laser beam quality, 

dynamic viscosity of molten metal, surface tension of molten metal, melt enthalpy of the material, 

thermal diffusivity of the material, powder bed density, laser power, spot size, scan spacing, scan 

velocity, and layer thickness [58]. Out of these parameters, only a handful are controllable as a 

parameter setting before the process, or are continuously controlled during the process. Within 
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literature, energy density is a common variable that describes the effect of controllable input 

parameters, and shown below is the relevant relationship [59]–[61]: 

𝐸𝐷 [
𝐽

𝑚𝑚3] =
𝑃

𝑣 × 𝑑ℎ × 𝑇𝑙
 

𝐸𝑑, above, describes the volumetric energy density in terms of, 𝑃, input power [𝑊], 𝑣, scanning 

velocity [
𝑚𝑚

𝑠
], 𝑑ℎ, hatching distance [𝑚𝑚], and 𝑇𝑙, layer thickness [𝑚𝑚]. Depending on the 

phenomenon being observed, layer thickness and hatch distance may be neglected to quantify two-

dimensional and one-dimensional equivalents of energy density, respectively. The term itself is used 

to describe the amount of input energy that is given to the system per unit volume (volumetric energy 

density), per area (surface energy density), or length (linear energy density). 

Energy density is widely used in literature, with the advantage of being a relatively simple and 

reliable indicator of part quality [62]–[65]. However, the scientific rigor of the term is questionable 

because of inconsistencies found in literature. For example, in experiments with printing Al-12Si 

samples with constant values of energy density but varying laser power and velocity settings, 

discrepancies between results were reported [66]. This issue becomes apparent when one considers 

the temporal dependence of energy input, as well as the fact that the energy density does not capture 

the melt pool dynamics. Depending on the length scale of the part, for example, adjacent hatch lines 

may be delayed or expedited by several milliseconds. Additionally, with slower scan velocities, the 

energy is given time to penetrate in the material, affecting the thermal distribution within the part and 

changing the dynamics within the melt pool. Although it has its drawbacks, energy density has been 

used to successfully optimize parameters for AM-built parts [59]–[61], [67]. 

Within the context of this work, the effect of part design on process window is not explored, 

however the best practices with respect to hatch orientation and recoater offset angle have been taken 

into account. Also, since build orientation has not been investigated within this thesis, a singular 

orientation has been selected for all parts and the layout within the build space has been randomized 

in order to ensure robust comparisons between parts. This work mainly explores the usage of the 

energy density equation to explore the effects of energy input and part quality outcomes, and more on 

this topic can be referenced in section 4.1. 
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2.1.2 LPBF System of focus 

For all experiments performed within this work, a Renishaw AM 400 SLM system was used, and all 

details within this section have been gathered from [35]. A diagram showing its external layout is 

shown in Figure 8. 

 

Figure 8. External machine layout for the Renishaw AM 400 [35]. 

The system has a build volume of 250 mm × 250 mm × 250 mm with a controlled inert gas 

atmosphere. Prior to part fabrication, the system creates a vacuum of -968 mbar gauge pressure, and 

then backfills the chamber with argon gas. The powder delivery is performed via a gravity fed hopper 

system, and the powder is spread via a replaceable silicone recoater blade. To make clearance for 

additional layers, the build plate can be actuated in height increments of as low as 20 𝜇m, and the 

build plate can be preheated to 170 °C to mitigate thermal stresses. All powder handling within the 

system is performed under argon atmosphere and through metallic flasks to maintain safety and avoid 

entrapped contaminant gasses. The system has isolation valves in place to allow the ability to remove 

and reintroduce new material during the process.  Lastly, the laser system is powered by a 400 W 

Ytterbium fiber laser that has a wavelength of 1070 nm and a spot size of 70 𝜇m. A full list of 

specifications can be referenced in Table 4. 
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Table 4. System specifications for the Renishaw AM 400 [35]. 

List item Specification 

Build volume (X × Y × Z) 250 mm × 250 mm × 300 mm 

Maximum build size  248 mm × 248 mm × 285 mm 

Build rate* Up to 20 cm3/hr 

Powder layer thickness Between 20 𝜇m and 100 𝜇m 

Laser type, wavelength Ytterbium fiber, 1070 nm 

Laser class Type 1 

Laser power 400 W 

Laser spot size diameter 70 𝜇m 

Scan speed Up to 2 m/s 

Speed positioning 7 m/s 

External dimensions without accessories 853 mm × 1700 mm × 2115 mm 

Weight (gross / net) 1225 kg / 1100 kg 

Argon consumption (after fill) < 30 L/hr 

Argon consumption (on fill/purge) 600 L 

Power Supply 220 V to 240 V, 16 A, 45 Hz to 60 Hz single phase 

Compressed Air 6 bar, regulated to 1.6 – 2.4 bar, 10 L/min 

Available commercial materials 
AlSi10Mg, CoCr, In625, In718, Stainless Steel 316, 

Ti6Al4V 
* Build rate dependent on geometry and material 

The Renishaw system has approximately 140 system parameters that can be modified to fabricate 

components. The list of parameters can be referenced in Appendix A. One interesting factor to note is 

that the Renishaw AM 400 system uses a pulsed emission mode for the laser output. Because of this 

ability, the scanning speed variable for Renishaw systems is split up into two variables: point distance 

and exposure time. This pulsed mode gives users an additional degree of control within the process, 

among other benefits previously discussed in section 2.1.1.1. For further clarification, Figure 9 and 

Figure 10 describe the operating methodology of laser scans in the Renishaw AM 400, where 𝑃 

describes the laser power [W], 𝑡𝑒 describes the amount of time that the laser is exposed to the material 

[𝜇s], 𝑡𝑑 describes the latent time where the laser is off and repositioning to the next exposure point 

(known as drill delay) [𝜇s], 𝑑𝑝 describes the distance between adjacent exposure points [𝜇m], and 𝑑ℎ 

describes the distance between adjacent hatch lines [𝜇m]. Also, due to the differences in operational 

mode, the energy density equation for Renishaw’s pulsed laser is slightly different than originally 

proposed in section 2.1.1.3. Essentially, the velocity term is just replaced to obtain the following: 

𝐸𝐷 [
𝐽

𝑚𝑚3] =
𝑃

(
𝑑𝑝

𝑡𝑒
) × 𝑑ℎ × 𝑇𝑙
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Figure 9. Schematic representing the time dependence of laser pulses for the Renishaw AM 400. 

 

Figure 10. Schematic representing the spatial distribution of laser pulses for the Renishaw AM 

400. 
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It should be noted that the 𝑡𝑑 term (drill delay) is accounted for within the modified energy density 

equation, but does not appear within the equation because the effective power knockdown from the 

drill delay and the effective velocity decrease from the drill delay cancel each other out. 

As shown in Table 4, the Renishaw system is capable of processing a variety of materials. Within 

this work, however, a novel material that may benefit from the LPBF process will be investigated. 

The material of focus is called Invar36 and section 2.2 will detail the background on the material, and 

how it may benefit from the LPBF process. 

2.1.3 Relevant Terminology for LPBF Process Optimization 

Described below are various terms used within this work. Some may have been previously defined in 

earlier sections but are catalogued below to serve as a point of reference. 

Build variable: These are the variables that affect the LPBF process in some capacity. For the 

purpose of this research, the variables are specifically defined for the Renishaw AM 400 SLM 

system. Because of the complexity of the process, not all possible variables will be defined within this 

work. For the experiments performed in this work, the build variables include, but are not limited to: 

laser power, exposure time, point distance, hatch distance, and scanning strategy. 

Process map: The process map is a representation (either quantitatively or qualitatively) of the 

results of the LPBF process with respect to the variation of build variables. The build variables will 

be represented over a range of values, and the results can be shown as either binary “pass/fail” 

conditions or of a range of values indicative of quality. The process map, while it may be indicative 

of certain build variable combinations that produce desirable outcomes, is simply meant to document 

observations. The process map serves as a representation of the whole process, and is not an 

optimized range. 

Process window: The process window is a narrow range of combinations of build variables that 

can be tailored to achieve specific process outcomes from the LPBF process. The process window is 

narrowed based on specific desired outcomes, and is not representative of the process as a whole, or 

any other result. The process window may be made smaller or larger depending on the type of 

performance desired, or the accuracy and precision required. 

Recipe: For the purposes of this research, a recipe is a combination of selected values for build 

variables that are used with the Renishaw AM 400 system to produce a specific desired process 
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outcome from the LPBF process. In the context of the statistical design of experiments, it may be 

referred to as a “treatment”. 

Process outcome: A process outcome is some result that is obtained from the LPBF process, which 

describes a specific part quality that can be measured quantitatively (such as porosity, dimensional 

accuracy, linear CTE), or qualitatively (number of successful parts per build, etc). Within this work, 

the process outcomes include porosity and coefficient of thermal expansion, and the goal is to 

minimize them. 

Standardized artefacts: Standardized artefacts are specific part geometries that are designed to 

compare the effect of different build variables. For example, a standardized artefact for testing the 

elastic properties of a material would be a tensile coupon. 

Manufacturing plan: The manufacturing plan is the full process of producing a LPBF part, 

including but not limited to: the selection of powder, system setup, build variable selection, quantity 

and layout of parts along the build plate, removal of parts and support structure from the build plate, 

and any post-processing steps. 

2.2 Invar Alloys 

Invar alloys are iron-nickel alloys that take their name by their invariance of certain properties with 

temperature. The properties of Invar were first discovered near the end of the 19th century, where 

several groups observed that iron-nickel alloys displayed anomalous thermal expansion 

characteristics [68]. Noting these discoveries, a physicist named Charles Édouard Guillaume began to 

investigate the possibility of creating an alloy that could rival the dimensional stability of an existing 

alloy, Pt–10 wt.% Ir, but at a much lower cost [69]. From Guillaume’s work, it was determined that 

an Fe-Ni alloy with nickel composition of ≈35.6 wt. % was found to have superior thermal expansion 

characteristics [69]. To illustrate Guillaume’s findings, Figure 11, as found by Chevenard, shows the 

thermal expansion behaviour of an Fe-Ni binary system [70]. The alloy composition displaying the 

minimal thermal expansion is known as Invar36. To compare, the platinum alloy used at the time has 

a coefficient of thermal expansion (CTE) of ≈8.84×10−6 [
𝜇𝑚

𝑚°𝐶
] between 0-1000 °C, while Invar36 

displays a CTE of ≈1.19×10−6 [
𝜇𝑚

𝑚°𝐶
] and remains minimal for temperatures up to 200 °C [69]. The 

origins of this effect remained unknown for many years, but originally Guillaume postulated that the 

Invar phenomenon arose from a 𝛾 ⇌ 𝛼 transformation between 𝛾-phase face-centered cubic (FCC) 
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and 𝛼-phase body-centered cubic (BCC) iron, where the increasing nickel would delay and diminish 

the effects of the 𝛼 → 𝛾 contraction over a large range of temperature [68]. More recent insights have 

placed the Invar phenomenon as a property that exists purely in the 𝛾-phase region, and that the 

mechanism behind its properties rely on magnetic phenomenon [69], [71].  

According to Rancourt, this is because of interactions between high magnetic moment and low 

magnetic moment 𝛾-Fe [71]. For reference, Figure 12 shows the phase diagram for an Fe-Ni binary 

system. At the Invar composition and upon solidification, the alloy forms 𝛾-Fe and nickel, and 

remains metastable due to high cooling rates. From calculations by Rancourt, it can be shown that the  

 

Figure 11. Thermal expansion behaviour of an iron-nickel binary system with varying 

temperature [70]. 
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fraction of Fe-Fe nearest-neighbour magnetic exchange bonds that are energetically unsatisfied at the 

Invar composition is high (≈80%) [71]. 

Resulting from this, Rancourt conjectured that it is due to the resulting large degree of frustration 

between Fe-Fe bonds expresses a magnetovolume force that opposes the thermal expansion of the 

alloy [71]. For Invar, this effect is strong below the material’s Curie temperature, with the change in 

CTE being minimal and linear, and understandably, normal expansion behavior dominates once the 

material is heated above the Curie temperature [69], [70], [72]. 

 

Figure 12. Phase diagram of a binary Fe–Ni system at temperatures of 200–1600 °C [73]. 

It should be noted that the low thermal expansion behaviour of Invar is strongly affected by its 

composition. As seen in Figure 11, a slight change from the optimal composition of nickel shifts the 

CTE dramatically. The presence of impurities affects the composition as well. For example, the 

inclusion of chromium to increase corrosion resistance has the drawback of increasing the CTE [74]. 

In general, any added trace elements negatively affect the CTE, but there is one exception. In 1927, 

Masumoto found that the CTE of Invar could be further decreased with the addition of cobalt to 

create a mixture of Fe-32 wt. % Ni-5 wt. % Co that resulted in an alloy with even lower CTE than 
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standard Invar36 at temperatures between -65 °C and 100 °C [69]. This mixture is now known as 

“Super Invar”. Shown below in Table 5 is the standard composition of Invar, according to ASTM 

Standard F1684-06, “Standard Specification for Iron-Nickel and Iron-Nickel-Cobalt Alloys for Low 

Thermal Expansion Applications” [75]. Additional elements are added in trace amounts to the 

composition to improve on the mechanical and metallurgical properties of the alloy [69], [76].  

Table 5. Chemical composition requirements for conventional Invar36 (UNS No. K93603), as 

per ASTM Standard F1684-06 [75]. 

Element Composition, wt. % 

Iron, nominal Remainder 

Nickel, nominal 36 

Cobalt, maximum 0.50 

Manganese, maximum 0.60 

Silicon, maximum 0.40 

Carbon, maximum 0.05 

Aluminum, maximum 0.10A 

Magnesium, maximum 0.10A 

Zirconium, maximum 0.10A 

Titanium, maximum 0.10A 

Chromium, maximum 0.25 

Phosphorus, maximum 0.015B 

Sulfur, maximum 0.015B 
A The total sum of aluminum, magnesium, titanium, and zirconium 

shall not exceed 0.20% 
B The total sum of phosphorus and sulfur shall not exceed 0.025% 

2.2.1 Mechanical and Thermodynamic Properties 

The mechanical and thermodynamic properties for Invar36 are listed in Table 6. In comparison to 

the mechanical properties of a material such as 304 Stainless Steel, Invar36 has lower specific 

stiffness and ultimate tensile strength, but with a linear thermal coefficient of expansion that is of an 

order of magnitude lower [77], [78]. As such, it is clear that the material is not as suitable for load-

bearing applications, and is more appropriate for applications requiring high dimensional stability 

over a range of temperatures. When considering the manufacturability of Invar36, there are several 

challenges. It has a tendency to crack during solidification and reheating, and due to its high nickel 

content, the material also displays unfavorable work hardening characteristics [72], [79]–[81]. When 

machining Invar36, the resultant tool wear issues that arise due to work hardening is further 

exacerbated by the presence of highly ductile invar chips created during processing that may build up 

on the cutting face [82]. 
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In this work, Invar36’s properties are used in order to determine appropriate ranges for the 

experimental setups. Particularly, the Curie temperature serves as a maximum bound for thermal 

expansion testing, and the coefficient of thermal expansion values are useful as a baseline to compare 

to LPBF-built parts. The thermal properties are useful input parameters in the modelling chapter to 

determine the behaviour of the material under laser interaction. Although, it should be mentioned that 

the material properties have been specified for bulk annealed material, and that the material may 

behave differently when processed under LPBF. Although the mechanical properties are not directly 

used within this work, they are presented for possible future reference in the event that additional 

testing is performed on the LPBF-built parts. 

Table 6. Mechanical and thermal properties for Invar36 under annealed condition, unless 

specified otherwise [78]. 

Property Unit Value 

Density [
𝑘𝑔

𝑚3] 8.05 

Thermal conductivity [
𝑊

𝑚⋅𝐾
] 10.5 

Curie Temperature [°𝐶] 280 

Melting temperature [°𝐶] 1425 

Specific Heat [
𝑘𝑔

𝑘𝐽⋅𝐾
] 0.515 

Thermal Expansion Coefficient (30 – 100 °C) [
𝜇𝑚

𝑚°𝐶
] 1.18 

Ultimate Tensile Strength [𝑀𝑃𝑎] 450 

Yield Strength [𝑀𝑃𝑎] 280 

Elongation [2 inch, %] 35 

Hardness [Rockwell] B-70 

Elastic Modulus [𝐺𝑃𝑎] 141 

Specific Stiffness [-] 17.5 

Poisson’s Ratio [-] 0.290 

2.2.2 Applications 

Invar alloys are typically deployed in applications where high dimensional stability over a 

temperature range is a requirement. One of Invar’s earliest uses was for precision measurement in 

geodesy, due to the variance of environmental conditions on a day-to-day basis [69]. By creating 

levelling staves out of Invar, measurements were able to be reliably taken and compared against other 

measurements in any weather condition [69]. Another notable use of Invar was to replace platinum in 

the manufacturing of glass sealing wires with an Invar alloy with Fe- 45wt. % Ni composition [69]. 

At the time, this simple material replacement was a cost-saving initiative that resulted in millions of 

pounds of savings by the 1920s, and today Invar is still used in glass-to-metal hermetic seals [69]. 
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More recently, Invar has seen usage in cryogenic storage by including Invar in the inner lining of 

liquid nitrogen storage tanks to mitigate the effects of periodic heating and cooling during 

loading/unloading [83]. Within the space industry, Invar has found uses with optics, where the 

alignment of lenses and other critical components are required to be stable and precise over a large 

range of temperatures [79]. This is especially true with optics systems within satellites, where the 

system is subjected to periodic heating and cooling cycles from the sun as the satellite orbits the earth. 

On a similar note, waveguides used in satellites suffer from similar heating cycles, and the use of 

Invar can help maintain the dimension stability of parts from temperature drift.  

As mentioned previously, Invar’s poor mechanical properties have limited its use to very specialized 

applications. Particularly, because of the material’s poor machinability and high density, the 

machining and launch-costs may be prohibitive. It is with these challenges in mind that motivates this 

work to optimize the additive manufacturing process for Invar36, because it may be possible to 

sidestep difficulties with machining and also reduce mass costs through optimized design strategies. 

As a tool for this optimization process, a statistical design of experiments approach will be used and 

introduced in the following section. 

2.3 Statistical Design of Experiments  

The process optimization for additive manufacturing is difficult due to the sheer number of factors (as 

discussed in section 2.1.1) that influence part qualities. With increasing number of variables, 

experiments focused on single factor effects quickly become inefficient and experiments must start to 

consider the effects of parameter interactions. One method to resolve situations involving multiple 

factors is to use a design of experiments (DOE) approach, which quantifies the effects of each factor 

and all interactions simultaneously using statistical analysis. Designed experiments have been 

successfully used in many diversified fields, including optimization for thermal energy storage 

applications [84],  for optimal metrological measurement and uncertainty analysis [85], for optimal 

material grinding processes [86], and for manufacturing of medicinal compounds [87]. The DOE 

approach has also been used extensively for AM as well, for example, to optimize for properties such 

as fatigue life or tensile strength [88], for maximizing density [67], [89], [90], for minimizing surface 

roughness [91], and for other part qualities [60], [92]–[94]. To develop experiments, an effective 

design method that can be used is the factorial design.  Factorial designs are experiments set up so 

that responses are measured for every possible combination of parameter levels. As an example, 

consider an experiment that observes the sweetness of a beverage based on sugar levels (factor A) 
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between 5%/10%/15%, and on salt levels (factor B) of 1%/2%/3%. A factorial experiment designed 

with these two factors at the three respective levels would result in a 32 factorial experiment with the 

following setup and nine unique samples (Table 7). 

Table 7. Example 32-factorial design table. 

Sample ID Factor A Factor B 

1 5% 1% 

2 5% 2% 

3 5% 3% 

4 10% 1% 

5 10% 2% 

6 10% 3% 

7 15% 1% 

8 15% 2% 

9 15% 3% 

The benefit of factorial designs is that they make efficient use of experimental data, since each 

sample permutation within an experiment provides unique information about the effect of parameters. 

Also, due to the way they are constructed, the data can be easily interpreted through statistical 

analysis with analysis of variance (ANOVA). However, when constructing factorial designs (and 

DOEs), the effectiveness of the experiments are limited by informed decisions about the response 

variable, the number of factors and their levels, the presence of uncontrollable nuisance factors, the 

model for statistical analysis, and the interpretation of results [95]. Unfortunately, factorial designs 

get increasingly unwieldly as the number of factors increase. For instance, a factorial experiment with 

four factors at two levels results in 24 = 16 samples, but at five factors the number of samples 

exponentially increases to 25 = 32 samples. To mitigate the number of samples, designs known as 

fractional factorial experiments can be constructed, where only a subset of a full factorial is measured, 

with the caveat that some main effects and interaction effects become confounded. However, the 

retrieval of these main and interaction effects can be performed simply by measuring the response 

variable for the missing subset of parameter levels. 

As mentioned previously, the results of a factorial design experiment can be interpreted through 

ANOVA. The structure of a factorial design makes it possible to isolate individual effects of interest 

from the response variable using a technique known as sum of squares decomposition [95]. This is 

proven and discussed in detail in [95], however a small excerpt will be included here as reference. 

The analysis for a factorial experiment is generally conducted by the process shown below in section 

2.3.1 [95].  
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2.3.1 Analysis of Factorial Experiments 

Assume an experiment that is set up with controlled factors A, B, and C, and a response variable 𝑦. 

Factor A has 𝑖 = 1, 2, … , 𝑎 levels, factor B has 𝑗 = 1, 2, … , 𝑏 levels, and factor C has 𝑘 = 1, 2, … , 𝑐 

levels. With the experiment repeated (or replicated) a total number of 𝑙 = 1, 2, … , 𝑛 times, the 

resulting total number of observations for this experiment will be 𝑁 = 𝑎 × 𝑏 × 𝑐 × 𝑛. The statistical 

model for the analysis can be written in many ways, but the traditional model that is used is the 

‘effects model’, as shown below: 

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛿𝑘 + (𝛼𝛽)𝑖𝑗 + (𝛼𝛿)𝑖𝑘 + (𝛽𝛿)𝑗𝑘 + (𝛼𝛽𝛿)𝑖𝑗𝑘 + 𝜖𝑖𝑗𝑘𝑙 

Where 𝑦𝑖𝑗𝑘𝑙 is the response at factors A, B, and C at levels 𝑖,  𝑗, and 𝑘, respectively, and at the 𝑙th 

replicate. Continuing, 𝜇 describes the overall mean, while 𝛼𝑖, 𝛽𝑗, and 𝛿𝑘 denote the effects of factors 

A, B, and C at their respective levels, and (𝛼𝛽)𝑖𝑗, (𝛼𝛿)𝑖𝑗, (𝛽𝛿)𝑗𝑘, (𝛼𝛽𝛿)𝑖𝑗𝑘 the interaction effects 

between the factors, respectively. Lastly the 𝜖𝑖𝑗𝑘𝑙 is the error term. Under the assumption that the 

purpose of the experimental design is to determine the significance of the parameter effects and their 

interactions, the following null hypothesis is then defined: 

𝐻0: 𝛼𝑖 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ; 𝐻0: 𝛽𝑗 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ; 𝐻0: 𝛿𝑘 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 

𝐻0: (𝛼𝛽)𝑖𝑗 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 ; 𝐻0: (𝛼𝛿) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑘 ; 𝐻0: (𝛽𝛿) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗, 𝑘 

𝐻0: (𝛼𝛽𝛿)𝑖𝑗𝑘 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑘 

Which states that all the effects (main and interaction) are equal to zero. Before continuing, let 𝑦𝑖… be 

the sum of all observations at treatment 𝑖, let 𝑦.𝑗.. be the sum of all observations at treatment j, let 𝑦𝑖𝑗.. 

be the sum of all observations at treatments 𝑖 and 𝑗, and etc. for all possible combinations of letters 

and dots (⋅). Similarly, 𝑦̅𝑖… is the grand average of the observations at treatment 𝑖 such that 𝑦̅𝑖… =
𝑦𝑖…

𝑏𝑐𝑛
 

and likewise for all possible combinations of letters and dots. Therefore, the total corrected sum of 

squares of the response variable can be expressed as follows: 

𝑆𝑆𝑇 = ∑ ∑ ∑ ∑ (𝑦𝑖𝑗𝑘𝑙 − 𝑦̅….)
2𝑛

𝑙=1

𝑐

𝑘=1

𝑏

𝑗=1

𝑎

𝑖=1
 

It is proven in [95] that through sum of squares decomposition, 𝑆𝑆𝑇 can also be written as 

𝑆𝑆𝑇 = 𝑆𝑆𝐴 + 𝑆𝑆𝐵 + 𝑆𝑆𝐶 + 𝑆𝑆𝐴𝐵 + 𝑆𝑆𝐴𝐶 + 𝑆𝑆𝐵𝐶 + 𝑆𝑆𝐴𝐵𝐶 + 𝑆𝑆𝐸 

Moving forward, the mean squares for the effects can then be found as 
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𝑀𝑆𝐴 =
𝑆𝑆𝐴

𝑎 − 1
; 𝑀𝑆𝐵 =

𝑆𝑆𝐵

𝑏 − 1
; 𝑀𝑆𝐶 =

𝑆𝑆𝐶

𝑐 − 1
 

𝑀𝑆𝐴𝐵 =
𝑆𝑆𝐴𝐵

(𝑎 − 1)(𝑏 − 1)
 ; 𝑀𝑆𝐴𝐶 =

𝑆𝑆𝐴𝐶

(𝑎 − 1)(𝑐 − 1)
 ; 𝑀𝑆𝐵𝐶 =

𝑆𝑆𝐵𝐶

(𝑏 − 1)(𝑐 − 1)
 

𝑀𝑆𝐴𝐵𝐶 =
𝑆𝑆𝐴𝐵𝐶

(𝑎 − 1)(𝑏 − 1)(𝑐 − 1)
 ; 𝑀𝑆𝐸 =

𝑆𝑆𝐸

𝑎𝑏𝑐(𝑛 − 1)
 ; 𝑀𝑆𝑇 =

𝑆𝑆𝑇

𝑎𝑏𝑐 (𝑛 − 1)
 

Lastly, with the decomposed sum of squares and their respective mean square values, the following 

test statistic can be used to determine the significance of any particular effect: 

𝐹0 =
𝑀𝑆𝑒𝑓𝑓𝑒𝑐𝑡

𝑀𝑆𝐸
 

This test statistic is distributed as 𝐹𝑎−1,(𝑎−1)(𝑏−1) if the null hypothesis is true. Therefore the critical 

test statistic 𝐹𝑐𝑟𝑖𝑡 would be distributed as 𝐹𝛼,𝑎−1,(𝑎−1)(𝑏−1), and a comparison showing that 𝐹0 > 𝐹𝑐𝑟𝑖𝑡 

means that the null hypothesis can be rejected, implying the significance of the effect. For the above 

formulation to apply, however, the error within the model must conform to the normality assumption, 

where the distribution must be normally and independently distributed such that 𝜖~𝑁𝐼𝐷(0, 𝜎2). To 

ensure this outcome, randomizations are added in as many aspects of experiments as possible, such as 

with fabrication or measurement order, to mitigate any bias due to operators, or uncontrollable 

factors. 

Within this work, a factorial design will be used to investigate the effects of various parameters on 

the thermal expansion coefficient and density of Invar36 parts built through LPBF, and will be further 

discussed in section 4.1.5.  
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Chapter 3 

Powder Analysis 

In this chapter, an analysis of the chemical composition, particle size morphology, and rheology for 

the Invar36 powder is performed. As discussed in section 2.1.1.2, it is critical to distinguish the 

characteristics of the feedstock material because it may affect the behaviour in-situ. The techniques 

used within this chapter are inductively coupled plasma atomic emission spectroscopy (ICP-AES) for 

the chemical composition, scanning electron microscopy (SEM) for particle morphology, optical 

imaging techniques with a Camsizer X2 for particle size analysis, and dynamic flow testing with an 

FT4 rheometer for the particle rheology. The data gathered for all SEM and ICP-AES results 

presented in this work has been performed by Dr. Hamed Asgari Moslehabadi (Post Doctorial Fellow, 

Multi-Scale Additive Manufacturing Lab). 

3.1 Experimental Methods 

For all work performed for this research, the material used was a gas-atomized Invar36 powder. 

According to the supplier specifications, the powder size conformed to US Standard Mesh No. 325 

(approximately equal to sieve mesh size of 44 μm). For all stages of this research, the powder was 

used in its as-received state without any preprocessing in advance of analysis or fabrication. The as-

received powder was reported to contain the following chemical composition: 

Table 8. Chemical composition of the Invar36 powder, according to supplier specifications. 

Element Composition, wt. % 

Iron Remainder 

Nickel 36.12 

Cobalt 0.01 

Manganese 0.44 

Silicon <0.01 

Carbon 0.010 

Aluminum <0.01 

Magnesium <0.01 

Zirconium <0.01 

Titanium <0.01 

Chromium 0.12 

Phosphorus 0.02 

Sulfur 0.003 

Copper <0.01 

Molybdenum 0.05 

Selenium <0.003 
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3.1.1 Chemical Composition Analysis 

The verification of the chemical composition was directed an external analytical laboratory for ICP-

AES analysis. The chemical analysis was performed according to ASTM E1019-11, ASTM E1097-

12, and ASTM E1479-16 standards. The resulting compositional information was compared against 

the ASTM Standards for conventional Invar36. For reference, according to the ASTM Standard 

F1684-06, “Standard Specification for Iron-Nickel and Iron-Nickel-Cobalt Alloys for Low Thermal 

Expansion Applications”, the received powder conforms well to the standard composition for Invar36 

(UNS No. K93603) [75]. The outlined requirements are shown previously in Table 5, but are also 

repeated below in Table 9. It should be noted that the received powder deviates from the standards 

with the inclusion of the following three elements not reported by the standards: selenium, 

molybdenum, and copper. It should be noted that although copper and selenium were measured, they 

were under reportable limits. 

Table 9. Chemical composition requirements for conventional Invar36 (UNS No. K93603), as 

per ASTM Standard F1684-06 [75]. 

Element Composition, wt. % 

Iron, nominal Remainder 

Nickel, nominal 36 

Cobalt, maximum 0.50 

Manganese, maximum 0.60 

Silicon, maximum 0.40 

Carbon, maximum 0.05 

Aluminum, maximum 0.10A 

Magnesium, maximum 0.10A 

Zirconium, maximum 0.10A 

Titanium, maximum 0.10A 

Chromium, maximum 0.25 

Phosphorus, maximum 0.015B 

Sulfur, maximum 0.015B 
A The total sum of aluminum, magnesium, 

titanium, and zirconium shall not exceed 0.20% 
B The total sum of phosphorus and sulfur shall not 

exceed 0.025% 

3.1.2 Particle Size 

The particle size distribution of the powder was found using a Retsch Camsizer X2 Optical Particle 

Size Analyzer with the X-Jet dispersion module [96]. The Camsizer is capable of reporting multiple 

different measures of particle size, but since the supplier specified the particle size in terms of US 
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Standard mesh sizing, the selected particle size indicator was based on chord size measurements. To 

clarify, for any given direction in a particle, the maximum possible chord length was found as 𝑥𝑐. Out 

of the entire set of 𝑥𝑐 measurements, the minimum value was selected as 𝑥𝑐,𝑚𝑖𝑛. A representation of 

this measurement process is shown in Figure 13. This measure of particle size was chosen because it 

is the minimum possible diameter of a hole that the particle is able to pass through. Thus, this 

measure of particle size can be compared against particle size measurements attained through sieving. 

 

Figure 13. Reference illustration for maximum chord, xc, and minimum measurement of 

maximum chord, xc,min. 

Before taking a sample of powder for analysis, the container was agitated for 10 minutes using a 

tumbler system to promote the homogenization of the particle distribution. Afterwards, approximately 

2000 mg of sample was measured and poured through a funnel and onto the Camsizer’s vibrational 

feed ramp. The equipment was then allowed to automatically perform its run, and the experiment was 

terminated after at least 500 consecutive empty measurements were captured by the system. To obtain 

a statistical relevant representation of the distribution, this process was repeated for a total of three 

runs.  

3.1.3 Particle Morphology 

The morphology of the powder was observed through micrographs taken by scanning electron 

microscopy (SEM). The micrographs were taken at the University of Waterloo Advanced Technology 

Laboratory (WATLab), using a LEO FESEM 1530. To obtain the most visual clarity, the equipment 

was set to secondary electron mode at an operating voltage of 15 kV and working distance of 8.5 mm. 

After agitating the powder in the same fashion as in section 3.1.2, a small amount of powder was 

sampled and adhered to a carbon substrate. Micrographs were then taken at randomized locations to 
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eliminate selection bias from the operator. Depending on the observed feature, magnification in the 

orders of 100× to 1000× was used. 

3.1.4 Powder Rheology 

The rheological properties of the powder were characterized with a FT4 powder rheometer by 

Freeman Technology [97]. The FT4 functions using “a patented blade principle [with] a twisted blade 

displacing powder as it moves along a helical path through the sample”, and during the movement of 

the blade, force measurements along the axial and rotational directions are used to assess the flow 

characteristics of powders [98]. Within industry, the FT4 has successfully been used to assess and 

compare flow characteristics of powders inside and outside of additive manufacturing [98]–[101]. 

Within this work, several methods are performed to evaluate the flowability of the powder; stability 

and variable flow rate testing, aeration testing, compressibility testing, permeation testing, and shear 

cell testing. To explain their significance, insights from [98]–[101] have been taken and summarized 

below. 

In the stability and variable flow rate test, two separate tests are run in series. The stability test is 

run so the powder can reach a steady flow state upon testing. The default testing sequence involves an 

initial conditioning sequence, a splitting sequence to remove excess powder, and then seven 

alternating sequences of conditioning and testing to determine the steady state flow energy of the 

powder. To explain, a figure is described below: 

 

Figure 14. Schematic describing the stability and variable flow rate testing sequence. 
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In the above figure, the term ‘C’ describes a conditioning cycle, ‘T’ describes a testing cycle, 

‘Split’ denotes the removal of excess powder to attain a precise measurement volume, and the 

numbers within the brackets describe the blade speed used for testing, in millimeters per second. 

Unless otherwise specified by the brackets, the blade speed for all cycles are at 100 mm/s. During the 

variable flow rate testing, the blade is run at steadily decreasing speeds, and based on the energy 

recorded, additional information about the powder flow state is gained. Simply put, lower energies are 

associated with less cohesive powders, and thus better flow. The aeration test measures the energy 

required for the blade to travel through the powder, with the powders subjected to injected air during 

testing. With the added aeration, less energy should be required to move the testing blades through 

the powder. Non-cohesive powders should easily allow aeration to occur, indicated by a large 

subsequent reduction in measured energy during testing. The compressibility testing measures the 

amount of volume change that is possible in the powder samples when subjected to a compressive 

force. As such, it functions as a measure of packing efficiency of the powder and an indirect measure 

of flowability; powders that have high compressibility are indicative of more cohesive powders as 

they have additional degrees of freedom to realign before flowing. Permeability is used to measure 

how easily a fluid can be transmitted through the powder bulk, with lower permeability associated 

with powders that are more cohesive. Lastly, the shear testing is used to determine the amount of 

shear stress required to induce flow in a powder. This is an important measure since the primary 

mode of powder flow is in shear. Thus higher values during shear testing are associated with particles 

more resistant to flow. In order to determine these values, the following procedure was taken:  

Before taking a sample of powder for analysis, the container was agitated for 10 minutes using a 

tumbler system to promote the homogenization of the particle distribution. Afterwards, depending on 

the test, a suitable vessel was then selected (based on the manufacturer guidelines), and then the 

appropriate standardized test was initialized within the FT4 software package. From there, the rotary 

blade was inserted into the machine, and then the vessel was filled with powder, attached to the 

machine, and then the test was run. For each test, a total of three runs were performed to obtain a 

statistically significant set of measurements. 

3.1.5 Tap Density 

In addition to the tests performed by the FT4 rheometer, the tap density (packed density) of the 

powder was found using a tap density apparatus, constructed according to ASTM B527-15, “Standard 

Test Method for Tap Density of Metal Powders and Compounds” [102]. Figure 15 shows the required 



 

 37 

specifications. To perform the testing, the powder container was agitated for 10 minutes with a 

tumbler system, and then a sample mass (𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙) of 100 g was weighed and then added to a 

graduated cylinder. Afterwards, a periodic tapping at a frequency of 200 taps per minute at a stroke 

height of 3.0 ± 0.2 mm was applied until there was no observable change in powder volume (𝑉𝑓𝑖𝑛𝑎𝑙), 

in millilitres, for over 5 minutes. The tap density was then calculated as follows: 

𝜌𝑡𝑎𝑝 [
𝑔

𝑐𝑚3] =
𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑉𝑓𝑖𝑛𝑎𝑙
  

 

Figure 15. Tap density apparatus standard specifications, as per ASTM B527-15 standards 

[102]. 

The results of the tap density measurements were used to compare against the conditioned bulk 

density measurements from the FT4 testing. Based on the increase of density from conditioned to tap 

density, an idea of the packing state of powders upon layer deposition was obtained. 
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3.2 Results and Discussion 

3.2.1 Chemical Composition Analysis 

The tested chemical composition of the powder with comparisons to the reported and ASTM 

chemical composition are shown below in Table 10.  

Table 10. Chemical composition of the powder as measured, and compared against supplier and 

ASTM specifications. 

Element 

Tested 

Composition, 

wt. % 

Supplier 

Composition, 

wt. % 

ASTM 

Specifications, 

wt. % 

Iron 63.3 Remainder Remainder 

Nickel 35.6 36 36 nominal 

Cobalt < 0.01 0.01 0.50 max 

Manganese 0.35 0.44 0.60 max 

Silicon 0.17 <0.01 0.40 max 

Carbon Not measured 0.010 0.05 max 

Aluminum < 0.01 <0.01 0.10A max 

Magnesium Not measured <0.01 0.10A max 

Zirconium Not measured <0.01 0.10A max 

Titanium < 0.01 <0.01 0.10A max 

Chromium < 0.01 0.12 0.25 max 

Phosphorus 0.010 0.02 0.015B max 

Sulfur < 0.005 0.003 0.015B max 

Copper < 0.01 <0.01 Not in standard 

Molybdenum < 0.01 0.05 Not in standard 

Selenium Not measured <0.003 Not in standard 
A The total sum of aluminum, magnesium, titanium, and zirconium shall not 

exceed 0.20% 
B The total sum of phosphorus and sulfur shall not exceed 0.025% 

Unfortunately, the techniques at the external lab did not have the capabilities to measure several of 

the elements such as carbon, magnesium, zirconium, and selenium. However, in terms of the primary 

elements, the overall composition remains largely unchanged, with a deviation from the nominal 

nickel content of 0.4 wt. %. Based on Figure 11 (section 2.2) this would result in a negligible increase 

of the thermal expansion coefficient. Although the measured trace elements deviate from the 

composition listed by the supplier, their specifications are still within the allowed maximum and 

should not influence the thermal expansion behaviour of the material to a large degree. In fact, the 

lower amount of the majority of the listed trace elements is expected to lower the thermal expansion 
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of the material even further. However, since these trace elements are normally used to enhance the 

mechanical properties, there may be a decrease in those properties, if measured in the future. 

3.2.2 Particle Size 

The particle size distribution for the powder is shown in Figure 16. The error bars for the distribution 

represent one standard deviation from the mean, as calculated from the three repeated runs through 

the Camsizer X2. The dotted red line (Mean Q3) describes the cumulative percentage of all measured 

particles below a specific particle size. The other curves on the plot describe the volume fraction of 

particles of a specific size and is plotted on the secondary y-axis scale on the right hand side. There 

were also fitted curves generated (marked by  and , respectively) that extract the 

distribution of powder size. The sum of the fitted curves is shown by a dotted curve , which 

appears to fit well to the underlying data.  

 

Figure 16. Measured particle size distribution of the Invar36 powder, with a mixed Gaussian 

model fitted to the data to demonstrate the bimodal distribution of the powder. 

It is immediately clear that, based on the D10 (10% cumulative passing) and the D90 (90% of 

cumulative passing) of the powder, the powder size spans a range between 21–40 𝜇m. Overall, the 

size distribution conforms well to the supplier specifications, stating a maximum size of 45 𝜇m, and a 
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well-centered D50 of 30 𝜇m. However, there are a few causes of concern. Particularly, the remaining 

10% cumulative passage of particles above the D90 displayed larger sizes than the reported values. 

The reasoning for this may be because of powder agglomeration that may have occurred since initial 

acquisition of the powder. As mentioned in section 2.1.1.2, this is a phenomenon that is known to 

happen in LPBF, especially for finer powders. When considering the impact this may have on the 

experiments, larger layer thicknesses will have to be selected to account. Another cause of concern is 

that upon fitting a mixed Gaussian model to the data, it can be seen that the powder appears to follow 

a bimodal distribution, centered about 27 𝜇m and 40 𝜇m. It has been discussed previously that 

bimodal distributions have better compaction and absorption than single mode distributions of the 

same size range, and as such, well-performing recipes generated with single mode powders may 

become over melted with bimodal powders.  

3.2.3 Powder Morphology 

The SEM micrograph in Figure 17 illustrates one representative image taken for the powder 

morphology. A detailed set of images is presented in Appendix B. Upon initial observation, it appears 

that the particles are mostly uniform and spheroidal in nature. There is also a noticeable presence of 

particles with satellite features, oblong particles, agglomerated particles, and non-uniformity in 

general. Furthermore, some particles are clearly shown to be porous, with hollow voids extending 

from their internal to external areas. These morphologies are shown in detail in Figure 18.  The 

presence of pores in the particles is most likely due to the gas atomization technique used to create the 

powder, as discussed in section 2.1.1.2, and may be a concern if the porosity gets translated to final 

bulk parts. In terms of the non-uniformity, the larger surface-to-volume ratio of the non-spherical 

particles will result in greater laser absorption, and may result in excess heat input during processing. 

Additionally, there may be concerns with the rheological properties of the powder due to the 

abnormal particle shapes.  



 

 41 

 

Figure 17. SEM micrograph taken of the Invar36 powder distribution. 

 
 

 
 

   

Figure 18. Representative particles showing various morphologies including (a) pores and 

satellites, (b) oblongated, (c) agglomerated, and (d) general non-uniformity. 

(b) 

(c) (d) 

10𝝁m 10𝝁m 

10𝝁m 10𝝁m 

(a) 
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3.2.4 Powder Rheology 

Shown below in Table 11 are the general properties of the powders used as comparison in this 

section. As well, presented below in Table 12 is a table summarizing the various indicators calculated 

from the stability and variable flow rate tests, and Figure 19 shows the measurements taken for it. 

Figure 20 to Figure 23 plot the measurements taken for the various experiments. For the measured 

statistics in the table, a 95% confidence interval was calculated based on a three sample t-distribution. 

Also, data from literature is also provided as comparison, when available. 

Table 11. General powder properties of literature material, as referenced from [98]. 

Material Description D50 [𝝁m] Shape 

GL glass beads 174 Spherical 

GS glass beads 68 Spherical 

Aluminum powder 134 Irregular 

Tungsten powder 4 Angular 

When observing the results in Table 12, it can be seen that Invar36 has a similar basic flowability 

energy (BFE) and specific energy (SE) to the glass samples from literature, within the bounds of 

error. These two values are derived from the stability and variable flow rate testing, and are 

indications of the shear forces preventing the material from flowing in low stress flow conditions 

[98]. Its low value indicates that the powder behaves non-cohesively, especially when compared to 

the cohesive tungsten powder. The flow rate index quantifies the difference in flow energy required 

between the fastest blade speed test and the slowest blade speed test. Higher flow rate indices show a 

powder’s sensitivity to flow stress, and is indicative of increase cohesion within the powder. For the 

Invar36 powder, it performs in a similar regime to the GL and GS glass material in literature, which 

were examples of non-cohesive powders. Lastly, the conditioned bulk density (CBD) and the tap 

density (TD) give an idea of the powder density in an unpacked and packed state. CBD values near 

TD values indicate a powder that is efficiently packed. For the values of Invar36, it has the worst 

values of all the other listed materials. This may be due to the non-uniformities present within the 

powder, as discussed previously. 

Upon observation of the aeration tests in Figure 20, the Invar36 powder performs very similarly to 

the GS Glass sample, and the quick tendency for both of the powders to reach zero energy state 

indicate their non-cohesivity. In contrast, the tungsten powder is shown to have much higher energies, 

and does not reach a zero energy state. This is because the material may be forming air-channels and 

rat-holes instead of becoming fluidized; this behaviour is indicative of cohesive powders [98].  
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Table 12. Powder flow properties for the Invar36 powder, supplemented literature values [98]. 

Indicator Unit 
Invar36 

(measured) 

GL Glass 

(literature) 

GS Glass 

(literature) 

Aluminum 

(literature) 

Tungsten 

(literature) 

Basic Flowability 

Energy (BFE) 
[𝑚𝐽] 726.25±202.02 1431 899 3300 5964 

Specific Energy 

(SE) 
[
𝑚𝐽

𝑔
] 3.03±1.014 3.36 2.36 4.40 6.70 

Flow rate index 

(FRI) 
[ − ] 1.18±0.096 1.04 1.02 1.48 1.40 

Conditioned Bulk 

Density  (CBD) 
[

𝑔

𝑚𝐿
] 4.17±0.148 1.44 1.46 1.24 4.17 

Tap Density (TD) [
𝑔

𝑚𝐿
] 5.07±0.154 1.50A 1.49A 1.34A 4.97A 

A Consolidated with 20 taps 

 

The compressibility plot gives an idea of how much the powder can compress with increasing 

normal loads applied to it. Larger compressibility values are associated with materials that are less 

efficiently packed, more cohesive, or both. The values for Invar36 appear to be relatively similar to 

the aluminum powder, but are much lower than the cohesive tungsten powder. Since the value is 

much lower than with tungsten, it appears as if the powder is much less cohesive than the tungsten, 

but is still not as efficiently packed as it can be, compared to the glass materials. 

The measurement tests for permeability is used as an indicator of how easy it is to transmit a fluid 

through the powder, and it is affected by many different factors. Generally, finer powders are known 

to decrease permeability, because of the absence of large voids characteristic of larger particle sizes. 

Irregular shaped powders are also more permeable for the opposite reason, with the larger amount of 

void structures within them. Cohesive powders are also known to increase permeability as the 

entrapment of air within the powder bed is increased. For the Invar36 powder, it appears to lie within 

a median zone between the most permeable powders (GL glass and aluminum) and the least 

(tungsten). This is most likely due to its relatively small particle size (D50 of 30 𝜇m) in comparison 

with the other materials, and not the general cohesiveness of the powder. However, even with its 

smaller particle size, it performs similarly to the GS glass, which has a D50 of 68 𝜇m. Thus, it may 

indicate that the Invar36 powder performs well for a material in its particle size regime. 

Lastly, the shear testing results measure the amount of shear stress to induce flow in the powder at 

any given applied normal stress. Since shear is the primary method of flow for powders, higher values 

of shear stress indicate powders with less propensity to flow. In Figure 23, the Invar36 powder 
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appears to be following a similar trend to the aluminum samples, but it is difficult to distinguish 

because the literature materials were measured at lower applied normal stresses. However, the higher 

values for the material may be a concern when initiating powder flow during processing. This is 

especially important as the amount of powder in the hopper becomes low and gravity becomes less 

effectual for inducing powder flow. 

To conclude, the results found within this chapter indicate that the Invar36 powder is generally 

non-cohesive, which is beneficial for power flow. However, the larger compressibility, the larger 

differential between tap and conditioned bulk density, and the larger permeability values indicate that 

the powder is not as efficiently packed as it can be. It has been hypothesized that this is due to the 

non-uniformities present in the powder samples, as discussed previously. The higher values obtained 

in shear testing results also indicates that the powder may behave non-ideally when hopper volumes 

become low, and thus it may be beneficial to refill hoppers earlier when using this material. 

 

Figure 19. Measured results from the stability and volumetric flow rate testing. Error bars 

indicate one standard deviation from the mean. Test runs 1-7 show the stability testing, and test 

runs 8-12 show the variable flow rate testing. 
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Figure 20. Measured results from the aeration testing. Error bars indicate one standard 

deviation from the mean. Dashed curves represent plots from literature [98]. 

 

Figure 21. Measured results from the compressibility testing. Error bars indicate one standard 

deviation from the mean. Dashed curves represent plots from literature [98]. 
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Figure 22. Measured results from the permeability testing. Error bars indicate one standard 

deviation from the mean. Dashed curves represent plots from literature [98]. 

 

Figure 23. Measured results from the shear cell testing. Error bars indicate one standard 

deviation from the mean. Dashed curves represent plots from literature [98].  
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Chapter 4 

Experiment 1: Process Mapping and Process Window Identification for 

Part Density and Coefficient of Thermal Expansion 

The experimental work done for this thesis has been divided into two different experiments. The 

current experiment focuses on the development of a process map for the minimization of bulk 

porosity and thermal expansion characteristics of LPBF-built Invar36 parts. An energy density 

approach is used as a tool to translate and to select reasonable recipes from literature. Based on the 

best practices for LPBF, as discussed in section 2.1.1, a build is set up and then analyzed for porosity 

with computed tomography (CT) scanning, and for thermal expansion behaviour with thermo-

mechanical analysis. Using statistical analysis techniques, an optimal process window is then 

identified from the generated process map. 

4.1 Experimental Methods 

Based on previous work performed by Qiu and by Harrison [59], [60], samples fabricated with 

volumetric energy densities in the range of 106.67 – 277.78 [
𝐽

𝑚𝑚3] were found to produce samples 

with appreciably low porosities <0.5% [59], [60]. These two existing works on LPBF of Invar36 have 

been performed using continuous mode laser beams. In the context of this work, the energy density 

range from literature was used as guidance, and an experiment was designed with the goal of 

developing a process map for the modulated laser beam LPBF process, and furthermore, for finding 

an optimal process window for achieving fully dense parts. As previously mentioned, significant 

build variables that affect the energy input in a LPBF fusion process are power, speed, hatching 

distance, and layer thickness. For the Renishaw AM 400 system, the equivalent energy input 

parameters are power, exposure time, point distance, hatch distance, and layer thickness. By varying 

these build variables, a full factorial design was constructed to analyze their effects on part density 

and CTE. The chosen levels for the manufacturing plan are defined below in Table 13.  

Table 13. Build variables that were modulated for the manufacturing plan. 

Build Variable Unit Levels  

Power [W] 250 275 300 350A 375A 400A 

Grid distance [𝜇m] 60 70 80    

Exposure time [𝜇s] 60 70 80    

Layer thickness [𝜇m] 30      
A Corresponding to parts created in a second build 
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Build variables that are constant and that do not pertain to the volumetric energy density are not 

shown in the above table, but the entire set of possible build variables can be referenced in Appendix 

A. However, it should be noted that since the purpose of this initial build was to only investigate the 

effects of energy density on part density and coefficient of thermal expansion, build variables not 

pertaining to energy density were disabled when possible. With all five factors varied at multiple 

levels, the number of printed samples would have been unreasonable. For example, if all levels were 

excited at only two levels, the resulting experiment would have required 25 = 32 samples. With three 

levels, the number would have increases to 243.  

To reduce the number of samples to a more reasonable amount, the layer thickness was set to a 

constant value of 30 𝜇m. The reasoning behind this is because the Renishaw AM 400 system is not 

capable of modifying layer thickness in-situ on a sample-by-sample basis. In terms of the selected 

value for the layer thickness, even though the supplier reported particle size was 44 𝜇m, the 30 𝜇m 

selection was deemed acceptable. This is due to the fact that, although the first layer may not be laid 

to the proper height (in terms of particle size), due to the inherent powder bed porosity, the effective 

layer thickness over time quickly becomes much larger than the original layer displacement. For 

example, based on the density of the laid powder bed, effective layer thickness can increase by 40%-

150% [103], [104]. 

To further lessen the sample count, the hatch and point distance were linked 1:1. For example, 

when the hatch was set to 60 𝜇m, the point distance was also set to a 60 𝜇m. Unfortunately, because 

of this fact, the results presented in this work cannot separate the individual effects of these two build 

variables, and instead reports the combined effect (henceforth, referred to as ‘grid distance’). Lastly, 

due to the amount of samples that were still required, a second build was printed to investigate the 

effects of higher power levels (denoted by superscript ‘A’ in Table 13). To close, the experiment 

required a total of 54 treatment combinations, and up to four replicates were fabricated for the 

analysis of part quality (216 total samples). Fractional factorial designs were considered as well to 

reduce sample count, but since the significance of interaction effects were unknown and only a 

limited number of builds were available for printing, the full factorial design was retained. 

By giving a unique identification to each permutation of the build variables, Figure 24 is obtained. 

The detailed build variable table with accompanying identification labels are located in Appendix C, 

but the build variable levels can also be discerned from observation. Within the figure there are six 
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groups of nine points each; this corresponds to the six power levels. Each group contains three lines 

of adjacent points, which correspond to grid distance. Within each line, there are three points that 

correspond to exposure time. To clarify, the groups have increasing power from left-to-right, the lines 

correspond to increasing grid distance from top-to-bottom, and the points correspond to increasing 

exposure time from left-to-right. This is visualized by Figure 25. The upper and lower bound lines in 

Figure 24 illustrate the ranges of energy density found in literature to have low porosity (< 0.5%), and 

it can be seen that all sample points lie near or within this energy band. 

 

Figure 24. Variation of volumetric energy density across all permutations of variables. 
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Figure 25. Explanatory figure showing influence of build variable choice on the point spread. 

4.1.1 Selection of Standardized Artefacts 

The selection of the standardized artefact was chosen to enable the possibility of fabricating the 

experiment in as little builds as possible, while still being flexible enough to analyze different process 

outcomes. The geometry of the artefact was selected was to enable both CT and thermo-mechanical 

analysis, and it can be referenced below in Figure 26. 

 

Figure 26. Sample geometry for measuring density and CTE (not to scale), with units in mm. 
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The dimensions of 5 mm diameter and 8 mm height were chosen such that the samples could be 

analyzed through CT imaging, as well as evaluated for their thermal expansion characteristics. 

According to ASTM E831-14, “Standard Test Method for Linear Thermal Expansion of Solid 

Materials by Thermomechanical Analysis”, sample specimen geometry for thermal expansion 

measurements are required to be between 2 and 10 mm in length, not have lateral dimensions 

exceeding 10 mm, and have flat and parallel ends within ± 25 𝜇m [105]. Deviations from the 

standard are reported to be acceptable, but may decrease the precision of measurements [105]. The 

limiting factor for CT scanning was with the overall sample thickness and volume. Thicker samples 

would have required longer exposure for X-ray penetration, and taller samples would have needed 

more images to be taken. Samples were therefore given a small footprint to expedite the CT scanning 

process. Lastly, samples were also given numeric identification labels for traceability purposes.  

Supplementary standardized artefacts were also created for future study on the elastic properties, 

surface profile, and microstructure, but are not covered within the scope of work in this thesis. They 

are reported on in this work because of their influence on the build layout of the experiment. Figure 

27 illustrates the geometries for the supplementary artefacts. A cubic geometry was chosen to be able 

to easily analyze the microstructure and surface profile along different directions. The dimensions 

were selected to be able to compare against similarly designed specimen in literature [59]. The large 

cylinders were created for the purposes of compression testing and conform to recommendations as 

per ASTM E9-09, “Standard Test Methods of Compression Testing of Metallic Materials at Room 

Temperature”. 

 

Figure 27. Additional artefact geometry for auxiliary studies (not to scale). Units are in mm. 
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For the density/CTE samples, four replicates were placed on the build to obtain a statistically 

relevant sample set. Due to their size, the larger compression testing cylinders were only given two 

replicates. Finally, since the microstructure cubes are largely for qualitative analysis, the 

microstructure cubes were only given one replicate. Although four replicates were stated to be printed 

for the density/CTE specimen, by the time the second build was ready to be printed, it became clear 

that CT analysis could only facilitate the imaging of one replicate, and thus the replicate count was 

reduced to two for the second build (in the event that a second replicate could be imaged in the 

future). 

4.1.2 Build Layout 

The build was laid out such that specimen of differing geometry types were grouped together if they 

had the same build variable combination, but between sets of build variable combinations, the 

locations were randomized. The entire layout was rotated by 5° clockwise to reduce the contact with 

the recoater blade during the spreading of new powder layers. Shown in Figure 28 and Figure 29 are 

the layouts for the first and second build, respectively. The green-shaded areas denote the layout for 

samples following the experiments described in this work, while red-shaded areas are samples that 

follow separate build variable combinations for auxiliary studies unrelated to this work. The second 

build was printed at the same time as the second experiment (will be further discussed in Chapter 5), 

and it is shaded in blue. 
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Figure 28. Layout for the first build with green-shaded areas denoting samples for the main 

experiment, and the red-shaded areas for auxiliary samples. 



 

 54 

 

Figure 29. Layout for the second build with green-shaded areas denoting samples for the main 

experiment, red-shaded areas for the auxiliary samples, and blue-shaded areas for the second 

experiment. 

4.1.3 Computed Tomography 

The purpose of deploying computed tomography (CT) was to gain an in-depth visualization of the 

porous distribution within the printed samples. By quantifying the pore fractions within the sample 

volumes, it is possible to calculate the inverse (solid fraction), and thus effectively determine how 

dense parts became after solidification. Other methods to find part density were considered, such as 
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the application of Archimedes’ principle through water displacement gravimetric analysis or gas 

displacement pycnometry, but were found to produce unreliable results. Specifically, for the water 

displacement gravimetry, the measurement scale used was not precise enough to capture the small 

differences between sample masses, and the temperature control for the water was not rigorous 

enough to capture differences in buoyancy. Moreover, the gas pycnometer failed to operate due to 

similar issues with temperature control. In addition to bulk density values for each sample studies, the 

CT data enabled a greater insight into the relationship between process parameters and pore size 

distribution, as well as spatially reconstructed pore location, pore morphology and pore orientation. 

4.1.3.1 Image Acquisition 

The imaging was performed by a Zeiss Xradia 520 Verse X-ray microscope, with the following 

Scout-and-Scan software settings applied for all sample analysis: 

Table 14. Scout-and-scan settings for CT imaging. 

Parameter Unit Value 

Source power [W] 10 

X-ray energy [kV] 140 

Filter - HE4 

X-ray optic - 0.4× lens 

Source position [mm] 21.36 

Detector position [mm] 10.37 

Exposure time [s] 2.0 

Number of 

projections 
- 1001 

Binning level - 1 

Voxel size [μm] 12.0 

The settings were chosen based on recommendations in the operating manual to obtain a strong 

enough signal, while still providing adequate contrast to distinguish features within the sample 

volume. A voxel (three-dimensional pixel) size of 12 𝜇m was the smallest possible size chosen to be 

able to CT image all the samples within a reasonable amount of time. As mentioned in section 4.1, 

even with these settings, only one replicate of the experiment was able to be analyzed in this work. 

After scanning, images were automatically reconstructed into 16-bit greyscale .TIF for further 

processing. 
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4.1.3.2 Image Processing 

A large volume of data was extracted from the CT imaging, which required the use of MATLab to 

automatically process the results. By using MATLab’s built-in image processing capabilities, it was 

possible to quantify details regarding the pore size, shape, orientation, and location within the sample 

volume. Although the MATLab code detailing the exact procedure can be referenced to in Appendix 

D, the general methodology is described below to provide a basis of understanding for the results. 

4.1.3.2.1 Image Contrasting 

The first step for the analysis was to balance the contrast and brightness levels in the image to 

eliminate the background material and isolate the part volume. Figure 30, below, illustrates the image 

data before any processing. The light-grey areas correspond to the sample volume, while the darker 

grey area corresponds to the background material. The black areas are conversion artifacts from 

translating the cylindrical image space into images that have rectangular borders, and do not 

correspond to actual measured data. 

 

Figure 30. A single image slice of a CT scanned sample, showing unprocessed visualization of 

the image space. 

To eliminate the background material, a threshold was set to truncate unwanted brightness intensity 

values. An example representing this procedure can be seen below in Figure 31. The image histogram 

is on the left, with intensity values ranging from 0 to 65535 (16-bit images have 216-1=65535 levels of 
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brightness). Out of the two intensity distributions within the histogram, the lower intensity peak 

corresponds to the background noise from un-attenuated X-ray signals captured from the ambient 

environment. There is also a singularity at zero intensity because of the black borders of the image, 

which, to reiterate, is an artifact of converting a circular image space into a rectangular image. The 

corrected image contains values located within the red-shaded rectangular area, the limits of which 

have been defined through manual inspection as a right-tailed intensity drop-off to 0.5% from the 

nearest intensity peak. The limits within the red-shaded box were rescaled to fit an intensity 

distribution between 0 and 65535. The result of the contrasting procedure is shown on the right-hand 

side, showing that only the sample volume is present within the image space. 

 

Figure 31. A typical image histogram on the left, illustrating the contrasting procedure with the 

selected rescaled values in red. The resulting contrasted image is shown on the right. 

4.1.3.2.2 Image Segmentation 

The next step for the image analysis was to isolate the intensities that corresponded to the porous 

defects from the bulk material, and similar to the previous step, an intensity threshold was defined 

(Figure 32). Through manual inspection of the pores, a left-tailed intensity drop-off to 1% of the peak 

value was found to adequately capture the edges of the pores. This is shown in the figure as a vertical 

red line. Instead of rescaling the image, the values were binarized with values of zero corresponding 

to pores and values of one corresponding to bulk material. As a noise reduction technique, the image 

was then dilated and eroded using a voxel connectivity of 26. Figure 33 demonstrates the geometric 

representation of different voxel connectivity values. The cube hidden in the center of these shapes 

represents the original voxel, and cubes surrounding the center are the ‘connecting’ voxels. The voxel 
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connectivity was aggressively chosen since the result from the contrasting often introduced a large 

amount of noise.  

 

Figure 32. A typical image histogram on the left, illustrating the segmentation procedure. The 

set-point is defined by the red line. The resulting segmented image is shown in the right. 

 

Figure 33. Sample image showing voxel connectivity. From left to right, the respective 

connectivity for each are 6, 18, and 26. 

The dilation was performed to first grow the white sections of the image, where each white voxel 

expanded into its connectivity region. By performing this step, pores that were smaller than a 3 × 3 

voxel cube were considered noise, and eliminated from the image space. To recover the lost pore 

volume from the dilation step, an erosion was performed to grow back the remaining black sections of 

the image to expand into its connectivity region. It should be noted that although this step reduces the 

amount of noise in the image, it also eliminates legitimate pores that were smaller than a 3 × 3 cube 

and also results in loss of fidelity for the pore geometry. Based on manual inspection, however, it was 
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found that the majority of pores within samples were much larger than 3 × 3 voxels and thus the loss 

of information for legitimately small pores was deemed acceptable. Additionally, since this research 

focuses mainly on the pore fraction and not the pore geometry, the loss of geometric information was 

also acceptable. 

4.1.3.2.3 Pore Identification 

To quantify the results, the fraction of zeros corresponding to pore volume needed to be isolated from 

the fraction of zeros that corresponded to background. To do so, an image masking operation was 

used to ‘paint’ the outside area and section it off from the ‘zeros’ corresponding to the inside. In two-

dimensions, this step is similar to the use of ‘fill’ operations used in many graphics editors (Figure 

34). 

 

Figure 34. Schematic demonstrating fill operation in two-dimensional space. For illustration 

purposes, a red-colored fill operation is used to isolate the exterior from the interior of the part. 

The threshold for voxel connectivity was chosen as 18, which is a more conservative approach 

taken such that more ‘zeros’ closer to the surface of the samples would be considered pores. This 

results in a slight overestimation of porosity, in comparison to smaller voxel connectivity values. 

After masking, finding the pore fraction was a simple operation that involved quantifying the 

fraction of ‘zeros’ that corresponded to pores in the overall three-dimension image, from the fraction 

of ‘ones’ that corresponded to solid material. Furthermore, for additional analysis, MATLab’s built-in 

function ‘regionprops3’ was used to extract the exact pore size, geometry, orientation, and location 

within the image space. 
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4.1.3.2.4 Image Output 

To visualize the pore distribution within the sample, processed image outputs were also created. 

However, since the image data obtained from CT scanning was in a three-dimensional format, a two-

dimensional representation was needed for presentation in this work. To do so, a minimum-intensity 

based projection method was employed. An explanation of the method is shown in Figure 35.  

 

Figure 35. General schematic of the minimum intensity projection method, showing how the 

minimum intensities (colored black) become projected to the same plane. 

Suppose that there are pores (colored black) along three different planes. Upon applying the 

minimum intensity projection, the dependency of the pores in one direction is eliminated by 

projecting the minimum values onto a single plane. As the figure shows, the in-plane orientation of 

the pores are preserved. This method of data visualization was applied to two different views of the 

samples (viewed from the top surface, and along the cylindrical section). It should be noted that since 

this method is only a projection of the pore distribution, it is not truly representative of the 

quantitative porosity within the samples; it does, however, serve as a good indication of the in-plane 

distribution of the pores. 

4.1.3.2.5 Miscellaneous Steps 

Aside from the techniques described above, the images were rotated using MATLab’s ‘imrotate’ 

function with bilinear interpolation to align all samples alone the same global axes. Specifically, the 

images were rotated such that the cylinders were oriented as follows: 

 

Figure 36. Schematic detailing the alignment of cylinders within CT images. 
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The alignment in the X-Y plane was chosen so the identification labels would be easily readable 

(parallel to English script orientation of left-to-right), and the orientation in the Y-Z and X-Z plane 

was chosen such that the projection of the cylinders into these planes resulted in an un-rotated 

cylinder from the axes directions. Continuing, due to interpolation defects from rotation, areas near 

the top and bottom tended to display artifacts, and thus had to be omitted from analysis. As well, near 

the top and bottom of samples the presence of X-ray related cone angle defects affected the visual 

clarity of the images and had to be omitted as well. Since cone angle defects can be detected by 

decreases in intensity, heights with >0.5% deviation from the average image intensity were 

considered affected by the cone angle defect, and removed. As a conservative estimate, additional 25 

layers of cropping (with 12 𝜇m voxel size, this results in 0.3 mm removed from analysis) was 

performed. In total, approximately 30% of the sample heights were not included in this analysis. 

4.1.4 Thermal Expansion Measurements 

The thermal expansion testing was facilitated by Dr. Geoffrey Rivers (University of Waterloo 

Advanced Composites and Adhesives Thermal Analysis Laboratory), with the analysis performed on 

a TMA Q400 thermo-mechanical analyzer by TA instruments. The testing was performed in 

accordance to ASTM Standard E831-14, “Standard Test Method for Linear Thermal Expansion of 

Solid Materials by Thermomechanical Analysis” [105].  

The samples were placed on sample stages subjected to a nitrogen gas flow of 100 mL/min, and 

allowed to equilibrate at -70 °C for 10 minutes. A temperature ramp of 5 °C/min was then applied 

until samples reached 150 °C. Invar’s constant thermal expansion properties break down as 

temperature increases to Invar’s Curie temperature, and upon manual investigation, it was found that 

samples began to behave nonlinearly at temperature ranges of approximately 100 °C – 150 °C, and 

therefore the 150 °C was selected to reduce experiment run-time. The heating schedule for the 

samples is shown in Figure 37. 

For the final calculation of the coefficient of thermal expansion, there was one deviation from the 

recommendations in the standards. According to the standards, the calculation for the linear CTE 

accounts for the change in length over temperature by taking the difference between the lengths and 

temperatures at two endpoints, as shown in Figure 38. In this work, the difference in length over time 

is instead found by constructing a line, through linear regression, between the two endpoints, and 
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taking the slope as the representative value. This deviation in standards is done because it better 

represents the behaviour of the material than by just averaging the measurements at two points. 

 

Figure 37. Schematic illustrating the heating schedule with (i) cooling to -70 °C, (ii) isothermal 

at -70 °C for 10 minutes, (iii) temperature ramp of 5 °C/min until 150 °C, and (iv) unload 

machine and return to room temperature. 

 

Figure 38. Calculation of change in length over time, as per ASTM Standard E831-14 [105]. 
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4.1.5 Statistical Analysis of Results 

In the manufacturing plan, four replicates of the density artefacts were planned for analysis, with the 

factors set up so that a full-factorial analysis of variance (ANOVA) would be possible to determine 

the effects of each build variable. Due to time and scheduling constraints, however, only a single 

replicate was able to be imaged for each sample.  

With experiments that contain only one replicate, standard ANOVA of the full model is not 

normally possible because there is no way to measurably report on the error. However, there are ways 

to analyze single replicate experiments. By eliminating higher-order interactions from the model, one 

can effectively gain extra degrees of freedom in the model for estimating the error. The simplest 

method is to just assume that there are no higher order interactions. This is because in many systems, 

main effects and lower order interactions effects are significant, while higher-order interactions are 

negligible (known as the sparcity of effects principle) [95]. One can also use regression techniques to 

eliminate higher-order polynomials, or the Tukey test, which can be used to determine if there are 

interactions between parameters [95]. 

For this work, the application of Tukey’s test is used to determine the effect of varying the 

parameter levels. Originally, the Tukey test developed in 1949 was used to determine if there are 

interactions between two factors, but it is also possible to extend the derivations to determine 

interactions for more complex designs [106]. This is shown by Yang in 2014, where they extended 

the Tukey test for three-factor experiments [106]. The derivations pertinent to the extended Tukey test 

can be referenced in Appendix E. 

To implement the model, MATLab code was written and can be referenced in Appendix F and 

Appendix G. Aside from the results presented by the statistical analysis, the data is also shown using 

several different graphical formats to aid in results visualization.  

4.1.6 Auxiliary Analysis 

4.1.6.1 Chemical Composition Analysis 

To observe the chemical composition evolution of the material as it solidified from powder into bulk 

material, chemical analysis was performed on parts from the experiment. The procedure for chemical 

composition analysis is followed as per the previous chapter, section 3.1.1. 

However, the analysis for chemical composition is costly, due to the amount of preparation 

required, and thus only a small representative set of parts was selected. Particularly, the samples that 
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were tested were samples 5, 20, 23, 26, 32, and 50. Samples 5, 23, 32, and 50 were selected to have 

identical grid distance and exposure time and only had power modified at increased levels. The 

intention was to purely see the degree of material vaporization with energy density, and variation of 

power was the most convenient way of increasing the energy density without introducing too many 

samples that required to be tested. Samples 20 and 26 were selected such that they had comparable 

energy densities to the other selected samples, where sample 20 was comparable to sample 50 and 

sample 26 was comparable to sample 5, so that the differences in selecting identical energy densities 

but different recipes could be observed. A table detailing the samples and their build variable 

combinations are shown below. 

Table 15. Samples selected to be analyzed for their chemical composition. 

Build Variable Unit 
Sample Identification Number 

5 20 23 26 32 50 

Power [W] 250 300 300 300 350 400 

Grid distance [𝜇m] 70 60 70 80 70 70 

Exposure time [𝜇s] 70 70 70 70 70 70 

Energy 

Density 
[J/mm3] 119 194.4 142.9 109.4 166.7 190.5 

4.1.6.2 Melt Pool Geometry  

In addition to the chemical composition of the parts described in Table 15, optical microscopy was 

employed on the samples to observe the melt pool behaviour within each sample. Similarly, the small 

number of samples were selected because polishing and etching are time-consuming processes, and 

thus it was not feasible to be performed for an entire set of 54 samples. 

Although this analysis was not part of the main goal of the experiment, the supplementary 

information provided important details about the melting modes during processing. For the artefact 

selection, the cubic samples were used, since the faces of the cube are aligned with the build and laser 

scanning directions. Also, prior to imaging the cube samples were polished and etched. This was 

provided by the service of Hamed Asgari Moslehabadi (Post-Doctoral Fellow, Multi-Scale Additive 

Manufacturing Lab), who also performed the optical imaging for all results presented in this work. 
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4.2 Results and Discussion 

4.2.1 Chemical Composition Analysis 

Shown below in Table 16 are the chemical composition results for the tested samples, 5, 20, 23, 26, 

32, and 50. Based on the results here, the bulk samples appear to change composition slightly from 

the powder, but the overall compositions remain comparable and conform to the standards. As well, 

between all the samples there is a negligible difference in composition, which implies that the 

selected variations in build variables do not affect the chemical composition of the parts.  

The stability of the materials’ main constituents can be explained by observing the phase diagram 

(Figure 12, section 2.2) which shows that the liquidus and solidus for the alloy are at almost the exact 

same temperature. This means that upon melting and solidification, both the iron and nickel liquidate 

or solidify simultaneously and thus segregation of elements is not expected. Additionally, the vaporiz- 

Table 16. Chemical composition of the measured samples, as compared with supplier and 

ASTM specifications. 

Element 
Sample wt. % Supplier 

wt. % 

ASTM 

wt. % Powder 5 20 23 26 32 50 

Iron 63.3 62.9 62.9 62.9 62.9 62.9 62.6 Remainder Remainder 

Nickel 35.6 36.0 36.0 36.0 36.0 36.1 36.1 36 36 nominal 

Cobalt < 0.01 0.01 0.01 0.50 max 

Manganese 0.35 0.33 0.30 0.32 0.32 0.32 .32 0.44 0.60 max 

Silicon 0.17 0.15 <0.01 0.40 max 

Carbon Not measured 0.010 0.05 max 

Aluminum <0.01 <0.01 0.10A max 

Magnesium Not measured <0.01 0.10A max 

Zirconium Not measured <0.01 0.10A max 

Titanium <0.01 <0.01 0.10A max 

Chromium < 0.01 0.01 0.01 0.01 0.01 0.06 0.16 0.12 0.25 max 

Phosphorus 0.010 <0.010 0.02 0.015B max 

Sulfur <0.005 0.003 0.015B max 

Copper <0.01 <0.01 
Not in 

standard 

Molybdenum <0.01 0.03 0.05 
Not in 

standard 

Selenium Not measured <0.003 
Not in 

standard 
A The total sum of aluminum, magnesium, titanium, and zirconium shall not exceed 0.20% 
B The total sum of phosphorus and sulfur shall not exceed 0.025% 
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ation temperatures of both iron and nickel are very similar in temperature [107], [108]. Thus even 

upon material vaporization due to excessive laser input, the material is not expected to vary 

significantly in composition. 

4.2.2 Melt Pool Geometry 

Figure 39 illustrates the optical microscopy images of the samples that had identical grid distance 

and exposure times, but varying power. It can be seen that initially the melt pool is semi-circular in 

shape. As the laser power increases, the melt pools become deeper and wider, forming a shape 

reminiscent of a wine glass or “goblet”. Similarly, Figure 40 shows the optical microscopy images 

with identical power and exposure time, but varying grid distance. From here it becomes very evident 

that the smaller grid distances result in a deeper penetrating melt, while longer grid distances result in 

shallower melts. This may be because the shorter grid distances causes an overall increase in heat 

input, and the overlap of laser scans may be prolonging the time the material stays melted, and thus 

allowing the liquid phase to penetrate deeper into the material. Overall, it appears that the increase of 

energy density, whether it is through laser power or exposure time, will result in deeper and wider 

melt pools as the laser heating mode transitions towards keyhole melting.  

Sample 5 Sample 23 

  

Energy density: 119.0 J/mm3  Energy density: 142.9 J/mm3  

Sample 32 Sample 50 

  

Energy density: 166.7 J/mm3  Energy density: 190.5 J/mm3  

Figure 39. Optical microscopy images detailing the melt pool geometry within the LPBF parts 

with varying power. The dashed lines show the melt pools of the last deposited layers. 



 

 67 

 Sample 23  

 

 

 

 Energy density: 142.9 J/mm3        

Sample 26 Sample 20 

  

Energy density: 109.4 J/mm3         Energy density: 194.4 J/mm3           

Figure 40. Optical microscopy images detailing the melt pool geometry within the LPBF parts 

with varying exposure time. Dashed lines show the melt pools of the last deposited layers. 

4.2.3 Interpretation of CT Pore Space Data (Overall Part) 

Two representative sample results are displayed below in Figure 41, where the lowest and highest 

quantified solid fractions are located on the volumetric energy density plot from Figure 24. As well, 

respective minimum intensity projection plots are displayed in Figure 42 and Figure 43. Figure 42 

represents the part with the lowest quantified solid fraction of 99.72%, while Figure 43 represents the 

highest quantified solid fraction of 99.92%. The solid fraction is the inverse measure of pore fraction, 

and depending on the circumstances, either term will be used within this work. Ideally, the optimal 

process outcome will have higher solid fractions. The entire set of images can be referenced in 

Appendix H. As discussed previously in section 4.1.3.2.4, these images show a projection of the pores 

across the entire sample, and are more adequate measures of pore distribution and geometry than 

quantity.  

When comparing the differences in build variables between the two, the best performing part has a 

relatively low power level, a large hatch spacing, and a low exposure time, while the worst 

performing part has the highest power level, the smallest hatch spacing, and the longest exposure 

time. When referring to Figure 24, the best performing part has one of the lowest energy densities and 

the worst performing part has the highest overall energy density.  
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Figure 41. Variation of volumetric energy density across all permutations of variables, with the 

worst and best performing CT parts labelled. 

 
Figure 42. Worst overall performing part from the CT analysis, in terms of the overall porosity. 

The build variables for this sample correspond to sample 48. 
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Figure 43. Best overall performing part from the CT analysis, in terms of the overall porosity. 

The build variables for this sample correspond to sample 16. 

With these results in mind, it appears as though the minimum energy density bound (as specified by 

Qiu and Harrison) to achieve full melt is accurate, while deviations above the maximum energy 

bound transition to regions of over melt and increased porosity. The increased porosity may be due to 

material vaporization, specifically around the border region of parts, as well as the effect of pore 

entrapment as the melt pool transitions towards keyhole-mode laser melting (similar to conditions 

within laser welding) [109], [110]. 

Overall, in terms of the pore size and distribution, it appears as if the pores become larger and more 

numerous with transition from worst performing to the best performing parts (shown below in Figure 

44). The pore sizes are described in voxels (three-dimensional pixel), where each voxel is a cube with 

a side length of 12 𝜇m. This observation is understandable, since the transition from lower to higher 

energy density regimes will result in more material vaporization and increased heat input, which then 

leads to increased porosity. In addition to the observations on the total porosity and pore size 

distribution, there are other interesting phenomenon as well. 
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Figure 44. Pore size distribution plot highlighting the differences between the worst (sample 48) 

and best performing parts (16). 

One interesting observation is that there is a heavy bias of pores towards the outer edges of the 

specimen. The cause of these defects is illuminated when the effect of the scan paths is considered. 

Figure 45, below, illustrates a single slice that is 171 out of 316 layers deep into the three-dimensional 

CT data, as viewed from the top of the cylinder. Additionally, the equivalent scanning pattern was 

extracted from Renishaw’s build preparation software, QuantAM, and overlaid 1:1 to highlight the 

effects of the scanning strategy on the pores.  

 

Figure 45. Single CT cross-section of a representative part section with the overlaid scan path. 

Build variables for this image correspond to sample 11, which was printed at 275 W power, 60 

μm grid distance, and 70 μs exposure time. 
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Before continuing, terminology describing the scanning features must be introduced. In the figure 

above, there are three distinct types of scanning features present: the border lines, the hatch lines, and 

the block path lines. Figure 46, below, illustrates the differences. Within the default parameters for 

the build software, the parts built as part of this experiment had one border line, blocked path lines, 

hatch lines, and no contour lines. 

 

Figure 46. Schematic showing differences between different line types 

The pores visible in the figure clearly occur in the areas subjected to circumferential border scans, 

and they appear to coincide with the ends of the hatch lines. It is hypothesized that this may be due to 

the fact that—unlike scan features more central to the part, the ends of hatch lines do not have the 

added benefit of re-melting from adjacent scan lines that may eliminate residual porosity. 

Additionally, there is another build variable in the build software, called ‘hatch compensation’ that 

was not modified for the experiment and it may contributed to the pores along the border region. By 

default, the hatch compensation build variable is set to ‘off’. To explain the functionality of hatch 

compensation, consider a scenario where the hatch compensation build variable is off, a hatch line is 

150 𝜇m long, but the point distance is only 60 𝜇m in length. As the hatch line becomes discretized 

into point laser scans, only three exposure points will be generated; one exposure at the beginning of 

the hatch line, another one displaced 60 𝜇m away from the start, and a final one 120 𝜇m from the 

start. Thus, there is a 30 𝜇m gap that does not have any point exposures. This dilemma is 

demonstrated in Figure 47, showing how un-melted regions can occur if the hatch lines are not 

completely divisible by the point distances. To correct for these defects, turning on the hatch 

compensation may create a point at the end of the hatch lines, even if the remaining distance may be 

smaller than the point distance. An experiment further reviewing this is discussed in Chapter 5. 
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Figure 47. Figure illustrating the laser exposure with hatch line lengths indivisible by point 

distances, resulting in potential un-melted regions around the part perimeter. 

Although it is not readily visible in Figure 42 or Figure 43, there appears to be an angular 

periodicity with the pores along the border. This behaviour can be better visualized within Figure 48, 

which shows three samples (correspond to samples part I.D.s 1, 2, and 3) that have the angular 

periodicity. It should be noted that this occurs across all samples that were tested, and the samples in 

Figure 48 were chosen purely for visualization purposes. From the figure, it appears that not only do 

the samples have angular periodicity, but the pores begin at the same locations and the angular 

periodicity occurs at the same frequency across all samples. To determine the cause of this 

periodicity, the scan paths for the parts can once again be reviewed (Figure 49). When observing the 

transition between three consecutive layers, the blocked path lines do not appear to be rotating 

between layers. Thus, the result of repeated scans focused on the same areas is hypothesized to 

produce the angular periodicity of the pores.  
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Figure 48. Representative figure showing the angular periodicity within the printed samples. 

From left-to-right are samples one, two, and three, which correspond to 250 W power; 60 μm 

grid distance; and 60, 70, and 80 μs exposure time. 

 

(a) Layer 213/300 of sample 1 
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(b) Layer 214/300 of sample 1 

 

I Layer 215/300 of sample 1 

Figure 49. Generated scan paths for sample 1, which corresponds to 250 W power, 60 μm grid 

distance, and 60 μs exposure time. Three consecutive layers are presented, where (a) – (c) are 

layers 213 – 215, respectively. 
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The effect of the blocked path on the angular periodicity becomes unmistakable when the scan path 

is overlaid on top of the minimum intensity projection of the CT data. Figure 50 shows layer 213 of 

the scan path for sample 1 laid upon the minimum intensity projection of sample 1. The sample bulk 

was dyed in orange to show the contrast between the pores, the scan-path, and the bulk material. As 

shown in the figure, the blocked paths are lined up 1:1 with the angular periodicity of the pores. 

 

Figure 50. Scan path overlaid on the minimum intensity projection of sample 1, which 

corresponds to 250 W power, 60 𝝁m grid distance, and 60 𝝁s exposure time. 



 

 76 

When observing the CT images, it is also apparent that the distribution of pores is biased towards 

the right side of samples. This is the most visually apparent with sample 20 (Figure 51, below), but it 

is also evident in the other samples as well. 

When considering the fact that all the samples were oriented in the same direction across the build 

bed (refer to Figure 28, section 4.1.2), it becomes evident that a directional bias was introduced into 

the experiment. Particularly, it appears as if the gas flow may have been affectual, as it flows from 

right-to-left. As discussed in section 2.1.1, in addition to providing an inert atmosphere for 

processing, the role of gas flow is to disperse fumes and ejected particles from the build area.  

 

Figure 51. Representative part from the CT analysis showing the bias in spatial pore 

distribution. The build variables for this sample correspond to sample 20, which was printed at 

300 W power, 60 μm grid distance, and 70 μs exposure time. 

Upon consideration of this effect, it becomes reasonable to hypothesize that at the left edge of 

samples, the effect of gas flow results in the ejected particles being blown away and off of the 
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samples. For the right side of samples, however, the gas flow reintroduces the ejected particles into 

the sample, thus causing the opportunity for more defects. An example of this hypothesis is shown 

below in Figure 52. This effect seems to be diminished when a lower power was used, and is explored 

further in the next chapter. 

 

Figure 52. Hypothesized influence of gas flow on the porosities within the border regions. 

All in all, the observations seem to show that the more energy dense parts have greater porosity 

than the less energy dense samples. Continued analysis into the distribution of the pores within the 

samples show that they are resultant of interactions between scan strategy build variables that involve 

areas near or at the border of the parts (for example the blocked paths and borders). For future study, 

the effects of these build variables are investigated in Chapter 5, but since the goal of the sets of 

experiment in this chapter is to investigate the effect of only the energy density related build variables 

on porosity, further analysis in this chapter will pertain only to the energy density related build 

variables. As well, since the pores near the border appears to be mainly affected by border-region 

build variables, the analysis also looks into the effect of energy density related parameters with the 

border region omitted in this chapter. 
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4.2.4 Process Mapping based on Solid Fraction (Overall Part) 

To first visualize the effect of the build variables on the solid fraction of parts, a third data ‘axis’ was 

added to the energy density plot (Figure 24, from section 4.1) in the form of varying size circles 

(Figure 53). The sizes of the circles are relative to the solid fraction of the parts and only serve for 

comparative purposes. 

From this visualization tool, it is difficult to tell the effect of build variables, because the 

differences of solid fraction between parts are very small. However, it appears as though there is a 

general trend of decreasing circle size with increasing power (refer to Figure 25, section 4.1, for 

explanation on deciphering sample I.D. to power, grid distance, and exposure time). It is more 

difficult to see any trends with increasing grid distance or exposure time. 

Due to the difficulty with determining any significant trends, an alternative visualization method 

was used. Through the use of MATLab, a three-dimensional surface plot of the process map was 

constructed, where twenty surface plots of constant solid fraction were generated with respect to 

power, grid distance, and exposure time. After compiling the data focusing on the solid fraction of the 

samples, the following three-dimensional surface plot was created (Figure 54). The purpose of these 

surface plots is to provide an informed view into the process map, and describe the resulting part 

performance based on the build variable selection.  

 

Figure 53. Variation of volumetric energy density across all permutations of variables, with an 

additional ‘axis’ describing solid fraction through the use of variable size circles. 
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To explain, the solid fraction of each part in terms of the power, grid distance, and exposure time, 

is plotted in a three-dimensional contour plot, where each contour corresponds to a constant solid 

fraction. The surfaces were generated using a ‘scatteredinterpolant’ function with natural neighbor 

interpolation. As such, the shape of the contours within the plot are not entirely representative of the 

true behaviour of the process map. However, they serve as a useful visualization tool for determining 

the overall behaviour within the process map. 

 

Figure 54. Three-dimensional surface plot describing the effects of power, grid distance, and 

exposure time on the solid fraction of parts. 

It is straightforward to see that there is a trend of increasing power with decreasing solid fraction, 

and this matches with previous observations of the CT images. As previously mentioned, this is likely 

due to the transition of the melting mode towards keyhole melting, causing material vaporization and 

pore entrapment. In terms of the effects of exposure time and grid distance, it is still difficult to 

ascertain any trends with varying those build variables. To further clarify, individual sectioned 

surface plots for the effect of grid distance and exposure time within each power level were created. 

Within the surface plots, the lowest and highest solid fraction parts for each power level are also 
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labelled with accompanying CT minimum intensity projection plots. Similarly, the curves within the 

plot are generated with interpolation and may not be entirely representative of the true process 

behaviour within those regions. These plots can be referred to below (Figure 55 – Figure 60). 

However, once again, it is challenging to visually correlate any change in grid distance and 

exposure time with the solid fraction, however it appears that that within each power level there are 

multiple zones of good performance, and that overall the increase of power decreases performance. 

As well, the majority of well performing parts for each power level occur within mid-to-high levels of 

hatch distances, which suggest that larger hatch distances may play a beneficial role. It was 

previously mentioned that the overall pore sizes appeared to increase with energy density.  
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Figure 55. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the solid fraction of parts at a power of 250 W. Where the CT images describe (a) worst 

performing and (b) best performing parts. 

(b) (a) 

(a) 

(b) 



 

 82 

 

 

Figure 56. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the solid fraction of parts at a power of 275 W. Where the CT images describe (a) worst 

performing and (b) best performing parts. 

(b) 

(a) 

(a) (b) 
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Figure 57. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the solid fraction of parts at a power of 300 W. Where the CT images describe (a) worst 

performing and (b) best performing parts. 

(a) (b) 

(a) 

(b) 
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Figure 58. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the solid fraction of parts at a power of 350 W. Where the CT images describe (a) worst 

performing and (b) best performing parts. 

(a) (b) 

(a) 

(b) 
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Figure 59. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the solid fraction of parts at a power of 375 W. Where the CT images describe (a) worst 

performing and (b) best performing parts. 

(a) (b) 

(a) 

(b) 
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Figure 60. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the solid fraction of parts at a power of 400 W. Where the CT images describe (a) worst 

performing and (b) best performing parts. 

(a) 

(b) 

(a) (b) 
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4.2.5 Interpretation of CT Pore Space Data (Border Regions Removed) 

To recall, the intention for this experiment was not to focus on the effect of border region build 

variables, but to purely focus on the effect of energy input build variables on the bulk part regions. 

This is because the effect of localized defects along the borders are due to border-region build 

variables only, and may contribute to erroneous conclusions. Thus, by truncating the radii of samples 

by 10% to omit the porosity defects along the borders, it was possible to obtain information about 

build variable modification within the core regions of the part (Figure 61). 

   
(a) Before truncating (b) After truncating 

Figure 61. Example illustrating showing the CT data (a) before and (b) after truncating the 

radius to omit border-region porosity. 

In a similar exercise to before, once the truncation was performed, the worst performing and best 

performing parts can be compared. The worst performing part had a solid fraction of ≈99.85%, while 

the best performing part had a solid fraction of ≈99.99%. Their respective locations on the energy 

density plot (as per Figure 41) are shown in Figure 62. The summary of the CT analysis can be 

observed in Figure 63 and Figure 64, and as before, the full set of images can be referenced in 

Appendix I.  
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Figure 62. Variation of volumetric energy density across all permutations of variables, with the 

worst and best performing CT parts (with border regions removed) labelled. 

Without the influence of the border region pores, it becomes evident that the porosity within the 

core regions are much more organized, with pores appearing to be structured on a per-layer basis. As 

well, the pores are much larger and less spherical, with some pores also appearing to have spherical 

material solidified in the center of the pores. This is attributed to the ‘balling’ phenomenon that 

occurs in LPBF, and is associated with melt pool instabilities that result in the material forming 

droplets to minimize surface tension in the melt pool. It is suggested that at lower energy density 

values, there may be insufficient energy input to form a stable melt pool. As well, at larger values of 

power, the re-melting effect across multiple layers may collapse some pores.  
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Figure 63. Worst performing part from the CT analysis, in terms of the porosity, with border 

regions removed. The build variables for this sample correspond to sample 4. 

 

Figure 64. Best performing part from the CT analysis, in terms of the porosity, with border 

regions removed. The build variables for this sample correspond to sample 37. 

 

 

Parameters 

Power 250 W 

Grid distance 70 𝜇m 

Exposure time 60 𝜇s 

 

Parameters 

Power 375 W 

Grid distance 60 𝜇m 

Exposure time 60 𝜇s 
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4.2.6 Process Mapping based on Solid Fraction (Border Regions Removed) 

Once again, quantifying the solid fraction and plotting it in terms of the energy input build variables 

results in a similar three-dimensional isosurface plot. The large volume of empty space inside the plot 

is due to the fact that there is very little variation in terms of solid fraction for the majority of the 

process map. Aside from the sharp decrease in solid fraction in the low power regions of the plot, the 

modification of build variables does not appear to change the solid fraction by any significant 

amount.  

 

Figure 65. Three-dimensional surface plot describing the effects of power, grid distance, and 

exposure time on the solid fraction of parts, without the effect of the border regions. 

As before, individual sectioned surface plots for the effect of grid distance and exposure time 

within each power level were created for further clarification. The worst and best performing parts for 

each power level are also labelled with accompanying CT minimum projection plots. These plots can 

be referred to below (Figure 66 – Figure 71). 
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Figure 66. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the solid fraction of parts (without border regions) at a power of 250 W. Where the CT 

images describe (a) worst performing and (b) best performing parts. 

(b) (a) 

(a) (b) 
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Figure 67. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the solid fraction of parts (without border regions) at a power of 275 W. Where the CT 

images describe (a) worst performing and (b) best performing parts. 

(a) (b) 

(a) (b) 
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Figure 68. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the solid fraction of parts (without border regions) at a power of 300 W. Where the CT 

images describe (a) worst performing and (b) best performing parts. 

(a) (b) 

(a) (b) 
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Figure 69. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the solid fraction of parts (without border regions) at a power of 350 W. Where the CT 

images describe (a) worst performing and (b) best performing parts. 

(b) 

(a) 

(a) (b) 
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Figure 70. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the solid fraction of parts (without border regions) at a power of 375 W. Where the CT 

images describe (a) worst performing and (b) best performing parts. 

(b) 

(a) 

(a) (b) 
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Figure 71. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the solid fraction of parts (without border regions) at a power of 400 W. Where the CT 

images describe (a) worst performing and (b) best performing parts. 

 

(a) 

(b) 

(a) (b) 



 

 97 

It can be seen that the overall homogeneity of the solid fraction makes it difficult to discern the 

effects of grid distance or exposure time within each power level. Also, aside from the improvement 

in solid fraction between 250 W and 275 W of power, it is also difficult to see the effect of power. 

However, it is interesting to note that for virtually all power levels, the worst performing part always 

had a lower energy density than the best performing part. This may be due to localized optimizations 

within each power level, where at a certain energy density threshold, the effect of re-melting 

guarantees the elimination of pores within the sample. In particular, at power levels up to 300 W, 

increase of energy density due to exposure time is observed to be the most influential build variable 

between the worst- and best-performing parts. This may be because at lower power regimes, there is a 

minimum required exposure time at which re-melting is optimal. At power levels above 300 W, the 

extra energy input from higher power levels may have reduced this exposure time threshold and thus 

grid distance becomes more prominent, where the increase in grid distance allows for more overlap in 

re-melting. The exception is at the highest power level, where the best performing part had lower 

energy density than the worst performing part. From observation, it appears that the energy density 

was high enough for vaporization to occur and cause gas entrapment, as shown by the presence of 

spherical pores. 

4.2.7 Statistical Analysis of Solid Fraction Results (Overall Part) 

As mentioned previously, it was only possible to analyze a single replicate of the experiment, and 

thus a model based on Tukey’s test was applied to free up degrees of freedom for the analysis. The 

result of the analysis is described below in Table 17 for the overall part (as per Figure 54). It can be 

seen that the laser power is shown to have a significant effect (at 𝛼 = 0.05) on the measured solid 

fraction of the parts, confirming the previous visual observation. Moreover, the interaction effects, the 

grid distance, and the exposure time are not determined to be significant build variables, which 

confirms the earlier observations.  

Overall, the model has an adjusted R-squared value of 29.16%, which indicates that there are 

additional factors that may be unaccounted for in the model. In particular, the effect of gas flow, the 

un-optimized border region build variables, or the part layout may have added to the variability. It 

should be noted that the model used in Table 17 is best suited to determine the significance of build 

variables and not their functional relationship. Therefore, although the model does not very accurately 

explain all the variance in the model, obtaining 29.16% of all variance explained by the significant 

build variables is still a powerful conclusion. To ensure the validity of the ANOVA, several model 



 

 98 

adequacy plots were constructed to verify the validity of the assumptions of normality and 

independence for the distribution of errors. These plots are shown below in Figure 72. 

Table 17. ANOVA table showing the effects of the build variables on overall part solid fraction. 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F0 p-value 

Power 3.0315×10-6 5 6.0630×10-7 5.5315 0.00058003 

Grid 5.6062×10-7 2 2.8031×10-7 2.5574 0.090123 

Exposure Time 1.0936×10-7 2 5.4679×10-8 0.49885 0.61095 

P/G 1.3571×10-10 1 1.3571×10-10 0.0012381 0.97211 

P/E 9.7098×10-8 1 9.7098×10-8 0.88585 0.35225 

G/E 1.0695×10-8 1 1.0695×10-8 0.097574 0.75638 

P/G/E 6.8484×10-9 1 6.8484×10-9 0.06248 0.8039 

Error 4.3844×10-6 40 1.0961×10-7   

Total 8.2006×10-6 53    

Adjusted R-squared value: 0.2916 

 

  

  

Figure 72. Model adequacy plots for the ANOVA model for assessing the normality and 

independence assumptions. 
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From the model adequacy plots, there are several observations. Firstly, the residuals do not appear 

to be following a normal distribution, based on the data shown in the histogram and the normal 

probability plot. Secondly, the residuals plotted against observation order and predicted solid 

fractions appear to show the presence of outliers, which may be affecting the model prediction. 

Because of these observations, it is not possible to confirm that the errors are normally and 

independently distributed for the model used to develop the ANOVA table, and thus the results 

obtained cannot be considered reliable. Thus, in order to analyze the results, an alternate procedure is 

used to analyze the single replicate measurements. 

As discussed in section 4.1.5, dropping large order interactions are often feasible assumptions to 

make, due to the ‘sparcity of effects’ principle. Thus, by dropping the ‘P/G/E’ interaction effect from 

the model, enough degrees of freedom were recovered to run a reduced-model ANOVA. To confirm 

the viability of this assumption, model adequacy plots were plotted after analysis. The results are 

shown below in Table 18. The omission of the three-factor interaction results in a better fitting model 

than in Table 17, with 54.59% of the observed variance explained by Table 18. Similar to Table 17, 

the results here show power is a significant factor (at 𝛼 = 0.05), and as well, grid distance. This 

confirms the earlier observations of the effects of power and grid distance. Since the p-value of the 

grid distance is higher, the conclusions are not as powerful. This manifested itself earlier with the 

uncertainty in the prior observations. Another interesting observation is that the interaction between 

power and grid, although not considered significant, is at lower p-values than the other insignificant 

factors. Although the effect is not immediately discernible, additional measurements in the future may 

reveal the relationship between the build variables. It is hypothesized, however, that with increasing 

overlap the effect of power becomes more influential as multiple spots are being re-exposed before 

they can fully solidify, and similarly with decreasing overlap there may be cases where power 

provides insufficient melt. 

Described below in Figure 73 are the model adequacy plots. From the plots, it appears as though 

the normality and independence assumptions are more valid than previously, with the residuals taking 

on a normal distribution, but appear to be slightly biased in the positive direction. This may be 

attributed to an outlier present in the data, as shown in the predicted vs residual plot, that may be 

influencing the model prediction. This residual corresponds with the sample with the worst solid 

fraction (sample 48). Since the sample point was placed within the extreme ranges of the experiment, 

it is expected that the solid fraction would dramatically decrease as the laser-material interaction 
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moves towards material vaporization. Thus, the sample point was not removed from analysis such 

that its influence on the results are relevant to the process outcome. 

Table 18. ANOVA table showing the reduced model without the three-factor interactions. 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F0 p-value 

Power 3.0315×10-6 5 6.0630×10-7 8.6283 0.0002 

Grid 5.6062×10-7 2 2.8031×10-7 3.9891 0.0348 

Exposure Time 1.0936×10-7 2 5.4679×10-8 0.7781 0.4727 

P/G 1.4582×10-6 10 1.4582×10-7 2.0752 0.0790 

P/E 1.2899×10-6 10 1.2899×10-7 1.8357 0.1189 

G/E 3.4565×10-7 4 8.6413×10-8 1.2297 0.3299 

Error 1.4054×10-6 20 7.0269×10-8   

Total 8.2006×10-6 53    

Adjusted R-squared value: 0.5340 

 

  

  

Figure 73. Model adequacy plots for the ANOVA reduced model, showing the validity of the 

normality and independence assumptions. 
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4.2.8 Statistical Analysis of Solid Fraction Results (Border Region Removed) 

By applying the same statistical approach to the results that focus on the part with border region 

removed, Table 19 can be found. In this case, the model appears to show all build variables are 

significant in determining the solid fraction in the core, and that adjusted R-squared value appears to 

fit well with a value of 78.40%. However, the model adequacy plots need to be consulted as well, and 

are provided below in Figure 74.  

Table 19. ANOVA table showing the effect of build variables on core region solid fraction. 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F0 p-value 

Power 5.6966×10-7 5 1.1393×10-7 11.14 9.1191×10-7 

Grid 6.9169×10-8 2 3.4585×10-8 3.3815 0.04397 

Exposure Time 1.1075×10-7 2 5.5377×10-8 5.4145 0.0082982 

P/G 4.4747×10-7 1 4.4747×10-7 43.751 6.4801×10-8 

P/E 3.7382×10-7 1 3.7382×10-7 36.55 4.0772×10-7 

G/E 1.0549×10-7 1 1.0549×10-7 10.315 0.0026057 

P/G/E 4.2445×10-7 1 4.2445×10-7 41.501 1.1305×10-7 

Error 4.0910×10-7 40 1.0228×10-8   

Total 2.5099×10-6 53    

R-squared value: 0.7840 

Similar to the model adequacy plots in Figure 72, the residual plots in Figure 74 show significant 

deviations from ideal behaviour. From the histogram and normal probability plots, the residuals do 

not conform to a normal distribution, and appear to congregate near a single value. This is further 

shown in the plot describing residual vs. observation order, where the behaviour of the residuals 

appear to be structured, where they should be essentially random. There also appears to be the 

presence of an outlier in the residuals vs. predicted value plot. Unfortunately, the analysis cannot be 

re-run without the presence of an outlier, because only the minimal amount of samples were gathered 

for model viability. Therefore, because the errors in the model do not appear to be normally and 

independently distributed, the results concluded in Table 19 cannot be considered valid and 

dependable. In a similar exercise to the previous dataset, an alternate method was performed, by 

assuming higher-order interactions were negligible, and ANOVA was performed on the reduced 

model.  
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Figure 74. Model adequacy plots for the ANOVA model, describing CT data without border 

regions, for assessing the normality and independence assumptions. 

Upon neglecting the three-factor interaction term, and running the ANOVA on the reduced model, 

Table 20 is generated. From the table, it appears as though only the influence of laser power is 

significant, and this is likely from the large increase in solid fraction as laser power moves from 250 

W to higher levels. The overall model has an adjusted R-squared value fitting approximately 33.89%. 

Once again, model adequacy plots are constructed to verify the validity of the observations shown in 

Table 20. These plots can be referenced in Figure 75. By using the reduced model, it appears as 

though the residuals conform more closely to a normal distribution, as shown by the histogram and 

normal probability plot. However, there still appears to be the presence of outliers, and they may be 

affecting the model fit, because of the anomalous behaviour in the residual vs. run order plot, and the 
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predicted vs. residual plot. Particularly, there is a large imbalance in the x-axis for the predicted vs. 

residual plot. To attempt to correct for this anomaly, a final modification was made to the analysis by 

neglecting the outlier term from the analysis, and the result of which can be referred to in Table 21. 

Table 20. ANOVA table for the reduced model without three factor interactions, showing the 

effect of build variables on core region solid fraction. 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F0 p-value 

Power 5.69657×10-7 5 1.13931×10-7 3.64 0.0167 

Grid 6.91691×10-8 2 3.45845×10-8 1.10 0.3507 

Exposure Time 1.10754×10-7 2 5.53770×10-8 1.77 0.1962 

P/G 5.21603×10-7 10 5.21603×10-8 1.67 0.1589 

P/E 4.43497×10-7 10 4.43497×10-8 1.42 0.2429 

G/E 1.69112×10-7 4 4.22780×10-8 1.35 0.2862 

Error 6.26125×10-7 20 3.13063×10-8   

Total 2.5099×10-6 53    
R-squared value: 0.3389 
 

  

  

Figure 75. Model adequacy plots for the reduced ANOVA model, describing CT data without 

border regions, for assessing the normality and independence assumptions. 
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Table 21. ANOVA table for the reduced model without the outlier or three factor interactions, 

showing the effect of build variables on core region solid fraction. 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F0 p-value 

Power 1.47194×10-7 5 2.94388×10-8 4.39 0.0087 

Grid 3.97752×10-8 2 1.98876×10-9 0.30 0.7467 

Exposure Time 3.30355×10-7 2 1.65177×10-8 2.46 0.1118 

P/G 5.87841×10-7 10 5.87841×10-9 0.88 0.5691 

P/E 1.00191×10-7 10 1.00191×10-8 1.49 0.2163 

G/E 5.01472×10-7 4 1.25368×10-8 1.87 0.1573 

Error 1.27372×10-7 19 6.70381×10-9   

Total 4.9329910-6 52    
R-squared value: 0.2933 

As described by the ANOVA, laser power is once again the only significant factor, with the overall 

model fitting with an adjusted r-square value of 29.33%. The model adequacy plots show that the 

residuals conform well to a normal distribution, and appear to be generally randomly distributed 

based on the residuals vs run order plot. However, when looking at the predicted vs. residuals plot, it 

appears as though the residuals are still imbalanced, and this is also shown by a positive bias of the 

residuals in the histogram. It is hypothesized that the reason why the model is failing to adequately 

describe the solid fraction behaviour is because the performance of the parts is already nearing 

optimal densification. That is, the variation of the build variables may be improving on the density up 

to a certain plateau. After reaching this point, variations in the build variables may not be affecting 

the density whatsoever, and any measured changes in density are resultant of uncontrolled variations 

within the process. This behaviour is seen in the predicted vs actual plot in Figure 76, where the 

predicted values and actual values appear to be relatively well correlated until the actual values reach 

peak performance at ≈100%, and the model predictions break down. Thus it is estimated that 

selecting any power level in the experiment region above the minimum 250 W will produce well 

performing solid fraction results in the core regions, regardless of the choice of exposure time or grid 

distance. 
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Figure 76. Model adequacy plots for the reduced ANOVA model, describing CT data without 

the outlier or border regions, for assessing the normality and independence assumptions. 

 

Figure 77. The plots for predicted solid fraction in comparison to the actual solid fraction for 

the reduced ANOVA model, describing CT data without the outlier or border regions. 
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To conclude, when considering the bulk part and the effect of the build variables on the border 

regions, it appears as though laser power and grid distance presents the only significant effects, with 

increasing power and generally decreasing grid distance correlated with increasing porosity. In terms 

of the solid fraction in the core regions, as long as the power level is higher than 250 W, the build 

variable selection is flexible with any selection of grid distance and exposure time within the 

experimental bounds. Therefore, it is suggested that the optimal values for laser power be above 250 

W. The significance of the effect of grid distance, although not as powerful, suggests that larger grid 

distances may be beneficial. It is hypothesized that this decreases the occurrence of over-exposed 

points from overlapping scan exposures that may vaporize material. Since the effect of exposure time 

does not appear to have a significant effect, it is thus recommended that the most economical choice 

be selected, where low exposure times will result in faster builds.  

Since the core region of parts are very well behaved, further experiments will be focusing on the 

effect of build variables on the border region of parts, and can be referenced in Chapter 5. However, 

the effect of density is not the only indicator of part quality for Invar36 specimen. Since thermal 

expansion is another critical aspect for Invar36 parts, the effect of build variable selection on thermal 

expansion must be considered as well and it will be discussed in the following section.  

4.2.9 Process Mapping based on Thermal Expansion 

To compare with conventional measurements for Invar36, the coefficient of thermal expansion (CTE) 

for all parts over a temperature range of 30 to 150 °C was measured and presented below in Figure 

78. Overall, all measured thermal expansion values are lower than the values for conventional 

Invar36. According to ASTM F1684-06, the typical CTE for annealed Invar36 at temperature ranges 

between 30 °C and 150 °C lies within a range of 1.2 to 2.7 [
𝜇𝑚

𝑚°𝐶
], while all measured values were 

lower than 1.0 [
𝜇𝑚

𝑚°𝐶
]. To explain this phenomenon, investigations by Harrison et al. found that the 

effect may be due to the buildup of residual stress, because upon heat-treatment the specimen 

regained CTE values closer to conventional values [60]. However, this phenomenon was found to be 

unique with Invar36, as other alloys did not show a decrease in CTE [60]. Thus it was suggested that 

the residual stress may be directly influencing the magneto-volume contraction of the material [60]. 

However there may be other factors, which will be discussed shortly. 

In a similar exercise to section 4.2.4, a plot of the thermal expansion as a function of part I.D. and 

energy density was created, with the size of the circles corresponding to the measured thermal 
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expansion. However, similar difficulties with determining build variable effects were encountered 

within this plot. It does appear, however, that there is a trend of increasing size of the circles with 

larger sample I.D. Once again, the sample I.D. can be deciphered into the respective power, grid 

distance, and exposure time values using Figure 25 section 4.1. 

 

Figure 78. Measured CTE variation in terms of sample I.D. number. 

 

Figure 79. Variation of volumetric energy density across all permutations of build variables, 

with an additional ‘axis’ describing the coefficient of thermal expansion through the use of 

variable size circles. 
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Since the three-dimensional isosurface plot and two-dimensional surface plots are served to be 

more effective representations, the above plot is presented purely as a source for comparative 

observation. By plotting the results on a three-dimensional isosurface plot, it is possible to visualize 

the effects of each build variable on the thermal expansion (Figure 80).  

 

Figure 80. Three-dimensional surface plot describing the effects of power, grid distance, and 

exposure time on the coefficient of thermal expansion of parts. 

In terms of the individual effects, it becomes clear that the increase of power appears to increase 

the thermal expansion coefficient, with the effects of grid distance and exposure time more difficult to 

ascertain. This may be explained by the microstructural evolution or chemical composition changes 

within the material during solidification. As mentioned in section 2.2, Invar36 is highly susceptible to 

CTE variation with chemical composition change, and this may have potentially been a factor as well. 

However, as discussed in section 4.2.1, the chemical composition did not change with any change in 

build variables, and thus the effect must be due to an alternate factor. Aside from residual stress, it has 

been shown in literature that other factors such as texture and grain sizes are correlated with 

variations in the CTE, In particular, certain crystal orientations are associated with lower CTE and 

likewise with larger grain sizes [111], [112].  

As before, segregating the three-dimensional surface plot into individual surface plots elucidates 

the relationship between grid distance and exposure time at each power level (Figure 81 – Figure 86). 
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Figure 81. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the thermal expansion of parts at a power of 250 W. 
  

 

Figure 82. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the thermal expansion of parts at a power of 275 W. 
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Figure 83. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the thermal expansion of parts at a power of 300 W. 

 

Figure 84. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the thermal expansion of parts at a power of 350 W. 
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Figure 85. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the thermal expansion of parts at a power of 375 W. 

 

Figure 86. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on the thermal expansion of parts at a power of 400 W. 
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4.2.10 Statistical Analysis of Coefficient of Thermal Expansion Results 

A statistical analysis similar to the previous section was also performed to determine the significance 

of the build variable effects on the thermal expansion coefficient, and Table 22 shows the findings. 

Table 22. ANOVA table showing the effects of the build variables on CTE. 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F0 p-value 

Power 1.5232×10-1 5 3.0465×10-2 2.907963 0.02484 

Grid 9.5649×10-4 2 4.7824×10-4 0.04565 0.955426 

Exposure Time 2.5920×10-3 2 1.2960×10-3 0.123707 0.883976 

P/H 7.0876×10-3 1 7.0876×10-3 0.676535 0.415659 

P/E 3.0453×10-2 1 3.0453×10-2 2.906857 0.09596 

H/E 1.7576×10-2 1 1.7576×10-2 1.677719 0.202654 

P/H/E 1.6103×10-2 1 1.6103×10-2 1.537062 0.22228 

Error 4.1905×10-1 40 1.0476×10-2   

Total 6.4614×10-1 53    

R-squared value: 0.1407 

As shown in the above table, only the power appears to be a significant factor, which confirms the 

prior observations. It should be noted, however, that the model fit for this analysis shows an adjusted 

R-squared value of only 14.07%. The measured results in general are very noisy, and as such a 

14.07% fit is still an appreciable result. Particularly, it still demonstrates that the laser power is an 

influencing factor, although the trend is very slight. Factors that may have contributed to the noise in 

the measurements may include the fact that the sample ends were not of the same flatness and 

roughness. As well, when the samples were cut off of the build plate, they were not able to be cut at 

the same heights. To confirm the validity of the ANOVA analysis, model adequacy plots were 

constructed and can be referenced below in Figure 87. Overall the plots appear to confirm the 

normality and independence assumptions, and it does not appear that the residuals are behaving 

strangely. 

To end, it appears as though the only effect on the CTE is laser power and that the increase in 

power results in larger CTE values. However, since the effect appears to be a minor contributor and 

since the CTE values are lower than conventional values, the build variable selection may be flexible 

if the requirements are to rival the properties of conventional parts. Therefore, similarly to the results 

in the previous section, it is suggested that the optimal selection of build variables be at lower power 

levels, for quality reasons, and longer grid distance and shorter exposure times, for economic reasons. 

Currently, additional work that is not covered within the scope of this thesis is being done to observe 
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influence of microstructural phenomenon on the CTE of Invar parts. For future experiments, it will be 

beneficial to further investigate the effect of heat treatment has on CTE. Although in this experiment 

the results for both part density and CTE are comparable, it is still imperative to outline a procedure 

that can quantitatively define a process map that considers both part density and CTE for future 

optimization processes. Thus, this concept will be discussed in the next section. 

  

  

Figure 87. Model adequacy plot for the ANOVA model, describing CTE data, for assessing the 

normality and independence assumptions. 

4.2.11 Process Mapping Considering both Part Density and Thermal Expansion 

In this experiment, the analyses into both part density and thermal expansion shared the conclusion 

that lower power levels, larger grid distance, and shorter exposure times are the optimal build variable 

combinations for the process. However, these results may have been fortuitous, and a model that can 
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objectively take into account the effect of build variables on both process outcomes should be 

defined. For this work, a simple equation was used, which transforms each process outcome into a 

performance indicator valued between zero and one based on the respective minimum and maximum 

values. Then, the performance indicators for both are summed using weighted ‘importance’ factors. 

The equation is defined as follows: 

𝑊𝜌𝑃𝜌 + 𝑊𝐶𝑇𝐸𝑃𝐶𝑇𝐸 = 𝑃𝑜𝑣𝑒𝑟𝑎𝑙𝑙 

Where 𝜌 and 𝐶𝑇𝐸 are the indices for variables corresponding either to the part density or CTE 

process outcome. Continuing, 𝑊 corresponds to the weighted importance of the process outcome, 

with (𝑊𝜌 + 𝑊𝐶𝑇𝐸 = 1), while 𝑃 corresponds to the performance of the remapped process outcome. 

Overall, a performance value of one was defined as an indicator of ‘best’ part quality, and a value of 

zero corresponds to ‘worst’ part quality. Within this work, an arbitrary weighting of 0.50 was selected 

for both process outcomes where equal importance was given to both process outcomes. Furthermore, 

since the CTE is a characteristic of the bulk part, only the bulk part density (not the density isolated to 

core region) was considered.  

After calculating the overall performance, the worst performing and best performing parts were 

quantified to have performance values of 14.55% and 86.43%,. These parts correspond to sample 48 

and sample 2, respectively. Their respective locations in the volumetric energy density plot (Figure 

24) are described below in Figure 41. Similarly, an iso-surface plot was generated as per those in 

previous sections (Figure 89). Since the iso-surface plots in Figure 54 and Figure 80 suggest a shared 

conclusion, Figure 89 unsurprisingly also shows the same result. As seen in Figure 89, it appears as 

though there is an effect of increasing power with decreasing performance. Within each power level, 

it is difficult to tell the effect of grid distance and exposure time on the part performance. This is 

further shown by (Figure 90 – Figure 95), where there is a lack of consistency between worst and best 

parts within each power level. 
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Figure 88. Variation of volumetric energy density across all permutations of variables, with the 

worst performing and best performing parts in terms of the generated ‘performance factor’. 

 

Figure 89. Iso-surface plot showing the effects of build variable levels on the combined 

performance of CTE and solid fraction. 
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Figure 90. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on part performance at a power of 250 W. Where the CT images describe (a) worst 

performing and (b) best performing parts. 

(a) 

(b) 

(b) 

(a) 



 

 117 

 

 

Figure 91. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on part performance at a power of 275 W. Where the CT images describe (a) worst 

performing and (b) best performing parts. 

(b) 

(a) 

(a) (b) 
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Figure 92. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on part performance at a power of 300 W. Where the CT images describe (a) worst 

performing and (b) best performing parts. 

(a) 

(b) 

(a) (b) 
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Figure 93. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on part performance at a power of 350 W. Where the CT images describe (a) worst 

performing and (b) best performing parts. 

(a) (b) 

(a) (b) 
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Figure 94. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on part performance at a power of 375 W. Where the CT images describe (a) worst 

performing and (b) best performing parts. 

(a) 

(b) 

(a) (b) 
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Figure 95. Two-dimensional surface plot describing the effects of grid distance and exposure 

time on part performance at a power of 400 W. Where the CT images describe (a) worst 

performing and (b) best performing parts. 

(b) 

(a) 

(a) (b) 
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Upon construction of the ANOVA table, the results become more evident, with laser power 

showing a significantly lower p-value than for the analysis within previous sections, confirming that 

laser power is a significant factor (at 𝛼 = 0.05) in determining the performance of parts with other 

build variables showing no significance. Visual confirmations from Figure 89 point to the conclusion 

that lower powers result in better performing parts. Overall, the model fits at a 41.65% R-squared 

value, which is a better fit than previous models. This may be resultant of the effect of power 

becoming more prominent with the compounding of both process outcomes. The model adequacy 

plots are shown in Figure 96, and do not raise any concerns with the model assumptions. 

Thus, when considering the effects of both solid fraction and coefficient of thermal expansion, a 

lower power level is ideal. The effects of the other factors are not as significant, and thus the most 

economical options should be selected, where processing speed would be the most desirable outcome. 

Table 23. ANOVA table showing the effects of the build variables on the part performance 

process outcome. 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F0 p-value 

Power 0.67541 5 0.13508 8.6943 1.2049e-05 

Grid 0.026929 2 0.013465 0.86663 0.42811 

Exposure Time 0.00090286 2 0.00045143 0.029055 0.97138 

P/G 0.014126 1 0.014126 0.90921 0.34605 

P/E 0.056816 1 0.056816 3.6569 0.063018 

G/E 0.006205 1 0.006205 0.39938 0.53101 

P/G/E 0.0093542 1 0.0093542 0.60207 0.44235 

Error 0.62147 40 0.015537   

Total 1.4112 53    

R-squared value: 0.4165 
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Figure 96. Model adequacy plots for the ANOVA model, describing part performance, for 

assessing the normality and independence assumptions. 

4.3 Conclusion 

For the experiment conducted in this chapter, the goal was to define a process map for the LPBF 

process of Invar36 parts. Through the use of statistical analysis techniques, process maps were 

defined for the experimental bounds in question, and then optimized process windows were selected 

based on the desired process outcome. In particular when considering only porosity as the process 

outcome, it was observed that lower powers would result in less porous parts, overall. A similar 

observation was made with larger grid distances. When considering the thermal expansion, the same 

conclusion was also achieved. Upon removal of the border regions of specimen, it was found that 

once a certain power threshold was attained, the material achieve essentially 99.99% density 
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throughout, and thus it was determined that the process window for the core regions is flexible. The 

overall conclusions can be generally seen below in Figure 97, when averaging the values for the 

process outcomes at each power level. 

 

Figure 97. Average values for the process outcomes at each power level, showing the effect of 

power. 

A weighted decision-making model was then proposed to assess the impact of both porosity and 

thermal expansion as an overall part quality indicator, and the results of the statistical analysis 

concurred with previous results. 

Other observations with the experiment showed a bias of the pores towards the border region of 

parts, and it was hypothesized that this was due to the abrupt end of hatch scanning lines that cause 

instability in the melt pool. Additionally the endpoints of hatch lines do not achieve the benefit of re-

melting from adjacent hatch lines. The effect of gas flow was also shown to affect the porosity, with a 

bias of pores upstream to the gas flow direction, which was attributed to the reintroduction of spatter 

into the material, causing additional porosity. Lastly, there was also a perceived angular periodicity in 

pores along the outside regions. The reasoning behind this type of defect was proven to be caused by 

blocked path lines. To investigate the effects of all these phenomena further, additional 

experimentation was performed and will be discussed in Chapter 5. 
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Outside of these main observations, it may also be valuable to analyze the influences of the build 

variables on the microstructural behaviour within LPBF-built parts, and subsequently the 

microstructural behaviour influences the CTE. Currently, ongoing work is being performed regarding 

this. Also, since it has been found that the residual stresses are an influencing factor on the thermal 

expansion behaviour of LPBF-built Invar36 parts, continued investigation on the effect of heat 

treatment should be performed as well. 
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Chapter 5 

Experiment 2: Elimination of Border Region Porosity 

The experimental work done for this thesis has been divided into two different experiments. The 

previous experiment focused on the development of a process map for the minimization of bulk 

porosity and thermal expansion characteristics of LPBF-built Invar36 parts. Based off of observations 

during CT analysis, it was found that there was a regional bias of defects towards the border region of 

parts. Thus this experiment was developed to focus on minimization of porous defects along the 

border region of parts. The QuantAM build variables affecting these regions were assessed, and then 

a build was set up to quantify the effects of these variables, similar to the previous chapter. The 

techniques used in this section include CT scanning for observing the porosity, and statistical analysis 

to determine the significance of the build variable variation. 

5.1 Experimental Methods 

As mentioned in Chapter 4, in the analysis of the CT pore space, it was observed that a large 

percentage of the pores occurred near the border regions of the parts. Figure 98 shows a minimum 

intensity projection of representative parts from the previous chapter, showing the defects of interest. 

Therefore, as a secondary step to further reduce porosity within a part, an experiment was designed to 

determine if the variation of build variables related to features in the neighborhood of the border 

regions could further reduce the porosity. 

 

Figure 98. Representative figure showing the border region defects from Chapter 4. From left-

to-right are samples one, two, and three, which correspond to 250 W power; 60 μm grid 

distance; and 60, 70, and 80 μs exposure time, respectively. 
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Upon inspection, out of all the build variables that can be modified within the build software 

(Appendix A), it was found that it is possible to directly adjust the settings for border scan lines and 

fill contour scan lines. Shown below in Figure 46 is a schematic that describes each type of scan line. 

This figure was presented earlier in Chapter 4, but is presented here again for clarity. For the 

experiment in Chapter 4, only the settings for fill hatch lines were varied. 

For both the border and fill contour hatch lines, the build software is able to directly adjust settings 

involving the number of lines created, the offset between adjacent lines of the same time, the offset 

between lines of different types, and the energy input parameters. In addition to the types of scan 

lines, it is also possible to adjust the behaviour of fill hatch lines as they approach the border regions 

of parts with a variable known as hatch compensation. 

 

Figure 99. Schematic showing differences between different line types. 

Particularly, the logic behind the creation of a point at the end of a hatch line with hatch 

compensation functions as follows: 

(𝐻𝑎𝑡𝑐ℎ 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛) × 𝑑𝑝 ≥ (𝑑𝑝 − 𝑥) 

Where hatch compensation is a percentage of 0 – 100%, 𝑑𝑝 is the point distance, and 𝑥 is the distance 

that the point distance is offset from the end of the hatch line (refer to Figure 47, section 4.2.3). If the 

hatch compensation build variable is turned on, and if the above inequality is valid, then the software 

generates an additional point at the end of the hatch line (Figure 100). 

Based on observations of the generated scan paths, and the resulting porosities obtained in Chapter 

4, several improvements are suggested and tested within this chapter to reduce the occurrence of 

pores within parts. 
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Figure 100. Figure illustrating a hatch line with an extra exposure point due to the effect of 

hatch compensation. 

Firstly, since hatch compensation was not enabled in the first experiment, several scan lines did not 

have exposure points as they neared the border region of parts. As such, it is postulated that the 

absence of these laser exposures may have contributed to the porosity in the part.  

Secondly, the border scan lines were not modified in the first experiment, and were therefore 

selected to have the same settings as the fill hatch lines. However, since the border lines do not do not 

solidify under the same conditions as the core regions, the settings for the border must be optimized 

separately from the fill hatch.  

Thirdly, as shown in Figure 101, it appears that the most significant pores occur in the space 

between the end of a hatch lines and the border scan lines. This figure is identical to Figure 45, and 

has been presented again for readability. Within the build software, the fill contour build variable is 

typically used to this region between the hatch and borders, and for the experiment in Chapter 4, the 

fill contours were not enabled. Thus it is suggested that the re-enabling and control of the fill contour 

offset will aid in porosity reduction.  

One last observation to restate is the presence of ‘blocked path’ lines in the analyzed samples in 

Chapter 4. It appears as if they did not function as intended, and instead resulted in repeated 

exposures at the same locations across many layers. These repeated exposures resulted in the 

observed angular periodicity of the pores. 
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Figure 101. Single cross-section of a representative part section with the overlaid scan path. 

Build variables for this image correspond to sample 11, which was printed at 275 W power, 60 

μm grid distance, and 70 μs exposure time. 

By varying the aforementioned build variables, a factorial design was created, and the levels are 

reported in Table 24. For the core regions (corresponding to fill hatch lines), representative settings 

for well performing samples were selected from Chapter 4. For the borders, the only difference from 

the core settings was the modulation of the power between 250 W and 275 W (as opposed to 275 W 

and 300 W in the core). These settings were chosen because border regions encounter different 

solidification conditions (thermally insulating powder region on one side), and were also chosen to be 

equal to or less than the core power to reduce the melt pool size and possibly reducte the number of 

ejected particles due to excessive laser energy input. In terms of the fill contours, based on the laser 

spot diameter of 70 𝜇m and the size of the pores occurring between the ends of hatch lines and the 

border lines (refer to Figure 45), a single fill contour line was found to be sufficient for melting the 

entire overlapping region. The power and point distance of the fill contours were cut in half to 

maintain the same energy density as the core, but to also effectively scan slower to give more time to 

collapse any pores that formed. The only varied build variables relating to the fill contour were the 

offset of the fill contour lines from the border and whether or not the fill contours were to be enabled. 

This was to see if the presence of fill contours would truly reduce the pores that occur between the 
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hatch and border lines. Based on the point distance, the upper value of the hatch compensation was 

varied such that an exposure point was guaranteed to be placed with end-point distances down to the 

laser spot radius (at maximum point distance of 70 𝜇m and hatch compensation 50%). The lower end 

was selected mostly arbitrarily, but was selected to be more lenient and to add extra hatch lines for 

final endpoint distances of greater than 25% of the point distance. The effect of using different scan 

strategies was also of interest, since a strategy such as ‘striped’ would result in multiple instances 

where the ends of hatch lines could induce porosity. 

Although many build variables near the border region were of interest to be varied, limitations of 

sample size and build layout clearance prevented a more thorough study to be performed. As such, 

many of the build variables described above only had a single selected level, and the rest were with 

levels varied at two levels. Overall with all the varied parameters at two levels, 27 = 128 sample 

treatments were created as samples for analysis in current and future studies. 

Table 24. Build variables that were modified for the manufacturing plan, and that were 

changed from default values. 

Build variable Unit Levels 

Fill hatch (specimen core) 

Power [𝜇m] 275 300 

Grid distance [𝜇m] 60 70 

Exposure time [𝜇s] 70 

Border lines (specimen border) 

Power [W] 250 275 

Grid distance [𝜇m] Same as core 

Exposure time [𝜇s] Same as core 

# of borders [ - ] 1 

Fill contour lines (specimen border) 

Power [% of core] 50 

Grid distance [% of core] 50 

Exposure time [𝜇s] Same as core 

# of borders [ - ] 1 

Contour offset [% of grid distance] 50 100 

Contour enabled [ - ] Yes No 

Scan strategy 

Type [ - ] Meander Stripe 

Width [stripe only] [mm] 5 

Offset [stripe only] [mm] 0 

Miscellaneous 

Hatch compensation [%] 25 50 

Blocked path [-] Off 
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5.1.1 Selection of Standard Artefacts 

The standard artefacts in this section are identical to those described in section 4.1.1. The only 

difference is with the numerical labelling scheme, which can be further referenced in Appendix J. 

5.1.2 Build Layout 

Using the same standard artefacts as in Chapter 4, the small cylindrical samples were fabricated with 

two replicates, while the cubes were fabricated with a single replicate. A similar methodology for the 

layout in section 4.1.2 was used. It should be noted that the build setup for this experiment was 

performed in parallel with the second build in Chapter 4, and thus they share the same build plate. An 

illustration of the build setup is described below in Figure 102, which is identical to Figure 29 

presented in Chapter 4. 

 

Figure 102. Layout for the second build with green-shaded areas denoting samples for the 

experiment in Chapter 4, red-shaded areas for the auxiliary samples, and blue-shaded areas for 

the second experiment. 

The blue-shaded areas denote the layout for samples following the build variables combinations 

described in the chapter, while the red-shaded areas are samples that follow separate build variable 
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combinations sets for auxiliary studies unrelated to this work. The second build from Chapter 4, 

which was printed at the same time as the experiment in this chapter, is shaded in green. 

5.1.3 Computed Tomography 

The computed tomography of the samples was performed in accordance to the methods described in 

section 4.1.3. 

5.1.4 Statistical Analysis of Results 

Similar to the previous experiment, the large number of samples made it difficult to scan all replicates 

of all treatment levels. Instead of scanning only a single replicate of every treatment, a smaller subset 

of the experiment was selected, allowing both replicates to be scanned. This was in done order to get 

a better statistical representation of the results, with the remaining unanalyzed parts used to serve as 

additional sample points to be analyzed in the future. Thus, unlike the analysis performed in section 

4.1.5, a full ANOVA was able to be performed similar to the process described in section 2.3.1. The 

subset of samples scanned adhere to the following build variable values: 

Table 25. Design factor subset selected for statistical analysis 

Build variable Unit Levels 

Fill hatch (specimen core) 

Power [𝜇m] 275 300 

Grid distance [𝜇m] 60 

Exposure time [𝜇s] 70 

Border lines (specimen border) 

Power [W] 250 275 

Grid distance [𝜇m] Same as core 

Exposure time [𝜇s] Same as core 

# of borders [ - ] 1 

Fill contour lines (specimen border) 

Power [% of core] 50 

Grid distance [% of core] 50 

Exposure time [𝜇s] Same as core 

# of borders [ - ] 1 

Contour offset [% of grid distance] 50 100 

Contour enabled [ - ] Yes No 

Scan strategy 

Type [ - ] Meander 

Miscellaneous 

Hatch compensation [%] 25 50 

Blocked path [-] Off 
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The subset selection was chosen such that the most important aspect of the experiment remained 

intact, which is to study the effect of build variables on the border region of parts. Therefore, it was 

decided that variations in core grid distances and scan strategies were of a lower priority for analysis, 

and thus were not explored for the time being.  

5.2 Results and Discussion 

Before continuing, it should be noted that after printing the build and then having the samples 

removed from the build plate, a large number of the samples were lost during part removal. Because 

of this, the full factorial design specified in Table 25, was instead analyzed as an unbalanced design. 

This process was facilitated automatically within MATLab. However, because this approach was 

required to be taken, any presence of non-normality in the samples had a magnified effect and may 

have undermined the results of the statistical analysis (discussed further in section 5.2.2). The missing 

and measured sample results can be found in Appendix J. As well, there may have been biases 

introduced when the samples were removed from the build plate. Particularly, during part removal, 

the cutting equipment was slightly angled and resulted in samples on the right side of the build plate 

being much taller than samples on the left edge of the plate (refer to Figure 29, section 4.1.2 for the 

build layout). This can be seen in the resulting image data set in Appendix K. 

5.2.1 Interpretation of CT Pore Space Data 

Two representative sample results from this experiment are displayed below in Figure 103 and Figure 

104. Figure 103 represents the part with the lowest quantified solid fraction of 99.94%, while Figure 

104 represents the highest quantified solid fraction of 99.99%. To reiterate, the figures below show a 

projection of the pores across the entire sample dimensions, and are more adequate measures of pore 

distribution and geometry than quantity. Also, the entire image set and their resulting density values 

can be referenced in Appendix K. 

In comparison, the samples in Chapter 4 with the same settings for the fill hatch (core settings) had 

solid fractions of 99.81% and 99.90%, respectively. Based on these values, it appears that there is an 

improvement in the enabling of the border region scan features. However, the density values 

calculated here consider the entire porosity throughout the part. Since the aim of this experiment is to 

minimize the porosity near the border region of the parts, calculation of the porosity without the 

consideration of the core will be more indicative.  
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Figure 103. Worst overall performing part from the CT analysis, in terms of minimizing 

porosity. The build variables for this sample correspond to sample 15-4. 

 

Figure 104. Best overall performing part from the CT analysis, in terms of minimizing porosity. 

The build variables for this sample correspond to sample 1-3. 

Parameters for sample I.D. 1-3 

Power 275 W 

Border power 250 W 

Fill contour offset 50% 

Hatch compensation 25% 
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By truncating the data in a similar fashion to Figure 61, except in this case, core regions are 

removed, it is possible to quantify the porosity within the border regions (Figure 105). Similarly, the 

10% radius threshold was maintained. By applying this truncating process to the entire data set, it was 

found that the same samples remain as the worst and best performing. That is, Figure 103 and Figure 

104 continue to represent the worst and best performing samples, overall.  

  
(a) before truncating (b) after truncating 

Figure 105. Example illustrating showing the CT data (a) before and (b) after truncating by 

radius to omit the core-region. 

When comparing the differences between these two data sets, the better performing sample had a 

lower hatch compensation (25%, instead of 50%), lower fill contour offset (50% instead of 100%), 

lower border power (250 W instead of 275 W), and a lower overall power (275 W instead of 300 W). 

As it was shown in Chapter 4 Figure 44, samples with higher overall energy densities had larger and 

more numerous pores, and thus it is sensible that the same conclusion applies here for the overall 

power and border power. In terms of the benefits of using a lower hatch compensation, the earlier 

hypothesis that using a lower hatch compensation value would result in fewer absences of laser 

exposures, and thus reduce porosities, may be applicable as well. The increase in porosity associated 

with the fill contour offset at 100% in comparison to 50% is expected. This is because at a fill contour 

offset of 50%, the fill contour scan lines are well-centered between the border and hatch lines, and 

thus have a greater coverage to re-melt porous regions between the border and hatch lines 
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In addition to the results presented above, it appears that the directional bias of the pores towards 

one side of the parts still occurs. One interesting note is that the right-side bias of the gas flow does 

not exist in the best performing sample, and several other samples (Appendix K). It is speculated that 

as the effects of other influencing factors on the porosity are minimized with experimentation, such as 

the decrease of border power or the remelting of pores within the border region, the amount of 

ensuing pores related to material vaporization and ejection become eliminated. Thus, the right-hand 

side bias effect becomes negated within some samples. However, the effect of ejected particles may 

still be in place, as shown by the continued presence of pores on the left hand side. 

 In terms of other visualizations, unfortunately with four independent variables (instead of three, as 

is the case in the previous chapter), it is difficult to illustrate the results concisely with iso-surface 

plots. However, based on the results of the statistical analysis, it is still possible to clarify the effects 

and their significance. 

5.2.2 Process Window Optimization of Border Region Porosity 

Described in Table 26 are the results calculated from the ANOVA that show the effect of the build 

variables on overall solid fraction. To clarify, the source terms A, B, C, and D correspond to power, 

border power, fill contour offset, and hatch compensation. From the table, it can be seen that the 

parameters of significance (at α = 0.05) are power, fill contour offset, and the interactions between fill 

contour offset and hatch compensation. This confirms the observations of the CT data in the previous 

section, and seems to suggest that there are additional effects from the interactions of build variables. 

However, before continuing to quantify the effects of the build variables, it should be noted that the 

ANOVA was performed on the overall part, and did not focus on the region of interest (the border 

region). Thus, the ANOVA was re-calculated for the solid fraction data, considering only the border 

region of parts and the results are shown in Table 27. In the results presented in Table 27, the p-value 

of the fill contour offset deviates away from significance (p-value 0.0501), but since it is barely away 

from the threshold, the effect of the fill contour offset will still be examined further. In addition, it 

appears as if the effect of the interactions between fill contour offset and hatch compensation become 

significant, as well as the effect of the interactions between power, border power, and fill contour 

offset; and power, border power, and hatch compensation. The reasoning for the shift in significance 

may be due to the fact that the border build variables only affect the border regions, and thus by 

excluding the core regions, the effects of these build variables become more prominent. 
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To assess the validity of the normality and independence assumptions for the ANOVA, model 

adequacy plots were constructed (Figure 96), similar to those in Chapter 4. The y-axis symmetry in 

the observation order vs residual and the predicted vs residual plots is because only two replicates 

were analysed in the experiment. Because of the model fitting procedure, the sum of residuals are 

deifned to equal zero, and for two replicate experiments, this results in symmetrical residuals. 

From the plots, it appears that the data deviates from normality as well as independence. Because 

of this, the results from the ANOVA are not a reliable estimator of the true significance of the build 

parameter variation within the process. Because of these deviations, it is postulated that there may 

have been biases introduced when the samples were removed from the build plate. Particularly, 

during part removal, the cutting equipment was slightly angled and resulted in samples on the right 

side of the build plate being much taller than samples on the left edge of the plate (Appendix K). As a 

result, the calculated solid fraction of some samples may not be a complete representation of the 

overall solid fraction. 

However, the most likely candidate for the invalidation of the normality assumption may be due to 

the missing samples that unbalanced the factorial design, as the missing samples result in a loss of 

orthogonality in the design. Due to this, it is not possible to completely decouple the variances of the 

build variable effects, which may give rise to errors that invalidate the independence assumption. As 

previously discussed, several samples were lost upon part removal from the build plate, and thus 

could not be accounted for during analysis. It is suggested that, given the resources, the build should 

be reprinted in order to obtain a statistically relevant set of measurements. Optimally, the entire build 

would be reprinted (Table 24), but given the time constraints, printing only the subset of build 

variable combinations in Table 25 is also suggested. 
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Table 26. ANOVA table describing the effects of the build variables on overall part solid 

fraction. 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F0 p-value 

A 2.67527×10-8 1 2.67527×10-8 5.53 0.0366 

B 1.52186×10-8 1 1.52186×10-8 3.15 0.1014 

C 2.75175×10-8 1 2.75175×10-8 5.69 0.0344 

D 2.04006×10-8 1 2.04006×10-8 4.22 0.0624 

A/B 3.39812×10-9 1 3.39812×10-9 0.70 0.4182 

A/C 8.27138×10-11 1 8.27138×10-11 0.02 0.8981 

A/D 4.09600×10-12 1 4.09600×10-12 0.00 0.9773 

B/C 3.91169×10-9 1 3.91169×10-9 0.81 0.3861 

B/D 1.48934×10-8 1 1.48934×10-8 3.08 0.1047 

C/D 7.85492×10-8 1 7.85492×10-8 16.25 0.0017 

A/B/C 1.94719×10-8 1 1.94719×10-8 4.03 0.0678 

A/B/D 1.89599×10-8 1 1.89599×10-8 3.92 0.0711 

A/C/D 1.50505×10-8 1 1.50505×10-8 3.11 0.1031 

B/C/D 9.57345×10-9 1 9.57345×10-9 1.98 0.1848 

A/B/C/D 5.85837×10-10 1 5.85837×10-10 0.12 0.7338 

Error 5.80226×10-8 12 4.83522×10-9   

Total 3.58321×10-7 27    

R-squared value: 0.6357 

Table 27. ANOVA table with the effects of the build variables on border region solid fraction. 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F0 p-value 

A 4.49656×10-6 1 4.49656×10-6 9.11 0.0107 

B 1.56773×10-7 1 1.56773×10-7 3.05 0.1064 

C 2.19289×10-7 1 2.19289×10-7 4.74 0.0501 

D 4.40148×10-7 1 4.40148×10-7 7.11 0.0205 

A/B 2.07207×10-8 1 2.07207×10-8 0.49 0.4961 

A/C 1.00940×10-8 1 1.00940×10-8 0.21 0.6570 

A/D 3.60096×10-7 1 3.60096×10-7 0.98 0.3417 

B/C 8.63208×10-8 1 8.63208×10-8 0.18 0.6883 

B/D 3.22986×10-7 1 3.22986×10-7 4.44 0.0569 

C/D 9.95333×10-6 1 9.95333×10-6 29.77 0.0001 

A/B/C 4.88507×10-7 1 4.88507×10-7 5.22 0.0413 

A/B/D 1.86167×10-7 1 1.86167×10-7 6.28 0.0276 

A/C/D 1.49715×10-7 1 1.49715×10-7 2.70 0.1261 

B/C/D 2.57333× 10-7 1 2.57333× 10-7 4.02 0.0682 

A/B/C/D 4.71955×10-8 1 4.71955×10-8 0.65 0.4342 

Error 5.05393×10-6 12 1.15442×10-7   

Total 5.17714×10-5 27    

R-squared value: 0.7452 
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Figure 106. Model adequacy plots for the ANOVA model, describing part performance, for 

assessing the normality and independence assumptions. 

Although the results of the ANOVA cannot be considered reliable at this time, the adjusted R-

squared value of 74.52% means the effects are significant for the specific measured set of results. 

Although they may not be representative of the true process, the build variables can still be analyzed 

for their effect for this specific data set. As such, it may still serve useful to visualize the effects of the 

variation of build variables on the porosity within the samples. Thus, marginal means plots were 

constructed, which average all measurements at each level of the build variables. Figure 107 

describes the plots for main effects, Figure 108 describes the plots for two-factor interaction effects, 

and Figure 109 and Figure 110 describe the plots for the three-factor interaction effects. The values 

that were inputted into these plots are the same values used in the ANOVA within Table 27. 
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Figure 107. Marginal means plot for the main effects of (a) power, (b) fill contour offset, and (c) 

hatch compensation. 

From the plots in Figure 107, the observed effects in section 5.2.1 are confirmed, showing that on 

average, the increase of power, fill contour offset, and hatch compensation all separately result in a 

decrease in solid fraction. Moving forward, when considering the interaction effects between fill 

contour offset and hatch compensation (Figure 108), the effect of fill contour offset appears to be vary 

depending on the hatch compensation, where at 25% hatch compensation the increase of fill contour 

offset decreases porosity, but the behaviour is opposite at 25% hatch compensation. The reasoning 

behind this behavior is currently up to speculation, but it may involve the fact that at higher hatch 

compensations the amount of fill hatch line endpoints being generated is less, and thus it would be 

more beneficial to have a fill contour offset that re-melts areas with absent laser exposures. This may 

be a delicate balance, where at a certain threshold, the re-exposure of areas with the fill contours may 

actually contribute to additional porosities, instead of eliminating them. 
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Figure 108. Marginal means plot for the interaction effects of fill contour offset and hatch 

compensation 

Continuing, these interactions of hatch compensation and fill contour offset with the other build 

variables are further shown when looking at the three factor interactions for power, border power, and 

fill contour offset (Figure 109); and power, border power, and hatch compensation (Figure 110).  

 

Figure 109. Marginal means plot for the interaction effects of power, border power, and fill 

contour offset. 
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Figure 110. Marginal means plot for the interaction effects of border power, fill contour offset, 

and hatch compensation. 

Although the interactions are complex and varied, there are several recurring trends that are seen 

between the results in Figure 107 - Figure 110. The decrease of both power and border power, for 

example, is found to increase the solid fraction in almost all situations. Thus, it is estimated that the 

lower power levels for power and border power may result in more stable melt pools, and thus would 

generally result in less porosity across the board, regardless of the amount of re-melting fill contours 

or additional hatch exposure points. Similarly, the lower values of fill contour offset is found to 

generally result in less porosity even when considering all of the other interaction effects. This may 

be because the majority of pores are occurring in the median area between the hatch and border lines 

(corresponding to 50% fill contour offset). Therefore, directly re-melting the area with fill contours 

will generally eliminate more pores than it generates. When considering the effect of hatch 

compensation, in almost all situations the selection of the lower hatch compensation values result in 

less porosities, which may be because having lower hatch compensation values guarantees the 

placement of additional exposure points, and limits the locations within a sample that do not receive 

laser exposure. 
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5.3 Conclusion 

In conclusion, based on the results portrayed in this section, and within the selected experimental 

bounds, it appears as though selecting lower levels for power, fill contour offset, and hatch 

compensation will generally result in less porosity in the border regions. However, the statistical 

results imply that these conclusions may only be valid for this specific dataset and not the actual 

process. Thus, additional experimentation may be required in order to obtain statistically-robust 

conclusions. Specifically, it is suggested that continued measurements be found for the remaining and 

missing samples such that the concerns with the normality and independence assumptions of the 

statistical analysis are addressed. As well, outside of the general trends in build variable behaviour 

there are exceptions that should be further investigated. It is suggested that more detailed 

experimentation can be performed to clarify the behaviour within these process regions.  
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Chapter 6 

Finite Element Modelling Approach to Simulate the Thermal History for 

Laser Powder Bed Fusion 

Defining a modelling approach for the LPBF process is a difficult process because of the disparity in 

scale with defining the phenomenon during processing. As mentioned previously, LPBF parts are 

manufactured over time frames that span many hours, with laser speeds in the range of several meters 

per second, but the multi-physics phenomenon occurring during the process happens at time scales 

and geometric scales of microseconds and micrometers [7]. This chapter aims to familiarize the 

reader on the numerical simulation for LPBF and challenges associated with it. A simple finite 

element model is developed, based off of relations developed within literature, to assess the ability to 

predict melt pool depth as compared to experimental results.  

6.1 Modelling Approach 

The model was developed using the COMSOL 5.3 Multi-physics package. The basis of this 

modelling approach was founded on a solid-state heat conduction model, and thus the governing 

equation for the problem is defined as follows: 

𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
+ ∇ ⋅ (−𝑘∇𝑇) = 𝑄 

Where 𝐶𝑝 is the specific heat capacity [
𝐽

𝑘𝑔⋅𝐾
], 𝜌 is the density of the material [

𝑘𝑔

𝑚3], 𝑘 is the thermal 

conductivity [
𝑊

𝑚⋅𝐾
], 𝑄 is a volumetric heat generation term [

𝑊

𝑚3], 𝑡 is time [𝑠], and 𝑇 is temperature 

[𝐾]. To take into account the latent heat of melting the following relation for heat capacity was first 

solved for heat capacity: 

𝐻 = ∫ 𝐶𝑝𝑑𝑇 →
𝑑𝐻

𝑑𝑇
= 𝐶𝑝 

Where 𝐻 is the enthalpy [
𝐽

𝑘𝑔
]. From the material properties data, the 

𝑑𝐻

𝑑𝑇
 term was measured to be 

constant in the solid and liquid phases, but discontinuous during the phase transition. Thus, a linear 

approximation was made for this region, which essentially results in an artificial increase of specific 

heat capacity during the melting temperatures of the material. This approximation follows relations 

from literature as follows [113]: 
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𝐶𝑝
∗ =

Δ𝐻𝑚

𝑇𝑙 − 𝑇𝑠
+ 𝐶𝑝,0 

Where 𝐶𝑝
∗ is the specific heat capacity [

𝐽

𝑘𝑔⋅𝐾
]  in the melting region, 𝑇𝑙 is the liquidus temperature [𝐾], 

𝑇𝑠 is the solidus temperature [𝐾], 𝐶𝑝,0 is the specific heat capacity in the solid phase [
𝐽

𝑘𝑔⋅𝐾
], and Δ𝐻𝑚 

is the enthalpy change from material at the solidus temperature to material at the liquidus 

temperature [
𝐽

𝑘𝑔
]. Referring back to the governing equation, it has been observed in literature that the 

thermal conductivity is affected by powder bed density and also by thermo-capillary (Marangoni 

convection) effects, where powder beds were found to reduce thermal conductivity to 1% of bulk, and 

Marangoni convection was found to increase thermal conductivity by 2× in liquid phase [114], [115]. 

Although these interactions are complex phenomena, this model attempts to factor in these effects 

with the use of correction factors, as follows: 

𝑘𝑒𝑓𝑓(𝑇) = 𝑐 ⋅ (𝑎 + (𝑏 − 𝑎)𝜙) ⋅ 𝑘(𝑇) 

𝑐 = {
1, 𝑇 < 𝑇𝑙

𝑐0, 𝑇 ≥ 𝑇𝑙
 

Where 𝑘𝑒𝑓𝑓 is the effective conductivity of the material [
𝑊

𝑚⋅𝐾
], 𝑎 is a fraction representing the 

conductivity of a porous powder bed, 𝑏 is a fraction representing the conductivity of solidified 

material, 𝑐 is the correction factor for Marangoni convection with a value of 𝑐0 during the liquid 

phase, and 𝜙 is the densification ratio of the material. For the model, the densification ratio is defined 

as a non-decreasing piecewise function such that 0≤ 𝜙 ≤ 1. At temperatures below 𝑇𝑙, 𝜙 does not 

change in value, and at temperatures above 𝑇𝑙, 𝜙 is set to equal one. To implement this in the 

COMSOL 5.3 Multi-physics software package, the term was added as an additional ordinary 

differential equation (ODE) physics module which adhered to the following equation [116]: 

𝑒𝑎

𝜕2𝜙

𝜕𝑡2
+ 𝑑𝑎

𝜕𝜙

𝜕𝑡
= 𝑓 

Where the mass and dampening coefficients 𝑒𝑎 and 𝑑𝑎 were set to equal zero, and the source term set 

to equal to 𝑓 = 𝜙 − 𝑛𝑜𝑗𝑎𝑐(𝑖𝑓(𝑇 > 𝑇𝑙 , 1, 𝜙)). The ‘nojac’ equation is a COMSOL expression used to 

omit a function from the Jacobian matrix, and was required because of the logical ‘if’ statement used 

within the equation. To account for the laser heat input into the system, the heat flux of the laser was 

defined as a Gaussian distribution as follows [113]: 

𝐼(𝑟) =
𝑃

𝜋𝑤2
e

−2(
𝑟(𝑡)

𝑤
)

2
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Where 𝐼(𝑟) is the intensity of the laser [
𝑊

𝑚2] at radius [𝑚], 𝑟(𝑡), from the laser center, 𝑃 is the average 

power of the laser [𝑊], and 𝑤 is the laser spot radius [𝑚]. Since the laser position is dependent on 

time, 𝑟(𝑡) is defined as the following: 

𝑟(𝑡) = √(𝑥 − 𝑥𝑙 + (𝑦 − 𝑦𝑙)2 

Where the radius of any point from the laser center is dependent on the point’s location 

(𝑥 [m], 𝑦 [𝑚]) and the current location of the laser (𝑥𝑙(𝑡) [𝑚], 𝑦𝑙(𝑡) [𝑚]). For this model, a single line 

scan was modelled using the laser exposure scheme that the Renishaw AM 400 employs. As such, the 

resulting equation for the laser position is as follows: 

𝑥(𝑡) = 𝑥0 + 𝑑𝑝 × 𝑓𝑙𝑜𝑜𝑟 (
𝑡

(𝑡𝑒 + 𝑡𝑑
) 

𝑦(𝑡) = 𝑦0 

Where (𝑥0[𝑚], 𝑦0[𝑚]) is the initial position of the laser, 𝑑𝑝 is the point distance of the laser [𝑚], 𝑡𝑒 is 

the laser exposure time [𝑠], 𝑡𝑑 is the drill delay of the laser [𝑠], and 𝑡 is the elapsed simulation time 

[𝑠]. A flooring function ‘floor()’ is used to simulate the discontinuous behaviour of the laser 

exposures from the Renishaw AM 400 system, by enforcing the discretization of the laser position. 

Because the powder bed is porous, the laser is absorbed volumetrically into the powder, and to 

address this, a laser absorption model developed by Gusarov has been employed [117]. Several 

simplifying assumptions were made, such as setting the particle size to a singular constant value, and 

assuming that the powders are arranged in cubic close packed structure. From these assumptions, the 

model derives a parametric equation for the laser absorption based off of the reflectivity of the 

material, the density in the powder bed, and the particle size of the powder. Afterwards, the model 

presents the overall laser input as a volumetric heat generation term as follows [117]: 

𝑈 = −βQ0

𝑑𝑞

𝑑𝜉
 

Where 𝛽 is the extinction coefficient, 𝑄0(𝑟) = 𝐼(𝑟) is the incident laser heat flux [
𝑊

𝑚2], and 𝑞 is the 

dimensionless absorptivity of the material at dimensionless depth of 𝜉. The relations defining 𝛽, 𝑞, 

and 𝜉 are very involved, and thus are not defined here. However, they can be found in [117]. 

In terms of the boundary conditions for the model, a simplifying assumption was made that the 

boundaries were all thermally insulated such that at all boundaries – 𝐧 ⋅ 𝐪 = 0. However, as discussed 

in section 2.1.1.3, the contributions of radiative and convective heat transfer are critical and thus 

should be considered in future modifications to the model. One exception to the boundary conditions 
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is that the model was given a symmetry condition along the X-Z plane at the origin (Figure 111), so 

that the amount of simulation time would be halved, in comparison to a full-size domain without the 

symmetry condition. 

The geometry of the substrate is defined below in Figure 111. A rectangular domain of 1.50 mm in 

length along the x-axis, 0.5 mm in width along the y-axis, and 0.3 mm in height along the z-axis was 

chosen. A second rectangular block with dimensions of 1.05 mm along the x-axis, 140 𝜇m along the 

y-axis, and 30 𝜇m along the z-axis was embedded within the domain to act as the simulation area for 

the powder bed, and it was centered along the x-axis, and flush with the X-Z and X-Y plane. Figure 

112 shows an isometric view of the model domain with the generated mesh as well. 

 

Figure 111. Schematic for the model domain used in the simulation. Displayed geometry is not 

to scale and unless otherwise specified, dimensions are in millimeters. 
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Figure 112. Visualization of model geometry for the simulation, with the generated mesh. 

The mesh for the overall domain was selected to have free tetrahedrals automatically generated 

using the parameters defined in Table 28, while the embedded domain was generated such that only 

quadrilateral elements with equal side lengths of 8.75 𝜇m were generated. This value corresponds to 

one quarter of the laser beam radius and was selected as an approximate baseline of the resolution 

required to simulate the melt pool behaviour. 

Table 28. Mesh settings for the overall domain 

Element Size Parameter Unit Value 

Maximum element size [m] 1.5× 10−4 

Minimum element size [m] 2.7× 10−5 

Curvature factor [ - ] 0.60 

Resolution of narrow regions: [ - ] 0.50 

In terms of the simulation settings, a timeframe of 0 seconds to (16 × 𝑡𝑒) was selected so that 16 

entire point exposures were observed during the simulation, where 𝑡𝑒 corresponded to laser exposure 

time. In terms of the other energy input parameters, a parametric sweep was performed such that the 

results emulated the build variable selection of the components selected for melt pool analysis in 



 

 149 

section 4.1.6.2. To reiterate, the build variables are described in Table 29 and it is identical to Table 

15. 

Table 29. Energy input parameters for the simulation 

Build variable Unit 
Sample Identification Number 

5 20 23 26 32 50 

Power [W] 250 300 300 300 350 400 

Grid distance [𝜇m] 70 70 70 70 70 70 

Exposure time [𝜇s] 70 60 70 80 70 70 

Energy 

Density 
[J/mm3] 119 194.4 142.9 109.4 166.7 190.5 

Any additional build variables that have not been discussed here can be found in Appendix O, 

where MATLab code is presented that can be executed in COMSOL with MATLab integration to 

import the model with all the defined build variables used in this work. The included MATLab code 

also generates all constants and material property tables used within this chapter. The thermophysical 

properties of Invar36 have been gathered from literature [118], [119]. 

For the initial conditions of the model, the temperature of the workpiece was set to initially begin at 

To = 293.15 K, and the densification ratio was set such that the initial powder layer (top-most 30 𝜇m 

of material in the domain) had 𝜙 = 0, and the substrate had 𝜙 = 1. The distribution of solidification 

ratio in terms of domain height is shown below in Figure 113. 

 

Figure 113. Initial distribution of the densification ratio in the simulation domain, where the 

value ϕ=1 corresponds to solidified substrate, and ϕ=0 corresponds to powder bed. 

Once the simulations finished execution, the melt pool depths were extracted from the solution and 

tabulated for comparison with the experimental data. 
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6.2 Results 

The computational time for each set of build parameter combinations (6 sets were simulated in total) 

required approximately 9.5 hours of computing time on a machine with the specifications shown 

below: 

Table 30. Machine specifications for the model simulation 

Specification Value 

Processor 
Intel(R) Xeon(R) CPU E5-2680 v4 @2.40 GHz (56 

CPUs) 

Memory 256 GB DDR4-2133 MHz 

Graphics 8 GB NVIDIA Quadro M5000 

Based on these results, it can be seen that the amount of simulation time required to determine a 

single line scan may be prohibitive, and these results illustrate the challenges with simulating the 

LPBF process in a feasible scale. 

Moving on, Figure 114 shows a representative result of the simulation for temperature with energy 

input parameters equal to those of sample 5, as described in Table 29. As well, Figure 115 illustrates 

the solidification history of the material. While representative images of every simulation result can 

be found in Appendix P, all simulation results look visually similar to the results presented in Figure 

114 and Figure 115, except with deviations in melt pool length, width, and depth, and in solidification 

width. From observation, it appears as if the heat transfer in the z-direction is much greater than in the 

x- or y-direction. This is shown by the sharp boundary in temperature gradient in areas that have not 

been fully melted. This is due to the correctional factor in the model due to powder bed densities for 

thermal conductivity, and shows that it is behaving as intended. Additionally, it seems as if the melt 

pool edge extends further in the positive x-direction in the substrate than in the powder layer. Once 

again this may be a result of the increased thermal conductivity in the substrate, in comparison to the 

powder bed. Due to the decrease in conductivity in the powder bed, the melt pool width does not 

appear to extend much farther past the radius of the laser exposure. 

To compare against the experimental results, the melt pool depths were found by inspecting the 

locations where the melt pool penetrated the deepest within the domain. To facilitate this 

measurement, the data within the temperature plot was truncated such that temperature below the 

solidus temperature of Invar36 (𝑇𝑠𝑜𝑙 = 1450 °𝐶) were omitted from the results data set. A 

visualization of this process is shown below in Figure 116. For future experimentation, the melt pool 
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length was also measured. Likewise, to measure the melt pool width, a similar process to Figure 116 

was performed, except by using data from the top view instead. 

Afterwards, a plot was constructed to compare the differences between experimental melt pool 

depths and simulated melt pool depths, and this is shown in Figure 117. To clarify, the x-axis of the 

figure plots the volumetric energy density of the samples normalized with the measured enthalpy to 

melt the material. This provides an indication of the fraction of energy input that exceeded the 

minimum required energy to initiate melting. The y-axis of the figure describes the depth of melt 

normalized with the layer thickness of the build. Thus, a melt depth of one is the minimum required 

to ensure the powder layers are fully melted. 

 

 

 

Temperature [K] 

Figure 114. Top and side view of the results for temperature at a time equal to 16 exposure 

points (0.00112s). Simulation build variables equal those of sample 5 from Table 29. 
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Solidification Ratio, 𝝓 

Figure 115. Top and side view of the solidification ratio at a time equal to 16 exposure points 

(0.00112s). Simulation build variable selection equal those of sample 5 from Table 29. 

 

 

Figure 116. Side view showing only temperatures above melting temperature at a time of 16 

exposure points (0.00112s). Simulation build variable selection equal to sample 5 from Table 29. 
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Figure 117. Simulated melt pool depths normalized by the layer thickness plotted against 

increase in volumetric energy density normalized by enthalpy to melt with the simulation and 

experimental results plotted for comparison. 

As shown by the above figure, the simulated model appears to underpredict the melt depth during 

processing. Due to the amount of simplifying assumptions made in the model, this result is expected. 

For example, although the effect of thermocapillary action was included, it is only a constant 

correctional factor that does not account for full magnitude effects of melt convection, especially as 

the laser transitions towards keyhole melting regimes. Additionally, the laser absorption of the 

material was estimated assuming a constant particle size that is optimally packed. However, as 

mentioned in Chapter 2 and Chapter 3, the particle size distribution and packing state are crucial 

influencing factors to laser heat input. To relate, the supplied powder used in the experiments was a 

bimodal powder that was not perfectly spherical, and thus it is expected that the laser absorption 

within the experiments may have been much higher than simulated conditions. As well, the thermal 

conductivity within the build bed was approximately also simply, while the true conductivity within a 

build bed is much more complex. Lastly, the model only simulated a single line scan, and thus the 

melt pools did not have the benefit of increased heat input from adjacent hatch lines. 

To more accurately predict the melt pool behaviour, it is possible to simulate the melt pool 

dynamics upon melt, as per King et al. [120], and also employ a more robust laser absorption model, 

5

20

23

32
50

0

2

4

6

8

10

12

18.000 20.000 22.000 24.000 26.000 28.000 30.000 32.000 34.000

M
e

lt
 D

e
p

th
 (

La
ye

rs
)

VED/𝛥H

Experimental
Simulated



 

 154 

such as with Boley et al. and their ray tracing based absorption model [46]. However, the increase in 

fidelity with these approaches may also increase the computational cost for simulation. To address 

this issue, the use of entirely parametric models should be investigated as well, such as with 

Rubenchik et al. [121]. 

6.3 Conclusion 

In this chapter, a simple finite element model was introduced with the aim of discussing the viability 

of numerical simulation for LPBF and also challenges associated with it. A comparative experiment 

was constructed, where the simulation results for melt pool depth using build variable combinations 

from Chapter 4 were compared against experimentally measured melt pool depths. 

From the findings, it was observed that the simulation study required over 9.5 hours of simulation 

per sample set, for a solution time domain of 16 exposure points. The simulation results show a 

dominance in heat transfer through the sample height due to the modelled increase in thermal 

conductivity in the substrate compared to the powder bed. When compared to the experimental 

measurements, it appears that the model under-predicts the melt pool depth. This was attributed to the 

assumptions inadequately representing the true behaviour of the melt pool, especially upon transition 

towards keyhole melting modes, where convection heat transfer becomes more prominent.  

For future considerations, mesh independency analyses need to be performed to ensure that the 

results are not dependent on the fineness of the mesh. As well, investigation into tuning the 

correctional factors within the model may result in better approximations of melt pool depth, 

compared to the experimental results. As well, alternative models also be considered, where more 

rigorous estimations of the melt pool behaviour can improve on model estimates. Overall, the 

exercise performed in this chapter shows the difficulties in adequately predicting the complex physics 

of LPBF, while still obtaining results in a feasible time frame. Even with the simplifying assumptions 

made, the amount of simulation time was extensive, and thus the development of more parametric 

models is also suggested for time efficiency reasons. 
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Chapter 7 

Conclusions and Future Work 

The focus within this thesis was to develop a strategy for process mapping and process window 

identification with the intent of lowering the barrier for adoption of the laser powder bed fusion 

(LPBF) technology. This thesis contributed to this through the optimization of process outcomes such 

as density and thermal expansion characteristics on a novel material for the LPBF process. The study 

of porous defect space within samples through computed tomography (CT) provided valuable insight 

on phenomena that occur during processing. Furthermore, the analyses of Invar36’s thermal 

expansion behaviour show that it is possible to achieve and improve on the material’s dimensional 

using LPBF processes. Through the use of statistical techniques, it was demonstrated that it is 

possible to optimize processes on a more refined level. These conclusions are elaborated upon below, 

and recommendations for future work are discussed as well. 

7.1 Thesis Conclusions 

Since the thesis was divided up into several distinct chapters, the following conclusions can be drawn 

from each: 

The goal of Chapter 3 was to characterize the behaviour of the feedstock material due to its 

possible influences on the LPBF process in-situ. With this in mind, it was first determined that the 

chemical composition of the powder did not deviate beyond ASTM requirements for Invar36. This 

traceability in chemical composition confirmed that any deviation in chemical composition in bulk 

samples would be purely due to in-situ processing, and not issues with the feedstock material. In 

terms of the particle size distribution, it was found that the particle size conformed well to the 

supplier specifications of particle size, but analysis into the distribution found that the powder 

adhered to a bimodal distribution centered about 27 𝜇𝑚 and 40 𝜇m. This observation gave valuable 

insight for future recipe generation, due to the fact that bimodal powders have increased absorptivity. 

Thus, when translating this study to single mode powders, the lower absorptivity can be accounted 

for. Lastly, the rheology analysis found that the powder is expected to behave well in terms of its flow 

characteristics. However, because of the high shear cell measurements, the powder may behave 

poorly in hoppers at low volume, and thus it may be beneficial to refill hoppers earlier when using 

Invar36. 
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In Chapter 4, the objective was to develop a process map for process outcomes such as porosity and 

the coefficient of thermal expansion (CTE) for Invar36 parts for LPBF, with the ultimate goal of 

defining an optimized process window. After characterization of the solid fraction through CT 

analysis, a process map defining the solid fraction behaviour and thermal expansion behaviour was 

constructed within three-dimensional space, and within two-dimensional space at multiple power 

levels. By using statistical analysis techniques, an optimal process window was defined, showing that 

lower power, higher grid distances, and lower exposure times produced better process outcomes. 

Additional observations, however, showed that a majority of defects occurred near the border region 

of samples. As well, the pores displayed patterns of angular periodicity and a tendency towards the 

right side of parts. Thus the statistical analysis was re-run with those border regions removed. As a 

result, it showed that the optimal process window was large, with the samples achieving > 99.99% 

density once a certain power threshold of > 250 W was passed. Lastly, a weighted performance 

parameter was developed to assess the quality of parts with both process outcomes. Based on the 

statistical analysis, the optimal process window considering both process outcomes concurred with 

the earlier results for each process outcome separately. 

An experiment was created in Chapter 5, based off of the observations in Chapter 4, to minimize 

the effect of border region porosity through the variation of power, border power, fill contour offset, 

and hatch compensation. According to the observations, it was found that the selection of lower levels 

for power, fill contour offset, and hatch compensation generally resulted in less porosity in the border 

regions. However, the statistical results implied that these conclusions may be valid only for the 

measured data set, and not the true process as a whole.  

Within Chapter 6, a finite element modeling approach to simulating the LPBF process was 

introduced with the aim of discussing the viability and challenges associated with it. To compare 

against measured results, the model was simulated over a range of build variable combinations equal 

to the recipes observed in section 4.1.6.1. The validity of the modelling approach was verified by 

comparing the melt pool depths, and after simulation it was found that the model under-predicted the 

melt pool depth. This was attributed to the assumptions inadequately representing the true behaviour 

of the melt pool, especially upon transition towards keyhole melting modes, where convection heat 

transfer becomes more prominent.  
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7.2 Future Work 

Within this thesis, several recommendations can be made, based on the observations within each 

chapter: 

For the experiment described in Chapter 4, it is suggested additional measurements should be taken 

to verify and enrich the robustness of the statistical results. Since the model predictions trend towards 

lower energy density values, the model can also be further calibrated by exciting lower energy density 

process regions. It may also be beneficial to observe the influences of the build variables on the 

microstructural evolution in the material; ongoing experimentation is being performed regarding this. 

Since it was mentioned that residual stresses are an influencing factor on the thermal expansion 

behaviour of LPBF-built Invar36 parts, an investigation on the heat treatment effect should be 

performed as well. 

Regarding Chapter 5, the veracity of the observed results should be confirmed by re-analyzing the 

experiment after either recovering missing samples, or reprinting the build. This is in order to address 

the concerns with the normality and independence assumptions of the experiment. As a result, the 

observations found would be more representative of the process. As well, outside of the general 

trends presented in the experiment, the process appeared to behave unexpectedly in certain 

exceptional cases. Due to this, it may be valuable to further investigate this behaviour with further 

experimentation into the affected process regions. 

The results presented in the two aforementioned chapters also focus on a specific process region 

and for specific part geometries. Thus continued work is being done to validate the optimization 

results with differing geometries, and for differing LPBF systems. 

Lastly, the finite element model presented in Chapter 6 requires additional work that should be 

performed in order to confirm mesh independency of results. As well, it is suggested that the tuning 

of the correctional factors in the model may improve on the accuracy of the model in comparison to 

the experimental results. It may also be possible to consider alternative models, where more rigorous 

estimations of the melt pool behaviour can improve on model estimates. Due to time inefficiencies 

from the numerical approach, it may also be more feasible to look into the development of parametric 

models. 
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Appendix A: 

Renishaw AM 400 System Build Parameters 

Table A 1. General parameters for the Renishaw AM 400. 

Parameter Parameter description 

Layer thickness Layer thickness in unit of measure. 

Pos X Position in X (left-right) measured form the build plate centre. 

Pos Y Position in Y (wipe axis) measured from build plate centre. 

Layers count Total number of layers. 

 

Table A 2. Strategy parameters for the Renishaw AM 400. 

Parameter Parameter description 

Hatch pattern 

strategy 

This gives you a choice of hatch pattern for your component. Each hatch pattern 

had advantages and disadvantages, depending upon the characteristics of the 

component being built. 

 
Field size The field size is the size of each area in a chessboard hatch pattern. 

Field offset Field offset is used to overlap the fields, to prevent porosity in the component 

being built. 

Minimal field 

size 

The minimal field size is the smallest size a field can be in a chessboard hatch 

pattern. 

Stripe size In a stripe hatch pattern, each layer is cut into strips at a user defined width. The 

stripe size is commonly 5 mm. This allows constant time between each successive 

stripe and therefore maintains a more consistent temperature throughout. 

Stripe offset A stripe offset is used to overlap the stripes, to prevent porosity. Negative offsets 

indicate higher overlap. 

Merge vector 

length 

Minimum length a stripe must have. Stripes with lengths lower than this are 

merged with another co-linear line. 

Merge vector Toggle if you want to enable "merge vector" or not. (1/0 is ON/OFF) 

Block sort/sort 

optimized 

Laser path will move in a continuous movement around holes. It will then return 

and fill in any missing gaps. 
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Table A 3. Control parameters for the Renishaw AM 400. 

Parameter Parameter description 

Total fill Fills the layers with only additional border lines, without doing any hatch filling. 

Volume fill 

contours 

Similar to borders, but is used to fill the area between fill hatching and borders. 

Volume 

hatch 

Volume hatching is the hatching that forms the vast majority of layer areas within a 

component. (1/0 is ON/OFF) 

Volume jump 

optimisation 

Laser path will move in a continuous movement around holes. It will then return and 

fill in any missing gaps. 

Upskin Enable the rescanning of top surfaces of the build. 

Downskin Enables reduction of energy, or increased speeds in areas that are facing downwards. 

Upskin 

border 

Toggles the ability to have borders for upskin layers.  (1/0 is ON/OFF) 

Blocked path Reduces the number of scans in thin areas to a single scan. 

Hatch 

compensation 

Allows the creation of additional hatch exposures at the end of hatch lines. 

 

Table A 4. Order parameters for the Renishaw AM 400. 

Parameter Parameter description 

Scan order 1 to 9 Changes the order of each type of scan line. 

Volume border inout When scan settings permit multiple borders, can enable to scan the 

border from the inside-out, or outside-in. (1/0 is inout/outin) 

Volume fill contour inout When scan settings permit multiple fill contours, can enable to scan the 

border from the inside-out, or outside-in. (1/0 is inout/outin) 
Types of scan lines include: Volume hatch, downskin hatch, upskin hatch, volume border, downskin border, 

upskin border, downskin contour, upskin contour, volume contour 
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Table A 5. Volume parameters for the Renishaw AM 400. 

Parameter Parameter description 

Beam compensation Offset the laser from the edge of the .STL boundary. 

Border count Number of borders. 

Border distance Offset between borders. 

Fill contour offset Offset of the fill contours from the outermost border. 

Number of fill contours The number of fill contours. The fill contours will be generated 

outside-in, and will overlap with the fill hatch. 

Fill contour distance Offset between fill contours. 

Hatch distance Offset between adjacent scan lines. 

Hatch offset The offset between hatch fill and the innermost border (negative value 

means overlap). 

Hatch start angle The angle at which the hatch starts. 

Hatch increment angle Increment angle between layers of hatch. 

Filter length Scan lines smaller than this number will not be created. For example, 

you don't need to scan lines smaller than spot size. 

Blocked path resolution Controls the smoothness of the blocked path. 

Blocked path trim distance Controls the trimming of the blocked path (in mm). 

Blocked path filter length Controls removal of tiny segments (in mm). 

Hatch compensation 

threshold 

Percentage of the point distance where distances greater than the hatch 

compensation will result in addition exposure points. 

 

Table A 6. Upskin/downskin parameters for the Renishaw AM 400. 

Parameter Parameter description 

Use start angle Starts scan direction at a user specified angle, or continue from the last angle in 

the volume hatch. (1/0 is yes/no) 

Keep additional 

borders 

Enables you to keep additional upskin borders. (1/0 is yes/no) 

Border offset The distance between upskin border and upskin hatches. 

Number of 

exposures 

The number of times the upskin is scanned. 

Number of layers The number of layers on which the upskin hatching is applied. 

Skin area tolerance The minimal area width on which the upskin is applied. 

Hatch offset The offset between hatch fill and the innermost border (negative value means 

overlap). 

Hatch distance Offset between adjacent scan lines. 

Filter length Scan lines smaller than this number will not be created. For example, you don't 

need to scan lines smaller than spot size. 

Rotation increment 

angle 

Increment angle between layers of hatch in the upskin layers. 

Rotation start angle The angle at which the upskin fill hatch starts. 
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Table A 7. Scan volume/upskin/downskin parameters for the Renishaw AM 400. 

Parameter Parameter description 

Border power Power of the laser when scanning the borders. 

Border focus The focal plane of the laser (in mm) when scanning borders. 

Border point distance The distance between point exposures for the borders (in μm) 

Border exposure time The length of time the laser is on per point exposure for the borders (in 

μs). 

Hatches power Power of the laser when hatching. 

Hatches focus The focal plane of the laser (in mm) when hatching. 

Hatches point distance The distance between point exposures for hatching (in μm). 

Hatches exposure time The length of time the laser is on per point exposure for hatching (in 

μs). 

Fill contours power Power of the laser when scanning the fill contours. 

Fill contours focus The focal plane of the laser (in mm) when scanning fill contours. 

Fill contours point distance The distance between point exposures for the fill contours (in μm). 

Fill contours exposure time The length of time the laser is on per point exposure for the fill 

contours (in μs). 

Additional border power Power of the laser when scanning additional borders. 

Additional border focus The focal plane of the laser (in mm) when scanning additional borders. 

Additional border point 

distance 

The distance between point exposures for additional borders (in μm). 

Additional border exposure 

time 

The length of time the laser is on per point exposure for additional 

borders (in μs). 

Border block path power Power of the laser when scanning the blocked paths. 

Border block path focus The focal plane of the laser (in mm) when scanning blocked paths. 

Border block path point 

distance 

The distance between point exposures for the blocked paths (in μm). 

Border block path exposure 

time 

The length of time the laser is on per point exposure for the fill 

contours (in μs). 

Additional blocked path 

power 

Power of the laser when scanning additional blocked path. 

Additional blocked path 

focus 

The focal plane of the laser (in mm) when scanning additional blocked 

path. 

Additional blocked path 

point distance 

The distance between point exposures for additional blocked path (in 

μm). 

Additional blocked path 

exposure time 

The length of time the laser is on per point exposure for additional 

blocked path (in μs). 
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Appendix B: 

Scanning Microscopy Images 

 

Figure B 1. SEM image 1 of powder particle distribution 
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Figure B 2. SEM image 2 of powder particle distribution 
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Figure B 3. SEM image 3 of powder particle distribution 
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Figure B 4. SEM image 4 of powder particle distribution 
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Figure B 5. SEM image 5 of powder particle distribution 
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Figure B 6. SEM image 1 of particle of interest 
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Figure B 7. SEM image 2 of particle of interest 
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Figure B 8. SEM image 3 of particle of interest 
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Figure B 9. SEM image 4 of particle of interest 
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Figure B 10. SEM image 5 of particle of interest 
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Figure B 11. SEM image 6 of particle of interest 
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Figure B 12. SEM image 7 of particle of interest 
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Figure B 13. SEM image 9 of particle of interest 
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Figure B 14. SEM image 10 of particle of interest 
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Figure B 15. SEM image 11 of particle of interest 
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Figure B 16. SEM image 12 of particle of interest 
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Appendix C: 

Recipe for Experiment in Chapter 4, with All Build Variable 

Combinations and Identifications 

Table C 1. Build variable table for the experiment in Chapter 4, showing all build variable 

combinations within the build recipe. Part labels not necessarily equal to Part I.D. 

Part 

Label 

Part 

I.D. 

Power 

[W] 

Grid 

Distance 

[𝝁m] 

Exposure 

Time 

[𝝁s] 

Equivalent 

Velocity 

[mm/s] 

Energy 

Density 

(Surface) 

[J/mm2] 

Energy 

Density 

(Volumetric) 

[J/mm3] 

1 1 250 60 60 1000 4.17 138.9 

2 2 250 60 70 857 4.86 162.0 

3 3 250 60 80 750 5.56 185.2 

4 4 250 70 60 1167 3.06 102.0 

5 5 250 70 70 1000 3.57 119.0 

6 6 250 70 80 875 4.08 136.1 

7 7 250 80 60 1333 2.34 78.1 

8 8 250 80 70 1143 2.73 91.1 

9 9 250 80 80 1000 3.13 104.2 

10 10 275 60 60 1000 4.58 152.8 

11 11 275 60 70 857 5.35 178.2 

12 12 275 60 80 750 6.11 203.7 

13 13 275 70 60 1167 3.37 112.2 

14 14 275 70 70 1000 3.93 131.0 

15 15 275 70 80 875 4.49 149.7 

16 16 275 80 60 1333 2.58 85.9 

17 17 275 80 70 1143 3.01 100.3 

18 18 275 80 80 1000 3.44 114.6 

19 19 300 60 60 1000 5.00 166.7 

20 20 300 60 70 857 5.83 194.4 

21 21 300 60 80 750 6.67 222.2 

22 22 300 70 60 1167 3.67 122.4 

23 23 300 70 70 1000 4.29 142.9 

24 24 300 70 80 875 4.90 163.3 

25 25 300 80 60 1333 2.81 93.8 

26 26 300 80 70 1143 3.28 109.4 

27 27 300 80 80 1000 3.75 125.0 
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Table C 1 (cont’d). Build variable table for the experiment in Chapter 4, showing all build 

variable combinations within the build recipe. Part labels not necessarily equal to Part I.D. 

Part Label 
Part 

I.D. 

Power 

[W] 

Grid 

Distance 

[𝝁m] 

Exposure 

Time 

[𝝁s] 

Equivalent 

Velocity 

[mm/s] 

Energy 

Density 

(Surface) 

[J/mm2] 

Energy 

Density 

(Volumetric) 

[J/mm3] 

1- and 1= 28 350 60 60 1000 5.83 194.4 

2- and 2= 29 350 60 70 857 6.81 226.9 

3- and 3= 30 350 60 80 750 7.78 259.3 

4- and 4= 31 350 70 60 1167 4.29 142.9 

5- and 5= 32 350 70 70 1000 5.00 166.7 

6- and 6= 33 350 70 80 875 5.71 190.5 

7- and 7= 34 350 80 60 1333 3.28 109.4 

8- and 8= 35 350 80 70 1143 3.83 127.6 

9- and 9= 36 350 80 80 1000 4.38 145.8 

10- and 10= 37 375 60 60 1000 6.25 208.3 

11- and 11= 38 375 60 70 857 7.29 243.1 

12- and 12= 39 375 60 80 750 8.33 277.8 

13- and 13= 40 375 70 60 1167 4.59 153.1 

14- and 14= 41 375 70 70 1000 5.36 178.6 

15- and 15= 42 375 70 80 875 6.12 204.1 

16- and 16= 43 375 80 60 1333 3.52 117.2 

17- and 17= 44 375 80 70 1143 4.10 136.7 

18- and 18= 45 375 80 80 1000 4.69 156.3 

19- and 19= 46 400 60 60 1000 6.67 222.2 

20- and 20= 47 400 60 70 857 7.78 259.3 

21- and 21= 48 400 60 80 750 8.89 296.3 

22- and 22= 49 400 70 60 1167 4.90 163.3 

23- and 23= 50 400 70 70 1000 5.71 190.5 

24- and 24= 51 400 70 80 875 6.53 217.7 

25- and 25= 52 400 80 60 1333 3.75 125.0 

26- and 26= 53 400 80 70 1143 4.38 145.8 

27- and 27= 54 400 80 80 1000 5.00 166.7 
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Table C 2. Auxiliary study studying effect of scan strategy (not within scope of thesis). 

ID Scan Strategy Field Size [mm] Field Overlap [mm] 

A Chessboard 2.5 0 

B Chessboard 2.5 -0.06 

C Chessboard 5 0 

D Chessboard 5 -0.06 

E Stripe 2.5 0 

F Stripe 2.5 -0.06 

G Stripe 5 0 

J Stripe 5 -0.06 

 

Table C 3. Auxiliary study studying effect of hatch offset (not within scope of thesis). 

ID Power [W] Hatch Offset [mm] 

A 0.75 -0.7 

B 0.75 0 

C 0.75 0.7 

D 0.5 -0.7 

E 0.5 0 

F 0.5 0.7 

G 0.25 -0.7 

J 0.25 0 

K 0.25 0.7 

L 0.75 -0.7 

M 0.75 0 

P 0.75 0.7 

Q 0.5 -0.7 

S 0.5 0 

T 0.5 0.7 

U 0.25 -0.7 

Y 0.25 0 

Z 0.25 0.7 
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Appendix D: 

MATLab Code and Accompanying Functions for the CT Analyses 

%% -----------------CT Image Data Processing Script--------------------- %% 

% ASSUMPTIONS 

% - Images are inputted as 16-bit unsigned data type 

% - Images have the same dimensions (width, height) 

% - The alignment algorithm assumes that the part is a perfect cylinder, 

%   ande therefore tries to rotate the part to be a perfect cylinder. 

% - Brightness/contrasting settings are done based on chracteristics of  

%   a single slice taken from the middle of the image stack. 

%   Refer to [N#] for more details 

%  

% Required functions 

% - 'Slider', 'nhood3', 'partalign', 'SliderScan', 'SliderScanComb',  

% 'SlideStack', 'getPath' 

  

%% ---------------------------- [STARTUP] ----------------------------------- %% 

  

close all; clear all; clc; %#ok<*CLALL> 

  

%-------------------User defined variables-------------------------------------% 

%Modify these variables to tune how the script processes the data 

  

%Output structure 

%'OUTPUT' folder will always be put in the root folder of where the image stack  

% was originally located 

USER_DIR = char({ ... 

'OUTPUT\SCANPATH\';             %Scan-path overlay plots 

'OUTPUT\PORES\';                %Pore size/shape/orientation/distribution 

'OUTPUT\FULLPART\ALIGNED\';     %Aligned image Stack 

'OUTPUT\FULLPART\BINARY\';      %Segmented image 

'OUTPUT\FULLPART\PORE_ONLY\';   %Segented image with only pores 

'OUTPUT\FULLPART\RESULTS\';     %Summary reports 

'OUTPUT\TRUNCATE\BINARY\';      %Without truncated data, segmented image 

'OUTPUT\TRUNCATE\PORE_ONLY\';   %Without truncated data, segmented with only pores 

'OUTPUT\TRUNCATE\RESULTS\';     %Without truncated data, summary reports 

}); 

  

%If the image stacks have the part flipped about the vertical axis,  

%(i.e, letters are backwards) set this variable to  '1', and the code will  

%automatically 'unmirror' the image. By default, assumes image stack input has  

%correct orientation 

USER_DATA_FLIP = 1; 

  

%Chooses which regions to truncate, 1 = remove borders, -1 = remove core 

USER_TRUNC = 1; 

  

%The binwidth affects the resolution of the outputted histogram. Smaller bins  

%increases the precision, but may hinder peak finding functionality. I try to  

%set it to be as low as possible without breaking the script. 

USER_BINWIDTH_CONTRAST = 4;  %Width of bins, for histogram (max 65535) 

USER_BINWIDTH_PORES = 8;  

  

%Minimum peak width is used to ignore large singular points of data in the  

%histogram. I try to set it as low as possible without breaking the script 

USER_PWIDTH_CONTRAST = 125;  %During brightness/contrast setting 

USER_PWIDTH_PORES    = 100;  %During pore threshholding     

  

%I assume the histogram only has two peaks, one for the 'background' and one  

%for the 'foreground' information. For the pore threshholding, it is assumed  

%that I have already removed one of the peaks in a previous step 

USER_NPEAK_CONTRAST  = 2;    %Maximum number of peaks 
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USER_NPEAK_PORES = 1; 

  

%Some images may have the ends of other parts visible. This offset is used to  

%ensure that the script starts indexing from white space. Set this to zero if  

%you are expecting to see your part up to the boundaries of the image 

USER_INDEX_OFFSET = 75;    

  

%Intensity scale factors to help the script decide when to Z-crop the images,  

%and to set the threshholding values. 

  

%Scale of intensity that indicates part is no longer visible 

USER_CROP_INTENSITY_SCALE = 0.25;  

  

%Scale of peak intensity that indicates the tail end 

USER_CONTRAST_INTENSITY_SCALE = 0.005;  

USER_CONTRAST_THRESHOLD = 0.01; 

USER_BINARYMASK_INTENSITY_SCALE = 0.01; 

  

%Crop is performed by cropping anything outside of a certain radius. By default, 

%the algorithm sets the radius equal to the radius of the part. This buffer  

%artificially increases the radius to be more conservative with cropping. 

USER_XYCROP_BUFFER = 1.25; 

  

%Indicates where along the histogram to set the threshold for the binary mask.  

%Anything above this value is considered '1' and anything below is considered  

%'0'. By default I set it to '1' because I assume the earlier steps did the 

%threshholding properly. 

USER_BINARY_MASK_INTENSITY_THRESHHOLD = 1; % Minimum: 1 , Maximum: 65535 

  

%Fitting method during the part alignment. Refer to 'help robustfit' for more  

%details on the available methods 

USER_FIT_TUNE = 1.25; %Tuning parameter used for the brightness/contrast section 

USER_FIT_METHOD  = 'bisquare'; 

  

%The layer thickness used for the part (to align the scan path). 

%Specify in millimeters [mm] 

USER_LAYER_THICKNESS = 30/1000;  

USER_POINT_DISTANCE = 70; 

  

%When cropping the stack to eliminate areas affected by the cone angle, what is  

%the tolerance of the fitting error 

USER_CONE_ANGLE_TOLERANCE = 0.005; 

  

%Extra layers to crop from both ends when removing the cone angle, to be  

%conservative. 

USER_CONE_ANGLE_EXTRACROP = 25;  

  

%When performing the flood fill, indicates where to place the initial seed 

USER_X = 1; %Absolute position in X, with '1' = left most 

USER_Y = 1; %Absolute position in Y, with '1' = top most 

USER_Z = 0.5; %Relative position in Z, with '0.5' = 50% up the stack 

  

%Variables to define the 'connected neighbourhood' for the floodfill and noise  

%pore finding operations. https://en.wikipedia.org/wiki/Pixel_connectivity 

USER_NEIGHBOUR_FLOOD = 6; 

USER_NEIGHBOUR_NOISE = 24; 

USER_NEIGHBOUR_PORE = 18; 

  

%---------Global Variables (Accessible in all sections of the script)----------% 

%Enable if I want to also align scan paths as well 

%Only enable if you have the required .SSL scan paths 

GLOBAL_SCAN = 0; 

  

%Allows user interaction even when input box is open 

GLOBAL_OPTIONS.WindowStyle='normal'; 

  

GLOBAL_GRANDTOTALPORE = []; %Total solid fraction, between stacks 
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GLOBAL_VSIZE = [];          %Voxel Size 

GLOBAL_AUTO = questdlg...   %Automatic processing mode 

       ('Would you like to automatically process the data?', ... 

       'Automatic Processing','Yes','No','Yes'); 

%Converts 'GLOBAL_AUTO' into boolean so its easier to write 'if' statements 

if strcmp(GLOBAL_AUTO,'Yes') 

    GLOBAL_AUTO = true; 

else 

    GLOBAL_AUTO = false; 

end 

  

%% ----------------------------[IMAGE IMPORTING]----------------------------- %% 

  

%Initializing important variables 

again = 'Yes'; %Variable to see if another stack should be processed 

GLOBAL_PATH = [];     %Directory to look for .CSV files 

GLOBAL_FILENAME = []; %What to name the files when outputting 

same = '-';    %Variable to indicate if all stacks have same voxel size 

  

%Gathering directories of all the .TIF stacks 

while(strcmp(again,'Yes')) 

    %Directory of selected .TIF file 

    [file, temppath] = uigetfile('*.*','Select an image from stack'); 

    tempname = strsplit(temppath,'\');    

     

    %Append the current directory to the array 

    GLOBAL_PATH = char(GLOBAL_PATH,temppath); 

    GLOBAL_FILENAME = char(GLOBAL_FILENAME,char(tempname(end-1))); 

     

    %Get voxel size of the stack 

    %Default value is set to the value for previous stack 

    if isempty(GLOBAL_VSIZE) 

        default = ''; 

    else 

        default = num2str(GLOBAL_VSIZE(end)); 

    end 

     

    %If stacks all have the same voxel size, skip the user input dialog 

    if (strcmp(same,'Yes')) 

        GLOBAL_VSIZE = [GLOBAL_VSIZE; str2double(default)]; %#ok<*AGROW> 

    else 

        GLOBAL_VSIZE= [GLOBAL_VSIZE; str2double(inputdlg(... 

                       'Voxel size: ','Input',1,{default}))]; 

    end 

     

    %Check if user wants to add another stack to process 

    again = questdlg('Would you like to select another stack to process?', ... 

                    'Multiple Stack Processing','Yes','No','Yes');     

     

    %Check if voxel size is same for every stack             

    if strcmp(again,'Yes') && strcmp(same,'-') 

         same = questdlg('Will the voxel size be the same for every stack?', ... 

                'Voxel Size','Yes','No','Yes'); 

    end 

end 

GLOBAL_ITERATION = 2; %Redundant code. Only used for debugging purposes 

%% Iterating through every single .TIF Stack 

for GLOBAL_ITERATION = 2:size(GLOBAL_PATH,1) 

    %Getting all images in directory 

    srcfiles = dir(strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),'*.tif*')); 

     

    %Height of the stack 

    stackheight = size(srcfiles,1); 

     

    %Filepath of all images 

    InfoImage = imfinfo(strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),... 

                srcfiles(1).name)); 
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    mImage = InfoImage.Width; %Width of images, in pixels 

    nImage = InfoImage.Height;%Height of images, in pixels 

     

    %Initializing the MATLAB Variable that stores the images 

    tifstack = uint16(zeros(nImage,mImage,stackheight)); 

  

    %Importing the .TIFF files to MATLAB 

    h = waitbar(0,'Importing Images:'); 

    for i =1:stackheight 

         tifstack(:,:,i) = imread(strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),... 

                           srcfiles(i).name),'Info',InfoImage); 

        waitbar(i/stackheight,h,strcat('Importing images: ',num2str(i),'/', ... 

                num2str(stackheight))); 

    end 

    close(h); 

  

    %Clearing variables to save memory 

    clearvars -except tifstack stackheight GLOBAL_* USER_* 

%-------------------------------------------------------------------------- 

    %% --------------------- [CROP SETTINGS]  -------------------------------%% 

    %Finds the average intensity across all layers 

    iavg = mean(squeeze(mean(tifstack)))'; %average intensity per layer 

    iAVG = mean(iavg); %total max intensity 

     

    %Finding the upper range that is considered part 

    j = floor(stackheight/2); %Starting at middle of stack 

    checkup = min(iavg(j:end))+(max(iavg(j:end))-min(iavg(j:end)))*... 

              (USER_CROP_INTENSITY_SCALE); 

    while(iavg(j)>=checkup) 

       j=j+1;%Increases until check is satisfied 

    end 

    top = j; %Sets the upper range  

     

    %Finding the lower range that is considered part 

    j = floor(stackheight/2); %Starting at middle of stack 

    checkdown = min(iavg(1:j))+(max(iavg(1:j))-min(iavg(1:j)))*... 

                (USER_CROP_INTENSITY_SCALE); 

    while(iavg(j)>=checkdown) 

       j=j-1;%Decrease until check is satisfied 

    end 

    bot = j; %Sets the upper range     

     

    %Debug code (plots the results from above to troubleshoot how 

    %well the algorithm finds the part) 

    %{ 

        ifit = flipud(robustfit(1:length(iavg),iavg, ... 

               USER_FIT_METHOD,USER_FIT_TUNE)); 

        esti = polyval(ifit,1:length(iavg)); 

        figure 

        hold on 

        plot(1:length(iavg), iavg) 

        plot(1:length(iavg), esti) 

        plot(bot, iavg(bot),'o') 

        plot(top,iavg(top),'o') 

    %} 

    

    %If automatic mode is off, prompt the user for ranges for the crop 

    if ~GLOBAL_AUTO 

        Slider(tifstack); 

        h = msgbox('Please select lower and upper layers for the part'); 

        waitfor(h); 

        bot = str2double(inputdlg('Lower: ','Input',1, ... 

                         {num2str(bot)},GLOBAL_OPTIONS)); 

        top = str2double(inputdlg('Upper: ','Input',1, ... 

                         {num2str(top)},GLOBAL_OPTIONS));         

    end 
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    %Performing the height crop 

    h = waitbar(1,'Cropping the image along the Z-axis'); 

    tifstack = tifstack(:,:,bot:top); %Height cropping 

    stackheight = top-bot; 

    close(h); 

  

    %If automatic mode is off, close all figures after crop is finished 

    if ~GLOBAL_AUTO 

        close(); 

        Slider(tifstack); 

        pause; 

        close(); 

    end 

  

    %Clearing variables to save memory 

    clearvars -except tifstack stackheight GLOBAL_* USER_* 

  

  %% ------------------- [BRIGHTNESS / CONTRAST SETTINGS] ------------------- %% 

     

    %Finds the average intensity across all layers 

    iavg = mean(squeeze(mean(tifstack)))'; %Average intensity per layer 

    iAVG = mean(iavg); %Average intensity across entire image stack 

     

    %Determining the intensity that corresponds to part 

    ifit = flipud(robustfit(1:length(iavg),iavg,USER_FIT_METHOD,USER_FIT_TUNE)); 

  

  

    %Below, if the average intensity of a layer is outside of the error  

    %threshold defined by USER_CONTRAST_THRESHOLD, then that layer is no longer  

    %considered part of the specimen 

       

    %Finding the upper range 

    j = floor(stackheight/2); %Starting at middle of stack 

    while(abs(iavg(j)-polyval(ifit,j))/polyval(ifit,j) <= USER_CONTRAST_THRESHOLD) 

       j=j+1;%Increases until check is satisfied 

    end 

    top = j; %Sets the upper range 

     

    %Finding the lower range 

    j = floor(stackheight/2); %Starting at middle of stack 

    while(abs(iavg(j)-polyval(ifit,j))/polyval(ifit,j) <= USER_CONTRAST_THRESHOLD) 

       j=j-1;%Decrease until check is satisfied 

    end 

    bot = j; %Sets the upper range 

     

    %Debug code to plot how well the algorithm finds the part 

    %{ 

        esti = polyval(ifit,1:length(iavg)); 

        figure 

        hold on 

        plot(1:length(iavg), iavg) 

        plot(1:length(iavg), esti) 

        plot(bot, iavg(bot),'o') 

        plot(top,iavg(top),'o') 

    %} 

  

    %Extracting the histogram from the images, using the ranges specified above 

    bincount = floor(65535/USER_BINWIDTH_CONTRAST);  

    [counts, bin] = histcounts(tifstack(:,:,bot:top), bincount); 

    bincenters = (bin(1:end-1) + bin(2:end))/2; 

  

    %Peak finding based on peak widths and expected number of peaks 

    [pks, locs] = findpeaks(counts,'MinPeakWidth',USER_PWIDTH_CONTRAST, ... 

                  'NPeaks',USER_NPEAK_CONTRAST); 

  

    %Determining threshholding values 

    for i = 1:length(pks) 
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        %Picks the upper/lower ends by finding intensity drop-off by a  

        %scale of CONTRAST_INTENSITY)SCALE. 

        check = pks(i)*USER_CONTRAST_INTENSITY_SCALE; 

        j = locs(i); %The drop-off check is relative to the current highest peak 

        while(counts(j)>=check  && j<length(counts)) 

           j=j+1; %Incrementally move farther away from peak until the  

                  %threshhold is satisfied 

        end 

        range(i) = ceil(bincenters(j)); %Makes note of the location on histogram 

    end 

     

    %Apply automatic thresholding values (unless 'auto mode' turned off) 

    if  (GLOBAL_AUTO) 

        mini = range(1); 

        maxi = range(2); 

    else 

        img = imtool(tifstack(:,:,floor(stackheight/2))); 

        imgc = imcontrast(img); 

        h = msgbox('Please determine minimum and maximum levels.'); 

        waitfor(h); 

        mini = str2double(inputdlg('Minimum intensity: ','Input',1, ... 

                          {num2str(range(1))},GLOBAL_OPTIONS)); 

        maxi = str2double(inputdlg('Maximum intensity: ','Input',1, ... 

                          {num2str(range(2))},GLOBAL_OPTIONS)); 

        delete(imgc); 

    end 

  

    %Performing the brightness/contrast scaling 

    h = waitbar(1,('Adjusting brightness/contrast levels...')); 

    tifstack = uint16((double(tifstack)-mini)/(maxi-mini)*65535); 

    tifstack(tifstack<0)=0; 

    tifstack(tifstack>65535)=65535; 

    close(h); 

    close all hidden 

  

    %Clearing variables to save memory 

    clearvars -except tifstack stackheight GLOBAL_* USER_* 

%% -------------------------[PART ALIGNMENT SETTINGS] ------------------------%% 

%------------------------ Determining Misalignment ----------------------------% 

  

%Alignment is based on assumption that the parts have cylindrical cross sections 

  

    %Prompts for user input, unless 'auto mode' is turned on 

    if GLOBAL_AUTO 

        intensity = USER_BINARY_MASK_INTENSITY_THRESHHOLD; 

    else 

        img = imtool(tifstack(:,:,floor(stackheight/2))); 

        imcontrast(img); 

        h = msgbox('Please specify threshold for binary mask'); 

        waitfor(h); 

        intensity = str2double(inputdlg('Minimum Threshold: ','Input', ... 

                               1,{'1'},GLOBAL_OPTIONS)); 

    end 

  

    %Creates the binary mask 

    h = waitbar(1,'Creating binary mask'); 

    bwtif = mat2gray(tifstack, [intensity-1 intensity]); 

    close(h); 

     

    %If 'auto mode' is off, close all figures 

    if ~(GLOBAL_AUTO) 

        close('all'); 

        Slider(bwtif); 

        pause; 

        close(); 

    end 
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    %Determining part alignment 

    [truecenter, truediameter] = partalign(bwtif); %#ok<ASGLU> 

  

    %Debug code to see how well the part aligns 

    %{ 

    for i = 1 : length(bwtif(1,1,:)) 

        imshow(bwtif(:,:,i)); 

        viscircles(truecenter(i,1:2),truediameter(i)/2); 

        xlim([0 1000]) 

        ylim([0 1000]) 

        pause(0.01) 

        cla 

    end 

    %} 

  

    %Allows user to select the layer range to align the part. Can be used to 

    %avoid regions where the data is not uniform, but the robustfit algorithm in  

    %MATLAB should be able to account for most circumstance. By default, the  

    %code considers that the entire part is valid 

    if GLOBAL_AUTO 

        bot = 1; 

        top = stackheight; 

    else 

        h = msgbox('Please determine layer range for alignment'); 

        waitfor(h); 

        img = figure; 

        for i = 1:3 

            img = subplot(3,1,i); 

            plot(truecenter(:,i)) 

        end 

        bot = str2double(inputdlg('Minimum: ','Input',1,{'1'},...  

              GLOBAL_OPTIONS)); 

        top = str2double(inputdlg('Maximum: ','Input',1, ... 

              {num2str(stackheight+1)},GLOBAL_OPTIONS)); 

  

        close(); 

    end 

     

    clear bwtif 

  

%---------------------------- Rotating the Part ------------------------------% 

  

    %Finding misalignment angle and part center by fitting a line  

    alignROW = flipud(robustfit(truecenter(bot:top,3),truecenter(bot:top,2), ... 

               USER_FIT_METHOD,USER_FIT_TUNE)); 

    alignCOL = flipud(robustfit(truecenter(bot:top,3),truecenter(bot:top,1),... 

               USER_FIT_METHOD,USER_FIT_TUNE)); 

     

    %The angle is defined by the inverse tangent of the slope 

    angleROW = rad2deg(atan(alignROW(1)));   

    angleCOL = rad2deg(atan(alignCOL(1))); 

  

    %Preview alignment results 

    if ~GLOBAL_AUTO 

        estROW = polyval(alignROW,truecenter(:,3)); 

        estCOL = polyval(alignCOL,truecenter(:,3)); 

  

        figure 

        subplot(3,1,1) 

        hold on 

        plot(truecenter(:,3), truecenter(:,2)) 

        plot(truecenter(:,3), estROW) 

  

        subplot(3,1,2) 

        hold on 

        plot(truecenter(:,3), truecenter(:,1)) 

        plot(truecenter(:,3), estCOL) 
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        pause(); 

        close(); 

    end 

     

    %Taking the X-Z slice. 

    h = waitbar(1,'Aligning part about Y'); 

    yzslice = permute(tifstack,[3 1 2]); %Same as 'left slice' in ImageJ 

    yzslice = imrotate(yzslice,-angleROW,'crop'); %Counter-clockwise is positive 

    close(h); 

    if ~GLOBAL_AUTO %Display the results, if 'auto mode' is turned off 

        Slider(yzslice); 

        pause; 

        close(); 

    end 

    clear tifstack %Clearing variables to save memory 

    

    %Taking the Y-Z slice 

    h = waitbar(1,'Aligning part about X'); 

    xzslice = permute(yzslice,[3 1 2]); %Same as 'left slice' in ImageJ 

    xzslice = imrotate(xzslice,angleCOL,'crop'); 

    close(h); 

    if ~GLOBAL_AUTO %Display the results, if 'auto mode' is turned off 

        Slider(xzslice); 

        pause; 

        close(); 

    end 

    clear yzslice %Clearing variable to save memory 

     

    %Returning to original orientation 

    h = waitbar(1,'Returning to original orientation'); 

     

    %Sometimes TIFStacks are exported with the images mirrored  

    %(letters look backwards); This code, below fixes that issue. 

    if (USER_DATA_FLIP == 1) 

        aligned = permute(xzslice, [1 3 2]); 

    else 

        aligned = permute(xzslice, [3 1 2]);  

    end 

    close(h);   

     

    if ~GLOBAL_AUTO %Display the results, if 'auto mode' is turned off 

        Slider(aligned); 

        pause; 

        close(); 

    end 

    clear xzslice 

   

     

 %% ------------------ Cropping parts X-Y direction ---------------------------% 

  

 %----------------------Finding center of the part-----------------------------% 

     

    %Creates the binary mask 

    h = waitbar(1,'Creating binary mask'); 

    bwtif = mat2gray(aligned, [intensity-1 intensity]); 

    close(h); 

  

    %Determining part alignment 

    [truecenter, truediameter] = partalign(bwtif); 

     

    clear bwtif 

  

    %Finding alignment angle and true part center by fitting a line 

    alignROW = flipud(robustfit(truecenter(bot:top,3),truecenter(bot:top,2), ... 

               USER_FIT_METHOD,USER_FIT_TUNE)); 

    alignCOL = flipud(robustfit(truecenter(bot:top,3),truecenter(bot:top,1), ... 
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               USER_FIT_METHOD,USER_FIT_TUNE)); 

     

    centerROW = alignROW(2); %Center along horizontal 

    centerCOL = alignCOL(2); %Center along vertical 

    circleRAD = nanmean(truediameter)/2; 

     

    %Debug code to see how well the images are aligned 

    %{ 

    figure 

    for i = 1 : length(aligned(1,1,:)) 

        imshow(bwtif(:,:,i)); 

        viscircles(truecenter(i,1:2),truediameter(i)/2); 

        xlim([0 1000]) 

        ylim([0 1000]) 

        pause(0.01) 

        cla 

    end 

    %} 

     

    %Determining the crop limits for the image 

    cropRAD = floor(circleRAD*USER_XYCROP_BUFFER); 

     

    %Relating center locations to image indices 

    cropROW = floor(centerROW); 

    cropCOL = floor(centerCOL); 

  

    %Performing the crop 

    h = waitbar(0,'Cropping X-Y boundaries...'); 

    aligned = aligned(cropROW-cropRAD:cropROW+cropRAD, ... 

              cropCOL-cropRAD:cropCOL+cropRAD,:); %Cropping 

    close(h); 

     

    %New center, after cropping 

    centerROW = size(aligned,2)/2; %Center along horizontal 

    centerCOL = size(aligned,1)/2; %Center along vertical 

     

    if ~GLOBAL_AUTO %Display the results, if 'auto mode' is turned off 

        Slider(aligned); 

        pause; 

        close(); 

    end 

     

%% -----------------[Rotate to align top surface labels] ---------------------%% 

     

    %This section requires extensive user input, and therefore is disabled for automatic 

processing 

    if ~(GLOBAL_AUTO) 

        

        %Selecting layers to use to align the scan paths together 

            %-CT Images 

              Slider(aligned); 

              h = msgbox('Please specify a layer showing features that can help rotate align 

the cylinders'); 

              waitfor(h); 

              imageref = str2double(inputdlg('Matching layer: ','Input',1,... 

                         {'1'},GLOBAL_OPTIONS)); 

              close(); 

  

            %Aligning the image to fit the scan-path 

            lastrotate = 0; %Current rotation of image 

            lastcol = 0;    %X-translation of image 

            lastrow = 0;    %Y-translation of image 

            alignokay = 0;  %Variable to check if image is properly aligned 

            figure 

            while ~alignokay 

                %Showing the last rotated image 

                imshow(imrotate(aligned(:,:,imageref),lastrotate,'crop')); 
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                %Checking if the rotation is satisfactory 

                check = questdlg(... 

               'Is the image aligned correctly to the scan path?', ... 

               'Image Alignment','Yes','No','Yes'); 

                if strcmp(check,'No') 

                    input = inputdlg({'Rotate: '},... 

                      'Input', 1,{num2str(lastrotate)}, GLOBAL_OPTIONS);  

                    lastrotate = str2double(input(1)); 

                    hold off; 

                else 

                    alignokay = 1; 

                    aligned = imrotate(aligned,lastrotate,'crop'); 

                    close(); 

                end 

            end  

    end 

%% -------------------[SCAN PATH SUPERIMPOSITION ] --------------------- % 

%%{ 

%This section requires extensive user input, and therefore is disabled for  

%automatic processing 

if ~(GLOBAL_AUTO) && (GLOBAL_SCAN)     

  

    %Output directory for superimposed images 

    output_directory = strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(1,:));  

    if(~exist(output_directory,'dir')) 

        [status, msg, msgid] = mkdir(output_directory); 

    end 

  

    %Reorienting so that the top of the part starts at beginning of stack 

    Slider(aligned); 

    h = msgbox('Scroll through the figure and determine if first image corresponds to the top 

or bottom of the part. Press [OK] once you find out.'); 

    waitfor(h); 

    flipimage = questdlg... 

           ('Does the first image in the stack correspond to the top or bottom of your 

part?', ... 

           'Stack Orientation','Top','Bottom','Top'); 

    if strcmp(flipimage,'Bottom') 

        aligned = flip(aligned,3); 

    end 

    close(); 

  

    %Importing the scan path into memory 

    [scanfile, scanpath] = uigetfile('*.*','Select the scan path file'); 

    scanfilepath = [scanpath scanfile]; 

    GLOBAL_scancloud = getPath(scanfilepath, USER_LAYER_THICKNESS,... 

    USER_POINT_DISTANCE,GLOBAL_VSIZE(GLOBAL_ITERATION-1),centerCOL,centerROW); 

    

    %Debug code to preview all scan paths 

    %{ 

        figure 

        hold on 

        uniquelayer = flip(unique(GLOBAL_scancloud(:,1)),1); 

        for layer = 1:length(uniquelayer) 

            for contour = 1:max(GLOBAL_scancloud(:,2)) 

                B = GLOBAL_scancloud(GLOBAL_scancloud(:,1)==uniquelayer(layer)... 

                    & GLOBAL_scancloud(:,2)==contour,:); 

                SCANPLOT = plot(B(:,3),B(:,4), '.r'); 

  

                contour 

                pause 

            end 

            pause; 

            %pause(0.001); 

            cla; 

        end 
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        pause; 

        close(h); 

    %} 

     

    %Selecting layers to use to align the scan paths together 

    %-Scan Path 

      SliderScan(GLOBAL_scancloud); 

      h = msgbox('Please specify a reference layer to align with the CT image.'); 

      waitfor(h); 

      slideref = str2double(inputdlg('Reference layer: ','Input',1,{'1'}, ... 

                 GLOBAL_OPTIONS)); 

      close(); 

    %-CT Images 

      SlideScanComb(aligned,GLOBAL_scancloud,slideref); 

      h = msgbox('Please specify a layer with similar features.'); 

      waitfor(h); 

      imageref = str2double(inputdlg('Matching layer: ','Input',1,{'1'}, ... 

                 GLOBAL_OPTIONS)); 

      close(); 

  

    %Selecting the layer to use to anchor the scan paths 

    %-Scan Path  

      SliderScan(GLOBAL_scancloud); 

      h = msgbox('Please specify which layer to anchor to the CT Image'); 

      waitfor(h); 

      GLOBAL_slidealign = str2double(inputdlg('Reference layer: ','Input',1, ... 

                          {'1'},GLOBAL_OPTIONS)); 

      close(); 

    %-CT Image stack 

      SlideScanComb(aligned,GLOBAL_scancloud,GLOBAL_slidealign); 

      h = msgbox('Please select the layer to anchor the scan path to.'); 

      waitfor(h); 

      GLOBAL_imagealign = str2double(inputdlg('Matching layer: ','Input',1,... 

                          {'1'},GLOBAL_OPTIONS)); 

      close(); 

  

    %Aligning the image to fit the scan-path 

    lastrotate = 0; %Current rotation of image 

    lastcol = 0;    %X-translation of image 

    lastrow = 0;    %Y-translation of image 

    alignokay = 0;  %Variable to check if image is properly aligned 

    figure 

    while ~alignokay 

        %Showing the last rotated image 

        imshow(imrotate(aligned(:,:,imageref),lastrotate,'crop')); 

        hold on; 

        %Overlay scan path on top 

        uniquelayer = flip(unique(GLOBAL_scancloud(:,1)),1); 

        for contour = 1:max(GLOBAL_scancloud(GLOBAL_scancloud(:,1)==uniquelayer(slideref),2)) 

            A = GLOBAL_scancloud(GLOBAL_scancloud(:,1)==uniquelayer(slideref)... 

                & GLOBAL_scancloud(:,2)==contour,:); 

            plot(A(:,3)+lastcol,A(:,4)-lastrow, 'b'); 

        end 

  

        %Checking if the rotation is satisfactory 

        check = questdlg('Is the image aligned correctly to the scan path?', ... 

       'Image Alignment','Yes','No','Yes'); 

        if strcmp(check,'No') 

            input = inputdlg({'Move X: ','Move Y: ','Rotate: '},... 

              'Input', [1; 1; 1],{num2str(lastcol), num2str(lastrow), ... 

              num2str(lastrotate)}, GLOBAL_OPTIONS);  

            lastcol = str2double(input(1)); 

            lastrow = str2double(input(2)); 

            lastrotate = str2double(input(3)); 

            hold off; 

        else 

            alignokay = 1; 
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            GLOBAL_scancloud(:,3) = GLOBAL_scancloud(:,3)+lastcol; 

            GLOBAL_scancloud(:,4) = GLOBAL_scancloud(:,4)-lastrow; 

            aligned = imrotate(aligned,lastrotate,'crop'); 

            close(); 

        end 

    end  

     

    %Plotting and saving all values 

    SCANPLOT = figure; 

    set(SCANPLOT,'Visible','off'); 

    h = waitbar(0, 'Exporting overlaid images:'); 

    vsize = GLOBAL_VSIZE(GLOBAL_ITERATION-1)/1000; %Changing units of GLOBAL_VSIZE 

    temparray = []; 

    for i = 1:length(aligned(1,1,:)) 

        %Absolute distance away from the anchor CT image 

        dist = abs(GLOBAL_imagealign-i)*vsize;     

  

        if (i > GLOBAL_imagealign) 

            %Number of indexes away from the anchor     

            dist = floor(dist/USER_LAYER_THICKNESS); 

            index = GLOBAL_slidealign + dist; 

        elseif (i < GLOBAL_imagealign) 

            %Number of indexes away from the anchor 

            dist = ceil(dist/USER_LAYER_THICKNESS); 

            index = GLOBAL_slidealign - dist; 

        else 

            index = GLOBAL_slidealign; 

        end 

  

        %If the indexes are within the range, plot both the scan and the part 

        SCANPLOT = imshow(aligned(:,:,i)); 

        hold on; 

        if ~(index<1 || index > length(uniquelayer)) 

            for contour = 

1:max(GLOBAL_scancloud(GLOBAL_scancloud(:,1)==uniquelayer(index),2)) 

                A = GLOBAL_scancloud(GLOBAL_scancloud(:,1)==uniquelayer(index)... 

                    & GLOBAL_scancloud(:,2)==contour,:); 

                SCANPLOT = plot(A(:,3),A(:,4), 'b'); 

                dlmwrite(strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),... 

                         USER_DIR(1,:),'VolumetricContour-', ... 

                         GLOBAL_FILENAME(GLOBAL_ITERATION,:),'.txt'),... 

                         [temparray ; i*ones(size(A,1),1) A],'-append'); 

            end 

        end 

        hold off 

        saveas(SCANPLOT,strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(1,:),... 

            'Scanpath-',GLOBAL_FILENAME(GLOBAL_ITERATION,:),'-',num2str(i),... 

            '.png')); 

        waitbar(i/length(aligned(1,1,:)),h,strcat('Exporting overlaid images: 

',num2str(i),'/',num2str(length(aligned(1,1,:))))); 

    end 

     

    close(h); 

end 

  %}   

%% -------------------------------- [CONE ANGLE REMOVAL] ----------------------%% 

  

% This part of the code is intended to remove areas affected by cone angle.   

% It does so by looking at the alignment (from previous section) and chooses  

% areas where the data becomes consistent. This assumes that the sample are  

% uniform in cross section 

  

% Currently using XY slices, but I should probably use XZ slices to determine  

% where cone angle defect ends 

% I should probably also change it based on average intensity per layer 

  

    %Fitted values (Y-hat) 
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    COLhat = polyval(alignCOL,truecenter(:,3)); 

    ROWhat = polyval(alignROW,truecenter(:,3)); 

     

    %True Values 

    COLt = truecenter(:,1); 

    ROWt = truecenter(:,2); 

     

    %Error (% Difference) 

    ECOL = abs(COLhat - COLt)./COLt; 

    EROW = abs(ROWhat - ROWt)./ROWt; 

  

    %Height cropping is set for when error drops below CONE_ANGLE_TOLERANCE 

    check = USER_CONE_ANGLE_TOLERANCE; 

     

    %Determining the cropping off the bottom 

    j = floor(stackheight/2); %Indexing starts at the middle of the stack 

    while (ECOL(j) <= check && EROW(j) <= check && j > 0) 

       j=j-1;%Decrement until error is really bad 

    end 

    bot = j; 

     

    %Applying the extra cropping to be conservative 

    if (j + USER_CONE_ANGLE_EXTRACROP) < length(ECOL) 

        bot = j + USER_CONE_ANGLE_EXTRACROP; 

        j = bot; 

    else 

        bot = j; 

    end 

     

    %Determining the cropping off the top 

    j = floor(stackheight/2); %Indexing starts at the middle of the stack 

    while (ECOL(j) <= check && EROW(j) <= check) && j < length(ECOL) 

       j=j+1;%Increase until error is really bad 

    end 

    top = j; 

     

    %Applying the extra cropping 

    if (j - USER_CONE_ANGLE_EXTRACROP) > bot 

        top = j - USER_CONE_ANGLE_EXTRACROP; 

    else 

        top = j; 

    end 

     

    %If 'auto mode' is off, prompt the user for ranges for the crop 

    if ~GLOBAL_AUTO 

        Slider(aligned); 

        h = msgbox('Please select lower and upper layers for cone angle removal'); 

        waitfor(h); 

        bot = str2double(inputdlg('Lower: ','Input',1,{num2str(bot)},GLOBAL_OPTIONS)); 

        top = str2double(inputdlg('Upper: ','Input',1,{num2str(top)},GLOBAL_OPTIONS)); 

        close(); 

    end 

  

    %Performing the height crop 

    h = waitbar(1,'Removing cone angle effected areas'); 

    aligned(:,:,1:bot-1) = 0; 

    aligned(:,:,top+1:end) = 0; 

    %aligned = aligned(:,:,bot:top); %Height cropping 

    close(h); 

  

    %If automatic mode is off, Output result and close all figures after  

    %User presses a button 

    if ~GLOBAL_AUTO 

        close(); 

        Slider(aligned); 

        pause; 

        close(); 
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    end     

  

    clearvars -except aligned bwtif intensity GLOBAL_* USER_* 

  

%% ---------------------------[SEGMENTATION] -------------------------------- %% 

     

    h = waitbar(1,'Segmenting image...'); 

    %Height of stack (need to find again because stackheight has changed) 

    stackheight = length(aligned(1,1,:)); 

     

    %Peak identification (refer to previous section for explanation) 

    bincount = floor(65535/USER_BINWIDTH_PORES);  

  

    %Histograph extraction 

    [counts, bin] = histcounts(aligned(:,:,:), bincount); 

    bincenters = (bin(1:end-1) + bin(2:end))/2; 

     

    %Removes the first and last entry (these two limits have absurdly high bin  

    %counts because of cylindrical space translation to rectangular, as well as  

    %from previous operations). Removing this doesn't improve peak  

    %identification by much, but helps with debugging 

    counts(1) = 0; 

    counts(length(counts)) = 0; 

  

    %Peak finding (used to threshhold the pores) 

    [pks, locs] = findpeaks(counts,'MinPeakWidth',USER_PWIDTH_PORES,'NPeaks',... 

        USER_NPEAK_PORES); 

  

    %Determining threshholding values 

    check = int16(pks*USER_BINARYMASK_INTENSITY_SCALE); 

    j = locs; %Indexing starts at current peak 

    while(counts(j)>check  && j>1) 

       j=j-1;%Incrementally decreases (looks at left tail of histogram) 

    end 

    range = ceil(bincenters(j)); %Makes note of the threshhold on histogram 

     

    %Adjusts the contrast/brightness and creates a binary image 

    bwtif = aligned; 

    bwtif(bwtif<range)=0; 

    bwtif(bwtif>=range)=1; 

    bwtif = logical(bwtif); 

     

    %3D Array representing how the flood grows (3D Cross) 

    FloodFilter = nhood3(USER_NEIGHBOUR_FLOOD); 

     

    %3D Array representing how the noise is reduced 

    NoiseFilter = nhood3(USER_NEIGHBOUR_NOISE); 

  

    %Starting point of the flood fill 

    x = USER_X; 

    y = USER_Y; 

    z = floor(length(aligned(1,1,:))*USER_Z); 

    loc = [y x z]; 

     

    %Masking the cone-angle removed regions 

    range = squeeze(mean(mean(aligned))); 

    first = find(range~=0,1,'first'); 

    last = find(range~=0,1,'last'); 

    bwtif(:,:,1:first-1) = 1; 

    bwtif(:,:,last+1:end) = 1; 

     

    %Performing the flood fill, and other stuff 

    waitbar(0.25,h,'Removing noise...') 

    bwtif = ~imopen(~bwtif,NoiseFilter);   %Removes noise 

    waitbar(0.5,h,'Finding pores using flood-fill... (may take some time!)') 

    bwtif2 = ~imfill(bwtif,loc);            %Pores 
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    %Unmasking... 

    bwtif(:,:,1:first-1) = 0; 

    bwtif(:,:,last+1:end) = 0; 

     

    %Miscellaneous operations 

    waitbar(0.75,h,'Determining total volume...') 

    bwtif3 = logical(bwtif2+bwtif);         %Part with pores filled 

    waitbar(0.95,h,'Isolating background...') 

    bwtif4 = ~bwtif3;                       %Background only 

    close(h); 

     

    clearvars -except aligned intensity ... 

           bwtif bwtif2 bwtif3 bwtif4 ... 

           stackheight GLOBAL_* USER_* 

        

  

    %% ---------------------  [PORE STATISTICS] ------------------------- %% 

     

    %Output directory for pore data 

    %Fully aligned part 

    output_directory = strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(2,:));  

    if(~exist(output_directory,'dir')) 

        [status, msg, msgid] = mkdir(output_directory); 

    end 

     

    %Finding all the pores, and labelling each with a unique number 

    pdistr = bwconncomp(bwtif2,USER_NEIGHBOUR_PORE); 

    pdistr_labelled = labelmatrix(pdistr); 

     

    %Finding location and volume of each pore (centroid) 

    poredata = regionprops(pdistr,'Centroid','Area','Image'); 

    %pcentroid = cat(1,poredata.Centroid); 

     

    %Finding orientation of each pore 

    %Extracted from regionprops3 by Chaoyuan Yeh 

    %https://www.mathworks.com/MATLabcentral/fileexchange/47578-regionprops3 

    pixList = regionprops(pdistr, 'PixelList'); 

    for i = 1:length(pixList) 

        pixs = struct2array(pixList(i)); 

        covmat = cov(pixs); 

        [eVectors, eValues] = eig(covmat); 

        eValues = diag(eValues); 

        [eValues, idx] = sort(eValues,'descend'); 

  

        pores(i).FirstAxis = eVectors(:,idx(1))'; %#ok<*SAGROW> 

        pores(i).SecondAxis = eVectors(:,idx(2))'; 

        pores(i).ThirdAxis = eVectors(:,idx(3))'; 

        pores(i).EigenValues = eValues';  

        distMat = sum(pixs.*repmat(eVectors(:,idx(1))',size(pixs,1),1),2); 

        pores(i).FirstAxisLength = range(distMat); 

        distMat = sum(pixs.*repmat(eVectors(:,idx(2))',size(pixs,1),1),2); 

        pores(i).SecondAxisLength = range(distMat); 

        distMat = sum(pixs.*repmat(eVectors(:,idx(3))',size(pixs,1),1),2); 

        pores(i).ThirdAxisLength = range(distMat); 

        pores(i).Centroid = mean(pixs,1); 

        pores(i).MeridionalEccentricity = sqrt(1-(eValues(3)/eValues(1))^2); 

        pores(i).EquatorialEccentricity = sqrt(1-(eValues(3)/eValues(2))^2); 

        pores(i).Volume = poredata(i).Area; 

    end 

    writetable(struct2table(pores), strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),... 

               USER_DIR(2,:),'PoreData-',... 

               GLOBAL_FILENAME(GLOBAL_ITERATION,:),'.txt')) 

     

    %Pore size distribution 

    pvolume = cat(1,pores.Volume); 

    [N, edges] = histcounts(pvolume); 

     %Converting voxel^3 to um^3 
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    edgesu = edges(2:length(edges))*GLOBAL_VSIZE(GLOBAL_ITERATION-1)^3; 

    bplot = bar(edgesu,N); 

    xlabel('Volume [um^3]'); 

    ylabel('Count');    

    saveas(bplot,strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(2,:),... 

           'PoreSizeDistribution-',... 

           GLOBAL_FILENAME(GLOBAL_ITERATION,:),'.png')); 

    delete(bplot); 

    close(); 

            

 %% ------------------------[OUTPUT SECTION]---------------------------------%% 

  

 %Output structure for the entire part 

    p = strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(3,:)); %Fully aligned part 

    p = char(p,strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(4,:))); %Segmented part 

    p = char(p,strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(5,:))); %Pore only 

    p = char(p,strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(6,:))); %Result Summary 

    for i = 1:length(p(:,1)) 

        if(~exist(p(i,:),'dir')) 

            [status, msg, msgid] = mkdir(p(i,:)); 

        end 

    end 

  

    h = waitbar(0,'Getting porosity as a function of radius...');     

    %Plotting as a function of radius-------------------------------------- 

    %Flattening pores across all Z-values 

    rad1 = (~squeeze(max(permute(bwtif3, [3 1 2])))); 

    rad2 = (squeeze(max(permute(bwtif2, [3 1 2])))); 

    rad3 = ~logical(rad1 + rad2); 

    %Plotting the result, scaling, and labelling the figure 

    XYplot = image(imresize(rad3,[GLOBAL_VSIZE(GLOBAL_ITERATION-1)*... 

        (length(bwtif(:,1,1))) ... 

        GLOBAL_VSIZE(GLOBAL_ITERATION-1)*length(bwtif(1,:,1))])); 

    colormap(gray(2)); 

    axis([0 GLOBAL_VSIZE(GLOBAL_ITERATION-1)*(length(bwtif(1,:,1))) 0 ... 

         GLOBAL_VSIZE(GLOBAL_ITERATION-1)*... 

         length(bwtif(:,1,1))]); 

    xlabel('X [um]'); 

    ylabel('Y [um]'); 

    set(gcf,'Position', [0.13 0.11 600 600]); 

    pbaspect([1 1 1]) 

    %Exporting figure to file 

    saveas(XYplot,strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(6,:), ... 

           'XYgraph-',GLOBAL_FILENAME(GLOBAL_ITERATION,:),'.png')); 

    delete(XYplot); 

    close(); 

       

    waitbar(0.5,h,'Getting porosity as a function of Z...');  

    %Plotting and saving porosity as a function of Z 

    %Flattening pores across all Y-Values 

    Zmask  = squeeze(max(bwtif2)); 

    Zmask2 = ~squeeze(max(~bwtif4)); 

    Zmask3 = ~(Zmask2+Zmask); 

    %Calculating porosity as as function of Z 

    Zpore = zeros(stackheight,1); 

    for i = 1:stackheight 

        d2pore = sum(sum(bwtif2(:,:,i))); 

        d2part = sum(sum(bwtif3(:,:,i))); 

        if d2part == 0 

            Zpore(i) = 1; 

        else 

            Zpore(i) = 1-d2pore/d2part; 

        end 

    end 

    %Plotting, labelling, and scaling all the figures 

    Zplot = figure('Position',[0.13 0.11 1000 1000]); 

    subplot(4,1,1); 



 

 208 

    plot(GLOBAL_VSIZE(GLOBAL_ITERATION-1)*(1:length(bwtif(1,1,:))),Zpore); 

    axis([0 GLOBAL_VSIZE(GLOBAL_ITERATION-1)*(length(bwtif(1,1,:))) ... 

        min(Zpore) max(Zpore)]); 

    xlabel('Height [um]'); 

    ylabel('Solid Fraction'); 

    subplot(4,1,2:4); 

    image(imresize(Zmask3,[GLOBAL_VSIZE(GLOBAL_ITERATION-1)*length(bwtif(1,:,1)) ... 

          GLOBAL_VSIZE(GLOBAL_ITERATION-1)*length(bwtif(1,1,:))])); 

    axis([0 GLOBAL_VSIZE(GLOBAL_ITERATION-1)*(length(bwtif(1,1,:))) 0 ... 

         GLOBAL_VSIZE(GLOBAL_ITERATION-1)*length(bwtif(1,:,1))]); 

    colormap(gray(2)); 

    xlabel('Height [um]'); 

    ylabel('Distance [um]');    

    Zplot.PaperPositionMode = 'auto'; 

    %Exporting image to file 

    saveas(Zplot,strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(6,:), ... 

           'Zgraph-',GLOBAL_FILENAME(GLOBAL_ITERATION,:),'.png')); 

     

    %Saving data as a plot 

    Zpore = [ (1:stackheight)' Zpore(:) ]; %#ok<*NASGU> 

    save(strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(6,:),'Zdata-', ... 

                GLOBAL_FILENAME(GLOBAL_ITERATION,:),'.txt'),'Zpore', '-ascii'); 

    delete(Zplot); 

     

    waitbar(0.95,h,'Getting total porosity as a function of Z...');  

    %Total Porosity------------------------------------------------------E-- 

    totalpore = 1-sum(sum(sum(bwtif2)))/sum(sum(sum(bwtif3))); 

    save(strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(6,:),... 

                'Porosity-',GLOBAL_FILENAME(GLOBAL_ITERATION,:),'.txt'),... 

                'totalpore', '-ascii'); 

     

    %Saving the total porosity to compare with all other analyzed 

    %filestacks 

    GLOBAL_GRANDTOTALPORE = [GLOBAL_GRANDTOTALPORE ; ... 

                            [totalpore GLOBAL_ITERATION-1]]; 

     

    waitbar(0,h,'Writing images (Full): '); 

    %Writing images 

    for i = 1:stackheight 

        imwrite(aligned(:,:,i),strcat(GLOBAL_PATH(GLOBAL_ITERATION,:), ... 

                USER_DIR(3,:),num2str(i),'.tiff'),'Compression' ,'none'); 

        imwrite(bwtif(:,:,i),strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),... 

                USER_DIR(4,:),num2str(i),'.tiff'),'tiff','Compression', 'none'); 

        imwrite(bwtif2(:,:,i),strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),... 

                USER_DIR(5,:),num2str(i),'.tiff'),'tiff','Compression', 'none'); 

        waitbar(i/stackheight,h,strcat('Writing images (Full): ',... 

                num2str(i),'/',num2str(stackheight))); 

    end 

    close(h); 

     

     

    %clearvars -except path GLOBAL_* USER_*           

            

    %% -----Truncating the data to look at specific regions-------------------%% 

     

    %Refinding the center (because part was cropped) 

    [truecenter, truediameter] = partalign(bwtif); 

     

    centerX = nanmean(truecenter(:,1)); %Center along horizontal  

    centerY = nanmean(truecenter(:,2)); %Center along vertical  

    circleRAD = nanmean(truediameter)/2; 

  

    h = waitbar(0,'Removing truncated regions: '); 

    %Removing the truncated region 

    PERCENTREMOVE = 0.10; %Truncate 10% 

    for i = 1:length(bwtif(1,:,1)) 

        for j = 1:length(bwtif(:,1,1)) 



 

 209 

            tempradius = sqrt((i - centerX)^2 + (j - centerY)^2); 

            if USER_TRUNC 

                if tempradius > (1-PERCENTREMOVE)*circleRAD 

                    bwtif(j,i,:) = 0; 

                    bwtif2(j,i,:) = 0; 

                    bwtif3(j,i,:) = 0; 

                    bwtif4(j,i,:) = 1; 

                end 

            else 

                if tempradius < (1-PERCENTREMOVE)*circleRAD 

                    bwtif(j,i,:) = 0; 

                    bwtif2(j,i,:) = 0; 

                    bwtif3(j,i,:) = 0; 

                    bwtif4(j,i,:) = 1; 

                end 

            end 

        end 

        waitbar(i/length(bwtif(1,:,1)),h,strcat(... 

            'Removing truncated region: ',num2str(i),'/',... 

            num2str(length(bwtif(1,:,1))))); 

    end 

    close(h); 

     

     

    %% -------Outputting again, but this time without truncated region--------%% 

     

    p = strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(7,:)); 

    p = char(p,strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(8,:))); 

    p = char(p,strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(9,:))); 

    for i = 1:length(p(:,1)) 

        if(~exist(p(i,:),'dir')) 

            [status, msg, msgid] = mkdir(p(i,:)); 

        end 

    end 

     

    %----------------------------------------------------% 

    %Finding all the pores, and labelling each with a unique number 

     

    clear pdistr pdistr_labelled poredata pores pixList 

     

    pdistr = bwconncomp(bwtif2,USER_NEIGHBOUR_PORE); 

    pdistr_labelled = labelmatrix(pdistr); 

     

    %Finding location and volume of each pore (centroid) 

    poredata = regionprops(pdistr,'Centroid','Area','Image'); 

    %pcentroid = cat(1,poredata.Centroid); 

     

    %Finding orientation of each pore 

    %Extracted from regionprops3 by Chaoyuan Yeh 

    %https://www.mathworks.com/MATLabcentral/fileexchange/47578-regionprops3 

    pixList = regionprops(pdistr, 'PixelList'); 

    for i = 1:length(pixList) 

        pixs = struct2array(pixList(i)); 

        covmat = cov(pixs); 

        [eVectors, eValues] = eig(covmat); 

        eValues = diag(eValues); 

        [eValues, idx] = sort(eValues,'descend'); 

  

        pores(i).FirstAxis = eVectors(:,idx(1))'; %#ok<*SAGROW> 

        pores(i).SecondAxis = eVectors(:,idx(2))'; 

        pores(i).ThirdAxis = eVectors(:,idx(3))'; 

        pores(i).EigenValues = eValues';  

        distMat = sum(pixs.*repmat(eVectors(:,idx(1))',size(pixs,1),1),2); 

        pores(i).FirstAxisLength = range(distMat); 

        distMat = sum(pixs.*repmat(eVectors(:,idx(2))',size(pixs,1),1),2); 

        pores(i).SecondAxisLength = range(distMat); 

        distMat = sum(pixs.*repmat(eVectors(:,idx(3))',size(pixs,1),1),2); 
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        pores(i).ThirdAxisLength = range(distMat); 

        pores(i).Centroid = mean(pixs,1); 

        pores(i).MeridionalEccentricity = sqrt(1-(eValues(3)/eValues(1))^2); 

        pores(i).EquatorialEccentricity = sqrt(1-(eValues(3)/eValues(2))^2); 

        pores(i).Volume = poredata(i).Area; 

    end 

    if exist('pores') 

        writetable(struct2table(pores), strcat(GLOBAL_PATH(... 

            GLOBAL_ITERATION,:),USER_DIR(2,:),'PoreDataTrunc-',... 

            GLOBAL_FILENAME(GLOBAL_ITERATION,:),'.txt')) 

    else 

        fileid = strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(2,:),... 

            'PoreDataTrunc-',GLOBAL_FILENAME(GLOBAL_ITERATION,:),'.txt'); 

        ftemp = fopen(fileid,'w'); 

        fprintf(ftemp,'No pores found') 

        fclose('all'); 

    end 

    %------------------------------------------------------------------------% 

         

    h = waitbar(0,'Getting porosity as a function of radius...');     

    %Plotting as a function of radius-------------------------------------- 

    %Flattening pores across all Z-values 

    rad1 = (~squeeze(max(permute(bwtif3, [3 1 2])))); 

    rad2 = (squeeze(max(permute(bwtif2, [3 1 2])))); 

    rad3 = ~logical(rad1 + rad2); 

    %Plotting the result, scaling, and labelling the figure 

    XYplot = image(imresize(rad3,[GLOBAL_VSIZE(GLOBAL_ITERATION-1)*... 

        (length(bwtif(:,1,1))) ... 

                   GLOBAL_VSIZE(GLOBAL_ITERATION-1)*length(bwtif(1,:,1))])); 

    colormap(gray(2)); 

    axis([0 GLOBAL_VSIZE(GLOBAL_ITERATION-1)*(length(bwtif(1,:,1))) 0 ... 

        GLOBAL_VSIZE(GLOBAL_ITERATION-1)*... 

          length(bwtif(:,1,1))]); 

    xlabel('X [um]'); 

    ylabel('Y [um]'); 

    set(gcf,'Position', [0.13 0.11 600 600]); 

    pbaspect([1 1 1]) 

    %Exporting figure to file 

    saveas(XYplot,strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(9,:),... 

        'XYgraph-', ... 

           GLOBAL_FILENAME(GLOBAL_ITERATION,:),'.png')); 

    delete(XYplot); 

    close(); 

       

    waitbar(0.5,h,'Getting porosity as a function of Z...');  

    %Plotting and saving porosity as a function of Z----------------------- 

    %Flattening pores across all Y-Values 

    Zmask  = squeeze(max(bwtif2)); 

    Zmask2 = ~squeeze(max(~bwtif4)); 

    Zmask3 = ~(Zmask2+Zmask); 

    %Calculating porosity as as function of Z 

    Zpore = zeros(stackheight,1); 

    for i = 1:stackheight 

        d2pore = sum(sum(bwtif2(:,:,i))); 

        d2part = sum(sum(bwtif3(:,:,i))); 

        if d2part == 0 

            Zpore(i) = 1; 

        else 

            Zpore(i) = 1-d2pore/d2part; 

        end 

    end 

     

    %Plotting, labelling, and scaling all the figures 

    Zplot = figure('Position',[0.13 0.11 700 700]); 

    h = subplot(4,1,1); 

    if min(Zpore) == max(Zpore) 

       out = min(Zpore)*0.99 ; 
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    else 

        out = min(Zpore); 

    end 

    plot(GLOBAL_VSIZE(GLOBAL_ITERATION-1)*(1:length(bwtif(1,1,:))),Zpore); 

    axis([0 GLOBAL_VSIZE(GLOBAL_ITERATION-1)*(length(bwtif(1,1,:))) out max(Zpore)]); 

    xlabel('Height [um]'); 

    ylabel('Solid Fraction'); 

    g = subplot(4,1,2:4); 

    image(imresize(Zmask3,[GLOBAL_VSIZE(GLOBAL_ITERATION-1)*length(bwtif(1,:,1)) ... 

          GLOBAL_VSIZE(GLOBAL_ITERATION-1)*length(bwtif(1,1,:))])); 

    axis([0 GLOBAL_VSIZE(GLOBAL_ITERATION-1)*(length(bwtif(1,1,:))) 0 ... 

          GLOBAL_VSIZE(GLOBAL_ITERATION-1)*length(bwtif(1,:,1))]); 

    colormap(gray(2)); 

    xlabel('Height [um]'); 

    ylabel('Distance [um]');    

    Zplot.PaperPositionMode = 'auto'; 

    %Exporting image to file 

    saveas(Zplot,strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(9,:),... 

          'Zgraph-',GLOBAL_FILENAME(GLOBAL_ITERATION,:),'.png')); 

    delete(Zplot); 

     

    h = waitbar(0.95,'Getting total porosity as a function of Z...');  

    %Total Porosity------------------------------------------------------E-- 

    totalpore = 1-sum(sum(sum(bwtif2)))/sum(sum(sum(bwtif3))); 

    save(strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),USER_DIR(9,:),'Porosity-',... 

         GLOBAL_FILENAME(GLOBAL_ITERATION,:),'.txt'),'totalpore', '-ascii'); 

     

    %Saving the total porosity to compare with all other analyzed 

    %filestacks 

    GLOBAL_GRANDTOTALPORE = [GLOBAL_GRANDTOTALPORE ; [totalpore ... 

        GLOBAL_ITERATION-1]]; 

     

     

    waitbar(0,h,'Writing images (with truncation): '); 

    %Writing images 

    for i = 1:stackheight 

        imwrite(bwtif(:,:,i),strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),... 

            USER_DIR(7,:),num2str(i),... 

                '.tiff'),'tiff','Compression', 'none'); 

        imwrite(bwtif2(:,:,i),strcat(GLOBAL_PATH(GLOBAL_ITERATION,:),... 

            USER_DIR(8,:),num2str(i),'.tiff'),... 

                'tiff','Compression', 'none'); 

        waitbar(i/stackheight,h,strcat('Writing images (Core): ',num2str(i),... 

            '/',num2str(stackheight))); 

    end 

    close(h);    

     

    disp(strcat('Image Stacks Completed: ',num2str(GLOBAL_ITERATION-1),'/',... 

        num2str(length(GLOBAL_PATH(:,1))-1))); 

     

    clearvars -except path GLOBAL_* USER_*    

     

     

end 

%% -------------------------------------------------------------------------- %% 

completed = questdlg(... 

'Completed! Would you like to save a file detailing the total porosity between parts?', ... 

                     'Voxel Size','Yes','No','Yes'); 

if strcmp(completed,'Yes') 

    directory = uigetdir('*.*','Select a directory'); 

    save(strcat(directory,'\totalporosity.txt'),'GLOBAL_GRANDTOTALPORE', '-ascii'); 

end 

  

%Removes all variables from memory 

clear all ; close all; clc; 
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function Slider(image) 

  

NumFrames = length(image(1,1,:)); %// Check below for dummy 4D matrix/image sequence 

hFig = figure('Position',[100 100 500 500],'Units','normalized'); 

  

handles.axes1 = axes('Units','normalized','Position',[0 .2 1 .75]); 

  

%// Create slider and listener object for smooth visualization 

handles.SliderFrame = uicontrol('Style','slider','Position',[60 20 400 25],... 

    'Min',1,'Max',NumFrames,'Value',1,'SliderStep',[1/NumFrames 2/NumFrames],... 

    'Callback',@XSliderCallback); 

handles.SliderxListener = addlistener(handles.SliderFrame,'Value','PostSet',... 

    @(s,e) XListenerCallBack); 

  

handles.Text1 = uicontrol('Style','Text','Position',[150 55 60 25],'String',... 

    'Current frame'); 

handles.Edit1 = uicontrol('Style','Edit','Position',[200 55 100 25],'String',... 

    '1'); 

  

%// Use setappdata to store the image stack and in callbacks, use getappdata to  

%retrieve it and use it. Check the docs for the calling syntax. 

  

setappdata(hFig,'image',image); %// You could use %//setappdata 

%(0,'MyMatrix',MyMatrix) to store in the base workspace.  

  

%// Display 1st frame 

imshow(image(:,:,1)) 

  

%// IMPORTANT. Update handles structure. 

guidata(hFig,handles); 

  

%// Listener callback, executed when you drag the slider. 

  

    function XListenerCallBack 

  

        %// Retrieve handles structure. Used to let MATLAB recognize the 

        %// edit box, slider and all UI components. 

        handles = guidata(gcf); 

  

%// Here retrieve MyMatrix using getappdata. 

MyMatrix = getappdata(hFig,'image'); 

  

        %// Get current frame 

        CurrentFrame = round((get(handles.SliderFrame,'Value'))); 

        set(handles.Edit1,'String',num2str(CurrentFrame)); 

  

        %// Display appropriate frame. 

        imshow(image(:,:,CurrentFrame),'Parent',handles.axes1); 

  

        guidata(hFig,handles); 

    end 

  

  

%// Slider callback; executed when the slider is release or you press 

%// the arrows. 

    function XSliderCallback(~,~) 

  

        handles = guidata(gcf); 

  

%// Here retrieve MyMatrix using getappdata. 

    MyMatrix = getappdata(hFig,'image'); 

  

        CurrentFrame = round((get(handles.SliderFrame,'Value'))); 

        set(handles.Edit1,'String',num2str(CurrentFrame)); 
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        imshow(MyMatrix(:,:,CurrentFrame),'Parent',handles.axes1); 

  

        guidata(hFig,handles); 

    end 

  

end 

  

 

 

function SliderScan(scanpath) 

  

%Modified 'Slider.m' function to display scan paths 

  

uniquelayer = flip(unique(scanpath(:,1)),1); 

  

NumFrames = length(uniquelayer); %// Check below for dummy 4D matrix/image  

%sequence 

hFig = figure('Position',[100 100 500 500],'Units','normalized'); 

  

%handles.axes1 = axes('Units','normalized','Position',[0 .2 1 .75]); 

handles.axes1 = axes('Units','normalized','Position',[0.15 0.2 .75 .75]); 

  

%// Create slider and listener object for smooth visualization 

handles.SliderFrame = uicontrol('Style','slider','Position',[60 20 400 25],... 

    'Min',1,'Max',NumFrames,'Value',1,'SliderStep',[1/NumFrames 2/NumFrames],... 

    'Callback',@XSliderCallback); 

handles.SliderxListener = addlistener(handles.SliderFrame,'Value','PostSet',... 

    @(s,e) XListenerCallBack); 

  

handles.Text1 = uicontrol('Style','Text','Position',[150 55 60 25],'String',... 

    'Current frame'); 

handles.Edit1 = uicontrol('Style','Edit','Position',[200 55 100 25],'String',... 

    '1'); 

  

%// Use setappdata to store the image stack and in callbacks, use getappdata to  

%retrieve it and use it. Check the docs for the calling syntax. 

  

setappdata(hFig,'image',scanpath); %// You could use %//setappdata(0,'MyMatrix', 

%MyMatrix) to store in the base workspace.  

  

%// Display 1st frame 

%imshow(scanpath(:,:,1)) 

for contour = 1:max(scanpath(:,2)) 

    A = scanpath(scanpath(:,1)==uniquelayer(1) & scanpath(:,2)==contour,:); 

    plot(A(:,3),-A(:,4), 'b'); 

    hold on 

end 

hold off 

set(gca,'xtick',[],'ytick',[]) 

  

%// IMPORTANT. Update handles structure. 

guidata(hFig,handles); 

  

%// Listener callback, executed when you drag the slider. 

  

    function XListenerCallBack 

  

        %// Retrieve handles structure. Used to let MATLAB recognize the 

        %// edit box, slider and all UI components. 

        handles = guidata(gcf); 

  

%// Here retrieve MyMatrix using getappdata. 

MyMatrix = getappdata(hFig,'image'); 

  

        %// Get current frame 
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        CurrentFrame = round((get(handles.SliderFrame,'Value'))); 

        set(handles.Edit1,'String',num2str(CurrentFrame)); 

  

        %// Display appropriate frame. 

        %imshow(scanpath(:,CurrentFrame),'Parent',handles.axes1); 

         

        for contour = 1:max(scanpath(:,2)) 

            A = scanpath(scanpath(:,1)==uniquelayer(CurrentFrame) & ... 

                scanpath(:,2)==contour,:); 

            plot(A(:,3),-A(:,4), 'b', 'Parent', handles.axes1); 

            hold on 

        end 

        hold off 

        set(gca,'xtick',[],'ytick',[]) 

  

        guidata(hFig,handles); 

    end 

  

  

%// Slider callback; executed when the slider is release or you press 

%// the arrows. 

    function XSliderCallback(~,~) 

  

        handles = guidata(gcf); 

  

%// Here retrieve MyMatrix using getappdata. 

    MyMatrix = getappdata(hFig,'image'); 

  

        CurrentFrame = round((get(handles.SliderFrame,'Value'))); 

        set(handles.Edit1,'String',num2str(CurrentFrame)); 

  

        %imshow(MyMatrix(:,:,CurrentFrame),'Parent',handles.axes1); 

         

            for contour = 1:max(scanpath(:,2)) 

                A = scanpath(scanpath(:,1)==uniquelayer(CurrentFrame) & ... 

                    scanpath(:,2)==contour,:); 

                plot(A(:,3),-A(:,4), 'b','Parent',handles.axes1); 

                hold on 

            end 

        hold off 

        set(gca,'xtick',[],'ytick',[]) 

  

        guidata(hFig,handles); 

    end 

  

end 

  

 

 

function SlideScanComb(CTimage,scanpath,slideref) 

  

%Modified 'Slider.m' function to display scan paths 

  

uniquelayer = flip(unique(scanpath(:,1)),1); 

  

NumFrames = length(CTimage(1,1,:)); %// Check below for dummy 4D matrix/image  

%sequence 

hFig = figure('Position',[100 100 500 500],'Units','normalized'); 

  

%handles.axes1 = axes('Units','normalized','Position',[0 .2 1 .75]); 

handles.axes1 = axes('Units','normalized','Position',[0.15 0.2 .75 .75]); 

  

%// Create slider and listener object for smooth visualization 

handles.SliderFrame = uicontrol('Style','slider','Position',[60 20 400 25],... 

    'Min',1,'Max',NumFrames,'Value',1,'SliderStep',[1/NumFrames 2/NumFrames],... 

    'Callback',@XSliderCallback); 
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handles.SliderxListener = addlistener(handles.SliderFrame,'Value','PostSet',... 

    @(s,e) XListenerCallBack); 

  

handles.Text1 = uicontrol('Style','Text','Position',[150 55 60 25],'String',... 

    'Current frame'); 

handles.Edit1 = uicontrol('Style','Edit','Position',[200 55 100 25],'String',... 

    '1'); 

  

%// Use setappdata to store the image stack and in callbacks, use getappdata to retrieve it 

and use it. Check the docs for the calling syntax. 

  

setappdata(hFig,'image',scanpath); %// You could use %//setappdata(0,'MyMatrix',MyMatrix) to 

store in the base workspace.  

  

%// Display 1st frame 

%imshow(scanpath(:,:,1)) 

imshow(CTimage(:,:,1)); 

hold on; 

for contour = 1:max(scanpath(:,2)) 

    A = scanpath(scanpath(:,1)==uniquelayer(slideref) & scanpath(:,2)==contour,... 

        :); 

    plot(A(:,3),A(:,4), 'b'); 

end 

hold off 

set(gca,'xtick',[],'ytick',[]) 

  

%// IMPORTANT. Update handles structure. 

guidata(hFig,handles); 

  

%// Listener callback, executed when you drag the slider. 

  

    function XListenerCallBack 

  

        %// Retrieve handles structure. Used to let MATLAB recognize the 

        %// edit box, slider and all UI components. 

        handles = guidata(gcf); 

  

%// Here retrieve MyMatrix using getappdata. 

MyMatrix = getappdata(hFig,'image'); 

  

        %// Get current frame 

        CurrentFrame = round((get(handles.SliderFrame,'Value'))); 

        set(handles.Edit1,'String',num2str(CurrentFrame)); 

  

        %// Display appropriate frame. 

        %imshow(scanpath(:,CurrentFrame),'Parent',handles.axes1); 

        imshow(CTimage(:,:,CurrentFrame)); 

        hold on;         

        for contour = 1:max(scanpath(:,2)) 

            A = scanpath(scanpath(:,1)==uniquelayer(slideref) &... 

                scanpath(:,2)==contour,:); 

            plot(A(:,3),A(:,4), 'b', 'Parent', handles.axes1); 

            hold on 

        end 

        hold off 

        set(gca,'xtick',[],'ytick',[]) 

  

        guidata(hFig,handles); 

    end 

  

  

%// Slider callback; executed when the slider is release or you press 

%// the arrows. 

    function XSliderCallback(~,~) 

  

        handles = guidata(gcf); 
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%// Here retrieve MyMatrix using getappdata. 

    MyMatrix = getappdata(hFig,'image'); 

  

        CurrentFrame = round((get(handles.SliderFrame,'Value'))); 

        set(handles.Edit1,'String',num2str(CurrentFrame)); 

  

        %imshow(MyMatrix(:,:,CurrentFrame),'Parent',handles.axes1); 

        imshow(CTimage(:,:,CurrentFrame)); 

        hold on;         

        for contour = 1:max(scanpath(:,2)) 

            A = scanpath(scanpath(:,1)==uniquelayer(slideref) &... 

                scanpath(:,2)==contour,:); 

            plot(A(:,3),A(:,4), 'b', 'Parent', handles.axes1); 

            hold on 

        end 

        hold off 

        set(gca,'xtick',[],'ytick',[]) 

  

        guidata(hFig,handles); 

    end 

  

end 

  

 

 

 

function SlideStack(CTimage,scanpath,slideref) 

  

  

if nargin == 1 

    error('SlideStack: You require at least one input'); 

elseif nargin == 3 

    error('SlideStack:'); 

end 

  

  

NumFrames = length(image(1,1,:)); %// Check below for dummy 4D matrix/image  

%sequence 

hFig = figure('Position',[100 100 500 500],'Units','normalized'); 

  

handles.axes1 = axes('Units','normalized','Position',[0 .2 1 .75]); 

  

%// Create slider and listener object for smooth visualization 

handles.SliderFrame = uicontrol('Style','slider','Position',[60 20 400 25],... 

    'Min',1,'Max',NumFrames,'Value',1,'SliderStep',[1/NumFrames 2/NumFrames],... 

    'Callback',@XSliderCallback); 

handles.SliderxListener = addlistener(handles.SliderFrame,'Value','PostSet',... 

    @(s,e) XListenerCallBack); 

  

handles.Text1 = uicontrol('Style','Text','Position',[150 55 60 25],'String',... 

    'Current frame'); 

handles.Edit1 = uicontrol('Style','Edit','Position',[200 55 100 25],'String',... 

    '1'); 

  

%// Use setappdata to store the image stack and in callbacks, use getappdata to 

%retrieve it and use it. Check the docs for the calling syntax. 

  

setappdata(hFig,'image',image); %// You could use %//setappdata(0,'MyMatrix', 

%MyMatrix) to store in the base workspace.  

  

%// Display 1st frame 

imshow(image(:,:,1)) 

  

%// IMPORTANT. Update handles structure. 

guidata(hFig,handles); 
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%// Listener callback, executed when you drag the slider. 

  

    function XListenerCallBack 

  

        %// Retrieve handles structure. Used to let MATLAB recognize the 

        %// edit box, slider and all UI components. 

        handles = guidata(gcf); 

  

%// Here retrieve MyMatrix using getappdata. 

MyMatrix = getappdata(hFig,'image'); 

  

        %// Get current frame 

        CurrentFrame = round((get(handles.SliderFrame,'Value'))); 

        set(handles.Edit1,'String',num2str(CurrentFrame)); 

  

        %// Display appropriate frame. 

        imshow(image(:,:,CurrentFrame),'Parent',handles.axes1); 

  

        guidata(hFig,handles); 

    end 

  

  

%// Slider callback; executed when the slider is release or you press 

%// the arrows. 

    function XSliderCallback(~,~) 

  

        handles = guidata(gcf); 

  

%// Here retrieve MyMatrix using getappdata. 

    MyMatrix = getappdata(hFig,'image'); 

  

        CurrentFrame = round((get(handles.SliderFrame,'Value'))); 

        set(handles.Edit1,'String',num2str(CurrentFrame)); 

  

        imshow(MyMatrix(:,:,CurrentFrame),'Parent',handles.axes1); 

  

        guidata(hFig,handles); 

    end 

  

end 

  

 

function [ truecenter, truediameter ] = partalign(array) 

    %Determines part alignment by fitting circles to every slice 

    h = waitbar(0,'Determining Alignment: '); 

    %Initializing variables... 

    arraylength = length(array(1,1,:)); 

    truecenter = zeros(arraylength,3); 

    truediameter = zeros(arraylength,1); 

    for i = 1:arraylength 

         

        %Fitting circles using MATLAB's 'regionprops' function 

        stats = regionprops('table', array(:,:,i),'centroid',... 

            'MajorAxisLength','MinorAxisLength'); 

        centers = stats.Centroid; %[column_center row_center] 

        diameters = mean([stats.MajorAxisLength stats.MinorAxisLength],2); 

         

        %Since MATLab might find several circles per slice, 

        %Pick only the largest circle 

        if isempty(centers) == 0 

            truecenter(i,1) = centers(diameters == max(diameters),1); 

            truecenter(i,2) = centers(diameters == max(diameters),2); 

            truediameter(i) = diameters(diameters == max(diameters)); 

        else 

        %If no circles are found, set the results equal to 0 (nothing) 

            truecenter(i,1) = NaN; 

            truecenter(i,2) = NaN; 
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            truediameter(i) = NaN; 

        end 

        %Make note of the layer for each circle 

        truecenter(i,3) = i; 

        waitbar(i/arraylength,h,strcat('Determining Alignment: ',num2str(i),... 

            '/',num2str(arraylength))); 

    end 

    close(h); 

  

end 

  

 

function [ output ] = nhood3( A ) 

%Creates a matrix defining the pixel connectivity in 3D Space 

%Refer to https://en.wikipedia.org/wiki/Pixel_connectivity 

  

output = zeros(3,3,3); 

  

    switch A 

        case 6 

            output =        [0 0 0 ; 0 1 0 ; 0 0 0]; 

            output(:,:,2) = [0 1 0 ; 1 1 1 ; 0 1 0]; 

            output(:,:,3) = [0 0 0 ; 0 1 0 ; 0 0 0]; 

        case 18 

            output =        [0 1 0 ; 1 1 1 ; 0 1 0]; 

            output(:,:,2) = [1 1 1 ; 1 1 1 ; 1 1 1]; 

            output(:,:,3) = [0 1 0 ; 1 1 1 ; 0 1 0]; 

        case 24 

            output =        [1 1 1 ; 1 1 1 ; 1 1 1]; 

            output(:,:,2) = [1 1 1 ; 1 1 1 ; 1 1 1]; 

            output(:,:,3) = [1 1 1 ; 1 1 1 ; 1 1 1]; 

        otherwise 

  

    end 

         

  

end 

  

 

function [ output ] = getPath(filepath, layerthickness, pointdistance, ... 

   voxelsize,centerx,centery) 

  

%filepath = scanfilepath; 

%layerthickness = USER_LAYER_THICKNESS; 

%pointdistance = USER_POINT_DISTANCE; 

%voxelsize = GLOBAL_VSIZE(GLOBAL_ITERATION-1); 

%centerx = centerCOL; 

%centery = centerROW; 

  

DEBUG_LENGTH = 30; 

  

%-------------------------------------------------------------------------- 

%This function converts a scan path to point cloud 

  

%Assumes that the file format is a Stratasys Layer File V0 (.SSL) 

%Assumes input units are in INCHES 

%Assumes input part is centered along origin, with  

%increasing Z = increasing height 

  

%The function reads the input file as follows: 

% Z   -> Start a new layer and resets the contour. 

% C   -> End the previous contour and start a new contour 

% END -> End of file 

% ### ### -> If it is a number, add the cooridnate to the current contour 

  

%Note, the .SSL only shows the points associated with the complete line 

%vector, and does not calculate individual exposure points 
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%-------------------------------------------------------------------------- 

%Layer thickness, voxelsizecenterx, and centery are inputs to help align scan. 

%Input units are in [mm], except voxelsize, which is in [um] 

  

%Output format is: 

% [ layer contour x y] 

% Where layer = current layer 

% Where contour = current contour 

% Where [x y] = x,y coordinates for a point that belongs to the contour 

  

%-------------------------------------------------------------------------- 

  

%[NOTE]: Fix the spaghetti code later. It's really messy right now and hard 

%to read 

  

h = waitbar(0, 'Importing scan path'); 

  

%Converting voxelsize from [um] to [mm] 

voxelsize=voxelsize*1E-3; 

  

%Loading the file into memory 

fileImport = importdata(filepath); 

lineCount = length(fileImport); 

  

%Reading the file and labelling layers, contours, and coordinates 

waitbar(0.33,h,'Segregating layers'); 

partition = cell2mat(cellfun(@(x) ... 

   ~isnan(str2double(x(1:((length(x)>4)*4+1))))+... Co-ords labelled as '1' 

   strcmp(x(1),'Z')*2 + ...                      New layers labelled as '2' 

   strcmp(x(1),'C')*3 , ...                    New contours labelled as '3' 

   fileImport,'UniformOutput',false)); 

  

%Finding the location of all the spaces between lines 

%Used when we output coordinates because X-Y components are separated by a 

%space. ex: '-0.093 0.483' 

temp = cellfun(@(x) find(x==' ',1),fileImport,'UniformOutput',false); 

temp(cellfun('isempty',temp))= {0}; 

  

%Segregating the different labels 

layerlocation = find(partition==2); 

contourlocation = find(partition==3); 

xylocation = find(partition==1); 

  

  

waitbar(0.66,h,'Populating array'); 

%Labels every line in the file with the current layer and contour number 

%It is a bit convoluted, but the most time-efficient way I found to do it 

  

%Initializing the layer and contour count as 0 

layer = 1; 

layerarray = zeros(lineCount,1); 

contourarray = zeros(lineCount,1); 

  

%For all of the layers 

for i = 2:length(layerlocation) %layerlocation(i) represents the index  

    %where next layer begins 

     

    %Set all lines in the file between two layers equal to the current layer count 

    layerarray(layerlocation(i-1)+1:layerlocation(i)) = layer*... 

                ones(layerlocation(i)-layerlocation(i-1),1); 

    layer = layer+1; 

     

    %For all contours 

    contour = 2; 

     

    %For current layer, find the indices where there are contours 
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    cmin = find(contourlocation == min(... 

        contourlocation(contourlocation>layerlocation(i-1) &... 

        contourlocation<layerlocation(i))),1,'first'); 

    cmax = find(contourlocation == max(... 

        contourlocation(contourlocation>layerlocation(i-1) &... 

        contourlocation<layerlocation(i))),1,'last'); 

     

    %Set all lines in the file beteen two contours, but within the current 

    %layer equal to the current contour count 

    contourarray(layerlocation(i-1)+1:contourlocation(cmin)) = ones(... 

        contourlocation(cmin)-layerlocation(i-1),1); 

    for j = cmin:cmax-1 

        contourarray(contourlocation(j)+1:contourlocation(j+1)) = contour*... 

            ones(contourlocation(j+1)-contourlocation(j),1); 

        contour=contour+1; 

    end 

    %Between the last contour and the next layer is technically another 

    %contour 

    contourarray(contourlocation(j+1)+1) = contour*ones(layerlocation(i)-... 

        contourlocation(j+1),1); 

end 

  

%Between the last layer and 'End of File' there is technically one more 

%contour 

layerarray(layerlocation(i)+1:lineCount) = layer*ones(lineCount-layerlocation(i),1); 

%Same for Contours 

contour = 2; 

cmin = find(contourlocation == min(contourlocation(... 

    contourlocation>layerlocation(i) & contourlocation<lineCount)),1,'first'); 

cmax = find(contourlocation == max(contourlocation(... 

    contourlocation>layerlocation(i) & contourlocation<lineCount)),1,'last'); 

contourarray(layerlocation(i)+1:contourlocation(cmin)) = ones(... 

    contourlocation(cmin)-layerlocation(i),1); 

for j = cmin:cmax-1 

    contourarray(contourlocation(j)+1:contourlocation(j+1)) = contour*ones(... 

        contourlocation(j+1)-contourlocation(j),1); 

    contour=contour+1; 

     

end 

contourarray(contourlocation(j+1)+1) = contour*ones(... 

    lineCount-contourlocation(j+1),1); 

  

%Populating array with the correct co-ordinates 

coords = cell2mat(cellfun(@(y) y',cellfun(@(x) textscan(x,'%f'),fileImport(... 

    xylocation)),'UniformOutput',false)); 

xyarray = NaN(lineCount,2); 

xout = coords(:,1)*25.4/voxelsize+centerx; 

yout = -coords(:,2)*25.4/voxelsize+centery; 

xyarray(xylocation,:)=[xout yout]; 

  

waitbar(0.99,h,'Compiling Output...'); 

  

%Compiling the output matrix 

output = [layerarray*layerthickness contourarray xyarray]; 

output(any(isnan(output),2),:)=[]; 

  

waitbar(0,h,'Redefining endpoints') 

%Getting exact points 

%Converting point distance to voxels 

    pointdistance = pointdistance/(voxelsize*1000); 

    %Gets the number of points per contour 

    uniquelayer = flip(unique(output(:,1)),1); 

    for i = 1:length(uniquelayer)  

        temp1 = output(output(:,1)==uniquelayer(i),2); 

        [counts,~] = histc(temp1, unique(temp1)); 

         

        for j = 1:length(counts) 
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            %If the count is 2, we know its just a straight line (i.e hatch) 

            if counts(j) == 2 

                %Getting the two points of the line.. 

                t_points = output(output(:,1)==uniquelayer(i) &... 

                    output(:,2) == j,3:4); 

                 

                %Total length of the line [in mm] 

                t_d = diff(t_points); 

                t_length = sum(sqrt(sum(t_d.*t_d,2))); 

                 

                if t_length > DEBUG_LENGTH 

                    %Finding how many point exposures fit in the line 

                    t_num = floor(t_length / pointdistance); 

  

                    %Reshaping 

                    t_vec = (t_points(2,:) - t_points(1,:))/t_length; 

                    t_add = t_vec*(t_num*(pointdistance)); 

                    %[t_points(1,:) t_points(1,:) + t_add] 

                    t_newpoint = t_points(1,:) + t_add; 

  

                    %Updating 

                    t_points(2,:) = t_newpoint; 

                    output(output(:,1)==uniquelayer(i) &... 

                        output(:,2) == j,3:4) = t_points; 

                end    

            end 

        end 

        waitbar(i/length(uniquelayer),h,'Redefining endpoints') 

    end 

     

    close(h); 

  

%Debug code to visualize the scan path for one layer 

%{ 

uniquelayer = unique(output(:,1)); 

for layer = uniquelayer(1):uniquelayer(2)-uniquelayer(1): max(output(:,1)) 

    figure; 

    set(gca,'color','none') 

    hold on; 

    for contour = 1:max(output(:,2)) 

        A = output(output(:,1)==layer & output(:,2)==contour,:); 

        plot(A(:,3),A(:,4), 'b'); 

         

    end 

    pause; 

    close(); 

end 

%} 

  

%-------------------------------------------------------------------------- 

End 
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Appendix E: 

Extended Tukey’s Test for Three-Factor Experiments 

To restate the derivations of Yang , by using Tukey method the following model is assumed [106]: 

(𝜏12)𝑖𝑗 = 𝜆12(𝜏1)𝑖(𝜏2)𝑗;  (𝜏13)𝑖𝑘 = 𝜆13(𝜏1)𝑖(𝜏3)𝑘; (𝜏23)𝑗𝑘 = 𝜆23(𝜏2)𝑗(𝜏3)𝑘;  

(𝜏123)𝑖𝑗𝑘 = 𝜆123(𝜏1)𝑖(𝜏2)𝑗(𝜏3)𝑘 

Which states that the effect, 𝜏, due the interactions between parameters, is because of the combined 

main effects and a linear constant, 𝜆. 

Moving on, there is a total of 𝑎 + 𝑏 + 𝑐 + 5 parameters plus the common variance in the model, 

where 𝑎, 𝑏, 𝑐 are the number of varied levels for each parameter [106]. For the least squares 

estimation, a function is then defined as follows [106]: 

𝑄 = 𝑄(𝜇, (𝜏1)1, … , (𝜏1)𝑎, (𝜏2)1, … , (𝜏2)𝑏 , (𝜏3)1, … , (𝜏3)𝑐 , 𝜆12, 𝜆13, 𝜆23, 𝜆123) 

𝑄 = ∑ ∑ ∑ (𝑌𝑖𝑗𝑘 − 𝜇 − (𝜏1)𝑖 − (𝜏2)𝑗 − (𝜏3)𝑘 − 𝜆12(𝜏1)𝑖(𝜏2)𝑗 − 𝜆13(𝜏1)𝑖(𝜏3)𝑘

𝑐

𝑘=1

𝑏

𝑗=1

𝑎

𝑖=1

− 𝜆23(𝜏2)𝑗(𝜏3)𝑘 − −𝜆123(𝜏1)𝑖(𝜏2)𝑗(𝜏3)𝑘)
2

  

Where 𝜇 represents the overall mean and 𝑌𝑖𝑗𝑘 the response variable. With the following conditions 

applied [106], 

𝜕𝑄

𝜕𝜇
= 0;

𝜕𝑄

𝜕(𝜏1)𝑖
= 0; 

𝜕𝑄

𝜕(𝜏2)𝑗
= 0; 

𝜕𝑄

𝜕(𝜏3)𝑘
= 0; 

𝜕𝑄

𝜕𝜆12
= 0; 

𝜕𝑄

𝜕𝜆13
= 0; 

𝜕𝑄

𝜕𝜆23
= 0;  

𝜕𝑄

𝜕𝜆123
= 0;  

The least squares estimators can then be found as [106]: 

(𝜏1̂)𝑖 = 𝑌̅𝑖.. − 𝑌̅… ; 

(𝜏2̂)𝑗 = 𝑌̅.𝑗. − 𝑌̅… ; 

(𝜏3̂)𝑘 = 𝑌̅..𝑘 − 𝑌̅… ; 

𝜆12̂ =
∑ ∑ ∑ (𝑌̅𝑖.. − 𝑌̅…)(𝑌̅.𝑗. − 𝑌̅…)𝑌𝑖𝑗𝑘

𝑐
𝑘=1

𝑏
𝑗=1

𝑎
𝑖=1

𝑐 ∑ ∑ (𝑌̅𝑖.. − 𝑌̅…)2(𝑌̅.𝑗. − 𝑌̅…)
2𝑏

𝑗=1
𝑎
𝑖=1

 

𝜆13̂ =
∑ ∑ ∑ (𝑌̅𝑖.. − 𝑌̅…)(𝑌̅..𝑘 − 𝑌̅…)𝑌𝑖𝑗𝑘

𝑐
𝑘=1

𝑏
𝑗=1

𝑎
𝑖=1

𝑏 ∑ ∑ (𝑌̅𝑖.. − 𝑌̅…)2(𝑌̅..𝑘 − 𝑌̅…)2𝑐
𝑘=1

𝑎
𝑖=1

 

𝜆23̂ =
∑ ∑ ∑ (𝑌̅.𝑗. − 𝑌̅…)(𝑌̅..𝑘 − 𝑌̅…)𝑌𝑖𝑗𝑘

𝑐
𝑘=1

𝑏
𝑗=1

𝑎
𝑖=1

𝑎 ∑ ∑ (𝑌̅.𝑗. − 𝑌̅…)
2

(𝑌̅..𝑘 − 𝑌̅…)2𝑐
𝑘=1

𝑏
𝑗=1

 

𝜆123
̂ =

∑ ∑ ∑ (𝑌̅𝑖.. − 𝑌̅…)(𝑌̅.𝑗. − 𝑌̅…)(𝑌̅..𝑘 − 𝑌̅…)𝑌𝑖𝑗𝑘
𝑐
𝑘=1

𝑏
𝑗=1

𝑎
𝑖=1

∑ ∑ ∑ (𝑌̅𝑖.. − 𝑌̅…)2(𝑌̅.𝑗. − 𝑌̅…)
2

(𝑌̅..𝑘 − 𝑌̅…)2𝑐
𝑘=1

𝑏
𝑗=1

𝑎
𝑖=1
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With these estimators, we can find 𝑌𝑖𝑗𝑘̂ as [106], 

𝑌𝑖𝑗𝑘̂ = 𝑌̅… + (𝑌̅𝑖.. − 𝑌̅…) + (𝑌̅.𝑗. − 𝑌̅…) + (𝑌̅..𝑘 − 𝑌̅…) + 𝜆12̂(𝑌̅𝑖.. − 𝑌̅…)(𝑌̅.𝑗. − 𝑌̅…) 

 +𝜆13̂(𝑌̅𝑖.. − 𝑌̅…)(𝑌̅..𝑘−𝑌̅…) + 𝜆23̂(𝑌̅.𝑗. − 𝑌̅…)(𝑌̅..𝑘 − 𝑌̅…) + 𝜆123
̂ (𝑌̅𝑖.. − 𝑌̅…)(𝑌̅.𝑗. − 𝑌̅…)(𝑌̅..𝑘 − 𝑌̅…) 

Also the error is assumed to be an independent and identically distributed variable that follows a 

normally distribution 𝑁(0, 𝜎2), and it can be expressed as [106], 

𝜖𝑖𝑗𝑘̂ = 𝑌𝑖𝑗𝑘 − 𝑌𝑖𝑗𝑘̂ 

The total sum of squares, SST, for the model is then defined as [106], 

𝑆𝑆𝑇 =  ∑ ∑ ∑ (𝑌𝑖𝑗𝑘 − 𝑌̅…)
2𝑐

𝑘=1

𝑏

𝑗=1

𝑎

𝑖=1
 

To analyze the significance of the parameters, the SST requires to be partitioned as follows [106]: 

𝑆𝑆𝐴 = 𝑏𝑐 ∑ (𝑌̅𝑖.. − 𝑌̅…)2
𝑎

𝑖=1
, with degrees of freedom, 𝑑𝑓𝑆𝑆𝐴 = 𝑎 − 1; 

𝑆𝑆𝐵 = 𝑎𝑐 ∑ (𝑌̅.𝑗. − 𝑌̅…)
2𝑏

𝑗=1
, 𝑑𝑓𝑆𝑆𝐵 = 𝑏 − 1;  

𝑆𝑆𝐶 = 𝑎𝑏 ∑ (𝑌̅..𝑘 − 𝑌̅…)2
𝑐

𝑘=1
, 𝑑𝑓𝑆𝑆𝐶 = 𝑐 − 1;  

𝑆𝑆𝐴𝐵∗ = 𝑐 ∑ ∑ 𝜆12̂
2

(𝑌̅𝑖.. − 𝑌̅…)2(𝑌̅.𝑗. − 𝑌̅…)
2𝑏

𝑗=1

𝑎

𝑖=1
, 𝑑𝑓𝑆𝑆𝐴𝐵∗ = 1; 

𝑆𝑆𝐴𝐶∗ = 𝑏 ∑ ∑ 𝜆13̂
2

(𝑌̅𝑖.. − 𝑌̅…)2(𝑌̅..𝑘 − 𝑌̅…)2
𝑐

𝑘=1

𝑎

𝑖=1
, 𝑑𝑓𝑆𝑆𝐴𝐶∗ = 1; 

𝑆𝑆𝐵𝐶∗ = 𝑎 ∑ ∑ 𝜆23̂
2

(𝑌̅.𝑗. − 𝑌̅…)
2

(𝑌̅..𝑘 − 𝑌̅…)2
𝑐

𝑘=1

𝑏

𝑗=1
, 𝑑𝑓𝑆𝑆𝐵𝐶∗ = 1; 

𝑆𝑆𝐴𝐵𝐶∗ = ∑ ∑ ∑ 𝜆123
̂ 2

(𝑌̅𝑖.. − 𝑌̅…)2(𝑌̅.𝑗. − 𝑌̅…)
2

(𝑌̅..𝑘 − 𝑌̅…)2
𝑐

𝑘=1

𝑏

𝑗=1

𝑎

𝑖=1
, 𝑑𝑓𝑆𝑆𝐴𝐵𝐶∗ = 1; 

𝑆𝑆𝐸∗ = 𝑆𝑆𝑇 − 𝑆𝑆𝐴 − 𝑆𝑆𝐵 − 𝑆𝑆𝐶 − 𝑆𝑆𝐴𝐵∗ − 𝑆𝑆𝐴𝐶∗ − 𝑆𝑆𝐵𝐶∗ − 𝑆𝑆𝐴𝐵𝐶∗ 

Where the star notation (e.g. 𝑆𝑆𝐴𝐵∗ instead of 𝑆𝑆𝐴𝐵) is used to differentiate the sum of squares 

based off of Tukey’s method from the true sum of squares, if a full ANOVA was performed. 

Since it can be derived that the sum of squares interactions and the error have the following 

distributions [106]: 

𝑆𝑆𝐴𝐵∗

𝜎2
~𝜒1

2,
𝑆𝑆𝐴𝐶∗

𝜎2
~𝜒1

2,
𝑆𝑆𝐵𝐶∗

𝜎2
~𝜒1

2,
𝑆𝑆𝐴𝐵𝐶∗

𝜎2
~𝜒1

2,
𝑆𝑆𝐸∗

𝜎2
~𝜒𝑎𝑏𝑐−𝑎−𝑏−𝑐−2

2  

The significance levels (p-values) can be found as [106], 

𝑆𝐿12 = 𝑃 (𝐹1,𝑎𝑏𝑐−𝑎−𝑏−𝑐−2 ≥
𝑎𝑏𝑐 − 𝑎 − 𝑏 − 𝑐 − 2

1
×

𝑆𝑆𝐴𝐵∗

𝑆𝑆𝐸∗
) ; 
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𝑆𝐿13 = 𝑃 (𝐹1,𝑎𝑏𝑐−𝑎−𝑏−𝑐−2 ≥
𝑎𝑏𝑐 − 𝑎 − 𝑏 − 𝑐 − 2

1
×

𝑆𝑆𝐴𝐶∗

𝑆𝑆𝐸∗
) ; 

𝑆𝐿23 = 𝑃 (𝐹1,𝑎𝑏𝑐−𝑎−𝑏−𝑐−2 ≥
𝑎𝑏𝑐 − 𝑎 − 𝑏 − 𝑐 − 2

1
×

𝑆𝑆𝐵𝐶∗

𝑆𝑆𝐸∗
) ; 

𝑆𝐿123 = 𝑃 (𝐹1,𝑎𝑏𝑐−𝑎−𝑏−𝑐−2 ≥
𝑎𝑏𝑐 − 𝑎 − 𝑏 − 𝑐 − 2

1
×

𝑆𝑆𝐴𝐵𝐶∗

𝑆𝑆𝐸∗
) ;  

 These values can then be used to determine if there is evidence to reject the null hypotheses by 

setting up the following hypotheses [106]: 

𝐻0 ∶ 𝜆12 = 0, 𝐻0 ∶ 𝜆13 = 0, 𝐻0 ∶ 𝜆23 = 0, 𝐻0 ∶ 𝜆123 = 0 

To test for non-additivity, the null and alternative hypothesis are [106], 

𝐻0: 𝜆12 = 𝜆13 = 𝜆23 = 𝜆123 and 𝐻1: ~𝐻0 

To reject the null hypothesis, the statistical test is [106], 

𝑀𝑆𝐴𝐵∗

𝑀𝑆𝐸∗
≥ 𝑐𝐴𝐵  ∨  

𝑀𝑆𝐴𝐶∗

𝑀𝑆𝐸∗
≥ 𝑐𝐴𝐶  ∨

𝑀𝑆𝐵𝐶∗

𝑀𝑆𝐸∗
≥ 𝑐𝐵𝐶  ∨

𝑀𝑆𝐴𝐵𝐶∗

𝑀𝑆𝐸∗
≥ 𝑐𝐴𝐵𝐶 , 

Where the mean square values are found by [106], 

𝑀𝑆𝐴𝐵∗ =
𝑆𝑆𝐴𝐵∗

1
, 𝑀𝑆𝐴𝐶∗ =

𝑆𝑆𝐴𝐶∗

1
, 𝑀𝑆𝐵𝐶∗ =

𝑆𝑆𝐵𝐶∗

1
 

𝑀𝑆𝐴𝐵𝐶∗ =
𝑆𝑆𝐴𝐵𝐶∗

1
, 𝑀𝑆𝐸∗ =

𝑆𝑆𝐸∗

𝑎𝑏𝑐 − 𝑎 − 𝑏 − 𝑐 − 2
   

The significance of the test, 𝛼, is defined by [106], 

𝛼 = 𝑃 (
𝑀𝑆𝐴𝐵∗

𝑀𝑆𝐸∗
≥ 𝑐𝐴𝐵) + 𝑃 (

𝑀𝑆𝐴𝐶∗

𝑀𝑆𝐸∗
≥ 𝑐𝐴𝐶) + 𝑃 (

𝑀𝑆𝐵𝐶∗

𝑀𝑆𝐸∗
≥ 𝑐𝐵𝐶) + 𝑃 (

𝑀𝑆𝐴𝐵𝐶∗

𝑀𝑆𝐸∗
≥ 𝑐𝐴𝐵𝐶) 

If one takes the critical values to be the same, such that 𝑐𝐴𝐵 = 𝑐𝐴𝐶 = 𝑐𝐵𝐶 = 𝑐𝐴𝐵𝐶  for all the tests, and 

sets the value to be the 100(1 − 𝛾)th percentile of their appropriate F-distribution, then [106], 

𝛼 = 4𝛾 
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Appendix F: 

Raw Data for Statistical Analysis of Chapter 4 

Table F 1. Raw data input for the MATLab code. Values correspond to the variable ‘perf’ 

within the code. 

Power 

(coded) 

Grid 

distance 

(coded) 

Exposure 

time 

(coded) 

Batch 

Solid 

fraction 

(overall) 

Solid 

fraction  

(no border) 

CTE 

[
𝝁𝒎

𝒎°𝑪
] 

Performance 

Parameter 

-1 -1 -1 1 0.998966 0.999797 0.444642 0.698743 

-1 -1 0 1 0.999038 0.99996 0.292439 0.864264 

-1 -1 1 1 0.998736 0.999964 0.285181 0.74762 

-1 0 -1 1 0.997958 0.998503 0.399013 0.612327 

-1 0 0 1 0.998717 0.999513 0.481964 0.797389 

-1 0 1 1 0.999205 0.999993 0.352671 0.843635 

-1 1 -1 1 0.999144 0.999834 0.358037 0.577079 

-1 1 0 1 0.998755 0.999721 0.248478 0.661151 

-1 1 1 1 0.999004 0.999899 0.360675 0.761003 

-0.66667 -1 -1 1 0.998631 0.999874 0.418506 0.731357 

-0.66667 -1 0 1 0.999029 0.999998 0.475465 0.624554 

-0.66667 -1 1 1 0.99856 0.999989 0.427753 0.62184 

-0.66667 0 -1 1 0.999167 0.999995 0.363574 0.838106 

-0.66667 0 0 1 0.999095 0.999955 0.442099 0.576411 

-0.66667 0 1 1 0.999037 0.999964 0.389056 0.683155 

-0.66667 1 -1 1 0.999291 0.999967 0.485725 0.698732 

-0.66667 1 0 1 0.999117 0.999893 0.343429 0.863644 

-0.66667 1 1 1 0.999174 0.999971 0.394615 0.711677 

-0.33333 -1 -1 1 0.998454 0.999824 0.410971 0.550097 

-0.33333 -1 0 1 0.998085 0.999956 0.593801 0.50757 

-0.33333 -1 1 1 0.998474 0.999959 0.418001 0.803308 

-0.33333 0 -1 1 0.999087 0.999988 0.549546 0.517422 

-0.33333 0 0 1 0.998748 0.999896 0.493871 0.758072 

-0.33333 0 1 1 0.998913 0.999973 0.586181 0.409058 

-0.33333 1 -1 1 0.998969 0.999961 0.343538 0.749484 

-0.33333 1 0 1 0.998459 0.999603 0.481018 0.773653 

-0.33333 1 1 1 0.999105 0.999998 0.317616 0.854143 

0.33 -1 -1 1 0.998632 1 0.455947 0.499722 

0.33 -1 0 1 0.998618 0.999995 0.422596 0.49177 

0.33 -1 1 1 0.998849 0.999924 0.490052 0.610729 



 

 226 

Table F 1 (cont’d). Raw data input for the MATLab code. Values correspond to the variable 

‘perf’ within the code. 

Power 

(coded) 

Grid 

distance 

(coded) 

Exposure 

time 

(coded) 

Batch 

Solid 

fraction 

(overall) 

Solid 

fraction  

(no 

border) 

CTE 

[
𝝁𝒎

𝒎°𝑪
] 

Performance 

Parameter 

0.33 0 -1 1 0.998687 0.999842 0.491795 0.51544 

0.33 0 0 1 0.998382 0.999986 0.459025 0.45594 

0.33 0 1 1 0.998205 0.999999 0.295997 0.588874 

0.33 1 -1 1 0.998424 0.999954 0.364951 0.626325 

0.33 1 0 1 0.998153 0.999968 0.367793 0.479768 

0.33 1 1 1 0.998571 0.999999 0.64719 0.377428 

0.666667 -1 -1 1 0.998037 1 0.449783 0.36871 

0.666667 -1 0 1 0.998085 0.999995 0.341194 0.476725 

0.666667 -1 1 1 0.998408 0.999991 0.423933 0.492417 

0.666667 0 -1 1 0.998482 0.999969 0.474937 0.42503 

0.666667 0 0 1 0.998656 0.999994 0.58249 0.514787 

0.666667 0 1 1 0.998514 0.999999 0.48497 0.616185 

0.666667 1 -1 1 0.998461 0.999961 0.509238 0.551302 

0.666667 1 0 1 0.998419 0.999974 0.269394 0.515218 

0.666667 1 1 1 0.998463 0.999997 0.624369 0.435025 

1 -1 -1 1 0.998601 0.999972 0.670033 0.404214 

1 -1 0 1 0.998401 0.99996 0.502389 0.418096 

1 -1 1 1 0.997214 0.999837 0.547862 0.145516 

1 0 -1 1 0.998777 0.999973 0.445062 0.864259 

1 0 0 1 0.998613 0.999999 0.664529 0.358196 

1 0 1 1 0.998509 0.999951 0.469874 0.444808 

1 1 -1 1 0.998743 0.999984 0.54609 0.48784 

1 1 0 1 0.998211 0.999997 0.627492 0.462534 

1 1 1 1 0.998198 0.999988 0.660634 0.392349 

 

  



 

 227 

Appendix G: 

MATLab Code for Statistical Analysis in Chapter 4 

% Based on Tukey`s Method Extended for 3 Factors 
% Example of this is shown in 
% 

https://digitalcommons.georgiasouthern.edu/cgi/viewcontent.cgi?article=2193&context

=etd 
% page 39 

  
%% Initializing 

  
clear all; close all; clc; 

  
%Loading perf table 
%Format is POWER | HATCH | EXPOSURE TIME | BATCH | ... | PERF 
% WHERE '...' can be any other unused miscellaneous columns 

  
%Loading the raw data 
load('MATLab.mat'); 

  
%% 
%Required constants 
a = (unique(perf(:,1)));     % Number of power levels 
b = (unique(perf(:,2)));     % Number of hatching levels 
c = (unique(perf(:,3)));     % Number of exposure times 

  
%%Process outcome 
index = 5; % Column number of the outcome of interest 

  
%% -----------Finding Least Squares Estimators of all Effects------------------% 

  
% Definitions  
%{ 
A = effect of power 
B = effect of hatch 
C = effect of exposure time 
AB =  Linear Parameter. Effect of power and hatch interaction = AB*A*B 
AC =  Linear Parameter. Effect of power and hatch interaction = AC*A*C 
BC =  Linear Parameter. Effect of power and hatch interaction = BC*B*C 
ABC = Linear Parameter. Effect of power and hatch interaction = ABC*A*B*C 
%} 

  
y = mean(perf(:, index)); %Grand Average 

  
%Average across each main effect 
y_i = []; y_j = []; y_k = []; 
for i = a', y_i = [y_i ; mean(perf(perf(:,1)==i,end))]; end %#ok<*AGROW> 
for j = b', y_j = [y_j ; mean(perf(perf(:,2)==j,end))]; end %#ok<*AGROW> 
for k = c', y_k = [y_k ; mean(perf(perf(:,3)==k,end))]; end %#ok<*AGROW> 

  
%Main effects 
A = y_i - y; 
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B = y_j - y; 
C = y_k - y; 

  
%Finding interaction effects 
num = 0; den = 0; 
for i = 1:length(a) 
    for j = 1:length(b) 
        for k = 1:length(c) 
            num = num + (y_i(i)-y)*(y_j(j)-y)*perf(perf(:,1)==a(i) & ... 
                  perf(:,2)==b(j) & perf(:,3)==c(k),end); 
        end 
            den = den + (y_i(i)-y)^2 * (y_j(j)-y)^2; 
    end 
end 
AB = num/(length(c)*den); %Effect of AB 

  
num = 0; den = 0; 
for i = 1:length(a) 
    for j = 1:length(b) 
        for k = 1:length(c) 
            num = num + (y_i(i)-y)*(y_k(k)-y)*perf(perf(:,1)==a(i) & .... 
                  perf(:,2)==b(j) & perf(:,3)==c(k),end); 
            if j == 1 
                den = den + (y_i(i)-y)^2 * (y_k(k)-y)^2;     
            end 
        end 
    end 
end 
AC = num/(length(b)*den); %Effect of AC 

  
num = 0; den = 0; 
for i = 1:length(a) 
    for j = 1:length(b) 
        for k = 1:length(c) 
            num = num + (y_j(j)-y)*(y_k(k)-y)*perf(perf(:,1)==a(i) & ... 
                  perf(:,2)==b(j) & perf(:,3)==c(k),end); 
            if i == 1 
                den = den + (y_j(j)-y)^2 * (y_k(k)-y)^2;     
            end 
        end 
    end 
end 
BC = num/(length(a)*den); %Effect of BC 

  
num = 0; den = 0; 
for i = 1:length(a) 
    for j = 1:length(b) 
        for k = 1:length(c) 
            num = num + (y_i(i)-y)*(y_j(j)-y)*(y_k(k)-y)*perf(perf(:,1)==a(i)... 
                  & perf(:,2)==b(j) & perf(:,3)==c(k),end); 
            den = den + (y_i(i)-y)^2 * (y_j(j)-y)^2*(y_k(k)-y)^2 ;     
        end 
    end 
end 
ABC = num/den;%Effect of ABC 
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%Finding residuals 
for i = a', y_i = [y_i ; mean(perf(perf(:,1)==i,end))]; end %#ok<*AGROW> 
for j = b', y_j = [y_j ; mean(perf(perf(:,2)==j,end))]; end %#ok<*AGROW> 
for k = c', y_k = [y_k ; mean(perf(perf(:,3)==k,end))]; end %#ok<*AGROW> 
residual = []; 
for i = 1:length(a) 
    for j = 1:length(b) 
        for k = 1:length(c) 
            %Residual of y-hat(i,j,k) 
            localresidual = perf(perf(:,1)==a(i) & perf(:,2)==b(j) &... 
                            perf(:,3)==c(k),end) - y ... 
                            -(y_i(i)-y) - (y_j(j)-y) - (y_k(k)-y) - ... 
                            AB*(y_i(i)-y)*(y_j(j)-y) - AC*(y_i(i)-y)* ... 
                            (y_k(k)-y) - BC*(y_j(j)-y)*(y_k(k)-y) - ... 
                            ABC*(y_i(i)-y)*(y_j(j)-y)*(y_k(k)-y); 
            tempindex = [ a(i) b(j) c(k) 1 localresidual]; 

             
            %Adding residual to the matrix 
            residual = [residual ; tempindex]; 
        end 
    end 
end 
residuals = residual(:,end);  
plot(residuals); 

  
%% 
% ----------------------------------ANOVA--------------------------------------- 

  
%Initializing 
SST = 0; SSA = 0; SSB = 0; SSC = 0; SSAB = 0; SSAC = 0; SSBC = 0; SSABC = 0; 

  
for i = 1:length(a) 
    for j = 1:length(b) 
        for k = 1:length(c) 
            SST = SST + (perf(perf(:,1)==a(i) & perf(:,2)==b(j) &... 
                perf(:,3)==c(k),end)-y)^2; 
        end 
    end 
end 

  
%Sum of Squares of A 
for i = 1:length(a) 
    SSA = SSA + (y_i(i)-y)^2; 
end 
SSA = SSA*length(b)*length(c); 

  
%Sum of Squares of B 
for j = 1:length(b) 
    SSB = SSB + (y_j(j)-y)^2; 
end 
SSB = SSB*length(a)*length(c); 

  
%Sum of Squares of C 
for k = 1:length(c) 
    SSC = SSC + (y_k(k)-y)^2; 
end 
SSC = SSC*length(a)*length(b); 



 

 230 

  
%Sum of Squares of AB (with Tukeys model) 
for i = 1:length(a) 
    for j = 1:length(b) 
        SSAB = SSAB + (y_i(i)-y)^2 * (y_j(j)-y)^2; 
    end 
end 
SSAB = length(c)*SSAB*AB^2; 

  
%Sum of Squares of AC (with Tukeys model) 
for i = 1:length(a) 
    for k = 1:length(c) 
        SSAC = SSAC + (y_i(i)-y)^2 * (y_k(k)-y)^2; 
    end 
end 
SSAC = length(b)*SSAC*AC^2; 

  
%Sum of Squares of BC (with Tukeys model) 
for j = 1:length(b) 
    for k = 1:length(c) 
        SSBC = SSBC + (y_j(j)-y)^2 * (y_k(k)-y)^2; 
    end 
end 
SSBC = length(a)*SSBC*BC^2; 

  
%Sum of Squares of ABC (with Tukeys model) 
for i = 1:length(a) 
    for j = 1:length(b) 
        for k = 1:length(c) 
            SSABC = SSABC + (y_i(i)-y)^2*(y_j(j)-y)^2 * (y_k(k)-y)^2; 
        end 
    end 
end 
SSABC = SSABC*ABC^2; 

  
%Sum of Squares of Error 
SSE = SST - SSA - SSB - SSC - SSAB - SSAC - SSBC - SSABC; 

  
%Degrees of Freedom 
dofa = length(a)-1; 
dofb = length(b)-1; 
dofc = length(c)-1; 
dofab = 1; 
dofac = 1; 
dofbc = 1; 
dofabc = 1; 
dofe = (length(a)*length(b)*length(c)-length(a)-length(b)-length(c)-2); 
doft=dofa+dofb+dofc+dofab+dofac+dofbc+dofabc+dofe; 

  
%Mean Square 
MSA = SSA/dofa; 
MSB = SSB/dofb; 
MSC = SSC/dofc; 
MSAB = SSAB/dofab; 
MSAC = SSAC/dofac; 
MSBC = SSBC/dofbc; 
MSABC = SSABC/dofabc; 
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MSE = SSE/dofe; 

  
%F observed 
FA  = MSA/MSE; 
FB  = MSB/MSE; 
FC  = MSC/MSE; 
FAB = MSAB/MSE; 
FAC = MSAC/MSE; 
FBC = MSBC/MSE; 
FABC = MSABC/MSE; 

  
%P value 
PA = 1-fcdf(FA,dofa,dofe); 
PB = 1-fcdf(FB,dofb,dofe); 
PC = 1-fcdf(FC,dofc,dofe); 
PAB = 1-fcdf(FAB,dofab,dofe); 
PAC = 1-fcdf(FAC,dofac,dofe); 
PBC = 1-fcdf(FBC,dofbc,dofe); 
PABC = 1-fcdf(FABC,dofabc,dofe); 
P_total = [PA; PB ; PC; PAB; PAC; PBC; PABC]; 

  
%Making note of all the sum of squares 
Transition = [SSA;SSB;SSC;SSAB;SSAC;SSBC;SSABC;SSE;SST] 

  
%Constructing the ANOVA table 
names = table(... 
    {'Power', 'Hatch', 'Exposure Time', 'P/H', 'P/E', 'H/E','P/H/E', 

'Error','Total'}',... 
     Transition, ... 
    [dofa;dofb;dofc;dofab;dofac;dofbc;dofabc;dofe;doft], ... 
    [MSA;MSB;MSC;MSAB;MSAC;MSBC;MSABC;MSE;NaN],... 
    [FA;FB;FC;FAB;FAC;FBC;FABC;NaN;NaN],... 
    [PA;PB;PC;PAB;PAC;PBC;PABC;NaN;NaN]... 
    ); 
names.Properties.VariableNames={'Source_of_Variation',... 
                                'Sum_of_Squares','Degrees_of_Freedom',... 
                                'Mean_Square','F0','P_Value'}; 
%Displaying the ANOVA table 
disp(names); 

  
%Calculating the adjusted R-square value 
Rsq = 1 - (SSE/dofe)/(SST/doft) 

  
%% -----------------------------MATLAB ANOVA------------------------------------ 
%Use MATLAB's built in ANOVA if omitted higher order interactions 

  
A = perf(:,1); 
B = perf(:,2); 
C = perf(:,3); 
N = perf(:,4); 

  
denn = perf(:,length(perf(1,:))); 

  
%Reduced model ANOVA table 
[p, t, stats,terms] = anovan(denn,{A B C},'model',[ 1 0 0 ; 0 1 0; 0 0 1 ;... 
                                                    1 1 0 ; 1 0 1 ; 0 1 1],... 
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                                      'varnames',{'A', 'B', 'C'}, 'alpha', .05); 

  
alpha = 0.05; 

  
%Checking if significant 
significance = p < alpha; 
t(1,8) = cellstr(strcat('Significant at alpha =',num2str(alpha),'?')); 
t(2:length(significance)+1,8) = num2cell(significance); 
cell2table(t) 

  
%Residuals 
residuals = stats.resid; 

  
%Adjusted R-square 
Rsq = 1-(cell2mat(t(end-1,2))/cell2mat(t(end-1,3)))/... 
      (cell2mat(t(end,2))/cell2mat(t(end,3))) 
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Appendix H: 

CT Image Analysis Results for Chapter 4 

 

Figure H 1. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 1. 

  

Parameters for sample I.D. 1 

Power 250 W 

Grid distance 60 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9989658 
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Figure H 2. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 2. 

 
Figure H 3. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 3 

  

Parameters for sample I.D. 3 

Power 250 W 

Grid distance 60 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9987358 

 

Parameters for sample I.D. 2 

Power 250 W 

Grid distance 60 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9990375 
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Figure H 4. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 4. 

Parameters for sample I.D. 4 

Power 250 W 

Grid distance 70 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9979579 
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Figure H 5. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 5. 

 
Figure H 6. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 6. 

Parameters for sample I.D. 6 

Power 250 W 

Grid distance 70 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9992050 

 

Parameters for sample I.D. 5 

Power 250 W 

Grid distance 70 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9987173 

 



 

 237 

 
Figure H 7. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 7. 

 
Figure H 8. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 8. 

 

 

Parameters for sample I.D. 8 

Power 250 W 

Grid distance 80 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9987552 

 

Parameters for sample I.D. 7 

Power 250 W 

Grid distance 80 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9991439 
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Figure H 9. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 9. 

 
Figure H 10. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 10. 

 

Parameters for sample I.D. 10 

Power 275 W 

Grid distance 60 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9986307 

 

Parameters for sample I.D. 9 

Power 250 W 

Grid distance 80 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9990039 
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Figure H 11. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 11. 

 
Figure H 12. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 12. 

 

Parameters for sample I.D. 12 

Power 275 W 

Grid distance 60 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9985601 

 

Parameters for sample I.D. 11 

Power 275 W 

Grid distance 60 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9990291 
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Figure H 13. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 13. 

 
Figure H 14. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 14. 

 

Parameters for sample I.D. 14 

Power 275 W 

Grid distance 70 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9990948 

 

Parameters for sample I.D. 13 

Power 275 W 

Grid distance 70 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9991673 
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Figure H 15. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 15. 

 
Figure H 16. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 16. 

 

 

Parameters for sample I.D. 16 

Power 275 W 

Grid distance 80 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9992905 

 

Parameters for sample I.D. 15 

Power 275 W 

Grid distance 70 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9990371 
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Figure H 17. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 17. 

 
Figure H 18. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 18. 

 

 

Parameters for sample I.D. 18 

Power 275 W 

Grid distance 80 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9991743 

 

Parameters for sample I.D. 17 

Power 275 W 

Grid distance 80 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9991174 
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Figure H 19. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 19. 

 
Figure H 20. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 20. 

Parameters for sample I.D. 20 

Power 300 W 

Grid distance 60 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9980849 

 

Parameters for sample I.D. 19 

Power 300 W 

Grid distance 60 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9984535 
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Figure H 21. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 21. 

 
Figure H 22. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 22. 

 

 

Parameters for sample I.D. 22 

Power 300 W 

Grid distance 70 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9990865 

 

Parameters for sample I.D. 21 

Power 300 W 

Grid distance 60 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9984736 
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Figure H 23. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 23. 

 
Figure H 24. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 24. 

 

 

Parameters for sample I.D. 24 

Power 300 W 

Grid distance 70 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9989128 

 

Parameters for sample I.D. 23 

Power 300 W 

Grid distance 70 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9987481 
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Figure H 25. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 25. 

 
Figure H 26. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 26. 

 

 

Parameters for sample I.D. 26 

Power 300 W 

Grid distance 80 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9984588 

 

Parameters for sample I.D. 25 

Power 300 W 

Grid distance 80 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9989693 
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Figure H 27. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 27. 

 
Figure H 28. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 28. 

 

 

Parameters for sample I.D. 28 

Power 350 W 

Grid distance 60 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9986319 

 

Parameters for sample I.D. 27 

Power 300 W 

Grid distance 80 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9991051 
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Figure H 29. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 29. 

 
Figure H 30. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 30. 

 

Parameters for sample I.D. 30 

Power 350 W 

Grid distance 60 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9988493 

 

Parameters for sample I.D. 29 

Power 350 W 

Grid distance 60 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9986181 
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Figure H 31. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 31. 

 
Figure H 32. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 32. 

 

Parameters for sample I.D. 32 

Power 350 W 

Grid distance 70 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9983819 

 

Parameters for sample I.D. 31 

Power 350 W 

Grid distance 70 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9986867 
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Figure H 33. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 33. 

 
Figure H 34. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 34. 

 

Parameters for sample I.D. 34 

Power 350 W 

Grid distance 80 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9984235 

 

Parameters for sample I.D. 33 

Power 350 W 

Grid distance 70 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9982051 
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Figure H 35. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 35. 

 
Figure H 36. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 36. 

 

 

Parameters for sample I.D. 36 

Power 350 W 

Grid distance 80 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9985708 

 

Parameters for sample I.D. 35 

Power 350 W 

Grid distance 80 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9981532 
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Figure H 37. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 37. 

 
Figure H 38. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 38. 

 

Parameters for sample I.D. 38 

Power 375 W 

Grid distance 60 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9980852 

 

Parameters for sample I.D. 37 

Power 375 W 

Grid distance 60 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9980374 
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Figure H 39. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 39. 

 
Figure H 40. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 40. 

 

 

Parameters for sample I.D. 40 

Power 375 W 

Grid distance 70 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9984817 

 

Parameters for sample I.D. 39 

Power 375 W 

Grid distance 60 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9984082 
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Figure H 41. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 41. 

 
Figure H 42. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 42. 

 

 

Parameters for sample I.D. 42 

Power 375 W 

Grid distance 70 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9985144 

 

Parameters for sample I.D. 41 

Power 375 W 

Grid distance 70 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9986562 
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Figure H 43. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 43. 

 
Figure H 44. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 44. 

Parameters for sample I.D. 44 

Power 375 W 

Grid distance 80 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9984186 

 

Parameters for sample I.D. 43 

Power 375 W 

Grid distance 80 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9984613 
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Figure H 45. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 45. 

 
Figure H 46. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 46. 

 

 

Parameters for sample I.D. 46 

Power 400 W 

Grid distance 60 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9986005 

 

Parameters for sample I.D. 45 

Power 375 W 

Grid distance 80 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9984633 
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Figure H 47. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 47. 

 
Figure H 48. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 48. 

 

 

Parameters for sample I.D. 48 

Power 400 W 

Grid distance 60 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9972139 

 

Parameters for sample I.D. 47 

Power 400 W 

Grid distance 60 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9984008 
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Figure H 49. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 49. 

 
Figure H 50. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 50. 
 

 

Parameters for sample I.D. 50 

Power 400 W 

Grid distance 70 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9986126 

 

Parameters for sample I.D. 49 

Power 400 W 

Grid distance 70 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9987771 
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Figure H 51. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 51. 

Figure H 52. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 52. 
 

Parameters for sample I.D. 52 

Power 400 W 

Grid distance 80 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9987431 

 

Parameters for sample I.D. 51 

Power 400 W 

Grid distance 70 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9985091 
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Figure H 53. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 53. 

 
Figure H 54. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 54. 

Parameters for sample I.D. 54 

Power 400 W 

Grid distance 80 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9981978 

 

Parameters for sample I.D. 53 

Power 400 W 

Grid distance 80 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9982106 
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Appendix I: 

CT Analysis Results (Border Regions Removed) for Chapter 4 

 Figure I 1. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 1. 

Parameters for sample I.D. 1 

Power 250 W 

Grid distance 60 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9997971 
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Figure I 2. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 2. 

 

 

 
Figure I 3. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 3. 

Parameters for sample I.D. 3 

Power 250 W 

Grid distance 60 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9999636 

 

Parameters for sample I.D. 2 

Power 250 W 

Grid distance 60 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9999603 
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Figure I 4. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 4. 

 

 
Figure I 5. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 5. 

Parameters for sample I.D. 5 

Power 250 W 

Grid distance 70 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9995131 

 

Parameters for sample I.D. 4 

Power 250 W 

Grid distance 70 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9985034 
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Figure I 6. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 6. 

 

 

 
Figure I 7. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 7. 

Parameters for sample I.D. 7 

Power 250 W 

Grid distance 80 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9998335 

 

Parameters for sample I.D. 6 

Power 250 W 

Grid distance 70 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9999926 
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Figure I 8. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 8. 

 

 

 

 
Figure I 9. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 9. 

Parameters for sample I.D. 9 

Power 250 W 

Grid distance 80 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9998985 

 

Parameters for sample I.D. 8 

Power 250 W 

Grid distance 80 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9997209 
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Figure I 10. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 10. 

 

 

 
Figure I 11. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 11. 

Parameters for sample I.D. 11 

Power 275 W 

Grid distance 60 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9999978 

 

Parameters for sample I.D. 10 

Power 275 W 

Grid distance 60 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9998741 
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Figure I 12. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 12. 

 
Figure I 13. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 13. 

 

Parameters for sample I.D. 13 

Power 275 W 

Grid distance 70 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9999953 

 

Parameters for sample I.D. 12 

Power 275 W 

Grid distance 60 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9999892 
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 Figure I 14. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 14. 

 

 
 

Figure I 15. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 15. 

Parameters for sample I.D. 15 

Power 275 W 

Grid distance 70 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9999641 

 

Parameters for sample I.D. 14 

Power 275 W 

Grid distance 70 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9999552 
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Figure I 16. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 16. 

 

 
Figure I 17. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 17. 

Parameters for sample I.D. 17 

Power 275 W 

Grid distance 80 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9998933 

 

Parameters for sample I.D. 16 

Power 275 W 

Grid distance 80 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9999667 
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Figure I 18. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 18. 

 
Figure I 19. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 19. 

Parameters for sample I.D. 19 

Power 300 W 

Grid distance 60 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9998240 

 

Parameters for sample I.D. 18 

Power 275 W 

Grid distance 80 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9999711 
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Figure I 20. Minimum intensity projection images from CT analysis. Build variables correspond to 

sample I.D. 20. 

 
Figure I 21. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 21. 

 

Parameters for sample I.D. 21 

Power 300 W 

Grid distance 60 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9999587 

 

Parameters for sample I.D. 20 

Power 300 W 

Grid distance 60 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9999555 
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 Figure I 22. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 22. 

 

 

 
Figure I 23. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 23. 

Parameters for sample I.D. 23 

Power 300 W 

Grid distance 70 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9998960 

 

Parameters for sample I.D. 22 

Power 300 W 

Grid distance 70 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9999881 
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Figure I 24. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 24. 

 

 

 
Figure I 25. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 25. 

 

Parameters for sample I.D. 25 

Power 300 W 

Grid distance 80 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9999610 

 

Parameters for sample I.D. 24 

Power 300 W 

Grid distance 70 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9999732 
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 Figure I 26. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 26. 

 
Figure I 27. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 27. 

Parameters for sample I.D. 27 

Power 300 W 

Grid distance 80 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9999980 

 

Parameters for sample I.D. 26 

Power 300 W 

Grid distance 80 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9996034 
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Figure I 28. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 28. 

 
Figure I 29. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 29. 

Parameters for sample I.D. 29 

Power 350 W 

Grid distance 60 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9999945 

 

Parameters for sample I.D. 28 

Power 350 W 

Grid distance 60 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9999996 
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Figure I 30. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 30. 

 

 
Figure I 31. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 31. 

 

Parameters for sample I.D. 31 

Power 350 W 

Grid distance 70 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9998420 

 

Parameters for sample I.D. 30 

Power 350 W 

Grid distance 60 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9999241 
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 Figure I 32. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 32. 

 

 
Figure I 33. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 33. 

 

Parameters for sample I.D. 33 

Power 350 W 

Grid distance 70 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9999992 

 

Parameters for sample I.D. 32 

Power 350 W 

Grid distance 70 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9999856 
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 Figure I 34. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 34. 

 
Figure I 35. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 35. 

Parameters for sample I.D. 35 

Power 350 W 

Grid distance 80 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9999676 

 

Parameters for sample I.D. 34 

Power 350 W 

Grid distance 80 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9999544 
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Figure I 36. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 36. 

 
 

Figure I 37. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 37. 

Parameters for sample I.D. 37 

Power 375 W 

Grid distance 60 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9999999 

 

Parameters for sample I.D. 36 

Power 350 W 

Grid distance 80 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9999989 
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Figure I 38. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 38. 

 

 
Figure I 39. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 39. 

Parameters for sample I.D. 39 

Power 375 W 

Grid distance 60 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9999908 

 

Parameters for sample I.D. 38 

Power 375 W 

Grid distance 60 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9999945 
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Figure I 40. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 40. 

 

 

 
Figure I 41. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 41. 

Parameters for sample I.D. 41 

Power 375 W 

Grid distance 70 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9999944 

 

Parameters for sample I.D. 40 

Power 375 W 

Grid distance 70 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9999685 
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Figure I 42. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 42. 

 

 
Figure I 43. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 43. 

Parameters for sample I.D. 43 

Power 375 W 

Grid distance 80 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9999608 

 

Parameters for sample I.D. 42 

Power 375 W 

Grid distance 70 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9999994 
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Figure I 44. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 44. 

 

 
Figure I 45. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 45. 

Parameters for sample I.D. 45 

Power 375 W 

Grid distance 80 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9999973 

 

Parameters for sample I.D. 44 

Power 375 W 

Grid distance 80 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9999742 
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Figure I 46. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 46. 

 
Figure I 47. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 47. 

Parameters for sample I.D. 47 

Power 400 W 

Grid distance 60 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9999601 

 

Parameters for sample I.D. 46 

Power 400 W 

Grid distance 60 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9999723 
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Figure I 48. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 48. 

 
Figure I 49. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 49. 

Parameters for sample I.D. 49 

Power 400 W 

Grid distance 70 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9999731 

 

Parameters for sample I.D. 48 

Power 400 W 

Grid distance 60 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9998367 
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Figure I 50. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 50. 

 

 

 
Figure I 51. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 51. 

Parameters for sample I.D. 51 

Power 400 W 

Grid distance 70 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9999507 

 

Parameters for sample I.D. 50 

Power 400 W 

Grid distance 70 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9999993 
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Figure I 52. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 52. 

 

 

 
Figure I 53. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 53. 

Parameters for sample I.D. 53 

Power 400 W 

Grid distance 80 𝜇𝑚 

Exposure time 70 𝜇𝑚 

Total solid fraction: 0.9999965 

 

Parameters for sample I.D. 52 

Power 400 W 

Grid distance 80 𝜇𝑚 

Exposure time 60 𝜇𝑚 

Total solid fraction: 0.9999841 
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 Figure I 54. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 54. 

 

  

Parameters for sample I.D. 54 

Power 400 W 

Grid distance 80 𝜇𝑚 

Exposure time 80 𝜇𝑚 

Total solid fraction: 0.9999882 
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Appendix J: 

Recipe for Experiment in Chapter 5, with All Build Variable 

Combinations and Identifications 

Table J 1. Build variable table for the experiment in Chapter 5, showing all build variable 

combinations within the build recipe. Green-shaded rows indicate samples that were CT 

scanned. White-shaded rows indicate un-scanned samples for future analysis. Red-shaded rows 

indicate missing samples. 

I.D. Batch 
Scan 

Strategy 
Order 

Hatch  

Compensation 

[%] 

Fill 

Contour 

 Offset 

[%] 

Power 

[W] 

Grid 

Distance 

[𝝁m] 

Border 

Power 

[W] 

1 1 Meander 1 25 50 275 60 250 

1 2 Meander 1 25 50 275 60 275 

1 3 Meander 1 25 50 275 60 250 

1 4 Meander 1 25 50 275 60 275 

2 1 Meander 1 25 50 275 70 250 

2 2 Meander 1 25 50 275 70 275 

2 3 Meander 1 25 50 275 70 250 

2 4 Meander 1 25 50 275 70 275 

3 1 Meander 1 25 50 300 60 250 

3 2 Meander 1 25 50 300 60 275 

3 3 Meander 1 25 50 300 60 250 

3 4 Meander 1 25 50 300 60 275 

4 1 Meander 1 25 50 300 70 250 

4 2 Meander 1 25 50 300 70 275 

4 3 Meander 1 25 50 300 70 250 

4 4 Meander 1 25 50 300 70 275 

5 1 Meander 1 25 100 275 60 250 

5 2 Meander 1 25 100 275 60 275 

5 3 Meander 1 25 100 275 60 250 

5 4 Meander 1 25 100 275 60 275 

6 1 Meander 1 25 100 275 70 250 

6 2 Meander 1 25 100 275 70 275 

6 3 Meander 1 25 100 275 70 250 

6 4 Meander 1 25 100 275 70 275 

7 1 Meander 1 25 100 300 60 250 
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Table J 1 (cont’d, 1). Build variable table for the experiment in Chapter 5, showing all build 

variable combinations within the build recipe. Green-shaded rows indicate samples that were 

CT scanned. White-shaded rows indicate un-scanned samples for future analysis. Red-shaded 

rows indicate missing samples. 

I.D. Batch 
Scan 

Strategy 
Order 

Hatch  

Compensation 

[%] 

Fill 

Contour 

 Offset 

[%] 

Power 

[W] 

Grid 

Distance 

[𝝁m] 

Border 

Power 

[W] 

7 2 Meander 1 25 100 300 60 275 

7 3 Meander 1 25 100 300 60 250 

7 4 Meander 1 25 100 300 60 275 

8 1 Meander 1 25 100 300 70 250 

8 2 Meander 1 25 100 300 70 275 

8 3 Meander 1 25 100 300 70 250 

8 4 Meander 1 25 100 300 70 275 

9 1 Meander 1 50 50 275 60 250 

9 2 Meander 1 50 50 275 60 275 

9 3 Meander 1 50 50 275 60 250 

9 4 Meander 1 50 50 275 60 275 

10 1 Meander 1 50 50 275 70 250 

10 2 Meander 1 50 50 275 70 275 

10 3 Meander 1 50 50 275 70 250 

10 4 Meander 1 50 50 275 70 275 

11 1 Meander 1 50 50 300 60 250 

11 2 Meander 1 50 50 300 60 275 

11 3 Meander 1 50 50 300 60 250 

11 4 Meander 1 50 50 300 60 275 

12 1 Meander 1 50 50 300 70 250 

12 2 Meander 1 50 50 300 70 275 

12 3 Meander 1 50 50 300 70 250 

12 4 Meander 1 50 50 300 70 275 

13 1 Meander 1 50 100 275 60 250 

13 2 Meander 1 50 100 275 60 275 

13 3 Meander 1 50 100 275 60 250 

13 4 Meander 1 50 100 275 60 275 

14 1 Meander 1 50 100 275 70 250 

14 2 Meander 1 50 100 275 70 275 

14 3 Meander 1 50 100 275 70 250 
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Table J 1 (cont’d, 2). Build variable table for the experiment in Chapter 5, showing all build 

variable combinations within the build recipe. Green-shaded rows indicate samples that were 

CT scanned. White-shaded rows indicate un-scanned samples for future analysis. Red-shaded 

rows indicate missing samples. 

I.D. Batch 
Scan 

Strategy 
Order 

Hatch  

Compensation 

[%] 

Fill 

Contour 

 Offset 

[%] 

Power 

[W] 

Grid 

Distance 

[𝝁m] 

Border 

Power 

[W] 

14 4 Meander 1 50 100 275 70 275 

15 1 Meander 1 50 100 300 60 250 

15 2 Meander 1 50 100 300 60 275 

15 3 Meander 1 50 100 300 60 250 

15 4 Meander 1 50 100 300 60 275 

16 1 Meander 1 50 100 300 70 250 

16 2 Meander 1 50 100 300 70 275 

16 3 Meander 1 50 100 300 70 250 

16 4 Meander 1 50 100 300 70 275 

17 1 Meander 2 25 50 275 60 250 

17 2 Meander 2 25 50 275 60 275 

17 3 Meander 2 25 50 275 60 250 

17 4 Meander 2 25 50 275 60 275 

18 1 Meander 2 25 50 275 70 250 

18 2 Meander 2 25 50 275 70 275 

18 3 Meander 2 25 50 275 70 250 

18 4 Meander 2 25 50 275 70 275 

19 1 Meander 2 25 50 300 60 250 

19 2 Meander 2 25 50 300 60 275 

19 3 Meander 2 25 50 300 60 250 

19 4 Meander 2 25 50 300 60 275 

20 1 Meander 2 25 50 300 70 250 

20 2 Meander 2 25 50 300 70 275 

20 3 Meander 2 25 50 300 70 250 

20 4 Meander 2 25 50 300 70 275 

21 1 Meander 2 25 100 275 60 250 

21 2 Meander 2 25 100 275 60 275 

21 3 Meander 2 25 100 275 60 250 

21 4 Meander 2 25 100 275 60 275 

22 1 Meander 2 25 100 275 70 250 
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Table J 1 (cont’d, 3). Build variable table for the experiment in Chapter 5, showing all build 

variable combinations within the build recipe. Green-shaded rows indicate samples that were 

CT scanned. White-shaded rows indicate un-scanned samples for future analysis. Red-shaded 

rows indicate missing samples. 

I.D. Batch 
Scan 

Strategy 
Order 

Hatch  

Compensation 

[%] 

Fill 

Contour 

 Offset 

[%] 

Power 

[W] 

Grid 

Distance 

[𝝁m] 

Border 

Power 

[W] 

22 2 Meander 2 25 100 275 70 275 

22 3 Meander 2 25 100 275 70 250 

22 4 Meander 2 25 100 275 70 275 

23 1 Meander 2 25 100 300 60 250 

23 2 Meander 2 25 100 300 60 275 

23 3 Meander 2 25 100 300 60 250 

23 4 Meander 2 25 100 300 60 275 

24 1 Meander 2 25 100 300 70 250 

24 2 Meander 2 25 100 300 70 275 

24 3 Meander 2 25 100 300 70 250 

24 4 Meander 2 25 100 300 70 275 

25 1 Meander 2 50 50 275 60 250 

25 2 Meander 2 50 50 275 60 275 

25 3 Meander 2 50 50 275 60 250 

25 4 Meander 2 50 50 275 60 275 

26 1 Meander 2 50 50 275 70 250 

26 2 Meander 2 50 50 275 70 275 

26 3 Meander 2 50 50 275 70 250 

26 4 Meander 2 50 50 275 70 275 

27 1 Meander 2 50 50 300 60 250 

27 2 Meander 2 50 50 300 60 275 

27 3 Meander 2 50 50 300 60 250 

27 4 Meander 2 50 50 300 60 275 

28 1 Meander 2 50 50 300 70 250 

28 2 Meander 2 50 50 300 70 275 

28 3 Meander 2 50 50 300 70 250 

28 4 Meander 2 50 50 300 70 275 

29 1 Meander 2 50 100 275 60 250 

29 2 Meander 2 50 100 275 60 275 

29 3 Meander 2 50 100 275 60 250 

29 4 Meander 2 50 100 275 60 275 
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Table J 1 (cont’d, 4). Build variable table for the experiment in Chapter 5, showing all build 

variable combinations within the build recipe. Green-shaded rows indicate samples that were 

CT scanned. White-shaded rows indicate un-scanned samples for future analysis. Red-shaded 

rows indicate missing samples. 

I.D. Batch 
Scan 

Strategy 
Order 

Hatch  

Compensation 

[%] 

Fill 

Contour 

 Offset 

[%] 

Power 

[W] 

Grid 

Distance 

[𝝁m] 

Border 

Power 

[W] 

30 1 Meander 2 50 100 275 70 250 

30 2 Meander 2 50 100 275 70 275 

30 3 Meander 2 50 100 275 70 250 

30 4 Meander 2 50 100 275 70 275 

31 1 Meander 2 50 100 300 60 250 

31 2 Meander 2 50 100 300 60 275 

31 3 Meander 2 50 100 300 60 250 

31 4 Meander 2 50 100 300 60 275 

32 1 Meander 2 50 100 300 70 250 

32 2 Meander 2 50 100 300 70 275 

32 3 Meander 2 50 100 300 70 250 

32 4 Meander 2 50 100 300 70 275 

33 1 Stripe 1 25 50 275 60 250 

33 2 Stripe 1 25 50 275 60 275 

33 3 Stripe 1 25 50 275 60 250 

33 4 Stripe 1 25 50 275 60 275 

34 1 Stripe 1 25 50 275 70 250 

34 2 Stripe 1 25 50 275 70 275 

34 3 Stripe 1 25 50 275 70 250 

34 4 Stripe 1 25 50 275 70 275 

35 1 Stripe 1 25 50 300 60 250 

35 2 Stripe 1 25 50 300 60 275 

35 3 Stripe 1 25 50 300 60 250 

35 4 Stripe 1 25 50 300 60 275 

36 1 Stripe 1 25 50 300 70 250 

36 2 Stripe 1 25 50 300 70 275 

36 3 Stripe 1 25 50 300 70 250 

36 4 Stripe 1 25 50 300 70 275 

37 1 Stripe 1 25 100 275 60 250 

37 2 Stripe 1 25 100 275 60 275 

37 3 Stripe 1 25 100 275 60 250 
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Table J 1 (cont’d, 5). Build variable table for the experiment in Chapter 5, showing all build 

variable combinations within the build recipe. Green-shaded rows indicate samples that were 

CT scanned. White-shaded rows indicate un-scanned samples for future 

I.D. Batch 
Scan 

Strategy 
Order 

Hatch  

Compensation 

[%] 

Fill 

Contour 

 Offset 

[%] 

Power 

[W] 

Grid 

Distance 

[𝝁m] 

Border 

Power 

[W] 

37 4 Stripe 1 25 100 275 60 275 

38 1 Stripe 1 25 100 275 70 250 

38 2 Stripe 1 25 100 275 70 275 

38 3 Stripe 1 25 100 275 70 250 

38 4 Stripe 1 25 100 275 70 275 

39 1 Stripe 1 25 100 300 60 250 

39 2 Stripe 1 25 100 300 60 275 

39 3 Stripe 1 25 100 300 60 250 

39 4 Stripe 1 25 100 300 60 275 

40 1 Stripe 1 25 100 300 70 250 

40 2 Stripe 1 25 100 300 70 275 

40 3 Stripe 1 25 100 300 70 250 

40 4 Stripe 1 25 100 300 70 275 

41 1 Stripe 1 50 50 275 60 250 

41 2 Stripe 1 50 50 275 60 275 

41 3 Stripe 1 50 50 275 60 250 

41 4 Stripe 1 50 50 275 60 275 

42 1 Stripe 1 50 50 275 70 250 

42 2 Stripe 1 50 50 275 70 275 

42 3 Stripe 1 50 50 275 70 250 

42 4 Stripe 1 50 50 275 70 275 

43 1 Stripe 1 50 50 300 60 250 

43 2 Stripe 1 50 50 300 60 275 

43 3 Stripe 1 50 50 300 60 250 

43 4 Stripe 1 50 50 300 60 275 

44 1 Stripe 1 50 50 300 70 250 

44 2 Stripe 1 50 50 300 70 275 

44 3 Stripe 1 50 50 300 70 250 

44 4 Stripe 1 50 50 300 70 275 

45 1 Stripe 1 50 100 275 60 250 

45 2 Stripe 1 50 100 275 60 275 

45 3 Stripe 1 50 100 275 60 250 
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Table J 1 (cont’d, 6). Build variable table for the experiment in Chapter 5, showing all build 

variable combinations within the build recipe. Green-shaded rows indicate samples that were 

CT scanned. White-shaded rows indicate un-scanned samples for future 

I.D. Batch 
Scan 

Strategy 
Order 

Hatch  

Compensation 

[%] 

Fill 

Contour 

 Offset 

[%] 

Power 

[W] 

Grid 

Distance 

[𝝁m] 

Border 

Power 

[W] 

45 4 Stripe 1 50 100 275 60 275 

46 1 Stripe 1 50 100 275 70 250 

46 2 Stripe 1 50 100 275 70 275 

46 3 Stripe 1 50 100 275 70 250 

46 4 Stripe 1 50 100 275 70 275 

47 1 Stripe 1 50 100 300 60 250 

47 2 Stripe 1 50 100 300 60 275 

47 3 Stripe 1 50 100 300 60 250 

47 4 Stripe 1 50 100 300 60 275 

48 1 Stripe 1 50 100 300 70 250 

48 2 Stripe 1 50 100 300 70 275 

48 3 Stripe 1 50 100 300 70 250 

48 4 Stripe 1 50 100 300 70 275 

49 1 Stripe 2 25 50 275 60 250 

49 2 Stripe 2 25 50 275 60 275 

49 3 Stripe 2 25 50 275 60 250 

49 4 Stripe 2 25 50 275 60 275 

50 1 Stripe 2 25 50 275 70 250 

50 2 Stripe 2 25 50 275 70 275 

50 3 Stripe 2 25 50 275 70 250 

50 4 Stripe 2 25 50 275 70 275 

51 1 Stripe 2 25 50 300 60 250 

51 2 Stripe 2 25 50 300 60 275 

51 3 Stripe 2 25 50 300 60 250 

51 4 Stripe 2 25 50 300 60 275 

52 1 Stripe 2 25 50 300 70 250 

52 2 Stripe 2 25 50 300 70 275 

52 3 Stripe 2 25 50 300 70 250 

52 4 Stripe 2 25 50 300 70 275 

53 1 Stripe 2 25 100 275 60 250 

53 2 Stripe 2 25 100 275 60 275 

53 3 Stripe 2 25 100 275 60 250 
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Table J 1 (cont’d, 7). Build variable table for the experiment in Chapter 5, showing all build 

variable combinations within the build recipe. Green-shaded rows indicate samples that were 

CT scanned. White-shaded rows indicate un-scanned samples for future 

I.D. Batch 
Scan 

Strategy 
Order 

Hatch  

Compensation 

[%] 

Fill 

Contour 

 Offset 

[%] 

Power 

[W] 

Grid 

Distance 

[𝝁m] 

Border 

Power 

[W] 

53 4 Stripe 2 25 100 275 60 275 

54 1 Stripe 2 25 100 275 70 250 

54 2 Stripe 2 25 100 275 70 275 

54 3 Stripe 2 25 100 275 70 250 

54 4 Stripe 2 25 100 275 70 275 

55 1 Stripe 2 25 100 300 60 250 

55 2 Stripe 2 25 100 300 60 275 

55 3 Stripe 2 25 100 300 60 250 

55 4 Stripe 2 25 100 300 60 275 

56 1 Stripe 2 25 100 300 70 250 

56 2 Stripe 2 25 100 300 70 275 

56 3 Stripe 2 25 100 300 70 250 

56 4 Stripe 2 25 100 300 70 275 

57 1 Stripe 2 50 50 275 60 250 

57 2 Stripe 2 50 50 275 60 275 

57 3 Stripe 2 50 50 275 60 250 

57 4 Stripe 2 50 50 275 60 275 

58 1 Stripe 2 50 50 275 70 250 

58 2 Stripe 2 50 50 275 70 275 

58 3 Stripe 2 50 50 275 70 250 

58 4 Stripe 2 50 50 275 70 275 

59 1 Stripe 2 50 50 300 60 250 

59 2 Stripe 2 50 50 300 60 275 

59 3 Stripe 2 50 50 300 60 250 

59 4 Stripe 2 50 50 300 60 275 

60 1 Stripe 2 50 50 300 70 250 

60 2 Stripe 2 50 50 300 70 275 

60 3 Stripe 2 50 50 300 70 250 

60 4 Stripe 2 50 50 300 70 275 

61 1 Stripe 2 50 100 275 60 250 

61 2 Stripe 2 50 100 275 60 275 

61 3 Stripe 2 50 100 275 60 250 
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Table J 1 (cont’d, 8). Build variable table for the experiment in Chapter 5, showing all build 

variable combinations within the build recipe. Green-shaded rows indicate samples that were 

CT scanned. White-shaded rows indicate un-scanned samples for future 

I.D. Batch 
Scan 

Strategy 
Order 

Hatch  

Compensation 

[%] 

Fill 

Contour 

 Offset 

[%] 

Power 

[W] 

Grid 

Distance 

[𝝁m] 

Border 

Power 

[W] 

61 4 Stripe 2 50 100 275 60 275 

62 1 Stripe 2 50 100 275 70 250 

62 2 Stripe 2 50 100 275 70 275 

62 3 Stripe 2 50 100 275 70 250 

62 4 Stripe 2 50 100 275 70 275 

63 1 Stripe 2 50 100 300 60 250 

63 2 Stripe 2 50 100 300 60 275 

63 3 Stripe 2 50 100 300 60 250 

63 4 Stripe 2 50 100 300 60 275 

64 1 Stripe 2 50 100 300 70 250 

64 2 Stripe 2 50 100 300 70 275 

64 3 Stripe 2 50 100 300 70 250 

64 4 Stripe 2 50 100 300 70 275 
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Appendix K: 

CT Analysis Results for Chapter 5 

 

Figure K 1. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 1-1. 

 

Parameters for sample I.D. 1-1 

Power 275 W 

Border power 250 W 

Fill contour offset 50% 

Hatch compensation 25% 
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 Figure K 2. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 1-2.  

Parameters for sample I.D. 1-2 

Power 275 W 

Border power 275 W 

Fill contour offset 50% 

Hatch compensation 25% 
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Figure K 3. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 1-3. 

 
Figure K 4. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 1-4. 

Parameters for sample I.D. 1-4 

Power 275 W 

Border power 275 W 

Fill contour offset 50% 

Hatch compensation 25% 

 

Parameters for sample I.D. 1-3 

Power 275 W 

Border power 250 W 

Fill contour offset 50% 

Hatch compensation 25% 
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Figure K 5. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 3-1. 

 
Figure K 6. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 3-3. 

Parameters for sample I.D. 3-3 

Power 300 W 

Border power 250 W 

Fill contour offset 50% 

Hatch compensation 25% 

 

Parameters for sample I.D. 3-1 

Power 300 W 

Border power 250 W 

Fill contour offset 50% 

Hatch compensation 25% 
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Figure K 7. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 3-4. 

 Figure K 8. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 5-1. 
 

 

Parameters for sample I.D. 5-1 

Power 275 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 25% 

 

Parameters for sample I.D. 3-4 

Power 300 W 

Border power 275 W 

Fill contour offset 50% 

Hatch compensation 25% 
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Figure K 9. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 5-2. 

 
Figure K 10. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 5-3. 

 

 

Parameters for sample I.D. 5-3 

Power 275 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 25% 

 

Parameters for sample I.D. 5-2 

Power 275 W 

Border power 275 W 

Fill contour offset 100% 

Hatch compensation 25% 
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Figure K 11. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 5-4. 

 
Figure K 12. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 7-1. 

Parameters for sample I.D. 7-1 

Power 300 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 25% 

 

Parameters for sample I.D. 5-4 

Power 275 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 25% 
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Figure K 13. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 7-3. 

 
Figure K 14. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 7-4. 

 

Parameters for sample I.D. 7-4 

Power 300 W 

Border power 275 W 

Fill contour offset 100% 

Hatch compensation 25% 

 

Parameters for sample I.D. 7-3 

Power 300 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 25% 
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Figure K 15. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 9-2. 

 
Figure K 16. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 9-3. 

 

 

Parameters for sample I.D. 9-3 

Power 275 W 

Border power 250 W 

Fill contour offset 50% 

Hatch compensation 50% 

 

Parameters for sample I.D. 9-2 

Power 275 W 

Border power 275 W 

Fill contour offset 50% 

Hatch compensation 50% 
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Figure K 17. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 9-4. 

 
Figure K 18. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 11-2. 

Parameters for sample I.D. 11-2 

Power 300 W 

Border power 275 W 

Fill contour offset 50% 

Hatch compensation 50% 

 

Parameters for sample I.D. 9-4 

Power 275 W 

Border power 275 W 

Fill contour offset 50% 

Hatch compensation 50% 
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Figure K 19. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 11-4. 

 
Figure K 20. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 13-1. 

 

 

Parameters for sample I.D. 13-1 

Power 275 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 50% 

 

Parameters for sample I.D. 11-4 

Power 300 W 

Border power 275 W 

Fill contour offset 50% 

Hatch compensation 50% 
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Figure K 21. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 13-2. 

 
Figure K 22. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 13-3. 

Parameters for sample I.D. 13-3 

Power 275 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 50% 

 

Parameters for sample I.D. 13-2 

Power 275 W 

Border power 275 W 

Fill contour offset 100% 

Hatch compensation 50% 
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Figure K 23. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 13-4. 

 
Figure K 24. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 15-1. 

 

 

 

Parameters for sample I.D. 15-1 

Power 300 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 50% 

 

Parameters for sample I.D. 13-4 

Power 275 W 

Border power 275 W 

Fill contour offset 100% 

Hatch compensation 50% 
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Figure K 25. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 15-2. 

 
Figure K 26. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 15-3. 

 

Parameters for sample I.D. 15-3 

Power 300 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 50% 

 

Parameters for sample I.D. 15-2 

Power 300 W 

Border power 275 W 

Fill contour offset 100% 

Hatch compensation 50% 
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 Figure K 27. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 15-4. 
  

Parameters for sample I.D. 15-4 

Power 300 W 

Border power 275 W 

Fill contour offset 100% 

Hatch compensation 50% 
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Appendix L: 

CT Analysis Results (Core Removed) for Chapter 5 

 
 

Figure L 1. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 1-1. 

 

Parameters for sample I.D. 1-1 

Power 275 W 

Border power 250 W 

Fill contour offset 50% 

Hatch compensation 25% 
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 Figure L 2. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 1-2. 
 

 
Figure L 3. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 1-3. 

Parameters for sample I.D. 1-3 

Power 275 W 

Border power 250 W 

Fill contour offset 50% 

Hatch compensation 25% 

 

Parameters for sample I.D. 1-2 

Power 275 W 

Border power 275 W 

Fill contour offset 50% 

Hatch compensation 25% 
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Figure L 4. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 1-4. 

 

 

 
Figure L 5. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 3-1. 

Parameters for sample I.D. 3-1 

Power 300 W 

Border power 250 W 

Fill contour offset 50% 

Hatch compensation 25% 

 

Parameters for sample I.D. 1-4 

Power 275 W 

Border power 275 W 

Fill contour offset 50% 

Hatch compensation 25% 
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Figure L 6. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 3-3. 

 

 

 
Figure L 7. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 3-4. 

Parameters for sample I.D. 3-4 

Power 300 W 

Border power 275 W 

Fill contour offset 50% 

Hatch compensation 25% 

 

Parameters for sample I.D. 3-3 

Power 300 W 

Border power 250 W 

Fill contour offset 50% 

Hatch compensation 25% 

 



 

 317 

 

 Figure L 8. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 5-1. 

 
Figure L 9. Minimum intensity projection images from CT analysis. Build variables correspond 

to sample I.D. 5-2. 

Parameters for sample I.D. 5-2 

Power 275 W 

Border power 275 W 

Fill contour offset 100% 

Hatch compensation 25% 

 

Parameters for sample I.D. 5-1 

Power 275 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 25% 
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Figure L 10. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 5-3. 

 

 

 
Figure L 11. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 5-4. 

Parameters for sample I.D. 5-4 

Power 275 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 25% 

 

Parameters for sample I.D. 5-3 

Power 275 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 25% 
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Figure L 12. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 7-1. 

 

 

 
Figure L 13. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 7-3. 

Parameters for sample I.D. 7-3 

Power 300 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 25% 

 

Parameters for sample I.D. 7-1 

Power 300 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 25% 
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Figure L 14. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 7-4. 

 

 

 
Figure L 15. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 9-

Parameters for sample I.D. 9-2 

Power 275 W 

Border power 275 W 

Fill contour offset 50% 

Hatch compensation 50% 

 

Parameters for sample I.D. 7-4 

Power 300 W 

Border power 275 W 

Fill contour offset 100% 

Hatch compensation 25% 
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2.

 
Figure L 16. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 9-3. 

 
Figure L 17. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 9-4. 

Parameters for sample I.D. 9-4 

Power 275 W 

Border power 275 W 

Fill contour offset 50% 

Hatch compensation 50% 

 

Parameters for sample I.D. 9-3 

Power 275 W 

Border power 250 W 

Fill contour offset 50% 

Hatch compensation 50% 
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Figure L 18. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 11-2. 

 

 

 
Figure L 19. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 11-3. 

Parameters for sample I.D. 11-3 

Power 300 W 

Border power 250 W 

Fill contour offset 50% 

Hatch compensation 50% 

 

Parameters for sample I.D. 11-2 

Power 300 W 

Border power 275 W 

Fill contour offset 50% 

Hatch compensation 50% 
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Figure L 20. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 11-4. 

 

 

 
Figure L 21. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 13-1. 

Parameters for sample I.D. 13-1 

Power 275 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 50% 

 

Parameters for sample I.D. 11-4 

Power 300 W 

Border power 275 W 

Fill contour offset 50% 

Hatch compensation 50% 
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Figure L 22. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 13-2. 

 

 

 
Figure L 23. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 13-3. 

Parameters for sample I.D. 13-3 

Power 275 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 50% 

 

Parameters for sample I.D. 13-2 

Power 275 W 

Border power 275 W 

Fill contour offset 100% 

Hatch compensation 50% 
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Figure L 24. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 13-4. 

 

 
Figure L 25. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 15-1. 

Parameters for sample I.D. 15-1 

Power 300 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 50% 

 

Parameters for sample I.D. 13-4 

Power 275 W 

Border power 275 W 

Fill contour offset 100% 

Hatch compensation 50% 
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Figure L 26. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 15-2. 

 
Figure L 27. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 15-3. 

Parameters for sample I.D. 15-3 

Power 300 W 

Border power 250 W 

Fill contour offset 100% 

Hatch compensation 50% 

 

Parameters for sample I.D. 15-2 

Power 300 W 

Border power 275 W 

Fill contour offset 100% 

Hatch compensation 50% 
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 Figure L 28. Minimum intensity projection images from CT analysis. Build variables 

correspond to sample I.D. 15-4. 

  

Parameters for sample I.D. 15-4 

Power 300 W 

Border power 275 W 

Fill contour offset 100% 

Hatch compensation 50% 
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Appendix M: 

Raw Data for Statistical Analysis of Chapter 5 

Table M 1. Raw data input for the MATLab code. Values correspond to the variable ‘perf’ 

within the code. 

Hatch 

Compensation 

[%] 

Fill 

Contour 

Offset [%] 

Laser 

Power 

[W] 

Border 

Power 

[W] 

Batch 
Full Solid 

Fraction 

Border 

Only Solid 

Fraction 

25 50 275 250 1 0.999861 0.99942 

25 50 275 250 2 0.999887 0.999645 

25 50 275 275 1 0.999642 0.998125 

25 50 275 275 2 0.999793 0.998917 

25 50 300 250 1 0.999557 0.997681 

25 50 300 250 2 0.999674 0.998296 

25 50 300 275 1 NaN NaN 

25 50 300 275 2 0.999744 0.998669 

25 100 275 250 1 0.999757 0.999168 

25 100 275 250 2 0.99982 0.9992 

25 100 275 275 1 0.999752 0.999431 

25 100 275 275 2 0.999826 0.999431 

25 100 300 250 1 0.999747 0.998691 

25 100 300 250 2 0.999781 0.998889 

25 100 300 275 1 NaN NaN 

25 100 300 275 2 0.99979 0.999067 

50 50 275 250 1 NaN NaN 

50 50 275 250 2 0.999826 0.999122 

50 50 275 275 1 0.999764 0.998934 

50 50 275 275 2 0.999793 0.999012 

50 50 300 250 1 NaN NaN 

50 50 300 250 2 0.999791 0.999176 

50 50 300 275 1 0.999716 0.998638 

50 50 300 275 2 0.999828 0.999239 

50 100 275 250 1 0.999758 0.998746 

50 100 275 250 2 0.999667 0.998264 

50 100 275 275 1 0.999592 0.997944 

50 100 275 275 2 0.999666 0.998263 

50 100 300 250 1 0.999585 0.99793 

50 100 300 250 2 0.999773 0.998852 



 

 329 

Table M 1 (cont’d). Raw data input for the MATLab code. Values correspond to the variable 

‘perf’ within the code. 

Hatch 

Compensation 

[%] 

Fill 

Contour 

Offset [%] 

Laser 

Power 

[W] 

Border 

Power 

[W] 
Batch 

Full Solid 

Fraction 

Border 

Only Solid 

Fraction 

50 100 300 275 1 0.99948 0.997284 

50 100 300 275 2 0.999404 0.996933 
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Appendix N: 

MATLab Code for Statistical Analysis of Chapter 5 

%% Initializing 

  
clear all; close all; clc; 

  
%Loading perf table 
%Format is HATCH COMP. | Fill Contour Offset. | Power | Border Poewr | 
%Batch | Solid Fraction 
% WHERE ... can be any other miscellaneous columns 
load('MATLab.mat'); 

  
%My Solver 
%%{ 
%Required constants 
a = length(unique(perf(:,1))); % Number of hatch compensation levels 
b = length(unique(perf(:,2))); % Number of fill contour offset levels 
c = length(unique(perf(:,3))); % Number of power levels 
d = length(unique(perf(:,4))); % Number of border power levels 
n = length(unique(perf(:,5))); % Number of batches 
index = length(perf(1,:));     % Column number where perf is. 

  

  
%% ANOVA  

  
A = perf(:,3); %Power 
B = perf(:,4); %Border Power 
C = perf(:,2); %Fill contour Offset 
D = perf(:,1); %Hatch compensation 
N = perf(:,5); 

  
denn = perf(:,length(perf(1,:))-1); 

  
[p, t, stats, terms] = anovan(denn,{A B C D},'model','full' ,'varnames',{'A', 'B', 

'C', 'D'}); 
alpha = 0.05; 
significance = p < alpha; 
t(1,8) = cellstr(strcat('Significant at alpha =',num2str(alpha),'?')); 
t(2:length(significance)+1,8) = num2cell(significance); 
cell2table(t) 
scatter(perf(:,6),stats.resid) 
xlabel('Actual Solid Fraction') 
ylabel('Model Residual') 
title('Plot of Residuals vs Actual Values') 
Rsq = 1-(cell2mat(t(end-1,2))/cell2mat(t(end-

1,3)))/(cell2mat(t(end,2))/cell2mat(t(end,3))) 

  
%%{ 
%% 
%Reduced  
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%[p, t, stats,terms] = anovan(denn,{A B C D},'model',[1 0 0 0 ; 0 1 0 0 ; 0 0 1 0;0 

0 0 1 ; 1 1 0 0 ; 1 0 1 0; 1 0 0 1 ; 0 1 1 0 ; 0 1 0 1 ; 0 0 1 1 ; 1 1 1 0 ; 1 1 0 

1 ; 1 0 1 1; 0 1 1 1; 1 1 1 1],'varnames',{'A', 'B', 'C', 'D'}, 'alpha', .05); 
% [p, t, stats,terms] = anovan(denn,{A B C D},'model',[1 0 0 0 ; 0 1 0 0 ; 0 0 1 

0;0 0 0 1 ; 1 1 0 0 ; 1 0 0 1],'varnames',{'A', 'B', 'C', 'D'}, 'alpha', .05); 
[p, t, stats,terms] = anovan(denn,{A B C D},'model',[1 0 0 0 ; 0 1 0 0 ; 0 0 1 0 ; 

0 0 0 1 ; 1 1 0 0 ; 1 0 1 0 ; 1 0 0 1 ; 0 1 1 0 ; 0 1 0 1 ; 0 0 1 1; 1 1 1 0 ; 1 1 

0 1 ; 1 0 1 1 ; 0 1 1 1 ; 1 1 1 1],'varnames',{'A', 'B', 'C', 'D'}, 'alpha', .05); 
[p, t, stats,terms] = anovan(denn,{A B C D},'model',[1 0 0 0 ; 0 1 0 0 ; 0 0 1 0 ; 

0 0 0 1 ; 1 1 0 0 ; 1 0 1 0 ; 1 0 0 1 ; 0 1 1 0 ; 0 1 0 1 ; 0 0 1 1; 1 1 1 0 ; 1 1 

0 1 ; 1 0 1 1 ; 0 1 1 1],'varnames',{'A', 'B', 'C', 'D'}, 'alpha', .05); 

 
alpha = 0.05; 
significance = p < alpha; 
t(1,8) = cellstr(strcat('Significant at alpha =',num2str(alpha),'?')); 
t(2:length(significance)+1,8) = num2cell(significance); 
cell2table(t) 

 
Rsq = 1-(cell2mat(t(end-1,2))/cell2mat(t(end-

1,3)))/(cell2mat(t(end,2))/cell2mat(t(end,3))) 
%} 
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Appendix O: 

MATLab Code for Importing the Finite Element Model into COMSOL 

To use this code, COMSOL with MATLab integration is required 

function out = model 

% 

% MODEL_20180723.m 

% 

% Model exported on Jul 25 2018, 19:50 by COMSOL 5.3.0.260. 

  

import com.comsol.model.* 

import com.comsol.model.util.* 

  

model = ModelUtil.create('Model'); 

  

model.modelPath('C:\Users\Msam\Documents\Henry\COMSOL\2018-07'); 

  

model.label('MODEL_20180723.mph'); 

  

model.comments(['Untitled\n\n']); 

  

model.param.set('P', '300[W]', 'Power'); 

model.param.set('D_l', '30 [um]', 'Layer Thickness'); 

model.param.set('t_e', '70 [us]', 'Exposure Time'); 

model.param.set('t_drill', '10[us]'); 

model.param.set('D_p', '70 [um]', 'Point Distance'); 

model.param.set('r', '35 [um]', 'Laser Spot Radius'); 

model.param.set('Tsol', '1450 [degC]', 'Solidus Temperature'); 

model.param.set('Tmelt', '1460 [degC]', 'Liquidus Temperature'); 

model.param.set('a', '0.01', '% Conductivity as powder'); 

model.param.set('b', '1', '% Conductivity as solid'); 

model.param.set('w', 'r*sqrt(2)/2', 'Characteristic Radius'); 

model.param.set('T_inf', '20 [degC]', 'Environmental Temperature'); 

model.param.set('Io', 'P/(pi*w^2)', 'Intensity Scale Factor (Laser)'); 

model.param.set('A_rho', '0.7', 'Hemispherical Reflectivity'); 

model.param.set('A_a', '(1-A_rho)^0.5', 'Arbitrary Constant'); 

model.param.set('A_epsilon', '2/3', 'Packed Density'); 

model.param.set('A_L', 'D_l', 'Powder Bed Thickness'); 

model.param.set('A_lambda', 'A_beta*A_L', 'Optical Thickness'); 

model.param.set('A_beta', '1.5*(1-A_epsilon)/(A_epsilon*A_D2)', 'Extinction Coefficient'); 

model.param.set('A_D', '(1-A_a)*(1-A_a-A_rho*(1+A_a))*exp(-2*A_a*A_lambda)-(1+A_a)*(1+A_a-

A_rho*(1-A_a))*exp(2*A_a*A_lambda)', 'Arbitrary Constant'); 

model.param.set('A_D2', '24[um]', 'Particle Size'); 

model.param.set('x0', '0.3 [mm]', 'Initial X-Position of Laser'); 

model.param.set('y0', '0 [mm]', 'Initial Y-Position of Laser'); 

model.param.set('height', '10', 'Substrate height, in terms of # of layers'); 

model.param.set('A_As', 'A_rho*A_a/(4*A_rho-3)/A_D*((1-A_rho^2)*exp(-A_lambda)*((1-A_a)*exp(-

2*A_a*A_lambda)+(1+A_a)*exp(2*A_a*A_lambda))-2*(1-A_rho)*(3+A_rho*exp(-2*A_lambda)))-3*(1-

A_rho)^2*exp(-A_lambda)/(4*A_rho-3)', '[UNUSED] Residual Radiation on Substrate'); 

  

model.component.create('comp1', true); 

  

model.component('comp1').geom.create('geom1', 3); 

  

model.result.table.create('evl3', 'Table'); 

model.result.table.create('evl2', 'Table'); 

  

model.func.create('an1', 'Analytic'); 

model.func.create('an2', 'Analytic'); 

model.func.create('an3', 'Analytic'); 



 

 333 

model.func.create('an4', 'Analytic'); 

model.func.create('an9', 'Analytic'); 

model.func.create('an5', 'Analytic'); 

model.func.create('an6', 'Analytic'); 

model.func.create('an7', 'Analytic'); 

model.func.create('an10', 'Analytic'); 

model.func('an1').label('Gaussian Pulse'); 

model.func('an1').set('funcname', 'gp'); 

model.func('an1').set('expr', 'Io*exp(-2*x^2/w^2 [1/m^2]) [m^2/W]'); 

model.func('an1').set('plotargs', {'x' '-2*r' '2*r'}); 

model.func('an2').label('Radius'); 

model.func('an2').set('funcname', 'radius'); 

model.func('an2').set('expr', '((x[m]-pX(t[s]))^2+(y[m]-y0)^2)^0.5[1/m]'); 

model.func('an2').set('args', {'x' 'y' 't'}); 

model.func('an2').set('argunit', 'm, m, s'); 

model.func('an2').set('fununit', 'm'); 

model.func('an2').set('plotargs', {'x' '-6[mm]' '6[mm]'; 'y' '0' '0'; 't' '1' '1'}); 

model.func('an3').label('Laser Flux Input'); 

model.func('an3').set('funcname', 'laser'); 

model.func('an3').set('expr', 'gp(radius(x[m],y[m],t[s])) [m^2/W]'); 

model.func('an3').set('args', {'x' 'y' 't'}); 

model.func('an3').set('argunit', 'm,m,s'); 

model.func('an3').set('fununit', 'W/m^2'); 

model.func('an3').set('plotargs', {'x' '-6[mm]' '6[mm]'; 'y' '-6[mm]' '6[mm]'; 't' '0' '0'}); 

model.func('an4').label('Dimensionless Power Density Flux'); 

model.func('an4').set('funcname', 'A_q'); 

model.func('an4').set('expr', '((A_a*A_rho*((A_rho*exp(-2*A_lambda) + 3)*(2*A_a*exp(-

2*A_a*(A_lambda - A_beta*z))*(A_a + A_rho*(A_a + 1) - 1) + 2*A_a*exp(2*A_a*(A_lambda - 

A_beta*z))*(A_a + A_rho*(A_a - 1) + 1)) - exp(-A_lambda)*(A_rho^2 - 1)*(2*A_a*exp(-

2*A_a*A_beta*z)*(A_a - 1) + 2*A_a*exp(2*A_a*A_beta*z)*(A_a + 1))))/(A_D*(4*A_rho - 3)) - 

((3*A_rho - 3)*(exp(-A_beta*z) + A_rho*exp(A_beta*z - 2*A_lambda)))/(4*A_rho - 3))'); 

model.func('an4').set('args', {'z'}); 

model.func('an4').set('argunit', 'm'); 

model.func('an4').set('plotargs', {'z' '0' 'D_l'}); 

model.func('an9').label('Fraction Absorbed'); 

model.func('an9').set('funcname', 'A_Q'); 

model.func('an9').set('expr', 'A_rho*A_a/(4*A_rho-3)/A_D*((1-A_rho^2)*exp(-A_lambda)*((1-

A_a)*exp(-2*A_a*x)+(1+A_a)*exp(2*A_a*x))-(3+A_rho*exp(-2*A_lambda))*((1+A_a-A_rho*(1-

A_a))*exp(2*A_a*(A_lambda-x))+(1-A_a-A_rho*(1+A_a))*exp(2*A_a*(x-A_lambda))))-3*(1-

A_rho)*(exp(-x)-A_rho*exp(x-2*A_lambda))/(4*A_rho-3)'); 

model.func('an9').set('plotargs', {'x' '0' 'A_lambda'}); 

model.func('an5').label('X-Position of Laser'); 

model.func('an5').set('funcname', 'pX'); 

model.func('an5').set('expr', '(x0+D_p*floor(t[s]/(t_e+t_drill))) [1/m]'); 

model.func('an5').set('args', {'t'}); 

model.func('an5').set('plotargs', {'t' '0' 't_e*150'}); 

model.func('an6').label('Y-Position of Laser'); 

model.func('an6').set('funcname', 'pY'); 

model.func('an6').set('expr', 'y0 [1/m]'); 

model.func('an6').set('args', {'t'}); 

model.func('an6').set('plotargs', {'t' '0' '1'}); 

model.func('an7').label('Drill delay'); 

model.func('an7').set('funcname', 'drill'); 

model.func('an7').set('expr', '1-floor(t[s]/(t_e))'); 

model.func('an7').set('args', {'t'}); 

model.func('an7').set('periodic', true); 

model.func('an7').set('periodicupper', 't_e+t_drill'); 

model.func('an7').set('argunit', 's'); 

model.func('an7').set('plotargs', {'t' '0' '(t_e+t_drill)*3'}); 

model.func('an10').set('expr', 'A_Q(0)-A_Q(A_lambda)'); 

  

model.component('comp1').mesh.create('mesh1'); 

model.component('comp1').mesh.create('mesh2'); 

  

model.component('comp1').geom('geom1').create('blk1', 'Block'); 

model.component('comp1').geom('geom1').feature('blk1').label('Substrate'); 
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model.component('comp1').geom('geom1').feature('blk1').set('size', {'1.5[mm]' '0.5 [mm]' 

'D_l*height'}); 

model.component('comp1').geom('geom1').create('blk2', 'Block'); 

model.component('comp1').geom('geom1').feature('blk2').label('Substrate - Scan Area'); 

model.component('comp1').geom('geom1').feature('blk2').set('pos', {'0.125 [mm]' '0' '0'}); 

model.component('comp1').geom('geom1').feature('blk2').set('size', {'1.25[mm]' '140[um]' 

'D_l*height'}); 

model.component('comp1').geom('geom1').create('ext1', 'Extrude'); 

model.component('comp1').geom('geom1').feature('ext1').label('Powder Layer'); 

model.component('comp1').geom('geom1').feature('ext1').setIndex('distance', 'D_l', 0); 

model.component('comp1').geom('geom1').feature('ext1').selection('inputface').set('blk1(1)', 

[4]); 

model.component('comp1').geom('geom1').feature('ext1').selection('inputface').set('blk2(1)', 

[4]); 

model.component('comp1').geom('geom1').create('igf1', 'IgnoreFaces'); 

model.component('comp1').geom('geom1').feature('igf1').selection('input').set('fin(1)', [6 10 

12 17 19]); 

model.component('comp1').geom('geom1').run; 

  

model.component('comp1').view.create('view2', 'geom1'); 

model.view.create('view3', 2); 

model.view.create('view4', 3); 

model.view.create('view5', 2); 

  

model.component('comp1').material.create('mat1', 'Common'); 

model.component('comp1').material('mat1').propertyGroup('def').func.create('pw1', 

'Piecewise'); 

model.component('comp1').material('mat1').propertyGroup('def').func.create('pw2', 

'Piecewise'); 

model.component('comp1').material('mat1').propertyGroup('def').func.create('pw3', 

'Piecewise'); 

model.component('comp1').material('mat1').propertyGroup('def').func.create('pw4', 

'Piecewise'); 

  

model.component('comp1').physics.create('ht', 'HeatTransfer', 'geom1'); 

model.component('comp1').physics('ht').create('temp1', 'TemperatureBoundary', 2); 

model.component('comp1').physics('ht').feature('temp1').selection.set([3]); 

model.component('comp1').physics('ht').create('hs1', 'HeatSource', 3); 

model.component('comp1').physics('ht').feature('hs1').selection.all; 

model.component('comp1').physics('ht').create('bhs1', 'BoundaryHeatSource', 2); 

model.component('comp1').physics('ht').feature('bhs1').selection.set([8]); 

model.component('comp1').physics('ht').create('sym1', 'Symmetry', 2); 

model.component('comp1').physics('ht').feature('sym1').selection.set([2 7]); 

model.component('comp1').physics.create('dode', 'DomainODE', 'geom1'); 

model.component('comp1').physics('dode').create('dode2', 'DistributedODE', 3); 

model.component('comp1').physics('dode').feature('dode2').selection.set([1]); 

model.component('comp1').physics('dode').create('init2', 'init', 3); 

model.component('comp1').physics('dode').feature('init2').selection.all; 

  

model.component('comp1').mesh('mesh1').create('edg1', 'Edge'); 

model.component('comp1').mesh('mesh1').create('map1', 'Map'); 

model.component('comp1').mesh('mesh1').create('swe1', 'Sweep'); 

model.component('comp1').mesh('mesh1').create('edg2', 'Edge'); 

model.component('comp1').mesh('mesh1').create('map2', 'Map'); 

model.component('comp1').mesh('mesh1').create('swe2', 'Sweep'); 

model.component('comp1').mesh('mesh1').create('ftet1', 'FreeTet'); 

model.component('comp1').mesh('mesh1').create('ftet2', 'FreeTet'); 

model.component('comp1').mesh('mesh1').feature('edg1').selection.set([9 12 13]); 

model.component('comp1').mesh('mesh1').feature('edg1').create('size1', 'Size'); 

model.component('comp1').mesh('mesh1').feature('map1').selection.set([9]); 

model.component('comp1').mesh('mesh1').feature('swe1').selection.geom('geom1', 3); 

model.component('comp1').mesh('mesh1').feature('swe1').selection.set([2]); 

model.component('comp1').mesh('mesh1').feature('edg2').create('dis1', 'Distribution'); 

model.component('comp1').mesh('mesh1').feature('swe2').selection.geom('geom1', 3); 

model.component('comp1').mesh('mesh1').feature('ftet1').selection.geom('geom1', 3); 

model.component('comp1').mesh('mesh1').feature('ftet1').selection.set([1]); 

model.component('comp1').mesh('mesh1').feature('ftet1').create('size1', 'Size'); 
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model.component('comp1').mesh('mesh1').feature('ftet2').selection.geom('geom1', 3); 

model.component('comp1').mesh('mesh1').feature('ftet2').create('size1', 'Size'); 

model.component('comp1').mesh('mesh1').feature('ftet2').feature('size1').selection.geom('geom

1', 3); 

model.component('comp1').mesh('mesh2').create('edg1', 'Edge'); 

model.component('comp1').mesh('mesh2').create('map1', 'Map'); 

model.component('comp1').mesh('mesh2').create('swe1', 'Sweep'); 

model.component('comp1').mesh('mesh2').create('edg2', 'Edge'); 

model.component('comp1').mesh('mesh2').create('map2', 'Map'); 

model.component('comp1').mesh('mesh2').create('swe2', 'Sweep'); 

model.component('comp1').mesh('mesh2').create('ftet1', 'FreeTet'); 

model.component('comp1').mesh('mesh2').create('ftet2', 'FreeTet'); 

model.component('comp1').mesh('mesh2').feature('edg1').selection.set([9 12 13]); 

model.component('comp1').mesh('mesh2').feature('edg1').create('size1', 'Size'); 

model.component('comp1').mesh('mesh2').feature('map1').selection.set([9]); 

model.component('comp1').mesh('mesh2').feature('swe1').selection.geom('geom1', 3); 

model.component('comp1').mesh('mesh2').feature('swe1').selection.set([2]); 

model.component('comp1').mesh('mesh2').feature('edg2').selection.set([1 6 22 25]); 

model.component('comp1').mesh('mesh2').feature('edg2').create('dis1', 'Distribution'); 

model.component('comp1').mesh('mesh2').feature('edg2').create('size1', 'Size'); 

model.component('comp1').mesh('mesh2').feature('edg2').feature('dis1').selection.set([]); 

model.component('comp1').mesh('mesh2').feature('swe2').selection.geom('geom1', 3); 

model.component('comp1').mesh('mesh2').feature('ftet1').create('size1', 'Size'); 

model.component('comp1').mesh('mesh2').feature('ftet1').feature('size1').selection.geom('geom

1', 3); 

model.component('comp1').mesh('mesh2').feature('ftet1').feature('size1').selection.set([1]); 

model.component('comp1').mesh('mesh2').feature('ftet2').selection.geom('geom1', 3); 

model.component('comp1').mesh('mesh2').feature('ftet2').create('size1', 'Size'); 

model.component('comp1').mesh('mesh2').feature('ftet2').feature('size1').selection.geom('geom

1', 3); 

  

model.result.table('evl3').label('Evaluation 3D'); 

model.result.table('evl3').comments('Interactive 3D values'); 

model.result.table('evl2').label('Evaluation 2D'); 

model.result.table('evl2').comments('Interactive 2D values'); 

  

model.component('comp1').view('view2').label('xz'); 

model.component('comp1').view('view2').set('locked', true); 

model.view('view3').axis.set('xmin', -6.643772940151393E-5); 

model.view('view3').axis.set('xmax', 0.0027443491853773594); 

model.view('view3').axis.set('ymin', -5.519290061783977E-5); 

model.view('view3').axis.set('ymax', 8.034996571950614E-4); 

model.view('view3').axis.set('abstractviewlratio', -0.044291820377111435); 

model.view('view3').axis.set('abstractviewrratio', 0.8295661211013794); 

model.view('view3').axis.set('abstractviewbratio', -0.16725121438503265); 

model.view('view3').axis.set('abstractviewtratio', 1.434847354888916); 

model.view('view3').axis.set('abstractviewxscale', 2.862308519979706E-6); 

model.view('view3').axis.set('abstractviewyscale', 2.862308519979706E-6); 

model.view('view5').axis.set('xmin', -1.5016680117696524E-4); 

model.view('view5').axis.set('xmax', 0.0016501666978001595); 

model.view('view5').axis.set('ymin', -2.500001573935151E-5); 

model.view('view5').axis.set('ymax', 5.250000394880772E-4); 

model.view('view5').axis.set('abstractviewlratio', -0.10011120140552521); 

model.view('view5').axis.set('abstractviewrratio', 0.10011111944913864); 

model.view('view5').axis.set('abstractviewbratio', -0.05000003054738045); 

model.view('view5').axis.set('abstractviewtratio', 0.05000003054738045); 

model.view('view5').axis.set('abstractviewxscale', 1.8333334992348682E-6); 

model.view('view5').axis.set('abstractviewyscale', 1.8333334992348682E-6); 

  

model.component('comp1').material('mat1').label('Invar'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw1').label('Density'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw1').set('funcname', 

'rho'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw1').set('arg', 't'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw1').set('extrap', 

'interior'); 
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model.component('comp1').material('mat1').propertyGroup('def').func('pw1').set('pieces', 

{'25' '1450' '7902-0.41*t'; '1460' '2400' '7977-0.566*t'; '1450' '1460' '7977-0.566*1460'}); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw1').set('argunit', 

'degC'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw1').set('fununit', 

'kg/m^3'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw2').label('Thermal 

Conductivity'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw2').set('funcname', 

'kb'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw2').set('arg', 't'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw2').set('extrap', 

'interior'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw2').set('pieces', 

{'25' '1450' '4.821+0.01438*t'; '1460' '2400' '5.432+0.01296*t'; '1450' '1460' 

'5.432+0.01296*1460'}); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw2').set('argunit', 

'degC'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw2').set('fununit', 

'W/(m*K)'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw3').label('Enthalpy'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw3').set('funcname', 

'H'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw3').set('arg', 't'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw3').set('extrap', 

'interior'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw3').set('pieces', 

{'25' '1450' '-104.5+0.519*t'; '1460' '2400' '-334.7+0.8*t'; '1450' '1460' '-

334.7+0.8*1460'}); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw3').set('argunit', 

'degC'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw3').set('fununit', 

'J/g'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw4').label('Specific 

Heat'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw4').set('funcname', 

'Cp'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw4').set('arg', 't'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw4').set('pieces', 

{'25' '1450' 'd(H(t),t)'; '1450' '1460' '40'; '1460' '2400' 'd(H(t),t)'}); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw4').set('argunit', 

'degC'); 

model.component('comp1').material('mat1').propertyGroup('def').func('pw4').set('fununit', 

'J/(g*K)'); 

model.component('comp1').material('mat1').propertyGroup('def').set('thermalconductivity', 

{'kb(T)*(a+u*(b-a))' '0' '0' '0' 'kb(T)*(a+u*(b-a))' '0' '0' '0' 'kb(T)*(a+u*(b-a))'}); 

model.component('comp1').material('mat1').propertyGroup('def').set('density', 'rho(T)'); 

model.component('comp1').material('mat1').propertyGroup('def').set('heatcapacity', 'Cp(T)'); 

  

model.component('comp1').physics('ht').prop('AmbientSettings').set('T_amb', 'T_inf'); 

model.component('comp1').physics('ht').feature('init1').set('Tinit', 'T_inf'); 

model.component('comp1').physics('ht').feature('temp1').set('T0', 'T_inf'); 

model.component('comp1').physics('ht').feature('hs1').set('Q0', '-

A_beta*laser(x,y,t)*A_q(D_l*height+D_l-z)*(z<=D_l+D_l*height)*(A_beta*(D_l*height+D_l-

z)<=A_lambda)*drill(t)'); 

model.component('comp1').physics('ht').feature('bhs1').set('Qb', '(1-A_rho)*(A_Q(0)-

A_Q(A_lambda))*laser(x,y,t)*drill(t)'); 

model.component('comp1').physics('ht').feature('bhs1').active(false); 

model.component('comp1').physics('dode').label('Solidification History'); 

model.component('comp1').physics('dode').prop('ShapeProperty').set('order', 0); 

model.component('comp1').physics('dode').prop('Units').set('SourceTermQuantity', 

'dimensionless'); 

model.component('comp1').physics('dode').feature('dode1').set('f', 'u-

nojac(if(T>Tmelt,1,u))'); 

model.component('comp1').physics('dode').feature('dode1').set('da', 0); 

model.component('comp1').physics('dode').feature('dode2').set('f', 'u-1'); 

model.component('comp1').physics('dode').feature('dode2').set('da', 0); 
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model.component('comp1').physics('dode').feature('dode2').active(false); 

model.component('comp1').physics('dode').feature('init2').set('u', 'if(z>D_l*height,0,1)'); 

  

model.component('comp1').mesh('mesh1').label('Manual'); 

model.component('comp1').mesh('mesh1').feature('edg1').feature('size1').set('custom', 'on'); 

model.component('comp1').mesh('mesh1').feature('edg1').feature('size1').set('hmax', 'r/4'); 

model.component('comp1').mesh('mesh1').feature('edg1').feature('size1').set('hmaxactive', 

true); 

model.component('comp1').mesh('mesh1').feature('edg1').feature('size1').set('hmin', 'r/4'); 

model.component('comp1').mesh('mesh1').feature('edg1').feature('size1').set('hminactive', 

true); 

model.component('comp1').mesh('mesh1').feature('edg2').feature('dis1').set('type', 

'predefined'); 

model.component('comp1').mesh('mesh1').feature('edg2').feature('dis1').set('elemcount', 10); 

model.component('comp1').mesh('mesh1').feature('edg2').feature('dis1').set('elemratio', 

0.35); 

model.component('comp1').mesh('mesh1').feature('ftet1').feature('size1').set('custom', 'on'); 

model.component('comp1').mesh('mesh1').feature('ftet1').feature('size1').set('hgrad', 1.2); 

model.component('comp1').mesh('mesh1').feature('ftet1').feature('size1').set('hgradactive', 

true); 

model.component('comp1').mesh('mesh1').feature('ftet2').active(false); 

model.component('comp1').mesh('mesh1').feature('ftet2').feature('size1').set('hauto', 3); 

model.component('comp1').mesh('mesh1').run; 

model.component('comp1').mesh('mesh2').label('Auto'); 

model.component('comp1').mesh('mesh2').feature('edg1').feature('size1').set('custom', 'on'); 

model.component('comp1').mesh('mesh2').feature('edg1').feature('size1').set('hmax', 'r*2'); 

model.component('comp1').mesh('mesh2').feature('edg1').feature('size1').set('hmaxactive', 

true); 

model.component('comp1').mesh('mesh2').feature('edg1').feature('size1').set('hmin', 'r*2'); 

model.component('comp1').mesh('mesh2').feature('edg1').feature('size1').set('hminactive', 

true); 

model.component('comp1').mesh('mesh2').feature('edg2').feature('dis1').active(false); 

model.component('comp1').mesh('mesh2').feature('edg2').feature('dis1').set('type', 

'predefined'); 

model.component('comp1').mesh('mesh2').feature('edg2').feature('dis1').set('elemcount', 10); 

model.component('comp1').mesh('mesh2').feature('edg2').feature('dis1').set('elemratio', 

0.35); 

model.component('comp1').mesh('mesh2').feature('edg2').feature('size1').set('custom', 'on'); 

model.component('comp1').mesh('mesh2').feature('edg2').feature('size1').set('hmax', 'D_l'); 

model.component('comp1').mesh('mesh2').feature('edg2').feature('size1').set('hmaxactive', 

true); 

model.component('comp1').mesh('mesh2').feature('edg2').feature('size1').set('hmin', 'D_l'); 

model.component('comp1').mesh('mesh2').feature('edg2').feature('size1').set('hminactive', 

true); 

model.component('comp1').mesh('mesh2').feature('map2').active(false); 

model.component('comp1').mesh('mesh2').feature('swe2').active(false); 

model.component('comp1').mesh('mesh2').feature('ftet1').feature('size1').set('hauto', 9); 

model.component('comp1').mesh('mesh2').feature('ftet2').active(false); 

model.component('comp1').mesh('mesh2').feature('ftet2').feature('size1').set('hauto', 3); 

model.component('comp1').mesh('mesh2').run; 

  

model.study.create('std1'); 

model.study('std1').create('time', 'Transient'); 

  

model.sol.create('sol1'); 

model.sol('sol1').study('std1'); 

model.sol('sol1').attach('std1'); 

model.sol('sol1').create('st1', 'StudyStep'); 

model.sol('sol1').create('v1', 'Variables'); 

model.sol('sol1').create('t1', 'Time'); 

model.sol('sol1').feature('t1').create('se1', 'Segregated'); 

model.sol('sol1').feature('t1').create('d1', 'Direct'); 

model.sol('sol1').feature('t1').create('i1', 'Iterative'); 

model.sol('sol1').feature('t1').create('i2', 'Iterative'); 

model.sol('sol1').feature('t1').create('ps1', 'PreviousSolution'); 

model.sol('sol1').feature('t1').create('ta1', 'TimeAdaption'); 

model.sol('sol1').feature('t1').feature('se1').create('ss1', 'SegregatedStep'); 
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model.sol('sol1').feature('t1').feature('se1').create('ss2', 'SegregatedStep'); 

model.sol('sol1').feature('t1').feature('se1').create('ll1', 'LowerLimit'); 

model.sol('sol1').feature('t1').feature('se1').feature.remove('ssDef'); 

model.sol('sol1').feature('t1').feature('i1').create('mg1', 'Multigrid'); 

model.sol('sol1').feature('t1').feature('i2').create('mg1', 'Multigrid'); 

model.sol('sol1').feature('t1').feature.remove('fcDef'); 

model.sol.create('sol2'); 

model.sol('sol2').study('std1'); 

  

model.result.dataset.create('cpl1', 'CutPlane'); 

model.result.dataset.create('cpl2', 'CutPlane'); 

model.result.create('pg1', 'PlotGroup3D'); 

model.result.create('pg2', 'PlotGroup3D'); 

model.result.create('pg3', 'PlotGroup3D'); 

model.result.create('pg4', 'PlotGroup3D'); 

model.result.create('pg5', 'PlotGroup2D'); 

model.result.create('pg6', 'PlotGroup2D'); 

model.result('pg1').create('vol1', 'Volume'); 

model.result('pg1').create('surf1', 'Surface'); 

model.result('pg1').create('mesh1', 'Mesh'); 

model.result('pg1').create('slc1', 'Slice'); 

model.result('pg2').create('vol1', 'Volume'); 

model.result('pg2').create('mesh1', 'Mesh'); 

model.result('pg3').create('vol1', 'Volume'); 

model.result('pg3').create('surf1', 'Surface'); 

model.result('pg3').create('mesh1', 'Mesh'); 

model.result('pg3').create('slc1', 'Slice'); 

model.result('pg4').create('surf1', 'Surface'); 

model.result('pg5').create('surf1', 'Surface'); 

model.result('pg5').feature('surf1').create('hght1', 'Height'); 

model.result('pg6').create('surf1', 'Surface'); 

model.result('pg6').feature('surf1').create('hght1', 'Height'); 

model.result.export.create('anim1', 'Animation'); 

  

model.study('std1').feature('time').set('tlist', 'range(0,t_e/16,16*t_e)'); 

model.study('std1').feature('time').set('mesh', {'geom1' 'mesh1'}); 

  

model.sol('sol1').attach('std1'); 

model.sol('sol1').feature('v1').set('clist', {'range(0,t_e/16,16*t_e)'}); 

model.sol('sol1').feature('t1').set('tlist', 'range(0,t_e/16,16*t_e)'); 

model.sol('sol1').feature('t1').set('maxorder', 2); 

model.sol('sol1').feature('t1').set('estrat', 'exclude'); 

model.sol('sol1').feature('t1').feature('se1').feature('ss1').set('segvar', {'comp1_u'}); 

model.sol('sol1').feature('t1').feature('se1').feature('ss2').label('Temperature T'); 

model.sol('sol1').feature('t1').feature('se1').feature('ss2').set('segvar', {'comp1_T'}); 

model.sol('sol1').feature('t1').feature('se1').feature('ss2').set('linsolver', 'd1'); 

model.sol('sol1').feature('t1').feature('se1').feature('ss2').set('subdamp', 0.8); 

model.sol('sol1').feature('t1').feature('se1').feature('ss2').set(... 

                                                        'subjtech', 'onevery'); 

model.sol('sol1').feature('t1').feature('se1').feature('ll1').set(... 

                                                'lowerlimit', 'comp1.T 293.15'); 

model.sol('sol1').feature('t1').feature('d1').set('linsolver', 'pardiso'); 

model.sol('sol1').feature('t1').feature('i1').label(... 

                                            'Algebraic Multigrid Solver (ht)'); 

model.sol('sol1').feature('t1').feature('i2').label(... 

                                            'Geometric Multigrid Solver (ht)'); 

model.sol('sol1').feature('t1').feature('ps1').set('prevcomp', {'comp1_u'}); 

model.sol('sol1').feature('t1').feature('ps1').set('linsolver', 'd1'); 

model.sol('sol1').feature('t1').feature('ta1').active(false); 

model.sol('sol1').feature('t1').feature('ta1').set('globalminpar', 20); 

model.sol('sol1').feature('t1').feature('ta1').set('ngenlocal', 8); 

model.sol('sol1').feature('t1').feature('ta1').set('eefunctime', ... 

                            'sqrt(comp1.Tx^2+comp1.Ty^2+comp1.Tz^2)'); 

model.sol('sol1').feature('t1').feature('ta1').set('samplepts', 'range(0,1/16,1)'); 

model.sol('sol1').feature('t1').feature('ta1').set('consistentrestart', 'bweuler'); 

model.sol('sol1').feature('t1').feature('ta1').set('tadapsol', 'sol2'); 

model.sol('sol1').feature('t1').feature('ta1').set(... 



 

 339 

    'tadapmesh', {'mesh3' 'mesh4' 'mesh5' 'mesh6' 'mesh7' 'mesh8' 'mesh9' ... 

    'mesh10' 'mesh11' 'mesh12'}); 

model.sol('sol1').runAll; 

model.sol('sol2').label('Refined Mesh Solution 1'); 

model.sol('sol2').runAll; 

  

model.result.dataset('cpl1').set('quickplane', 'xz'); 

model.result.dataset('cpl2').set('quickplane', 'xy'); 

model.result.dataset('cpl2').set('quickz', '330[um]'); 

model.result.dataset('cpl2').set('spacevars', {'cpl1x' 'cpl1y'}); 

model.result.dataset('cpl2').set('normal', {'cpl1nx' 'cpl1ny' 'cpl1nz'}); 

model.result('pg1').label('Temperature (ht)'); 

model.result('pg1').feature('vol1').active(false); 

model.result('pg1').feature('vol1').set('rangecoloractive', true); 

model.result('pg1').feature('vol1').set('rangecolormin', 293.1499999999997); 

model.result('pg1').feature('vol1').set('rangecolormax', 1460); 

model.result('pg1').feature('vol1').set('resolution', 'normal'); 

model.result('pg1').feature('surf1').label('Surface'); 

model.result('pg1').feature('surf1').set('rangecoloractive', true); 

model.result('pg1').feature('surf1').set('rangecolormin', 273); 

model.result('pg1').feature('surf1').set('rangecolormax', 1460); 

model.result('pg1').feature('surf1').set('resolution', 'normal'); 

model.result('pg1').feature('mesh1').set('elemcolor', 'none'); 

model.result('pg1').feature('slc1').active(false); 

model.result('pg1').feature('slc1').set('resolution', 'normal'); 

model.result('pg2').label('Solidification History'); 

model.result('pg2').feature('vol1').set('expr', 'u'); 

model.result('pg2').feature('vol1').set('unit', '1'); 

model.result('pg2').feature('vol1').set('descr', 'Dependent variable u'); 

model.result('pg2').feature('vol1').set('smooth', 'none'); 

model.result('pg2').feature('vol1').set('resolution', 'normal'); 

model.result('pg2').feature('mesh1').set('elemcolor', 'none'); 

model.result('pg3').label('Melt Pool Size'); 

model.result('pg3').feature('vol1').set('rangecoloractive', true); 

model.result('pg3').feature('vol1').set('rangecolormin', 293.1499999999997); 

model.result('pg3').feature('vol1').set('rangecolormax', 1460); 

model.result('pg3').feature('vol1').set('rangedataactive', true); 

model.result('pg3').feature('vol1').set('rangedatamin', 1460); 

model.result('pg3').feature('vol1').set('rangedatamax', 10000); 

model.result('pg3').feature('vol1').set('resolution', 'normal'); 

model.result('pg3').feature('surf1').active(false); 

model.result('pg3').feature('surf1').set('expr', 'T>=1460'); 

model.result('pg3').feature('surf1').set('unit', ''); 

model.result('pg3').feature('surf1').set('descr', 'T>=1460'); 

model.result('pg3').feature('surf1').set('resolution', 'extrafine'); 

model.result('pg3').feature('surf1').set('smooth', 'everywhere'); 

model.result('pg3').feature('surf1').set('resolution', 'extrafine'); 

model.result('pg3').feature('mesh1').active(false); 

model.result('pg3').feature('mesh1').set('elemcolor', 'none'); 

model.result('pg3').feature('slc1').active(false); 

model.result('pg3').feature('slc1').set('quickxmethod', 'coord'); 

model.result('pg3').feature('slc1').set('quickx', '0.3[mm]'); 

model.result('pg3').feature('slc1').set('interactive', true); 

model.result('pg3').feature('slc1').set('shift', 8.2E-4); 

model.result('pg3').feature('slc1').set('rangecoloractive', true); 

model.result('pg3').feature('slc1').set('rangecolormin', 293.1499999999997); 

model.result('pg3').feature('slc1').set('rangecolormax', 1460); 

model.result('pg3').feature('slc1').set('rangedataactive', true); 

model.result('pg3').feature('slc1').set('rangedatamin', 1460); 

model.result('pg3').feature('slc1').set('rangedatamax', 10000); 

model.result('pg3').feature('slc1').set('resolution', 'normal'); 

model.result('pg4').feature('surf1').set('expr', 't_e'); 

model.result('pg4').feature('surf1').set('unit', 's'); 

model.result('pg4').feature('surf1').set('descr', 'Exposure Time'); 

model.result('pg4').feature('surf1').set('resolution', 'normal'); 

model.result('pg5').set('data', 'none'); 

model.result('pg5').feature('surf1').set('data', 'cpl1'); 
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model.result('pg5').feature('surf1').set('looplevel', [257]); 

model.result('pg5').feature('surf1').set('expr', 'comp1.T'); 

model.result('pg5').feature('surf1').set('rangecoloractive', true); 

model.result('pg5').feature('surf1').set('rangecolormin', 293.15); 

model.result('pg5').feature('surf1').set('rangecolormax', 1460); 

model.result('pg5').feature('surf1').set('rangedataactive', true); 

model.result('pg5').feature('surf1').set('rangedatamin', 1460); 

model.result('pg5').feature('surf1').set('rangedatamax', 5274.570796151467); 

model.result('pg5').feature('surf1').set('resolution', 'normal'); 

model.result('pg5').feature('surf1').feature('hght1').active(false); 

model.result('pg5').feature('surf1').feature('hght1').set('scale', 1.7347E-7); 

model.result('pg5').feature('surf1').feature('hght1').set('view', 'view4'); 

model.result('pg5').feature('surf1').feature('hght1').set('scaleactive', false); 

model.result('pg6').set('data', 'none'); 

model.result('pg6').feature('surf1').set('data', 'cpl2'); 

model.result('pg6').feature('surf1').set('looplevel', [257]); 

model.result('pg6').feature('surf1').set('expr', 'comp1.T'); 

model.result('pg6').feature('surf1').set('rangecoloractive', true); 

model.result('pg6').feature('surf1').set('rangecolormin', 293.15); 

model.result('pg6').feature('surf1').set('rangecolormax', 1460); 

model.result('pg6').feature('surf1').set('rangedataactive', true); 

model.result('pg6').feature('surf1').set('rangedatamin', 1460); 

model.result('pg6').feature('surf1').set('rangedatamax', 60000); 

model.result('pg6').feature('surf1').set('resolution', 'normal'); 

model.result('pg6').feature('surf1').feature('hght1').active(false); 

model.result('pg6').feature('surf1').feature('hght1').set('scale', 1.7347E-7); 

model.result('pg6').feature('surf1').feature('hght1').set('scaleactive', false); 

model.result.export('anim1').label('Solidification Animation'); 

model.result.export('anim1').set('plotgroup', 'pg2'); 

model.result.export('anim1').set('target', 'player'); 

model.result.export('anim1').set('framesel', 'all'); 

model.result.export('anim1').set('showframe', 2); 

model.result.export('anim1').set('shownparameter', '6E-4'); 

model.result.export('anim1').set('title', 'on'); 

model.result.export('anim1').set('legend', 'on'); 

model.result.export('anim1').set('logo', 'off'); 

model.result.export('anim1').set('options', 'off'); 

model.result.export('anim1').set('fontsize', '9'); 

model.result.export('anim1').set('customcolor', [1 1 1]); 

model.result.export('anim1').set('background', 'color'); 

model.result.export('anim1').set('axisorientation', 'on'); 

model.result.export('anim1').set('grid', 'on'); 

model.result.export('anim1').set('axes', 'on'); 

model.result.export('anim1').set('showgrid', 'on'); 

  

model.sol('sol1').clearSolutionData; 

model.sol('sol2').clearSolutionData; 

  

model.label('MODEL_20180723.mph'); 

  

out = model; 
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Appendix P: 

COMSOL Simulation Results 

 

 

 

Temperature [K] 

Figure P 1. Top and side view of the results for temperature at a time equal to 16 exposure 

points (0.00112 s). Simulation build variables equal those of sample 5 from Table 29. 
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Solidification Ratio, 𝝓 

Figure P 2. Top and side view of the solidification ratio at a time equal to 16 exposure points 

(0.00112 s). Simulation build variable selection equal those of sample 5 from Table 29. 
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Temperature [K] 

Figure P 3. Top and side view of the results for temperature at a time equal to 16 exposure 

points (0.00112s). Simulation build variables equal those of sample 20 from Table 29. 
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Solidification Ratio, 𝝓 

Figure P 4. Top and side view of the solidification ratio at a time equal to 16 exposure points 

(0.00112 s). Simulation build variable selection equal those of sample 20 from Table 29. 
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Temperature [K] 

Figure P 5. Top and side view of the results for temperature at a time equal to 16 exposure 

points (0.00112 s). Simulation build variables equal those of sample 23 from Table 29. 
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Solidification Ratio, 𝝓 

Figure P 6. Top and side view of the solidification ratio at a time equal to 16 exposure points 

(0.00112 s). Simulation build variable selection equal those of sample 23 from Table 29. 
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Temperature [K] 

Figure P 7. Top and side view of the results for temperature at a time equal to 16 exposure 

points (0.00112 s). Simulation build variables equal those of sample 26 from Table 29. 
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Solidification Ratio, 𝝓 

Figure P 8. Top and side view of the solidification ratio at a time equal to 16 exposure points 

(0.00112 s). Simulation build variable selection equal those of sample 26 from Table 29. 
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Temperature [K] 

Figure P 9. Top and side view of the results for temperature at a time equal to 16 exposure 

points (0.00112 s). Simulation build variables equal those of sample 32 from Table 29. 
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Solidification Ratio, 𝝓 

Figure P 10. Top and side view of the solidification ratio at a time equal to 16 exposure points 

(0.00112 s). Simulation build variable selection equal those of sample 32 from Table 29. 
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Temperature [K] 

Figure P 11. Top and side view of the results for temperature at a time equal to 16 exposure 

points (0.00112 s). Simulation build variables equal those of sample 50 from Table 29. 
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Solidification Ratio, 𝝓 

Figure P 12. Top and side view of the solidification ratio at a time equal to 16 exposure points 

(0.00112 s). Simulation build variable selection equal those of sample 50 from Table 29. 
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