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Abstract 

Patients with recurrent corneal erosions (RCE) experience unpredictable and painful episodes, 

caused by the loss of superficial corneal epithelial cells. The erratic nature of RCE often leads to 

patient anxiety, and can significantly impact one’s productivity and quality of life. Historically, 

patching (to prevent blinking) and ocular lubricants were the standard treatment for RCE. More 

recently, soft bandage contact lenses (BCLs) are commonly used, as this allows the use of vision 

during the healing process. The issue with BCLs is that they do not outperform ocular lubricants 

in terms of their efficacy or speed of recovery because they currently lack the biological factors 

that are crucial to ocular surface repair.  Furthermore, ocular lubricants only possess a 5% 

bioavailability, with the majority of active ingredients being washed away by the tear film.  Other 

treatments may involve more invasive methods such as anterior stromal puncture or 

phototherapeutic keratectomy which enhances the epithelial adhesion to Bowman’s membrane or 

the underlying stroma. 

 

The objective of this project was to fabricate and characterize gelatin methacrylate (GelMA) as an 

enzyme-triggered controlled release vehicle in the presence of matrix metalloproteinase (MMP) 

for either bovine lactoferrin (BLf) or hyaluronic acid (HA) and to test these molecules as viable 

drugs for enhancing corneal epithelial wound healing. GelMA revealed a tunable profile fit for 

diffusion- and enzyme-mediated controlled release of drugs above the 70kDa molecular weight 

range.  A 70kDa FITC-dextran model molecule validated the effect of concentration of GelMA, 

methacrylation degree and UV irradiation on the controlled release profile.  An increase in 

concentration and methacrylation degree resulted in a stronger and denser gel with a lower burst 

release, whereas a high UV irradiation dosage allowed for higher crosslinking. The incorporation 

of GelMA into a commercial Biofinity contact lens did not show significant change in the 

mechanical properties, light transmittance or water contact angle demonstrating promise for future 

applications.  Although a GelMA-incorporated lens could not load an adequate amount of drug for 

the molecules selected, optimization through freeze-drying proved to increase loading by nearly 

50%. 

 

BLf demonstrated accelerated wound healing on the rabbit corneal epithelial scratch wound assay, 

whereas HA increased wound healing on both rabbit and human corneal epithelial cells in a scratch 
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and polydimethylsiloxane (PDMS) stamp wound model.  The PDMS stamp wound assay provided 

a more consistent initial wound area and was used for future experiments.  Similarly, HA was 

established to be more versatile in wound healing and was selected as the drug of focus. 

 

The 60kDa HA-loaded GelMA patches showed promise in healing human corneal epithelial 

wounds at lower drug loadings of 150𝜇𝑔 and 250𝜇𝑔, however, the hydrogel became opaque after 

crosslinking.  ELISA tests on the controlled release of HA-loaded GelMA confirmed that FITC-

dextran was viable as a model molecule to reproduce release profiles. 
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1.0 Introduction 
The eye is a vital organ that is responsible for one of five primary senses.  It can be divided into 

two components: the anterior and posterior section.  The cornea is a clear tissue that shields the 

front of the eye and is responsible for 70% of its refractive power [1].  Instead of receiving nutrients 

from blood like most tissues, the cornea obtains its nourishments from a tear that also serves as a 

protective layer to the cornea from the external environment [2]. 

 

There are several ways the cornea can be compromised.  Common causes of injury may include 

physical abrasions, chemical wounds, incorrect contact lens fitting, introduction of foreign agents, 

or exposure to ultraviolet (UV) rays [3].  Physical abrasions can occur from rubbing one’s eye too 

aggressively, whereas chemical wounds may originate from fluid entering the eye, such as an 

acidic beverage or a harsh cleaning substance.  It is important that users of contact lenses follow 

the protocol given by the optometrist to avoid injury, as poor lens fitting or misuse of contact lens 

cleaning solution may cause corneal injuries.  Foreign materials such as dust or sand may cause 

further damage and, on occasion, can penetrate beyond the corneal layer, causing severe damage 

[2].  Lastly, the cornea is susceptible everyday to the UV lights coming from sunlight, lamps, and 

even snow or water reflections [3]. 

 

All the aforementioned causes of injuries may lead to further eye-related complications such as 

recurrent corneal erosion (RCE).  Although several treatment options are available to help heal 

RCE, the therapies are quite intensive and are not always effective.  There is currently a need for 

a more efficient, user friendly, and commercially available remedy.  We propose to investigate the 

use of a controlled release drug-loaded transparent hydrogel in improving RCE. 

 

1.1  The Cornea 
The cornea is a complex tissue composed of numerous layers of cells, each a specific function as 

illustrated in Figure 1.  Beginning from the outer (anterior) to the inner (posterior) portion, the 

cornea is composed of the epithelium, Bowman’s membrane, stroma, Descemet’s membrane and 

the endothelium. 
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Figure 1. Structure of cornea including tear film[4] 

The epithelium is comprised of several layers of corneal epithelial cells which are responsible for 

controlling a passageway into the eye. These cells prevent foreign bodies from entering, and 

provide a smooth surface to allow absorption of oxygen and nutrients from the tear film.  The 

epithelium is also packed with nerve endings to alert the body of corneal injury, thereby providing 

a rapid response system [5].   

 

The Bowman’s membrane is a film of tissue composed primarily of collagen protein fibers and is 

the primary adhesion point for the corneal epithelium.  The function of the Bowman’s membrane, 

aside from securing the epithelial cells, is not quite clear, however, upon injury, the Bowman’s 

membrane may scar during the healing process causing a loss of vision [6]. 

 

As this project primarily deals with the corneal epithelium, and its underlying membrane, the other 

portions of the cornea will not be discussed. 

 

1.2 Tear Film 
While not actually part of the cornea, the tear film is an essential component to keeping the eye 

hydrated and healthy, while additionally accelerating wound healing and preventing infection.  The 

tear film is composed of a lipid, aqueous and mucin layer which are secreted by the Meibomian 
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gland, lacrimal gland and globlet cells, respectively [7] as seen in Figure 1.  The lipid layer is the 

outermost level of the tear film and prevents the tears from evaporating too rapidly. The aqueous 

layer, in combination with the mucin layer, spread over the cornea to efficiently deliver nutrients 

to the eye. 

 

The tear film is constantly being replenished on the eye to remove foreign compounds and to 

maintain a continuous flow of nutrition [8].  While this is advantageous to daily maintenance and 

overall healthiness of the eye, the constant flushing of the tear film renders delivering drugs 

difficult.   

 

1.3 Recurrent Corneal Erosion 
Having direct contact to the surrounding environment, the corneal epithelium is the layer most 

susceptible to damage.  While a superficial corneal abrasion may fully heal within days, severe 

injuries can take several weeks to heal, while some never fully recover.  Even when the wound is 

completely healed, a condition called RCE may develop, wherein the corneal epithelial cells will 

sporadically shed resulting in extreme pain and discomfort.  RCE is found to be 1 in 150 [9] 

individuals and additionally patients with lattice/granular/macular dystrophy have shown an 

increased risk of obtaining RCE [9].  Although the true biological cause of RCE is unknown, it is 

speculated that the sporadic peeling i1.3.1s due to poor corneal epithelial cell attachment to the 

underlying Bowman’s membrane [10].  Furthermore, this can be supported by an overabundance 

of matrix metallopeptidase (MMP) enzyme upon corneal injury {Sobrin, 2000 #16}. 

 

RCE may include symptoms such as severe eye pain, lacrimation, and corneal scarring leading to 

visual changes. Typically, if the eye lacks the sufficient lubrication (i.e. during sleep), any 

movement of the eye may also trigger denuding of the epithelium.  This sporadic nature may 

therefore cause further psychological complications such as photophobia and insomnia [2]. 

 

1.3.1 Matrix Metalloproteinase Enzymes 

It has been shown that when afflicted with RCE, multiple biological factors and enzymes are 

secreted in order to reduce inflammation, increase wound healing speed and remove any debris or 

injured cells.  Several MMPs are upregulated during RCE including MMP-2, MMP-8 and MMP-

9 [11].  These MMP enzymes are responsible for degradation of the extracellular matrix [10], 
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which involves the dissolution of the Bowman’s layer to allow for regrowth and healthier cell-

membrane adhesion.  MMP-8 has demonstrated a higher number of cleavage sites (n=352) to that 

of MMP-9 (n=161) and was additionally shown to degrade gelatin at a faster rate {Eckhard, 2016 

#78}{Marion, 2006 #320}.   

 

Studies have indicated that an overabundance of MMP-9 is the cause of RCE [13-15], however, 

no specific concentration is given.  It is shown that corneal-related diseases cause MMP-9 levels 

to fluctuate in the low hundreds of ng/mL [16, 17]. 

 

1.3.2 Current Commercial Solutions 

Once diagnosed with RCE, ophthalmologists follow a flowchart of treatment methods as shown 

in Figure 2.  The flowchart is organized so that the least invasive therapies are implemented prior 

to the more aggressive surgeries.   
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Figure 2. Treatment options for RCE [2] 

A simple lubrication using eyedrops is initially attempted over the course of the first week.  The 

eye drops may contain either an anti-inflammatory or a wound-accelerating drug to aid in the 

healing [2]. 

 

If ineffective, punctal occlusion can be used as an indirect form of lubrication.  Once inserted into 

the tear duct, the tear film experiences a reduced drainage rate due to the blocked passageway 

which allows for a higher tear retention.  Insertion of a punctal occlusion is a painless technique 

that can be performed in a matter of minutes and can be removed quickly should any side effects 

arise [2]. 
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Regular contact lenses should be avoided during this phase due to potential scraping of the 

damaged area, and possible loss of oxygen to the eye, however, a bandage contact lens (BCL) can 

be used instead. This special type of lens is a medical-graded contact lens that RCE patients wear 

to protect the nerve endings and reduce pain.  The lens also possesses an increased oxygen 

permeability allowing it to be used continuously for a week long period (day and night) [2]. 

 

If all previous treatments fail, ophthalmologists may attempt an invasive surgery.  Operations are 

generally avoided due to surgical complications that may arise.  Most surgery options for RCE 

involve superficial damage to the Bowman’s membrane in an attempt to re-trigger the healing 

process and secure a strong cell-membrane adhesion.  

 

1.3.3 Current Issues 

During the day, lubrication of the eye is normally not an issue as the surface is constantly 

replenished with new tears.  Although the lacrimal turnover rate in the eye is slow ( 0.6 −

1.4𝜇𝐿/𝑚𝑖𝑛) [18], any excess instilled fluid may be removed in a matter of minutes, thereby 

removing compounds that may further cause irritation.  This poses a problem when the cornea is 

in need of external aid such as eye drops.  Most drug solutions are removed in a matter of minutes, 

resulting in only 5% of the active ingredient being absorbed into the eye [19].  This forces the 

consumer to follow an unpleasant and strict regime of applying the eye drops 6-8 times every day. 

 

Punctal occlusions may cause excess obstruction to the tear drainage, resulting in epiphora or 

unwanted tearing.  The occlusion may become lodged in the tear duct causing swelling and pain 

as well as infection.  The wedged occlusion can be removed using forceps [2], however, another 

regime of antibiotic eye drops must be implemented to minimize infection.  As punctal occlusion 

only helps to avoid future erosions through reduction of friction, the cornea is vulnerable to 

denuding through other means. 

 

BCLs are a common method to act as a barrier to the external environment.  Although effective in 

improving patient comfort, they still require antibiotic eye drops at least twice a day.  These eye 

drops do not provide any sort of active ingredient that aids in restoring the corneal epithelial cells, 

and as such, the restorative process may take between 2-8 weeks.[2] 
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Surgery is often avoided due to the invasiveness and will only be considered after thorough 

medical therapies have been attempted.  Aversion to surgical procedures are normal as they may 

cause scarring, inflammatory responses and infections, among other complications [2]. 

 

Although other forms of commercial treatments exist [20], the ones stated in this report are the 

most commonly implemented therapies [2].  These commercial remedy options either lack an 

appropriate active ingredient that improves corneal wound healing and cell adhesion to the 

underlying membrane, or they are inefficient due to their low bioavailability. 

 

1.3.4 Current Research Solutions 

Current research fails to specifically address RCE as there exists an emphasis on techniques to 

improve the delivery of various compounds to both the surface and interior of the eye.  These 

studies focus on either the material delivering the drug or on conjugating/encapsulating the drug 

itself for longer retention in the tear film.  Specific research areas may include the incorporation 

of nanoparticles in contact lens materials, inclusion of diffusion barriers, molecular imprinting or 

plasma treatment as will be briefly discussed in this section. 

 

Nano- and micro- carriers have been extensively studied as a mechanism to encapsulate drugs 

{ElShaer, 2016 #323}{Prakash, 2017 #324}.  Encasing a drug holds several advantages such as 

increasing the half-life and retention time as well as providing a targeted delivery to a specific area 

or section of the eye.  These micro-particles are polymer materials that can be optimized for either 

targeted delivery or to help the carrier pass through certain hydrophobic portions of the tear film.  

Conjugations directly on the drug are not viable as an alteration may affect its bioactivity or half-

life [21].  Although efficient for targeted drug delivery, the fabrication procedures to create nano-

/micro-carriers are complex and their respective shelf-lives in existing eye drop solutions have not 

been thoroughly investigated [23].  Furthermore the toxicity of implementing nano-/micro-carriers 

is not well studied {Bahadar, 2016 #23}. 

 

Diffusion barriers have been utilized to force the active ingredient to diffuse through an extended 

convoluted path to reduce the release rate.  Vitamin E loading into an existing NIGHT&DAYTM 



8 

 

lens has demonstrated to increase both loading and release time of timolol, however, at a cost of 

slightly reducing the oxygen permeability and significantly decreasing the ion permeability {Peng, 

2010 #314}. 

 

Materials have been created in order to improve and retain a longer release profile of specific 

molecules.  Molecular imprinting is an example of a technique used during the fabrication process 

of a material in which a cavity in the shape of the desired drug to be delivered is created [24].  By 

doing so, both an increase in the amount of drug loaded into the polymer matrix and a decrease in 

the burst release of the drug into the surrounding environment results.  This technique has shown 

promise for delivering a single drug, however, it is not a scalable option for other applications and 

it requires an intricate fabrication procedure that is not easily implemented in existing commercial 

products [24]. 

 

Modifying existing commercial products to be viable as drug carriers is an ongoing research field 

concerning eye related diseases.  For example, plasma treatment can be used to both increase the 

wettability and decrease the initial drug release kinetics thereby having a lower burst release [25].  

The surface modifications that plasma treatment offer are not permanent and an average consumer 

would not have access to a plasma treatment machine to readjust their lens. Alternatively, 

incorporating the drug directly into the polymer solution prior to crosslinking of the contact lens 

has been investigated to increase the amount of drug loaded [26].  This is a viable solution for 

molecules with a high half-life, but it still does not address the low bioavailability of drug delivered 

to the eye as a rapid release of drug will still exist. 

 

The solutions being investigated in research all possess their own advantages and although each 

method is practical, they are not very scalable, are difficult to implement in existing commercial 

products or require complex fabrication procedure. 

 

1.4 Molecules to Aid in Corneal Epithelial Wound Healing 
A variety of molecules have demonstrated the ability to accelerate wound closure [27].  An 

extensive literature review on the list of molecules available to accelerate corneal epithelial wound 

healing was performed including investigations on growth factors, extracellular matrix 

components, and molecules of high and low molecular weights.  The potential active agents to be 
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examined was reduced after disregarding molecules with a short half-life (less than one week), 

were too expensive to implement in a controlled release system, or required conjugation to deliver 

(i.e. small molecules <~40kDa in size).  As such, two molecules were selected for this project: 

bovine lactoferrin (BLf) and hyaluronic acid (HA). 

 

1.4.1 Bovine Lactoferrin 

BLf is a ~80kDa globular glycoprotein commonly found in secretory fluids that operates in the 

body’s immune system by providing antibacterial functions [28].  The lactoferrin molecule may 

be secreted and purified from human milk and cow milk, with bovine milk estimating a 

concentration of 150mg/mL [29].  BLf is an approved additive for infant growth supplements in 

several countries and is currently under revision by the US Food and Drug Administration (FDA) 

for being “generally recognized as safe” (GRAS)  [30]. 

 

Lactoferrin is comprised of a C- and N-lobe. The N-lobe is well studied and praised for its 

bacteriostatic effect [31], however, the C-lobe of BLf instigates various medical therapeutics 

including wound healing in immortalized limbal epithelial cells, boasting an increase of nearly 

200% at the 24-hour mark in an alkali wound model [32]. Despite the C-lobe being the active 

group in corneal wound healing, it has been shown that the bovine glycoprotein as a whole is 

capable of accelerating corneal epithelial wound healing in vitro [32, 33].  

 

1.4.2 Hyaluronic Acid 

HA is the only exclusively non-sulfated glycosaminoglycan (GAG) composed of linear 

polysaccharides (Figure 3) that is found in large amounts in humans (15g in an average 70.kg 

person [34]).  HA is responsible for numerous functions in the human body including a critical 

role in the extracellular matrix for cell migration and proliferation [35]. As a polysaccharide, the 

molecular weight of this compound may range between <5kDa to in the millions.  
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Figure 3. Molecular structure of HA 

HA has demonstrated the ability to improve rabbit corneal epithelial wound healing in vivo in n-

heptanol, iodine vapour and mechanical scraping models [36]. Although different lengths of HA 

exist, no significant evidence suggests that a particular molecular weight is advantageous over  

another in corneal wound healing [37] as both the native molecular weight as well as oligomer 

length HA (5-10kDa) have demonstrated accelerated wound healing [38, 39]. 

 

1.5 Ideal Controlled Release 
Upon entering the bloodstream, the majority of drug is immediately cleared by the kidneys and 

liver causing the therapeutic effect to be brief [40]. For example, when a pill is ingested, a fraction 

of the drug will be taken up by the intestines, and less will pass through the renal clearance.  To 

avoid the intestinal barrier, doctors can opt to directly incorporate the drug (if viable) into the body 

intravenously.  This way, the initial renal clearance will be bypassed and 100% of the drug will be 

incorporated into the plasma, however, the first cycle through the kidneys will cause a loss of the 

majority of drug in the blood. 

 

In order for medication to be effective, the concentration of active ingredient must be within a 

therapeutic window.  If below the lower limit, the drug will not cause an effect; whereas above a 

threshold may result in toxic side effects [41].  The presence and clearance of a drug can be 

illustrated in a pharmacokinetic curve (Figure 4).  This diagram is also representative of eye drops 

applied to the surface of the eye.  As most of the drug is immediately cleared by the tear film, the 

remaining concentration will be absorbed (increase in curve) and promptly filtered (decrease) from 

the system. 
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Figure 4. Typical pharmacokinetic curve [41].  AUC= area under curve, MEC = minimum effective concentration, MTC = 

minimum toxic concentration 

 

Ideally, a controlled drug delivery system is able to sustain a constant release of active ingredient 

to maintain a drug concentration level within the therapeutic window for a specified period of time. 

 

1.6 Gelatin Methacrylate 
As the ocular drug delivery system is in contact with the cornea, the selected material must be 

transparent and able to conform to the shape of the eye without causing irritation.  Gelatin 

methacrylate (GelMA) was chosen for this project due to its odorless, transparent properties, 

biocompatibility and tunable properties {Matthyssen, 2018 #316}{Wang, 2017 #317}.  GelMA is 

derived from the FDA approved gelatin, which is a denatured form of collagen. 

 

Food grade gelatin is broken down from a mixture of by-products from meat and leather industries 

such as cattle bones and pig skin [42]; therefore its molecular weight and structure varies 

depending on the source and method of denaturation.  It has been determined that the general 

breakdown of gelatin includes mixture of peptides and proteins containing proline, hydroxyproline 

and glycine in its polypeptide chain [43]. 

 

GelMA is a modified form of gelatin that is complexed with methacrylate anhydride (MA).  The 

product, after lyophilisation, can be solubilized in a photoinitiator (PI) solution and eventually 

crosslinked (Figure 5).  GelMA can be tuned by varying the amount of MA added during the 

reaction.  A higher methacrylation degree will translate to higher crosslinking and therefore a 
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stronger gel.  Furthermore, the concentration of GelMA powder in PI solution can be altered to 

fabricate a dense or light gel. 

 

 
Figure 5. Reaction mechanism of GelMA fabrication [44] 

 

As a derivative of gelatin, GelMA is also degraded by the collagenase enzymes, specifically MMP-

9 [45].  This enables GelMA as a viable material for controlled release delivery due to its tunable 

properties through adjustment of methacrylation degree, concentration of polymer and UV dosage 

{Zhao, 2016 #325}.  GelMA can additionally act as a mechanism to consume the collagenase. 

 

1.7 Objective and Research Question 
The objective of this thesis was to deliver an active ingredient such as BLf or HA using an enzyme-

controlled GelMA hydrogel.  Tuning properties such as the methacrylation degree of the GelMA 

and concentration of GelMA in PI solution will allow for a sustained and steady release of 

molecule.  The research questions that are being investigated in this project are: 

 

1. Gelatin methacrylate is a tunable hydrogel that is able to release a mid-range molecule (50-

100kDa) over a targeted seven days 

2. Incorporation of BLf or HA in vitro will significantly improve human corneal epithelial 

(HCEpC) in a scratch wound and PDMS wound assay model 

 

The research questions can be further broken into aims: 
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1. Validation of a model molecule of ~70kDa size and influences of other solute and gel 

components that can vary the results. 

2. Determination of the controlled release profile under various methacrylation degree, 

concentration of GelMA and UV dosage. 

3. Determination of an appropriate wound assay model and selection of molecule to 

accelerate wound healing. 

4. Validation and examination of bioactivity and controlled release profile of selected 

molecule on a wound assay. 

 

2.0 Materials and Methods 
The materials and methods sections are organized into three primary sections: controlled release 

experiments (section 2.1.1 and section 2.3), wound assay studies (section 2.1.2 and section 2.4), 

and optimization of design (section 2.1.3 and section 2.5), respectively. 

 

2.1 Materials 

2.1.1 Controlled Release Studies 

The GelMA used for the controlled release and drug loading studies were made from type A gelatin.  

Type A gelatin, IRGACURE 2959 and MA were obtained from Sigma.  Phosphate-buffered saline 

(PBS) that was used as the reaction medium was purchased from Fisher Scientific. The centrifuge 

used to remove impurities was a Sorvall ST 16R centrifuge purchased from Thermo Scientific.  

Dialysis was performed using 12,000-14,000Da molecular weight cut-off tubing (Spectra/Por®).  

A FreeZone 1L freeze-dryer from LABCONCO used to lyophilize the GelMA solution.  Both 

collagenase type IV/MMP-9 and MMP-8 were purchased from GIBCO, ThermoFisher.  

Crosslinking of GelMA solutions was performed with either an HTBX UVLED curing oven from 

EIGHT-LED (365nm wavelength with 600mW/cm2 at 100% power) or the FB-UVXL-1000 UV-

crosslinker (265nm wavelength with 120mJ/cm2) from Fisher Scientific.  The 70kDa and 4kDa 

Fluorescein isothiocyanate (FITC)-dextran were purchased from Sigma. 
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2.1.2 Wound Assay 

2.1.2.1 Rabbit corneal epithelial Cell Culture 

Primary rabbit corneal epithelial cells (RCEpCs) along with its respective epithelium cell media 

(EpCM) kit (including insulin-transferrin-selenium, epidermal growth factor, L-glutamine, 

antibiotic-antimycotic solution and fetal bovine serum (FBS) supplements) and gelatin-based 

coating solution were purchased from Cell Biologics, Inc.  The cells were passaged using trypsin-

EDTA from GIBCO Thermo Scientific.  The FBS and dimethyl sulfoxide (DMSO) that were used 

to freeze the cells were acquired from GIBCO Thermo Scientific and Sigma, respectively. 

 

2.1.2.2 Human Corneal Epithelial Cell Culture 

HPV-immortalized HCEpCs were generously provided by Dr. Maud Gorbet, PhD, University of 

Waterloo, ON.  Keratinocyte serum free media supplemented with keratinocyte growth serum 

(KGS) and penicillin/streptomycin (P/S) was utilized as the primary growth medium (fully 

supplemented media will be abbreviated as KM) and purchased from Sciencell.  The HCEpCs 

were passaged with TrypLE reagent obtained from GIBCO by Life Technologies from Thermo 

Scientific. 

 

2.1.2.3 Bioactivity Assay and ELISA 

Both 500kDa and 60kDa HA were purchased from LifecoreTM.  The enzyme linked immunosorbent 

assay (ELISA) kit was acquired from Echelon Biosciences. 

 

2.1.3 Optimization 

Biofinity contact lenses (CLs) from CooperVision possessing a back curvature of 8.6mm, 14.0mm 

diameter and -3.00 power were generously donated from Dr. Lyndon Jones, PhD, Centre for 

Ocular Research & Education, University of Waterloo, ON.  Sonication was performed using a 

Durasonix DR-MH 100 ultrasonic cleaner.  Polyvinyl alcohol (PVA) was acquired from Sigma.  

Polyethylene terephthalate (PET) sheets were purchased from Goodfellow.  The mechanical 

strength was tested using a CETR UMT-2 tribometer. 
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2.2 Methods 

2.3 Controlled Release 

2.3.1 GelMA Preparation 

Type A gelatin was mixed in PBS using a glass bottle to make a 10% (w/v) solution at 50°𝐶 for 

one hour or until fully dissolved.  MA was then added to the gelatin solution at a ~0.5mL/min rate 

to ensure homogeneity.  The amount of MA added varied depending on the desired methacrylation 

degree.  Once added, the mixture was stirred to react for one hour at 50-60°𝐶.  The reaction was 

stopped by adding a 1X dilution of ~40°𝐶 PBS.  Impurities and low molecular weight GelMA 

were removed through a centrifugation step of 5000RPM for 5 minutes.  The supernatant was 

collected and placed in a 12-14kDa dialysis tube for dialysis in deionized (DI) water.  The DI water 

was changed every 2 hours in an 8-hour period for the first two days and daily thereafter for 5-7 

days.  The DI water was kept at ~40°𝐶 during the entirety of this process to prevent the GelMA 

from physically gelling.  The GelMA solution was then placed in 50mL centrifuge tubes and 

freeze-dried at -80°𝐶 for a week to remove the water content, leaving a white crystalline powder.  

The lyophilized powder was stored at -20°𝐶 or -80°C. 

 

2.3.2 GelMA Patch of FITC-dextran Gel Fabrication 

IRGACURE 2959 PI was dissolved in PBS at 60°𝐶 for one hour to make a 0.5% solution.  The 

lyophilized GelMA made in section 2.3.1 was dissolved in the 0.5% PI solution in a screw-top 

cryogenic tube (to minimize evaporation) at 60 °𝐶  for two days to ensure the powder was 

completely solubilized.   FITC-dextran of either 4kDa or 70kDa molecular weight was added to 

the solution to achieve a 5mg/mL concentration.  This mixture was vortexed for 10 seconds to 

ensure homogeneity.  To remove any bubbles formed from agitation, a 5000RPM centrifugation 

step was performed for five minutes.  The solution was then heated to 60°𝐶 in an oven to reverse 

any physical gelling that may have occurred during the centrifugation step.  Approximately 200𝜇𝐿 

of the GelMA-FITC-dextran solution was pipetted into a transparent holding chamber composed 

of glass slides of dimensions 22mm x ~15mm x 0.5mm (Figure 6).  An optional one hour 

refrigeration step (to induce physical crosslinking) was implemented prior to placement in the 

HTBX UVLED curing oven at various intensities for 300s.  The compartments were disassembled 

and the solid gel was cut into 6mm diameter cylinders. 
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2.3.3 Controlled Release of FITC-dextran through Enzymatic Degradation of GelMA 

The GelMA disks created in section 2.3.2 were placed in a 24-well plate and incubated at 37°𝐶. 

PBS was added to the well for 30 minutes as a wash step to remove any surface adsorbed molecules.  

The PBS was then removed and 1mL of PBS, 250ng/mL, 1𝜇𝑔/mL, or 50𝜇𝑔/mL MMP-9 in PBS 

was added to each well.  The liquid was replaced at 2, 4, 6, 8, 10, 12-hour mark and every 24 hours 

for 7 days.  The removed liquid was placed in a 48-well plate and stored in -80°𝐶 until ready to be 

quantified.  At the end of the experiment period, 200𝜇𝑔/mL MMP-9 in PBS was added overnight 

to completely degrade the GelMA disk.  The solution was then stored in a 48-well plate until ready 

to be quantified. 

 

100𝜇𝐿 of FITC-dextran liquid at each time point was transferred to a black 96-well plate and its 

fluorescence was quantified using a Biotek Synergy 4 plate reader.  The samples were 

characterized at a fluorescence excitation at 490nm and emission of 520nm.  The accumulative 

release was calculated in Excel using a FITC-dextran calibration curve and graphed using 

GraphPad Prism. 

 

2.4 Wound Assay Studies 

2.4.1 HCEpCs Wound Assay 

HCEpCs were cultured in a T-25 flask using KM media that was changed every other day.  At 

~90% confluency, they were passaged in 2mL of TrypLE for 10-15 minutes and sub-cultured in a 

bare 24-well plate (for the scratch wound assay) or a 24-well plate containing a thin, punched out 

PDMS stamp adhered to the surface.  The cells were then supplied with KM until a monolayer was 

formed.  For a scratch wound assay, a P200 pipette tip was scratched in a “+” shape (Figure 7a); 

for the PDMS wound assay, the PDMS was carefully stripped from the surface (Figure 7b).  The 

well was then rinsed with PBS and replaced with KM media containing HA or BLf of appropriate 

concentration.  The media was changed with fresh KM media daily or with KM containing the 

Figure 6. Schematic of chamber for GelMA fabrication 
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respective drug and concentration of each well.  Images were taken daily to observe the closure of 

the wound and graphs were generated using GraphPad Prism. 

 

 

Figure 7. Scratch and PDMS wound assay initial wounds 

2.4.2 RCEpCs Scratch Wound Assay 

RCEpCs were cultured using a T-25 flask in EpCM.  Once the cells attain ~90% confluency, they 

were briefly rinsed with PBS and passaged in 2mL of trypsin-EDTA for 3-5 minutes.  The trypsin-

EDTA was then aspirated and 8mL of EpCM supplemented with 10% FBS was added.  The cells 

were then sub-cultured on a 24-well plate surface pre-coated with a gelatin-based coating.  The 

media was changed daily until a cell monolayer was formed.  Either a scratch wound assay or 

PDMS wound assay was performed identical to that described in section 2.4.1.  The well was then 

rinsed with PBS and replaced with EpCM containing either HA or BLf of appropriate 

concentration.  Media was changed daily with fresh EpCM until full closure of wound.  Images 

were taken daily to observe the closure of the wound and graphs were generated using GraphPad 

Prism. 

 

2.4.3 Bioactivity Assay 

GelMA patches were created as described in section 2.3.2 containing various concentrations of 

60kDa HA.  Upon crosslinking the GelMA under 600mW/cm2 for 300s, 8mm patches were created 

and placed in a 24-well plate.  KM media containing KGF and P/S was added to the well and 

replaced at the 12, 36, 60-hour and every 24 hours afterwards for 5 days.  The replaced media was 

stored in a separate 24-well plate in -80°𝐶 until a wound assay was prepared.  HCEpCs were 

prepared and a wound assay was created as described in 2.4.1.  After the washing step, the PBS 

was removed either KM or the collected 12 hour time point was added.  The media was then 

a) b) 
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replaced every 24 hours with the continuing stored time points until the wound was healed.  Images 

were taken every 12-24 hours to monitor the rate of wound healing and curves were created using 

GraphPad Prism. 

 

2.4.4 ELISA Determination of Hyaluronic Acid 

An HA ELISA was performed as per the Echelon, Inc assay procedure.  Either samples, standards, 

or diluent was added to the wells in appropriate amounts and 50𝜇𝐿 of working detector was added 

to each well except the black control wells.  The plate was then covered with a plate seal and 

incubated for one hour at 37°𝐶.  100𝜇𝐿 of each sample was then transferred to the detection plate 

provided and gently mixed.  The detection plate was covered and incubated at 4°𝐶 for 30 minutes.  

The solution was then removed from the plate and washed with 1X wash buffer.  Once sufficiently 

rinsed, 100𝜇𝐿 of working enzyme was added to each well and incubated at 37°𝐶 for 30 minutes 

while covered with a plate seal.  The solution was removed and each well was rinsed with wash 

buffer.  100𝜇𝐿 of working substrate solution was then added to each well and the plate was 

incubated at room temperature in a dark environment.  The absorbance at 405nm was measured at 

15 minutes and 30 minutes and the reaction was stopped by adding 50𝜇𝐿 of stop solution to each 

well.  A best fit curve was generated using non-linear regression analysis with GraphPad Prism 

and a sigmoidal dose response-variable slop curve (four-parameter) analysis was used to determine 

the concentration of each well as described in the Echelon procedure. 

 

2.5 Optimization 
Each CL was prepared by initially rinsing with DI water and subsequently drying overnight at 

60°𝐶 to remove excess liquid.  The lenses were then cut into 4mm diameter circles and used for 

experimentation. 

 

2.5.1 Patterning of GelMA patch 

GelMA disks were prepared similar to that mentioned in section 2.3.2.  200𝜇𝐿 of the solution was 

pipetted into a transparent holding chamber composed of patterned PET of dimensions 22mm x 

~15mm x 0.5mm.  In order to maintain shape and solidify the solution prior to crosslinking, the 

chambers were placed at −4°𝐶 for one hour prior to a 6mW/cm2 300s exposure to UV.  The 

compartments were disassembled and the solid gel was cut into 6mm diameter cylinders. The 

samples were then degraded in a similar fashion as mentioned in section 2.3.3. 
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2.5.2 Transmission, Wettability, Mechanical Strength Characterization 

CLs were soaked overnight in 10% or 30% GelMA solution in PBS in a fastened micro-centrifuge 

tube at 37°𝐶.  The lenses were removed from the sample and the exterior was wiped with Kimwipe 

to remove any excess reagent.  The samples were then placed in a FB-UVXL-1000 UV-crosslinker 

(265nm wavelength at 120mJ/cm2).  The CLs were then either characterized for light transmittance, 

surface wettability using DI water and mechanical strength up to 50% strain. 

 

2.5.3 Drug Loading through Sonication 

CLs were soaked in either a GelMA solution containing 70kDA FITC-dextran at 60°𝐶 overnight 

(control), sonicated for 30 seconds in DI water  and then placed in GelMA containing 70kDa FITC-

dextran and left to incubate overnight in 60°𝐶  (SONDION), or sonicated for 30 seconds the 

morning after an overnight incubation in GelMA containing 70kDa FITC-dextran (ONSON).  

Each sample was placed in securely fastened micro-centrifuge tube (to avoid evaporation).  The 

samples were then removed from their respective incubation mediums and gently patted down 

with Kimwipes to remove excess GelMA.  The lenses were UV irradiated for 300s at 600mW/cm2 

and placed in 24-well plates containing 100𝜇𝑔/mL of MMP-9 to degrade the GelMA overnight.  

The amount of FITC-dextran loaded was calculated by comparing the solution containing 

degraded GelMA to a 70kDa FITC-dextran calibration curve. 

 

2.5.4 Drug Loading through Freeze-Drying 

CLs were stored in a 15mL centrifuge tube in -20°𝐶 until ready to freeze-dry.  The tube was then 

placed into a freeze-drying flask and attached to the freeze-drier overnight.  After removing the 

samples from the tubes, the lenses were incubated in GelMA containing 70kDa FITC-dextran 

overnight at 60°𝐶 .  Upon 300s UV irradiation at 600mW/cm2, the samples were wiped with 

Kimwipes and degraded overnight in a well plate using 100𝜇𝑔/𝑚𝐿 MMP-9 in PBS.   The amount 

of FITC-dextran loaded was calculated by comparing the solution containing degraded GelMA to 

a 70kDa FITC-dextran calibration curve. 
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2.5.5 Extra Dipping 

CLs were soaked overnight in GelMA containing 70kDa FITC-dextran at 60°𝐶 . After a brief 

patting down using Kimwipes, the samples were then placed under UV for 300s.  The lenses were 

then dipped into the GelMA solution once more and UV irradiated a second time.  Once completed, 

the samples were degraded in a 24-well plate containing 100𝜇𝑔/𝑚𝐿 MMP-9 in PBS.   The amount 

of FITC-dextran loaded was calculated by comparing the solution containing degraded GelMA to 

a 70kDa FITC-dextran calibration curve. 

 

2.5.6 Alternate Interior Medium 

CLs were incubated overnight in GelMA containing 70kDa FITC-dextran in a 5% PVA solution 

of PBS at 60°𝐶.  The CLs were removed the following morning and UV irradiated for 300s at 

600mW/cm2. The samples were then degraded in a 24-well plate containing 100𝜇𝑔/𝑚𝐿 MMP-9 

in PBS.   The amount of FITC-dextran loaded was calculated by comparing the solution containing 

degraded GelMA to a 70kDa FITC-dextran calibration curve. 

 

2.6 Statistics 
Statistics were calculated using Graphpad Prism 6 using one-way analysis of variance (ANOVA) 

(and non-parametric) analysis for single comparisons and two-way ANOVA for multiple 

comparisons (such as the wound assays).  T-tests were calculated using Graphpad Prism for the 

bar graphs. 

 

3. Results and Discussion 

3.0 FITC-dextran Calibration Curve 
This section focused on the validity of 70kDa FITC-dextran as a model molecule for the controlled 

release studies and investigated the factors influencing its fluorescence in a calibration curve to 

obtain an accurate reference to quantify the controlled release studies.  These factors included: 

UV-irradiation, elevated temperatures, reagents used in the controlled release experiments, and 

impurities present during GelMA fabrication. 

 

3.0.1 Effect of UV and Incubation on Fluorescence Intensity 

Two primary external influences that affected the stability of FITC-dextran were the UV 

irradiation and the 5-7 day incubation in a 37°𝐶 + 5% CO2 environment.  An investigation on the 
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degree of influence UV irradiation had on FITC-dextran was performed on the calibration curve 

(Figure 8a).  The UV exposure was examined using an FB-UVXL-1000 UV-crosslinker (265nm, 

120mJ/cm2) and an HTBX UVLED curing oven (365nm wavelength with 600mW/cm2 at 100% 

power).  It was noted that the HTBX UVLED machine at >= 300mW/cm2 caused significant 

quenching of the FITC-dextran as the colour of the precursor GelMA solution transformed from a 

bright yellow solution to a colorless, crosslinked hydrogel. 

 

A similar experiment was performed with a FITC-dextran calibration curve that was subjected to 

10 days in a 37°𝐶+5% CO2 incubator compared to one that was freshly created (Figure 8b). 

 

 

 
Figure 8. Effect of a) UV; *: p <0.05, ****: p<0.0001 or b) 37°𝐶 incubation; *: p<0.05 on FITC-dextran fluorescence 

intensities at 250ng/mL, 1𝜇𝑔/𝑚𝐿, 4 𝜇𝑔/𝑚𝐿, 16𝜇𝑔/𝑚𝐿, 32𝜇𝑔/𝑚𝐿 and 64𝜇𝑔/𝑚𝐿 concentrations (n=3).  Error bars shown are 

SD.  

 

Exposure to UV light significantly quenched the calibration curve.  The lowest concentration 

(250ng/mL) of FITC-dextran demonstrated a 25% discrepancy between the fresh calibration curve 

and the UV irradiated sample.  This effect became stronger at 64𝜇𝑔/𝑚𝐿 with a 32% quenching.  

The decrease in fluorescence intensity can be explained by two mechanisms: static and dynamic 

quenching [46].   

 

Static quenching involves creating a non-fluorescent complex before excitation (i.e. before UV 

crosslinking) of the fluorophore which causes a decrease in fluorescent intensity [47].  Dynamic 

(or collisional) occurs when an excited fluorophore comes into contact with an atom or molecule 

that can facilitate non-radiative transitions (with a quencher) back to the ground state [47].   
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As UV irradiation excited the fluorophore molecules (FITC), energy will be released in the form 

of radiation or heat.  This energy can be transferred to other molecules, in which case they may 

absorb excess energy causing the original fluorophore to lose fluorescence.   It has also been shown 

that at higher concentrations of fluorophore, collisional quenching may occur between the 

molecules themselves [48].  Furthermore, Shauenstein et al. [49] has demonstrated that a high 

concentration of FITC causes a shift in emission spectra, which may further decrease fluorescence 

upon UV irradiation. These two phenomena would explain the higher discrepancy at the 64𝜇𝑔/𝑚𝐿 

concentration of FITC-dextran and why it became more sensitive to the 365nm UV exposure than 

once anticipated.  In general, as literature cites an optimal wavelength for crosslinking GelMA of 

365nm [45, 50], the HTBX UVLED machine was used. 

 

The elevated temperature of 37 °𝐶  did not cause any significant decrease in intensity until 

concentrations of higher than 30𝜇𝑔/𝑚𝐿 FITC-dextran.  As no time point in the controlled released 

experiments contained a concentration greater than 30 𝜇𝑔/𝑚𝐿  (shown in section 3.1), the 

64𝜇𝑔/𝑚𝐿 concentration in the calibration curve may be removed and a parallel incubation in 37°𝐶 

is not necessary.  Although the increased temperatures did not show a significant difference until 

a concentration of 64𝜇𝑔/𝑚𝐿 FITC-dextran, temperature has previously been shown to influence 

quenching of fluorophores [51].  Fraiji et al. [46] experimented on the time-dependent nature of 

fluorescence and noted an increased temperature caused an accelerated dynamic (collisional) 

quenching and a slower static quenching.  It is speculated that the decreased fluorescence reading 

at concentrations greater than or equal to 64𝜇𝑔/𝑚𝐿 FITC-dextran is the result of a synergistic 

effect between the concentration-dependent collisional quenching and the accelerated dynamic 

quenching due to elevated temperatures. 

  

3.0.2 Effect of Reagents on Fluorescence Intensity 

The effect of each reagent on the quantification of the calibration curve was investigated.  These 

calibration curves were compared to a control containing identical concentrations of 70kDa FITC-

dextran in PBS (Figure 9).  All samples (aside from the control) were degraded overnight using 

100𝜇𝑔/𝑚𝐿 MMP-9 in PBS.  Gelatin type A (GelA) was used instead of GelMA to compare the 

PBS and IRGACURE PI in PBS solutions to avoid the influence of crosslinking on the results. 
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Figure 9. Effect of Reagents on FITC-dextran reading compared to control sample (70kDa FITC-dextran in PBS with no 

additives) (n=2).  Error bars shown are SD. Statistical significance represents comparison between control and a – 10% GelA, 

PI; b - 10% GelA, PBS; c – 10% GelMA, PBS; d – MMP-9, PBS. *: p<0.05, **: p<0.005; ****: p<0.0001. † represents a 

comparison between 10% GelA, PI vs 10% GelA, PBS samples.  †: p<0.05; ††: p<0.01 

Most reagent (GelMA, GelA and MMP-9) demonstrated a negative influence on the fluorescence 

signal.  Although the concentration of reagent (GelA, GelMA and MMP-9) utilized in these 

experiments was larger than that in the controlled release experiments, the presence of these 

substances could synergistically decrease the intensity of the calibration curve. 

 

The presence of 100𝜇𝑔/𝑚𝐿 MMP-9 in PBS (purple curve) significantly inhibited the intensity 

readings compared to the control as the concentration of FITC-dextran increased as shown in the 

~85𝜇𝑔/𝑚𝐿 points (p < 0.01).  This could be due to a mechanism wherein the MMP-9 caused the 

FITC to be more sensitive to dynamic quenching at higher concentrations. 

 

The addition of GelMA (green curve) diminished the fluorescence intensity severely compared to 

the control.  It was discovered that the addition of GelMA also reduced fluorescence compared to 

a similar solution containing GelA (red curve).  This discrepancy could be due to the presence of 

the MA functional groups or any residual impurities still present from the fabrication procedure 

(as demonstrated in section 3.0.3).   
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It is unclear if the GelA or GelMA are screening (blocking of fluorescence) the fluorophore or if 

complexation is occurring between FITC-dextran and the amino groups on GelA (which would 

also be present on GelMA) (Figure 10) [52]. This would result in a decrease in the recorded 

emission intensities as demonstrated by Shauenstein et al. [49].  As FITC-dextran is stable at high 

temperatures [53], and the isothiocyanate functional group is complexed with the –OH group on 

the dextran polysaccharide, it is unlikely that this conjugation of FITC would favourably react with 

the free amine groups. 

 

 
Figure 10. Reaction mechanism between FITC and gelatin [54] 

 

It was observed that the addition of IRGACURE 2959 PI (blue curve) slightly stabilized the FITC-

dextran fluorescence. It is speculated that free-floating FITC detached from dextran could complex 

with the IRGACURE 2959 via a mechanism similar to that on the –OH group of dextran (Figure 

11).  Although FITC-dextran is quite stable, this is a side reaction that may help improve 

fluorescence by converting the fluorophore into a state that causes less collisional quenching. 

 

 
Figure 11. Proposed mechanism of FITC reaction with IRGACURE 2959 

 

As the difference between GelA solution in PBS with and without PI was small, PBS (without PI) 

was used for future calibration curves.  This medium was preferred over the solution with PI to 

avoid any potential cross-linked GelMA that may be formed in the UV irradiation step. 

 

IRGACURE 2959 FITC 
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The precise cause of diminished fluorescence due to these reagents is still undetermined and may 

warrant investigation in the future.  Conjugation of FITC-dextran with one of the reagents was 

unlikely due to its stability, however, a shielding effect caused by other reagents could have been 

present. 

 

3.0.3 Effect of GelMA impurities 

Centrifugation during the GelMA fabrication procedure was performed to remove any by-products 

(including unreacted MA and methacrylic acid [55]) that may still reside in the solution.  These 

by-products have previously demonstrated toxic behaviour to cells [45], inhibiting cell growth 

onto GelMA materials. It had not been determined if these impurities affected the controlled 

release or loading of the 70kDa FITC-dextran and thus an investigation was conducted. 

 

70kDa FITC-dextran loaded 10H- GelMA samples (centrifuge step removed) were created as an 

exaggeration to observe if the by-products influenced the fluorescent reading of FITC-dextran. 

The rationale behind this experiment was to determine if the purification steps during GelMA 

fabrication could be ignored to increase the throughput of GelMA material.  Samples were created 

using either GelMA that was centrifuged and dialyzed for 7 days (GelMA) or one with the 

centrifuge step removed (impure GelMA).  The samples were degraded overnight in 100𝜇𝑔/𝑚𝐿 

MMP-9 and quantified (Figure 12). 
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Figure 12.  Effect of GelMA impurities on 70kDa FITC-dextran fluorescence intensity (n=3).  Error bars shown are SD. 
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Incorporation of GelMA impurities resulted in a significant 25% decrease in fluorescence intensity 

(p<0.05).  As this variance was substantial, the week-long purification step was retained in the 

fabrication procedure. These results demonstrated the importance of both the centrifugation step 

and the dialysis step in order to remove any remaining impurities found in the GelMA solution. 

 

The mechanism behind the quenching from the impurities is not well known, however, turbidity 

is a well-studied phenomenon that is known to decrease fluorescence intensities [47].  There is 

little information on how turbidity causes quenching, however, it is known that a large number 

particles (generally invisible to the naked eye) produces a decreased in fluorescent signal [47]. 

 

These experiments were performed to investigate the various parameters that may contribute to 

photo-quenching of the model molecule FITC-dextran.  Although several factors (UV and 

controlled release reagents) negatively influence the fluorescence, FITC-dextran was used as the 

model molecule due to its cost efficiency and ease-to-quantify.  A fluorescence stabilizer was not 

incorporated to reduce the amount of quenching as the controlled release studies were performed 

as a proof of concept to the profile of the drug to-be-delivered in GelMA.  During the controlled 

release experiment of the actual drug used for corneal wound assays, an ELISA kit was used to 

quantify the actual amount released. 

 

3.1 Controlled Release in GelMA 
Controlled release studies were performed using either 10L-, 20L-, 30L-, 10L+, 20L+, 30L+, 10H-, 

20H-, 30H-, 10H+, 20H+, or 30H+ GelMA patches.  The 10, 20, and 30 represent the concentration 

of GelMA that was solubilized in the IRGACURE 2959 PI solution (% w/v), “H” and “L” signify 

a high and low methacrylation degree of GelMA, respectively, and a “+” suffix denotes an 

additional physical crosslinking step, whereas “-” represents a single UV irradiation crosslinking.  

These parameters were modified in order to obtain a foundation on the release characteristics from 

a GelMA hydrogel under the influence of MMP enzymes. 

 

A FITC-dextran calibration curve was created prior to every controlled release experiment to 

quantify the amount of FITC-dextran that was released during each respective experiment.  The 

concentrations of FITC-dextran that were used in the curve was calculated based on the theoretical 

amount (in 𝜇g) loaded in a single punched out cylinder of crosslinked GelMA.  This value was 
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then multiplied by the concentration of FITC-dextran in the precursor solution to obtain the 

theoretical weight of drug loaded.  The following calculation is an example for a 6mm diameter 

cylinder: 

 

𝑉𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = 𝜋𝑟2ℎ 

𝑉 = 3.1415926 ∗ (3𝑚𝑚)2 ∗ (0.5𝑚𝑚) 
𝑉 = 14.1371667𝑚𝑚3 

𝐶𝑙𝑜𝑎𝑑𝑒𝑑 = 14.1371667𝑚𝑚 ∗
0.001 𝑚𝐿

1 𝑚𝑚3
∗  5

𝑚𝑔

𝑚𝐿
 

𝐶𝑙𝑜𝑎𝑑𝑒𝑑 =  0.0706858335𝑚𝑔 
𝐶𝑙𝑜𝑎𝑑𝑒𝑑 ≅  70.69𝜇𝑔 

 

One primary issue that was previously demonstrated with FITC-dextran as a model molecule in a 

UV-irradiated hydrogel is its sensitivity to quenching, which caused an observed total release of 

1%-60% of the theoretical loaded amount (~70𝜇𝑔) depending on the UV dosage in the controlled 

release studies.  This established that a UV irradiated calibration curve containing similar reagents 

was not sufficient for mimicking the actual release profile.  Additional factors in the controlled 

release study influenced the reading of the patches such that a 100% loading was not observed.  It 

should be noted that although the true quantity of FITC-dextran cannot be determined, the values 

shown in each curve were proportional to the actual amount released.  It was assumed that the 

molecule of interest would have a similar release profile. 

 

The theoretical amount loaded was also calculated based on a homogeneous solution, that is, the 

FITC-dextran was evenly distributed within the mixture.  Previous studies [56, 57] have 

demonstrated that dextran and gelatin form an incompatible solution, causing phase separation and 

dextran- or gelatin-rich domains.  Although our solution was vortexed to improve homogeneity 

prior to crosslinking, the subsequent centrifuge step may cause further inconsistency in polymer 

distribution due to differences in molecular weight.  The additional time required in the 60°𝐶 to 

reverse physical crosslinking may also allow for phase transition to occur prior to UV irradiation.  

It is recommended that in future experiments, the centrifuge time and speed be optimized to reduce 

the phase transition that occurs prior to UV crosslinking. 

 

As previously mentioned, the concentration of MMP-9 enzyme present during several corneal 

diseases have been reported to be in the low hundreds of ng/mL; therefore, to mimic the 
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environment of the tear film, a concentration of 250ng/mL was used during the controlled release 

experiments. The error bars for the controlled release figures only included the lower standard 

deviation in order to improve clarity.  

 

3.2.1 Physical Crosslinking 

3.2.1.1 Effect of Polymer Concentration, Methacrylation on Physical Crosslinking  

This experiment was performed to determine the degree of methacrylation required to have a 

steady release of 70kDa FITC-dextran over the course of 5-7 days.  A controlled release study 

using low and high methacrylated 6mm diameter GelMA patches was performed and the release 

kinetics and time of degradation in 1𝜇𝑔/𝑚𝐿 MMP-8 were observed (Figure 13).  As MMP-8 

enzyme degrades gelatin at a faster rate than MMP-9 (and also exists in the tear film) [58] [59], it 

was utilized during this controlled release experiment to represent a worst case scenario.  
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Figure 13.  Effect of concentration, methacrylation and crosslinking of GelMA degraded in 1𝜇𝑔/𝑚𝐿 MMP-8 on controlled 

release of 70kDa  FITC-dextran reading (n=4).  LoMA = Low methacrylated, HiMA = High methacrylated,  a – 20H- VS 30H-; 

b – 10H+ VS 20H+; c – 10H+ VS 30H+; d – 20H- VS 20H+; e – 10H- VS 20H-; f – 10H- VS 10H+; g – 10H- VS 30H-.  ****: 

p<0.0001; ***:p<0.001; **:p<0.001; *:p<0.05  Error bars shown are SD. 

Regardless of the concentration of GelMA and additional physical crosslinking step, the low 

methacrylated samples fully degraded within three days and therefore were not suitable for RCE 

applications.  These samples were also fragile and difficult to handle.   
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As the highly methacrylated samples demonstrated a wider range in degradation time, they were 

used for future experiments.  The increased methacrylation degree provided a higher amount of 

crosslinking sites between the methacrylate anhydride, allowing for a slower breakdown of the gel 

within an MMP-rich environment.  Similarly, the additional physical crosslinking step in “+” 

samples provided extra structural support allowing for a longer enzymatic cleavage time.  The 

sequential crosslinking also reduced the pore size [60], creating an environment that was difficult 

for the drug to permeate through the membrane, thereby causing a lower burst release.  After the 

initial burst release (first 24 hours), this effect was evident in the 20H- and 20H+ showing a 

significant change from the 46-hour until the end of the experiment (p<0.001 for 46-hour and 

p<0.0001 for rest of time points).  This was also demonstrated between the 10H- and 10H+ samples 

at the same time points (p<0.05 at 46-hour, p<0.01 from 53-70 hour, p<0.001 at 120-hour and 

p<0.0001 until the rest of the experiment.  A higher concentration of GelMA demonstrated a denser 

polymer matrix inside the gel which significantly reduced the rate of diffusion of FITC-dextran to 

the external environment [60].  This effect was demonstrated in the non-physically crosslinked 

samples such as the 20H- and 30H- samples from the 30-70 hour (p<0.01 from 30-46hour and 

p<0.05 from 53-70 hour); 10H- and 20H- from 46-hour until end of experiment (p<0.01 at the 46-

hour, p<0.001 at the 53 hour and p<0.0001 from the 70-hour until the end of the experiment); 10H- 

and 30H- from 120-hour until the end of experiment (p<0.05).  The samples with an additional 

physical crosslinking step also displayed a concentration dependent release, showing a significant 

different between the 10H+ and 20H+ samples from the 30-hour until the end of experiment 

(p<0.01 from the 30-53hour, p<0.001 from the 70-90 hour, and p<0.0001 from the 120-hour until 

end of experiment); as well as between the 10H+ and 30H+ samples at the 30-hour mark and 

between the 53-hour until the end of experiment (p<0.05 at the 30-hour, p<0.01 from 53-142 hour 

and p<0.0001 at the 167-hour). 

 

A similar experiment under the influence of 250ng/mL MMP-9 was also examined using the 

highly methacrylated GelMA material (Figure 14).  
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Figure 14. Effect of concentration, methacrylation and crosslinking of GelMA degraded in 250ng/mL MMP-9 on controlled 

release of 70kDa FITC-dextran (n=19). a – 10H- VS 30H- b – 20H- VS 30H-; c – 10H- VS 20H-. ****:p<0.0001; *:p<0.05. 

Error bars shown are SD. 

A higher concentration of GelMA resulted in a lower burst release of FITC-dextran.  It was shown 

that after the initial burst release (first 24 hours), the 20H- showed a significantly higher release 

than the 30H- at the 48-hour (p<0.05).  The 10H- additionally demonstrated a faster release 

between the 122- and 144-hour (p<0.05).  The 10H- showed a significantly quicker release over 

the 30H- patches from the 1.5-hour until the end of the experiment (p<0.0001).  It was 

demonstrated that the physical crosslinking step did not reduce the burst release rate as it had with 

the MMP-8.  According to Huang et al., burst release in hydrogels is caused by: processing 

conditions, surface characteristics of host material, sample geometry, host/drug interactions 

(surface adsorption), and morphology and porous structure of dry material.  As all these parameters 

were identical in both of the experiments, the outlying difference are the enzyme types.  It is 

speculated that the cause is due to the different mechanisms of peptide cleavage between MMP-9 

and MMP-8 [61]. 

 

3.2.1.2 Effect of UV Dosage on Physical Crosslinking 

This experiment compared two UV crosslinking machines that possessed different power and 

wavelengths.  GelMA patches of concentrations 10H-, 20H-, 30H-, 10H+, 20H+, and 30H+ were 
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loaded with 70kDa FITC-dextran and UV irradiated for 300s using either the 265nm FB-UVXL-

1000 UV crosslinker, or the 365nm HTBX UVLED oven (Figure 15 and ). 

 

The UV dosage can be represented in mJ/cm2 by multiplying the power of the crosslinker by the 

time the sample was irradiated.  A sample calculation of the HTBX UVLED at 600mW/cm2 is 

provided: 

 

600
𝑚𝑊

𝑐𝑚2
∗ 300𝑠 = 180,000

𝑚𝑊 ∗ 𝑠

𝑐𝑚2
 , 𝑤ℎ𝑒𝑟𝑒 1 𝑚𝑊 ∗ 𝑠 = 1𝑚𝐽 

∴ 𝑈𝑉 𝑑𝑜𝑠𝑎𝑔𝑒 = 180,000
𝑚𝐽

𝑐𝑚2
 

 

 
Figure 15. Effect of UV dosage on various concentration and optional physical crosslinking step of GelMA controlled release of 

70kDa FITC-dextran (n = 3). Error bars shown are SD. 
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Figure 16. Effect of UV dosage on 10H- GelMA controlled release of 70kDa FITC-dextran (n = 3). Error bars shown are SD. 

It was demonstrated that a UV dosage of 180,000, 90,000, and 1,800 mJ/cm2 at 365nm wavelength 

(Figure 15b,c,d) released different orders of magnitude FITC-dextran due to the varying dosage of 

UV irradiation.  This effect is better visualized in Figure 16, which exemplifies the significance of 

the UV dosage on the observed 10H- FITC-dextran readings.  After the initial burst release (first 

24 hours), the effect of UV dosage was significant between all 10H- samples (p<0.0001) from the 

25-hour until the end of experiment except between the 90,000mJ/cm2 and 180,000mJ/cm2-

irradiated samples, which showed no significant change.  The fluorescence of the FITC-dextran 

was severely extinguished following the 180,000mJ/cm2 and 90,000mJ/cm2 UV irradiation 

wherein the GelMA samples became completely white (the natural colour of the GelMA), causing 

a low release percentage of the theoretical amount loaded. 

 

The 10H- GelMA samples irradiated with 1,800 mJ/cm2 of 365nm UV and 120mJ/cm2 of 265nm 

UV were visibly completely degraded by the 250ng/mL MMP-9 by the 120-hour mark.  Although 

this is not apparent from Figure 14b, it is speculated that the continued release was due to excess 

FITC-dextran that remained at the bottom of the well-plate.  The 180,000mJ/cm2 and 

90,000mJ/cm2 10H- samples, on the other hand, were fully present on day 7.  This suggested that 

a UV dosage of 1,800mJ/cm2 at 365nm and 120mJ/cm2 at 265nm could not provide a gel robust 

enough to release FITC-dextran over the course of 7 days. 
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This posed conflicting future steps as a higher and longer UV exposure were required for a longer 

lasting gel, however, the FITC-dextran was not sustainable under strong UV irradiation.  Although 

FITC-dextran was simple to quantify using a plate reader, a different model molecule could be 

considered or, a new crosslinking method for GelMA could be experimented upon (thermal 

crosslinker instead of UV) for future experiments.  For simplicity, FITC-dextran and a higher UV 

dosage were utilized to predict the release profile of actual drug in a wound assay. 

 

This section evaluated the effects of tuning methacrylation degree, concentration of GelMA, and 

UV dosage on the controlled release profile of GelMA.  Increasing the methacrylation degree 

allowed for additional crosslinking sites upon UV irradiation and proved to increase the lifespan 

of the gel within an MMP-rich environment to the 5-7 day targeted release length.  A higher 

concentration of polymer resulted in a denser polymer matrix which reduced the permeability of 

70kDa FITC-dextran through the membrane and therefore providing a lower burst release.  

Similarly, adding a physical crosslinking step reduced the pore size of the GelMA whilst providing 

a structural stronger gel that limited the diffusion of drug to the external environment.  This effect 

was notable in MMP-8, but not MMP-9 due to the different cleavage mechanism of the enzymes. 

 

3.1.1 Effect of Concentration of MMP Enzyme (MMP-8) and Size of Molecule 

As an additional physical crosslinking step reduced the pore size of the hydrogel and an increased 

polymer concentration minimizes drug permeability through the gel matrix, an experiment 

examining the molecular weight cut-off of FITC-dextran in GelMA was conducted.  GelMA 

patches loaded with either 4kDa (Figure 17) or 70kDa FITC-dextran (Figure 19) were dissolved 

in PBS or PBS solutions containing 1𝜇𝑔/𝑚𝐿 MMP-8.  An additional 50𝜇𝑔/𝑚𝐿 sample was run 

in parallel to confirm that MMP-8 played a role in degradation of GelMA.  The significance 

between the 20H+ and 30H+ in either PBS, 1  μg/mL  MMP-8, or 50  μg/mL  MMP-8 was 

illustrated in Figure 20. 
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Figure 17. Effect of PBS and 1𝜇𝑔/𝑚𝐿 MMP-8 enzyme on controlled release of 4kDa FITC-dextran from varying concentrations 

and optional physical crosslinking step of GelMA (n=4).  Error bars shown are SD 

 

Figure 18. Inset of Figure 17 demonstrating the release profile between 80-100% on effect of PBS and 1𝜇𝑔/𝑚𝐿 MMP-8 enzyme 

on controlled release of 4kDa FITC-dextran  from varying concentrations and optional physical crosslinking step of GelMA 

(n=4).  Error bars shown are SD. 

The percentage released was calculated as opposed to amount of drug released in order to 

demonstrate the completion of the controlled release (when no more drug was delivered).  The 

4kDa FITC-dextran completely eluted from the hydrogel within the first 3 days despite the 

presence of MMP-8 enzyme and concentration of GelMA (Figure 17) revealing that the drug is 

able to more freely permeate through the gel despite the smaller pore size from the “+” physical 

crosslinking.  Ignoring the initial burst release (first 24 hours), only the 20H- sample demonstrated 

a significant variation in 4kDa FITC-dextran release from the 31-55 hour (p<0.0001 from 31-

47hour and p<0.001 from 47-55 hour)  In comparison, the 70kDa FITC-dextran demonstrated a 

stronger concentration- and physical crosslinking-dependent release profile, resulting in a more 

controllable enzyme-mediated release. 
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Figure 19. Effect of PBS, 1𝜇𝑔/𝑚𝐿 and 50𝜇𝑔/𝑚𝐿 MMP-8 enzyme on controlled release of 70kDa FITC-dextran in various 

concentrations and optional physical crosslinking step from GelMA (n=4).  Error bars shown are SD 

 

 

1 u g /m L  M M P -8  7 0 k D a  F IT C

t im e  (h )

P
e

r
c

e
n

ta
g

e
  

R
e

le
a

s
e

d

0 5 0 1 0 0 1 5 0

0

2 0

4 0

6 0

8 0

1 0 0

5 0 u g /m L  M M P -8  7 0 k D a   F IT C -d e x tr a n

t im e  (h )

P
e

r
c

e
n

ta
g

e
  

R
e

le
a

s
e

d

0 5 0 1 0 0

0

2 0

4 0

6 0

8 0

1 0 0

P B S  7 0 k D a  F IT C

t im e (h )

P
e

r
c

e
n

ta
g

e
  

R
e

le
a

s
e

d

0 5 0 1 0 0

0

2 0

4 0

6 0

8 0

1 0 0

a) b) 

c) 



37 

 

 

Figure 20. a) Effect of PBS, 1𝜇𝑔/𝑚𝐿 and 50𝜇𝑔/𝑚𝐿 MMP-8 enzyme on 20H+ and 30H+ GelMA controlled release of 70kDa 

FITC-dextran (n=4). b) Inset of image a) depicting release profile after initial burst release (~75% within 24 hours).  a – 20H+ 

in 50𝜇𝑔/𝑚𝐿 MMP-8 VS 1𝜇𝑔/𝑚𝐿 MMP-8; b – 20H+ 50 𝜇𝑔/𝑚𝐿 MMP-8 VS PBS; c – 30H+ 1 𝜇𝑔/𝑚𝐿 MMP-8 VS PBS.  

****:p<0.0001, ***:p<0.001, *:p<0.05  Error bars shown are SD 

 

The concentration of MMP-8 enzyme proved to be a major contributor to the enzymatic 

degradation of the hydrogel as demonstrated by the release profile in Figure 19.  After the initial 
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burst release (first 24 hours), the 20H- samples degraded in 50𝜇𝑔/𝑚𝐿 were significantly different 

than that of the 1𝜇𝑔/𝑚𝐿 (p<0.005) and PBS (p<0.05) samples at the 30-hour.  The 30H- GelMA 

patches from the 50- and 1𝜇𝑔/𝑚𝐿 samples were significantly slower than the PBS (p<0.0001 and 

p<0.01, respectively) 30H- sample from the 46-70 hour.  The 10H+ degraded in 50𝜇𝑔/𝑚𝐿 was 

degraded significantly quicker than the 10H+ in 1𝜇𝑔/𝑚𝐿  (p< 0.0001), which, in turn, was 

significantly faster than the PBS 10H+ (p< 0.0001) sample from the 30-hour until the 119-hour.  

It is demonstrated from Figure 20b that the 20H+ degraded in 50 𝜇𝑔/𝑚𝐿  MMP-8 had a 

significantly different release rate from an identical patch in 1𝜇𝑔/𝑚𝐿 MMP-8 from the 22-90 hour 

(p<0.0001 from 22-30 hour, p< 0.001 at 46-hour and p<0.05 at the 70-hour mark).  It was 

additionally shown that the 20H+ degraded in 50 𝜇𝑔/𝑚𝐿  MMP-8 released FITC-dextran 

significantly faster than the equivalent PBS sample between the 22- and 30-hour (p<0.0001 and 

p<0.001, respectively).  The 30H+ degraded in 1𝜇𝑔/𝑚𝐿 MMP-8 demonstrated a significantly 

faster release over the 30H+ in PBS from the 22-30hour (p<0.001 at the 22-hour and p<0.05 at the 

30 hour).  The 30H+ degraded in 50𝜇𝑔/𝑚𝐿 possessed a release rate significantly faster over the 

corresponding PBS sample between the 46-70 hour (p<0.05). 

 

These results indicated that the MMP-8 enzyme played a key role in the release profile of the 

hydrogels.  It also revealed that 4kDa molecules were below the threshold that GelMA could load 

and they were able to freely permeate without obstruction, implying a diffusion-limited release.  

Using this information, it is recommended in future experiments that a 30H+ GelMA is used (to 

limit permeability inside the gel as well as to reduce the porosity) in combination with a higher 

molecular weight molecule in order to minimize burst release and have an enzyme-mediated 

release. 

 

3.1.2 Effect of Enzyme Type (MMP-8 VS MMP-9) (CL and Patch) 

As previously mentioned, MMP-8 and MMP-9 cleave gelatin differently.  In order to differentiate 

the release profile between MMP-8 and MMP-9, the enzymes were compared.  An experiment 

degrading a 4mm GelMA-loaded Biofinity CL or a 6mm pure GelMA patch was performed over 

5 days using 1𝜇𝑔/𝑚𝐿 of either MMP-8 or MMP-9 (Figure 21). 
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Figure 21. MMP-8 VS MMP-9 enzyme on 20H- GelMA patch and 20H- GelMA-incorporated CL release of 70kDa FITC-dextran 

(n=9). Error bars shown are SD.*:p<0.05 

An interesting phenomenon occurred where the GelMA patches degraded in MMP-8 (Figure 21a) 

released 70kDa FITC-dextran significantly faster than ones in MMP-9 as shown by an increased 

release of 166%, 134%, and 107% at the 48-, 77- and 102-hour.  This effect was not significant at 

any time point when the GelMA was incorporated in a CL  (Figure 21b).  This suggested that the 

CL and acts as a larger barrier to MMP-8 over MMP-9 due to their specific cleavage sites of the 

hydrogel [61].  Since RCE is primarily caused by MMP-9 enzyme [13], future experiments focused 

on this enzyme, however, as several MMP enzymes are present in the tear film during RCE [62], 

it is advised that the effect of each enzyme at physiological concentrations on GelMA degradation 

is investigated. 

 

Reflecting on the controlled release studies, despite the quenching of FITC-dextran, the model 

molecule provided an accurate prediction of the release profile for the molecule selected (discussed 

later).  Highly methacrylated GelMA was chosen over low methacrylation as it demonstrated a 

large tunable profile within the 5-7 day range based on concentration of GelMA dissolved in PBS 

solution containing PI. 

 

3.1.3 Optimization of GelMA Patch 

Experiments were performed in an attempt to optimize the controlled release profile of a 70kDa 

drug from a GelMA patch.  These studies were performed to achieve a different release pattern in 

order to satisfy an accelerated corneal epithelial wound healing.  An explanation for the design 

process behind the mechanism is provided. 
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3.1.3.1 Patterning of Patch 

Patterning the surface of a 6mm GelMA patch was investigated to accelerate the release of drug.  

The rationale behind this study was to increase the surface area that the drug may diffuse from the 

hydrogel as depicted in Figure 22.  Any pattern that is added to the surface of the hydrogel would 

increase the surface area, which would theoretically accelerate the release of drug.  The patterns 

implemented on the surface of the hydrogel for this experiment were 900nm pillars that were 

spaced approximately 900nm apart.  As these patterns were from a previous lab, the height of these 

features is currently unknown. The presence of the pillars on the GelMA patch were confirmed 

with phase contrast microscopy.  Alternate patterns may be investigated for various controlled 

release profiles, however, 900nm pillars were chosen as a proof of concept. 

 

 
Figure 22. Schematic of proposed patterning mechanism on surface of GelMA 

 

The GelMA patch was loaded with 70kDa FITC-dextran and the controlled release profile was 

calculated (Figure 23).  These hydrogels were soaked in PBS without MMP enzyme to ensure that 

the pattern on the surface remained intact (to demonstrate that the change in release profile was 

solely due to the increased surface area and not the presence of MMP enzyme).   
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Figure 23. Effect of patterning 20H- GelMA patch on controlled release profile of 70kDa FITC-Dextran (n=4).  Error bars 

shown are SD. **:p<0.01, ****:p<0.0001 

The GelMA patch demonstrated an average of 2.47 times the amount of FITC-dextran released 

(the first 24 hours were not included in this calculation as it was burst release) over the course of 

seven days in PBS solution.  The amount of increased surface area due to the patterns was 

calculated to determine if this was the underlying cause of the accelerated release rate. The surface 

area of the 6mm GelMA patch that is releasing drug is that of a cylinder minus one side (as this 

side is in contact with the bottom of the well-plate, it is assumed that no drug leaves from this 

surface). 

 

 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑎 𝑠𝑖𝑑𝑒 = 2𝜋𝑟ℎ + 𝜋𝑟2 

∴ 𝑆𝐴𝑢𝑛𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑒𝑑 = (2 ∗ 3.14159 ∗ 3𝑚𝑚 ∗ 0.5𝑚𝑚) + (3.14159 ∗ (3𝑚𝑚)2) 

𝑆𝐴𝑢𝑛𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑒𝑑 = 9.42477𝑚𝑚2 + 28.27431𝑚𝑚2 

𝑆𝐴𝑢𝑛𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑒𝑑 = 37.69908𝑚𝑚2 

 

The surface area gained from each 900nm feature can be determined by calculating the wall of 

each pillar.  Assuming the height of the pillar was 1 micron, this equate to:  

 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑤𝑎𝑙𝑙 = 2𝜋 ∗ 𝑟𝑝𝑖𝑙𝑙𝑎𝑟 ∗ ℎ𝑝𝑖𝑙𝑙𝑎𝑟 
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∴  𝑆𝐴𝑎𝑑𝑑𝑒𝑑 = 2 ∗ 3.14159 ∗ 0.00045𝑚𝑚 ∗ 0.001𝑚𝑚 

𝑆𝐴𝑎𝑑𝑑𝑒𝑑 = 0.000002827431𝑚𝑚2 

 

As the pillars were spaced 900nm apart, we can place each pillar into a square to approximate the 

area representing one feature. 

 

Figure 24. Diagram depicting one 900nm pillar feature 

Where the area of the square is: 

𝐴𝑟𝑒𝑎𝑠𝑞𝑢𝑎𝑟𝑒 = 1.8𝜇𝑚 ∗ 1.8𝜇𝑚 

𝐴𝑟𝑒𝑎𝑠𝑞𝑢𝑎𝑟𝑒 = 3.24𝜇𝑚2 

The area of the 6mm GelMA hydrogel is: 

𝐴𝑟𝑒𝑎𝐺𝑒𝑙𝑀𝐴 = 3.14159 ∗ (3𝑚𝑚)2 

𝐴𝑟𝑒𝑎𝐺𝑒𝑙𝑀𝐴 = 28.27431𝑚𝑚2 

𝐴𝑟𝑒𝑎𝐺𝑒𝑙𝑀𝐴 = 28274310𝜇𝑚2 

 

Dividing these two areas will determine the number of pillar features there were: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑙𝑙𝑎𝑟𝑠 =
𝐴𝑟𝑒𝑎𝐺𝑒𝑙𝑀𝐴

𝐴𝑟𝑒𝑎𝑠𝑞𝑢𝑎𝑟𝑒
 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑙𝑙𝑎𝑟𝑠 =
28274310𝜇𝑚2

3.24𝜇𝑚2
 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑙𝑙𝑎𝑟𝑠 = 8726638.9 

The number area surface area gained is then the accumulated surface area of each of these pillars: 

𝑆𝐴𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 = 0.000002827431𝑚𝑚2 ∗ 8726638.9 

𝑆𝐴𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 = 24.673969𝑚𝑚2 

And the new surface area can be calculated: 

𝑆𝐴𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑒𝑑 = 37.69908𝑚𝑚2 + 24.673969𝑚𝑚2  
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Thus, the ratio increased surface area is: 

𝑆𝐴𝑟𝑎𝑡𝑖𝑜 =
𝑆𝐴𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑒𝑑

𝑆𝐴𝑢𝑛𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑒𝑑
 

𝑆𝐴𝑟𝑎𝑡𝑖𝑜 =
62.37305𝑚𝑚2

37.69908𝑚𝑚2
 

𝑆𝐴𝑟𝑎𝑡𝑖𝑜 = 1.654 

 

From these calculations, it appeared that the larger surface area only contributed to a portion of 

the increased release rate.  Peer et al. [63] discovered that the significant change in surface 

properties from patterning is not the increased surface area, but rather the modification of wetting.  

It was revealed that topographies that induced a more hydrophobic surface decreased the release 

rate, whereas a more hydrophilic surface would accelerate increased the drug delivered.  It is 

recommended that water contact angle measurements be performed on these surfaces to determine 

if the same trend is observed with the 900nm pillars on GelMA. 

 

3.2 Wound Assay 
Wound assays were used to verify the efficacy of HA and BLf in corneal epithelial wound healing.  

Investigations using both scratch wound assays (scratch wound assays) and PDMS wound assays 

(PDMS wound assays) were performed to examine the effect of different wound assays on the cell 

type and molecules.  Primary RCEpCs were initially purchased as they would behave similar to 

that in future in vivo rabbit studies, however, later wound assays utilized SV-40 immortalized 

HCEpCs because they were easier to handle and as these cells were provided by a collaborator. 

 

The error bars for each of the wound assay figures only included the lower standard deviation in 

order to improve clarity.  A table presenting any significant improvement in wound healing is 

provided. 

 

3.2.1 Refining of Wound Assay 

A control (plain KM) was compared to that of media containing 2.5mg/mL BLf, 7.5mg/mL BLf, 

0.45mg/mL HA, or 0.75mg/mL HA.  These concentrations were initially added as a bolus dose to 

mimic previously cited conditions.  Once an appropriate molecule was chosen, a PDMS wound 
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assay study was performed using a daily concentration of drug to imitate a controlled release 

system (section 3.2.2). 

Previous literature on HA for corneal epithelial cells utilized either oligo-HA (<10kDa) or native 

(high molecular weight) HA [38, 39].  As 4kDa FITC-dextran immediately eluted from the GelMA 

patches, a low molecular weight drug was not viable and therefore a molecular weight HA of 

500kDa was initially used for the preliminary wound assays. 

3.2.1.1 RCEpCs Scratch Wound Assay 

As RCE is commonly caused by mechanical trauma to the eye (as opposed to a chemical or alkaline 

burn) [64], an initial wound assay was performed using a scratch method.  The experiment used 

two concentrations of either drug (Figure 25) in order to determine the therapeutic window. 
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Figure 25. Effect of 2.5mg/mL bovine lactoferrin (BLf), 7.5mg/mL (BLf) 0.45mg/mL hyaluronic acid (HA), 0.75mg/mL HA versus 

control (no drug) in rabbit corneal epithelial cells (RCEpCs) scratch wound assay (n = 3).  Error bars shown are SD 

The control samples from the experiment did not recover and instead enlarged over the course of 

three days.  It was difficult to quantify the increase in wound healing relative to the control as the 

abrasion never improved, however, all time-points were significantly faster versus the control from 

the 6th hour until completion (p<0.001). 

 

An increase in drug concentration for BLf or HA did not demonstrate a significant increase in 

wound healing, however, a 7.5mg/mL BLf concentration healed faster than 0.75mg/mL HA 

concentration (Table 1).  This effect remained throughout the 4-8 hour time points with a decrease 

in wound size from 155.7% at the 4-hour mark to 60.8% reduced size at the 8-hour mark. 
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Table 1. Significance between BLf and HA on RCEpCs scratch wound assay 

Time (h) Samples Significance % improved P-value 

4 7.5mg/mL BLf VS 0.75mg/mL HA * 155.7% 0.0140 

6 7.5mg/mL BLf VS 0.75mg/mL HA * 81.2% 0.0141 

8 7.5mg/mL BLf VS 0.75mg/mL HA ** 60.8% 0.0074 

 

The wound area of the scratch wound assay varied drastically between samples as shown in Figure 

26.  Using Graphpad Prism, the standard deviation of the initial scratch wound area was calculated 

to be 12.2% (Figure 27).  This variance in wound area was caused by human error based on the 

angle and pressure of the P200 tip while performing the scratch.  It was also noted that as the 

wound size was larger than the obtainable captured image, it was difficult to quantify the wound 

area using ImageJ.  It was for this reason that the scratch wound assay was discontinued and a 

PDMS wound assay method was adopted.  Reflecting on these results, the scratch wound assay 

method is only an issue depending on the method of analysis.  For example, if one were tracking 

individual cell migration, the variation in initial wound size would not cause complication.  As a 

cell tracking set-up was not available, a PDMS wound assay method was utilized to quantify a 

more consistent initial wound size.   

 
Figure 26. Phase contrast image of initial wound scratches using P200 pipette tip 
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HA 
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Figure 27. Standard deviation of initial wound area of scratch wound assay (n =15).  Error bar shown is SD 

3.2.1.2 HCEpCs 2mm PDMS Wound Assay 

In this experiment, a PDMS wound assay was used to obtain a consistent initial wound area.  

Another benefit of a circular PDMS wound is the multi-directional migration for the cells as 

opposed to the linear migration resulting from scratch wounds to eliminate directional wound-

healing bias [65].  A 2mm diameter wound was tested as it was the smallest diameter punch 

available, however, it was discovered that the wound created was too large for the lowest 

magnification to image.  The results were recorded as best as possible and quantified (Figure 28). 
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Figure 28. Human corneal epithelial cells (HCEpCs) 2mm PDMS wound assay (n = 5).  Error bars shown are SD. 

Comparing the concentrations of drug, a higher BLf concentration demonstrated a quicker wound 

healing at the 48- and 60-hour by 22.0 and 16.2%, respectively, whereas the 0.75mg/mL HA 

demonstrated a quicker wound closure over the 0.45mg/mL HA at the 48- and 60-hour by 22 and 

13.4%, respectively.  The 2.5mg/mL concentration of BLf showed a slower wound healing with a 

significantly larger wound area compared to the 0.45mg/mL HA (between the 24- and 60 hours) 

and 0.75mg/mL (between the 12-hour and 72 hour).  Similarly, the 7.5mg/mL demonstrated a 

larger wound size compared to the 0.45mg/mL HA at the 48-hour and the 0.75mg/mL from the 

24-hour to 72-hour. 

 

Table 2. Significance between BLf and HA on HCEpCs 2mm PDMS wound assay 

Time (h) Samples Significance % improved P-value 

12 2.5mg/mL BLf VS 0.75mg/mL HA * -54.0% 0.0364 

 

24 

 

2.5mg/mL BLf VS 0.45mg/mL HA ** -48.8% 0.0050 

2.5mg/mL BLf VS 0.75mg/mL HA **** -61.3% < 0.0001 

7.5mg/mL BLf VS 0.75mg/mL HA *** -47.2% 0.0002 

 

48 

 

2.5mg/mL BLf vs. 7.5mg/mL BLf * -22.0% 0.0461 

2.5mg/mL BLf vs. 0.45mg/mL HA **** -39.2% < 0.0001 

2.5mg/mL BLf vs. 0.75mg/mL HA **** -49.5% < 0.0001 

7.5mg/mL BLf vs. 0.45mg/mL HA ** -22.0% 0.0051 

7.5mg/mL BLf vs. 0.75mg/mL HA **** -35.3% < 0.0001 

0.45mg/mL HA vs. 0.75mg/mL HA * -17.0% 0.0111 

 

 

60 

2.5mg/mL BLf vs. 7.5mg/mL BLf * -16.2% 0.0195 

2.5mg/mL BLf vs. 0.45mg/mL HA **** -23.3% < 0.0001 

2.5mg/mL BLf vs. 0.75mg/mL HA **** -33.6% < 0.0001 

7.5mg/mL BLf vs. 0.75mg/mL HA **** -20.7% < 0.0001 

0.45mg/mL HA vs. 0.75mg/mL HA * -13.4% 0.0142 

 

72 

2.5mg/mL BLf vs. 0.45mg/mL HA ** -17.4% 0.0013 

2.5mg/mL BLf vs. 0.75mg/mL HA **** -22.6% < 0.0001 

7.5mg/mL BLf vs. 0.75mg/mL HA ** -14.5% 0.0056 

 

 

With the control sample successfully growing, it was demonstrated that wounds supplemented 

with BLf were actually hindered in wound healing (Table 3).  This was contrary to what was 

expected as both of the BLf concentrations in the scratch wound assay (Figure 25) closed more 

rapidly than that of the HA wounds.  According to Ashby et al. [32], BLf does not improve 

proliferation of migration, but instead reduces the inflammation, thereby improving the wound 
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healing.  This would explain why BLf influences a model with a higher inflammatory response 

(i.e. a more ‘damaging’ wound) such as scratch wound assay.  As different cell types may respond 

differently to specific drugs, this could have also altered the results significantly [66].  The 

0.75mg/mL HA significantly enhanced the HCEpC wound healing rate over the control at the 24, 

48, 60 and 72-hour by 45%, 31%, 29% and 17%, respectively.  Contradictory to what is expected, 

the 2.5mg/mL BLf decelerated the wound healing rate.  This effect was significant showing a 

decrease in wound size by -27% at the 48-hour mark versus the control. 

 
Table 3. Significance of BLf and HA on HCEpCs 2mm PDMS wound assay versus control 

Time (h) Sample Significance % improved P-value 

24 0.75mg/mL HA ** 45% 0.0082 

 

48 

2.5mg/mL BLf *** -27% 0.0008 

0.75mg/mL HA **** 31% <0.0001 

60 0.75mg/mL HA **** 29% <0.0001 

72 0.75mg/mL HA ** 17% 0.0060 

 

One issue while performing the PDMS wound assay was the weak adherence of the PDMS stamp 

to the surface of the well plate.  Consideration to the rate at which media was added and removed 

is strongly suggested for future experiments.  Additionally, any vibration in the surrounding area 

(i.e. opening and closing of the incubator) may trigger denuding of the PDMS stamp.  It is also 

advised that transportation of the well plate between the incubator, microscope and bio-safety 

cabinet (BSC) should be performed as carefully and slowly as possible. 

 

As the size of the wound was too large for a single image at the available 5X lens, no quantification 

was performed on initial wound size. 

3.2.1.3 HCEpCs and RCEpCs 1mm PDMS wound assay 

A 1mm PDMS wound assay experiment was employed using both HCEpCs and RCEpCs (Figure 

29) to determine if PDMS wound assay could provide a more consistent initial wound area. 
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Figure 29. Effect of BLf and HA between RCEpC and HCEpC 1mm PDMS wound assays with a) n = 4 and b) (n = 5).  Error 

bars shown are SD. 

Most notably, the duration of wound healing between the two cell-types was distinct.  The length 

of the HCEpCs wound assay was approximately one week, compared to that of the RCEpCs which 

healed within two days. This caused the percentage of accelerated rate of wound healing to be 

larger in the RCEpCs wound assay.  Table 4 demonstrated the significance between the two drug 

types and concentrations on wound healing in an HCEpCs 1mm PDMS wound assay.  It was 

demonstrated that the both the 2.5mg/mL and 7.5mg/mL BLf caused a significant decrease in 

wound healing compared to the 0.75mg/mL HA with the HCEpCs between the 10- and 85-hour.  

The difference between the two BLf concentrations were insignificant except at the 38-hour where 

a 7.5mg/mL BLf concentration allowed for a 25.8% decrease in wound size.  The 7.5mg/mL BLf 

had a significantly larger wound area compared to the 0.45mg/mL HA between the 18.5-hour and 

85-hour except at the 38-hour mark, with a 46.5% increase in wound area at the 18.5-hour and 9.5% 

by the 85-hour.  The 2.5mg/mL BLf demonstrated a significantly reduced wound healing 

compared to the 0.45mg/mL HA from the 18.5-hour until the 85-hour. 

 

Table 4. Significance between BLf and HA on HCEpCs 1mm PDMS wound assay 

Time (h) Samples Significance % improved P-value 

10 

 

7.5mg/mL BLf VS 0.75mg/mL HA ** -70.3% 0.0095 

2.5mg/mL BLf VS 0.75mg/mL HA * -61.7% 0.0303 

12 7.5mg/mL BLf VS 0.75mg/mL HA * -59.7% 0.0267 

2.5mg/mL BLf vs. 0.75mg/mL HA * -65.0% 0.0128 

 

18.5 

7.5mg/mL BLf vs. 0.75mg/mL HA *** -53.9% 0.0005 

7.5mg/mL BLf vs. 0.45mg/mL HA ** -46.5% 0.0094 

2.5mg/mL BLf vs. 0.75mg/mL HA *** -54.2% 0.0004 

2.5mg/mL BLf vs. 0.45mg/mL HA ** -46.8% 0.0088 

 7.5mg/mL BLf vs. 0.75mg/mL HA **** -55.0% <0.0001 
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33 7.5mg/mL BLf vs. 0.45mg/mL HA **** -46.9% <0.0001 

2.5mg/mL BLf vs. 0.75mg/mL HA **** -53.1% <0.0001 

2.5mg/mL BLf vs. 0.45mg/mL HA **** -44.8% <0.0001 

 

38 

7.5mg/mL BLf vs. 2.5mg/mL BLf * 25.8% 0.0209 

7.5mg/mL BLf vs. 0.75mg/mL HA * -17.5% 0.0260 

2.5mg/mL BLf vs. 0.75mg/mL HA **** -34.4% <0.0001 

2.5mg/mL BLf vs. 0.45mg/mL HA ** -23.5% 0.0035 

 

59.5 

7.5mg/mL BLf vs. 0.75mg/mL HA **** -29.7% <0.0001 

7.5mg/mL BLf vs. 0.45mg/mL HA **** -25.6% <0.0001 

2.5mg/mL BLf vs. 0.75mg/mL HA **** -27.8% <0.0001 

2.5mg/mL BLf vs. 0.45mg/mL HA **** -23.6% <0.0001 

 

85 

7.5mg/mL BLf vs. 0.75mg/mL HA * -10.7% 0.0209 

7.5mg/mL BLf vs. 0.45mg/mL HA * -9.5% 0.0393 

2.5mg/mL BLf vs. 0.75mg/mL HA * -10.7% 0.0222 

2.5mg/mL BLf vs. 0.45mg/mL HA * -9.4% 0.0417 

 

The RCEpCs 1mm wound assay (Table 5) demonstrated similar results where the 2.5mg/mL and 

7.5mg/mL BLf samples healed the wounds significantly slower than the 0.45mg/mL HA between 

the 6-12hour time points.  Additionally, a higher concentration of 0.75mg/mL produced a slower 

wound healing from the 6-10hour. 

Table 5. Significance between BLf and HA on RCEpCs 1mm PDMS wound assay 

Time (h) Samples Significance % improved P-value 

 

6 

 

7.5mg/mL Blf vs. 0.45mg/mL HA ** -59.2% 0.0045 

2.5mg/mL Blf vs. 0.45mg/mL HA ** -58.4% 0.0052 

0.75mg/mL HA vs. 0.45mg/mL HA * -50.2% 0.0220 

 

8 

7.5mg/mL Blf vs. 0.45mg/mL HA *** -49.5% 0.0009 

2.5mg/mL Blf vs. 0.45mg/mL HA ** -48.5% 0.0011 

0.75mg/mL HA vs. 0.45mg/mL HA ** 40.8% 0.0086 

 

10 

7.5mg/mL Blf vs. 0.45mg/mL HA *** -44.4% 0.0009 

2.5mg/mL Blf vs. 0.45mg/mL HA ** -41.1% 0.0026 

0.75mg/mL HA vs. 0.45mg/mL HA * -31.0% 0.0374 

12 7.5mg/mL BLf vs. 0.45mg/mL HA ** -39.7% 0.0011 

2.5mg/mL Blf vs. 0.45mg/mL HA ** -33.5% 0.0079 

 

 

 

Although the means of both concentrations of either drug accelerated the wound healing of 1mm 

RCEpCs PDMS wound assay in Figure 29, it was calculated in  
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Table 6 that only the 0.45mg/mL HA and 0.75mg/mL HA had a significantly smaller wound area 

at various time points.  The 0.45mg/mL HA was consistently significantly faster throughout the 

experiment, boasting a 149% increase in wound healing at the 4th hour which declined to 21% by 

the end of day one.  A higher concentration of HA was less effective on the 1mm RCEpCs PDMS 

wound assay demonstrating a significant increase at the 12th hour of 35%.  Both of the BLf 

concentrations tested did not significantly increase wound healing compared to the control (no 

additional drug), which was expected from the 2mm PDMS wound assay experiment. 

 

Table 6. 1mm RCEpCs PDMS wound assay 

Time (h) Sample Significance % improved P-value 

4 0.45mg/mL HA * 149% 0.0190 

6 0.45mg/mL HA *** 103% 0.0002 

8 0.45mg/mL HA **** 101% < 0.0001 

10 0.45mg/mL HA **** 81% < 0.0001 

12 0.75mg/mL HA * 35% 0.0422 

 0.45mg/mL HA **** 53% < 0.0001 

18.5 0.45mg/mL HA * 21% 0.0277 

 

The results shown in Table 7 show the 1mm PDMS wound assay using HCEpCs.  A faster wound 

closure was established when supplemented with both concentrations of HA, whereas a 

detrimental rate occurred when BLf was added.  The 2.5mg/mL and 7.5mg/mL BLf PDMS wound 

assays overall healed slower than the control, however, both concentrations were significantly 

slower at the 33rd hour by 33% and 40%, respectively.  Additionally, the 7.5mg/mL BLf slowed 

the healing rate at the 38th hour by 37%.  The 0.75mg/mL HA PDMS wound assay was revealed 

to be significant from the 18.5th hour until 59.5th hour beginning at a 58% increase to that of 26%.  

Similarly, the 0.45mg/mL HA sample demonstrated a significant accelerated wound healing from 

the 33rd hour until the 59.5th hour from 31% to 19% increase. 

 
Table 7. 1mm HCEpCs PDMS wound assay 

Time (h) Sample Significance % improved P-value 

18.5 0.75mg/mL HA * 58% 0.0179 

33 7.5mg/mL BLf * -40% 0.0113 

 2.5mg/mL BLf * -33% 0.0248 

 0.75mg/mL HA **** 54% < 0.0001 

 0.45mg/mL HA * 31% 0.0111 

38 7.5mg/mL BLf * -37% 0.0320 

 0.75mg/mL HA **** 48% < 0.0001 

 0.45mg/mL HA ** 27% 0.0056 
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59.5 0.75mg/mL HA **** 26% < 0.0001 

 0.45mg/mL HA *** 19% 0.0004 

 

HA was selected as the molecule to be delivered using GelMA due to its consistency among cell 

types and wound types (scratch wound assay versus PDMS wound assay), ability to accelerate 

wound healing, lower concentration required to achieve the minimum effective concentration, and 

cost efficiency [67, 68]. 

 

This experiment also indicated a more consistent initial wound area with PDMS wound assay 

model.  Among 23 selected samples, a 10.1% standard deviation in initial wound area was 

calculated using Graphpad Prism (Figure 30).  The deviation could be due to variations in the 1mm 

punches from the elasticity of the GelMA.  Few of the 1mm PDMS wound assays were damaged 

upon removal of the PDMS, however, these samples were not included in the calculation.  The 

damage was caused by accidental scraping of the tweezers when uplifting the PDMS from the 

surface of the well plate (Figure 31).  As the PDMS removal technique was easier to refine than 

the scratch wound while providing a wound size observable in a single image (providing an easier 

quantification with ImageJ software), a PDMS wound assay was chosen for future experiments. 
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Figure 30. Standard deviation of initial wound area of 1mm PDMS wound assay (n =23).  Error bar shown is SD. 
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3.2.2 HCEpCs Daily 60kDa 

As the majority of literature assesses the effects of native HA (high molecular weight) and that of 

oligomer-HA (very low molecular weight) on epithelial wound healing [38, 39], this experiment 

was performed to determine the influence of mid-size (i.e. ~60kDa) HA on corneal wound healing.  

A PDMS wound assay with n = 5 was created using either 0.05, 0.1, 0.3, 0.6, or 1.0mg/mL of 

60kDa HA (Figure 32).  A 250ng/mL MMP-9 sample was included for reference to observe the 

effects of the enzyme on wound healing, similar to the MMP that would be present during the 

controlled release with GelMA. 
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Figure 32. Daily 60kDa HA on 1mm HCEpC PDMS wound assay wound assay (n = 5).  Error bars shown are SD. 

Normal Damaged 

Figure 31. Phase contrast image of normal versus damaged 1mm PDMS initial wound area 
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The 0.3mg/mL, 0.6mg/mL and 0.05mg/mL HA-supplemented wounds healed more rapidly than 

the control, whereas the 0.1mg/mL and 1.0mg/mL HA samples had a detrimental effect.  Table 8 

demonstrates that at the 24, 48, and 60 hour time point, the 0.3mg/mL and 0.6mg/mL HA were 

significantly faster by 40% and 36% at 24 hours; 28% and 22% at 48 hours; and 24% and 18% at 

60 hours, respectively.  The 0.1mg/mL HA wound offered a significantly faster wound healing 

over the control by 15% at the 72 hour.  The overall wound for the 0.05mg/mL, 0.3mg/mL and 

0.6mg/mL HA samples healed 23.5%, 12.5% and 23.5% faster, respectively.  The addition of 

MMP-9 initially had no effect on the wound healing, however, by day five, the wound expanded, 

causing a decrease in wound healing compared to the control, most significant at the 168, 180 and 

192 hour by 19%, 21% and 21%, respectively.  It is speculated that the delayed expansion of 

wound size can be interpreted similar to the closing of a drawstring bag.  As the hole of the bag 

becomes smaller, the force pulling the strings must be higher to fully close the sack.  Similarly, as 

the wound size decreases, the wound becomes more difficult to recover and therefore by day five, 

the MMP enzyme becomes an overburden and the wound expands. 

 

Table 8. Daily 60kDa HA Addition on 1mm PDMS HCEpCs Wound Assay. 

Time (h) Sample Significance % improved P-value 

24 0.3mg/mL HA * 40% 0.0369 

 0.6mg/mL HA * 36% 0.0324 

48 0.3mg/mL HA ** 28% 0.0085 

 0.6mg/mL HA * 22% 0.0122 

60 0.1mg/mL HA * 21% 0.0434 

 0.3mg/mL HA ** 24% 0.0047 

 0.6mg/mL HA * 18% 0.0345 

168 250ng/mL MMP-9 ** -19% 0.0046 

180 250ng/mL MMP-9 ** -21% 0.0013 

192 250ng/mL MMP-9 ** -21% 0.0015 

 

This experiment validated the use of a mid-size HA molecule in accelerating HCEpCs wound 

healing. 

 

3.3 Controlled Release of 60kDa HA on 1mm HCEpCs PDMS wound assay 
The information gathered in previous FITC-dextran controlled release experiments and the drug-

supplemented PDMS wound assays investigations were combined to conduct this experiment.  A 

larger 10H- GelMA patch of 8mm diameter was used in order to increase the amount of 60kDa 

that could be loaded.  The 10H- GelMa patch was crosslinked using 600mW/cm2 in order to 
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provide the highest amount of crosslinking possible and minimize the un-crosslinked material that 

may interfere.  The KM media was changed at the previously mentioned time points and was stored 

in -80°𝐶 until a PDMS wound assay was prepared.  This media containing 60kDa HA was utilized 

for both a wound assay to check the bioactivity as well as an ELISA to calculate a controlled 

release profile. 

 

3.3.1 Bioactivity Assay 

To test that the 60kDa HA was still bioactive upon release from a 10H- patch, the drug was 

subsequently delivered to a 1mm HCepCs PDMS wound assay.  The 8mm patch either contained 

no drug (10H-) or was loaded with 150𝜇𝑔, 250 𝜇𝑔, 550 𝜇𝑔, or 750 𝜇𝑔 60kDa HA.  Each GelMA 

sample was degraded using fresh 250ng/mL MMP-9 that was refreshed daily.  A sample containing 

regular KM (control) and a sample with 250ng/mL MMP-9 in the media were also included.  The 

data were graphed using GraphPad Prism as shown in Figure 33. 
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Figure 33. Controlled release of 60kDa HA from 10H- GelMA on 1mm HCEpCs PDMS wound assay Assay (n=4).  Error bars 

shown are SD. 

These results suggested that the degraded 10H- improved the wound healing rate of HCEpCs 

compared to a control (without MMP-9) in a 1mm PDMS wound assay model.  This could be 

because GelMA is a conjugation of gelatin, a molecule known to aid in wound healing [70].  

Additionally, gelatin coatings (containing a relatively low concentration of gelatin ~0.1%) [71] are 

a common supplement to aid in cell adhesion.  Through this mechanism, the gelatin that is 
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degraded by the MMP-9 in KM solution may attach to the well plate surface to allow for the cells 

to rapidly migrate over the surface. 

 

The addition of MMP-9 demonstrated a mean expansion in wound healing beginning at the 96-

hour.  This was as opposed to in Figure 32 where the enlarging of the wound did not occur until 

the 120-hour.  This is speculated to be due to the previous experiment using a stock solution of 

250ng/mL MMP-9 in KM media that was stored in the fridge, compared to this experiment where 

the MMP-9 was preserved in -80°𝐶 (along with each controlled release sample).  The storage at -

80°𝐶 could have preserved the bioactivity of the MMP-9 enzyme thereby causing an earlier onset 

of decreased wound area. 

 

The 10H- sample revealed a significant improvement at the 24 and 48 hour mark by 37% and 16% 

over the control, respectively.  Similarly, the 150𝜇𝑔 and 250𝜇𝑔 loaded-GelMAs displayed an 

accelerated wound healing at 24 hour mark of 28% and 26%; and the 48 hour mark of 16% and 

18% increase, respectively.  Lastly, although the mean of the 800𝜇𝑔 loaded-GelMA sample overall 

healed slower than that of the 10H-, it was significantly faster than the control by 21% at the 24 

hour mark. 

 

Table 5. Significance of degradation of various 60kDa HA-loaded GelMA patches on 1mm PDMS HCEpCs wound assay 

compared to control 

Time (h) Sample Significance % improved P-value 

24 

 

 

10H- *** 37% 0.0002 

150ug HA ** 28% 0.0056 

250ug HA ** 26% 0.0089 

550ug HA * 21% 0.0376 

48 

 

 

10H- * 16% 0.0146 

150ug HA * 16% 0.0120 

250ug HA ** 18% 0.0051 

250ng/mL MMP-9 * -24% 0.0227 

72 250ng/mL MMP-9 **** -26% < 0.0001 

96 250ng/mL MMP-9 ** -18% 0.0075 

120 250ng/mL MMP-9 **** -23% < 0.0001 

144 250ng/mL MMP-9 **** -27% < 0.0001 

168 250ng/mL MMP-9 **** -33% < 0.0001 
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Comparing the HA-loaded samples to the bare 10H- that contained no drug, it was demonstrated 

that there was no significant improvement when incorporating the HA into the 10H- GelMA patch 

Table 9.  One potential reason behind the insignificant increase in wound healing between the 

10H- and the HA-incorporated GelMA patches could be due to the crosslinking of GelMA 

interfering with the bioactivity of HA.  Alternatively, the amount of HA delivered daily may not 

have been sufficient to reach the minimum effective concentration (as discussed in section 3.3.2). 

It was additiionally demonstrated that the degradation of the 750𝜇𝑔  60kDa HA-loaded 10H- 

GelMA patch produced a significantly worse wound healing of -33.7% and -16.0% at the 24- and 

48-hour, respectively, which suggested a concentration above the minimum toxic concentration. 

 

Table 9. Significance of degradation of various 60kDa HA-loaded GelMA patches on 1mm PDMS HCEpCs wound assay 

compared to bare degraded 10H- GelMA patch 

Time (h) Sample Significance % improved P-value 

24 750𝜇𝑔 VS 10H- **** -33.7% < 0.0001 

48 750𝜇𝑔 VS 10H- ** -16.0% 0.0062 

 

A vital observation that was made on the incorporation of HA into GelMA was that the GelMA 

precursor solution remained transparent upon complete dissolution of 60kDa HA, however, upon 

UV irradiation of the solution, the hydrogel became opaque white.  This would pose a problem for 

a user as they would experience loss of vision.  As the precursor solution remained transparent, it 

was thought that the dosage of HA was too high to be encapsulated with the crosslinking density 

of the GelMA, which would cause the HA to either precipitate out of solution [72] causing the 

material to become opaque.  One potential solution to this is to select a different molecule that 

does not become opaque upon UV irradiation.  Alternatively, an investigation of adhering GelMA 

to the conjunctiva can be implemented similar to muco-adhesive ocular drug delivery systems [73].  

One such method is through the use of a methacrylated HA (HAMA)-GelMA hydrogel which has 

demonstrated a tunable swelling behaviour, mechanical properties and degradation rate [74]. 

 

3.3.2 ELISA of Controlled Release HA 

100𝜇𝐿 of media that was used for the bioactivity assay was diluted to the appropriate linear range 

of the calibration curve given by the ELISA kit (50-1600ng/mL) [75].  This dilution was estimated 

based on the previous FITC-dextran controlled release experiments; an estimated 85% burst 
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release and 1.5% release rate over seven days.  The accumulated release of 60kDa HA from the 

10H- GelMA patch is illustrated in Figure 34. 
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Figure 34. ELISA of 60kDa HA released from 10H- GelMA patch (n=2).  Error bars shown are SD. 

 

Each sample had a release profile similar to the previous 70kDa FITC-dextran release curves.  The 

750𝜇𝑔, 550𝜇𝑔, 250𝜇𝑔, and 150𝜇𝑔 had a burst release of 83%, 62%, 49%, and 68%, respectively 

within the first 12 hours, with roughly a 5% daily release rate for the 150, 250, and 550𝜇𝑔 samples 

and 2% for the 750𝜇𝑔 samples.  This low release rate may have been insufficient to reach a 

minimum effective concentration to improve the corneal epithelial wound healing compared to the 

bare 10H- degraded in 250ng/mL MMP-9.  This could be verified by performing the controlled 

release experiment using multiple patches to obtain a higher amount of drug delivered.  This option 

would prove to be more ideal over an increased loading due to the possibility of interference of 

HA during crosslinking. 

 

The 10H- samples were fully degraded after the final time point and the percentage of drug that 

was loaded into the 10H- compared to the theoretical value for the 750𝜇𝑔, 550𝜇𝑔, 250𝜇𝑔, and 

150𝜇𝑔 samples were found to be 96%, 90%, 93% and 83%, respectively.  The low loading into 

the 750𝜇𝑔 sample could be due to a saturation of the solution, disallowing anymore drug to diffuse 

into the GelMA as the 750𝜇𝑔 samples contained particles of 60kDa HA on the wound assay that 

were not fully dissolved (Figure 35), potentially residing on the outside of the 10H- patch.  No 

such residue was found on 10H- samples loaded with a lower amount of 60kDa HA. Additionally, 
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the 750𝜇𝑔 samples did not fully crosslink and consisted of a slimy texture.   These results further 

suggest a phase separation occurred between the two polymers.  This texture fragmented into the 

media as depicted by the floating particles in Figure 35.  The presence of these particles could have 

hindered the ability of the cells to heal as shown in Table 9. 

 

 
Figure 35. Residue from 750ug sample on surface of well plate on 1mm HCEpCs PDMS wound assay at t = 24 

3.4 Application in Contact Lens 
As the primary objective of this thesis was to aid in wound healing associated with RCE, it was 

initially envisioned that GelMA could be incorporated into pre-existing commercial CLs.  It was 

later discovered that delivery through a GelMA patch provided a simpler production method as 

well as an unmatched drug loading to that of in CLs.  Nonetheless, CLs did not demonstrate the 

ability to load a sufficient amount of drug (CL loaded below 10𝜇𝑔) to aid in our application.  If 

another drug that possessed a lower minimum therapeutic concentration was discovered for 

ophthalmic purposes, CLs could potentially be used for this application.  Although, insufficient 

for delivery of HA for RCE, CLs demonstrated great versatility as they were easily tuned through 

freeze-drying or patterning, among other methods. 

 

3.4.1 Transmission, Wettability, Mechanical Strength Characterization 

Arguably, the most important aspect of using a CL as a treatment method in the eye is that it 

remains completely transparent so the patient does not experience loss of vision.  The CL 

mechanical properties should also not be compromised and more specifically, the surface 

properties remain similar.  We have demonstrated that incorporation of GelMA into Biofinity CLs 

Control 750 𝜇g-loaded 10H- GelMA patch 



60 

 

lead to insignificant changes to the light transmission (in visible range), water contact angle 

measurements as well as mechanical strength as shown in Figure 36 and Figure 37. 

 

 
Figure 36. Effect of GelMA incorporation in commercial CL on a) light transmittance and b) surface wettability (n=3) 

 

 
Figure 37. Effect of GelMA incorporation in commercial CL on stress-strain curve (n=3) 

Neither 10% nor 30% GelMA altered the physical properties of the CL.  Although there was a 

decrease in light transmittance from the 300-400nm range, the human eye is only able to see 

wavelengths between 390-700nm [76], and as such, there was no visible changes to the CL when 

viewing it with the naked eye.  Additionally, no significant changes in water contact angle nor 

stress-strain curve for both the 10% and 30% GelMA were present.  These results demonstrated 

that GelMA incorporated CLs is a viable option for delivering a low quantity of drug to the eye.   

 



61 

 

3.4.2 Optimization of GelMA incorporated CL 

Experiments were performed in an attempt to optimize the controlled release profile of a 70kDa 

drug from a GelMA-incorporated CL.  These investigations were aimed to improve the loading 

and controlled release profile of a GelMA-incorporated CL to be sufficient for an accelerated 

corneal epithelial wound healing.  A design depicting the hypothesized mechanism is provided. 

 

3.4.2.1 Drug Loading through Sonication (CL) 

As the Biofinity Toric CLs do not possess a high volume of liquid (13.5-15.0mm in diameter and 

0.08mm-0.60mm centre thickness [77]), the amount of drug that can be loaded is fractions to that 

of a GelMA patch.  Optimization of drug loading in a CL was investigated by sonicating the lens 

to forcibly diffuse 70kDa FITC-dextran into the hydrogel matrix.  This idea was based off of the 

concept of sonication increasing the pore size of dense nanofibers as demonstrated by Gu et al. 

[78]. 

 

A similar approach was employed to expand the CL hydrogel pores to load additional FITC-

dextran prior to relaxation, thereby increasing encapsulation.  Variations to the sequence of which 

the CLs were sonicated or soaked were tested.  The samples were either sonicated in the GelMA 

solution prior to overnight soaking (SONON), sonicated immediately before UV crosslinking 

(ONSON), or sonicated in DI water followed by overnight soaking in GelMA (SONDION).  The 

samples were then degraded overnight in 100𝜇𝑔/𝑚𝐿  MMP-9 and the fluorescence was recorded 

(Figure 38). 
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Figure 38. Effect of sonication on drug loading in 10H- GelMA-incorporated contact lens (n=4).  Error bars shown are SD. **: 

p<0.005 

Sonication decreased the amount of drug loaded, potentially due to drug being forced out of the 

contact lens during the sonication process.  Alternatively, the relaxation time for the CL could have 

been longer than expected and the hydrogel may have been in an expanded form for an extended 

period of time, causing the drug to rapidly diffuse from the lens after crosslinking.  This theory 

could be verified by examining the pore size using cryo-scanning electron microscope (cSEM) on 

a sonicated sample as described by Bodenberger et al. [79].  The lenses may additionally be 

examined in a controlled release experiment to observe the difference between slopes or burst 

release of the release profiles.  A sonicated sample would expect to have a higher slope/burst 

release due to an expanded pore size. 

 

3.4.2.2 Drug Loading through Freeze-Drying (CL) 

Freeze-drying of the Biofinity CL was explored in order to remove remaining liquid that may exist 

within the hydrogel after overnight baking.  This would theoretically grant a higher loading of drug 

as more space would be available to pack in the hydrogel.  A diagram on the rationale behind this 

experiment is shown in Figure 39 and the results are shown in Figure 40. 
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Figure 39. Schematic of proposed freeze drying method 
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Figure 40. Effect of freeze drying on drug loading in 10H-GelMA incorporated CL (n=3).  Error bars shown are SD. *:p< 0.05 

A pre-freeze-drying step increased the FITC-dextran loading into CLs by ~50%.  Increasing the 

volume of drug that soft CLs can load would be a top priority if the lens was the main transport 

vehicle.  This would allow the CL to be used in a wider range of applications, however, as the 

amount loaded was still far too low for the molecules that were investigated for RCE, freeze-dried 

CLs were not used. 
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3.4.2.3 Contact Lens Extra Dipping 

A proof of concept experiment was performed using a contact lens loaded with FITC-dextran and 

UV crosslinked.  This lens was then dipped in a 20H- GelMA solution either with or without FITC-

dextran and UV irradiated a second time.  The rationale behind this method is depicted in Figure 

41.  By creating an external barrier to the FITC-dextran loaded GelMA-CL, the burst release would 

be minimized and a steadier release profile could be achieved.  The barrier was provided as a 

means to provide a farther diffusion path and lower surface area for release to the external 

environment as well as slow the degradation by the MMP-9. 

 
Figure 41. Schematic of proposed extra dipping mechanism 

As UV irradiation of FITC-dextran quenches the fluorescence, a sample that was UV irradiated 

twice was included for comparison (Figure 42).  It was also noted that a second dip of the contact 

lens would drastically alter the external properties and as such, this experiment was simply a proof 

of concept.  The CL provided a physical material to dip twice (whereas the patch is fragile and 

may snap when picking up with tweezers) and for this reason, a CL was used to perform this 

experiment.   
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Figure 42. Effect of additional 20H- GelMA dipping on controlled release profile of 70kDa FITC-dextran from 20H-GelMA 

incorporated CL (n=3).  Error bars shown are SD. 

A second dip containing FITC-dextran provided a more sustained and higher release rate than that 

of the twice UV irradiated sample.  This was expected as an additional amount of FITC was also 

added in the external barrier. 

 

The sample containing an outer layer of bare 20H- GelMA appeared to have released a small 

amount of FITC-dextran.  This could be due to an excessively thick outer layer preventing the 

FITC-dextran from diffusing through the barrier or, alternatively, the MMP-9 enzyme was not able 

to break down the barrier within seven days (a normal 20H- GelMA patch does not fully dissolve 

in 250ng/mL MMP-9 in a week time point).  It is recommended that a lower concentration of 

GelMA (such as 10H-) should be attempted as an external barrier.  If this proof of concept were to 

be explored further, it would be advised that a method to create a consistent thickness of barrier 

should also be investigated. 

 

3.4.2.4 Alternate Interior Medium 

The use of an alternate interior medium was used in an attempt to slow the burst release.  PVA 

was added into the PBS solution to increase the viscosity of the solution thereby slowing the release 

of the FITC-dextran.  A 20H- GelMA (control) was included for comparison (Figure 43).   
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Figure 43. Effect of Alternate Interior Medium on Controlled Release of 70kDa FITC-dextran from 20H- GelMA-incorporated 

CL (n=3).  Error bars shown are SD. 

An alternate medium within the CL caused an increase burst release of FITC-dextran compared to 

both the control lens and the GelMA + 5% PVA sample.  This increased burst release could be due 

to electrostatic interactions between the negatively charged PVA [80] and dextran polysaccharide.  

As GelMA is both negatively charged [81] and viscous, the combination may have forced the 

FITC-dextran out of the contact lens, thereby causing a low loading. 

4. Conclusion and Recommendations 
GelMA was investigated as a candidate for a controlled release material to the surface of the cornea 

for treatment of RCE syndrome.  A tunable profile by altering the porosity, crosslinking site 

density, and permeability through the matrix was discovered through an additional physical 

crosslinking step, or adjustment of the methacrylation degree, concentration of GelMA and UV 

exposure time.  A higher methacrylation degree and concentration of GelMA resulted in a more 

crosslinked gel and denser polymer matrix, respectively.  These resulted in a lower burst release 

and stronger gel.  The minimum UV dosage that was determined to create a 10H- GelMA patch 

capable of releasing drug over the course of seven days was 90,000 mJ/cm2 at 365nm wavelength. 

 

It was determined that a 4kDa FITC-dextran molecule was too small to be encapsulated in a 

GelMA hydrogel and was able to permeate freely throughout the gel resulting in a rapid elution 

and a diffusion-mediated release profile.  The 70kDa FITC-dextran demonstrated a release profile 

dependant on the concentration of GelMA and additional crosslinking step, which increased the 
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density of polymer and decreased the pore size, respectively.  It is recommended that a higher 

molecular weight molecule is tested with 30H+ GelMA to reduce the amount of diffusion-limited 

burst release and create a gel that is enzyme-mediated. 

 

70kDa FITC-dextran model molecule was selected as the model molecule due to its cost efficiency 

and ease-to-quantify.  It was discovered that FITC-dextran was sensitive to both the UV irradiation 

and the reagents incorporated to fabricate (GelMA precursor solution and IRGACURE 2959) and 

degrade (MMP-9) the GelMA patch.  The amount of drug quantified after each controlled release 

experiment was lower than expected, accumulating only 1-60% of the theoretical amount of FITC-

dextran loaded depending on the UV dosage.  This decreased intensity was determined to be 

primarily due to dynamic quenching between the fluorophores and phase separation between the 

FITC-dextran and GelMA polymers.  Regardless of the quenching, the FITC-dextran release 

profile accurately predicted the controlled release curve of 60kDa HA. 

 

BLf and HA were shown to aid in corneal epithelial wound healing.  It was speculated that BLf 

only accelerated wound healing by reducing the inflammatory response in cases such as in a 

scratch wound assay, and additionally showed significantly worse wound healing compared to the 

HA with the RCEpCs and HCEpCs.  Conversely, 500kDa HA demonstrated more versatility, 

displaying an increased wound closure in both the scratch wound assay and PDMS wound assay 

models at the 0.45mg/mL and 0.75mg/mL concentrations.  Due to its consistency and lower 

concentration requirements, HA was selected as the molecule to be loaded into a GelMA patch for 

a controlled release study on an HCEpCs PDMS wound assay.  A 60kDa HA PDMS wound assay 

revealed a therapeutic range between 0.1-0.6mg/mL, increasing the wound healing rate by 40% in 

the first 24 hours, and by 24% in the 60th hour.   

 

A 10H-GelMA patch degraded in 250ng/mL MMP-9 demonstrated promising results 37% and 16% 

at the 24-hour and 48-hour mark, respectively.  The incorporation of 60kDa HA into the GelMA 

patch did not demonstrate a significant increase in a 1mm HCEpCs wound assay.  It is speculated 

that this is due to an insufficient amount of drug delivered to reach the minimum effective 

concentration.  One vital issue that arose during the crosslinking of HA-loaded GelMA patches 

was the opaque gel that resulted which could have been due to phase separation between the HA 
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and GelMA.  It is recommended that an HAMA-GelMA composite hydrogel is tested to remedy 

this issue. 

 

As no consideration was taken into account for the friction caused from blinking.  It is predicted 

future in vivo experiments would have a higher release rate due to the added stress on the hydrogel.  

To remedy this issue, a higher concentration of GelMA could be implemented for stronger 

mechanical properties and therefore a slower release rate.  The effect of lipid and protein deposition 

were additionally not investigated on the drug release from a GelMA patch.  It is recommended 

that the controlled release studies be performed in an artificial tear solution (to more closely mimic 

the in vivo environment) containing common tear film lipids (wax esters, cholesterols, fatty acids 

{Butovich, 2013 #321}).  It is expected that the accumulation of lipids onto the surface of the 

GelMA patch may act as a physical diffusion-barrier that would reduce the release rate of drug 

similar to that observed with the incorporation of vitamin E {Shayani Rad M, 2017 #322}.   

Patterning of the hydrogels may also be incorporated to adjust for the decrease in release rate.   

 

Although it was determined that CLs could not load a sufficient amount of drug to treat RCE with 

the selected molecules, the incorporation of GelMA into commercial CLs was also validated and 

optimized.  It was found that CLs added further dimensionality to the controlled release profiles 

as they offered an additional freeze-drying and patterning step.  Freeze-drying of the CL prior to 

soaking in GelMA allowed for an additional 50% of drug loaded.  It was also discovered that the 

incorporation of GelMA did not significantly alter the physical properties of the CL such as its 

mechanical strength, light transmission in the visible range and the surface water contact angle. 

This revealed a potential for a variety of other ophthalmologic applications. 

 

One controlled release method that was not pursued during this project was alternating charged 

layers on the CL for delivery.  With the drug within one of the charged layers (either positive or 

negative – depending on the zeta potential of the drug), the electrostatic interactions between each 

layer will cause an impedance for a steady release [82].  This method was not investigated both 

due to time restraints as well as due to complications that may arise from alterations to the outside 

of the CL (difficult to incorporate into existing commercial products), however, if solutions to 

these problems are proposed, this method could be viable. 



69 

 

 

This project successfully put forth evidence validating a GelMA patch as a tunable controlled 

release material for the treatment of RCE.  It is recommended that further investigation should be 

performed using either varying concentrations of HA or controlled release of multiple patches on 

a 1mm HCEpCs wound assay to determine if the minimum effective concentration was the cause 

of the insignificant increase wound healing and to investigate potential attachment of the patch to 

the conjunctiva.  Nevertheless, the studies completed in this thesis demonstrated that a transparent, 

tunable GelMA material could have enormous implications in corneal drug delivery.  
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