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Abstract  

 

Patient repositioning tasks expose healthcare providers (HCPs) to high bone-on-bone 

forces, resulting in the development of musculoskeletal disorders (MSDs) (Fragala,2011). 

Researchers have been able to estimate biomechanical exposures during patient turning using 

kinematic and kinetic data collected from HCPs (e.g., Marras et al., 1999); however, many of 

these laboratory-based studies require considerable time and resources to execute and it also 

remains challenging to gather reliable data (Jäger et al., 2013). Digital human modeling (DHM) 

may offer unique advantages over direct measurement to estimate biomechanically relevant 

exposures. Investigators have used DHM to evaluate MSD hazards (Cao et al., 2013; Potvin, 

2017); however, there is limited evidence on the fidelity of their outputs. The objective of this 

study was to compare the kinematic and kinetic outputs produced by two commercial DHM 

software packages against those generated using a lab-based motion-capture driven approach 

when analyzing HCPs performance of patient turns.   

Twenty-five (25) HCPs (eight males) performed a patient turn in the laboratory using a 

hospital bed with a live 82kg male patient. Whole body kinematics and sagittal plane video were 

collected. External peak hand force was measured using a force gauge. An accelerometer was 

placed on the sternum of the patient to identify point of initial patient motion which was assumed 

to represent the time-point of peak hand force application. Whole body kinematics were used to 

drive a rigid linked segment model for each participant using Visual3D (C-Motion Inc., 

Germantown, USA). Measured peak hand force was divided by two and applied to the model at 

the grip center of each hand at the frame of peak force application. A top down modeling 

approach was used to calculate trunk and shoulder joint angles and L4-L5 and shoulder joint 
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moments about the flexion/extension axis. These outputs were extracted and compared against 

DHM software outputs. 

Siemens Jack (V 8.4) and Santos Pro DHM software packages were used to simulate the 

patient turn. The static patient turn posture used by the HCP was modeled using the manual joint 

manipulation, posture prediction and motion capture data importing approaches available in both 

software. Anthropometrics and peak hand force gathered from the laboratory experiment were 

inputted into the digital models. trunk and shoulder joint angles and L4-L5 and shoulder joint 

moments were computed and extracted about the flexion/extension axis from each digitally 

modeled posture. RMANOVAs, Pearson Product Moment correlation coefficients and Bland 

Altman analyses were used to compare DHM outputs to the lab-based model outputs.  

Results from this investigation indicate that the use of Siemens Jack’s (V 8.4) manual 

joint manipulation approach estimated low back and shoulder kinematics and kinetics that were 

in agreement with lab-based model outputs. The kinematics and kinetics computed using the 

posture prediction and motion capture driven approaches to modeling the patient repositioning 

task, using both Siemens Jack (V 8.4) and Santos Pro were not in agreement with the lab-based 

outputs. This may have been a result of differences in kinematic modeling assumptions related to 

the structure of skeletal linkage models, joint decompositions, degrees of freedom in each model 

and anthropometrics used in DHM software. The use of DHM tools for biomechanical analyses 

of patient repositioning tasks has the possibility to aide in the investigation of MSD exposures; 

however, it is important for investigators to understand the purpose of each DHM modeling 

approach as well as the underlying assumptions of digital human models that may affect 

kinematic and kinetic outputs used to quantify the exposure to MSDs. 
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1.0 Introduction  
 

1.1 Patient Handling and Musculoskeletal Disorders  

 Patient handling activities expose healthcare providers (HCPs) to musculoskeletal 

disorder (MSD) hazards. HCPs, including registered nurses, nursing assistants and personnel 

support workers have one of the highest rates of MSDs. According to 2014 Ontario health care 

sector injury statistics, 24% of lost time injury claims in nursing services were a result of MSDs 

associated with patient handling (lifting, transferring and reposting patients/residents/clients) 

(Health Care Sector Injury Statistics, 2016). In particular, researchers have found that 

repositioning patients in a bed is one of the highest risk activities for injuries among HCPs 

(Fragala & Bailey, 2003; Pompeii, Lipscomb, Schoenfisch, & Dement, 2009; Weiner, 

Alperovitch-Najenson, Ribak, & Kalichman, 2015). Repositions require HCPs to laterally slide 

the patient in their bed, reposition their limbs and turn them over from supine to lateral 

recumbent position. Patient repositioning has been reported as a task that involves frequent 

lifting, pulling, pushing, awkward postures and handling of heavy loads (Weiner, Kalichman, 

Ribak, & Alperovitch-Najenson, 2017). These are all MSD hazards that increase the risk of 

developing MSDs, including low back pain and shoulder injury (Fragala, 2011; Nelson, Lloyd, 

Menzel, & Gross, 2003; OSHA, 2009). 

Intervening on patient handling related MSDs first requires quantification of exposures. 

To determine the factors that increase the physical demands of the task the most, postures, 

durations, frequencies, and loads handled by HCPs during patient repositioning tasks have been 

analyzed to estimate biomechanical loading on HCPs. Researchers have evaluated the effects of 

patient repositioning actions on the compressive and shear forces acting at the 4th/5th lumbar 
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vertebrae joint (L4-L5) in a laboratory setting. Biomechanical studies have found that at peak 

exposures during repositioning can result in L4-L5 compressive forces over 3400N (W. S. 

Marras, Davis, Kirking, & Bertsche, 1999; Schibye et al., 2003); surpassing the NIOSH action 

limit for compressive loading on the spine (Waters, Putz-Anderson, Garg, & Fine, 1993). A 

research group from Denver investigated the effects of patient weight (59kg, 83kg and 109kg) 

and patient disability type (hemiplegia, paraplegia and near-paralysis) on spine forces during 

lateral transferring of patients. The study found that increased patient weight and disability 

imposed higher L4-L5 compressive and shear forces on HCPs (Skotte & Fallentin, 2008). Jäger 

et al. (2013) and Theilmeier, Jordan, Luttmann, & Jäger, (2010) used a specially designed 

hospital bed integrated with force sensors to more accurately quantify the hand forces exerted by 

HCPs when performing patient repositioning actions. Hand forces and postures used by HCPs 

resulted in low back compressive forces, that again, exceed recommended thresholds (Jäger et 

al., 2013; Theilmeier et al., 2010).  

1.2 Challenges Measuring Biomechanical Exposures During Patient Handling Tasks 

Our knowledge of biomechanical exposures during patient handling comes from the 

application of a traditional lab-based occupational biomechanics approach. Using this approach, 

researchers can directly measure kinetics (e.g., ground reaction forces) and kinematics (via 3D 

motion capture) as participants perform an occupational task of interest. These measured data 

provide inputs into biomechanical models (e.g., rigid linked segment models and joint models), 

which can yield estimates of net joint moments and bone-on bone forces. Despite previous 

efforts to apply this occupational biomechanics-based approach to health care, challenges persist 

when applying this approach to understand exposure profiles during patient handling activities. 



 
 

3 
 

Researchers have been able to estimate biomechanical exposures during patient 

repositioning using kinematic and kinetic data collected from HCPs; however, many of the 

studies have suffered from challenges affecting the ability to gather reliable data for a 

sufficiently wide range of situations. For example, HCPs have stepped off the force platforms 

during the performance of the patient repositioning actions (Schibye et al., 2003; Skotte et al., 

2002), altering the ground reaction force profiles necessary to support a rigid-linked modeling 

approach. Additionally, with the use of passive motion capture systems, the ability to view the 

reflective markers placed on the HCPs can be obstructed by the limbs of the HCP or by the 

patient (Jäger et al., 2013; Theilmeier et al., 2010), affecting the postural data profiles necessary 

to support modeling efforts. These challenges emphasize the difficulty in obtaining reliable 

biomechanical data for a wide array of situations as is required to explore new and novel designs 

and approaches to address MSD risks among HCPs associated with patient handling.   

Researchers have recognized that traditional biomechanical instrumentation can also be 

cumbersome or sometimes impossible to use in health care facilities including hospitals, clinics 

and long-term care homes (Cao, Jiang, Han, & Khasawneh, 2013; Jimerson, Park, Jiang, & 

Stajsic, 2016). Physical instrumentation to gather data as required to estimate levels of 

biomechanical exposure can disrupt or impede the natural performance of patient handling tasks 

or the standardized work processes of HCPs (Winkel & Mathiassen, 1994). Challenges 

performing occupational biomechanical investigations in health care facilities include shared 

working environments, facility regulations, security and privacy concerns (Hall, Longhurst, & 

Higginson, 2009). Due to this unique and dynamic environment, it is difficult for investigators to 

control co-founding factors such as patient weight or time of day, threatening the internal 

validity of findings.  
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1.3 Digital Human Modelling: An Alternative to Comprehensive Direct Measurement  

Digital human modeling (DHM) may offer unique advantages over direct measurement 

to estimate biomechanically relevant exposures. DHM allows users to investigate the relationship 

between workplace/tasks parameters and human factor elements, such as patient weight, hospital 

bed height, etc., quickly and efficiently. DHM simulates humans anthropometrically and 

biomechanically in 3D space. Avatars, representing humans, have integrated rigid-link skeletal 

models powered by an inverse kinematics (IK) algorithm to simulate real-time joint positions. 

Additionally, leveraging inverse kinetics and built in joint models, DHMs can provide estimates 

of bone-on-bone joint forces as well. DHM enables users to conduct occupational biomechanical 

evaluations on human – environment interactions with minimal to no disruption to the work 

process, obstructing physical instrumentation or extensive use of physical models (e.g. vehicle or 

machine prototype).  

Researchers, engineers and ergonomist have utilized DHM for design and injury risk 

assessments in aerospace, automotive, manufacturing and health care industries (Chaffin, 2008). 

Using a design-of-experiments approach, experts can run a variety of simulations, manipulating 

factors such as the physical environments, avatar anthropometry and task requirements, such as 

external loads, to effectively analyze and estimate their effects on MSD exposures. This 

advantage addresses the limitation of traditional lab-based assessments that are often restricted to 

the analysis of only a subset of conditions. For example, to model a manual work task, the user 

can position the joints of the virtual avatar to simulate a lift, carry or walking tasks in its 

specifically designed virtual environment, such as a warehouse. The user can then analyze the 

effects of different postures and loads or anthropometric parameters used in the simulation on 

biomechanical exposures such as joint forces experienced by the worker, providing evidence 
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about relationships between design parameters, movement behaviours and MSD exposure 

likelihood. With the ability to virtually mock up workplace environments and work processes to 

inform better designs, companies have reduced costs, time and lost time injury claims (Demirel 

& Duffy, 2007; Fritzsche, 2010).  

 Different DHM software packages have been developed that include a variety of 

capabilities; some including, Delmia, RAMSIS and 3DSSPP. Currently, Siemens Jack (V 8.4) 

and Santos Pro are commercially available DHM software packages with the latest developments 

in virtual simulation capabilities, including a wide range of anthropometric databases, advanced 

human posturing controls and IK and kinetics algorithms, improved rigid link models (RLMs), 

and ergonomics analysis tools (Chaffin, 2005). These features, allow users to create static or 

dynamic simulations of avatars interacting with their environment, physical objects or with other 

simulated humans. Furthermore, Jack (V 8.4) and Santos Pro offer three avatar control 

approaches to simulate human kinematics. These include manual joint manipulation, direct 

motion capture data importing and posture prediction (Santoshuman Inc. Software, 2009; 

Siemans PLM Software, 2016). Each of these posturing approaches yields a set of joint angles 

for the rigid link human model integrated in the avatar of Jack and Santos; however, validation 

of these posturing approaches for the application in healthcare sector is still required. 

DHM has been widely applied in automotive and manufacturing industries, but it also has 

a strong prospect for increased applications within the healthcare sector. Investigators have used 

DHM to evaluate the MSD hazards associated with patient handling activities (Cao et al., 2013; 

Jimerson et al., 2016; L. Zhang, Niu, Feng, Xu, & Li, 2013); however, some users found that the 

DHM software was limited, as it could not simulate the HCP’s preferred movement strategies 

(Paul & Quintero-Duran, 2015). While many investigators have used DHM to evaluate MSD 
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hazards in a variety of occupational tasks, there is limited evidence on the validity of their 

outputs. We do not know if the avatar control approaches used to simulate whole body postures 

are realistic. This thesis describes a study that compared the joint angles and joint moments 

estimated by Jack (V 8.4) and Santos, using each of their three posturing approaches, relative to 

those calculated using a traditional lab-based occupational biomechanics approach, as HCPs 

perform a patient repositioning task.  

1.4 Research Objective  

1. The objective of this study was to compare the low back and shoulder kinematic and 

kinetic outcomes produced using Siemens Jack (V 8.4) and Santos Pro software 

package's avatar control approaches; manual joint manipulation, direct motion capture 

data importing and posture prediction approaches to those calculated using a lab-based 

rigid-link segmental model when modeling HCPs performance of a patient repositioning 

task.  

1.5 Research Questions 

1. How do L4-L5 and shoulder flexor/extensor joint moments and trunk and shoulder 

flexion/extension joint angles of HCPs during the performance of a patient reposition 

differ, when estimated using: 

a. Siemens Jack (V 8.4) and Santos Pro software package's manual joint 

manipulation approach; 

b. Siemens Jack (V 8.4) and Santos Pro software package's direct motion capture 

data importing approach; and 

c. Siemens Jack (V 8.4) and Santos Pro software package's posture prediction 

approach 
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relative to when calculated using a lab-based rigid-linked segment model approach driven 

by directly measured kinematics and hand forces? 

2. Are L4-L5 and shoulder flexor/extensor joint moments and trunk and shoulder 

flexion/extension joint angles of HCPs when repositioning a patient estimated using 

Siemens Jack (V 8.4) or Santos Pro correlated with those estimated using a lab-based 

rigid-linked segment model approach? 

1.6 Research Hypotheses  

1. There will be significant differences between L4-L5 and shoulder flexor/extensor joint 

moments and trunk and shoulder flexion/extension joint angles estimated using Siemens 

Jack (V 8.4) and Santos Pro, relative to those calculated using a lab-based rigid-linked 

segment model approach when using the posture prediction approach to simulate HCPs 

repositioning a patient, but no differences when using the manual joint manipulation and 

direct motion capture approaches. 

i. The posture prediction approach estimates a set of joint angles (whole 

body posture) for the avatar using software specific algorithms. Therefore, 

posture prediction provides users with the least control when simulating a 

posture. Therefore, it is hypothesized that joint angles and moments 

produced using the posture prediction approach will be significantly 

different from the lab-based RLM outputs. In turn, when importing motion 

capture directly into the DHM or when manually manipulating the avatar, 

the user is offered greater control over posturing. As a result, it was 

anticipated that when DHMs were used in manual joint manipulation or 
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motion capture importing modes, it would result in outcome measures that 

would be similar to the lab-based RLM (Figure 1). 

2. When considering correlations between L4-L5 and shoulder flexor/extensor joint 

moments and trunk and shoulder flexion/extension joint angles: 

a. Manual joint manipulation will result in outcome measures that are moderately 

correlated (0.5≤ r ≤ 0.7) to those calculated using a lab-based rigid-linked 

segment model approach driven by directly measured kinematics and hand forces 

when modeling HCPs repositioning a patient.  

i. Since posturing is based on the sagittal image of the participant, there may 

be differences in output variables. Position of the avatar segments 

according to the video image may produce differing results relative to the 

lab-based RLM because the geometric segments (with clothing) will be 

positioned. This could produce differing shoulder and trunk joint angles 

and moments. While this limitation may cause differences in the output 

joint angles and moments relative to the lab-based RLM, it is predicted 

this method will still produce relatively similar results to the lab-based 

RLM outputs as the user has control over joint/segment positioning. 

 

b. Direct motion capture data importing will result in outcome measures that are 

strongly correlated (r > 0.7) with those calculated using a lab-based rigid-linked 

segment model approach driven by directly measured kinematics and hand forces 

when modeling HCPs repositioning a patient.  
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i. Joint and segment positions gathered from the laboratory collection using 

motion capture will be mapped onto the anthropometrically scaled virtual 

avatar. Jack and Santos should compute similar shoulder and L5-L5 angles 

and moments. It is hypothesized that anthropometric databases and linkage 

model differences within Jack and Santos may produce some error in the 

joint angles and moments when using this approach 

 

c. Posture prediction will result in outcome measures that are weakly correlated (r < 

0.5) with those calculated using a lab-based rigid-linked segment model approach 

driven by directly measured kinematics and hand forces when modeling HCPs 

repositioning a patient.  

i. Since there is very little control over the posture predicted by the DHM 

when using the posture prediction approach, it is anticipated that there will 

be high variability in kinematic and kinetic model outputs relative to the 

lab-based RLM. Both Jack and Santos use unique algorithms to predict 

human postures (statistical and optimization-based approaches 

respectively); however, very little control of the inputs into the software 

packages is required by the user relative to the direct motion capture 

approach and manual joint manipulation approach. Therefore, since there 

is less control in the model parameter inputs, it is hypothesized that 

posture prediction approach will produce weakly correlated joint angles 

and moments.  
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Figure 1. Illustration of user control across the three posturing approaches 

1.7 Prioritization of Outcome Variables 

The outcome variables (biomechanical measures) of interest in this study will be 

prioritized based on their value towards the investigation of MSD Hazards in HCPs (clinical 

significance). The output variables will be ranked as follows:  

1) L4-L5 flexor/extensor joint moments (moment produced in the sagittal plane about the 

L4-L5 joint) 

2) Shoulder flexor/extensor joint moments (moment produced in the sagittal plane about the 

shoulder joint center) 

3) Trunk flexion/extension angles (angle formed between the trunk segment and pelvis 

segment, in the sagittal plane) 

4) Shoulder flexion/extension joint angles (angle formed between the humerus segment and 

trunk segment, in the sagittal plane) 

L4-L5 and shoulder joint flexor/extensor joint moments were prioritized over the trunk 

and shoulder flexion/extension joint angles because joint moments are often used by ergonomist 

and researchers to quantify the risk of injuries, as it is a measure that describes the amount of 

torque applied to each joint of the musculoskeletal system. L4-L5 flexor/extensor moments was 

ranked first because there is a higher risk for low back injuries in HCPs during patient 

repositioning over shoulder injuries (Fragala, 2011; Nelson et al., 2003; OSHA, 2009). Incidence 

rate for back injuries involving lost work days was 181.6 per 10 000 full-time HCPs (Nelson et 
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al, 2003). L4-L5 flexor/extensor joint moments are important biomechanical variables used to 

calculate low back compression forces, which is an objective measure used often in spine 

research to predict the risk of development of low back injuries (Marras, Davis, Kirking, & 

Bertsche, 1999; Schibye et al., 2003). Shoulder injuries and pain are commonly reported by 

nursing personnel during the performance of patient handling tasks (Black, Shah, Busch, 

Metcalfe, & Lim, 2011). HCPs are exposed to high peak and cumulative shoulder demands 

during patient reposition tasks, increasing their risk of sustaining a shoulder injury (Belbeck, 

Cudlip, & Dickerson, 2014). As a result, shoulder flexor/extensor moments were selected as an 

outcome to validate as it is a biomechanical measure that has been used by researchers to assess 

the risk of injury to the shoulder during occupational tasks (Bjelle, Hagberg, & Michaelson, 

1981).  

Joint angles are measures commonly used in physical ergonomics to define and classify 

working postures adapted by individuals during the performance of occupational tasks (Lowe, 

Weir, & Andrews, 2014), as a result trunk and shoulder flexion/extension joint angles were 

ranked with least prioritization. The trunk and shoulder have been most commonly observed 

deviating from neutral position during patient handling tasks such as patient turning (Freitag et 

al., 2012), therefore angles at these sites will be useful for identifying determinants of injury risk 

such as biomechanical loading (moments) of joints and tissues (Marras & Karwowski, 2006). 

Since joint angles are commonly used to assess risk, they had least priority in this investigation.  

1.8 Rationale for Research   

This research will generate new knowledge regarding the ability of digital human 

modeling tools, and inherent modeling approaches, to simulate and estimate biomechanical 

exposures relevant to a patient handling task. Comparing Jack (V 8.4) and Santos Pro digital 
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human model kinematic and kinetic outputs to laboratory data-based rigid-link model outputs 

will provide preliminary evidence towards the validity of DHM software package’s ability to 

adequately evaluate MSD exposures within a patient handling context. If we can verify which of 

the three avatar control approaches available in Jack (V 8.4) and Santos are valid for simulating 

and analyzing the kinematics and kinetics of HCPs performing patient handling activities, it 

could potentially support the utility of DHM as a cost-efficient and effective tool to investigate 

MSDs in the healthcare sector, and also to inform the design of new tools and products to reduce 

MSD exposures the HCPs.  
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2.0 Review of Relevant Literature  

2.1 Patient Repositioning and Workplace Musculoskeletal Disorders 

HCPs are exposed to MSD hazards when performing patient handling tasks. HCPs, 

including registered nurses, nursing assistants and personal support workers routinely perform 

physically demanding tasks, including lifting, transferring and repositioning patients. 

Epidemiological studies report that providing direct patient care involves frequent exposure to 

MSD hazards including: manual handling, awkward postures and repeated handling of heavy 

loads (Estrynbehar et al., 1990). These hazards have been associated with high spine forces when 

performing patient handling tasks (Gagnon, Chehade, Kemp, & Lortie, 1987; Skotte & Fallentin, 

2008; Ulin et al., 1997). Specifically, biomechanical studies have indicated that patient 

repositioning tasks expose HCPs to L4-L5 compressive and shear forces above recommended 

threshold limit values (W. S. Marras, Davis, Kirking, & Bertsche, 1999; Schibye et al., 2003).  

Repositioning of immobile patients involves several patient handling actions, including 

laterally sliding the patient to the side of the bed, adjusting their limbs and turning the patient 

from supine to lateral recumbent position. These patient handling actions have been observed to 

involve the use of frequent and forceful pushing, pulling and lifting exertions by the HCP 

(Weiner et al., 2015). Exposure to pushing, pulling and lifting can increase the risk of exposure 

to MSD hazards in HCPs (Fragala, 2011; Nelson et al., 2003; OSHA, 2009). 

Manually repositioning patients helps to prevent the development of bedsores as a result 

of prolonged pressure to the skin and underlying tissue (Bergstrom et al., 2013; Griffiths, 2012). 

HCPs have been observed repositioning patients at least 15 times over a 24hour period, 

highlighting the tasks frequency (Latimer, Chaboyer, & Gillespie, 2015). Since repositioning 
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patients is frequently performed, it increases a HCP’s frequency of exposure to MSD hazards 

(high loads, awkward postures), consequently, increasing their risk for developing MSDs 

2.2 Biomechanical Studies on Patient Reposition Tasks  

Several studies have investigated MSD exposures associated with patient handling 

activities. Schibye et al. (2003) reported peak L4-L5 joint compressive forces above 3400N, in 

addition to high shear and net joint moments when HCPs perform patient repositioning. 

Similarly, researchers from Denmark found that patient reposition actions including lateral 

transfers and lifting resulted in L4-L5 compressive and shear forces exceeding injury thresholds 

(Skotte et al., 2002; Skotte & Fallentin, 2008). Further, increased weight and decreased mobility 

of patients were directly linked to increased spine loading on HPCs. Lindbeck & Engkvist (1993) 

estimated the L5-S1 joint moments as a function of time for a two HCP team when turning a 

patient from supine to lateral recumbent position. At the instant of estimated peak force 

application, spine moments up to 96Nm were imposed on the lead HCP.  

Researchers have utilized unique biomechanical instrumentation and equipment to 

characterize the kinematics and kinetics associated with patient repositioning actions. Caboor et 

al. (2000) used an electrogoniometer, combined with electromyography to assess the change in 

postural and muscular demands of HCPs when performing patient handling tasks at different bed 

heights. The study did not observe changes in spinal motions or muscular demands as a result of 

bed height adjustments. Marras, Davis, Kirking, & Bertsche (1999) used a Lumbar Motion 

Monitor and electromyography (EMG) to gather kinematic and kinetic data to calculate internal 

spinal forces experienced by HCPs during patient transfer tasks. An EMG-assisted model 

estimated compressive forces at the L4-L5 joint over 3400N when using a partnered patient 

transfer technique.  
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Since patient repositioning involves the use of multiple maneuvering actions and forceful 

exertions, researchers have created in-house hospital bed mock ups with integrated force sensors 

to estimate the forces exerted by HCPs. A research group from Germany developed a hospital 

bed with tri-axial force sensors imbedded into the bedspring frame to record the forces exerted 

by the HCPs during the performance of patient repositioning actions (Jäger et al., 2013; 

Theilmeier et al., 2010).  Using external force recordings and postural data gathered using 

motion capture system, researchers were able to calculate spinal forces. The study found high 

L4-L5 compressive forces and spine moments that were a result of excessive spine flexion and 

lateral force exertions used during patient repositioning actions (Jäger et al., 2013; Theilmeier et 

al., 2010).  

2.3 Challenges and Limitations when Preforming Biomechanical Investigations on 

Patient Handling Tasks 
 

While researchers have been able to measure the external and estimate the internal forces 

imposed on the musculoskeletal system of HCPs during patient handling activities, multiple 

challenges and limitations have been reported. For example, researchers who have used in 

ground force platforms to gather kinetic measures during patient handling tasks have faced 

challenges when the HCP had stepped off the force plate during the task (Lindbeck & Engkvist, 

1993; Skotte et al., 2002). Studies using passive motion capture systems to gather kinematic data 

found that the reflective markers attached to the HCP were occasionally obstructed by their own 

limbs or the patient during the performance of patient reposition tasks (Jäger et al., 2013; 

Theilmeier et al., 2010). Additionally, while the use of laboratory-based mock ups are useful for 

characterizing the biomechanical exposures experienced by HCPs during patient repositioning 
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actions, these studies are costly and time consuming, limiting the number of experimental 

conditions, or alternate approaches that could be considered.  

Though some research exists, as noted above, much less information is available about 

the biomechanics of patient handling, relative to general lifting, likely due to the challenges and 

limitations associated with characterizing exposures during the performance of unique patient 

handling tasks. Due to the complexity of patient handling tasks, researchers have issues 

gathering reliable human kinetic and kinematic data required to compute biomechanical 

measures that are used to estimate MSD exposures. Specifically, performing biomechanical 

investigations directly within health care facilities can pose challenges due to the dynamic 

environment, time constraints, costs and anonymity of patients (Hall et al., 2009; Winkel & 

Mathiassen, 1994). However, digital human models (DHMs) offers an alternative approach to 

estimate and characterize the kinematics and kinetics associated with patient handling activities. 

DHMs offers the ability to virtually simulate human behaviours as they interact with tools and 

equipment in a target environment. DHMs provide users with a method to simulate the postures 

and external loads experienced by real life humans and to derive the associated biomechanical 

measures required to evaluate MSD risks.  

2.4 Digital Human Modeling: An Alternate Approach to Estimate MSD Hazards for High 

Risk Jobs  
 

DHMs bridge the gap between computer aided designs (CAD) and human factors and 

ergonomics (HF&E). DHM software packages have the capabilities of emulating humans 

anthropometrically and biomechanically by using scaled avatars within representative 3D 

computer generated environments. DHM software packages draw on databases of anthropometry 

allowing users to scale an avatar’s body segments to match the work population using regression 
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equations (Blanchonette, 2010). Alternatively, some DHM software packages have used the 

Generator of Body Data (GEBOD) (Cheng, Obergefell, & Rizer, 1994) to generate scaled 

geometric human body segments.  

Avatars created in DHM software packages have complex kinematic linkage models that 

closely resemble the human skeletal structure with joints that obey physiological range of motion 

(ROM) restrictions and geometric shape. Avatars have integrated IK algorithms that are used to 

configure and drive avatars to produce human postures (described by a set of joint angles) and 

motions. IK models use external exposure data (force or pressure) along with anthropometric 

data to calculate net joint moments and forces experienced by the avatar (Duffy, 2008). The 

avatar’s body is represented as a set of articulating links in a kinematic chain, therefore 

intersegmental joint moments and forces are calculated from forces measured at the top of the 

chain (top down inverse kinetics model) 3D dynamic model (Duffy, 2008). Alongside the 

inverse dynamic models, some DHM software packages also have integrated complex spine 

models to compute peak compression, shear and moments at the L4-L5 joint. Nuanced 

differences in modeling approaches between different commercially available DHMs may yield 

meaningful differences in estimated biomechanical exposure outputs underpinning the need for 

this comparative study. 

Ergonomic analysis tool kits have also been integrated into DHM software packages to 

help users identify, evaluate and interpret MSD hazard risks. These include assessment tools 

such as National Institute of Occupational Safety and Health’s (NIOSH) lifting equation, Rapid 

Upper Limb Assessment (RULA) tool, Rapid Entire Body Assessment (REBA) tool, Ovako 

Working Posture Analysis System (OWAS) and Methods Time Measurement  (MTM) system 

and Porter’s Comfort Rating Scale (Woldstad, 2006). However, the outcome of each tool 
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depends on how well the underlying DHM model replicates the kinematics and kinetics 

associated with the simulated behaviour. The ability to produce valid kinematic and kinetic 

estimates is crucial to the long-term utility and sustainability of DHM to support the 

consideration of HF&E into high-demand tasks like patient handling. 

2.5 DHM Applications in Manufacturing Industries  

DHM was first adopted by the aerospace industry, followed by the automotive 

engineering sectors (Demirel & Duffy, 2007). Through the virtual interaction of 3D 

objects/humans in a 2D computational interface, engineers have been able to utilize DHM for 

work station and product design as well as the optimization of work systems. Several researchers 

have successfully applied DHM to digitally mock up cock pit and crew work station designs to 

assess HF&E metrics (Karmakar, Pal, Majumdar, & Majumdar, 2012; Rune, Hongjun, & Bifeng, 

2008; Sanjog, Karmakar, Patel, & Chowdhury, 2015; Sun, Gao, Yuan, & Zhao, 2011). Analysis 

emphasized cockpit design on vision and accessibility across variable anthropometrics of crew 

members. Through digital mock ups, engineers have analyzed human-machine interactions and 

incorporated them into design drawings in CAD (Demirel & Duffy, 2007; Naumann & Roetting, 

2007), eliminating the need for physical mock-ups, shortening design cycle times and decreasing 

development costs for companies.  

DHM is most commonly used to facilitate proactive HF&E investigations within 

automotive manufacturing, allowing companies to simulate realistic postures in order to evaluate 

efficiency of the work processes and systems. Specifically, industrial engineers have widely used 

DHM to simulate humans in CAD vehicle designs to account for human factors. Parameters such 

as passenger comfort, visibility, ingress/egress, reach capability have been evaluated in the 

design process of new vehicles (Naumann & Roetting, 2007). Reed & Huang (2008) modeled the 
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human motions used during the stages of ingress/egress of vehicles during their design process in 

DHM to identify design issues associated with the variability in human anthropometrics and 

motions. DHM has also been used to simulate and analyze workers’ postures and motions used 

when performing specific tasks on automotive assembly lines in order to improve the efficiency 

of the assembly line design (Dan Lämkull, Hanson, & Roland Örtengren, 2009).  

 DHM has also been used to facilitate proactive ergonomic investigations within 

manufacturing tasks to predict musculoskeletal demands. Fritzsche (2010) and (Lämkull, 

Hanson, & Roland Örtengren (2009) found that DHM process simulations provided correct 

estimates of physical demands relative to real life estimates when evaluating the static postures 

of vehicle assembly line workers. Chang & Wang (2007) simulated automobile assembly tasks 

using CAD objects of the vehicle parts. The integrated ergonomic and biomechanical analysis 

tools identified MSD hazards associated with individual task operations (Chang & Wang, 2007).   

DHM allows users to perform predictive simulations to improve and support manual 

materials handling tasks. Regazzoni & Rizzi, (2013) generated multiple simulations of a manual 

loading operation across a 5th and 50th percentile female and 50th and 95th percentile male to 

predict the reachability of different workers in order to optimize the height of a loading platform. 

Hanson, Högberg, & Söderholm (2012) illustrated the iterative process involved when solving 

for the optimal work posture to minimize joint stresses associated with a truck part assembly 

line. Anthropometrics, and joint positions were repeatedly adjusted to minimize stressors in order 

to identify the safest working posture. Case, Hussain, Marshall, Summerskill, & Gyi (2015) used 

DHM to model older adults with limited upper limb joint mobility when performing 

manufacturing tasks to identify acceptable and unacceptable strategies used to perform tasks 

given the joint demands. With the ability to instantly change anthropometrics, hand loads and 
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joint positions of the avatar during static or dynamic human simulations, users have been able to 

utilize DHMs to predict occupational task demands and optimize worker performance.  

 DHMs have enabled users to test a wider range of human machine/equipment interactions 

than physical mock-ups to explore issues related to assembly cycle times and worker safety 

(Naumann & Roetting, 2007). With the ability to adjust anthropometrics, postures and loads, 

engineers and ergonomist have been able to optimize product designs and work environments to 

minimize injury (Xudong Zhang & Chaffin, 2006). Furthermore, industry experts, at the 

administrative level have been able to efficiently solve and communicate health and safety 

related issues within the company to improve injury prevention strategies (Chaffin, 2008).  

2.6 DHM Applications in the Healthcare Sector  

While DHM has been effectively used in the automotive and manufacturing industries, 

improved virtual human modeling tools are beginning to see application in the healthcare sector. 

DHM has been employed to optimize healthcare facility design. Zhang, Xue, Li, & Kim, (2013) 

developed a virtual human torso model with 30 degrees of freedom (DOF) to evaluate the effect 

of surgical table heights. While the virtual model did provide insight into ergonomic guidelines, 

it was limited to posture analysis of the upper torso and used one standard anthropometric 

linkage model. Similarly, Paul & Quintero-Duran (2015) utilized Jack (V 7.1) to simulate a 

hospital bed pushing task to evaluate the influence of different anthropometric conditions of 

HCPs on hospital bed design. However, based on the simulation results, authors concluded that 

simulating complex healthcare tasks was limited in Jack (V 7.1) due to its inability to simulate an 

individual’s movement preferences or motor control strategies (Paul & Quintero-Duran, 2015).  

 Investigators have also used DHM tools to assist in evaluating and identifying MSD 

hazards associated with patient handling activities. Jimerson, Park, Jiang, & Stajsic (2016) used 
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Jack (V 7.1) to assess the low back forces experienced by HCPs when performing actions 

required to prepare immobile patients for transfer. But since Jack (V 7.1) lacks the ability to 

model human-to-human interactions, researchers used rudimentary CAD objects with calculated 

scaled body segment masses to simulate the patient. Similarly, Cao, Jiang, Han, & Khasawneh 

(2013) used Jack (V 7.1) to model and evaluate the low back forces imposed on HCPs when 

performing a barrow lift across different patient and HCP anthropometrics. Researchers 

constrained the trunk flexion angle of HCPs to 45 degrees and used a systematic bed height.  Due 

to these simulation constraints, the study was not able to explore the effect of these independent 

variables on low back forces. Potvin (2017) used Jack (V 8.0) to evaluate the postures and loads 

imposed on HCPs when rotating a patient using a clinical assistive chair. While the investigation 

provided insights into the biomechanical demands imposed on HCPs, the data was limited by the 

extent to which it could be generalized. The study simulated and analyzed one posture that could 

be adopted by a 50th percentile female HCP when using the chair, while there could have been 

several possible postures adopted by HCPs depending on their motor control strategies and 

anthropometrics.   

One known published study simulated a patient repositioning activity to evaluate and 

control the MSD hazard exposures on HCPs. Zhang, Niu, Feng, Xu, & Li (2013) used classic 

Jack (V 7.1) to simulate static and dynamic actions used by HCPs to turn patients from supine to 

lateral recumbent position. While researchers were able to simulate the postures associated with 

the dynamic task of turning a patient, external hand force exposures during each action were not 

included into the simulations.  As mentioned previously, biomechanical evidence suggests that 

exposure to handling heavy loads (patients) during patient repositioning actions is one of the 

MSD hazards directly related to the increase in spinal forces imposed on HCPs (Skotte & 
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Fallentin, 2008). Future efforts to simulate patient handling should consider the influence of 

hand forces.  

 It is apparent that DHM has the capacity to be used in the automotive/manufacturing 

sectors, and the healthcare sector. HF&E experts practicing in healthcare have the ability to 

assess the influence of various health care tasks, work processes and medical device designs on 

MSD hazard exposures. However, very few studies have explored the validity of simulating 

complex healthcare tasks such as patient repositioning. There is a clear need to validate the 

utility of DHM for use in healthcare. 

2.7 Avatar Posturing and Control Approaches  

Over the past decade, simple single virtual human models have evolved into unique and 

powerful DHM software packages. Some of which include BOEMAN, MannequinPro, Siemens 

Jack, Safework, SAMMIE, RAMSIS, DELMIA, 3DSSPP and Santos (Raghunathan & R, 2016). 

DHM software packages have improved kinematic linkage models and algorithms that have 

increased efficiency, accuracy and control of the virtual avatar. To simulate the posture of the 

avatar, developers have integrated three different methods into DHM software packages to 

derive whole body linked segment joint positions. Three posturing approaches include; manual 

joint manipulation, 3D kinematic data importing and posture prediction (Duffy, 2008). Each of 

these avatar posturing approaches offer different levels of precision and fidelity.  

2.7.1 Manual Joint Manipulation  

In the early DHM software packages developed, users were required to manually 

articulate the avatar’s joints independently to simulate whole body postures. With the 

improvements of rigid link models, users are now able to produce more realistic postures with 

increased degrees of freedom (DOF) at the joints, subjected to individual joint limits. As users 
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move individual segments, most DHM software packages use real time IK to determine the 

position of the linked segments/joints (Duffy, 2008).  

Manual posturing approach is commonly used in reactive ergonomics to evaluate the 

risks associated with a job or task. Ergonomists have used manually postured DHM simulations 

to evaluate static postures and force exposures in order to provide estimates of physical demands 

imposed on individuals during real-life occupational tasks (Satheeshkumar & Krishnakumnar, 

2014). Since manual posturing is often used to assess and report the current risks associated with 

a task, it has been often used as descriptive tool in the ergonomics design process (Chang & 

Wang, 2007; Fritzsche, 2010; Rajput, Kalra, & Singh, 2013; Samson & Khasawneh, 2009). 

Jimerson and colleagues (2016) used postural and biomechanical data obtained from their digital 

simulations of HCPs preparing patients to make recommendations for equipment manufacturers 

and HCP/staff training to eliminate or control MSD hazards.  

However, manually posturing can be laborious and an inconsistent process. For example, 

when a user is given the same goal posture to model, a different user may realize very different 

movement strategies based on knowledge of biomechanics and work processes (Duffy, 2008). 

Consequently, small deviations in postures caused through manual joint manipulation can result 

in large errors in the external joint moments and bone on bone forces produced by the 

biomechanical models (Chaffin, 2005). This can result in errors in prediction of MSD hazard 

exposures.  

Manual manipulation of the avatar still remains one of the most common approaches to 

posturing avatars (Duffy, 2008), but is one of the most time-consuming components of DHM 

(Wegner, Chiang, Kemmer, Lämkull, & Roll, 2007) due to the complexity of the joint linkages. 

Therefore, to avoid these inaccuracies and decrease the time taken for human model posturing, 
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developers have added alternative approaches for avatar posturing including direct 3D kinematic 

data importing into the DHM software to simulate more accurate postures. 

2.7.2 3D Kinematic Data Importing 

The most recently updated and developed DHM software packages, including Jack (V 

8.4) and Santos, have the ability to drive motions and postures of the virtual avatar using 

kinematic data gathered from a motion tracking device. The unique add-on feature included in 

these packages allows users to import 3D motion capture data collected to recreate the posture in 

the DHM package. 3D position data of the subject’s joints and segments are imported into the 

package which refines the avatar’s posture to mimic the real life subject’s postures or motions 

(Santoshuman Inc. Software, 2009; Siemans PLM Software, 2016). Data importing reduces 

simulation times for users as well as improves the accuracy of postures (joint angles) and 

captures variability in movement relative to manual joint manipulation approach (Duffy, 2008). 

However, this approach can only be used by researchers or industries that have access to motion 

capture technologies. Further, since this approach relies on importing of data through DHM, we 

do not know how potential errors or inaccuracies could arise when mapping motion capture data 

onto the computerized human avatar, motivating the need for this investigation.  

2.7.3 Posture Prediction 

To provide users with an alternate approach to decrease DHM simulation times, posture 

and motion prediction approaches have been integrated into DHM software packages to rapidly 

posture the avatar with minimal manual input. To generate a posture (set of joint angles) for a 

given task, such as grabbing an object, end effectors (point of interest on the human body, end of 

kinematic chain) and target contact (point or plane in space) must be identified first. Using these 

points throughout the iterative simulation process a statistical regression approach or an 
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optimization algorithm is applied to estimate the avatar’s motion or posture (Abdel-Malek & 

Arora, 2013; Duffy, 2008).  

Statistical regression (data-driven) approaches to predict postures, rely on pre-recorded 

motion data, anthropometrics and functional regression models to predict joint angles as a 

function of time (Duffy, 2008). Data driven posture prediction includes large data sets and 

multiple model parameters (human anthropometrics, target coordinates, etc.). This can result in 

increased risk of computational errors in the algorithm, causing reduced accuracy in the 

regressed postures. For example, if a user wanted to predict a posture for a target point that was 

not part of the experimental database, the algorithm would use extrapolation to obtain results. As 

a result, poor postures can be predicted if they do not fit the exact anthropometrics or motions 

included in the database (Duffy, 2008). Comparatively, the optimization-based approach to 

predict postures takes the biomechanics, physics of motion and human behaviour into 

consideration (Abdel-Malek & Arora, 2013). Joint angles are calculated for a single posture, or 

for a sequence of postures by solving a general optimization problem based on objective 

functions related to human performance criteria (Abdel-Malek et al., 2007). 

The posture prediction approach can help facilitate the proactive ergonomics process. 

Where ergonomist and researchers have the ability to verify the suitability of a workplace or task 

during the development stages (Regazzoni & Rizzi, 2013). Users can predict how the worker will 

perform a task based on their anthropometrics, physical abilities or placement of interacting 

materials/tools. Posture prediction has been commonly used in the automotive industry to predict 

the reach capability of occupants during the design process of vehicle interiors (Chaffin, 2005; 

Xia & Gunther, 2011; Yang, Kim, et al., 2007) 
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Posture prediction is a time efficient approach for estimating human movement 

behaviour. However, since the human body is a highly redundant system, the avatar could adopt 

many different whole body joint angle configurations to achieve assigned task objectives that 

may not simulate the actual postures and motions used by subjects across different occupations 

and activities. Moreover, posture prediction can also be limited by the kinematic model’s DOF. 

Research is required to determine the reliability of the posture generating feature in producing 

human body postures for complex tasks, such as patient handling. This is especially important 

when validating the utility of DHM for proactive HF&E investigations.  

2.8 Advanced Digital Human Modeling Software Packages  

According to the literature on the development of DHMs, the most advanced DHM 

software packages currently in the market for commercial use are Siemens Jack (V 8.4) and 

Santos. Both software packages have improved biomechanical models for enhanced avatar 

control, robust algorithms, updated anthropometric databases, realistic skeletal linkage models 

with greater DOF and computationally fast real-time simulations (Duffy, 2008). 

2.8.1 Siemens Jack (V 8.4) 

Siemens Jack remains as a popular, commercially available DHM package serving a 

range of clients within North America. The Jack human modeling tool was developed at the 

Center for Human Modelling and Simulation at the University of Pennsylvania (Badler, Phillips, 

& Webber, 1999a). The main impetus for the development of Jack was to support the inclusion 

of HF&E principles into the design and development of workspaces, emphasizing the 

optimization of human-machine interfaces. Avatars (Jack or Jill) are scaled based on regression 

equations that use comprehensive military civilian anthropometric survey (ANSUR) data. The 

database contains 132 anthropometric measures from 9000 military personnel (1774 men and 
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2208 female) (Raschke, Schutte, & Chaffin, 2000). The skeletal linkage model includes 71 

segments and 64 joints with 135 DOF (Monheit & Badler, 1991). The shoulder is composed of 

two articulating joints (shoulder and sterno-clavicular joints) and the spine consists of 12 

thoracic and 5 lumbar vertebrae (Monheit & Badler, 1991). Jack uses an IK model to compute 

whole body joint angles and an inverse dynamics approach (top-down) to calculate joint 

moments and reactions forces. To control the avatar, users have the options of manually 

manipulating the joints, importing motion capture data to drive Jack/Jill, or using the posture 

prediction command.  

 

 

 

 

 

 

 

 

Jack’s posture prediction uses a data-driven statistical regression approach; therefore, it 

can only produce accurate results for a finite number of tasks/motions. An accumulation of more 

than 70 000 motions collected from subjects performing a variety of manual automotive related 

tasks were gathered to create a database for the model (Duffy, 2008; Faraway & Reed, 2007). 

Motions collected using 3D motion capture included reaching for controls in a vehicle, lifting 

Figure 2. Skeletal linkage model of Jack (V 8.4) 
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objects onto shelves and stepping around small areas (Faraway & Reed, 2007). Kinematic data 

from this is used to model functions as opposed to scalar/vector motions that are used to predict 

postures. Jack’s built-in IK algorithms are used to determine how Jack will move based on the 

behavioural constrains selected (e.g., torso constrained, head/eye fixated on object), then the 

avatar can be moved to select the end effector, and the joints involved will be automatically 

adjusted using the IK algorithms (Duffy, 2008).  

Digital environments can be created and modified using a range of native CAD object 

libraries (office furniture, automotive objects). Along with a range of ergonomic analysis tools 

available to support the assessment of workplace designs, Jack has also included a lumbar-torso 

model to calculate low back forces. Jack has integrated Raschke’s (1996) neurophysiology-based 

model that estimates L4-L5 compression and shear forces. The biomechanical lumbar-torso 

model uses muscle recruitment based on a distributed moment histogram method to predict 

agonist and antagonist activity in the torso (Raschke, Martin, & Chaffin, 1996).  

2.8.2 Santos Pro 

Santos is emerging as a competitor DHM software in the North American market. This 

DHM package was developed at the Virtual Soldier Research Program at the University of Iowa 

(Abdel-Malek et al., 2007). Santos was developed with the primary focus of modeling realistic 

human characteristics; including whole body movement, appearance and feedback (Abdel-malek 

et al., 2008).  
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Avatars (Santos or Sophia) are scaled based on a GEBOD program that produces human 

and dummy body description data used by the Articulated Total Body (ATB) model (Cheng et 

al., 1994). Depending on the chosen subject type, the program computes the body segments’ 

geometric dimensions, mass, joint locations and mechanical properties using regression 

equations developed from survey data (Cheng et al., 1994). Santos has a kinematic linkage 

model with 211 DOF (Abdel-malek et al., 2008). The shoulder model includes two articulating 

joints (shoulder and sterno-clavicular joint) and the spine model includes 17 vertebrae from the 

base of neck (Abdel-malek et al., 2008). Santos uses an IK model to compute whole body joint 

angles and an inverse dynamics approach (top-down) to calculate joint moments. Unlike Jack, 

Santos produces visually realistic humans with deformable skin to display the effects of the 

different postures. To control the avatar, users have the options of manually manipulating the 

joints, importing motion capture data to drive Santos/Sophia, or use the posture prediction 

command.  

 

 

 

 

 

 

Santos’ posture prediction approach was developed using a physics based multi-objective 

optimization (MOO) technique instead of pre-recorded data driven algorithms. Compared to 

Figure 3. Skeletal linkage model of Santos 
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Jack, Santos’ computational posture prediction model has the ability to estimate set of joint 

angles for an infinite number tasks (Abdel-Malek & Arora, 2013), presuming users can 

adequately adjust cost functions weights. The MOO approach uses physics factors that govern 

human movements, including gravity and potential energy (R. T. Marler, Arora, Yang, Kim, & 

Abdel-malek, 2009). Based on these physics factors, cost functions (human performance 

measures) were developed, including joint displacement, effort, change of potential energy, 

visual displacement and discomfort. (Abdel-Malek et al., 2007; R. T. Marler et al., 2009). 

Compared to IK approaches or experimental-based data driven approaches to posture prediction, 

Santos’ MOO approach enforces human performance measures to predict the postures. As a 

result, it ensures autonomous movement regardless of the task scenario in real-time (Abdel-

Malek et al., 2007).  

Similar to Jack (V 8.4), Santos also has an integrated spine model. Santos estimates spine 

compression forces using a regression equation (McGill, Norman, & Cholewicki, 1996) 

originally developed as a surrogate to McGill’s anatomically detailed spine model (McGill & 

Norman, 1986), which has noted limitations (Fischer, Albert, McClellan, & Callaghan, 2007).  

2.9 Validation of Avatar Posturing Approaches for Healthcare Applications  

Although DHM packages like Jack (V 8.4) and Santos have been applied across a diverse 

range of design problems and occupational tasks, only a limited number of published studies on 

the validation of Jack and Santos are available. To date, research efforts have concentrated on 

validating the anthropometric aspects of human modelling (Allen, Curless, & Popovic, 2004; 

Allen, Curless, & Popović, 2002; Kouchi & Mochimaru, 2004) and fine movement control of 

eyes (Kim & Martin, 2006; Ruspa, Quattrocolo, & Bertolino, 2007) and hands (Endo et al., 2007, 

2009). Aside from the continuous validation of posturing algorithms (Yang, Rahmatalla, Marler, 
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& Abdel-malek, 2007), there is decreased attention towards establishing the fidelity of the 

kinematic simulations and their outputs.  

One known published study from the United States Airforce research group validated 

Jack’s (V 2.1) ability to simulate the postures of a front station crew in an F-16D (Duffy, 2008). 

Compared to field tests with humans, Jack yielded inaccurate results when attempting to 

determine accommodation limits for the aircraft cockpit (Duffy, 2008). Challenges posturing the 

avatar was a contributor to the errors reported in the validation phase.   

2.10 Relevance of Current Research  

Developers of Jack and Santos have updated the DHM software packages to help users 

simulate realistic human postures and motions. However, there is very little evidence supporting 

the validity of the kinematic and kinetic outputs produced by the posture control approaches 

integrated into Jack and Santos for the application of complex healthcare activities. The model 

outputs not only need to be realistic, but their results must be reproducible and verifiable. An 

important research area in biomechanics is determining the validity of instrumentation and 

associated models we use to predict and describe human motions and the forces that drive those 

postures. Therefore, by comparing the kinematic and kinetic outputs from manual posturing, 

kinematic data importing and posture prediction approaches against a lab-based rigid linked 

segment model will provide users with preliminary evidence to help determine the 

appropriateness of DHM to estimate MSD hazard exposures. The purpose of this research is to 

compare the kinematic and kinetic outputs produced using Siemens Jack (V 8.4) and Santos 

software package's avatar control approaches; manual whole body joint manipulation, direct 

motion capture data importing and posture prediction against lab-based rigid-linked segmental 

model outputs when modelling a HCP performing a patient repositioning task.  
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3.0 Methodology 

3.1 Participants  

  Twenty-five (25) healthy HCPs (17 female) were recruited from local long-term care 

facilities and from Conestoga College to perform a patient repositioning task. All HCPs recruited 

had at least two years of standardized safe patient handling training in practical nursing school or 

through external training programs. Table 1 displays the participant demographics.  

Based on a power analysis (G*Power 3.19.2, Düsseldorf, Germany), a minimum sample 

size of 23 was required to detect significant differences in kinematic and kinetic values between 

DHM software packages and the lab-based RLM within each posturing approach, with a medium 

to large effect size (partial η2=0.1) using a one-way repeated measures analysis of variance 

(RMANOVA) and to detect significant correlation coefficients using Pearson’s Product Moment 

correlation (α=0.05, 1-β = 0.8).  

Table 1. Participant demographics  

 
Females (n=17) Males (n=8) 

Age (years) 37.6 ±14.0 34.9 ±12.5 

Height (m) 1.66 ±0.09 1.77 ±0.08 

Weight (kg) 68.6 ±9.5 83.9 ±18.0 

Patient handling experience (years) 11.9 ±13.0 5.4 ±8.8 

 

Prior to collection, participants were screened in person to determine eligibility for the 

study. The Nordic MSD Questionnaire (Kuorinka et al., 1987), and the Physical Activity 

Readiness Questionnaire (ParQ+) (Warburton et al., 2011) were completed to screen for 

individuals who had suffered from an injury that required rehabilitation in the last 12 months 

(exclusion criteria). A demographics form was filled out which asked participants the number of 

years they had with patient handling experience (minimum of 2 years required as exclusion 
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criteria). All participants recruited for this study met the inclusion criteria. Informed consent was 

acquired from each participant prior to the collection. The study was reviewed by the University 

of Waterloo Office of Research Ethics Committee and received approval (ORE # 22314) prior to 

recruitment and collections.  

3.2 Instrumentation and Laboratory Setup  

The outcome measures for this study were calculated based on data obtained from 3D 

motion capture, 2D video capture, hand force measurements, and a body worn accelerometer. 

The following sections describes the instrumentation and laboratory setup used to compute the 

kinematic (joint angles) and kinetic (joint moments) outcome variables. 

3.2.1 Motion Capture – 3D Kinematic Data 

Whole body 3D positional data of participating HCPs were collected at 60Hz using a 12-

camera passive motion capture system (Vicon, Centennial, Co, USA). The collection space was 

calibrated according to Vicon specifications (Vicon, 2016) and the origin was set at the center of 

the laboratory space. The laboratory coordinate system was configured so that +Z was upwards, 

+X was backward and +Y was directed to the right of the origin (Figure 4). Prior to a static 

calibration process 44 individual passive reflective markers (14mm diameter spheres) were 

placed on anatomical landmarks as required to mathematically define local coordinate systems 

for each body segment (Figure 5) (Wu et al., 2002, 2005). Anatomical markers were 

accompanied by rigid body marker clusters (each with four reflective markers) attached to the 

trunk, upper arms, lower arms, pelvis, thighs and shank. The rigid body marker clusters remained 

on participants during active trials to track the movements of each segment during dynamic 

motion to minimize the effect of skin motion artefact.  
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A combination of static and dynamic calibration trials were collected as per Vicon 

specifications (Vicon, 2016). A five second static calibration trial was collected for each 

participant in the space. Participants stood upright in anatomical position facing the positive axis 

of the of the laboratory space. This trial was used to express the segmental motions (tracked via 

clusters) relative to the segmental coordinate systems defined by the anatomical landmarks. The 

dynamic calibration trial was collected to capture the full range of motion (ROM) of the 

participant. Vicon Nexus software used the data gathered from the dynamic trial to track the 

movement of segments in subsequent trials.  

 

 

 

 

Figure 4. Schematic diagram of the laboratory setup used to for the patient reposition task 
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3.2.2 Video  

Two Vicon Vue cameras, synchronized into Vicon’s motion capture system were used to 

capture 2D video data of the HCP performing the patient reposition task. Video data were 

sampled at 30Hz. The two cameras were secured to tripods and placed in the collection space to 

capture the sagittal plane, whole body motions of the HCP. The camera placement in the 

laboratory space can be seen in Figure 4.  

3.2.3 External Hand Force Measure 

Due to challenges in the collection of real-time direct hand forces, peak external hand 

force estimates were measured using a DFX-200 digital Chatillon force gauge (MRM Precision 

Instruments, Brampton, ON). Peak hand-held force gauge measurements have shown good 

reliability compared to a six strain gauge force transducer (Hoozemans, Van Der Beek, Frings-

Dresen, & Van Der Molen, 2001). HCPs often use a sheet to facilitate the physical actions 

Figure 5. Vicon reflective marker placement 
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required to reposition a patient, including the initiation of the patient turn. Therefore, forces 

exerted by the HCP were estimated to mimic the magnitude of force exertion when using a sheet. 

To estimate the peak external hand force exerted, a rigid metal bar (80cm x 4cm x 0.5cm) with a 

hole (1.5cm diameter) in the center, was securely sewn to the end of a sheet. The force gauge 

was attached to the center of the bar using a clamp attachment (Figure 6). The force gauge was 

configured to register the peak force. The gauge was pulled upward to lift the lateral right torso-

pelvis region of the patient off the bed. The peak force registered by the force gauge was 

assumed to occur at the initiation of the turn, consistent with initial motion of the patient. The 

force applied at the initiation of the turn was the minimum force required to overcome inertia and 

move the patient’s body against gravity in order to tilt the patient. Three trials were conducted 

during piloting, and the average of the three trials was used as the representative hand force 

measurement in subsequent analyses.  

 

 

 

 

 

 

 

Figure 6. Diagram of the rigid metal bar that was inserted into the sheet to facilitate hand force 

measurements using a force gauge 
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3.2.4 Acceleration 

To identify the point of initial patient motion (assumed as the point of peak external hand 

force), acceleration data were recorded from an accelerometer (Delsys Trigno, Natick, MA) 

placed on the sternum of the patient. Acceleration data (mm/s2) were sampled at 148.1Hz, up-

sampled to 2000Hz and synchronized to the motion capture system (analog sample rate 2100Hz). 

The accelerometer provided time series data that was used to determine when the patient’s body 

began to move (initiation of the turn).  

3.3 Experimental Protocol  

Upon arrival, participants were asked to provide written and informed consent, complete 

a demographics questionnaire which asked them to provide details on their age, gender, weight 

(kg), height (m) and healthcare role. The hip height (vertical distance from the floor to the grater 

trochanter) of each participant was measured and recorded. A demonstration of the patient 

reposition task using a sheet was provided using a critical patient care hospital bed (Hill-Rom®, 

Chicago, IL) (Figure 7) where a live 60th percentile male (82kg) acted as the standardized 

patient (McDowell, Fryar, Ogden, & Flegal, 2008). Participants were given an opportunity to 

practice the patient repositioning activity before equipped with any instrumentation. Participants 

were then instrumented with full body passive reflective motion capture markers, including 

individual markers over requisite anatomical landmarks, and clusters of markers fixed to rigid 

bodies placed over body segments. Following instrumentation, participants performed static and 

dynamic (ROM) calibration trials in the capture space.  
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The hospital bed was first set to the hip height of the participant. Then, the participant 

was asked to simulate a patient reposition, which included the safe left-turn of an immobile 

patient. Three trials of were performed. Data acquisition (motion capture, video, accelerometer) 

for each trial began with participants standing at rest and ended once they had completed all the 

actions required to turn the patient (standing at rest). The experimental protocol is outlined in 

Figure 8. 

  

 

Figure 7. Critical patient care hospital bed 
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Figure 8. Block diagram of the experimental protocol used for the lab-based study 
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3.4 Data Processing  

3.4.1 3D position data  

Motion capture data were processed in Vicon Nexus 2.5 (Vicon, Centennial, CO, USA). 

Raw marker data captured for each participant’s trial were reconstructed and labelled. Each 

reconstructed trial was then visually analyzed frame-by-frame to ensure that trajectories were 

properly labeled and free of any gaps. If trajectories were mis-labeled, they were manually re-

labeled correctly. If any gaps emerged then a gap filling approach was applied, using the rigid 

body fill option in Vicon Nexus 2.5. Correctly labeled and gap-filled marker trajectory data were 

then filtered using a dual-pass, low pass digital Fourth Order Butterworth filter with a frequency 

cut off of 6Hz. Processed trajectory data were exported to Visual 3D V5 Software (C-Motion 

Inc., Germantown, USA) for additional analysis.  

3.4.2 Acceleration data  

Raw acceleration data gathered from the accelerometer was imported into Matlab R2015a 

software (Mathworks Inc., USA) for processing. Data from each trial was filtered using a dual-

pass, low pass digital Fourth Order Butterworth filter with a frequency cut off of 3Hz. Based off 

visual inspection of the time-series acceleration data and whole-body motion capture data, a 

threshold in vertical acceleration was estimated to determine the frame at which the participant 

initiated the turn. A threshold of ~6 mm/s2 was used to identify the frame at which the patient 

turn was initiated in each trial.   

3.5 Calculating and Extracting Lab-Based Outcome Measures: Visual 3D Model 

Development and Analysis  
 

A 3D kinematic model was developed in Visual 3D V5 (V3D) Software using the 

processed position data from each participant’s trial, where segments were defined based on the 
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anatomical landmarks. The model was customized to each participant by inputting their body 

mass (kg). Using the static calibration trial data, segment properties were computed. Joint centers 

of rotation were calculated using the anatomical landmarks where a stationary midpoint was 

calculated along a functional axis created between two relative segments (e.g. between the upper 

arm and forearm, an axis is created using the R_LEPI and R_MEPI landmarks (Figure 5 to 

calculate the elbow joint). The shoulder joint centre was estimated using the Nussbaum & Zhang, 

(2000) heuristic approach, locating the shoulder joint center 6 mm below the acromion on a line 

coincident with the long axis of the torso segment. Segment lengths were calculated using the 

proximal and distal ends defined for each segment using the anatomical landmarks. Dynamic 

patient turning trials were loaded, and the customized model was applied to the data set.   

The frame at which peak force application was applied by the participant was identified 

in the time series data of the whole body positional data in each dynamic patient turning trial in 

V3D. This frame was the assumed static posture used by the participant at the initiation of the 

patient turn and used to compute model outputs.  

  The recorded peak external hand force (204N) measured was divided by two and applied 

to the approximate grip center of each hand segment. It was assumed that each participant had 

exerted an equally distributed force between both hands during the patient turn. Since only the 

magnitude of the force exerted was gathered, a vector was created to indicate the direction of 

force application in each hand. The hand force vector direction was assumed to be coincident to 

the long axis of the right and left forearms respectively at peak force application.  

Using the IK model integrated in V3D, the right shoulder and trunk flexion/extension 

joint angles (degrees) were calculated at the selected frame. Joint angles were  calculated based 

on definitions prescribed by the International Society of Biomechanics (Wu et al., 2002, 2005) 
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such that they could be referenced within a common orthopaedic convention (e.g., 

flexion/extension, internal/external rotation, etc.). The inverse-dynamics (top-down model) 

algorithm integrated in V3D calculated the joint moments from measured kinematic and estimate 

hand force data. The right shoulder and L4-L5 (trunk relative to pelvis) flexor/extensor net joint 

moments (Nm) were extracted for further analysis.  

Among the three processed trials for each participant, the trial that included the best 

quality of data was selected. The trials that showed all the body segments constructed in V3D, 

along with accompanied video image that had minimal obstruction of view of the HCP at the 

target frame were selected. Joint angle and moment values at the instant of patient motion (i.e., 

peak force application) were exported from the selected trial and served as the lab-based RLM 

outcome measures  

3.6 Computing and Extracting Digital Human Model Outcome Measures 

The following sections describes the approach used to obtain biomechanical measures 

(kinematics and kinetics) from Jack and Santos software packages. There are three different 

posturing approaches available in Jack and Santos that were used to estimate the 3D joint angles 

and 3D joint moments at the instant of patient initiation; kinematic data importing, manual 

posturing and posture prediction. The steps taken to simulate the patient turning task in Jack and 

Santos using the three approaches are described below. Data gathered from the laboratory study 

were used as inputs and for reference to simulate the static posture of the HCP in a scaled virtual 

space. 

Using the data gathered from the laboratory patient turning experiment, including the 

participant demographics, external hand force measure, hip height, video and 3D positional data, 

a static patient turn posture was simulated for each participant in Jack and Santos using 
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kinematic data importing, manual posturing and posture prediction approaches. An outline of the 

data inputs and outputs extracted from the digital human simulations performed in Jack and 

Santos are illustrated in Figure 9.  

 

 

Figure 9. Block diagram of the flow of collected data that were used as inputs when digitally modeling the patient 

reposition task in Jack and Santos  

 

A virtual scaled environment that simulated the laboratory investigation was first created 

in Jack and Santos. A scaled CAD model of the hospital bed (Hill-Rom®, Chicago, IL) that was 

used in the laboratory experiment was inputted into the virtual spaces of Jack and Santos. Two 

avatars were created to input into the virtual environment. A 60th percentile male avatar weighing 

82kg was created in Jack and Santos and placed on the bed in supine position for each 

simulation. The second avatar was anthropometrically scaled to simulate the HCP in each 
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experimental trial. To scale the avatars in Santos and Jack, gender, weight and stature were 

adjusted. For each simulation, the average peak external hand force recorded during the patient 

turning trial was divided by two and applied to the left and right palm/hand centers of the virtual 

HCP. When inputting the external hand force into Jack or Santos, a vector appeared. The force 

vector was adjusted to align with the long axis of the forearm of the virtual HCP at peak force 

application.  

3.6.1 Kinematic Data Importing  

To simulate the static posture of the HCP performing the patient turn in Jack and Santos, 

the processed 3D joint position data computed using V3D at the instant of peak force application 

were mapped onto the virtual HCP. A table of the anatomical landmarks from the V3D model 

that were mapped onto the avatar in Jack and Santos is included in Appendix I. The right 

shoulder and trunk flexion/extension angles (degrees) and right shoulder and L4-L5 

flexor/extensor joint moments (Nm) were extracted from the resulting posture assumed by the 

avatar using the kinematic data.  

3.6.2 Manual Posturing  

The 2D video collected from the selected trial of the patient turning task was used as 

reference to manually posture the limbs of the avatars in Jack and Santos. The frame at which the 

HCP was identified exerting peak force in the selected trial was used as the static sagittal frame 

image in the video data to inform posturing of the virtual HCP. Ergonomist routinely depend on 

video images previously collected from a work task as a visual reference to simulate the whole-

body posture of the worker in DHM (Duffy, 2008).  

Using the sagittal static image, the virtual HCP’s limbs were adjusted to best match the 

posture of the lead HCP during the patient turn. The virtual HCP’s joint positions, including the 
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shoulder, elbow, wrist, spine, hip, knee and ankles were articulated in the frontal, sagittal and 

transverse planes using the local coordinate systems of the avatar limbs. The right shoulder and 

trunk flexion/extension angles (degrees) and right shoulder and L4-L5 flexor/extensor joint 

moments (Nm) were exported from both software once the simulations were completed.  

3.6.3 Posture Prediction  

To simulate the static postures used by the HCP during the patient turn using the posture 

prediction approach, rudimentary CAD objects were used as the target positions that the HCP 

used in place of the sheet. Two CAD objects were positioned ~30cm above the bed and 

positioned directly above the right shoulder and lateral right hip of the patient for each 

simulation using posture prediction. 

In Jack, the virtual HCP started in a neutral standing posture in front of the bed with the 

patient laying supine. A foot restriction zone of 60cm x 60cm was identified under the surface of 

the avatar’s feet. The right hand was first identified as the end effector and the object above the 

lateral right hip was identified as the target. A command within Jack was used to instruct the 

virtual HCP to grasp the object (simulating the slide sheet boarder) (Siemans PLM Software, 

2016). Then, the left hand was identified as the end effector and the object above the right 

shoulder was identified as the target. The virtual HCP was instructed to grasp the object 

simulating the border of the slide sheet with their left hand. Once a feasible posture was 

predicted by Jack, the right shoulder and trunk flexion/extension angles (degrees) and right 

shoulder and L4-L5 flexor/extensor joint moments (Nm) were exported. 
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 In Santos, the virtual HCP also started in a neutral standing posture in front of the 

hospital bed. A foot restriction zone of 60cm x 60cm was identified under the surface of the 

avatar’s feet. Then, to set up the initial optimization problem to predict the posture in Santos, the 

performance measures (objectives) were adjusted to prioritize the minimization of effort, 

discomfort, joint displacement, maximum joint torque and total joint torque for predicting 

postures. Then the right hand was identified as the first end effector and the object above the 

lateral right hip was identified as the target. Then, the left hand was identified as the second end 

effector and the object above the right shoulder was identified as the target. The posture 

prediction command was activated to automatically produce the predicted set of joint angles that 

represented the posture during the patient turn when using the slide sheet (Santoshuman Inc. 

Software, 2009). Once a feasible posture was predicted by Santos, the right shoulder and trunk 

flexion/extension angles (degrees) and right shoulder and L4-L5 flexor/extensor joint moments 

(Nm) were exported. 

 

 

 

 

 

 

 

 

Figure 10. Virtually simulating the static posture of the HCP at the initiation 

of the patient turn in Jack and Santos 

 

 



 
 

47 
 

3.7 Statistical Analyses  

 Twelve independent, within subject one-way RANOVAs (α=0.05, 1-β = 0.8) were used 

to detect for a main effect of biomechanical modeling software on kinematic and kinetic outcome 

measures within each DHM posturing approach. Using SPSS software (IBM® SPSS®, 25.0, 

Armonk, NY, USA), three levels of the within-subject factor were considered in each ANOVA 

model (3 levels: V3D, Jack, Santos). The dependent measures considered in each model were the 

L4-L5 joint moment, shoulder joint moment, trunk angle and shoulder joint angle. Comparisons 

are summarized in Table 2. A Greenhouse-Geisser correction was applied if the assumption of 

sphericity was violated, according the Mauchly’s test of sphericity. When a significant main 

effect of biomechanical modeling software was found, pairwise comparisons were investigated 

using a Bonferonni correction to identify if differences emerged between the lab-based RLM 

(V3D) and the two DHM software packages. 

Table 2. Outline of the independent and dependent variables assessed in the RANOVA 

Dependent Variables 
Independent Variables 

V3D Jack Santos V3D Jack Santos V3D  Jack  Santos 

Trunk flexion/extension joint 

angles (degrees) 

Kinematic 

Data Importing 

Manual 

Posturing 

Posture 

Prediction 

Shoulder joint flexion/extension 

joint angles (degrees) 

L4-L5 joint flexor/extensor joint 

moments (Nm) 

Shoulder joint flexor/extensor 

joint moments (Nm) 

 

Pearson Product Moment correlation coefficients (r) were computed to assess the 

relationship between DHM software package (Jack and Santos) outcome measures and the V3D 

for each posturing approach. Relationships between outcome measures assessed are summarized 

in Table 3. Significant correlations were identified at a significance level of p < 0.05. Based on 

hypothesis two, it was predicted that the outputs computed using the direct motion capture 
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approach would have a strong correlation with the lab-based RLM, therefore DHM outputs 

would be proportional to the change observed across individuals from the lab-based RLM. And 

the outputs computed using the posture prediction approach would have a weak correlation with 

the lab-based RLM, therefore DHM outputs would not be proportional to the change observed 

across individuals from the lab-based RLM. Therefore, correlations between the DHM and lab-

based modeled outputs were used to validate whether a linear relationship was present or absent 

in the data.  

To further evaluate the DHM software’s ability to estimate the same kinematic and 

kinetic measures as the lab-based RLM, Bland-Altman plots were created to evaluate the level of 

agreement between the outcome measures produced using each of the DHM posture simulating 

approaches and V3D. The differences between the DHM software and V3D (considered as the 

reference measure) outcomes were plotted against the averages of the DHM software and V3D 

outcome measures (Bland & Altman, 1999). The range of agreement within 95% (±1.96SD) of 

the differences and the bias (mean difference) was calculated between V3D and software 

outcome measures and displayed on the graph. To determine if there was a significant 

proportional bias, a linear regression was calculated to predict the differences based on the 

means of each software outcome measure. Interpretation of Bland Altman plots can be found in 

Appendix II. The Bland-Altman analysis was used in this investigation to provide practitioners 

with practical and easily interpretable data such as the magnitude of the difference between 

DHM and lab-based outputs, trends in the outputs estimated by DHMs 

(underestimation/overestimation of measures), as well as measurement error. These data are 

useful in determining the ability of DHMs to produce realistic kinematic and kinetic data as well 

highlight any significant differences produced from the DHM modeling approaches.  
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Finally, the smallest detectable change (SDC) was computed to index the absolute 

measurement error in kinematic and kinetic outcome measures estimated using each DHM 

software. The SDC value was calculated by multiplying the standard deviation of the differences 

between V3D and DHM software outcome measures by 1.96 (Van Kampen et al., 2013).  

Table 3. Relationships assessed between the lab-based model and DHM outcome measures 

 DHM: Jack & Santos Posturing Approaches 

Reference model: Lab-

based RLM  

(V3D) 

Kinematic Data 

Importing 

Manual Posturing Posture Prediction 

Trunk flexion/extension angle (degrees) 

Shoulder flexion/extension joint angle (degrees) 

L4-L5 flexor/extensor moment (Nm) 

Shoulder flexor/extensor moment (Nm) 
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4.0 Results  
 

The following section describes the results from this investigation. The results are 

separated into sections according to the DHM posturing approaches; 1) direct motion capture 

data importing, 2) manual joint manipulation and 3) posture prediction. Within each section the 

kinematic (trunk and shoulder joint angles) and kinetic (L4-L5 and shoulder joint moments) 

results are described for both Jack and Santos relative to the lab-based RLM (V3D) including a 

graphical representation of the results (side-by-side scatter and Bland Altman plots, for each 

respective dependent variable described). At the beginning of each section, a table is used to 

display a summary of the numerical results described in each section.  
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4.1 Direct Motion Capture Data Importing  
 

Table 4. Summary of the mean differences found between kinetic and kinematic measures estimated using the lab-

based RLM (V3D) and DHM software packages’ direct motion capture data importing approach. Asterisks indicate 

significant differences between models. The calculated smallest detectable change within 95% confidence intervals 

is reported for each pair.   

  

4.1.1 Kinematics  

 

A main effect of DHM software was detected for trunk angles F (2, 48) = 11.33, p< 

0.001, η² = 0.32. Pairwise comparisons indicated that trunk angles computed by Jack (M=1.32, 

SD=5.08) were significantly lower than V3D (M=10.72 SD=12.26) and Santos (M=7.91, 

SD=9.32). Correlation analysis revealed a positive, weak correlation between Jack and V3D (r = 

0.45, n = 25, p = 0.02) and a positive, moderate correlation between Santos and V3D (r = 0.56, n 

= 25, p<0.001) trunk angles. Bland Altman plots revealed poor agreement between trunk angles 

estimated using V3D and Jack and a significant proportional bias of 9.41(β = 0.75, t (24) = 5.38, 

p<0.001) (see Appendix III for regression results). However, moderate agreement was observed 

between trunk angles estimated using V3D and Santos with no significant proportional bias. The 

SDC95% were ±6.06° and ±5.84° for Jack and Santos trunk angles respectively. 

   
95% Confidence 

Interval for 

Difference 

 

Model (Lab based) Model (DHM) Mean Difference  

(Lab based-DHM) 

Lower 

Bound 

Upper 

Bound 

SDC±95% 

V3D Trunk Angle Jack Trunk Angle 9.41* 3.78 15.04 6.06 
 

Santos Trunk Angle 2.81 -2.62 8.24 5.84 

V3D Shoulder Angle Jack Shoulder Angle -35.51* -42.74 -28.27 7.79 

 Santos Shoulder Angle -21.60* -31.55 -11.65 10.71 

V3D L4-L5 Moment Jack L4-L5 Moment 4.43 -11.63 20.50 17.29 
 

Santos L4-L5 Moment 28.04* 8.40 47.68 21.14 

V3D Shoulder Moment Jack Shoulder Moment 6.77* 0.61 12.92 6.63 
 

Santos Shoulder Moment 6.66* 1.48 11.84 5.58 
     

 

*p<0.05 
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Figure 11. Left – scatter plot illustrating the relationship between trunk angles (+ extension) estimated using Jack’s 

motion capture data importing approach and the lab-based RLM (V3D). Regression equation and Pearson’s 

correlation coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between 

trunk angles (+ extension) produced by the lab-based RLM (V3D) and Jack’s motion capture data importing approach 

vs. the mean of the two measures. Red line is the systematic error produced by Jack, grey dashed lines are the limits of 

agreement from -1.96SD to +1.96SD, black dotted line is the line of equality. 

Figure 12. Left - scatter plot illustrating the relationship between trunk angles (+ extension) estimated using Santos’ 

motion capture data importing approach and the lab-based RLM (V3D). Regression equation and Pearson’s correlation 

coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between trunk angles (+ 

extension) produced by the lab-based RLM (V3D) and Santos’ motion capture data importing approach vs. the mean of 

the two measures. Red line is the systematic error produced by Santos, grey dashed lines are the limits of agreement from 

-1.96SD to +1.96SD, black dotted line is the line of equality. 
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A main effect of DHM software was detected for shoulder joint angles F (2, 48) = 58.79, 

p< 0.001, η² = 0.71. Pairwise comparisons indicated that shoulder angles computed by Jack 

(M=56.54, SD=18.00) and Santos (M=42.64, SD=4.80) were significantly higher than V3D 

(M=21.04 SD=20.91). There was a positive, strong correlation between Jack and V3D shoulder 

angles (r = 0.75, n = 25, p<0.001) and a positive, but weak correlation between Santos and V3D 

(r = 0.43, n = 25, p=0.05) shoulder joint angles. Bland Altman plots revealed disagreement 

between both DHM software and lab-based RLM, respectively; however, a significant 

proportional bias of -21.60 (β = 0.92, t (24) = 10.95, p<0.001) was found between V3D and 

Santos shoulder angles. The SDC95% were ±7.79° and ±10.71° Jack and Santos shoulder angles 

respectively. 

 
 

 

Figure 13. Left – scatter plot illustrating the relationship between shoulder joint angles (+ flexion) estimated using 

Jack’s motion capture data importing approach and the lab-based RLM (V3D). Regression equation and Pearson’s 

correlation coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between 

shoulder joint angles (+ flexion) produced by the lab-based RLM (V3D) and Jack’s motion capture data importing 

approach vs. the mean of the two measures. Red line is the systematic error produced by Jack, grey dashed lines are 

the limits of agreement from -1.96SD to +1.96SD, black dotted line is the line of equality. 
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Figure 14. Left – scatter plot illustrating the relationship between shoulder joint angles (+flexion) estimated using 

Santos’ motion capture data importing approach and the lab-based RLM (V3D). Regression equation and 

Pearson’s correlation coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences 

between shoulder joint angles (+ flexion) produced by the lab-based RLM (V3D) and Santos’ motion capture data 

importing approach vs. the mean of the two measures. Red line is the systematic error produced by Santos, grey 

dashed lines are the limits of agreement from -1.96SD to +1.96SD, black dotted line is the line of equality. 

 

4.1.2 Kinetics  

 

A main effect of DHM software package was detected for L4-L5 moments when using 

the direct motion capture data importing approach to simulate the patient turn F (2, 48) = 10.86, 

p< 0.001, η² = 0.31. Pairwise comparisons indicated that L4-L5 moments produced by Santos 

(M=16.32, SD=8.48) were significantly lower than V3D (M=44.36, SD=41.45) and Jack 

(M=39.93, SD=28.68). There were no significant differences between V3D and Jack L4-L5 

moments. Correlation analysis revealed a positive, moderate correlation between Jack and V3D 

L4-L5 moments (r = 0.66, n = 25, p<0.001), and a positive, but weak correlation between Santos 

and V3D L4-L5 moments (r = 0.48, n = 25, p=0.02). Bland Altman plots revealed good 

agreement between L4-L5 moments estimated using V3D and Jack, with a significant 

proportional bias of 4.43Nm (β = 0.45 t (24) = 2.40, p=0.02). However, only moderate 

agreement was observed between L4-L5 moments estimated using V3D and Santos, with a 
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significant proportional bias of 28.04Nm (β = 0.94 t (24) = 12.77, p<0.001). The SDC95% were 

±17.29Nm and ±21.14Nm Jack and Santos L4-L5 moments, respectively.  

 

 

 

 

Figure 15. Left – scatter plot illustrating the relationship between L4-L5 joint moments (+ extensor) estimated using 

Jack’s motion capture data importing approach and the lab-based RLM (V3D). Regression equation and Pearson’s 

correlation coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between 

L4-L5 joint moments (+ extensor) produced by the lab-based RLM (V3D) and Jack’s motion capture data importing 

approach vs. the mean of the two measures. Red line is the systematic error produced by Jack, grey dashed lines are 

the limits of agreement from -1.96SD to +1.96SD, black dotted line is the line of equality.  

 

Figure 16. Left – scatter plot illustrating the relationship between L4-L5 joint moments (+ extensor) estimated using 

Santos’ motion capture data importing approach and the lab-based RLM (V3D). Regression equation and Pearson’s 

correlation coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between L4-

L5 joint moments (+ extensor) produced by the lab-based RLM (V3D) and Santos’ motion capture data importing 

approach vs. the mean of the two measures. Red line is the systematic error produced by Santos, grey dashed lines are 

the limits of agreement from -1.96SD to +1.96SD, black dotted line is the line of equality. 
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Significant differences were detected in modeled shoulder moments. A main effect of 

DHM software package was detected F (2, 48) = 5.84, p = 0.005, η² = 0.20. Pairwise 

comparisons indicated that shoulder moments estimated by Jack (M=20.64, SD=8.67) and Santos 

(M=20.75, SD=6.68) were significantly lower than V3D (M=27.41, SD=8.44). No significant 

differences were found between Jack and Santos shoulder moments. There was a positive but 

weak correlation between Jack and V3D (r = 0.02, n = 25, p = 0.91), and Santos and V3D 

shoulder moments (r = 0.13, n = 25, p = 0.54); Bland Altman plots revealed disagreement 

between the software and lab-based RLM, respectively, with no significant proportional biases. 

The SDC95% were ±6.63Nm and ±5.58Nm for Jack and Santos shoulder moments respectively.  

 

  

 

 

 

 

Figure 17. Left – scatter plot illustrating the relationship between shoulder joint moments (+ flexor) estimated using 

Jack’s motion capture data importing approach and the lab-based RLM (V3D). Regression equation and Pearson’s 

correlation coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between 

shoulder joint moments (+ flexor) produced by the lab-based RLM (V3D) and Jack’s motion capture data importing 

approach vs. the mean of the two measures. Red line is the systematic error produced by Jack, grey dashed lines are 

the limits of agreement from -1.96SD to +1.96SD, black dotted line is the line of equality. 
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Figure 18. Left – scatter plot illustrating the relationship between shoulder joint moments (+ flexor) estimated using 

Santos’ motion capture data importing approach and the lab-based RLM (V3D). Regression equation and Pearson’s 

correlation coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between 

shoulder joint moments (+ flexor) produced by the lab-based RLM (V3D) and Jack’s motion capture data importing 

approach vs. the mean of the two measures. Red line is the systematic error produced by Santos, grey dashed lines are 

the limits of agreement from -1.96SD to +1.96SD, black dotted line is the line of equality. 
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4.2 Manual Joint Manipulation  
 

Table 5. Summary of the mean differences found between kinetic and kinematic measures estimated using the lab-

based RLM (V3D) and DHM software packages’ manual joint manipulation approach. Asterisks indicate significant 

differences between models. The calculated smallest detectable change within 95% confidence intervals is reported 

for each pair.   

 

4.2.1 Kinematics  

 

A main effect of DHM software was detected for trunk angles F (1.17, 28.02) = 3.68, p = 

0.05, η² = 0.12. Pairwise comparisons indicated that trunk angles computed by Santos (M=3.13, 

SD=3.79) were significantly lower than V3D (M=10.72 SD=12.26) and Jack (M=9.64, 

SD=11.71). Correlation analysis revealed a negative, weak correlation between Jack and V3D (r 

= -0.45, n = 25, p = 0.02) and Santos and V3D (r = -0.08, n = 25, p = 0.71) trunk joint angles. 

Bland Altman plots revealed moderate agreement between Jack and V3D trunk angles, with no 

significant bias detected, while poor agreement was observed between Santos and V3D trunk 

angles, with a significant proportional bias of 7.59 (β = 0.83, t (24) = 7.02, p< 0.001). The 

SDC95% were ±11.32° and ±7.27° for Jack and Santos trunk angles respectively.  

 

   
95% Confidence 

Interval for Difference 

 

Model (Lab based) Model (DHM) Mean Difference  

(Lab based-

DHM) 

Lower 

Bound 

Upper 

Bound 

SDC±9

5% 

V3D trunk Angle Jack trunk Angle 1.08 -9.43 11.60 11.32 

 Santos trunk Angle 7.59* 0.83 14.34 7.27 

V3D Shoulder Angle Jack Shoulder Angle -7.76 -21.23 5.71 14.50 

 Santos Shoulder Angle 3.81 -0.41 8.04 4.55 

V3D L4-L5 Moment Jack L4-L5 Moment 0.71 -7.99 9.42 9.37 

 Santos L4-L5 Moment 28.25* 14.67 41.83 14.62 

V3D Shoulder Moment Jack Shoulder Moment 8.87* 3.34 14.39 5.94 
 

Santos Shoulder Moment 4.73* 0.00 9.46 5.09 
     

 

*p<0.05 
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Figure 19. Left – scatter plot illustrating the relationship between trunk angles (+ extension) estimated using Jack’s 

manual joint manipulation approach and the lab-based RLM (V3D). Regression equation and Pearson’s correlation 

coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between trunk angles 

(+ extension) produced by the lab-based RLM (V3D) and Jack’s manual joint manipulation approach vs. the mean 

of the two measures. Red line is the systematic error produced by Jack, grey dashed lines are the limits of agreement 

from -1.96SD to +1.96SD, black dotted line is the line of equality. 

 

 

Figure 20.  Left – scatter plot illustrating the relationship between trunk angles (+ extension) estimated using 

Santos’ manual joint manipulation approach and the lab-based RLM (V3D). Regression equation and Pearson’s 

correlation coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between 

trunk angles (+ extension) produced by the lab-based RLM (V3D) and Santos’ manual joint manipulation approach 

vs. the mean of the two measures. Red line is the systematic error produced by Santos, grey dashed lines are the 

limits of agreement from -1.96SD to +1.96SD, black dotted line is the line of equality. 
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Differences were not detected between Jack, Santos and V3D shoulder angles F (1.14, 

27.58) = 3.60, p = 0.06, η² = 0.13. Correlation analysis revealed a positive, strong correlation 

between Jack and V3D (r = 0.77, n = 25, p<0.001) and Santos and V3D (r = 0.92, n = 25, 

p<0.001) shoulder joint angles. Bland Altman plots revealed moderate agreement between Jack 

and V3D shoulder angles with a significant proportional bias of -7.76 (β = -0.71, t (24) = -4.85, 

p<0.001); however, good agreement was observed between Santos and V3D shoulder angles 

with no significant proportional bias. The SDC95% were ±14.50° and ±4.55° for Jack and Santos 

shoulder angles respectively. 

Figure 21. Left – scatter plot illustrating the relationship between shoulder joint angles (+ flexion) estimated using 

Jack’s manual joint manipulation approach and the lab-based RLM (V3D). Regression equation and Pearson’s 

correlation coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between 

shoulder joint angles (+ flexion) produced by the lab-based RLM (V3D) and Jack’s manual joint manipulation 

approach vs. the mean of the two measures. Red line is the systematic error produced by Jack, grey dashed lines are 

the limits of agreement from -1.96SD to +1.96SD, black dotted line is the line of equality.  
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Figure 22. Left – scatter plot illustrating the relationship between shoulder joint angles (+ flexion) estimated using 

Santos’ manual joint manipulation approach and the lab-based RLM (V3D). Regression equation and Pearson’s 

correlation coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between 

shoulder joint angles (+ flexion) produced by the lab-based RLM (V3D) and Santos’ manual joint manipulation 

approach vs. the mean of the two measures. Red line is the systematic error produced by Santos, grey dashed lines 

are the limits of agreement from -1.96SD to +1.96SD, black dotted line is the line of equality. 

 

4.2.2 Kinetics  

 

A main effect of DHM software package was detected for L4-L5 moments when using 

the manual joint manipulation approach to simulate the patient turn F (1.56, 37.40) = 28.23, 

p<0.001, η² = 0.54. Pairwise comparisons indicated that Santos L4-L5 moments (M=16.11, 

SD=14.45) were significantly lower than V3D (M=44.36, SD=41.45) and Jack (M=43.65, 

SD=33.68) L4-L5 moment. Correlation analysis revealed a positive, strong correlation between 

Jack and V3D L4-L5 moments (r = 0.92, n = 25, p<0.001) and Santos and V3D L4-L5 moments 

(r = 0.83, n = 25, p<0.001). Bland Altman plots revealed good agreement between Jack and V3D 

L4-L5 moments, with a significant proportional bias of 0.71Nm (β = 0.47, t (24) = 2.54, p= 

0.02), but moderate agreement between Santos and V3D L4-L5 moments with a significant bias 

of 28.25Nm (β = 0.79, t (24) = 6.15, p< 0.001). The SDC95% were ±9.37Nm and ±14.62Nm for 

Jack and Santos L4-L5 moments respectively.  
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Figure 23. Left – scatter plot illustrating the relationship between L4-L5 joint moments (+ extensor) estimated using 

Jack’s manual joint manipulation approach and the lab-based RLM (V3D). Regression equation and Pearson’s 

correlation coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between 

L4-L5 joint moments (+ extensor) produced by the lab-based RLM (V3D) and Jack’s manual joint manipulation 

approach vs. the mean of the two measures. Red line is the systematic error produced by Jack, grey dashed lines are 

the limits of agreement from -1.96SD to +1.96SD, black dotted line is the line of equality. 

 

Figure 24. Left – scatter plot illustrating the relationship between L4-L5 joint moments (+ extensor) estimated using 

Santos’ manual joint manipulation approach and the lab-based RLM (V3D). Regression equation and Pearson’s 

correlation coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between 

L4-L5 joint moments (+ extensor) produced by the lab-based RLM (V3D) and Santos’ manual joint manipulation 

approach vs. the mean of the two measures. Red line is the systematic error produced by Santos, grey dashed lines 

are the limits of agreement from -1.96SD to +1.96SD, black dotted line is the line of equality. 
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Significant differences were detected for shoulder moments. A main effect of DHM 

software package was detected F (2,48) = 11.96, p<0.001, η² = 0.33. Pairwise comparisons 

indicated shoulder moments produced by Jack (M=18.54, SD=7.93) and Santos (M=22.68, 

SD=3.86) were both significantly lower than V3D (M=27.41, SD=8.44). Significant differences 

were also found between Jack and Santos shoulder moment outputs. Correlation analysis 

revealed a positive, weak correlation between Jack and V3D (r = 0.14, n = 25, p = 0.49), and 

Santos and V3D shoulder moments (r = 0.03, n = 25, p = 0.89). Bland Altman plots revealed 

disagreement between both DHM software and V3D shoulder moment outputs; however, a 

significant proportional bias of 4.73Nm (β = 0.65, t (24) = 4.15, p< 0.001) was only found 

between Santos and V3D. The SDC95% were ±5.94Nm and ±5.09Nm for Jack and Santos 

shoulder moments respectively.  

 
 

Figure 25. Left – scatter plot illustrating the relationship between shoulder joint moments (+ flexor) estimated using 

Jack’s manual joint manipulation approach and the lab-based RLM (V3D). Regression equation and Pearson’s 

correlation coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between 

shoulder joint moments (+ flexor) produced by the lab-based RLM (V3D) and Jack’s manual joint manipulation 

approach vs. the mean of the two measures. Red line is the systematic error produced by Jack, grey dashed lines are 

the limits of agreement from -1.96SD to +1.96SD, black dotted line is the line of equality. 
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Figure 26. Left – scatter plot illustrating the relationship between shoulder joint moments (+ flexor) estimated using 

Santos’ manual joint manipulation approach and the lab-based RLM (V3D). Regression equation and Pearson’s 

correlation coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between 

shoulder joint moments (+ flexor) produced by the lab-based RLM (V3D) and Jack’s manual joint manipulation 

approach vs. the mean of the two measures. Red line is the systematic error produced by Santos, grey dashed lines 

are the limits of agreement from -1.96SD to +1.96SD, black dotted line is the line of equality. 
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4.3 Posture Prediction  
 

Table 6. Summary of the mean differences found between kinetic and kinematic measures estimated using the lab-

based RLM (V3D) and DHM software packages’ posture prediction approach. Asterisks indicate significant 

differences between models. The calculated smallest detectable change within 95% confidence intervals is reported 

for each pair.   

   
95% Confidence 

Interval for Difference 

 

Model (Lab based) Model (DHM) Mean Difference  

(Lab based-DHM) 

Lower 

Bound 

Upper 

Bound 

SDC±95% 

V3D Trunk Angle Jack Trunk Angle 2.36 -3.97 8.69 6.81 

 Santos Trunk Angle 8.21* 2.19 14.22 6.48 

V3D Shoulder Angle Jack Shoulder Angle -47.65* -59.62 -35.67 12.89 

 Santos Shoulder Angle 5.52 -6.76 17.81 13.22 

V3D L4-L5 Moment Jack L4-L5 Moment 22.97* 2.73 43.21 21.78 
 

Santos L4-L5 Moment 29.14* 8.51 49.78 22.21 

V3D Shoulder Moment Jack Shoulder Moment 5.36* 0.76 9.95 4.95 

 Santos Shoulder Moment 2.94 -2.29 8.18 5.64 
     

 

*p<0.05 
    

 

 

4.3.1 Kinematics  

 

A main effect of DHM software was detected for trunk angles F (1.20, 28.70) = 8.74, p = 

0.004, η² = 0.27. Pairwise comparisons revealed that trunk angles computed by Santos (M=2.51, 

SD=1.89) were significantly lower than V3D (M=10.72 SD=12.26) and Jack (M=8.36, SD=4.37). 

Correlation analysis revealed a positive, weak correlation between Jack and V3D (r = 0.17, n = 

25, p = 0.42) and Santos and V3D (r = 0.37, n = 25, p = 0.07) trunk angles; Bland Altman plots 

revealed disagreement between trunk angle outputs, respectively, with significant proportional 

biases of 2.36 (β = 0.78, t(24) = 5.96, p<0.001) and 8.21 (β = 0.96, t(24) = 16.28, p<0.001). The 

SDC95% was ±6.81° and ±6.48° for Jack and Santos trunk angles respectively. 
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Figure 27. Left – scatter plot illustrating the relationship between trunk angles (+ extension) estimated using Jack’s 

posture prediction approach and the lab-based RLM (V3D). Regression equation and Pearson’s correlation 

coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between trunk angles 

(+ extension) produced by the lab-based RLM (V3D) and Jack’s posture prediction approach vs. the mean of the 

two measures. Red line is the systematic error produced by Jack, grey dashed lines are the limits of agreement from 

-1.96SD to +1.96SD, black dotted line is the line of equality. 

 

Figure 28. Left – scatter plot illustrating the relationship between trunk angles (+ extension) estimated using 

Santos’ posture prediction approach and the lab-based RLM (V3D). Regression equation and Pearson’s correlation 

coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between trunk angles 

(+ extension) produced by the lab-based RLM (V3D) and Santos’ posture prediction approach vs. the mean of the 

two measures. Red line is the systematic error produced by Santos, grey dashed lines are the limits of agreement 

from -1.96SD to +1.96SD, black dotted line is the line of equality. 
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A main effect of DHM software was detected for shoulder joint angles F (2,48) = 88.60, 

p<0.001, η² = 0.79. Pairwise comparisons indicated that shoulder angles computed by Jack 

(M=68.68, SD=12.64) were significantly higher than V3D (M=21.04 SD=20.91) and Santos 

(M=15.51, SD=11.18). Correlation analysis revealed a weak correlation between Jack and V3D 

(r = 0.11, n = 25, p=0.62) and Santos and V3D (r = -0.02, n = 25, p=0.93) shoulder joint angles. 

Bland Altman plots revealed poor agreement between Jack and V3D shoulder angles, with a 

significant proportional bias of -47.65 (β = 0.47, t (24) = 2.53, p=0.02); however, moderate 

agreement was observed between Santos and V3D shoulder angles with a significant 

proportional bias of 5.52 (β = 0.56, t (24) = 3.20, p<0.001). The SDC95% were ±12.89° and 

±13.22° for Jack and Santos shoulder angles respectively. 

Figure 29. Left – scatter plot illustrating the relationship between shoulder joint angles (+ flexion) estimated using 

Jack’s posture prediction approach and the lab-based RLM (V3D). Regression equation and Pearson’s correlation 

coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between shoulder 

joint angles (+ flexion) produced by the lab-based RLM (V3D) and Jack’s posture prediction approach vs. the mean 

of the two measures. Red line is the systematic error produced by Jack, grey dashed lines are the limits of agreement 

from -1.96SD to +1.96SD, black dotted line is the line of equality. 
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Figure 30. Left – scatter plot illustrating the relationship between shoulder joint angles (+ flexion) estimated using 

Santos’ posture prediction approach and the lab-based RLM (V3D). Regression equation and Pearson’s correlation 

coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between shoulder 

joint angles (+ flexion) produced by the lab-based RLM (V3D) and Santos’ posture prediction approach vs. the 

mean of the two measures. Red line is the systematic error produced by Santos, grey dashed lines are the limits of 

agreement from -1.96SD to +1.96SD, black dotted line is the line of equality. 

 

4.3.2 Kinetics  

 

A main effect of DHM software package was detected for L4-L5 moments when using 

the posture prediction approach to simulate the patient turn F (1.25, 29.92) = 10.39, p = 0.002, η² 

= 0.30. Pairwise comparisons indicated that L4-L5 moments produced by Jack (M=21.39, 

SD=14.13) and Santos (M=15.21, SD=10.13) were significantly lower than V3D (M=44.36, 

SD=41.45). No significant differences were detected between Jack and Santos L4-L5 moment 

outputs. Correlation analysis revealed a positive, weak correlation between Jack and V3D L4-L5 

moments (r = 0.32, n = 25, p = 0.12) and Santos and V3D L4-L5 moments (r = 0.26, n = 25, 

p=0.22). Bland Altman plots revealed disagreement between both Jack and Santos and V3D L4-

L5 moments, as well as significant proportional biases of 22.97Nm (β = 0.81 t (24) = 6.56, 

p<0.001), and 29.14Nm (β = 0.89 t (24) = 9.4, p<0.001), respectively. The SDC95% were 

±21.78Nm and ±22.21Nm Jack and Santos L4-L5 moments respectively.  
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Figure 31. Left – scatter plot illustrating the relationship between L4-L5 joint moments (+ extensor) estimated using 

Jack’s posture prediction approach and the lab-based RLM (V3D). Regression equation and Pearson’s correlation 

coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between L4-L5 joint 

moments (+ extensor) produced by the lab-based RLM (V3D) and Jack’s posture prediction approach vs. the mean 

of the two measures. Red line is the systematic error produced by Jack, grey dashed lines are the limits of agreement 

from -1.96SD to +1.96SD, black dotted line is the line of equality. 

 

 

 

Figure 32. Left – scatter plot illustrating the relationship between L4-L5 joint moments (+ extensor) estimated using 

Santos’ posture prediction approach and the lab-based RLM (V3D). Regression equation and Pearson’s correlation 

coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between L4-L5 joint 

moments (+ extensor) produced by the lab-based RLM (V3D) and Santos’ posture prediction approach vs. the mean 

of the two measures. Red line is the systematic error produced by Santos, grey dashed lines are the limits of 

agreement from -1.96SD to +1.96SD, black dotted line is the line of equality. 
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 Significant differences were detected for shoulder moments. A main effect of DHM 

software package was detected F (2,48) = 3.69, p = 0.03, η² = 0.13. Pairwise comparisons 

indicated that shoulder moments produced by Jack (M=22.05, SD=8.04) were significantly lower 

than V3D (M=27.41, SD=8.44). Santos and V3D shoulder moment outputs were not significantly 

different. Correlation analysis revealed a positive, weak correlation between Jack and V3D (r = 

0.41, n = 25, p = 0.04), and Santos and V3D shoulder moments (r = 0.08, n = 25, p = 0.71); 

Bland Altman plots revealed moderate agreement between the variables, respectively, with no 

significant proportional biases. The SDC95% were ±4.95Nm and ±5.64Nm for Jack and Santos 

shoulder moments respectively.  

 

 

Figure 33. Left – scatter plot illustrating the relationship between shoulder joint moments (+ flexor) estimated using 

Jack’s posture prediction approach and the lab-based RLM (V3D). Regression equation and Pearson’s correlation 

coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between shoulder 

joint moments (+ flexor) produced by the lab-based RLM (V3D) and Jack’s posture prediction approach vs. the 

mean of the two measures. Red line is the systematic error produced by Jack, grey dashed lines are the limits of 

agreement from -1.96SD to +1.96SD, black dotted line is the line of equality. 
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Figure 34. Left – scatter plot illustrating the relationship between shoulder joint moments (+ flexor) estimated using 

Santos’ posture prediction approach and the lab-based RLM (V3D). Regression equation and Pearson’s correlation 

coefficient (r) are displayed on the plot. Right – Bland-Altman plot illustrating the differences between shoulder 

joint moments (+ flexor) produced by the lab-based RLM (V3D) and Jack’s posture prediction approach vs. the 

mean of the two measures. Red line is the systematic error produced by Santos, grey dashed lines are the limits of 

agreement from -1.96SD to +1.96SD, black dotted line is the line of equality. 
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5.0 Discussion  

5.1 Summary of Key Findings  

Three different DHM posturing approaches were used in this investigation to simulate a 

static patient reposition task and estimate low back and shoulder kinematic and kinetic measures. 

Trunk and shoulder joint angles and moments estimated using these posturing approaches were 

compared to a lab-based rigid linked segment model (RLM). Posturing using Siemens Jack’s (V 

8.4) manual joint manipulation approach produced kinematic and kinetic outputs that agreed 

with the lab-based RLM outputs; however, Santos Pro’s manual joint manipulation approach 

outputs did not agree with lab-based RLM. Kinematic and kinetic outputs estimated using both 

DHM software packages’ posture prediction and direct motion capture data importing 

approaches differed from the lab-based RLM outputs likely due to differences associated with 

the link segment models as well factors associated with the posturing approaches.  

It was expected that the estimated kinematic and kinetic outputs would be similar to the 

lab-based RLM outputs when using motion capture data importing and manual posturing to 

simulate the patient reposition task in Jack and Santos; however, the data only partially 

supported this hypothesis. When comparing Jack’s outputs, the trunk angles and L4-L5 moments 

as well as shoulder angles produced using its manual posturing approach were similar to the lab-

based RLM outputs as hypothesized; however, only L4-L5 moments estimated using its motion 

capture data importing approach were similar to the lab-based RLM outputs; partially supporting 

the hypothesis. It was believed that the motion capture data importing approach and manually 

posturing approaches would simulate realistic postures as a result of their increased user control, 

and ability to have maximum influence over the simulated posture. However, the lack of 

consistency in differences observed between these two approaches indicates that there may be 
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differences in the underlying models. Using a deductive reasoning approach, differences in the 

definition of Jack’s RLM relative to the lab-based RLM could explain the variation observed. 

This explanation is discussed in more detail in the direct motion capture data importing section 

below.  

In turn, when comparing Santos’ outputs to lab-based RLM outputs, only the trunk angles 

produced by its motion capture data importing approach and shoulder joint angles produced 

using the manual posturing approach were similar, refuting hypothesis one. Contrary to the belief 

that increased user control would assist in simulating data similar to a lab-based model, these 

results clearly suggest that there are other influencing factors that may extend beyond simple 

posture manipulation. In particular to Santos’ RLM, the multi-segmental model of the spine 

provided in the avatar may have acted as both an advantage and disadvantage when simulating 

the patient reposition task. It is believed that when using the motion capture data importing 

approach, the avatar was able to better adjust its spine (due to the increased DOF provided in the 

spine) with the given 3D position data from the lab-based RLM, to replicate the posture of the 

trunk segment. This may explain the similarities observed between the motion capture driven and 

lab-based RLM trunk angles. In turn, while the user was given a higher degree of control when 

manually posturing the spine of the avatar, this may have resulted in producing higher variation 

in trunk angles relative to the lab-based RLM.   

When using the DHM software packages’ posture prediction approach to simulate the 

patient reposition task, it was hypothesized that the estimated kinematic and kinetic joint 

measures would differ from the lab-based RLM outputs. Data indicated that the L4-L5 joint 

moments, shoulder joint angles and moments estimated using Jack’s statistical driven posture 

prediction approach were different from lab-based RLM outputs, supporting hypothesis one. 
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However, only the trunk angles and L4-L5 moments estimated using Santos’ optimization-based 

posture prediction approach were different from lab-based RLM outputs, partially supporting 

hypothesis one. When considering the differences between Jack and Santos’ posture prediction 

results, there were apparent model differences that effected the predicted joint angles and 

moments. According to Faraway et al. (2006) Jack will attempt to minimize motion from the 

base of its kinematic chain (spine root), as a result, similar trunk angles may have been observed 

relative to the lab-based RLM. Comparatively, Santos’ optimization model attempted to 

minimize joint displacement and moments when predicting whole body postures. Interestingly, 

the shoulder joint angles and moments estimated were similar to the lab-based RLM, suggesting 

that Santos may better predict upper extremity kinematics and kinetic but suffer in producing low 

back measures, in part due to the digital structure of the of the spine (increased degrees of 

freedom).  

When evaluating the relationship between DHM estimated kinematics and kinetics using 

the posture prediction approach to lab-based RLM outputs, it was predicted that they would have 

a weak correlation. All four outcome measures of interest; trunk and shoulder joint angles and 

moments estimated using Jack and Santos’ posture prediction approach had a weak correlation 

(r<0.50) with lab-based RLM outputs, supporting hypothesis two. Large variation found between 

posture predicted DHM outputs and lab-based RLM can explain the lack of association and 

agreement between the variables. Interestingly, when evaluating the relationship between manual 

posturing outputs and lab-based RLM, a moderate correlation (0.5≤ r ≤ 0.7) was expected; 

however, a stronger relationship was found between L4-L5 joint moments and shoulder angles 

estimated by Jack and Santos, partially supporting the hypothesis. The differences between the 

relative variables were small, but still underestimated values, indicating that measurement error 
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during manually posturing effected results. Finally, a strong relationship was predicted between 

direct motion capture data estimated kinematics and kinetics to the lab-based RLM outputs; 

however, only the shoulder joint angles estimated by Jack had a strong correlation (r >0.7), 

refuting hypothesis two. Again, the lack of association found between the variables can be 

explained by the variability observed in the outputs estimated by the motion capture data 

importing approach.  

Based on the resultant data, it is clear that there are inherent features associated with 

DHM posturing approaches that limits their ability to simulate a patient handling task that would 

replicate a lab-based biomechanical investigation. Moreover, there are biomechanical modelling 

differences between DHMs and the lab-based RLM used in this study that effect the ability to 

directly compare the results of DHMs to those generated using a lab-based approach when 

estimating kinematic and kinetic joint outcome measures. Differences identified between the 

simulated data across the three posturing approaches as well as the implication of these 

differences towards the investigation of MSD hazard exposures in patient handling are further 

explained by posture approach, below.  

5.2 Manual Joint Manipulation  

Manual joint manipulation is a common approach used to digitally simulate postures in 

DHM environments, therefore it remains important to compare modeled joint kinematic and 

kinetic outputs to a lab-based modeling approach. When manually posturing in Jack, the 

kinematic and kinetic outputs estimated agreed with the lab-based model, while outputs 

estimated using Santos did not agree. Manually manipulating the avatar in Jack to simulate 

automotive assembly tasks have also shown good accuracy in kinematic and kinetic joint 

measures (Kajaks, Stephens, & Potvin, 2011). Data from this study demonstrated that Jack also 
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has the ability to simulate realistic postures adopted by HCPs during patient repositioning tasks 

when using its manual joint manipulation approach. Although, this is likely also dependent on 

the skill and practice of the user performing the manual joint manipulation. 

Generally, in the field of biomechanics, there is no acceptable measurement error value 

for kinematic and kinetic joint measures. However, researchers in gait biomechanics have used 

±5° in joint angles as an acceptable measure of error in results (Hassan, Jenkyn, & Dunning, 

2007; McGinley, Baker, Wolfe, & Morris, 2009) and ±10Nm has been previously used in the 

literature to evaluate the validity of low back moments estimated using a 3D RLM (Plamondon, 

Gagnon, & Desjardins, 1996). While both these acceptable limits are not directly related to the 

context of this investigation, they still provide a comparative value to interpret the errors 

produced in the biomechanical measures.  

Users can expect to see a difference of at least ±11.32° and ±14.50° in trunk and shoulder 

joint angles respectively when using Jack to estimate angles, relative to a lab-based approach. In 

the context of occupational biomechanics, this magnitude of error in kinematic outputs 

(regardless of being outside the recommended range of error) would likely not influence to the 

interpretation of data when investigating MSD exposures. However, investigators should still use 

their own judgment and experience when evaluating the kinematic outputs from Jack. In turn, it 

is expected that Jack’s manual posturing approach will produce an error of at least ±9.37Nm in 

L4-L5 joint moments when simulating a patient handling task. This evidence further provides 

preliminary evidence to support the ability of Jack’s manual posturing approach to estimate valid 

biomechanical demands used to investigate the exposures to MSD hazards in patient handling 

tasks.  
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Outputs estimated by Santos when manually posturing the avatar were not in agreement 

with the lab-based model. Only the shoulder angles estimated by Santos showed agreement and 

contained a small error of measurement (±4.55°). The lack of agreement observed between 

Santos and the lab-based model outputs when manually posturing the avatar may be attributed to 

the structure of its rigid linked segmental model. Santos’ trunk is modeled using a multi-

segmental approach to represent the vertebrae of the spine (Figure 3), while the trunk of the lab-

based RLM and Jack were modeled as one rigid segment. These two different trunk modeling 

approaches have had varying effects on trunk kinematics and kinetics. Differences in trunk 

flexion/extension angles has been observed between the use of a single-segmental model of the 

trunk and the multi-segmental model (Kudo, Fujimoto, Sato, & Nagano, 2018). Differences 

observed between the trunk angles estimated using Santos relative the lab-based RLM may be 

explained by its spine structure during manual joint manipulation, as well as the posture 

prediction and motion capture approach.  

In addition to trunk kinematic differences, differences in modeling approaches may have 

also manifest in trunk kinetics. Variability in anthropometric parameters (i.e. trunk segment 

length, joint center of rotation) calculated for the trunk segment has been found between the use 

of single-segmental and the multi-segmental trunk models. These differences can change the 

moment arms estimated from the L4-L5 joint COR to the hand load depending on the structure 

of the spine model resulting in differences in low back moments calculated (Desjardins, 

Plamondon, & Gagnon, 1998; Rao, Amarantini, Berton, & Favier, 2006; Riemer & Hsiao-

Wecksler, 2008). Therefore, differences in the trunk segment models between Santos and the 

lab-based model may well explain the differences in L4-L5 joint moments. 
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Furthermore, with Santos’ multi-segmental spine model, a higher degree of freedom in 

spine motion was provided. This could also have attributed to differences observed in trunk 

angles and L4-L5 moments. With Santos’ multi-segmental spine model, users are able to 

manipulate 17 single vertebral joints to simulate the posture adopted by the HCP during the 

patient handling task. Jack’s spine was manipulated at a single joint (trunk over pelvis joint). 

Due to the higher degree of freedom, lower back and upper back curvature was better modeled in 

Santos, perhaps even better that the lab-based RLM approach. Vertebrae were individually 

positioned within the sagittal plane to best adjust the posture of the back to replicate the static 

image of the HCP. Due to this, trunk angles may have been underestimated (as more motion is 

taken up through other spine segments) and in turn, underestimated L4-L5 joint moments since 

the moment arm produced from the L4-L5 joint COR to the hand load is smaller to lower joint 

angles.  

Finally, based on the magnitude of the trunk flexion/extension angles estimated by 

Santos, it is believed that the DHM may have been calculating and outputting intervertebral 

flexion/extension joint angles (angle produced between the L4 vertebrae and L5 vertebrae) rather 

than the trunk flexion/extension angles (trunk segment relative to the pelvis segment). Trunk 

angles estimated by Santos across all 25 individual manual simulations were under 10°. Studies 

evaluating the motions of intact human lumbar spines have reported that the total 

flexion/extension ROM between the L4 and L5 vertebral segments is approximately 12° (Cook, 

Yeager, & Cheng, 2015; Yamamoto, Panjabi, & Oxland, 1989). Prior to the use of Santos in this 

investigation and based on the commercially available documentation, it was assumed that 

Santos’ kinematic model would output trunk flexion/extension angles; however, the resultant 
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data suggests that Santos may indeed be estimating intervertebral joint angles instead. This could 

also explain why trunk angles were underestimated by Santos.  

5.3 Posture Prediction 

Regardless of the posture prediction model (optimization-based in Santos, statistical-

based in Jack), the DHM modeled low back and shoulder demands associated with a patient 

repositioning task were not in agreement with those estimated using a lab-based biomechanical 

modeling approach. While the goal of posture prediction is to provide users with a proactive 

method to simulate realistic human postures for any given task or design constraints (Abdel-

Malek & Arora, 2013; Chaffin, 2005; Faraway & Reed, 2007), data from this investigation 

suggest that both Jack and Santos posture prediction models may still require improvement to 

robustly simulate postures adopted by HCPs. The lack of agreement observed in output measures 

can be explained by the underlying mathematical models used to drive the predicted set of joint 

angles and joint moments.  

Jack’s posture prediction model is driven by pre-recorded motion data and 

anthropometrics gathered from subjects performing manual automotive related tasks (Duffy, 

2008; Faraway & Reed, 2007). As a result, it was not surprising to find that Jack was unable to 

predict realistic postures for a health care related task. However, it is interesting to note that the 

predicted shoulder angles contained a high bias (-47.65) relative to the other outputs. The human 

behaviour control framework integrated into Jack’s existing empirical model could explain this 

(Faraway & Reed, 2007). To accurately produce postures for a complex task, an ergonomic  

control framework was developed based on hierarchical set of posture and motion modules that 

controlled human behavior (low back and shoulder biomechanical demands, upper and lower 

extremity inverse kinematics and torso motion) (Reed, Faraway, Chaffin, & Martin, 2006).  
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Based on this framework, it is believed that the model was attempting to predict postures 

that would minimize the demands at the low back. When the Jack avatar was reaching for the 

sheet to exert a force to move the patient, the distal end of the upper extremity kinematic chain 

moved first (hand, forearm, upper arm) followed by the torso, as necessary to complete the task. 

This likely caused increased variation in the shoulder angles, and an underestimation of trunk 

angles and L4-L5 moments. Interestingly, this pattern in limb trajectories used for the patient 

reposition task were similar to the trajectories described when predicting the seated reach in an 

automobile (Reed et al., 2006), where displacement of the low back was kept to a minimum. This 

further provides evidence to suggest that Jack has a tendency towards adopting postures used in 

automotive related tasks even when provided constraints to simulate a healthcare related task.  

Santos uses an optimization methodology to predict postures. The optimization algorithm 

is dependent on how the user prioritizes competing objectives related to human performance 

measures (i.e., joint torque, discomfort, joint displacement) (Marler et al., 2009). For this 

investigation, it was assumed that HCPs attempted to optimize their postures to minimize joint 

stresses experienced when repositioning the patient. Ergonomic guidelines for safe patient 

handling suggest that HCPs should use safe postural strategizes to minimize stresses to the 

musculoskeletal system (Nelson & Baptiste, 2004; OSHA, 2009). As a result, the weighting 

factors (based on percentage) of the objective functions were adjusted to prioritize the 

minimization of performance measures (e.g., 100% priority to minimizing joint torque, 100% to 

minimizing discomfort). L4-L5 and shoulder joint moments computed based on the predicted 

postures were lower than the lab-based RLM, demonstrating that the set objective functions did 

indeed minimize the joint torque. Similar to Lämkull, Hanson, & Örtengren, (2008) findings, it is 

believed that the posture prediction approach was not used in its optimal manner. However, these 
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data do suggest that in order to predict the physical and biomechanical demands imposed on 

HCPs during a patient handling task, prioritization of performance measures need to be re-

evaluated. 

Unlike automotive or manual material handling tasks patient handling tasks do not 

always have the optimal conditions to use postural strategies that would minimize joint loading. 

This is primarily due to physically handling of humans versus industrial materials. As a result, 

joint torque may not be a factor that should be minimized when predicting postures for patient 

handling tasks. The postures adopted by HCPs during patient handling tasks need to be observed 

and analyzed in reality to determine appropriate objective weightings. When testing the fidelity 

of Santos’ posture prediction model on a seated reach task, Marler & colleagues (2007) first 

determined the appropriate weights to assign to each performance measure by analyzing the 

postural strategies used by individuals via motion capture data collected during a seated reach 

task. While it was a fairly simple task, this approach did show similar joint angles produced to 

the motion capture study. The data from this study reinforce the importance of careful 

consideration when assigning weight factors in the optimization model in order to adequately 

generate realistic data. Analyzing the trends in kinematic and kinetic data of HCPs performing a 

patient handling tasks could be an option at determining the weight functions. 

5.4 Direct Motion Capture Data Importing  

While importing motion capture data into DHMs is not a common approach used to 

simulate postures, it was still included into this investigation to help uncover underlying 

differences between DHM and lab-based developed RLMs. Both Jack and Santos were unable to 

reproduce the postures of HCPs when mapping motion capture position data gathered from the 

lab investigation onto the avatar. Because the joint angles varied relative to the lab-based model, 
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the moment arms estimated from the shoulder and L4-L5 joint to the hand load likely also 

changed the joint moments calculated by the DHM models. The lack of agreement observed 

between the kinematic and kinetic outcome measures from both software is likely dependent on 

the differences in the kinematic linkage structures/joint decompositions of the DHM models and 

little to do with patient handling task simulated.  

 Shoulder joint angles estimated by both Jack and Santos were overestimated relative to 

the lab-based model. These results may be specific to differences in skeletal linkage models of 

the shoulder. In the lab-based RLM the center of joint rotation for the shoulder was identified at 

the glenohumeral joint and its axis of rotation were created based on the ISB standards. Jack and 

Santos’ RLM model do not use the glenohumeral joint as the shoulder joint center, nor are their 

local joint coordinate systems created using ISB standard. Anatomically, the acromio-clavicular 

joint center (Robinette et al., 1991) was used as the shoulder joint and a robotics method 

(Denavit-Hartenberg) was used to create the local joint coordinate systems in both Jack and 

Santos (Badler, Phillips, & Webber, 1999b; Yang, Kim, et al., 2007). Due to these differences, 

there may have been errors produced when mapping the shoulder position data from the lab-

based model onto the shoulder joint of the avatar. These difference in shoulder angles, may also 

be reflected in shoulder joint moments estimated by Jack and Santos, as the moment arm 

between the shoulder joint COR to the hand load likely changed, impacting the calculated joint 

moments.  

When, comparing the low back joint kinematic and kinetic outputs from the DHM 

software a different trend in results was observed relative to the shoulder outputs. The trunk 

angles, computed by both Jack and Santos did not agree with the lab-based model angles; 

however, the L4-L5 joint moments estimated by Jack did show agreement with moments 
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estimated using the lab-based model. Since joint kinematics have a direct effect on joint kinetics, 

it is unusual to see that the differences produced in the trunk angles were not reflected in the joint 

moments. Similarities in the spine model structure between the lab-based RLM and Jack spine 

model discussed earlier could possibly explain similar L4-L5 joint moments estimated between 

Jack and the lab-based model. Again, differences between the conventions used to create local 

joint coordinate systems (ISB vs robotics) between the lab based and DHM RLM low back 

segment/joint may have also attributed to the errors produced in trunk angles and L4-L5 

moments estimated using the motion capture data importing approach.  

In addition to skeletal linkage model and/or joint angle decomposition differences, 

anthropometric differences were also found to have an impact on the kinematic and kinetic 

outputs estimated. When mapping the joint position data from lab-based RLM onto the avatar, 

visually, it was revealed that there were possible differences in skeletal linkage lengths between 

the lab-based model and DHM (Figure 35). This highlights how the use of anthropometric data 

bases in DHM software to derive skeletal linkage lengths of avatars (Raschke, Schutte, & 

Chaffin, 2000; Cheng et al., 1994) can produce varying anthropometric measures that may not 

exactly replicate the segment properties of modeled individuals.  

Comparing the motion capture data driven postural data to lab based modelled postural 

data allowed for the investigation of potential sources of error within the DHM tools. 

Specifically, it allowed for the evaluation of the sensitivity of digitally modeled kinematics to 

differences in skeletal linkage models and joint angle decompositions. The analysis revealed that 

the differences in joint centers of rotations identified, local joint coordinate systems as well as 

anthropometrics (linkage length) used in digital human models influenced the resultant postural 

data simulated. Generally, these underlying differences found between commercial digital human 
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models versus a lab-based data constructed rigid link model highlights the potential limitations in 

using a digital model to investigate MSDs. Users should be aware of how these model 

differences could potentially influence the interpretation of their kinematic and kinetic outputs.  

 

 

 

 

 

 

 

 

 

 

Figure 35. Joint position data from the lab-based model mapped onto anthropometrically scaled avatars in Jack 

(left) and Santos (right). In Santos, the green circles show the avatar joint centers of rotation and the red circles are 

the joint centers of rotation of the lab-based skeletal model, red lines show the mapping errors 

 

5.5 Summary of Factors Associated with Digital Models that Resulted in Differences 

Between Lab-based and DHM Biomechanical Outputs  
 

The results from this investigation demonstrated greater variability between the DHM 

and lab-based model estimated joint kinematic and kinetic measures than expected, across all 

posturing approaches. These unexpected differences are likely a result of several model related 

factors. The following section discusses specific model factors found within Jack and Santos that 

influenced their computed biomechanical outputs.  
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5.5.1 Skeletal Linkage Model  

 

The kinetics of the digital spine in Jack and the lab-based RLM was modeled using a 

single rigid segment of the trunk while Santos’ spine was modeled using a multi-rigid segment 

approach (kinematically and kinetically). A single segment modeling approach is typically used 

by researchers in the field of biomechanics to model and estimate the low back moments acting 

about the L4-L5 or L5-S1 joint (Marras, Davis, Kirking, & Granata, 1999; McGill & Norman, 

1986; Reeves & Cholewicki, 2003), as it is simplified approach. In turn, a multi-segmental spine 

allows for the user and the software to model the angular displacement of the lumbar and 

thoracic regions of the vertebrae. This can act as both a benefit and limitation to this particular 

study. Since HCPs adopt complex postures during patient handling tasks, using Santos allowed 

the user to better replicate the posture assumed through the upper and lower back when manually 

posturing the avatar. In retrospect, this did seem to better simulate the posture visually, but it 

impacted the quantitative biomechanical measures calculated from the model (trunk angles and 

L4-L5 moments).  

Additionally, due to the multi-segmental spine model in Santos, the software computed 

trunk angles between vertebral segments, whereas the lab-based model and Jack computed trunk 

flexion/extension angles formed between the rigid trunk and pelvis segments, Furthermore, with 

a multi-segmental spine, comes increased degrees of freedom (DOF). As a result, when using the 

posture prediction approach in Santos, it is believed that the model utilized the increased DOF of 

the spine to assume a spine posture that would minimize the L4-L5 joint moments. Evidence 

from this study demonstrated how the use of the multi-segmented spine models in DHM can 

introduce differences when digitally modeling a patient handling task.  
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Based on the visual analysis of the upper body skeletal linkage models in Jack and 

Santos, it can be seen that a simple structure of the shoulder complex has been adapted. Both 

skeletal linkage models’ shoulder joint position has been identified by model developers at the 

acromio-clavicular joint (scapula relative to clavicle) (Badler et al., 1999b; Robinette et al., 

1991; Yang, Kim, et al., 2007). However, since there is no digital structure of the scapula in Jack 

and Santos, the rotation of the joint was modeled between the upper arm link and trunk segment. 

The shoulder joint center of rotation (COR) in the laboratory based RLM was defined at the 

glenohumeral joint (GH), which has been clinically identified as the axis where shoulder 

flexion/extension motion (humerus relative to the thorax) occurs. Anatomically, the position of 

acromio-clavicular joint is above the GH joint in the shoulder complex (this was evidently 

depicted in the motion capture data mapping in Figure 35). Therefore, it is likely that different 

moment arms were computed between the shoulder joint COR and the hand load between the 

DHM and lab-based model, resulting in difference in the shoulder joint moments calculated 

within each simulated posture of the HCP.  

5.5.2 Kinematic Degrees of Freedom  

In relation to the kinematic linkage model design, the differences in the DOF between the 

DHM and lab-based RLMs has been suspected as factor that resulted in differences as well. 

Increased DOF adds computational complexity to the kinematic model (Zhao & Badler, 1994). 

Mathematically, if a kinematic model has a high DOF, the rigid bodies have greater freedom to 

displace in space. However, when modeling human kinematics, this may introduce error in the 

predicted position and orientation of segments, as human joints are constrained by varying limits 

of degrees of motion (Zatsiorsky, 1998).  
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The lab-based RLM was be developed with 34 DOF based on physiological parameters 

(i.e. no translation amongst segments); however, Jack (135DOF) and Santos (211DOF) included 

higher DOF in their kinematic linkage models (Abdel-Malek et al., 2007; Blanchonette, 2010). 

Differences produced as a result of increased DOF most likely influenced the postures simulated 

using the posture prediction approach in both Jack and Santos. Since the models are given fewer 

inputs (relative to manual manipulation and direct motion data importing), relying on the 

algorithm and kinematic linkage chain, the avatar likely utilized the full body DOF available to 

predict the postures in order to meet the objective of the task (turning a patient). While this 

increases the number of feasible simulations predicted by the software, it also increases the 

number of differences in joint angle outputs relative to the lab-based RLM.  

However, when considering the limitations of previous studies that have used DHM to 

simulate patient handling tasks (Paul & Quintero-Duran, 2015; Potvin, 2017), having an 

increased DOF may be a benefit, as the avatar has the ability to predict several different postures 

depending on the constraints applied to the task. Broadly, this demonstrates the ability of the 

posture prediction approach to simulate the variability in movement strategies used by HCPs 

during patient handling tasks.  

5.5.3 Joint Decomposition  

 

Differences in the standards used to define local joint axis of joint may have also 

influenced the shoulder and trunk angles and L4-L5 moments estimated by the DHM software. 

The lab-based RLM was developed using the International Society of Biomechanics (ISB) 

standards for joint coordinate systems (Wu et al., 2002, 2005). When using this convention, each 

joint (i.e., elbow, knee, shoulder, L4-L5) has a different set of joint rotations defined to ensure 

that clinically meaningful joint angles and moments can be computed. In turn, the local joint 
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axes of rotation in Jack and Santos were developed using the Denavit-Hartenberg parameters 

(Badler et al., 1999b; Yang, Kim, et al., 2007). This convention is commonly used in the field of 

robotics to create reference frames for kinematic chains. The coordinate frames are attached to 

the joints between two links such that one transformation is associated with the joint and the 

second is associated with the link (Hartenberg & Denavit, 1955). The joints are modeled as 

either a hinged or sliding joint, whereas the ISB conventions were created based on the clinical 

joint type (i.e. GH joint modeled as ball and socket).  

Since the Denavit-Hartenberg convention is based on mechanical properties rather than 

orthopedic properties of joints, it gives reason to believe that the shoulder and trunk angles and 

L4-L5 moments estimated by the DHM software may have error. Due to these differences, Jack 

and Santos may have also suffered from producing clinically meaningful joint angles and 

moments about the flexor/extensor axis. This could explain why a higher difference between 

joint angles and moments was observed at greater values between the DHM software and lab-

based RLM. Consequently, when modeling HCPs who use postures with a greater range of 

motion (large shoulder or trunk flexion angle) may tend to underestimate these joint angles 

consequently impacting the fidelity of joint moments calculated as well.  

5.5.4 Anthropometrics 

 

The anthropometric databases in Jack and Santos (ANSUR, NHANES, GEBOD) used to 

scale the segment lengths of the virtual avatar may also have been a factor that resulted in 

differences. Kouchi & Mochimaru, (2004) found that the errors produced in anthropometric 

measures of avatars in DHM tools is dependent on the database and individual characteristic 

(race and body form, etc.). The lab-based RLM used the position data gathered from the 

anatomical landmarks and height of the subject to construct rigid body segments. In turn, 
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existing anthropometric measures (i.e. stature, hip height) directly measured from civilians or 

from 3D body scans are used to calculate the proportional length of rigid body segments of 

avatars based on the stature inputted into the software (Blanchonette, 2010; Duffy, 2008).  

The potential influence of differences in anthropometric measures between the lab-based 

RLM and DHM RLMs was revealed when using the motion capture data importing approach to 

simulate the patient handling task. It was clear the link lengths estimated by both Jack and Santos 

were different from the lab-base model. Errors in link lengths may have influenced the joint 

angles produced by the DHM software, but likely had a greater influence on the joint moments 

estimated across each simulation, as the moment arms estimated from the shoulder and L4-L5 

joint CORs to the hand load would differ as well. When considering anthropometric scaling, 

aside from other factors outlined, it is predicted to have the least influence on simulation results.  
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Figure 36. A summary of factors associated with digital models that resulted in differences between lab-based and 

DHM biomechanical outputs. Each model-related factor influenced the kinematic and kinetic outputs across the 

posturing approaches; however, this flow chart illustrates where each influencing factor was revealed in this 

investigation.  

 

5.6 Use of DHM Kinematic and Kinetic Outputs for the Investigation of MSD Hazards 

To investigate MSD hazard exposures in patient repositioning tasks, ergonomist and 

researchers need to have DHM tools that are able to accurately model and predict the 

biomechanical demands imposed on HCPs during patient repositioning tasks. Therefore, in this 

investigation, it was important to evaluate the practical applications of DHM estimated outcomes 

by comparing results directly to those obtained in a lab-based investigation. Lab-based modeled 
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joint angles and forces generated using 3D kinematics gathered from a motion capture system 

have been often used as the reference or “gold standard” measure in validation studies (Beravs, 

Reberšek, Novak, Podobnik, & Munih, 2011; Papi, Osei-Kuffour, Chen, & McGregor, 2015; 

Sutherland, Albert, Wrigley, & Callaghan, 2008). This is because measurements gathered 

directly from the human and are considered accurate.  

Considering the differences found and measurement errors produced from each posturing 

approach, Jack’s manual posturing approach can be used as a descriptive tool to evaluate MSD 

hazards associated with patient repositioning tasks. The exposure to high risk external load 

moments to the low back is estimated at 74Nm (Marras et al., 1993; Marras et al., 1995). As a 

result, when practitioners are using Jack outputs from manual simulations to evaluate the 

biomechanical demands at the low back, a difference of ±10Nm would not likely impact the 

interpretation of L4-L5 joint moments when comparing the value to the low back moment injury 

threshold (74Nm). However, this investigation only calculated and compared the external 

moment produced about the flexion/extension axis at the low back. The impact of lateral/bending 

moments at the low back is also a measure to consider when assessing patient repositioning 

tasks, as these moments have  been found to increase the biomechanical demands of the lumbar 

spine as well (Marras & Granata, 1997)  

Postural data extracted from Jack’s manual simulations of a patient reposition can also be 

used as a measure to screen for exposures to MSD hazards. Practitioners can expect to see a 

difference of at least ±11° in sagittal plane trunk angles when modeling a patient reposition task. 

Exposure to trunk flexion angle greater than 45° (Punnett, Fine, Keyserling, Herrin, & Chaffin, 

1991) and lumbar extension angle greater than 30° (Patel & Kinsella, 2017) have been classified 

as severe and associated with low back pain and disorders. While the majority HCPs observed in 
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the study produced trunk extension angles, a difference of ±11° in trunk flexion/extension angles 

produced by Jack would likely not impact the interpretation of exposure to the low back relative 

to the injury thresholds.  

The shoulder flexion angle can be used by practitioners as a measure to determine the 

physical demands imposed at the shoulder during the performance of a patient reposition task. 

The 25th percentile female shoulder flexor strength moment is approximately 41Nm (Chaffin, 

Andersson, & Martin, 1991), where 25th percentile female strength is commonly used for 

ergonomic design guidelines. Both the shoulder flexion angle and load handled affect the 

moment strength produced by the shoulder. Considering the load handled in each hand by the 

HCP in this investigation (102N), the 25th percentile female HCP could produce the required 

shoulder flexion strength moment from 0° - 25° shoulder flexion angle to safely support the 

patient load (Chaffin, Andersson, & Martin, 1991). Jack’s manual simulation produced a 

minimum difference of 15° in shoulder flexion angles when simulating HCPs perform a patient 

reposition task. Relative to the safe shoulder flexion angle ROM (0° - 25°) that can produce the 

required shoulder flexion strength, a difference of 15° may impact the interpretation of shoulder 

related MSD exposures during the ergonomic screening of a patient reposition task. In addition, 

it is important to highlight that the shoulder abduction/adduction and external/internal rotation at 

the shoulder was not explored in this investigation. Angles formed in these planes of motion at 

the shoulder can impact the physical loads imposed at the shoulder complex as well (Aarås, 

Westgaard, & Stranden, 1988; Punnett, Fine, Monroe Keyserling, Herrin, & Chaffin, 2000; 

Takagi et al., 2014). Practitioners should consider the shoulder movements produced by the HCP 

not only in the sagittal plane, but also the frontal and transverse plane when assessing the MSD 

exposures at the shoulder.  
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Compared to the posture prediction and motion capture driven approaches, the manual 

posturing approach in Jack could be utilized by practitioners to extract kinematic and kinetic data 

to help describe the exposures to MSD hazards during a patient repositioning task. Specifically, 

ergonomists and researchers could use Jack to manually simulate and evaluate several postures 

used by HCPs in their current practice when repositioning a patient. Information from the 

simulations can provide end-users with data on the postural and biomechanical demands imposed 

on HCPs that can be used to inform re-design of equipment or revised training programs for 

HCPs. Overall, increased user control provided when simulating the posture manually in Jack 

and the kinematic linkage structure of the avatar likely were factors that allowed the simulation 

of realistic joint kinematics and kinetics.  

Although Jack and Santos’ posture prediction approaches were not able to provide similar 

kinematic and kinetic outputs to the lab-based model outputs in this investigation, it still may be 

a potentially helpful approach for the proactive investigation of patient reposition tasks. In 

particular, Santos’ optimization-based posture prediction approach has the capabilities of 

predicting how a HCP should safely perform a patient reposition. Practitioners could utilize this 

approach to determine the optimal task configurations (i.e. bed height, sheet position, hand 

position) that would minimize joint loading on the HCP during a patient turn. This predicted data 

could not only help re-design equipment and task parameters, it could also aide in the 

development of safe patient repositioning strategies that could reduce the exposure to MSD 

hazards. As well, with the simplicity of the approach, practitioners could determine the 

biomechanical demands imposed on HCPs from a distribution of population anthropometrics 

handling several different patient loads. This data could be used to determine load limits for safe 

handling.  
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Practitioners should use caution when interpreting low back kinematic data produced by 

DHMs. Considering the evidence found in this investigation, both Jack and Santos software 

packages calculate different low back angles due to their spine model structures. Where Jack 

calculates the trunk flexion/extension angle (trunk relative to the pelvis) and Santos calculates 

the intervertebral flexion/extension angle (L4 vertebrae relative to the L5 vertebrae). This model 

related factor highlights the importance of understanding the implications of DHM tools and 

their impact on outcome measures, particularly when comparing those measures to outcomes 

generated using a lab-based RLM for the investigation of MSD hazards.  
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6.0 Limitations  

Despite the efforts made to control external factors and experimental conditions, 

limitations associated with the lab-based investigation may have had implications on the 

accuracy of the DHM simulations. During the collection of video data, only the sagittal, right 

upper body image and left lower body image of the HCP was captured during the performance of 

the patient reposition task. Consequently, this had implications towards the accuracy of 

simulations completed using the manual joint manipulation approach in Jack and Santos. This 

may have affected the low back kinematic and kinetic outputs estimated from manual joint 

manipulation approach. Additionally, segment positions about the transverse and frontal planes 

were not evaluated across the three DHM posturing approaches, consequently limiting the 

interpretation of data for MSD hazard investigations. Only the sagittal plane angles and joint 

moments produced at the low back and shoulder were evaluated in this investigation. Movements 

produced by the HCP during the patient reposition task varied about the three planes, which can 

impact the overall conclusion of severity of the MSD exposure.  

The aim this thesis was to compare the kinematic and kinetic outputs estimated between 

DHMs and lab-based developed RLM. While lab-based models are commonly used as the 

criterion measure in many biomechanical investigations, the use of a lab-based RLM in this 

comparative study limited the extent to which practical comparisons could be made. Specifically, 

the structural and computational differences between DHMs and the lab-based RLM made it 

challenging to practically compare kinematic and kinetic outputs. For example, Jack and Santos 

DHMs were both developed based on robotics principles, included over a 100 DOF and used 

anthropometric databases to estimate link length. In turn, the lab-based constructed model was 

developed using biomechanical principles, included less than 50 DOF and used directly 
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measured data from human participants to calculate segment link lengths. Consequently, these 

significant model differences produced high variability in the dependent measures assessed, thus 

limiting the extent to which model-for-model comparisons could be made. As well, since both 

DHMs were pre-designed software packages, there was very limited ability provided to adjust 

the structural models of the avatars or computational approaches to match the lab-based model in 

order to make direct comparisons.   

Furthermore, all three posturing approaches evaluated in this investigation provided 

different kinematics and kinetic results relative to the lab-based RLM. The manual posturing 

approach simulated the posture used by the HCP during lab-based investigation, which provided 

comparable results to the lab-based model. However, the posture prediction approach in both 

DHMs were predicting the postural strategies that would be used by a HCP, rather than modeling 

the posture used by the HCP during the lab-based investigation. This resulted in two differing 

data sets; where the lab-based model produced the real-life kinematics and kinetics of HCPs and 

the posture prediction approach produced the kinematics and kinetics associated with the optimal 

postural strategy that HCPs would use to perform the task. In retrospect, these data are therefore 

not the same and difficult to compare; however, it does highlight the unique differences between 

the uses of manual posturing and posture prediction approaches for different phases of HF&E 

investigations.  

When using the correlation plots to compare the DHM and lab-based RLM outputs, there 

were several factors that may have skewed the interpretation of correlation coefficients. There 

were consistent extreme values that appeared in the correlation plots that may have affected the 

strength of the overall relationships. These consistent extreme joint angle or moment values may 

have been a result of characteristics of individual HCPs used in the study sample. In addition, 
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when comparing the relationship between outputs produced by both the posture prediction and 

motion capture approaches to the lab-based model, variability in the data sets may have 

attributed to the decreased size in the correlation coefficients estimated. Specifically, a skewed 

distribution in the posture predicted and motion capture driven DHM outputs likely affected the 

correlations.  

Finally, this study only evaluated the static posture of a patient turn activity. This may 

hinder the extent to which the data can be generalized to other patient handling tasks. For 

example, the results may not reflect what would be seen in simulated data from lifting a patient. 

However, this investigation is the first to compare biomechanical measures estimated using 

DHM software packages to a lab-based modelled outputs specific to a patient repositioning task. 

Results from this study do provide preliminary evidence towards the validation of DHM tools as 

well as the independent factors associated with DHM modeling approaches that could impact the 

fidelity of biomechanical output measures commonly used to evaluate the presence or severity of 

MSD exposures.   

6.1 Implications of Future Research  

Through this comparative study, factors associated with the DHM software packages that 

could affect the fidelity of biomechanical measures were identified. An attempt was made at 

identifying the independent effect of each factor; however, due to the design of the experiment, it 

was not possible to quantify the effect of each model parameter on related difference in outcome 

measures. Further studies are required to investigate the magnitude of the effect of individual 

characteristics of digital models. Specifically, a detailed sensitivity analysis should be conducted 

to determine the effect of independent characteristics of DHM models on biomechanical 

measures.  
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Future studies should explore the effectiveness of DHM tools for both the reactive 

(descriptive) and proactive (prescriptive) investigation of MSD hazards for various patient 

handling tasks. As well, in addition to sagittal plane segment positioning, future studies should 

also consider modeling the frontal and transverse plane positions of limbs of HCPs during a 

patient reposition task. This would aide in estimating angles and moments about the low back 

and shoulder that are inclusive of the lateral bend, external/internal rotation and 

abduction/adduction limb motions used by HCPs. Further DHM investigations should also 

explore the use of directly measured segment lengths from live human participants that are being 

virtually simulated and input them into DHMs to scale the avatars. This could potentially 

minimize the errors produced in joint angles and moments as a result of anthropometric 

differences reported in this investigation.  
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7.0 Conclusions  

The aim of this thesis was to compare the kinematic and kinetic measures produced using 

two commercial DHM software packages’ manual joint manipulation, direct motion capture 

importing and posture prediction approaches against a lab-based rigid linked segmental model 

when modelling a patient repositioning task. Using Siemens Jack’s (V 8.4) manual joint 

manipulation approach to simulate a patient turn task produced low back and shoulder joint 

kinematics and kinetics that agreed well with the lab-based rigid segment linked model outputs. 

Kinematics and kinetics estimated using the posture prediction and direct motion capture data 

importing approaches using Siemens Jack (V 8.4) and Santos Pro did not agree with the lab-

based model outputs. Variation in shoulder and low back kinematic and kinetic measures 

observed across the three posturing approaches highlights the numerous factors associated with 

DHM software packages that could influence modeled biomechanical outcomes. Specifically, 

premise of each posturing approach (manual posturing vs. posture prediction) can provide either 

descriptive outputs or predictive outputs of a simulated patient reposition task. Furthermore, 

differences in the kinematic modeling assumptions related to structure of the skeletal linkage 

model, joint decomposition, anthropometry, and computational algorithms can all influence the 

biomechanical measures computed using DHM tools. The use of Siemens Jack (V 8.4) and 

Santos Pro software packages for biomechanical evaluation of patient repositioning tasks has the 

possibility to aide with the investigation of MSD exposures. However, it is important for 

practitioners to choose the appropriate posturing approach (reactive vs. proactive), depending on 

the goal of the MSD hazards investigation. As well, it is important for investigators to 

understand and consider the influence of model-related factors outlined in this investigation that 
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could affect their decisions when interpreting digitally modeled data that is used to determine 

exposures to MSD hazards  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

101 
 

References  

Aarås, A., Westgaard, R. H., & Stranden, E. (1988). Postural angles as an indicator of postural 

load and muscular injury in occupational work situations. Ergonomics. 

https://doi.org/10.1080/00140138808966731 

Abdel-Malek, K., & Arora, J. (2013). Human Motion Simulation: Predictive Dynamics. 

Waltham, USA: Academic Press. 

Abdel-malek, K., Arora, J., Law, L. F., Swan, C., Beck, S., Xia, T., … Obusek, J. P. (2008). 

Santos: a digital human in the making. International Conference on Applied Simulation and 

Modeling. 

Abdel-Malek, K., Yang, J., Kim, J. H., Marler, T., Beck, S., Swan, C., … Arora, J. (2007). 

Development of the Virtual-Human Santos. In Digital Human Modeling (Vol. LNCS 4561, 

pp. 490–499). https://doi.org/10.1007/978-3-540-73321-8_57 

Allen, B., Curless, B., & Popovic, Z. (2004). Exploring the space of human body shapes : data-

driven synthesis under anthropometric control. Digital Human Modeling for Design and 

Engineering Symposium, (c), 1–4. https://doi.org/doi:10.4271/2004-01-2188 

Allen, B., Curless, B., & Popović, Z. (2002). Articulated body deformation from range scan data. 

ACM Transactions on Graphics, 21(3). https://doi.org/10.1145/566654.566626 

Badler, N. I., Phillips, C. B., & Webber, B. L. (1999a). Simulating Humans: Computer Graphics, 

Animation, and Control. 

Badler, N. I., Phillips, C. B., & Webber, B. L. (1999b). Simulating Humans: Computer Graphics, 

Animation, and Control, (June 1993), 283. 



 
 

102 
 

Belbeck, A., Cudlip, A. C., & Dickerson, C. R. (2014). Assessing the interplay between the 

shoulders and low back during manual patient handling techniques in a nursing setting. 

International Journal of Occupational Safety and Ergonomics, 20(1), 127–137. 

https://doi.org/10.1080/10803548.2014.11077026 

Beravs, T., Reberšek, P., Novak, D., Podobnik, J., & Munih, M. (2011). Development and 

validation of a wearable inertial measurement system for use with lower limb exoskeletons. 

In IEEE-RAS International Conference on Humanoid Robots (pp. 212–217). 

https://doi.org/10.1109/Humanoids.2011.6100914 

Bergstrom, N., Horn, S. D., Rapp, M. P., Stern, A., Barrett, R., & Watkiss, M. (2013). Turning 

for ulcer ReductioN: A Multisite randomized clinical trial in nursing homes. Journal of the 

American Geriatrics Society, 61(10), 1705–1713. https://doi.org/10.1111/jgs.12440 

Bjelle, A., Hagberg, M., & Michaelson, G. (1981). Occupational and individual factors in acute 

shoulder-neck disorders among industrial workers. British Journal of Industrial Medicine, 

38(4), 356–363. https://doi.org/10.1136/oem.38.4.356 

Black, T. R., Shah, S. M., Busch, A. J., Metcalfe, J., & Lim, H. J. (2011). Effect of Transfer, 

Lifting, and Repositioning (TLR) Injury Prevention Program on Musculoskeletal Injury 

Among Direct Care Workers. Journal of Occupational and Environmental Hygiene, 8(4), 

226–235. https://doi.org/10.1080/15459624.2011.564110 

Blanchonette, P. (2010). Jack Human Modelling Tool: A Review. Defence Science And 

Technology. Air Operations Divsion, DSTO. Retrieved from 

http://www.dtic.mil/dtic/tr/fulltext/u2/a518132.pdf 

Bland, J. M., & Altman, D. G. (1999). Measuring agreement in method comparison studies. 



 
 

103 
 

Statistical Methods in Medical Research, 8(2), 135–160. 

https://doi.org/10.1191/096228099673819272 

Caboor, D. E., Verlinden, M. O., Zinzen, E., Van Roy, P., Van Riel, M. P., & Clarys, J. P. 

(2000). Implications of an adjustable bed height during standard nursing tasks on spinal 

motion, perceived exertion and muscular activity. Ergonomics, 43(10), 1771–1780. 

https://doi.org/10.1080/001401300750004177 

Cao, W., Jiang, M., Han, Y., & Khasawneh, M. T. (2013). Ergonomic assessment of patient 

Barrow lifting technique using digital human modeling. In Digital Human Modeling (Vol. 

8026 LNCS, pp. 20–29). https://doi.org/10.1007/978-3-642-39182-8_3 

Case, K., Hussain, A., Marshall, R., Summerskill, S., & Gyi, D. (2015). Digital Human 

Modelling and the Ageing Workforce. Procedia Manufacturing, 3, 3694–3701. 

https://doi.org/10.1016/j.promfg.2015.07.794 

Chaffin, D. B. (2005). Improving digital human modelling for proactive ergonomics in design. 

Ergonomics, 48(5), 478–491. https://doi.org/10.1080/00140130400029191 

Chaffin, D. B. (2008). Digital human modeling for workspace design. In Reviews of Human 

Factors and Ergonomics (p. 200). https://doi.org/10.1518/155723408X342844. 

Chaffin, D. B. (2008). Digital Human Modeling for Workspace Design. Reviews of Human 

Factors and Ergonomics , 4(1), 41–74. https://doi.org/10.1518/155723408X342844 

Chang, S. W., & Wang, M. J. J. (2007). Digital human modeling and workplace evaluation: 

Using an automobile assembly task as an example. Human Factors and Ergonomics In 

Manufacturing, 17(5), 445–455. https://doi.org/10.1002/hfm.20085 



 
 

104 
 

Cheng, H., Obergefell, L., & Rizer, A. (1994). Generator of Body (GEBOD) Manual. Systems 

Research Labratories, Inc. 

Cook, D., Yeager, M., & Cheng, B. (2015). Range of Motion of the Intact Lumbar Segment: A 

Multivariate Study of 42 Lumbar Spines. International Journal of Spine Surgery. 

https://doi.org/10.14444/2005 

Demirel, H. O., & Duffy, V. G. (2007). Application of digital human modeling in industry. 

Digital Human Modeling, 824–832. https://doi.org/10.1007/978-3-540-73321-8_93 

Desjardins, P., Plamondon, A., & Gagnon, M. (1998). Sensitivity analysis of segment models to 

estimate the net reaction moments at the L5/S1 joint in lifting. Medical Engineering and 

Physics. https://doi.org/10.1016/S1350-4533(97)00036-2 

Duffy, V. G. (2008). Handbook of Digital Human Modeling: Research for Applied Ergonomics 

and Human Factors Engineering. Boca Raton, USA: CRC Press. 

Endo, Y., Kanai, S., Kishinami, T., Miyata, N., Kouchi, M., & Mochimaru, M. (2007). Virtual 

grasping assessment using 3D digital hand model. 10th Annual Applied Ergonomics 

Conference: Celebrating the Past - Shaping the Future. Retrieved from 

papers2://publication/uuid/EDDAB479-51F2-4390-9A59-681B4A4040DF 

Endo, Y., Kanai, S., Miyata, N., Kouchi, M., Mochimaru, M., Konno, J., … Shimokawa, M. 

(2009). An optimization-based approach for grasp posture generation of digital hand. In 

2008 ASME International Design Engineering Technical Conferences and Computers and 

Information in Engineering Conference, DETC 2008 (Vol. 3, pp. 877–885). 

https://doi.org/10.1115/DETC2008-49749 



 
 

105 
 

Estrynbehar, M., Kaminski, M., Peigne, E., Maillard, M. F., Pelletier,  a, Berthier, C., … Leroux, 

J. M. (1990). Strenuous Working-Conditions and Musculoskeletal Disorders among Female 

Hospital Workers. International Archives of Occupational and Environmental Health, 

62(Insee 1988), 47–57. 

Faraway, J., & Reed, M. P. (2007). Statistics for Digital Human Motion Modeling in 

Ergonomics. Technometrics, 49(3), 277–290. https://doi.org/10.1198/004017007000000281 

Fischer, S. L., Albert, W. J., McClellan, A. J., & Callaghan, J. P. (2007). Methodological 

considerations for the calculation of cumulative compression exposure of the lumbar spine: 

A sensitivity analysis on joint model and time standardization approaches. Ergonomics. 

https://doi.org/10.1080/00140130701344042 

Fragala, G. (2011). Facilitating Repositioning in Bed. AAOHN Journal, 59(2), 63–68. 

https://doi.org/10.3928/08910162-20110117-01 

Fragala, G., & Bailey, L. P. (2003). Addressing occupational strains and sprains: musculoskeletal 

injuries in hospitals. AAOHN Journal, 51(6), 252–259. Retrieved from 

http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4

&AN=12846458%5Cnhttp://sdb-

web2.biblio.usherbrooke.ca/web2/tramp2.exe/do_keyword_search/guest&SETTING_KEY

=french&servers=1home&index=ISSN&query=0891-0162%5Cnhttp://sfxhosted.exlibris 

Freitag, S., Fincke-Junod, I., Seddouki, R., Dulon, M., Hermanns, I., Kersten, J. F., … Nienhaus, 

A. (2012). Frequent bending - An underestimated burden in nursing professions. Annals of 

Occupational Hygiene, 56(6), 697–707. https://doi.org/10.1093/annhyg/mes002 

Fritzsche, L. (2010). Ergonomics Risk Assessment with Digital Human Models in Car 



 
 

106 
 

Assembly: Simulation versus Real Life Lars Fritzsche. Human Factors and Ergonomics in 

Manufacturing, 20, 287–299. https://doi.org/10.1002/hfm 

Gagnon, M., Chehade, A., Kemp, F., & Lortie, M. (1987). Lumbo-sacral loads and selected 

muscle activity while turning patients in bed. Ergonomics, 30(7), 1013–1032. 

https://doi.org/10.1080/00140138708965992 

Griffiths, H. (2012). Adverse risk: A “dynamic interaction model of patient moving and 

handling.” Journal of Nursing Management, 20(6), 713–736. https://doi.org/10.1111/j.1365-

2834.2011.01276.x 

Hall, S., Longhurst, S., & Higginson, I. J. (2009). Challenges to conducting research with older 

people living in nursing homes. BMC Geriatrics, 9(38), 1–6. https://doi.org/10.1186/1471-

2318-9-38 

Hanson, L., Hogberg, D., & Soderholm, M. (2012). Digital test assembly of truck parts with the 

IMMA-tool - An illustrative case. Work, 41, 2248–2252. https://doi.org/10.3233/WOR-

2012-0447-2248 

Hartenberg, R. S., & Denavit, J. (1955). A kinematic notation for lower-pair mechanisms based 

on metrics. Transactions of the ASME. Journal of Applied Mechanics. 

https://doi.org/citeulike-article-id:7153318 

Hassan, E. A., Jenkyn, T. R., & Dunning, C. E. (2007). Direct comparison of kinematic data 

collected using an electromagnetic tracking system versus a digital optical system. Journal 

of Biomechanics. https://doi.org/10.1016/j.jbiomech.2006.03.019 

Hoozemans, M. J. M., Van Der Beek, A. J., Frings-Dresen, M. H. W., & Van Der Molen, H. F. 



 
 

107 
 

(2001). Evaluation of methods to assess push/pull forces in a construction task. Applied 

Ergonomics, 32(5), 509–516. https://doi.org/10.1016/S0003-6870(01)00021-7 

Jäger, M., Jordan, C., Theilmeier, A., Wortmann, N., Kuhn, S., Nienhaus, A., & Luttmann, A. 

(2013). Lumbar-load analysis of manual patient-handling activities for biomechanical 

overload prevention among healthcare workers. Annals of Occupational Hygiene, 57(4), 

528–544. https://doi.org/10.1093/annhyg/mes088 

Jimerson, B., Park, E., Jiang, S., & Stajsic, D. (2016). Digital Human Modeling of Caretakers 

Preparing Patients for Patient Transfer Devices. International Advanced Research Journal 

in Science, Engineering and Technology, 3(12), 98–103. 

https://doi.org/10.17148/IARJSET.2016.31219 

Kajaks, T., Stephens, A., & Potvin, J. R. (2011). The effect of manikin anthropometrics and 

posturing guidelines on proactive ergonomic assessments using digital human models. 

International Journal of Human Factors Modelling and Simulation. 

https://doi.org/10.1504/IJHFMS.2011.044512 

Karmakar, S., Pal, M. S., Majumdar, D., & Majumdar, D. (2012). Application of digital human 

modeling and simulation for vision analysis of pilots in a jet aircraft: A case study. Work, 

41(SUPPL.1), 3412–3418. https://doi.org/10.3233/WOR-2012-0617-3412 

Kim, K. H., & Martin, B. J. (2006). The Role of Visual and Manual Demand in Movement and 

Posture Organization and Engineering Conference. Engineering Conference, (724). 

https://doi.org/10.4271/2006-01-2331 

Kouchi, M., & Mochimaru, M. (2004). A Validation Method for Digital Human Anthropometry : 

Towards the Standardization of Validation and Verification, (724), 1–6. 



 
 

108 
 

Kudo, S., Fujimoto, M., Sato, T., & Nagano, A. (2018). Quantitative evaluation of linked rigid-

body representations of the trunk. Gait & Posture, 63(January), 119–123. 

https://doi.org/10.1016/j.gaitpost.2018.04.046 

Kuorinka, I., Jonsson, B., Kilbom, A., Vinterberg, H., Biering-Sørensen, F., Andersson, G., & 

Jørgensen, K. (1987). Standardised Nordic questionnaires for the analysis of 

musculoskeletal symptoms. Applied Ergonomics. https://doi.org/10.1016/0003-

6870(87)90010-X 

Lämkull, D., Hanson, L., & Örtengren, R. (2008). Uniformity in mannikin posturing: a 

comparison between posture prediction and manual joint manipulation. International 

Journal of Human Factors Modelling and Simulation. 

https://doi.org/10.1504/IJHFMS.2008.022478 

Lämkull, D., Hanson, L., & Roland Örtengren. (2009). A comparative study of digital human 

modelling simulation results and their outcomes in reality: A case study within manual 

assembly of automobiles. International Journal of Industrial Ergonomics, 39(2), 428–441. 

https://doi.org/10.1016/j.ergon.2008.10.005 

Latimer, S., Chaboyer, W., & Gillespie, B. M. (2015). The repositioning of hospitalized patients 

with reduced mobility: a prospective study. Nursing Open, 2(2), 85–93. 

https://doi.org/10.1002/nop2.20 

Lindbeck, L., & Engkvist, I.-L. (1993). Biomechanical analysis of two patient handling tasks. 

International Journal of Industrial Ergonomics, 12(1–2), 117–125. 

https://doi.org/10.1016/0169-8141(93)90043-D 

Lowe, B., Weir, P., & Andrews, D. (2014). Observation-Based Posture Assessment. DHHS 



 
 

109 
 

(NIOSH) Publication, 32. Retrieved from http://www.cdc.gov/niosh/docs/2014-

131/pdfs/2014-131.pdf 

Marler, R. T., Arora, J. S., Yang, J., Kim, J., & Abdel-malek, K. (2009). Use of multi-objective 

optimization for digital human posture prediction. Engineering Optimization, 41(10), 925–

943. https://doi.org/10.1080/03052150902853013 

Marler, T., Yang, J., Rahmatalla, S., Abdel-malek, K., & Harrison, C. (2007). Validation 

Methodology Development for Predicted Posture. Design. https://doi.org/10.4271/2007-01-

2467 

Marras, W., & Karwowski, W. (2006). Fundamental and assessment tools for occupational 

ergonomics. CRC Presss, Taylor & Francis. https://doi.org/10.1201/9781420003635 

Marras, W. S., Davis, K. G., Kirking, B. C., & Bertsche, P. K. (1999). A comprehensive analysis 

of low-back disorder risk and spinal loading during the transferring and repositioning of 

patients using different techniques. Ergonomics, 42(7), 904–926. 

https://doi.org/10.1080/001401399185207 

Marras, W. S., Davis, K. G., Kirking, B. C., & Granata, K. P. (1999). Spine loading and trunk 

kinematics during team lifting. Ergonomics, 42(10), 1258–1273. 

https://doi.org/10.1080/001401399184938 

Marras, W. S., & Granata, K. P. (1997). Spine loading during trunk lateral bending motions. 

Journal of Biomechanics. https://doi.org/10.1016/S0021-9290(97)00010-9 

Marras, W. S., Lavender, S. A., Leurgans, S. E., Fathallah, F. A., Ferguson, S. A., Allread, W. 

G., & Rajulu, S. L. (1995). Biomechanical risk factors for occupationally related low back 



 
 

110 
 

disorders. Ergonomics. https://doi.org/10.1080/00140139508925111 

Marras, W. S., Lavender, S. a, Leurgans, S. E., Rajulu, S. L., Allread, W. G., Fathallah, F. a, & 

Ferguson, S. a. (1993). The role of dynamic three-dimensional trunk motion in 

occupationally-related low back disorders. The effects of workplace factors, trunk position, 

and trunk motion characteristics on risk of injury. Spine. https://doi.org/10.1097/00007632-

199304000-00015 

McDowell, M., Fryar, C., Ogden, C., & Flegal, K. (2008). Anthropometric reference data for 

children and adults: United States, 2003-2006. National Health Statistics Reports, (10), 

2003–2006. Retrieved from https://www.cdc.gov/nchs/data/nhsr/nhsr010.pdf 

McGill, S. M., & Norman, R. W. (1986). Partitioning of the L4-L5 Dynamic Moment into Disc, 

Ligamentous, and Muscular Components During Lifting. Spine, 11(7), 666–678. 

McGill, S. M., Norman, R. W., & Cholewicki, J. (1996). A simple polynomial that predicts low-

back compression during complex 3-d tasks. Ergonomics, 39(9), 1107–1118. 

https://doi.org/10.1080/00140139608964532 

McGinley, J. L., Baker, R., Wolfe, R., & Morris, M. E. (2009). The reliability of three-

dimensional kinematic gait measurements: A systematic review. Gait and Posture. 

https://doi.org/10.1016/j.gaitpost.2008.09.003 

Monheit, G., & Badler, N. I. (1991). A kinematic model of the human spine and torso. IEEE 

Computer Graphics and Applications. https://doi.org/10.1109/38.75588 

Naumann, A., & Roetting, M. (2007). Digital Human Modeling for Design and Evaluation of 

Human-Machine Systems. MMI-Interaktiv, (12), 27–35. 



 
 

111 
 

Nelson, A., & Baptiste, A. S. (2004). Evidence-based practices for safe patient handling and 

movement. Online Journal of Issues in Nursing. https://doi.org/10.1385/BMM:4:1:55 

Nelson, A., Lloyd, J. D., Menzel, N., & Gross, C. (2003). Preventing nursing back injuries: 

redesigning patient handling tasks. AAOHN, 51(3), 126–134. 

Nussbaum, M. a, & Zhang, X. (2000). Heuristics for locating upper extremity joint centres from 

a reduced set of surface markers. Human Movement Science, 19(5), 797–816. 

https://doi.org/10.1016/S0167-9457(00)00020-8 

OSHA. (2009). Ergonomics for the Prevention of Musculoskeletal Disorders. U.S. Department of 

Labor, 1, 54. https://doi.org/http://dx.doi.org/10.1016/B0-08-043076-7/03919-X 

Papi, E., Osei-Kuffour, D., Chen, Y.-M. A., & McGregor, A. H. (2015). Use of wearable 

technology for performance assessment: a validation study. Medical Engineering & 

Physics, 37(7), 698–704. https://doi.org/10.1016/j.medengphy.2015.03.017 

Patel, D. R., & Kinsella, E. (2017). Evaluation and management of lower back pain in young 

athletes. Translational Pediatrics. https://doi.org/10.21037/tp.2017.06.01 

Paul, G., & Quintero-Duran, M. (2015). Ergonomic assessment of hospital bed moving using 

DHM Siemens JACK. Proceedings of the 19th Triennial Congress of the International 

Ergonomics Association, 9–14. Retrieved from http://eprints.qut.edu.au/86239/3/86239.pdf 

Plamondon, A., Gagnon, M., & Desjardins, P. (1996). Validation of two 3D segment models to 

calculate the net reaction forces and moments at the L5/S1 joint in lifting. Clinical 

Biomechanics, 11(2), 101–110. 

Pompeii, L. A., Lipscomb, H. J., Schoenfisch, A. L., & Dement, J. M. (2009). Musculoskeletal 



 
 

112 
 

injuries resulting from patient handling tasks among hospital workers. American Journal of 

Industrial Medicine, 52(7), 571–578. https://doi.org/10.1002/ajim.20704 

Potvin, J. (2017). an Ergonomics Simulation Study of a Clinical Recliner, Chair, and Bed During 

Sit-To-Stand Patient Lifting. International Journal of Safe Patient Handling & Mobility 

(SPHM), 7(2), 64–73. Retrieved from 

http://search.ebscohost.com/login.aspx?direct=true&db=ccm&AN=124173991&lang=es&si

te=ehost-live&scope=site 

Punnett, L., Fine, L. J., Keyserling, W. M., Herrin, G. D., & Chaffin, D. B. (1991). Back 

disorders and nonneutral trunk postures of automobile assembly worker. Scandinavian 

Journal of Work, Environment and Health, 17(5), 337–346. 

https://doi.org/10.5271/sjweh.1700 

Punnett, L., Fine, L. J., Monroe Keyserling, W., Herrin, G. D., & Chaffin, D. B. (2000). Shoulder 

disorders and postural stress in automobile assembly work. Scandinavian Journal of Work, 

Environment and Health, 26(4), 283–291. https://doi.org/10.5271/sjweh.544 

Quintero-Duran, M., & Gunther, P. (2016). Comparison of Two Different DHM Systems for the 

Ergonomic Assessment of a Physical Task. In The 4th International Digital Human 

Modeling Symposium (pp. 15–17). 

Raghunathan, R., & R, S. (2016). Review of Recent Developments in Ergonomic Design and 

Digital Human Models. Industrial Engineering & Management, 5(2), 1–7. 

https://doi.org/10.4172/2169-0316.1000186 

Rajput, V., Kalra, P., & Singh, J. (2013). Digital Human Modeling Approach in Ergonomic 

Evaluations. International Journal of Science and Research, 2(6), 156–158. 



 
 

113 
 

Rao, G., Amarantini, D., Berton, E., & Favier, D. (2006). Influence of body segments’ 

parameters estimation models on inverse dynamics solutions during gait. Journal of 

Biomechanics. https://doi.org/10.1016/j.jbiomech.2005.04.014 

Raschke, U., Martin, B. J., & Chaffin, D. B. (1996). Distributed moment histogram: a 

neurophysiology based method of agonist and antagonist trunk muscle activity prediction. 

Journal of Biomechanics, 29(12), 1587–1596. 

Raschke, U., Schutte, L. M., & Chaffin, D. B. (2000). Ergonomics in Digital Environments. In 

Handbook of Industrial Engineering (pp. 1111–1130). 

https://doi.org/10.1002/9780470172339.ch41 

Reed, M. P., Faraway, J., Chaffin, D. B., & Martin, B. J. (2006). The HUMOSIM Ergonomics 

Framework : A New Approach to Digital Human Simulation for Ergonomic Analysis. 

Society of Automotive Engineers, Inc., 01-2365(724). https://doi.org/10.4271/2006-01-2365 

Reed, M. P., & Huang, S. (2008). Modeling Vehicle Ingress and Egress Using the Human 

Motion Simulation Framework. Digital Human Modeling for Design and Engineering 

Symposium, 1–12. https://doi.org/10.4271/2008-01-1896 

Reeves, N. P., & Cholewicki, J. (2003). Modeling the human lumbar spine for assessing spinal 

loads, stability, and risk of injury. Critical Reviews in Biomedical Engineering. 

https://doi.org/10.1615/CritRevBiomedEng.v31.i12.30 

Regazzoni, D., & Rizzi, C. (2013). Digital Human Models and Virtual Ergonomics to Improve 

Maintainability. Computer-Aided Design and Applications, 11(1), 10–19. 

https://doi.org/10.1080/16864360.2013.834130 



 
 

114 
 

Riemer, R., & Hsiao-Wecksler, E. T. (2008). Improving joint torque calculations: Optimization-

based inverse dynamics to reduce the effect of motion errors. Journal of Biomechanics. 

https://doi.org/10.1016/j.jbiomech.2008.02.011 

Robinette, K., Blackwell, S., Daanen, H., Boehmer, M., Fleming, S., Brill, T., … Burnsides, D. 

(1991). Civilian American and European Surface Anthropometry Resource (Ceasar). SAE 

International, 5(December). 

Rune, S., Hongjun, X., & Bifeng, S. (2008). Ergonomic assessment method for cockpit layout of 

civil aircraft x based on virtual design. ICAS International Council of Aeronautical 

Sciences, 1–8. Retrieved from 

http://www.icas.org/ICAS_ARCHIVE/ICAS2008/PAPERS/002.PDF%0Ahttp://www.icas.o

rg/ICAS_ARCHIVE_CD1998-2010/ICAS2008/PAPERS/002.PDF 

Ruspa, C., Quattrocolo, S., & Bertolino, D. (2007). Virtual Tool for the Evaluation of the 

Visibility during Critical Driving Tasks. Virtual Reality, (724). 

https://doi.org/10.4271/2007-01-2499 

Samson, A., & Khasawneh, M. T. (2009). Digital human modeling for ergonomic assessment of 

patient lifting by paramedics. Graduate School Of\rBinghamton University, Master of, 164. 

Sanjog, J., Karmakar, S., Patel, T., & Chowdhury, A. (2015). Towards virtual ergonomics: 

aviation and aerospace. Aircraft Engineering and Aerospace Technology, 87(3), 266–273. 

https://doi.org/10.1108/AEAT-05-2013-0094 

Santoshuman Inc. Software. (2009). SoftwareTM Engine - Software User Guide V1.0. 

Satheeshkumar, M., & Krishnakumnar, K. (2014). Digital Human Modeling Approach in 



 
 

115 
 

Ergonomic Design and Evaluation - A Review. International Journal of Scientific & 

Engineering Research, 5(7), 2229–5518. 

Schibye, B., Hansen, A. F., Hye-Knudsen, C. T., Essendrop, M., Böcher, M., & Skotte, J. (2003). 

Biomechanical analysis of the effect of changing patient-handling technique. Applied 

Ergonomics, 34(2), 115–123. https://doi.org/10.1016/S0003-6870(03)00003-6 

Siemans PLM Software. (2016). Jack User Manual Version 8.4. Retrieved from 

http://inition.co.uk/3D-Technologies/productsection/43 

Skotte, J., Essendrop, M., Hansen, A., & Schibye, B. (2002). A dynamic 3D biomechanical 

evaluation of the load on the low back during different patient-handling tasks. Journal of 

Biomechanics, 35(10), 1357–1366. https://doi.org/10.1016/S0021-9290(02)00181-1 

Skotte, J., & Fallentin, N. (2008). Low back injury risk during repositioning of patients in bed: 

the influence of handling technique, patient weight and disability. Ergonomics, 51(March 

2015), 1042–1052. https://doi.org/10.1080/00140130801915253 

Sun, X., Gao, F., Yuan, X., & Zhao, J. (2011). Application of Human Modeling in Multi-crew 

Cockpit Design. In V. G. Duffy (Ed.), Digital Human Modeling: Third International 

Conference, ICDHM 2011, Held as Part of HCI International 2011, Orlando, FL, USA July 

9-14, 2011. Proceedings (pp. 204–209). Berlin, Heidelberg: Springer Berlin Heidelberg. 

https://doi.org/10.1007/978-3-642-21799-9_23 

Sutherland, C. a., Albert, W. J., Wrigley, A. T., & Callaghan, J. P. (2008). A validation of a 

posture matching approach for the determination of 3D cumulative back loads. Applied 

Ergonomics, 39(2), 199–208. https://doi.org/10.1016/j.apergo.2007.05.004 



 
 

116 
 

Takagi, Y., Oi, T., Tanaka, H., Inui, H., Fujioka, H., Tanaka, J., … Nobuhara, K. (2014). 

Increased horizontal shoulder abduction is associated with an increase in shoulder joint load 

in baseball pitching. Journal of Shoulder and Elbow Surgery. 

https://doi.org/10.1016/j.jse.2014.03.005 

Theilmeier, A., Jordan, C., Luttmann, A., & Jäger, M. (2010). Measurement of action forces and 

posture to determine the lumbar load of healthcare workers during care activities with 

patient transfers. Annals of Occupational Hygiene, 54(8), 923–933. 

https://doi.org/10.1093/annhyg/meq063 

Ulin, S. S., Chaffin, D. B., Patellos, C. L., Blitz, S. G., Emerick, C. A., Lundy, F., & Misher, L. 

(1997). A biomechanical analysis of methods used for transferring totally dependent 

patients. American Association of Spinal Cord Injury Nurses, 14(1), 19–27. Retrieved from 

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&amp;id=9165952&a

mp;retmode=ref&amp;cmd=prlinks 

Van Kampen, D. A., Willems, W. J., van Beers, L. W. A. H., Castelein, R. M., Scholtes, V. A. 

B., & Terwee, C. B. (2013). Determination and comparison of the smallest detectable 

change (SDC) and the minimal important change (MIC) of four-shoulder patient-reported 

outcome measures (PROMs). Journal of Orthopaedic Surgery and Research, 8(1), 1–9. 

https://doi.org/10.1186/1749-799X-8-40 

Vicon. (2016). Vicon Nexus User Guide. 

Warburton, D. E. R., Jamnik, V. K., Bredin, S. S. D., Burr, J., Charlesworth, S., Chilibeck, P., … 

Gledhill, N. (2011). Executive Summary The 2011 Physical Activity Readiness 

Questionnaire for Everyone (PAR-­Q+) and the Electronic Physical Activity Readiness 



 
 

117 
 

Medical Examination (ePARmed-­X+). Health & Fitness Journal of Canada. 

Waters, T. R., Putz-Anderson, V., Garg,  a, & Fine, L. J. (1993). Revised NIOSH equation for 

the design and evaluation of manual lifting tasks. Ergonomics, 36(7), 749–776. 

https://doi.org/10.1080/00140139308967940 

Wegner, D., Chiang, J., Kemmer, B., Lämkull, D., & Roll, R. (2007). Digital Human Modeling 

Requirements and Standardization. SAE International, 151–159. 

Weiner, C., Alperovitch-Najenson, D., Ribak, J., & Kalichman, L. (2015). Prevention of Nurses’ 

Work-Related Musculoskeletal Disorders Resulting From Repositioning Patients in Bed. 

Workplace Health & Safety, 63(5), 226–232. https://doi.org/10.1177/2165079915580037 

Weiner, C., Kalichman, L., Ribak, J., & Alperovitch-Najenson, D. (2017). Repositioning a 

passive patient in bed: Choosing an ergonomically advantageous assistive device. Applied 

Ergonomics, 60, 22–29. https://doi.org/10.1016/j.apergo.2016.10.007 

Winkel, J., & Mathiassen, S. E. (1994). Assessment of physical work load in epidemiologic 

studies: concepts, issues and operational considerations. Ergonomics, 37(6), 979–988. 

https://doi.org/10.1080/00140139408963711 

Woldstad, J. C. (2006). Digital Human Models for Ergonomics. In International Encyclopedia of 

Ergonomics and Human Factors (pp. 3093–3096). 

Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., … Stokes, I. (2002). 

ISB recommendation on definitions of joint coordinate system of various joints for the 

reporting of human joint motion—part I: ankle, hip, and spine. Journal of Biomechanics, 

35(4), 543–548. https://doi.org/10.1016/S0021-9290(01)00222-6 



 
 

118 
 

Wu, G., Van Der Helm, F. C. T., Veeger, H. E. J., Makhsous, M., Van Roy, P., Anglin, C., … 

Buchholz, B. (2005). ISB recommendation on definitions of joint coordinate systems of 

various joints for the reporting of human joint motion - Part II: Shoulder, elbow, wrist and 

hand. Journal of Biomechanics, 38(5), 981–992. 

https://doi.org/10.1016/j.jbiomech.2004.05.042 

Xia, S., & Gunther, P. (2011). Determinants of Driver vs . Second Row Occupant Posture 

Modelling. In 1st International Symposium on Digital Human Modelling (pp. 14–16). 

Yamamoto, I., Panjabi, M. M., & Oxland, T. (1989). Three-dimensional movements of the whole 

lumbar spine and lumbosacral joint. Spine. https://doi.org/10.1097/00007632-198911000-

00020 

Yang, J., Kim, J. H., Abdel-Malek, K., Marler, T., Beck, S., & Kopp, G. R. (2007). A new digital 

human environment and assessment of vehicle interior design. Computer-Aided Design, 39, 

548–558. https://doi.org/10.1016/j.cad.2006.11.007 

Yang, J., Rahmatalla, S., Marler, T., & Abdel-malek, K. (2007). Validation of Predicted Posture 

for the Virtual Human SantosTM. Hcii, LNCS 4561(Digit. Hum. Model.), 500–510. 

Retrieved from 

http://www.springerlink.com/index/E312574437V91Q11.pdf%5Cnpapers2://publication/uu

id/A787ECAA-1FFD-411C-8376-2453F7F78D76 

Zatsiorsky, V. M. M. (1998). Kinematics of Human Motion. American Journal of Human 

Biology. https://doi.org/99.1998/zatsiorsky.0880116765 

Zhang, L., Niu, J., Feng, X., Xu, S., & Li, X. (2013). Digital Human Modeling for 

Musculoskeletal Disorder Ergonomics Researches In Healthcare. In The 19th International 



 
 

119 
 

Conference on Industrial Engineering and Engineering Management (pp. 1149–1156). 

https://doi.org/10.1007/978-3-642-38442-4 

Zhang, X., & Chaffin, D. B. (2006). Digital human modeling for computer-aided ergonomics. 

Interventions, Controls, and Applications in Occupational Ergonomics, Chapter 10. 

Retrieved from 

http://www.mechse.uiuc.edu/research/xudong/Preprint/ChapterPreprint.pdf%5Cnpapers2://

publication/uuid/C4E7FBEF-23D7-4DE2-8A96-5DE82A131ADE 

Zhang, X., Xue, L., Li, S., & Kim, F. J. (2013). Digital human modeling for ergonomic 

evaluation of patient table height. Robotics and Biomimetics (ROBIO), 2013 IEEE 

International Conference On, (December), 1480–1485. 

Zhao, J., & Badler, N. I. (1994). Inverse kinematics positioning using nonlinear programming for 

highly articulated figures. ACM Transactions on Graphics. 

https://doi.org/10.1145/195826.195827 

 

 

 

 

 

 

 



 
 

120 
 

Appendix I 
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segment landmarks 

Select joint/segment 
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avatar in the DHM 
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Appendix III 
Summary of multiple regression statistics for the Independent variables (Mean outputs) to 

Dependent variables (Mean difference outputs) 

Manual 
 

Unstandardized Coefficients Standardized Coefficients 

Independent Variable  B Std. Error β t 

Jack L4-L5 Moment 0.22 0.08 0.47 2.54* 

Santos L4-L5 Moment 0.69 0.11 0.79 6.15* 

Jack Shoulder Moment 0.11 0.36 0.06 0.30 

Santos Shoulder Moment 1.28 0.31 0.65 4.15* 

Jack Trunk Angle  0.17 0.68 0.05 0.24 

Santos Trunk Angle 1.73 0.25 0.83 7.02* 

Jack Shoulder Angle  -0.66 0.14 -0.71 -4.85* 

Santos Shoulder Angle  0.04 0.08 0.10 0.47 

*p<0.05 
    

Posture Prediction 

 

 

 

 

 

 

 

 

Motion Capture 

 

 

 Unstandardized Coefficients Standardized Coefficients 

Independent Variable B Std. Error β t 

Jack L4-L5 Moment 1.33 0.20 0.81 6.56* 

Santos L4-L5 Moment 1.59 0.17 0.89 9.54* 

Jack Shoulder Moment 0.07 0.27 0.05 0.26 

Santos Shoulder Moment 0.51 0.37 0.28 1.38 

Jack Trunk Angle 1.40 0.23 0.78 5.96* 

Santos Trunk Angle 1.71 0.11 0.96 16.28* 

Jack Shoulder Angle 0.85 0.34 0.47 2.53* 

Santos Shoulder Angle 1.13 0.35 0.56 3.20* 

*p<0.05 
    

 Unstandardized Coefficients Standardized Coefficients 

Independent Variable B St. Error β t 

Jack L4-L5 Moment 0.44 0.18 0.45 2.40* 

Santos L4-L5 Moment 1.55 0.12 0.94 12.77* 

Jack Shoulder Moment -0.05 0.41 -0.03 -0.13 

Santos Shoulder Moment 0.41 0.36 0.23 1.14 

Jack Trunk Angle 1.07 0.20 0.75 5.38* 

Santos Trunk Angle 0.35 0.22 0.31 1.59 

Jack Shoulder Angle 0.17 0.16 0.22 1.08 

Santos Shoulder Angle 1.52 0.14 0.92 10.95* 

*p<0.05 
    


