
Design and Evaluation of Virtual Reality 

Exergames  

for  

People Living with Dementia 

 

 

by 

 

 

Mahzar Eisapour 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Applied Science 

in 

Systems Design Engineering  

 

 

 

Waterloo, Ontario, Canada, 2018 

 

 

©Mahzar Eisapour 2018 

 



 

 ii 

Author’s declaration 

This thesis consists of material all of which I authored or co-authored: see Statement of Contributions 

included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted 

by my examiners. 

    I understand that my thesis may be made electronically available to the public. 

 

 

  



 

 iii 

Statement of Contribution 

The material presented in Chapter 3 were published in the following articles: 

Eisapour, M., Cao, S., Domenicucci, L., & Boger, J. (2018, April). Participatory Design of a Virtual 

Reality Exercise for People with Mild Cognitive Impairment. In Extended Abstracts of the 2018 CHI 

Conference on Human Factors in Computing Systems (p. CS15), ACM. Montreal, Canada. 

DOI = 10.1145/3170427.3174362 

https://dl.acm.org/citation.cfm?id=3174362 

Contributor Statement of contribution 

Eisapour, M. (candidate) 

Design (80%) 

Data collection (100%) 

Writing (70%) 

Cao, S. 
Design (5%) 

Writing (15%) 

Domenicucci, L. Design (10%) 

Boger, J. 
Design (5%) 

Writing (15%) 
 

Boger, J., Eisapour, M., Domenicucci, L., & Cao, S. (2017). Design of virtual reality exergame to 

promote upper-body movement for older adults with dementia. In 11th Conference on Rehabilitation 

Engineering and Assistive Technology Society of Korea (RESKO). Goyang, South Korea. 

Contributor Statement of contribution 

Eisapour, M. (candidate) 
Design and analysis (80%) 

Writing (30%) 

Cao, S. 
Design and analysis (5%) 

Writing (5%) 

Domenicucci, L. Design and analysis (10%) 

Boger, J. 
Design and analysis (5%) 

Writing (65%) 
 

The material presented in the Sections 4.1, 4.2, 4.3, 4.4.1, and 5.1 were published in the following 

article: 

https://www.google.com/url?q=https://dl.acm.org/citation.cfm?id%3D3174362&sa=D&source=hangouts&ust=1532197405941000&usg=AFQjCNEexAqXIwdSMi8vL8-MgfT6MPKGJQ


 

 iv 

Eisapour, M., J. Boger, L. Domenicucci, and S. Cao, (2018). "Virtual Reality Exergames for People 

Living with Dementia Based on Exercise Therapy Best Practices", Accepted in Human Factors and 

Ergonomics Society Annual Meeting, Philadelphia, PA. 

Contributor Statement of contribution 

Eisapour, M. (candidate) 

Design and analysis (80%) 

Data collection (100%) 

Writing (70%) 

Cao, S. 
Design and analysis (15%) 

Writing (15%) 

Domenicucci, L. Design and analysis (5%) 

Boger, J. 
Design and analysis (5%) 

Writing (15%) 
 



 

 v 

Abstract 

Dementias such as Alzheimer’s disease are a progressive neurodegenerative disorder with 

consequences such as cognitive impairment and memory problems.  While exercise is important to 

improve physical health and quality of life for people living with dementia (PWD), symptom-induced 

challenges, such as language processing and physical limitations, can make it more difficult for PWD 

to engage in exercise. In this study, exercise games (exergames) to promote exercise for PWD were 

designed in two virtual environments: a farm and a gym. To design the activities and interfaces of the 

games, a participatory design approach was followed with exercise therapists, kinesiologists, and PWD 

from Schlegel Villages long-term care facility. Five upper-body motions were selected and five 

corresponding activities developed for each game. The games were built for the Oculus Rift CV1 head 

mounted display virtual reality (HMD-VR) as this platform uses a fully immersive three-dimensional 

display with high frame rate display. The touch controllers of Oculus were used to provide hand-motion 

interactions in virtual reality (VR). 

A three-week evaluation experiment was conducted with six PWD to evaluate the designed exercise 

games. A mixed-methods approach was used to qualitatively and quantitatively investigate the impact 

of using designed HMD-VR exergames in engaging PWD in exercise. Questionnaires for participants 

recorded participants’ feelings of enjoyment, engagement, interest, easiness, comfort, and level of 

effort. Clinical measurements of fitness parameters and recorded motion parameters from sensors in 

Oculus Rift provided quantifiable metrics such as range of motion (ROM), distance traversed, speed, 

grip strength, and shoulder circumduction for evaluation.  

All the participants successfully completed the exercise using the exergames, demonstrating the 

promising potential of using HMD-VR for PWD. The analysis of the participants’ answers to the 

questionnaires shows subjective metrics for human-guided exercise is comparable to VR games 

conditions, which is a noteworthy result considering the novelty of using VR for PWD. Overall, the 

analysis of motion parameters showed no differences between environments, which indicates the 

participants’ level of movment in VR environments was as good as with human-lead exercise. This 

thesis research demonstrates the potential of HMD-VR as an engaging way to support exercise of PWD. 
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Chapter 1 

Introduction 

Dementia is a progressive neurodegenerative disorder (Dening & Sandilyan, 2015) that has many 

consequences, including cognitive impairment, memory problems, functional disabilities, and an 

overall  poor quality of life (Azermai, 2015). Different aspects of life are affected by dementia, such as 

cognition, behavior, mood, pleasure, interest, gait, and balance.  

Longer lifespans and lower birthrates are causing a rapid increase in the average age of people in 

countries all over the world (World Health Organization, 2017). The global number of people over 60 

years of age in 2017 was reported to be 962 million (13% of the entire population), and this number is 

projected to increase to 2.092 billion by 2050 (21.5% of the entire population) (United Nations, 2017).  

The prevalence of dementia worldwide is increasing even faster than the aging population with the 

number of people diagnosed with dementia estimated to be 50 million in 2017 and predicted to increase 

to 82 million in 2030 and 132 million in 2050 (World Health Organization, 2017). 

“Dementia” is an umbrella term used to describe a range of symptoms associated with chronic 

cognitive impairment. There are several different types of dementia such as Alzheimer’s disease, 

vascular dementia, Lewy body dementia, and frontotemporal dementia (World Health Organization, 

2017). Alzheimer’s is the most common type, accounting for approximately 60% to 70% of dementia 

diagnosis and affects short term memory as well as other cognitive and behavior functioning. Dementia 

is a major cause for dependency and disability of older people and is the 7th leading cause of death 

(United Nation, 2017). 

Dementia interventions may be both pharmacological and non-pharmacological. The 

pharmacological treatments can have adverse effects, are not always effective, and can be expensive 

(Fenney & Lee, 2010; Kavirajan & Schneider, 2007). The non-pharmacological treatments can be as 

or more effective in mitigating dementia symptoms in some cases. Game-based interventions are one 

example of a non-pharmacological treatment that has shown efficacy in supporting cognitive, 

behavioral, and physical capabilities (Fenney & Lee, 2010). 

1.1 Objectives 

Different studies have shown the bidirectional benefits of physical and cognitive health (Loprinzi, 

Herod, Cardinal, & Noakes, 2013). For neurodegenerative diseases, of which dementia is the most 
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important, considerable evidences suggests that physical activity can slow the progress of disease 

(Cheng et al., 2014; Gallaway et al., 2017). Despite these benefits, there are challenges such as limited 

physical abilities and language processing that make persons living with dementia less motivated to 

exercise.  

Virtual reality (VR), refers to the systems presenting a virtual environment. VR systems using head-

mounted displays (HMD), have recently received attention from researchers in the healthcare domain 

as it can provide fully immersive presentation of any environment which can be used in applications 

such as medical training or rehabilitation. As the fully immersive presentation of HMD-VR makes 

environments and interactions close to the real world it can help PWD engage in any activity. in virtual 

environment 

The goal of this research is to design, develop, and evaluate a novel, fully immersive VR game to 

motivate persons living with dementia (PWD) to exercise. Using HMD-VR is expected to help PWD 

engage in VR-guided exercise that is as effective as human-guided exercise while enjoying playing a 

game.   

1.2 Structure of thesis 

The following sections of the thesis are briefly introduced below: 

Chapter 2 reviews literature relevant to the project, discussing the role of serious games in health 

applications specially for people with dementia (PWD); 

Chapter 3 details the design process, including all the demonstrations and interactions with 

specialists and people with dementia in preparing the final design for the experiment; 

Chapter 4 elaborates on the experiment procedure and explains the evaluation metrics; 

Chapter 5 reports the details of results obtained from questionnaires, observations, and clinical 

measurement during the experiment; 

Chapter 6 discusses the results, and; 

Chapter 7 presents conclusions from the research and suggests future research directions. 
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Chapter 2 

Background 

In this chapter, the background of the project is presented by explaining the basic concepts, discussing 

the challenges, and reviewing related works. The first goal of this chapter is to define and clarify some 

prerequisite concepts used in the next chapters. The second is to review works related to the design of 

serious computer games for persons living with dementia (PWD) and summaries the main reported 

findings.  

2.1 Benefits of exercise for dementia 

Exercise’s benefits for different aspects of health for all age groups is well known, with much evidence 

regarding the impact of physical activity and exercise on  physical fitness (Penedo & Dahn, 2005) and 

cognitive health in particular (Hillman, Erickson, & Kramer, 2008; Kramer & Erickson, 2007). 

Cognitive and mental health benefit of physical activity is well known fact (morgan2013physical); 

however, the exact impact of different types of activity on different cognitive functionalities is still the 

focus of many researchers (Kramer & Erickson, 2007).  

Exercise for PWD has been the subject of many studies especially due to its impact on the cognition 

(Cheng et al., 2014; Littbrand, Stenvall, & Rosendahl, 2011; Loprinzi et al., 2013; Pitkälä et al., 2013; 

Potter, Ellard, Rees, & Thorogood, 2011). One of the principle reported impacts of exercise for the 

older adults is its role on mitigating or reducing its cognitive impacts (Gallaway et al., 2017). Physical 

activity has been reported to play a main role in delaying cognitive decline, which is very important for 

PWD (Cheng et al., 2014). In general, physical activity and brain health are known to have a 

bidirectional relation (Loprinzi et al., 2013). A healthy brain regulates the activity in exercise 

performance, and regular physical activity improves functionalities related to the brain and is important 

in the prevention and treatment of different neurological conditions (Loprinzi et al., 2013). 

Physical activity also has some reported benefits on the social and mental health of PWD (Forbes, 

Forbes, Blake, Thiessen, & Forbes, 2015). Depression is one of the main mental health issues for PWD. 

Exercise has been reported to have a positive impact on depression for PWD (Conradsson, Littbrand, 

Lindelöf, Gustafson, & Rosendahl, 2010; Eggermont, Knol, Hol, Swaab, & Scherder, 2009; Rolland et 
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al., 2007). In one study, 103 participants conducted walking exercise for six weeks while 

neuropsychological tests, mood questionnaires, and actigraphy data were evaluated before and after the 

study (Eggermont et al., 2009). The authors (Eggermont et al., 2009) reported that for people attending 

at least 80% of the sessions, mood improved. 

Physical activity also has some reported benefits on the social and mental health of PWD (Forbes, 

Forbes, Blake, Thiessen, & Forbes, 2015). Depression is one of the main mental health issues for PWD. 

Exercise has been reported to have a positive impact on depression for PWD (Conradsson, Littbrand, 

Lindelöf, Gustafson, & Rosendahl, 2010; Eggermont, Knol, Hol, Swaab, & Scherder, 2009; Rolland et 

al., 2007). In one study, 103 participants conducted walking exercise for six weeks while 

neuropsychological tests, mood questionnaires, and actigraphy data were evaluated before and after the 

study (Eggermont et al., 2009). The authors (Eggermont et al., 2009) reported that for people attending 

at least 80% of the sessions, mood improved. 

There is also some evidence that physical activity can improve physical function for PWD (Potter et 

al., 2011). Many studies have investigated the impact of physical activity on physical function for PWD. 

A review of 13 related studies with 896 participants employing various exercise programs showed that 

some of them reported improvement in physical function for PWD (Potter et al., 2011). For example, 

in one study, 16 participants conducted different exercises that targeted balance, endurance, flexibility, 

and strength for three weeks and the results showed improvement in fitness parameters such as upper 

and lower body muscle strength, and balance (Santana-Sosa, Barriopedro, Lopez-Mojares, Pérez, & 

Lucia, 2008) 

Many studies have explored how different exercise types, affect PWD cognitive health in both the 

real and virtual worlds (Cammisuli, Innocenti, Franzoni, & Pruneti, 2017; Öhman, Savikko, Strandberg, 

& Pitkälä, 2014). Aerobics are the most well-known exercise type used in the different studies 

(Cammisuli et al., 2017; Hoffmann et al., 2016; Öhman et al., 2014; G. Zheng, Xia, Zhou, Tao, & Chen, 

2016). Zheng et al. systematically reviewed 11 different studies, with 1497 participants in total, in 

which PWD tried different aerobic exercise programs. Their analysis shows the improvement in global 

cognitive abilities and immediate and delay recall of memory. For cognitive abilities measurement they 

used two different metrics: the Mini-Mental State Examination (MMSE) (Folstein, Folstein, & 

McHugh, 1975), which is a tool has been used for few decades to systematically assess the mental 

status,  and  the Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 2005), which is a well-
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known cognitive assessment test includes one page questionnaire with 30 marks in total. Moderate and 

high-intensity physical activity in an aerobic exercise program with 200 patients over 16 weeks was the 

focus of one such experiment (Hoffmann et al., 2016). The authors reported changes in cognitive 

performance estimated by Symbol Digit Modalities Test (SDMT) after the intervention, and also 

change in the ability to perform activities of daily living. The long-term effect of aerobics have also 

been shown to be positive in improving executive functions for PWD (Cancela, Ayán, Varela, & Seijo, 

2016; Heath, Weiler, Gregory, Gill, & Petrella, 2016). 

Other physical activities have been used in different studies. Exercise with static bicycles, and 

resistance exercise using weight vests, weight belts and dumbbells in a four-month study showed 

cognitive improvement (Brown et al., 2015). Falls and balance problems are important challenges in 

daily life for PWD. There is a general concern that physical activity may increase the risk of falls 

(Zieschang et al., 2017); one 12-week study compared the program for two groups of PWD, one with 

an intensive exercise program and the other with light daily exercise. The group with higher levels of 

physical activity was safe. Walking in a treadmill for 30 minutes twice a week in a 16 weeks study also 

showed better cognition level measure by CAMCOG (Arcoverde et al., 2014). Home-based exercise 

and brisk walks also resulted in improved MMSE for an intervention group compared to a control group 

in a four-month study with 40 participants (Vreugdenhil, Cannell, Davies, & Razay, 2012). One 

valuable observation made is that cognitive programs with an exercise program benefit the cognitive 

abilities of PWD. In (Cheng et al., 2014) Tai Chi, hand crafts and Mahjong were used for different 

groups of people with cognitive impairment in a 12-week experiment. The participants (totaling 117) 

did an activity for one hour three times each week. The MMSE improved for the Tai Chi group and 

Mahjong groups, in comparison to the handicraft group. 

Despite of various reports on the benefits of exercise, still some studies have reported no difference 

in cognitive functions with an exercise program (Pitkälä et al., 2013; Tsai, Chang, Beck, Kuo, & Keefe, 

2013). The biochemical markers of physical exercise are also another parameter investigated for PWD 

(Jensen, Hasselbalch, Waldemar, & Simonsen, 2015). 

Considering all the reported benefits of physical exercise for PWD, motivating them to exercise is a 

great help toward better health condition. This was one motivation for this study.  
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2.2 Challenges of exercise for dementia 

Despite several studies showing the benefits of exercise, as discussed in the previous section, there are 

some challenges in exercise programs for PWD, mostly arising from their limited or impaired cognitive 

and physical abilities(Dobbs et al., 2005; Pitkälä et al., 2013; van Alphen, Hortobágyi, & van Heuvelen, 

2016). These challenges usually negatively impact the level of engagement in exercise for PWD.  

A general challenge common to both PWD and all older adults is the change in physical abilities; 

however, the limited abilities of PWD stem from both aging and the result of cognitive impairment. 

Alphen et al. (2016) reviewed and listed different barriers in physical exercise for PWD. Some barriers 

are related to physical health such as risk of falls during the exercise (Malthouse & Fox, 2014) and 

impaired body function (Cedervall, Torres, & Åberg, 2015). Some other barriers are related to mental 

health such as problems with orientation abilities (Cedervall et al., 2015), and problems with attention 

and memory (Yu & Kolanowski, 2009). Disliking structured exercise is another challenge for PWD 

which makes them less motivated to attend exercise programs in long-term care (Suttanon, Hill, Said, 

Byrne, & Dodd, 2012).There are also some barriers from the physical environment that makes attending 

an exercise program challenging for PWD, especially when they need to leave their home or residency. 

Difficulties in finding the way (Cedervall & Åberg, 2010), fear of being away from home (Suttanon et 

al., 2012), dedicated space and storage issues (Dal Bello-Haas, O’Connell, Morgan, & Crossley, 2014), 

and bad weather (Malthouse & Fox, 2014) are some examples of barriers related to the physical 

environment for the physical activity of PWD. 

Another challenge in encouraging exercise in PWD comes from language processing problems, 

which interfere with understanding the exercise instructions in group setting programs. The overall 

effects of language processing problems and difficulties with social communications reduce PWD 

confidence in attending exercise programs, especially in group settings. 

2.3 Serious games 

The primary goal of games is usually entertainment. The term “serious games”, however, refers to any 

game that has a primary goal other than entertainment (Bergeron, 2006). The elements of a serious 

game, such as actions, characters, tasks and environments, are similar to those in the other games, but 

the main goal of users performing the activities is not entertainment (Deterding, Dixon, Khaled, & 

Nacke, 2011). In other words, serious games can be seen as a way of applying “gamification”, which 

is defined as “using game design elements in non-game contexts” (Deterding et al., 2011). However, 
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the boundaries of these concepts are still not clearly defined (Deterding et al., 2011). Serious games 

have been used in different applications such as general education(Michael & Chen, 2005; Van Eck, 

2006), language training(Lewis & others, 2010), health(Burns, Webb, Durkin, & Hickie, 2010; Kayali 

et al., 2015), services (Roenker, Cissell, Ball, Wadley, & Edwards, 2003), and the military (Lim & 

Jung, 2013), and has been referred to by different names such as pervasive games (Montola, Stenros, 

& Waern, 2009), alternate reality games (Bakio\uglu, 2015), and playful design (Ferrara, 2012). 

2.4 Serious games for persons living with dementia 

Serious games are widely used in health domain (Lager & Bremberg, 2005; Sawyer, 2008) for 

applications such as medical training, mental health, and physical rehabilitation (Burns et al., 2010; 

Graafland, Schraagen, & Schijven, 2012; Kayali et al., 2015; Rego, Moreira, & Reis, 2010; Schönauer, 

Pintaric, Kaufmann, Jansen-Kosterink, & Vollenbroek-Hutten, 2011). There are many research studies 

that have used serious games for supporting PWD (McCallum & Boletsis, 2013; J. Zheng, Chen, & Yu, 

2017). 

McCallum et al. reviewed dementia related serious games and discussed the reported benefits of 

these games for PWD (McCallum & Boletsis, 2013). They concluded that based on the experimental 

results of different works, dementia games (games designed for PWD) have a positive cognitive impact, 

however, there is still a need to investigate the long-term impact of these games. This will deepen the 

field’s understanding of the cognitive benefit of video games (Green & Bavelier, 2006) as well as the 

long-term impact concern worth to study based on the studies show the long-term impact of games for 

older adults (Willis et al., 2006). 

Based on the taxonomy suggested in (McCallum & Boletsis, 2013), the games for PWD can be 

categorized based on their goal into three groups: 1) Games for physical health, 2) games for cognitive 

health, and 3) games for social emotional health. The memory enhancement is a well-known reported 

benefit of cognitive training with games (Mahncke et al., 2006), while other aspect related to quality of 

life and social emotional health such as social exchange with games has also been the topic of some 

studies for older adults (Keyani, Hsieh, Mutlu, Easterday, & Forlizzi, 2005). In addition to the health 

benefits of games for PWD, they have also designed and used for the detection of dementia (Bayo-

Monton, Fernandez-Llatas, Garca-Gomez, & Traver, 2011; Tong & Chignell, 2014; Tong, Chignell, 

Tierney, & Lee, 2016; Vallejo et al., 2017). In one study, the response time to a cognitive task has been 

shown to be in direct correlation with the standard ways to determine cognitive level of a person (Tong 
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& Chignell, 2014). In next, I first introduce the technologies and devices used in different studies for 

running games for PWD and then review examples of games designed for PWD. 

In computerized games, a user interacts with a simulated environment, which is also known as virtual 

reality (VR). The hardware setup for playing a computerized game includes a personal computer to 

generate the game environment, a display device for visualization, and a game control device to provide 

interaction for the user. The most common displays are computer monitors, wall-based projectors, and 

TVs (McEwen, Taillon-Hobson, Bilodeau, Sveistrup, & Finestone, 2014a; Moyle, Jones, Dwan, & 

Petrovich, 2017; Stavros, Fotini, & Magda, 2010; Tárraga et al., 2006); however, with the advances of 

new technology, head-mounted displays (HMD), which provide fully immersive display and better 

feeling of presence, are becoming affordable and a more popular display option for game play (Mendez, 

Joshi, & Jimenez, 2015). There are several different types of input control device that can be used.  A 

computer keyboard and mouse have been used in some studies (Mccallum & Boletsis, 2013; Stavros et 

al., 2010), while touch screens have been used to make interactions in games more interesting (Manera 

et al., 2015; Tyack & Camic, 2017), as well as new game controllers, such as Nintendo Wii (Fenney & 

Lee, 2010; Padala et al., 2012; Weybright, Dattilo, Rusch, & others, 2010). Gloves or other motion 

sensors have been used in few cases to capture movements close to daily life and provide more 

flexibility in the types of motions that can be captured; however, they have been customized based on 

the design and difficult to generalize to other games (Yamaguchi, Maki, & Takahashi, 2011).  

There is a growing number of games that have been developed and used for PWD. In (Fenney & 

Lee, 2010), a virtual bowling game with Nintendo Wii was used in a nine-week training program with 

a five to six months follow-up for three participants living with dementia. All participants improved 

their bowling scores and memory functioning. Another study designed and used a sport video game 

based on brain-activating rehabilitation (BAR) to simulate physical activity for both upper and lower 

limbs. For the upper body they implemented capturing a virtual coin with virtual hands controlled by 

customized sensors mounted on participants’ hands to control interactions, and a flat screen TV to 

display the virtual coins. For lower limb physical activity, participants tapped feet on a mat with a 

sensor installed on it to simulate the motions from two Japanese drums. The target of game task was 

creating physical activity, and the results measured by Hasegawa’s Dementia Scale-revised (HDS-R) 

showed improved cognitive levels in all 9 participants (Yamaguchi et al., 2011). Wii-Fit, as a virtual 

exercise game, has been used in another study in comparison to a real-world walking program (Padala 

et al., 2012). Twenty-two participants in two groups, followed an eight-week program of 5 days of 
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exercise in each week. The Berg Balance Scale (BBS), Tinetti Test (TT), and Time Up and Go (TUG) 

were used as physical and cognitive tests for evaluation. The final results showed more general 

improvement in cognition and gait and balance; however, the BBS and TT showed significant benefits 

in the Wii-Fit group. 

Kitchen and cooking is another serious game developed based on a European project named VERVE 

(Manera et al., 2015) to stimulate executive functions such as planning abilities for PWD. For the 

project, 21 persons with Mild Cognitive Impairment (MCI) or early stage dementia were hired for a 

one-month trial with one session per week. The game was displayed on a tablet and participants were 

free to play the game as long as they wanted. To evaluate the game’s impact, self-reported 

questionnaires were used to assess participants’ overall game experience (including acceptability, 

motivation and perceived emotions). Game performance was measured by using parameters such as 

time spent playing and number of errors. Based on results, both the kitchen and cooking activities 

engaged participants. In another study (Rendon et al., 2012), a Wii-based VR cognitive game was used 

over a six-week experiment with 40 participants. The participants worked with the game three times 

each week, and the results show improvement in the VR group versus. a control group (who did not 

play any games) as evaluated by the 8-foot Up & Go test and Active-specific Balance Confidence Scale. 

In a comprehensive analysis of the feasibility of using VR for PWD, researchers investigated the 

experience of PWD interacting with a virtual environment, assessing parameters such as presence, user 

inputs, display quality, simulation fidelity, and overall system usability. For this analysis, six 

participants performed four functional activities such as mailing letter in a virtual outdoor park. The 

physical and psychological well-being of participants in interactions with VE were assessed by 

measuring their heart rates.  The overall results of this study show that PWD experienced presence and 

found objects realistic and moved naturally. Difficulties in using a joystick were reported in this study 

(Flynn et al., 2003). 

Navigation and path finding in a city are important daily tasks that are challenging for some PWD, 

which can reduce their outdoor activities. As result, they may experience decreased quality of life and 

accelerated progress of dementia (Ott et al., 2008; Teipel et al., 2016; Zakzanis, Quintin, Graham, & 

Mraz, 2009). One experiment compered the functionality of participants walking in a real city with 

when they were walking in a virtual city, to investigate beneficial parameters to help these people live 

independently (Blackman, Van Schaik, & Martyr, 2007). The study noted the benefits of using textual 

signs to help wayfinding and to identify objects and places in the environments. 
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Memory abilities have been investigated for PWD in interaction with VR-based vs. therapist-led 

training programs. In an experiment with 24 participants in 10 sessions of 30 minutes each, the 

multifactorial memory questionnaire and Fluid Object Memory Evaluation assessed participant 

performance in two environments: a home setting and a convenience store one. The results showed 

improved memory functionalities, however, VR training showed better objective improvement. 

VR games have been used for PWD for cognitive assessment purposes as well. One such assessment 

simulated the interviews in a virtual environment (Mendez et al., 2015). The answers of five participants 

were recorded during interviews with an avatar, and their heart rates were also monitored. They also 

subjectively expressed their stress level after the interview. The VR-based interviews were shown to 

be comparable to real-world interviews, and participants produced greater verbal elaboration when 

answering in virtual reality. 

A distinct class of games designed for PWD have targeted exercise (G. Zheng et al., 2016). In one 

study, PWD activity in a virtual environment has been investigated by simulating five activities in VR: 

soccer, snowboarding, birds and ball, formula racing, and juggling (McEwen, Taillon-Hobson, 

Bilodeau, Sveistrup, & Finestone, 2014b). The two-week experiment had two goals: 1) investigating 

the feasibility and safety of exercise programs in VR, and 2) the effect of exercise on balance and 

mobility. The evaluation of the impact of these activities was based on clinical balance and mobility 

measures, before, during, and after the training program. They also obtained qualitative feedback by 

interviewing participants and caregivers after intervention. They concluded that the VR exercise 

program was safe, feasible, and enjoyable for PWD; however, there were no significant improvements 

in balance and mobility. The researchers proposed that was because of a confounding effect on motor 

function due to cognitive impairment, however, it may also be because of a limited sample size and 

short intervention period. 

The reported outcomes of the reviewed studies in this section show the potential of serious games 

for cognitive stimulation and physical function improvement. Serious games usually make for 

interesting environments for these people, but the design and activity selection needs to be performed 

carefully. While HMD VR provides a greater presence in the virtual environment and makes it more 

realistic and interesting, an existing gap in the research is a lack of using fully immersive HMD VR 

technologies for exercise that is specifically designed for PWD. 
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2.5 The potential of Virtual Reality exergames for PWD 

The current best-practice solution for the challenges of exercise for PWD mentioned in the previous 

section is holding one-on-one exercise sessions with exercise therapists. However, due to limited 

human resources and costs, this solution is rarely adopted. Designing serious games with the goal of 

supporting exercise (exergame) could help to overcome these limitations.  

Considering the challenges faced by PWD, exercises that use VR have some advantages over human-

guided exercise. The first advantage is that VR enables activities that are difficult or impossible for a 

PWD to experience in the real world. For example, in a VR game a person with dementia can row a 

boat along a scenic river or go deer hunting with a rifle in the forest. The second advantage of exercise 

in VR is that the distances and sizes of objects in virtual environment can be customized based on the 

range of motion of each person. Another advantage is that interactions in VR are usually safer than real 

world because all objects are virtual. VR also makes it possible to quantitatively measure the activity 

and range of motions of players, which might be used for tracking progress or clinical assessments. 

Virtual environments are endlessly customizable for relatively low-cost. 

 In the reviewed studies about using VR exergame for PWD, the impacts of exergames were 

investigated mostly on cognitive functioning and/or the balance of users. However, there is a lack of 

research on engagement and encouragement of PWD in exercise in the literature. In this research, I 

designed, developed and evaluated some VR exergames to promote physical activity for PWD. 

Using VR exergames played using a HMD provides a fully immersive simulation of three-

dimensional games. It gives a better sense of presence in the game environment to the person who is 

using it, which is important for engagement (Dow, Mehta, Harmon, MacIntyre, & Mateas, 2007). My 

thesis work involved the co-design of novel HMD-VR exergames to encourage engaging in exercise 

for PWD. 

In selecting the stimuli and activities in the design process for PWD, their history and interests play 

an important role in their engagement in game (Cohen-Mansfield, Thein, Dakheel-Ali, & Marx, 2010; 

Hanten et al., 2011; Leone et al., 2012). To obtain this knowledge, in this study the design process 

performed with collaboration with both experts in long-term cares and PWD as it is also recommended 

for any design for PWD (Hendriks, Truyen, & Duval, 2013). 
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2.6 Concerns and challenges in designing HMD-VR exergames for PWD 

Despite potential benefits of developing an HMD-VR exergame for PWD to motivate exercise, there 

are challenges and concerns that must be addressed. 

A primary concern in introducing and applying HMD-VR as a new technology for PWD is whether 

they feel comfortable using this technology. Due to cognitive impairment and having limited familiarity 

with recent technology, it was not clear if participants would be comfortable with using an HMD and 

watching a simulated environment that they have to interact at the same time. Similar challenges come 

with using a hand controllers or sensor in capturing their motions. Selecting proper device in terms of 

safety and comfort is very important for PWD. 

Motion sickness is one of the reported side effects of using HMD-VR. Motion sickness usually comes 

from incompatibilities in human perception of object locations and their motions in virtual reality vs. 

the real world. However, recent advances in building HMD has resulted in higher resolution images 

and higher refresh rates, thus making more-realistic environments and motions.  Still, this issue remains 

an important challenge in many applications and is of especial concern for PWD as their sensory 

perception may be impaired, which could exacerbate motion sickness. 

To engage PWD to exercise, selecting proper activities and environments is important. To achieve 

this goal, user abilities and preference should be considered in design. This is not possible unless the 

game developers have access to and incorporate the lived experience of PWD; one way to achieve this 

is through participatory design. 
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Chapter 3 

Participatory design process 

This chapter discusses the participatory design process that was used to develop the VR exergame for 

dementia prototype. The process of design has been participatory in collaboration with kinesiologists, 

exercise therapists and persons with dementia. Ethical approval was applied for and obtained from the 

University of Waterloo prior to starting the participatory design process. 

3.1 Focus group 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 2): 

“The first step in the process was to gain an understanding of the abilities, preferences, and needs 

of the intended users (i.e., PWD). I began by reviewing the user-centered design literature for 

guidelines regarding developing technology for PWD. In addition to common usability 

principles for the general population (Nielsen, 1994; Norman, 2013), I also consulted principles 

for older users (Pernice & Nielsen, 2008; Wolfson, Cavanagh, & Kraiger, 2014). A guiding 

premise is that the interface should be designed to be as simple and intuitive as possible to 

minimize users’ cognitive workload on attention, comprehension, and memory, as these are 

generally impaired for older adults. For example, in the 3D virtual world, visual objects should 

be high-contrast, large enough to be easily seen, and placed in front of the user in the central 

field of view. However, as demonstrated in previous chapter, there is a lack of literature focusing 

on PWD. Regardless, it is imperative for us as the designers to have first-hand knowledge of the 

characteristics and limitations of PWD.  

I and my supervisors attended the semi-annual recreational planning meeting held with 25 

kinesiologists, exercise therapists, and recreational therapists from Schlegel Villages—a 

Canadian organization that manages 19 long-term care and retirement communities across 

Ontario. At the meeting, we presented the idea of HMD-VR and its use to engage PWD. In 

general, they found the idea interesting; however, they also had a few concerns about the 

feasibility. For example, would PWD feel comfortable wearing the HMD? Would they feel 

disoriented during the transition between different VR scenes and between VR and the real 

world? Could they learn how to use the hand controllers to interact with virtual objects? 
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Nevertheless, the caregivers were generally supportive. It was one of the attendees who 

suggested using HMD-VR to support exercise. It was also through this meeting that we met our 

exercise therapist team member, who collaborated with us extensively as a member of the core 

design team throughout the project.” 

3.2 Shadowing Observation 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 3): 

“I and both my supervisors each conducted an eight-hour shadowing observation session in a 

long-term care center of Schlegel Villages. I and one of my supervisors had no previous 

experience designing with people with dementia. The goal was to gain first-hand experience 

about the life of people with dementia. During the sessions, the authors talked with the residents 

and participated in their activities such as walking, watching TV, and serving meals.” 

3.2.1 Observations and lessons 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 3): 

“It was observed that most residents had very limited physical activities. Although there were 

events planned for them such as singing, Tai Chi, puzzle solving, and towel folding, many 

residents sat and watched TV for much of the time. Many residents were also social and engaged 

when we interacted with them, which lent support to our expectation that the residents might 

enjoy VR programs if the programs can be designed properly for them to use.”  

3.3 Second focus group   

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 4):  

“After the shadowing observations, the next stage involved a focus group meeting, where we 

brought an HMD-VR system (Oculus Rift CV1) and two existing VR programs for eight 

kinesiologists and PWD to try. The first program (Through the Ages: President Obama 

Celebrates America's National Parks) is a 360-degree VR movie that plays videos recorded from 

a national park. The second program (NVIDIA VR Funhouse) is a virtual carnival game with 
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small games such as slicing balloons, whack-a-mole, and shooting plates, which require the use 

of hand controllers.”  

3.3.1 Lessons learned and feedback 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 4):  

“Kinesiologists, therapists, and three residents with dementia tried using both VR programs; all 

of them could interact with the programs. This positive result helped improve our understanding 

of how PWD might react to HMD-VR and increased the research team’s confidence. Valuable 

feedback was obtained from the discussion that followed.  

A kinesiologist commented that playing fighting games might agitate residents who had 

previous aggression issues. This suggested that calm activities should be used in the design. 

Another kinesiologist commented that hand gestures and buttons on the hand controllers were 

not very intuitive to learn and use. This device limitation suggested that the design should avoid 

interaction that requires specific gestures or pressing buttons. For safety reasons, I also decided 

that all users should play the VR programs while seated to avoid the risk of falling. This seating 

requirement is the same as the practice at Schlegel Villages for therapist-guided exercise.” 

3.4 First iteration of design and testing 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 4): 

“In designing VR exergame, I collaborated with kinesiologists and exercise therapists in 

Schlegel Villages to carefully select appropriate motions, environment, and tasks. In this step, 

one of the exercise therapists from Schlegel Villages was interested to the project and joined the 

research group as a co-designer of the games. This was very useful as using the experience of an 

exercise therapists ensured the game was more appropriate both for people with dementia and 

for achieving exercise goals. In the following sections, the selection of exercise, environments, 

and activates are reported.”  
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3.4.1 Exercise selection 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 3):  

“As I decided on a seated posture for safety and avoid risk of participants falling, the motions 

used in the exercise were limited to the upper body (i.e., neck, arms, and torso). Finger motions 

were excluded to increase simplicity and to allow users to keep holding the controllers in both 

hands in the VR scenarios. Applying these constraints, the exercise therapist on our team 

consulted with her therapist colleagues to select motions from the ones used in existing therapist-

guided exercise. Five motions were selected to match the game scenario: 1) head rotation, 2) 

reaching straight ahead, 3) cross-body reaching, 4) lifting both arms, and 5) rowing with both 

hands.”  

3.4.1.1 Head rotation 

The following text has been copied from our publication (Boger, Eisapour, Domenicucci, & Cao, 2017, 

p1): 

“The neck flexion and extension exercise have the person move his or her head in the vertical 

and horizontal planes, activating the neck muscles. Incorporating these movements allows for 

the muscles associated with and around the pectoral girdle to be sufficiently warmed up prior to 

engaging in the rest of the exercises.”  

3.4.1.2 Arm movements 

The following text has been copied from our publication (Boger, Eisapour, Domenicucci, & Cao, 2017, 

p1): 

“The ability to reach is vital to the independent completion of a range of activities, including 

leisure, mobility, and self-care. Ideally, reaching requires arm mobility in all directions, which 

can be improved through flexion and abduction/adduction exercises. Exercising the shoulders 

can improve arm range of motion, strength, and contribute to fall recovery capabilities.” 

3.4.2 Environment selection 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 6): 



 

 17 

“Regarding the environment to implement the motions, we followed the therapists’ 

recommendation to use a calm place that is enjoyable for most residents. The place should be a 

common daily life location where the planned motions can be implemented as intuitive, 

meaningful, and interesting activities. We considered a kitchen, a farm, a pet store, and a gym. 

Through many discussions with therapists, the farm was selected as it is familiar and interesting 

for most of the residents, is gender-neutral, and has a variety of activities that can be simulated”.  

The pet store was not selected as it is somewhat similar to farm, most of the interactions with animals 

can be also simulated in farm, and some actions (e.g., rowing) would be difficult to simulate in a pet 

store environment. The kitchen was not chosen as it was felt fewer people would be interested in 

activities in kitchen compared to a farm. 

The gym was also selected as another virtual environment in our design to mimic the environment 

of common human-guided exercise program in the long-term care. Similar to farm, a gym is gender 

neutral and familiar for all participants. The gym provides a cross-over environment where the delivery 

of the exercise is more similar to the human-guided approach, which enables us to investigate the 

delivery of exercise using VR itself separately from a completely different environment and delivery 

modality (i.e., farm environment). Using these two selected environments, participants performed two 

completely different environments, enabling the investigation of the impact of different virtual 

environments on participants’ engagement in exercise. 

3.4.3 Activities selection 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 6): 

“I with my supervisors, and the exercise therapist in our research team composed a list of 

candidate activities that were plausible to do in a farm and focus on upper body motions. The 

candidates included watching butterflies, picking flowers, grabbing fruits, turning wheels, 

painting fences, lifting piles of hay, and sorting various objects. Following the simplicity 

principle, we decided to only present a minimal number of objects in each activity to reduce 

cognitive workload also we decided to add a few objects in the background to help with context 

and orientation. For example, most of the tasks should have only one interactive object in the 

scene. If selection was needed, no more than two options should be presented. In the end, the 

selected activities included butterfly watching (for head and neck turning), sorting apples and 
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oranges into baskets (for arm reaching straight and across body), lifting a large object such as a 

box or a pile of hay onto a stand (for lifting with both arms).”  

The details of selected activities for the farm will be explained in this section.  For the virtual gym, 

the same motions would be guided by an avatar that participant need to repeat the same actions based 

on instruction given.  

The following text has been copied from our publication (Boger, Eisapour, Domenicucci, & Cao, 2017, 

p 1): 

“The head rotation in farm was elicited through VR by a butterfly flying in a circular path with 

audio instructions to look for the butterfly, as depicted in Error! Reference source not found.. M

otions are repeated three times in each direction (clockwise and counter-clockwise).” 

 

Figure 1. Following a butterfly in virtual farm environment as an activity designed for neck rotation 

(reproduced from Eisapour, Cao, Domenicucci, & Boger, 2018). 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 6): 

“For the first prototype, three exergames were developed to elicit three different arm movements 

that had been identified by the exercise therapists: reaching straight ahead, cross-body reaching, 

and overhead reaching. Straight ahead and cross-body reaching exergames were based on a 

sorting task where the participant picked apples and oranges from the ground in two sides and 

placed them into baskets filled with the corresponding fruit. In the straight ahead reaching 

exergame, participants picked up apples on the virtual “ground” in front and slightly to their left 

using their left hand and place them into a basket of apples placed ahead and slightly to their left; 
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the same was done with oranges slightly to the right, as shown in Figure 2. For cross-body 

reaching, the fruits were placed on the “ground” further to the side of the participant and the 

corresponding basket was located to the front and on the opposite side, as shown in Figure 3. 

The overhead reaching exergame involved participants lifting boxes filled with apples from the 

“ground” in front of them onto a cart, as shown in Figure 4.” 

 

Figure 2. Fruit sorting activity designed in virtual farm environment for reaching 

straight ahead motion (reproduced from  Eisapour et al., 2018). 

 

 

 

Figure 3. Fruit sorting activity designed in virtual farm environment for cross-body 

reaching motion (reproduced from Eisapour et al., 2018). 
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Figure 4. Lifting boxes filled with apples activity designed in virtual farm environment 

for overhead reaching motion (reproduced from Eisapour et al., 2018). 

 

3.4.4 First prototype demo 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 5): 

“In collaboration with the exercise therapist on our team, I developed our first prototype HMD-

VR exergame program. We presented the initial prototype to a group of six 

kinesiologists/recreational therapists and four residents with mild-to-moderate dementia at 

Schlegel Villages for their comments and feedback.” 

3.4.4.1 Lesson learned and feedback 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 5): 

“In a short verbal interview with participants after trying the exergame, they responded positively 

and enjoyed all of the activities. The kinesiologists commented that they were pleasantly 

surprised to see the level of engagement and degree of motion elicited by playing the game.  

This preliminary testing was extremely valuable as it found several areas that could be 

improved and enabled in-person discussions with therapists and residents regarding how to go 

about improving them. For example, a pile of hay was initially used as the object in the object 

lifting task, but some residents had difficulty in finding an appropriate way to grab and lift it with 
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both hands. After discussion, we decided to use a box instead and place two obvious handles on 

the ends to signal the places for holding it. Another example of improvement suggested by 

kinesiologists was adding another movement to the program. Kinesiologists suggested to add a 

rowing movement. Rowing has been established as an exercise that improves cardiovascular and 

shoulder health strengthening the core and contributing to better posture.  The movements 

involved with rowing a boat incorporate repeated squeezing and stretching shoulder blades. It 

was decided to present rowing as the final exergame as it is the most vigorous of the exercises. 

One important issue that arose was the need for individual calibration. For example, in the 

apple sorting task, there was a considerable difference in residents’ range of motion (ROM) 

capabilities. Customized object location is needed to avoid frustration, enable people to achieve 

their goals, and ensure that every user can benefit from an appropriate level of stretching.” 

3.5 Second Iteration of Design and Testing 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 6): 

“Based on feedback from therapists and PWD in the first iteration of design and testing, we 

revised the design and developed the second prototype. In this step, we added the calibration 

initialization program and also adjusted some activities. We ran another demo after these 

modifications.”  

3.5.1 Calibration 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 6): 

“This is particularly important for older adults, who may have conditions that limit ROM (e.g., 

stroke, arthritis). Moreover, limitations in ROM may not be bi-lateral; a person may have 

significantly more ROM on one side than the other. 

During the calibration task, each user tried to reach targets (apples) presented at increasing 

intervals of distance along different directions (Figure 5). The ROM limit was recorded as a 

parameter for each individual person. This parameter was then used to automatically adjust 
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object locations in the exergame with the activities calibrated to 80% of each individual’s ROM 

limit to ensure that the exergame was well within their abilities.” 

 

Figure 5. Calibration setup includes picking apples located in different 

distances in four directions to obtain users’ range of motion. 

3.5.2 Updated activities 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 6):  

“After the first iteration of design and testing, I applied some adjustments to the design and 

activities. 

One of the modifications was replacing the hay object in the reach overhead activity with a 

box of apples and placing two obvious handles on the ends of the box to signal the places for 

holding it. 

We also added rowing activity. The rowing exergame had the participant seated in a virtual 

boat in a small lake with the oars visible in front of them, as shown in Figure 6. Virtually touching 

an oar “attaches” it to their hand, after which they can move about the lake as they wish. Clouds 

in the sky, trees along the shore, hills, beaches, and rocks were strategically placed in the 

background to provide interest and environmental cues without overwhelming the participants.” 



 

 23 

 

Figure 6. Rowing activity implemented in virtual farm environment for rowing 

motion (reproduced from Eisapour et al., 2018). 

 

3.5.3 Second Prototype Demo 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 6): 

“The second prototype was tested with three PWD using an Oculus Rift CV1, which has a 

resolution of 1080 by 1200 pixels per eye at 90 frames per second.  A digital video camera was 

used to record participants’ interaction with the program. During the test, participants were 

seated in a chair to avoid falling, and sufficient space was provided to avoid any collisions while 

using the HMD (Figure 7). 
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Figure 7. A person using HMD device and playing game. 

An LCD monitor was used to mirror the participants’ view inside the HMD for researchers in 

the same room to see and control the task procedures and detect any problems. The location of 

the test was at the Village of Wentworth Heights, which is a Schlegel Village long-term 

care/retirement home in Hamilton, Ontario, Canada. All tests were supervised by two trained 

therapists to ensure the safety and wellbeing of participants. All three participants with dementia 

were naive to VR and the tasks. Participants each did the calibration task before trying the five 

exergame scenarios. 

The three PWD who participated in testing of the second prototype were able to follow the 

butterfly; many reached out to touch it as well. Watching PWD doing the exercise prompted the 

exercise therapists to suggest that perhaps a “T” pattern would be more effective. We 

incorporated this into the next version. 

The three residents who participated in the pilot tests were all able to do the reaching exercises. 

The apple and orange sorting exercises were particularly effective. The box-lifting task gave 
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some trouble as the handles were hard to see; plans were made to modify the handles of the box 

so that they were easier to see (i.e., greater contrast) and the top of the cart (i.e., the ‘target’) is 

lowered a bit to ensure it is in the field of view so people know where they are to place the box. 

The rowboat game was the most engaging for the three pilot testers in our study. All three 

could row and the task naturally was adapted to their individual capabilities. In all three cases, 

the researchers ended the task as the maximum allotted time was reached.” 

3.5.3.1 Lesson learned 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 6): 

“The calibration worked well, making objects reachable and close to the ROM limit for each 

person. In general, the response was very positive. All three participants could complete all the 

exergame tasks. In fact, therapists commented that the game was eliciting greater ROM than they 

thought some of the participants were capable of. While some were hesitant to try the HMD-VR, 

participants clearly enjoyed using it (e.g., smiling, laughing, and in one case, singing), including 

the calibration task.” 

3.5.3.2 Users’ feedback 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 6): 

“All scenarios were engaging and enjoyable for the participants. For example, one of the 

participants seeing the apples in the calibration procedure said, “Oh wow, it’s good! Can I take 

a bite of the apple?” Another participant, when she found herself in the boat rowing scenario, 

said “Oh, I am in a rowboat!” and started singing. For all three participants, the test was ended 

by the researchers (as we set a 15-minute time limit) rather than by the participants.” 

3.5.3.3 Experts recommendations 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 6):  

“Some feedback was obtained from therapists after our second demo. For example, it was 

recommended to add more background objects such as trees and barns, which could help 
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participants to orient and better understand that they are on a farm. In the butterfly watching task, 

it was recommended to add the calibration of both the range and speed of the butterfly’s 

movement, accommodating people with different head and neck ROM. In the box lifting task, 

the height of the wagon should be adjusted so that participants can see the top of it, which can 

serve as a natural cue for the target location. The handles on the boxes should be larger and use 

a more salient color. In the boat rowing scenario, a recommendation was to add water sound. It 

was also recommended to add vibration on hand controllers as feedback to inform the completion 

of an action. We applied these valuable recommendations in the final version of our design for 

the experiment.” 

3.6 Design considerations for persons with dementia 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018a, p 6):  

“Through our participatory design process creating an exergame, I have identified the following 

HMD-VR design considerations for persons with dementia. 

• Keep visual targets within the front field of view. Avoid searching that requires 

head motion. 

• Provide verbal prompts before the transition between real world and VR, as well as 

the transition between different VR scenes. 

• Provide verbal instructions that bring users into the scene and task, in a gentle, 

casual, and story-telling fashion. 

• Avoid using buttons or gestures as control input. When moving objects, directly 

attach objects to the hand when it is reached, and directly remove objects from the 

hand at target locations. 

• Use high contrast and tasks that implicitly signify how to interact with objects (e.g., 

salient handles that indicate where to grab and hold). 

• Use a calibration process to adjust the required range of motion for each individual; 

this ensures an accessible and engaging experience. 
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• Prevent errors, enable exploration of the game space in a supportive fashion, and 

clearly indicate when a task has been successfully accomplished.  

Consult specialists and get feedback from PWD; participatory design process helps identify 

hidden problems and improve the quality of the VR program for the target users.  

Interacting with virtual objects without using any buttons on control interface is highly 

recommended for these populations to not to exceed their workload capacity. In addition, since 

these people have various range of motions and functional ability, flexible design to apply 

customized distances and controls for each individual is vital.” 
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Chapter 4 

 Empirical study evaluating the HMD-VR exergame for people living 

with dementia: Method 

In this chapter, the details of the experiment conducted to evaluate the designed exergames is discussed. 

The participants hired for experiment, the HMD used for running the game, and the procedure followed 

in the experiment are discussed first and then the evaluation methods considered for this study are 

introduced.  

4.1 Participants 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018b, p 3): 

“Eight participants were recruited from SV’s Wentworth Heights location in Hamilton, Ontario, 

Canada. After the consent procedure the MoCA test (as explained in section 2.1) was 

administered to assess the cognitive level of the participants. One of the participants decided not 

to participate and another declined to continue after the first day of the trials. The other six 

participants (one male and five females) completed the study. The average age of the participants 

was 86.8 ± 6.2, and their average MoCA score was 17.5 ± 2.1. The MoCA score for each 

participant is reported in Table 2; a MoCA score below 18 is considered mid-stage dementia.”  

The participant who declined to continue after the first day of trial did not like the location of the 

testing room and chose to withdraw from the study; they did not mention any negative perspectives 

regarding the technology or study goals.  

We recruited our participants based on the following inclusion and exclusion criteria: 

Inclusion criteria 

▪ 60 years and older 

▪ able to communicate verbally in English 

▪ at least four years of education (as required by the Montreal Cognitive Assessment (MoCA)) 

▪ score between 18 to 25 on the MoCA 
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▪ at level 1(independent transfer) or level 2 (one-person transfer) on the Transfer Status 

Assessment Guide  

Exclusion criteria 

▪ moderate or severe cognitive impairment (as identified by the Schlegel Village 

neighborhood coordinator) 

▪ prone to motion sickness 

▪ has hearing impairment that may interfere with the ability to understand verbal 

instructions 

▪ any pre-existing conditions that would preclude the exercise activity that advised by 

neighborhood coordinator or exercise therapist  

▪ a history of epilepsy and/or seizures 

▪ having a pacemaker 

Following the inclusion and exclusion criteria and recruitment protocol, every effort was made to 

avoid bias in participant recruitment and to ensure participants were representative of the general 

population of PWD in Schlegel Villages; however, as the sample size was small, it cannot be proven 

definitively and needs more investigation with larger groups of participants in future work. 

4.2 Devices and tools 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018b, p 2): 

“This research used an Oculus Rift CV1 as the HMD-VR device as it has low weight, high refresh 

rate of 90 frame per second for each display, and a horizontal field of view of 110 degrees (Figure 

8). For running the experiment, a personal computer with 12GB of RAM, running Windows 7, 

and the graphic card of NVIDIA GTX 970 was used. For interacting with virtual objects, Oculus 

touch controllers were used, but only reach and contact actions were required (no button 

pressing). Figure 7 shows a participant using HMD and hand controllers interacting with a virtual 

rowboat in the designed environment. For the design of 3D environments, Unity 3D game engine 

version 5.6 was used. Avatar’s motions in the gym environment have been generated by motion 

capture of human actions using Microsoft Kinect for Xbox 360.” 



 

 30 

 

Figure 8. The Oculus Rift CV1 device used in the experiment which includes head 

mounted display (HMD), motion sensors, and touch controllers (248am.com, n.d.). 

 

4.3 Procedure 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018b, p 3):  

“A week before starting the experiment, the participants were asked to attend a short training 

session to become familiar with the VR system and to perform a calibration task for their range 

of motion. For training, the Oculus Rift HMD and sample virtual environments were introduced. 

During calibration, participants’ range of motion in four directions including left, right, up, and 

front was measured by a task of reaching virtual apples in each direction (Figure 5).  

The evaluation phase consisted of three weeks of trials. The participants started with one week 

of human-guided exercise with a professional exercise therapist from SV. In the second week, 

they worked with one of the two VR environments, and for the third week they switched to the 

other VR environment. In the virtual gym, participants were asked to mimic an avatar’s actions. 

In the farm environment, participants performed activities related to farm tasks. All three 

scenarios used the same motions in the same order and with the same number of repetitions. The 

order of presentation of VR environments was randomized and balanced across the participants. 
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In each of the three weeks, participants performed the tasks targeted for that week for five 

days, where each session of a day was within 20 minutes. In each session, all five selected 

motions were conducted either in a real-world human guided manner or in the interaction with 

virtual environment.  

The therapist recorded instructions for each of the VR scenarios to guide users in each task. 

For safety concerns, the participants were seated in a wheelchair during each session to avoid 

falling, while at the same time an exercise therapist was in the experiment room during all 

sessions. All sessions were video recorded for future analysis by the research team. The 

experiment was conducted in the same room in the long-term care facility for all three weeks.”    

4.4 Evaluation methods 

Different subjective and quantitative evaluation methods were applied in this study to assess the success 

of design in encouraging PWD to engage in exercise. The subjective analysis was done through a 

combination of data from the questionnaires for participants and kinesiologists and recording 

observations by the exercise therapist. The quantitative analysis includes both clinical measurements 

and recorded track of hand and head positions from the device’s sensors. In this section, we will discuss 

these analyses in more detail. 

4.4.1 Participant questionnaire 

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018b, p 3):  

“Two questionnaires were used to subjectively compare the capture the perceptions of the 

participants; one was administered after each session (i.e., every day) and a second was used 

after finishing each week (i.e., after each scenario).” 

To design these questionnaires, we consulted with the exercise therapist in our team and considered 

the main goals of engagement in exercise. “Questions were designed to be clear, direct, and 

understandable by PWD  

The following text has been copied from our publication (Eisapour, Cao, Domenicucci, & Boger, 

2018b, p 3): 
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“In the daily questionnaire, after performing their session participants were asked about their 

enjoyment and feeling of having enough of a workout. For enjoyment, a 5-point Likert scale 

question was used while two-point (yes/no) question was asked about workout (see Appendix A 

for a copy of questionnaire). In the weekly questionnaire, participants were asked to evaluate the 

engagement and enjoyment level of the scenario they just tried. In these questionnaires, our goal 

was to capture the participants’ feelings of comfort, level of difficulty, engagement, and interest 

in the scenario of the week (see Appendix B). In addition to these evaluations, we also asked 

participants if they wanted to continue the scenario to evaluate their motivation after one week 

of the scenario.” 

The participants’ responses to the questions in these questionnaires were used after the 

experiment to ascertain feelings of the participants about working with the designed game. 

Statistical analysis (repeated measures ANOVA) of the responses in each condition was used to 

reflect the possible preference of participants with respect to one condition versus another. 

4.4.2 Participant interview 

To gain a deeper and new insights about how participants perceived engaging in VR-led exercise, we 

asked some open-ended questions after each session and also each activity. The participants’ responses 

then were recorded.  

After each session in each day, we asked the following question from each user in the interview and 

discussed about their feedback if there was any point. 

• Is there anything else about this session that you want to share with us today? 

The participants were also asked some questions in the interview at the end of each week to obtain 

their feedback regarding the activity of that week and in comparison, to the previous week(s). The 

following is the list of questions we asked from the participants in the after-activity interview: 

• What is the exercise that you found easiest? What made it easy for you? 

• Is there any exercise you found hard? 

• Is there any exercise you found more interesting? 

• Is there any exercise you found less interesting? 
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• What about the equipment? Did you find comfortable using the head mounted display and 

the hand controllers? 

• Anything that made them comfortable? 

• Anything else that you want to share with use about exercise this week? 

I left participant free to talk if he/she wants about any aspects of experiment or feeling about the 

experiment in the interviews. 

The feedback from the participants in the interviews is reported to illustrate comments made during 

the trials and to gain a better understanding of responses to the questionnaires. 

4.4.3 Clinical physical assessment  

To look at the impact of our exercise program on participants’ physical range of motion, we used two 

standard clinical measurements of ROM after each activity (at the end of each week): the SFFA test 

(Appendix D), and shoulder circumduction protocol (Appendix E), both of which are standard physical 

measurements in assessing older adults’ ROM and are used in Schlegel Villages. 

SFFA is a measurement for head, arm, and grip strength (see Appendix D). The parameters in this 

test and the measurement methods are listed below: 

• Height: Participant stands with heels together, bum and shoulders against the wall and height 

is measured by a tape. 

• Head-to-wall: The distance of participant’s head to wall in the normal standing position. 

Resident presses shoulders and sacrum into wall. Be sure there is no chin retraction and bottom 

of ear and eye are on same plane. Measure distance from occiput to wall. 

• Reach downward: This task looks at the participants’ ability to reach down and pick up an 

object from the floor. User starts from standing position and being asked to reach down to pick 

up a dowel as close to the floor as possible and the distance of fingers to the floor is measured 

in the pickup position. 

• Reach upward right/left arm: This task looks at the ability of participants to reach for objects 

on a shelf.  While participant stands with the side of his/her foot against the wall, we ask 
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him/her to reach as high as possible while maintaining a straight arm. The height of the fingers 

is measured in this state for both right and left arm. 

• Grip strength: This task measures participant’s hand grip strength. This task is performed using 

a dynamometer. Two measurements are taken for each hand. 

To assess the shoulder flexibility a shoulder circumduction test was conducted. In this task, we 

measured the length of acromion, shoulder circumduction, and the difference by using a flexible 

measuring tape (Figure 9). The details of the test are explained in Appendix E.  

The clinical measurements introduced in this section are used to measure physical abilities in the 

fitness of the participants. The statistical analysis of numbers obtained for each of the measurements 

during the experiment reflect the physical function of participants between conditions. As the 

intervention was so short, there is unlikely to be any improvement. 

  

 

Figure 9. A participant performing shoulder circumduction 

test. 
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4.4.4 Kinesiologist questionnaire 

Following the completion of the experiment we consulted kinesiologists from Schlegel Villages from 

across Ontario to find their opinions about our developed exergames and identify directions for future 

work. In this meeting we asked the attendees to use the farm scenario and fill out a questionnaire 0). 11 

kinesiologists volunteered to try the farm game and shared their thoughts through the questionnaire. 

The feedback collected from kinesiologists is discussed in details in the next chapter. I will report the 

kinesiologists’ comments on my design to see whether the design is compatible with their expectation 

in general or not and if the proper exercises have been selected for this study or not. 

4.4.5 Motion analysis using sensor data  

One of the advantage of VR exergames using the Oculus headset and touch controllers over the human 

guided exercise is the possibility of collecting objective quantitative motion data from the sensors while 

the participants is performing an action in the VEs. Metrics such as speed and range of motion can be 

calculated using the recorded data, which could be used for new quantitative analyses of a person’s 

exercise performance and fitness. 

In this study, we tracked the position of both hands and the head from Oculus Rift HMD and touch 

controllers in the VR activities. We also used the sensors to record track of participants’ motion in the 

human-guided week by having them hold the hand controllers to enable a comparison of the 

performance from all three weeks. As the track is recorded in each task of each session, I performed an 

analysis of the participants’ workout across different days, different tasks, and different environments; 

these results are presented in the next chapter. 

The motion parameters were used to statistically compare the exercise level of different conditions 

(human-guided, gym, and farm). Any significant differences between the values obtained from the 

measurements of these parameters can show the possibility of involving these people in the exercise in 

the preferred condition. Statistical tests and the results are reported in the next chapter. 

4.4.6 Evaluating the success of design 

To evaluate the success of designed HMD-VR exercise program, the main research questions in the 

study should be considered. The main research questions in this study are if PWD can exercise with 

HMD-VR and will be any subjective or objective measurement show the preference of exercise using 



 

 36 

HMD-VR to the human-guided exercise? The evaluation methods explained in previous sections could 

help to assess the success of the designed exergame as an answer to these research questions.  

One aspect can show the success of this study would be completion of exercise by HMD-VR by 

participants and interacting with environment. The analysis of reported level of subjective parameters 

such as enjoyment, easiness, interest also show if VR can work as good as human-guided or even better 

than that in case of users feeling about exercise in these environments. The quantitative analysis of 

motion parameter or clinical measurement can also reflect if the engagement in exercise in VR were 

comparable or even better than human guided or not. If the VR is comparable or better in this analysis, 

this would be another success for the project. 
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Chapter 5 

Empirical study evaluating the HMD-VR exergame for people living 

with dementia: Results 

As discussed in the previous chapter, different tools were used to assess the design and the 

experiment in motivating the PWD persons to do more exercise, including questionnaires, clinical 

measurements, exercise therapists feedback, track data analysis, and participants’ general feedback. 

This chapter reports the results obtained from these evaluations. A structured qualitative analysis of the 

results is beyond the scope of this thesis; therefore, subjective evaluations were done for qualitative 

data. Sample feedback from participants is also reported in this chapter.  

5.1 Participant questionnaire 

One of the factors that we evaluated in the daily questionnaire was enjoyment. Each participant scored 

their level of enjoyment of the session that day using the 5-point Likert scale question “How much did 

you enjoy the session?”. The average scores for the three environments are plotted in Figure 10. 

 

Figure 10. Participants’ self-rated level of enjoyment from daily activities in three environments measured by 5-

point Likert scales with SD error bars, where 5 is “loved it” and 1 is “hate it”. Error bars represent the standard 

deviation of scores in each environment (reproduced from Eisapour et al., 2018). 
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As it can be seen in Figure 10, overall enjoyment of participants from the two virtual environments 

(3.80) is comparable to human-guided week (3.67); the difference between the conditions is not 

statistically significant (repeated measures ANOVA, F(2,10) = 0.727, p = 0.507, ηp
2 = 0.127).  

To evaluate the participants’ satisfaction with the amount of physical activity, we used a yes/no 

question that asked, “Do you feel you got a good workout from this session?” The results of average 

feeling for each week and for each of the six participants reported in Table 1. Four of the participants 

felt that they had enough exercise in three environments; however, participants 2 and 6 had different 

opinions and preferences. 

 

 

 

 

 

 

 

 

 

In the weekly after-scenario questionnaire, we used 5-point Likert scale questions to evaluate the 

participants’ feeling of comfort, easiness, engagement, and interest in each environment. The average 

scores for each of these four factors are reported in Figure 11 for the three environments. 

As it can be seen in Figure 11, the overall levels of ease of the tasks in the farm and gym environments 

were similar (both 4.17) and higher than the human-guided condition (3.6); however, the difference 

was not statistically significant (repeated measures ANOVA, F(2,8) = 2.364, p = 0.156, ηp
2 = 0.371).  

 

Table 1. Participants’ MoCA test score and perceptions regarding 

enough of a workout in each session. Session scores obtained from daily 

questionnaire where 1=yes and 0=no. 

Participant 

ID 

 

MoCA 

score 

Human-

guided 
Farm Gym 

1 15 1 1 1 

2 15 1 0.4 0.8 

3 19 1 1 1 

4 18 1 1 1 

5 18 1 1 1 

6 20 0.4 0.9 1 

Average 17.5 0.9 0.88 0.97 
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Figure 11. Participants’ responses in the after-scenario questionnaire to evaluate four 

different quality measures. The comfort, easiness and interest are measured in 5-point 

scale which 5 means “strongly agree” and 1 means “strongly disagree”. The engagement 

level was measured with a 4-point scale with 4 for “extremely engaged” and 1 is “not 

engaged at all”(reproduced from Eisapour, Cao, Domenicucci, & Boger, 2018). 

In the after-scenario questionnaire administered each week, we asked participants about their 

motivation to continue working with the scenario they were just doing in that week. All the participants 

reported being motivated to continue for all scenarios with the exception of one participant who would 

not want to continue with the farm scenario. 

5.2 Participant interview 

From the short interview was conducted after each session different comments were obtained from 

different participants.  

One feedback from participants was about their enjoyment of using with virtual environments.  For 

example, one of the participants expressed her enjoyment by: 

P4: “I love looking at the blue sky, the sky and switching the apples and rowing a boat which I 

really wasn't, yeah, look like that I was moving” 

The rowing activity in the virtual lake was relaxing for them while they knew they are doing exercise. 

P1: “I love rowing because it was relaxing, you know, when you are relaxing you are exercising” 

P1: “Good for everyone. rowing relaxing” 

They also expressed their general feeling of enjoying the VR designs. 
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P1: “I enjoy[it] very much.” 

P6: “Too easy. Engaging environment” 

Other feedback was about their perceived progress. One of the participants enjoyed her exercising 

and she felt she could do longer sessions. 

P6: “It was a longer class today, rowing, ... I could [keep] going” 

Or another participant felt she could do actions faster. 

P4: “I think I could grab them fast, faster than what I did this before, I could do it because I didn't 

realize that I could pick them even though there is lighter ... it's slider, that's ok” 

One of the participant who had phobia of being in the lake was engaging of the rowing and tried the 

design more and more every day. 

P4: “I haven't been on water for a long time, so I don't know, but it's not bad, we can keep trying” 

They also were positive about the goal of this exercise program. When one of the member of research 

team asked a participant is there any exercise that she thinks was not interesting she answered. 

P4: “No, I think they are all necessary” 

Another participant was positive about the mental impact of the designed activities. 

P4: “That was nice. that's test for mental. 

The first one [human-guided week] was for physical, this one [farm week] was for mental.” 

Participants also reported some points which can be used to improve or extend the study and design. 

For example, one of the participants to have more variety of actions instead of repeating some actions. 

P2: “Too much repetition. more motion needed. everything was the same.” 

Another participant would prefer more of a challenge: 

P6: “wish it would be more challenging.” 

or more repetition of activities to get more exercise: 

P4: “There wasn't that many apples” 
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However, others felt the task complexity if good enough, so one way to improve is to consider 

different level of cognitive involvement in the task to be chosen for participants based on their cognitive 

ability and/or their preference. The goal-based activity was important for a participant. 

P6: “it would be nice to know that there is a goal to reach" 

P6: "it's difficult to row to get nothing” 

The speed and type of controls and action was also important for some of them. 

P4: “I missed a few cues [instructions] sometimes.” 

P4: “The woman [the avatar in gym] ..., sometimes she goes too slow, sometimes she stops, then 

starts, I didn't want to stop, am I supposed to be following her direction?”  

5.3 Clinical physical assessment 

Using the clinical measurements explained in 4.4.3 and by applying both SFFA and shoulder 

circumduction, we conducted these measurements in four different steps including pre-experiment, 

after week 1, after week 2, and after week 3. Table 2 summarizes the measurements for all six 

participants. To evaluate the impact of activity in each week on physical metrics reported in Table 2, I 

compared reach overhead, shoulder circumduction, and grip strength of participant in each step in 

Figure 12, Figure 13, and Figure 14 respectively. In these figures, week 1 represents human-guided 

exercise while week 2 represents gym exercise for three participants and farm exercise for the other 

three participants. In week 3, participants switched environments, meaning that those who worked with 

the gym environment in week 2 worked with the games in farm for week 3 and vice versa.  

  

(a) (b) 

Figure 12. Reaching upward for both right(a) and left(b) hand for all six participants using a single measurement 

at the end of each week 
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Table 2: Clinical measurements of each participant. (Pre: Pre-experiment, H: Human, G: Gym, F: Farm). 
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F 162.5 0.0 0.0 197.0 202.0 28.0 31.0 31.0 33.0 34.0 136.0 102.0 

G 160.0 0.0 0.0 199.0 200.0 29.0 27.0 29.0 29.0 34.0 148.0 114.0 

2 

Pre 143.0 21.5 8.0 138.0 144.0 10.0 10.0 9.0 11.0 32.0 88.0 56.0 

H 146.0 19.5 6.0 137.0 144.0 10.0 12.0 5.0 12.0 32.0 58.0 26.0 

G 145.5 20.0 17.0 140.0 137.5 6.0 4.0 2.0 4.0 32.0 80.0 48.0 

F 145.0 22.0 5.0 140.0 139.0 8.0 6.0 3.0 5.0 32.0 103.5 71.5 

3 

Pre 167.0 1.0 1.0 205.0 191.5 70.0 72.0 60.0 58.0 34.0 163.0 129.0 

H 168.5 2.0 4.0 205.0 194.0 66.0 62.0 59.0 55.0 34.0 148.0 114.0 

F 166.5 0.0 1.0 208.0 198.0 66.0 62.0 53.0 58.0 34.0 145.0 111.0 

G 168.2 0.0 4.0 208.5 196.5 71.0 62.0 58.0 51.0 34.0 142.5 108.5 

4 

Pre 154.0 0.0 0.0 183.0 191.0 22.5 19.0 16.0 17.0 33.0 144.0 111.0 

H 155.0 0.0 0.0 189.0 189.0 18.0 19.0 10.0 9.0 33.0 125.0 92.0 

G 153.0 0.0 0.0 191.5 193.5 23.0 22.0 19.0 15.0 33.0 136.0 103.0 

F 153.0 0.0 0.0 183.5 187.0 26.0 21.0 15.0 16.0 33.0 134.0 101.0 

5 

Pre 173.0 0.0 0.0 209.0 199.0 40.0 40.0 42.0 43.0 35.0 134.0 99.0 

H 171.5 0.0 0.0 192.0 174.0 30.0 29.0 41.0 44.0 35.0 107.5 72.5 

F 173.0 0.0 3.0 203.0 187.0 41.0 39.0 36.0 39.0 35.0 103.5 68.5 

G 171.5 0.0 0.0 210.0 195.0 40.0 35.0 45.0 31.0 35.0 125.5 90.5 

6 

Pre 152.5 0.0 0.0 187.0 191.0 35.0 30.0 25.0 23.0 32.0 124.0 92.0 

H 153.0 0.0 0.0 189.0 189.0 32.0 35.0 31.0 26.0 32.0 128.0 96.0 

G 152.5 0.0 0.0 189.0 186.5 30.0 32.0 24.0 22.0 32.0 124.0 92.0 

F 152.0 0.0 0.0 193.0 190.5 30.0 30.0 23.0 21.0 32.0 129.5 97.5 
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Figure 13. Shoulder circumduction for all six participants for each week. 

 

  
(a) (b) 

Figure 14. Grip strength for all six participants for each week for right hand (a) and left hand (b). 

From Figure 12, it can be observed that reach upward appear to remain the same across weeks for 

each participant and has not been affected to much with the conditions. Shoulder circumduction as 

reported in Figure 13 appears to have no better for most of the participants at the end of experiment 

compared to the first week. From Figure 14, it can be observed that there is no visible trend in the 

measurements of grip strength for different participants.  
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5.4 Exercise therapist observation 

The professional exercise therapist on the research team, who also helped in running the exercise 

sessions, recorded her observations for each session. This feedback is summarized in this section and 

includes observations on participants, comments on challenging parts of the design or the procedure, 

and some suggestions for improvements. 

She reported evidence of high levels of engagement and presence for participants in the virtual 

environment. For example, she made the following comments: 

“[one of the participants] talks to the system and answers it” 

“[Another participants after the first day] immediately grasped the oars and started rowing without 

waiting for the instructions” 

One participant engaged and  

 

 “Verbalized what butterfly was doing and followed butterfly” 

Another participant 

“Performs the tasks on point” 

 

Based on her observations, participants showed good progress in doing the task of each activity after 

the first day. 

“[one of them] rowed longer today and seemed less frustrated” 

“for a participant who had problem in the first day) … got first basket immediately; keeps putting 

hands too narrow but today did aim for top” 

She also believes that based on their reactions in working in VR environments and performing 

exercise task, the design were successful in providing enjoyable activity with the actual goal of getting 

them exercise more: 

“Interesting to see that most residents do not recognize the parity of the movements between the 

three environments; furthermore, they don't consider this exercise” 



 

 45 

There were only a few reports of minor dizziness or motion sickness related problems during all 

sessions of the three-weeks of experiment, which were less than what was reported in other researches. 

“Feeling a bit dizzy after removing the HMD” 

“Slightly nauseated but declined need to rest a few minutes” 

Some other points were also mentioned in the exercise therapist feedback that we listed below: 

• Some participants might not hear properly, so it is better to check sound level with them 

before playing the game. One of the participants had troubles hearing and asked to go louder;  

• Although we locked the wheel chair and marked the location to keep the setup fixed, the 

position of chair was changed for one participant in a session while she was seating. This 

position change made a little shift in the location of objects. We can find a more robust ways 

to fix chair. 

• Despite the pre-training session to make participants familiar with the touch controllers, some 

participants were trying to catch fruits by hand at the first tries of the first day, however they 

quickly used the device. In the training sessions, we can add more game to make sure they 

will easily work with the device. 

• We had an unpredicted distraction of PA system in long-term care building which distracted a 

participant in one of the sessions. Any distraction from the environment should be avoided. 

5.5 Kinesiologist questionnaire 

As explained in section 4.4.4, an evaluation was conducted with kinesiologists in a dedicated session 

where they tried out the farm scenario and completed a questionnaire (0). In the kinesiologists’ feedback 

form, the first two questions quantitatively measured the kinesiologists’ opinion about the 

appropriateness of the type and level of exercises considered in this study. Figure 15 reports the results 

from their answers by showing the number of participants selected each option in the multiple-choice 

questions. 
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(a) (b) 

Figure 15. Kinesiologists’ feedback on the appropriateness of the level (a) and type (b) of exercise and 

movements selected in this study (n= 11).  

From the feedback on Q3 regarding the suggested motion to add to the design, one of suggestion was 

mentioned multiple times was lower body motion that could be performed in the seated position. 

Different stretching activities was also suggested by some kinesiologists as answer to the Q3. They also 

proposed implementing other daily life activities. Some other suggestions were pronation, supination, 

hair brushing, boxing, and marching. These activities could be considered for future extension of this 

study is discussed in Chapter 7. 

As the potential of tracking the position of hand and head during the exercise with HMD-VR is an 

advantage of using VR exergame, an important question is what would be the possible usage of such 

data. We asked kinesiologists about the possible use of such data for informing the exercises for PWD 

and/or to monitor their ability to perform exercise. The most mentioned metric was range of motion 

(ROM), such as how far people are able to move their hand or head. Some other interesting parameters 

that have been mentioned to be valuable to measure from the track of hand and head were speed, 

smoothness of motions, delay in start, number of repetition, and distance traversed by participants. 

Seated balance and progress of actions such as reach were the other parameters mentioned. 

In the answers to Question 5 of feedback form about mentioning the aspects kinesiologists feel using 

VR for exercise does well; many interesting aspects were mentioned. The presence in an outdoor 

environment and engagement in virtual environment were the most important aspect mentioned by 

kinesiologists in this survey. One of the kinesiologists said: 
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“I really like that it is outdoor environment. I enjoyed looking around while rowing, it makes 

you forget you are in a room” 

Another one said: 

“[VR] Allows residents to really feel like they are out of the village. These is limitless 

potential in VR.” 

Another quote was: 

“The experience was quite realistic” 

Another aspect of using VR mentioned in response to Q5 in this questionnaire was the distraction 

from the main goal of the activity (exercise) while you are in a virtual environment. This also supports 

the presence and feeling of doing an interesting activity while the participant involved with having 

exercise. Some quotes from kinesiologist are  

“You are having fun, don’t realize you are moving”,  

or 

“… environment doesn’t make it feel like exercise …”. 

Using the goal-based activities was another aspect mentioned. Although it is not specific for VR 

exergames but VR provides safe environment for many activities possible in the real life for these 

people. A kinesiologist says: 

“Turning exercise into more meaningful activities making movements more functional for a 

resident” 

One of the important aspect was significant for kinesiologists was the possibility of emulating 

different environments and the ability of VR to provide interaction in such environments in a safe and 

controlled environment. 

Based on the experience of kinesiologists in working with interactive VR environments we designed 

for this study, they suggested some improvement as answer to the question 6 in their feedback form. 

Following is a short list of the main improvements mentioned by the 11 kinesiologists: 

• Adding more activities from real-life, 

• Modifying calibration speed, 
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• Increasing the level of instruction sound, 

• Adding more object to follow in the neck movement practice, and 

• Adding lower body motions in seated position, and 

• Adding bicycle tour. 

In overall, all kinesiologists were positive about the designed exergame program with HMD-VR and 

they enjoyed our design and activity selection. For example, one of the kinesiologist really enjoyed the 

rowing environment: 

“Amazing start. The boat scene was calming and enjoyable.” 

5.6 Motion analysis using sensor data 

The position of hand and head from touch controllers and HMD sensors was captured at each moment 

(with the rate of 90 samples per second) during each activity. These data can be used to investigate the 

parameters of motion in each activity such as range of motion, speed, and distance traversed. This 

section reports the analysis of the captured data. First, we introduce the coordinated system and the 

targeted direction in each activity and then we report numerical results and plots extracted from data. 

5.6.1 Directions and coordinate system 

Depending on the activity, the targeted motion is usually in one or two directions. For simplicity of 

pointing to different directions in result analysis, we represent the three-dimensional space of 

experiment room with three axes of x, y, and z which represents left-right, up-down, forward-backward 

directions respectively. Figure 16 shows a participant working with VR system in the experiment room 

and the three axes. The user is considered as the center of the world in this coordinate space and the 

positive directions are right, up, and forward for relative to the user for x, y, and z direction. Figure 16 

shows a participant working with the design and the directions of all three axes related to the participant. 
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a) Participant’s view from back b) Participant’s view from front 

Figure 16. Three-dimensional coordinate system used in the analysis of motions captured by sensor have been 

shown in both view of back and front for a participant. 

 

5.6.2 Major directions of motion 

Based on the coordinates system defined in Figure 16, I summarized the major directions of motion of 

each activity as indicated in Table 3 

Table 3. Major directions of motion for each activity. 

 

Targeted direction 

Hand and shoulder movement Neck rotation 

Activity 
Left-right 

(x direction) 

Up-down 

(y direction) 

Forward-

backward 

(z-direction) 

Yaw   Pitch 

Neck rotation    x x 

Lift overhead  x x   

Reach forward 

straight 
x  x   

Reach forward 

cross 
x  x   

Rowing  x x   

 

Z 

(forwar

d) 

Y 

(up) 

X 

(right) Y 

(up) 

X 

(right) 
Z 

(forwar

d) 
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5.6.3 Spatial track of sensor data 

The record of track of motion is performed in each iteration of refreshing the displays at 90Hz. 

Recording the position of hand/head in each moment of an activity, I track hand/head throughout the 

entire activity.  Figure 17 shows an example track of the left hand for a user performing the reach 

forward-across activity. 

  

(a) (b) 

Figure 17. Example position data for a participant from the of left hand for the reach forward-across activity 

 

 

From the captured data, we can plot the 2D track of hand spatial domain as shown in Figure 18. 

 

 

Figure 18. Two-dimensional position of the left hand for a sample reach cross activity of reach forward-across. 
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From the recorded position of head and hand during each activity, we can extract different metrics to 

evaluate participants’ movement. These metrics and their measurement are discussed in the following 

sections.  

5.6.4 Metrics measurement: Range of Motion (ROM) 

One parameter that can be extracted from the track of hand and head is range of motion (ROM). The 

ROM in general is defined as the distance that an object or part can move when it is attached to another 

part. This distance can be measure in linear or angular space. In this study, ROM is defined as the 

distance of movement of hand or rotation of neck in a direction. ROM of a user in an activity in a 

specific direction is defined as the distance between extreme points (max and min of coordinate) in that 

direction that the participant could reach during the activity.  Figure 19 shows schematically how we 

measured range of motion of a participant in a sample activity based on the 2D track reported in Figure 

18. 

 

Figure 19. Range of motion in x and z directions based on the track of motions recorded from reach straight 

cross activity. 

Z 

ROM 

X 

ROM 
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Figure 20 to Figure 23 show the range of motion of each participant in each day of three weeks of 

experiment (Human guided, Gym, and Farm) for different activities. The details of numerical values 

are reported for the reference in Appendix G. 

 

  

Figure 20. Range of motion of participants in lift overhead activity. 

 

  

Figure 21. Range of motion of participants in reach forward straight activity. 
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Figure 22. Range of motion of participants in reach forward cross activity. 

 

  

Figure 23. Range of motion of participants in rowing activity. 

Simply looking at the plotted data in the above figures, there is no clearly visible trend in the ROM 

of the participants in different days of a week. The range of motion of participants can be compared 

between three weeks in order to investigate the impact of environment. The average of range of motion 

for participants in three different environments are compared in Figure 24 to Figure 29 for different 

scenarios for the major direction of movement.  
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Figure 24. Average ROM of participant in the three environments for the lifting overhead activity.     

Based on the average range of motion of participants in reach overhead activity reported in Figure 

24, the average of ROM for all users in three conditions of human, gym, and farm is 1.14, 0.59, and 

0.61 meter respectively for Y direction (repeated measures ANOVA, F(2,10)=29.573, p=0.00) and 

0.58, 0.47, 0.55 respectively in Z direction (repeated measures ANOVA, F(2,10)=0.722, p=0.509). 

In this activity, the ROM in Y direction shows significant difference where post hoc analysis revealed 

that the ROM in Y for human-guided were significantly higher than gym (M=0.546, p=0.001) and gym 

(M=0.532, p=0.004) and ROM in Y direction for farm is not significantly higher than gym (M=0.15, 

p=1).  

  

Figure 25. Average ROM of participant in three environments for reach forward straight activity.  

Based on the average range of motion of participants in reach straight forward activity reported in 

Figure 24, the average of ROM for all users in three conditions of human, gym, and farm is 0.51, 0.85, 
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and 0.89 meter respectively for X direction (repeated measures ANOVA, F(2,10)=7.316, p=0.011) and 

0.51, 0.55, 0.52 respectively in Z direction (repeated measures ANOVA, F(2,10)=0.168, p=0.848). 

In this activity, the ROM in X direction shows significant difference where post hoc analysis revealed 

that the ROM in X for farm were significantly higher than human-guided (M=0.376, p=0.046) where 

the difference between farm and gym (M = 0.036, p=1) and human-guided and gym (M=0.340, p=0.16) 

were not significant.  

  

Figure 26. Average ROM of participant in three environments for reach forward cross activity.  

Based on the average range of motion of participants in reach straight cross activity reported in Figure 

26, the average of ROM for all users in three conditions of human, gym, and farm is 0.78, 0.90, and 

0.94 meter respectively for X direction (repeated measures ANOVA, F(2,10)=2.683, p=0.117) and 

0.46, 0.54, 0.51 respectively in Z direction (repeated measures ANOVA, F(2,10)=1.153, p=0.354). In 

this activity, the ROM in X direction shows no significant difference between environments.  
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Figure 27. Average ROM of participant in three environments for rowing activity.  

 

Based on the average range of motion of participants in reach straight forward activity reported in 

Figure 27, The average of ROM for all users in three conditions of human, gym, and farm is 0.33, 0.42, 

and 0.41 meter respectively for Y direction (repeated measures ANOVA, F(2,10)=2.575, p=0.125) and 

0.53, 0.61, 0.48 respectively in Z direction (repeated measures ANOVA, F(2,10)=6.794, p=0.011) 

In this activity, the ROM in Z direction shows significant difference where post hoc analysis revealed 

that the ROM in Z for gym were not significantly higher than human-guided (M=0.081, p=0.132) or 

farm (M=0.136, p=0.110) and there was not significant difference between farm and human guided in 

ROM for this direction (M=0.055, p=0.381). 

5.6.5 Metrics measurement: Distance traversed 

Another parameter that can be measured from the track of hand is the distance travelled by the hands 

movement during each task. The distance traversed by each participant for an activity is calculated as 

the total distance traversed by hand during the entire time of that activity. The distance is measured for 

the five activities that have hand involved. The distance during an activity could represent the level of 

exercise performed by a participant. Figure 28 shows the average distance traversed by each participant 

in five days of each week (environment). 
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Lift overhead Reach straight forward 

  

Reach straight cross Rowing 

Figure 28. Average hand distance traversed by each participant in each activity for three weeks of experiment.  

The average distance for all users in three conditions of human, gym, and farm is 14.5, 10.3 and 11.5 

meters respectively for lift overhead (repeated measures ANOVA, F(2,10)=2.460, p=0.135), 16.4, 17.9, 

and 18.7 meters respectively in reach straight forward (repeated measures ANOVA, F(2,10)=0.807, 

p=0.473),  16.3, 18.3, and 21.6 meters respectively for reach straight cross (repeat measure ANOVA, 

F(2,10)= 2.090, p=0.174), 62.2, 63.3, and 54.6 meters respectively in rowing (repeated measure 

ANOVA, F(2,10)= 1.137, p=0.359). There is no significant difference between the distance traversed 

in different environments by participants. 
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5.6.6 Metrics measurement: Speed 

The speed of motion in an activity can be compared in the three environments to shows how fast a 

participant moved in different environment. Any significant difference in the speed of motion in an 

environment versus another can be a sign of more engagement in an activity. The lower the motion 

speed for a participant could be either because of less interest in activity of higher cognitive level 

requirement which causes time for decision or interaction with the environment. The speed of 

movements is compared in Figure 29 for all participant and different environments. 

  
Life overhead Reach forward straight 

  
Reach forward cross Rowing 

Figure 29. Average speed of motions for each participant in each activity for three weeks of experiment.  

The average speed of all users in three conditions of human, gym, and farm is 0.22, 0.23, 0.26 

meter/second respectively for lift overhead (repeated measures ANOVA, F(2,10)=0.332, p=0.725) 

which shows no significant difference.  
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The average speed of all users in three conditions of human, gym, and farm is 0.14, 0.27, and 0.23 

meter/second respectively in reach forward straight (repeated measures ANOVA, F(2,10)=6.650, 

p=0.015) which shows significant difference. Post hoc analysis revealed that for reach forward straight 

the speed in human-guided were significantly lower than gym (M=-1.3, p=0.068) and farm (M=-0.92, 

p=0.057) and there was insignificant difference between farm and gym for the speed (M=0.038, p=1). 

For reach forward cross activity the average speed of all users in three conditions of human, gym, 

and farm is 0.16, 0.27, and 0.23 meter/second respectively (repeat measure ANOVA, F(2,10)= 6.008, 

p=0.19), which shows insignificant difference.  

The speed average for rowing activity is 0.18, 0.27, and 0.25 meter/second respectively (repeated 

measure ANOVA, F(2,10)= 7.153, p=0.019) which shows significant difference between 

environments. Post hoc analysis revealed that for rowing, the speed in gym were significantly higher 

than human-guided (M=-1.3, p=0.068) and the speed in farm were also significantly higher than human-

guided (M=-0.92, p=0.057). Based on post hoc analysis, there is no significant difference between 

speed average in farm and gym ().  and there was insignificant difference between farm and gym for 

the speed (M=0.038, p=1). 

5.7 Summary 

In summary, the results obtained from different evaluation metrics show no significant preference of 

one environment in overall. The results from participants questionnaire showed a higher score of 

enjoyment for VR games however the difference is not significant. Evaluation of other parameters from 

participant questionnaire such as interest, engagement, and easiness also show comparable performance 

in VR and human guided which shows the success of VR. Motion and fitness parameters obtained from 

device sensors and clinical measurement show that participants motions and fitness in VR has been 

quantitatively comparable to human-guided. In just a few cases, there are significant observations of 

difference between environments for motion parameters, however, the higher value has been for the 

different environments in these cases. In addition to the motion analysis, feedback of kinesiologists and 

exercise therapist about the exercise program contains valuable points which should be considered for 

further discussion and improvement. 
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Chapter 6 

Empirical study evaluating the HMD-VR exergame for people living 

with dementia: Discussion 

To investigate the success of the exercise program design, the goal of the project and the research 

questions should be considered. The main goal of this study was to engage PWD in exercise using 

HMD-VR games. The main research questions in this study were, can PWD work with HMD-VR 

and is there any subjective or objective differences in exercise using HMD-VR games compared to 

human-guided exercise. Some evaluation methods were developed (as explained in section 4.5) to 

assess the success of the design based on various aspects. As stated in the opening paragraph of 

Chapter 5, a subjective evaluation of qualitative data was used to gain a deeper understanding of 

participants’ perceptions from their feedback. This chapter discusses the outcomes of this study by 

focusing on the research questions. The evaluation methods and their output reported in Chapter 5 

are used to address the main outcomes and evidence. As no studies were found in the literature 

review with the goal of exercise motivation for PWD using HMD-VR, I evaluated the outcomes of 

this study based on targeted objective questions and successful metrics as discussed in chapter 4. 

One of the concerns that was pointed out by kinesiologists in the design process (as explained in 

Chapter 3), and was also one of the main research questions in this study, was the feasibility of 

using the new technology of HMD-VR for PWD to use in exercise. In the experiments within this 

study, all the participants completed the exercises using HMD-VR on all days of the study. In 

addition, based on the reported results of their feeling about their workout (Table 1) they felt that 

they had an adequate workout by exercising with VR. There were only few problems observed in 

using the touch controllers and HMD for participants mostly in their first trials. They could interact 

with objects as designed for each game. One of the parameters that can reflect the feelings of 

participants using HMD-VR is the level of ease reported in the daily questionnaires as reported in 

section 5.1. Based on the results reported for ease of exercise in the farm scenario (Figure 11), the 

participants found exercising with the device easier than exercising with the guidance of a human. 

The ease of use has also been mentioned in some of the quotes from participants’ interviews 

reported in Section 5.2 All these evidences show that there is no problem using this new technology 

for PWD for exercise. This reported feeling of ease of use was surprising.  
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The design of the device could impact the ease of using a game controller. The Oculus rift CV1 

touch controller used in this exercise program has an ergonomic design, which could also be a 

factor that helped to make interactions easy. The usage of other game controllers available on the 

market could be the subject of future research. The role of design considerations such as using no 

button of game controllers to make interactions easy should also be considered in future studies for 

PWD. 

Subjective analysis of the participants’ feelings was another method applied to assess the success 

of the study. Feelings of users including interest, enjoyment, ease of use, comfort, and having an 

adequate workout were recorded using questionnaires as reported in Chapter 5. Enjoyment level as 

reported in Figure 10 shows a higher average level for VR environments although the difference is 

not significant. The ease of use, comfort, engagement and comfort level reported in Figure 11 

shows the comparable values between human-guided and two VR environments. Based on a 

statistical analysis of the levels of these four parameters, there is no significant difference between 

the three environments (human-guided, gym, and farm); but considering the complexity of 

activities and interactions in VR compared to human-guided exercise, this similarity in the level of 

these parameters shows that the participatory design process resulted in the selection of the proper 

activities and interfaces. The success of this design approach can lead to using a similar approach 

for future research on using VR for PWD.  

One of the methods that can make statistical analysis of subjective data more reliable is 

increasing the number of participants. Recruiting more PWD for an experiment can result in a more 

reliable statistical analysis of users’ feelings; however, it is difficult to manage sessions for more 

PWD in one place. The diversity of interests and abilities of PWD highlight the need to involve 

more participants to reach a better analysis of results.  

As the aim of the study was the design of an exercise program, the clinical measurements of 

fitness parameters and recording the motion parameters from the device can also show both 

engagement of the participants in the exercise program and any possible physical health 

improvement. As discussed in section 4.5, better or even comparable fitness and motion parameter 

values can indicate the success of the design in engaging exercise.  

Of the fitness parameters, such as head-to-wall, reach upward/downward, and grip strength, 

reported in Table 2 and Figure 12-14, there was no significant improvement reported in the 
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measured values in different steps of the experiment and it was expected as the intervention was so 

short. However, keeping the users at a similar level of fitness during the experiment is a factor that 

can be considered as a success.  

From the analysis of motion parameters recorded by the device’s sensors in the experiment, as 

reported in section 5.6, it can be seen that, in general, the VR games worked as well as human-

guided methods in engaging PWD to exercise. There was no significant preference that can be 

observed in all the activities; however, in some activities, one of the environments showed higher 

values in one of the motion parameters. Here, in speed of motion, VR games showed significantly 

better results in two activities (reach straight forward and rowing). This can show that the users can 

easily follow the instructions and were interested in doing activities faster in VR games.  

Of the motion parameters evaluated in this experiment, the analysis of distance traversed by 

participants in different activities shows no significant difference between the three environments. 

This is a very interesting result as the users had comparable motions in VR while playing the game 

compared to a real exercise session in which the user is repeating the actions of a person to do the 

exercise. This is even more interesting if we consider the diverse physical abilities and preferences 

of PWD because the subject of activities in VR games could be the preference of some participants 

but not others. This can be one important piece of evidence for the success of the designed game. 

Quantitative analysis of ROM as one of the motion parameters can show whether the VR 

exergame has been successful or not. Based on the results reported on the range of motion in major 

movement direction in the previous chapter, ROM in the Y direction for the reach overhead activity 

had a significantly higher value for human guided exercise, and ROM in the x direction of the reach 

forward straight activity shows a significantly higher level in the VR games. In the reach forward 

cross activity there is no significant difference in the reported ROM between environments while 

in rowing, the gym environment had the highest value of ROM in the Z direction. In general, no 

environment had significantly higher values in all the measurements of ROM for all activities; 

therefore, there is no straightforward conclusion regarding preference. However, observing the 

different preferences for environments in different activities can be due to differences in distances 

in VR and the range of motions guided by a human mentor guided the users. Despite these 

differences in preference of environments, making all interactions in VR by participants shows that 
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the interactions were designed carefully to have all the objects within a reachable distance for the 

user. This helped participants to continue the game and complete all the activities.  

The feedback of kinesiologists is one of the parameters that can indicate the success of the design 

in terms of the proper selection of motions and activities for PWD. Based on the report of 

kinesiologists’ feedback (section 5.5) on the level and type of motions selected in this study, there 

was general agreement as to the suitability of the level of exercise, and most of the kinesiologists 

(From Figure 15) confirmed that proper movements had been selected for the experiment. 

One of the limitations of this study was in the selected seated position for activities. As discussed 

in Chapter 3, the seated position was chosen for safety. It limits the design, as only upper body 

motions are possible to be performed when the participant is seated in a chair or wheelchair.  As it 

is reviewed in Chapter 2, many studies selected motions including both upper and lower body, 

especially walking, and many benefits are reported from these studies, especially in improving 

balance problems for PWD. Exercise in the standing position and with standing position would be 

more challenging when participants use HMD and will increase the risk of fall. However, for PWD, 

engaging in seated movements can still provide challenging exercise. Thus I believe it was a 

reasonable decision for safety despite the limitations on the types of exercise. Investigating the 

lower-body motion, as it is mentioned in the kinesiologists’ feedback, was one of the suggested 

extensions to this study. 

All in all, there is much evidence for the success of the designed exergame in VR based on 

subjective and objective analysis, and the feedback from kinesiologists in support of the design. 

However, there are some aspects that need more investigation by extending the number of 

participants or adding more activities. 
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Chapter 7 

Conclusions and Future Directions 

This chapter summarizes the research and its finding and proposes possible future work. 

7.1 Summary 

The goal of this research was to create virtual reality games that would motivate PWD to engage in 

physical exercise. The participatory approach in design was followed in collaboration with experts in 

Schlegel Villages. This participatory approach provided the means to create an appropriate HMD-VR 

game as well as supported testing of the game with PWD. Discussions with kinesiologists and therapists 

in different meetings during the design stages led the research team to select proper actions, tailor the 

game to people’s abilities, and create an environment that was appropriate and engaging.  

Various subjective and objective evaluations were used to investigate the success of exercise program 

design in engaging PWD to exercise. The main subjective evaluation used participant questionnaires, 

and the objective analysis was performed using clinical measurements and motion parameters extracted 

from sensor data. 

After three weeks of experiments, with three conditions and six participants, the results from the 

participant feedback showed no significant difference in parameters such as enjoyment, comfort, 

interest, and ease of use between human-guided, gym, and farm. Despite participants experiencing a 

new technology and a novel game design, our results are comparable with a one-on-one human-guided 

exercise program. This finding shows the relative success of the participatory approach in designing 

intuitive and interesting environments and actions while keeping the interface and interactions as simple 

as possible. To gain more comprehensive and reliable analysis and conclusions will require an 

extension of the project to involve more participants so as to provide more accurate and meaningful 

statistical analysis. 

To investigate the impact of this physical exercise program on the fitness levels of participants, 

clinical measurements were performed at various steps in the experiment. However, no meaningful 

changes were observed from these measurements. On the other hand, the data obtained with the touch 

controller sensors showed differences arising from the various activities (gym and farm). However, 

there is no unique trend in the observations from these differences. In general, the VR exercise was 

close to human-guided exercise in its motion parameters, but it also provided an interesting 
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environment for daily activity tasks, is customizable for each user and can provide a greater variety of 

activities than simple human-guided exercise. 

This research demonstrates that exergames can be developed for PWD and their efficacy appears to 

be comparable to human-guided exercise. It forms a promising basis for future works in games for 

supporting exercise for PWD. 

7.2 Future work 

Many directions for extension or improvement of this project can be considered as possible future work. 

One of the main limitations of the experiment was the limited number of participants. On the other 

hand, the recruitment of participants with dementia is difficult, and running experiments for more 

participants makes the daily scheduling of sessions challenging. Having more participants would 

improve the statistical analysis with more reliable conclusions. In addition, more participants would 

provide better representation of the entire population of PWD, as they have various characteristics and 

a wide range of physical and mental abilities.  

To provide a more interesting exercise experience in VR, the number of environments and activities 

can also be increased. Increasing the number of activities could involve two possible changes: longer 

times for each session or a wider selection of exercise options. Both options will introduce new 

challenges. Increasing the duration of a session may cause fatigue, which may reduce the positive 

feelings participants have about exercise. A wider selection of exercises tested with a wider range of 

participants may produce a more reliable analysis of the impact of each game. Having a choice in which 

activity they do, based on their preference, would make participation more enjoyable and provide more 

insight as to which activities are preferred by PWD. 

One of the important parameters in the design of exercise programs for PWD is considering their 

wide range of variation in physical abilities and limitations. In addition to applying calibration that 

modifies distances and provides accessible objects to interact with in the virtual environment, the levels 

of exercise can also be customized based on the abilities and moods of each participant. Modifying the 

level of exercise in a VR game can be done by providing different levels for the same game or updating 

the number of objects or items in the game. 

Other modifications could involve extending the calibration to promote a wider range of motion, 

including activities targeting lower body motions. 
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Appendix A: After session feedback form 
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Appendix B: After activity feedback forms for all three weeks 
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Appendix C: Montreal Cognitive Assessment (MoCA)  
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Appendix D: SFFA protocol in clinical measurement 
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Appendix E: Shoulder circumduction protocol 
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Appendix F Abbey pain scale 
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Appendix G Participants range of motion in different days 

For each activity in each day of the experiment, the range of motion is measured for each targeted 

motion. The following tables are the numerical report of the ROM values.  

 

 

 

Table 4. ROM (m) of Y direction of lifting overhead activity. 
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d1 1.43 0.68 0.87 0.87 0.34 0.44 1.12 0.69 0.81 1.28 0.76 0.50 1.13 0.47 0.51 1.29 0.68 0.62 

d2 - 0.55 0.88 - 0.30 0.47 - 0.58 0.77 - 0.72 0.58 - 0.60 0.38 - 0.69 0.46 

d3 - 0.57 0.89 - 0.30 0.47 - 0.63 0.81 - 0.79 0.51 - 0.54 0.33 - 0.68 0.51 

d4 - - - - 0.21 0.50 - 0.58 0.84 - 0.76 0.55 - 0.74 0.45 - 0.75 0.51 

d5 1.47 0.64 0.88 0.68 0.37 0.53 1.08 0.56 0.92 1.11 0.79 0.52 1.05 0.67 0.49 1.23 0.67 0.47 

Table 5. ROM (m) of Z direction of lifting overhead activity. 
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d1 0.48 0.84 0.49 0.34 0.10 0.44 0.77 0.73 0.52 0.81 0.29 0.69 0.61 0.26 0.43 0.80 0.53 0.75 

d2 - 0.80 0.62 - 0.21 0.63 - 0.69 0.41 - 0.44 0.87 - 0.43 0.50 - 0.36 0.64 

d3 - 0.86 0.44 - 0.37 0.19 - 0.71 0.56 - 0.31 0.68 - 0.33 0.47 - 0.23 0.68 

d4 - - - - 0.03 0.15 - 0.74 0.50 - 0.45 0.73 - 0.36 0.45 - 0.42 0.86 

d5 0.52 0.82 0.58 0.15 0.41 0.14 0.59 0.69 0.65 0.68 0.23 0.74 0.60 0.37 0.40 0.66 0.29 0.77 



 

 81 

 

 

 

 

Table 6. ROM (m) of X direction of reach forward straight activity. 
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d1 0.58 0.96 1.09 0.35 0.49 0.30 0.42 1.10 0.80 0.46 0.84 1.17 0.54 1.03 0.63 0.96 0.95 0.75 

d2 - 1.53 0.78 - 0.45 0.55 - 1.02 0.82 - 0.91 1.26 - 1.00 0.88 - 0.68 1.07 

d3 - 1.36 0.91 - 0.40 0.36 - 1.02 0.83 - 0.87 1.34 - 0.78 0.66 - 0.75 1.17 

d4 - - - - 0.27 0.59 - 1.01 0.71 - 0.86 1.07 - 0.82 1.70 - 0.99 1.18 

d5 0.33 0.96 1.18 0.16 0.04 0.34 0.46 0.61 0.76 0.40 0.94 0.95 0.46 0.94 0.90 1.04 0.78 0.93 

Table 7. ROM (m) of Z direction of reach forward straight activity. 
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d1 0.62 0.73 0.59 0.22 0.48 0.23 0.55 0.85 0.44 0.43 0.59 0.64 0.60 0.63 0.56 0.76 0.49 0.65 

d2 - 0.80 0.60 - 0.43 0.19 - 0.68 0.36 - 0.55 0.77 - 0.58 0.52 - 0.40 0.59 

d3 - 0.73 0.56 - 0.40 0.13 - 0.71 0.33 - 0.53 0.79 - 0.51 0.61 - 0.30 0.62 

d4 - - - - 0.07 0.21 - 0.65 0.29 - 0.55 0.68 - 0.70 0.72 - 0.50 0.69 

d5 0.63 0.75 0.58 0.20 0.02 0.22 0.56 0.66 0.41 0.46 0.55 0.61 0.49 0.53 0.66 0.63 0.36 0.65 

Table 8. ROM (m) of X direction of reaching forward cross activity. 
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d1 0.97 1.47 1.32 0.66 0.77 0.60 0.74 1.06 0.92 0.83 0.93 1.08 0.98 1.14 0.19 0.85 1.04 0.64 

d2 - 1.42 1.33 - 0.00 0.60 - 0.72 1.02 - 0.96 1.01 - 0.85 0.86 - 0.87 1.07 

d3 - 1.46 1.37 - 0.47 0.59 - 0.74 0.90 - 1.22 1.08 - 0.87 0.68 - 1.07 1.16 

d4 - - - - 0.04 0.56 - 0.75 0.79 - 0.92 1.15 - 0.77 1.16 - 0.99 1.21 

d5 1.11 0.98 1.33 0.56 - 0.58 0.81 0.70 0.81 0.82 0.86 1.04 0.53 0.98 0.88 0.12 1.20 1.11 



 

 82 

 

 

 

 

 

Table 9. ROM (m) of Z direction of reaching forward cross activity. 
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d1 0.44 0.76 0.50 0.17 0.29 0.39 0.43 0.86 0.50 0.41 0.60 0.64 0.53 0.69 0.07 0.57 0.40 0.30 

d2 - 0.73 0.59 - 0.00 0.19 - 0.70 0.39 - 0.62 0.74 - 0.57 0.46 - 0.56 0.67 

d3 - 0.68 0.61 - 0.25 0.23 - 0.69 0.46 - 0.58 0.63 - 0.59 0.66 - 0.45 0.62 

d4 - - - - 0.01 0.23 - 0.68 0.44 - 0.66 0.62 - 0.41 0.96 - 0.46 0.69 

d5 0.75 0.74 0.70 0.38 - 0.21 0.47 0.68 0.38 0.61 0.64 0.51 0.48 0.44 0.63 0.27 0.51 0.68 

Table 10. ROM (m) of Y direction of the rowing activity. 
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d1 0.39 0.64 0.32 0.28 0.47 0.42 0.41 0.37 0.38 0.35 0.38 0.45 0.36 0.40 0.32 0.12 0.38 0.48 

d2 - 0.48 0.44 - 0.65 0.35 - 0.34 0.43 - 0.49 0.49 - 0.47 0.54 - 0.39 0.34 

d3 - 0.45 0.38 - 0.35 0.34 - 0.36 0.35 - 0.45 0.35 - 0.41 0.50 - 0.38 0.58 

d4 - - - - 0.26 0.21 - 0.36 0.39 - 0.45 0.38 - 0.40 0.59 - 0.39 0.58 

d5 0.33 0.39 0.35 0.20 0.38 0.22 0.44 0.32 0.36 0.47 0.41 0.55 0.34 0.33 0.39 0.29 0.40 0.41 
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Table 11. ROM (m) of Z direction of rowing activity. 
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d1 0.65 0.58 0.54 0.72 0.71 0.78 0.56 0.67 0.58 0.53 0.50 0.31 0.56 0.60 0.24 0.66 0.61 0.67 

d2 - 0.50 0.65 - 1.10 0.32 - 0.65 0.58 - 0.53 0.33 - 0.62 0.53 - 0.41 0.62 

d3 - 0.61 0.53 - 0.44 0.31 - 0.87 0.59 - 0.49 0.26 - 0.52 0.31 - 0.54 0.57 

d4 - - - - 0.98 0.30 - 0.81 0.52 - 0.49 0.51 - 0.56 0.53 - 0.55 0.53 

d5 0.55 0.81 0.52 0.28 0.40 0.33 0.70 0.60 0.57 0.41 0.52 0.56 0.44 0.48 0.20 0.31 0.55 0.40 
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Appendix I Information letter and consent form used in hiring 

participants 
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