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Abstract

We report experimental evidence of a new instability in electrostatic sensors, dubbed quasi-

static pull-in, in two types of micro-sensors operating in ambient air. We find that the underlying

mechanism and features of this instability are distinct from those characterizing hitherto known

static and dynamic pull-in instabilities. Specifically, the mechanism instigating quasi-static pull-

in is a global Shilnikov homoclinic bifurcation where a slow-varying waveform drives the sensor

periodically through a saddle-node bifurcation. Based on these findings, we propose a new

taxonomy of pull-in instabilities in electrostatic sensors.

Experimental evidence of nonlinear chaotic behaviors were observed in an electrostatic MEMS

sensor. Period doubling bifurcation (P-2), period three (P-3), and period six (P-6) were observed.

A new class of intermittency subsequent to homoclinic bifurcation in addition to the traditional

intermittencies of type-I and type-II were demonstrated. Quasiperiodicity and homoclinic tangles

leading to chaos were also reported. All of these nonlinear phenomena instigate either banded

chaos or full chaos and both are observed in this work. Based on our knowledge, this is the

first observation such chaotic behaviors in electrostatic MEMS sensors. All of the experimen-

tal observations have been measured optically via a laser Doppler-vibrometer (LDV) in ambient

pressure.

Also, a new class of intermittencies was found in the oscillations of an electrostatic sensor.

These intermittencies involve a dynamic system spending irregular time intervals in the vicinity

of the ghost of an orbit before undergoing bursts that are arrested by landing on a larger attractor.

Re-injection into the vicinity of the ghost orbit is noise induced. As a control parameter is

increased, switching intermittency of type-I leads to a stable periodic orbit, whereas switching

intermittency of type-II leads to a chaotic attractor.

These significant findings in nonlinear dynamic were used to develop novel MEMS sensors.
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An electrostatic MEMS gas sensor is demonstrated. It employs a dynamic-bifurcation detec-

tion technique. In contrast to traditional gas or chemical sensors that measure (quantify) the

concentration of an analyte in analog mode, this class of sensors does not seek to quantify the

concentration. Rather, it detects the analyte’s concentration in binary mode, reporting ON-state

(1) for concentrations above a preset threshold and OFF-state (0) for concentrations below the

threshold. The sensing mechanism exploits the qualitative difference between the sensor state

before and after the dynamic pull-in bifurcation.

Experimental demonstration was carried out using a laser-Doppler vibrometer to measure

the sensor response before and after detection. The sensor was able to detect ethanol vapor

concentrations as 100 ppb in dry nitrogen. A closed-form expression for the sensitivity of dy-

namic bifurcation sensors was derived. It captured the dependence of sensitivity on the sensor

dimensions, material properties, and electrostatic field.

An analog dynamic bifurcation mass sensor is developed to demonstrate a sensing mech-

anism that exploits a quantitative change in the sensor state before and after depositing added

mass. A polymeric material was deposited on the top surface of the sensor plate to represent

added mass. A variation in the frequency and current amplitude were utilized to demarcate the

added mass optically and electrically.

A chemical sensor was also developed to detect mercury in deionized-water in a fashion of

analog detection. A polymeric sensing material that has high selectivity to mercury was utilized

to captured mercury molecules in water. The sensor was submerged completely in water with

a pre-defined flow-rate. The sensor was excited electrostatically. A variation in the frequency

response due to added mass was measured electrically using a lock-in amplifier. A frequency-

shift was observed while releasing the mercury to the water.
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Chapter 1

Introduction

1.1 Inertial MEMS Actuators and Sensors

Micro-Electro-Mechanical Systems (MEMS) fabrication technology combines electrical and me-

chanical capabilities in one device at the micro-scale∝ 10−6m. Its ability to produce devices that

replicate or improve on the performance of larger devices has shifted the way researchers, de-

signers, and manufacturers think. It has introduced significant fabrication advantages, such as

high precision, small size, low cost and low power consumption, into electronic and mechanical

applications.

MEMS devices are mass produced which helps bring down costs. The size and cost of

the large scale devices has restricted their applications. The availability of low cost and small

size technology is especially advantageous; for instance, surgeons may require micro-forceps to

perform intricate medical procedures. Size reduction of MEMS devices also allows for perfor-

mance enhancements, such as the integration of several sensors on the same die. The wide range

of MEMS applications also stems from their improved sensitivity when deployed as sensors.

MEMS sensors have seen applications in a wide range of fields, such as automotive, chemical,
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medical, biological, safety, aviation, and telecommunication sectors, where they are well known

consumer products today.

MEMS devices are predominately made of silicon which is a semiconductor that can easily

handle electrical signals. Most MEMS are fabricated using surface or bulk micromachining [1].

Surface micromachining is a standard process based on the patterning of thin film layers atop of

a substrate. It depends on depositing and etching different film layers on the substrate to create

MEMS structures. It is commonly utilized commercially in integrated circuit manufacturing [2].

Using surface micromachining, MEMS devices can be integrated with ICs on one chip, thereby

enhancing their mechanical and electrical characteristics and further reducing their cost [1–3].

Bulk micromachining is also a standard fabrication process. It depends on patterning a sub-

strate to create structures. It is less expensive than surface micromachining because it involves

a lower number of fabrication steps than surface micromachining. It is particularly useful for

devices that need thicker structural layers. Most commercially available MEMS pressure and

inertial sensors are fabricated by bulk micromachining [1, 3].

By definition, MEMS devices are transducers that transform one form of energy to another.

They are classified into sensors or actuators depending on their application. MEMS sensors are

used to detect an environmental change and translate it into electrical signal, such as chemical and

mechanical sensors. MEMS actuators convert an electrical signal into motion to perform various

useful applications, such as the case in micro-motors [4]. In this research, we focus on inertial

micro-sensors, which is the most common class of commercial MEMS sensors today. They

include MEMS accelerometers, gyroscopes, magnetometers, and microfluidic sensors [2, 4–6].

The small size, low cost, and high performance of MEMS inertial sensors have allowed them to

lead the market. Roben and Mounier [7] forecast that the price of inertial sensors will drop by

40% to 60% over the next five years due to increased production and a rise of competition.
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MEMS accelerometers have been widely used in automotive applications, such as seat belt

control and air bag deployment [8, 9]. Accelerometers are also used in a broad range of appli-

cations, such as pedometers, earthquake detection, Wii remote controllers, hard drive protection

in laptops, and picture stabilization in camcorders [2, 5]. Accelerometers are designed to mea-

sure the acceleration of a body moving in space [1]. Many of them use a sprung proof-mass to

measure the acceleration along a single axis [2]. For example, Jianbing et al. [10] introduced an

in-plane accelerometer that determines acceleration along a single planar axis by measuring the

differential capacitance between two sets of parallel plates when the proof-mass moves. It uses a

thin SOI handle layer to enhance sensitivity and obtains a sensitivity of 2.25 V/g and a linearity

of 0.5%.

Gyroscopes represent another popular MEMS inertial sensor. They measure angular veloc-

ity and are commonly used in navigation systems [2, 11]. The operating principle of vibratory

MEMS gyroscopes is to excite oscillations in a drive mode that interacts with rotational motion

via a Coriolis force to produce motions along a sense-mode [1]. Chen et al. [12] introduced a

tuning fork gyroscope that uses a Lorentz force to excite a drive-mode along the x-axis. When

a rotation is present around the z-axis, a Coriolis force causes a change in the capacitance of a

parallel plate capacitor aligned along the sense-mode direction (y-axis).

Inertial Measurement Units (IMUs) are a prime example of the advantages of sensor integra-

tion facilitated by the small size of MEMS sensors. They combine accelerometers, gyroscopes

and magnetometers in one chip [13] to measure translational acceleration and angular rotation

around all three axes, as well as reduce drift errors. They offer a good example of the ability of

sensor integration to drive enhanced overall performance and offer new capabilities. For exam-

ple, Ding et al. [14] introduced an IMU specifically designed for medical applications, such as

tracking forearm posture over time.

In this research effort, we investigate electrostatic MEMS actuators and sensors. Two cate-
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gories of inertial sensors have been addressed: inertial gas sensors in gaseous media and inertial

chemical sensors in aqueous media. The sensors considered here are based on novel operational

principles that will be discuss in Chapter 3.

1.2 Nonlinear Instabilities in MEMS Actuators and Sensors

The ability of Micro-Electro-Mechanical Systems (MEMS) to replicate or improve on the perfor-

mance of larger devices at the micro-scale has shifted the way researchers and engineers think.

Actuation and sensing are the core applications of MEMS, such as switches [15], micromirrors,

clocks, and filters [16, 17]. In all of these applications, electrostatic MEMS offer significant ad-

vantages including high force density, low power consumption, and a small foot-print. Recently,

researcher have started to use the large oscillations of electrostatic MEMS to design sensors and

actuators.

As interest shifts to larger motions, it is hard to ignore the nonlinearity in those systems [18–

20]. Sources of nonlinearity in electrostatic MEMS include the dependence of the electrostatic

force on displacement, geometric and inertial nonlinearities, and nonlinear damping mecha-

nisms [6]. They result in static and dynamic bifurcations, multivaluedness, and chaos. These

phenomena have been exploited to design high sensitivity sensors, large amplitude actuators,

mechanical memory bits, and encryption keys [21–25].

One of the most important nonlinear phenomena in electrostatic MEMS is the pull-in insta-

bility [26] where the moving structure snaps to the actuation electrode. Recently, we presented

a consistent taxonomy of pull-in instabilities and the mechanisms underlying them, Table 1.1,

based on the ratio of the excitation frequency f to the actuator's fundamental natural frequency

f1.
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Table 1.1: A taxonomy for pull-in instabilities

Type Frequency Ratio Mechanism

Static f/f1 ' 0 Saddle-node

Quasi-static f/f1 << 1 Shilnikov bifurcation

Dynamic f/fn ∝ (p/q)

(i) homoclinic bifurcation

(ii) homoclinic tangle

(iii) cyclic-fold bifurcation

Static pull-in occurs in response to aperiodic waveforms (f/f1 → 0), such as ramp and step

functions, minimizing the impact of inertia and damping. As the voltage between the actua-

tor and an electrode increases, the stable equilibrium (node) and unstable equilibrium (saddle)

coincide at a saddle-node bifurcation which demarcates the stability limit. The DC voltage cor-

responding to that point is called the static pull-in voltage. The size of the margin of stability

around the bifurcation is proportional to the rise time of the waveform and the quality factor of

the actuator [22, 27–31].

Qausi-static pull-in develops when the excitation frequency is finite but much smaller than the

fundamental natural frequency, f/f1 << 1. It is characterized by the appearance of orbits ho-

moclinic to a saddle-focus [32–34] as the instantaneous voltage of the waveform approaches the

static pull-in voltage. The underlying mechanism of this instability is Shilnikov bifurcation [35]

which demarcates the excitation frequency at which the Shilnikov orbits involving tapping os-

cillations past the saddle turn into Shilnikov-like orbits involving fast-slow dynamic interactions

without tapping oscillations. Quasi-static pull-in is limited to excitation frequencies below the

bifurcation point. The location of a Shilnikov bifurcation is a function of the shape and amplitude

of the excitation waveform [36].

5



Dynamic pull-in occurs under resonant waveforms where the excitation frequency and one

of the natural frequencies are approximately integer multiples or submultiples of each other

(f/fn ≈ p/q), such as the case for primary, superharmonic, and subharmonic resonances [37,

38]. Because of the dynamic amplification available at resonance, dynamic pull-in tends to occur

at lower RMS voltage than static pull-in [39]. It occurs subsequent to a homoclinic bifurca-

tion leading to a homoclinc entanglement and an erosion in the safe motion basin [38, 40–43].

Alsaleem et al. [44] found that pull-in occurs when erosion reaches about 50% of the basin of

attraction. It may also occur subsequent to a cyclic-fold bifurcation [38, 44, 45], specially in the

presence of significant damping.

A margin of stability for quasi-static pull-in and dynamic pull-in exists around the stable

manifold of the saddle. Transients around a Shilnikov-like orbit or a stable orbit that cause

the actuator to wander beyond this margin also lead to quasi-static or dynamic pull-in [28, 39],

respectively. Further, the bifurcations underlying quasi-static pull-in and dynamic pull-in are

sensitive to initial conditions. While it is possible to locate these bifurcations under steady-

state conditions for a given waveform, it is not possible to define DC or AC voltage values

corresponding to quasi-static or dynamic pull-in.

Another consequence of large motions in electrostatic MEMS is the appearance of chaotic

motions. Chaos has been found to arise via various routes: homoclinic tangles, cascades of

period-doubling bifurcations, intermittencies, and torus breakdown [46]. Rulle and Takens found

that chaos occurred during the transition of viscous incompressible fluids from laminar to tur-

bulent flow [47]. Cascades of period doubling bifurcations culminating in chaos were numer-

ically observed in the population of seasonally breeding organisms [48] and Rayleigh-Benard

flow [49, 50]. Simoyi et al. [51] first observed experimentally a period-doubling route to chaos

and the periodic windows within the resulting chaotic attractor in a stirred flow reactor. The bi-

furcation set of an RLC circuit was found to include period-doubling routes to chaos and period-
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doubling bubble structures [52]. It was also found that period-doubling routes to chaos arise

subsequent to a symmetry breaking bifurcation [53].

Cascades of period-doubling bifurcation routes to Shilnikov chaos were observed in het-

erogeneous catalytic oxidation of methanol, peroxidase-oxidase reaction and a piecewise-linear

model of a Rossler oscillator [54–56]. Further, Herzel et al. [54] observed type-II intermittency

subsequent to a secondary subcritical Hopf bifurcation in their reaction. Parthimos et al. [57]

showed experimentally and numerically the transition between Shilnikov chaos and a type-III

intermittency due to a subcritical period-doubling in isolated rabbit ear arteries.

Chaotic behavior in MEMS actuators was predicted numerically in atomic force microscopes

and other MEMS devices [58–65]. Liu et al. [62] developed a model for a micro-cantilever

beam impacting the substrate and found period-doubling bifurcations, indeterminacy, chaos, and

strange attractors. De et al. [65] numerically observed a cascade of period-doubling bifurca-

tions leading to banded chaos in interdigitated biastable switches and micro-mirrors excited in

superharmonic resonance. Najar et al. [43] studied electrostatically the dynamic behaviors of

fixed-fixed beam excited at the primary resonance and superharmonic resonance of order one-

half. Pull-in instabilities, period doubling bifurcation, and homoclinc bifurcation were inten-

sively interpreted numerically. They found that a symmetry-breaking bifurcation is not essential

to initiate the period doubling bifurcation as the orbit itself is asymmetric. Also, a homoclinc

bifurcation was found when the excitation frequency approaches closely to the saddle.

Experimental evidence of chaos has been scarce in MEMS. Hu et al. [66] observed chaos in

the transition of AFM probes from non-contact to tapping mode oscillations. Carmon et al. [67]

observed cascades of period-doubling bifurcations leading to chaos in spheroid and toroid optical

cavities excited optically.

In electrostatic MEMS, Wang et al. [68] demonstrated stable period-two and period-three
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orbits as well as long-period and chaotic attractors in the motions of noninterdigitated electro-

static comb-finger actuators excited at primary resonance. Bienstman et al. [69] demonstrated a

period-doubling route to chaos for a self-excited fixed-fixed beam actuator during impact mo-

tions with the substrate. Demartini et al. [70] demonstrated two-well chaos in the response of

noninterdigitated comb finger actuators.

A new class of intermittencies, switching intermittency, was observed in the oscillations of

an electrostatic MEMS actuator in ambient air [71]. Like other intermittencies, it is characterized

by stretches of laminar flow in the vicinity of a ghost (or unstable) orbit interrupted at irregular

interval by bursts. Unlike other intermittencies, the burst in this case is arrested by an attractor

where the actuator spends irregular intervals of time before being re-injected into the area of the

ghost orbit. In type-I switching intermittency bursts are arrested by a stable tapping-mode orbit .

In type-II switching intermittency evolving bursts are arrested by a chaotic attractor.

1.3 Inertial Gas Sensors

Micro-mass sensors have been widely used as sensing platforms for inertial gas sensors in chem-

ical, medical, and automotive application [72–74]. The sensors are coated with highly selective

detector materials to capture target gases. They detect the presence of a gas in ambient air as

a small variation in the sensor mass, on the order of atto- to zepto-grams [72, 75, 76]. The re-

sponse of gas sensors can be measured optically [74,77–80], capacitively [81–83], or piezoresis-

tively [84–86]. Optical readout is more accurate but less practical than other measurement tech-

niques. MEMS gas sensors have significant advantages in size, cost, and power consumption;

however, they also have significant challenges in long-term reliability and selectivity [73, 87].

Lange et al. [88] detected n-octane and toluene vapors using an array of cantilever beams

coated with PEUT. They found that the sensor sensitivity increased with the polymer coat thick-
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ness. Sampath et al. [89] found analytically that the thickness of the sensor polymer coat can

shift the natural frequency down by 30 %. These results illustrate the competing effects of the

detector material. While increasing the surface coverage and thickness of the detector material

increases the amount of gas sorbed, and thereby sensitivity to gas, the associated increase in the

effective mass of the sensor reduces its mass sensitivity. Despite the variations in the polymer

thickness affecting the sensitivity of a cantilever sensor, Dufour et al. [90] found that uncoated

cantilever beams do not have intrinsic selectivity.

The two most commonly used detection modes in gas sensors are static and dynamic. The

static mode measures mass sorbed onto the detector material as a change in structural displace-

ment. Jensenius et al. [84] measured the static deflection of a cantilever alcohol vapor sensor.

Zhu et al. [86] measured the static deflection of a V-shaped cantilever beam sensor to detect

trinitrobenzene vapor. Datskos and Sauers [77] employed static optical sensing of a gold-coated

cantilever to detect 2-mercaptoethanol vapor.

The dynamic mode measures the shift in one of the resonant frequencies induced by a mass

sorbed onto the detector material [75]. The sensitivity of this sensing mode is higher than that

of the static (or forced) sensing modes by 1-2 orders of magnitude [41, 91]. Therefore, it has the

ability to increase absolute mass detection and realize highly sensitive gas sensors [92]. Exciting

higher structural modes can further improve sensitivity by decreasing the effective mass and

increasing the quality factor [78–80, 92–98]. Dohn et al.’s [78] experimental results revealed

that the sensitivity of a cantilever beam mass sensor was increased 276 times when the fourth

bending mode was utilized instead of the first bending mode. Xie et al. [80] experimentally

compared mass detection of a ragweed pollen using the first and second bending modes as well

as the higher frequency first torsional mode of a cantilever beam. They found that the sensitivity

of the first torsional mode was one order-of-magnitude higher than the first and second bending

modes. Debédá et al. [95] found that higher frequency longitudinal modes of a cantilever beam
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sensor were more sensitive than lower frequency bending modes.

A class of inertial sensors seeks to use bifurcations to enhance sensitivity [6, 21, 22, 99, 100].

One group of researchers has employed bifurcations in the vicinity of principal parametric res-

onance. Zhang et al. [91] exploited the subcritical pitchfork bifurcation at the upper end of the

instability window in an electrostatic comb-finger resonator to detect water vapor down to 0.7 pg.

Li et al. [101] employed the supercritical pitchfork bifurcation at the lower end of the instability

window of a piezoelectrically actuated fixed-fixed beam to detect 1.38 ppb of 2,4 DNT. Azizi et

al. [102] investigated numerically a similar mass sensor employing the subcritical pitchfork bi-

furcation at the upper end of the instability window and predicted a minimum measurable mass

of 20 fg.

Other groups have employed bifurcations of directly excited resonators. Harne et al. [103]

demonstrated a mass sensor that detects added mass through a shift in the location of a cyclic-

fold bifurcation in the vicinity of primary resonance of a bistable cantilever beam. Kumar et

al. [104] demonstrated a methanol sensor that detects change in the response size past a cyclic-

fold bifurcation of piezoelectrically excited cantilever beam.

Younis and Alsaleem [41] introduced two electrostatic MEMS sensors that measure added

mass as a shift in the locations of a cycle-fold bifurcation in the vicinity of primary resonance

and a subcritical pitchfork bifurcation in the vicinity of subharmonic resonance of order one-half.

Nguyen et al. [105] proposed a method for detecting added mass onto electrostatically actuated

clamped-clamped beams. It employs change in the response size past a cyclic-fold bifurcation

in the vicinity of primary resonance. Bouchaala et al. [24] used electrostatically actuated fixed-

fixed beams to detect water vapor by measuring the change in amplitude during frequency-up and

down sweeps past a cyclic fold bifurcation in the vicinity of primary resonance. They measured

a minimum detectable mass of 395 pg.
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Nayfeh and co-workers [100, 106] proposed two types of binary electrostatic MEMS gas

sensors: a static sensor based on the shift in the location of a saddle-node bifurcation and a

dynamic sensor based on the shift in the location of a cyclic-fold bifurcation. They demonstrated

experimentally that the static binary sensor can detect 5 ppm of ethanol in dry nitrogen (a mass

of 165 pg) [22, 107].

In this work, we present the dynamic binary gas sensor and test its potential to detect ethanol

vapor in dry nitrogen. The sensor exploits a cyclic-fold bifurcation in the vicinity of primary

resonance of an electrostatic MEMS sensor to create the discrete (binary) output states. A jump

in response from low to high indicates a gas concentration in excess of a threshold value. We

present the experimental verification of this detection principle, in addition to a numerical model

to interpret the sensor behavior. We present a closed-form expression for the sensor sensitivity

using the multiple-scale method. Finally, we report the sensor outcomes and limitations.

1.4 Inertial Chemical Sensors

Microelectromechanical (MEMS) sensors are utilized substantially nowadays in many industrial

applications especially in liquid media such as biological, chemical, environmental, navigational

and medical applications [74, 90, 108–113]. Underwater pollutions is one of environmental is-

sues that are incredibly increased nowadays. The demand of designing sensors to detect toxic

materials, organisms and/or hazard substances as mercury, cadmium, and copper in water is

significantly increased in order to save peoples lives [114]. Therefore, recently research has

turned its attentions toward those toxic substances in various aqueous media utilizing MEMS

sensors [74, 112, 115, 116]. However, dealing with aqueous medium is not easy especially for

MEMS sensors. Many challenges exist when immersing MEMS sensors in liquid media such as

fluid resistance, damping, surface tension, electrolysis and thermal conductivity [117–122].
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The platform of detection is similar to the way of detecting a specific gas in air. A detec-

tor material is used to identify a certain substance in water compared to others in the vicinity.

The response of the detection can be obtained optically [112, 118, 123–125], thermally [122], or

electrically [121, 126–129].

The multi-user MEMS process (MUMPs) is a vulnerable technology that has many chal-

lenges when used in a fluid medium [118]. Electrolysis (bubbles), electrode polarization (formed

an isolation layer), surface tension (stiction), thermal and electrical conductivity (bypass current)

are the most common challenges in liquid media [118, 119]. However, most of those challenges

can be treated experimentally utilizing various experimental techniques in order to avoid or re-

duce their effect on the sensor response.

Much experimental work has been carried out trying to overcome those hurdles. Based on

the literature, some experimental solutions have been defenestrated while others have been veri-

fied, such as the validity of applying high frequency ( f ≥ 1 MHz) of a square signal with zero

mean value (RMS) to deccelerate chemical reactions and minimize electrolysis and electrode

polarization effects. Submerging the sensor completely in water helps to minimize the surface

tension that causes stiction. Designing thermal structures with no alternating thermal expansions

coefficients can help to reduce thermal conductivity. Lastly, utilizing de-ionized (DI) water can

significantly reduce electrical conductivity [94, 118, 119, 122, 130, 131].

Fluid viscous damping and fluid added mass are two other challenges that affect the sensor’s

structural behavior. Those two structural challenges are proportional to the structure velocity

and acceleration, respectively [108, 117, 124, 132–134]. Vibrating MEMS resonators/sensors in

fluid exert a resistance leading to energy losses. Unlike the fluid air drag effect which can be

neglected in air media, the fluid liquid drag effect has a severe affect on the sensor response in

liquid media [94,94,116,117,123,127,135–137]. Some researches [94,108,135,138] studied the

effect of fluid viscosity and added mass, and they found that fluid viscosity is more prominent
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than fluid added mass by at least three orders of magnitude. On the other hand, increasing the

gap distance can be also used to reduce added mass effect [139, 140].

Sader et al. [117] developed an analytical model including the hydrodynamic force of a can-

tilever beam excited thermally in a viscous fluid. This model can be used quantitatively to ap-

proximate the fluid viscosity by obtaining the structural frequency-response curve. Dufour et

al. [94] investigated analytically two cantilever beams operated in fluid to study the effect of

fluid damping on the sensor sensitivity and its quality factor. Two beams, strong axis-bending

(high stiffness) and weak axis bending (low stiffness), were studied at the first flexural vibration

mode (out-of-plane mode). They found that using the strong axis-bending mode reduces fluid

viscous damping and fluid inertial drag (added mass) which leads to enhanced sensor sensitiv-

ity. Also, scaling down the sensor’s geometry to the nano-scale (≈ 100 nm) reduces the viscous

damping effect in liquid media [112].

Burg et al. [121] developed a U-microchannel fabricated inside of cantilever beam to avoid

fluid drag and fluid damping effects. They used this technique to detect biomolecules, biotiny-

lated bovine serum albumin (bBSA) and Avidin, by coating the structure via a detector material

of poly-dimethylsiloxane (PDMS). The sensor was excited electrostatically, and the deflection

was measured optically. The shift in the resonant frequency was measured using a lock-in ampli-

fier. A clamped-free U-shaped beam was also investigated by Heinisch et al. [141]. The U-shape

beam was made of Tungeston, which has low thermal expansion coefficient, in order to reduce

the convection effect in fluid. The structure was immersed in acetone-isopropanopl as well as

DI-water to study the effect of fluid viscosity and mass density on its resonant frequency and

quality factor. The sensor was excited electromagnetically, via Lorentz force, at the first fun-

damental out-of plane mode. The change in the frequency response was measured utilizing a

lock-in amplifier. Several experiments were conducted with various acetone viscosities at room

temperature, T=25 ◦C. They proved experimentally that increasing the fluid viscosity decreases
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the resonant frequency and quality factor.

Further, Vančura et al. [120,127] investigated analytically and experimentally the relationship

between fluid mass (fluid drag) and fluid damping effect on a peizoresistive CMOS cantilever

beam immersed in different liquids: pure water, glycerol and ethanol solutions with different

concentrations using Sader’s model [117]. The microcantilever was excited electromagnetically

at the first out-of-plane mode, and the response was measured electrically using a Wheatstone

bridge. They found that the fluid damping effect is dominant on the narrow cantilever beam

compared to the wide one as it allows the fluid flow to move around causing dissipative energy

loss. They investigated, in addition, the relationship between the shifts in resonant frequency due

to added mass, fluid viscosity and fluid density. The results show that high frequency shift can be

measured while increasing fluid density, which is inversely proportional to fluid viscosity. Fur-

ther, they found that using an in-plane mode or torsional modes with high resonant frequencies

leads to enhancing the sensor quality factor.

Youssry et al. [142] investigated analytically and experimentally the fluid viscosity and fluid

density effects on a cantilever beam. The beam was immersed in Silicon oils and Dodecane in

order to study the viscosity and density of the solutions. The cantilever was excited electro-

magnetically in a bending mode and the response was measured optically using a laser-Doppler

vibrometer. Their results show that the resonant frequency and quality factor decreased signifi-

cantly with fluid density increase.

Minimizing the effect of operating actuators in aqueous medium has grabbed attention of

many researchers [108, 134, 141, 143–145]. Unlike the classical fluid sensors that operate at the

fundamental out-of plane mode, high order flexural modes were investigated by [108, 134, 141,

143, 144]. Beardslee et al. [134] investigated the fluid effect by laterally exciting a microcan-

tilever beam. They found that shearing the fluid laterally has the advantage of substantially

reducing the fluid added mass effects. Also, they found that the added mass in the out-of plane
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mode suppresses the resonant amplitude by 50%, whereas it suppresses it by only 5 –10% when

exciting the sensor at the in-plane mode. Lucklum et al. [144] demonstrated a mass sensor based

upon a clamped-clamped beam immersed in DI-water, alcohol, and oil fields. The sensor was

excited electromagnetically via a Lorentz force, and the response was measured electrically via

a network analyzer. Two flexural vibration modes were studied, namely, in-plane and out-of

plane modes, in both air and liquids media. The sensor viscosity and added mass were measured

based on measuring a shift in the frequency response. They also studied temperature effects on

the fluid viscosity, density, sensor resonant frequency, and its quality factor. They found that as

the temperature increases, the fluid viscosity decreases resulting in a elevation of the resonant

frequency as well as quality factor.

Beardslee et al. [116] demonstrated a microfluidic tube (acrylic ring) fabricated on top of a

microcantilever beam in order to study the in-plane flexural vibration mode. The cantilever was

excited thermally and the response was measured peizoresistively. A drop of water was injected

into the tube to measure the in-plane resonance frequency. They found that the quality factor

dropped by about 98% fromQ = 2140 in air toQ = 44 in water; however, the resonant frequency

in water only dropped 6.5% compared to that in air medium. They concluded that designing a

cantilever beam with a shorter, wider, thinner geometry leads to increasing the quality factor

and sensitivity by 3–4 times compared to previous designs. They noted that increasing the beam

stiffness leads to suppressing cantilever beam oscillations by generating heat conduction from the

excitation resistors. Dufour et al. [90, 108] investigated the structural mode shapes effect on the

quality factor in gaseous and liquid media of a cantilever beam excited thermally and measured

piezoresistively. Three beams were studied in different directions: in-plane (lateral) bending,

out-of-plane (transverse) bending, and axially. They found that the beam resonant frequency and

its quality factor was reduced by one order of magnitude when exciting the beam at the out-of

plane mode. Also, they explored the dominant factor of reducing the quality factor in liquids is
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the hydrodynamic forces. On the other hand, they found that the lateral resonance frequency was

reduced by 3-14 % in water compared to air. The quality factor in water was found as Q = 86

in lateral mode where it was measured in air as Q = 10 at the out-of-plane mode. Further,

they found the resonant frequency dropped by only 1.8% at the axial mode when immersed

in dodedane (1.5 cP). However, they found that the quality factor decreased significantly from

Q = 353 in air to Q = 101 in dodedane (1.5 cP).

Fluid viscosity in air and water for a cantilever beam was studied analytically by Shabani

et al. [145] . They observed a significant change in the structural natural frequencies at higher

modes, where the dynamic vibrations of the higher modes play a role of reducing the added mass

effect which leads to amplification of the dynamic motions. An analytical lumped-mass model

of a laterally-excited tuning fork, of rectangular and circular cross-section, was developed by

Heinisch et al. [146, 147]. The model was introduced to investigate the mass density and vis-

cosity effects on the structural resonant frequencies and validate the results experimentally. The

sensor was immersed in acetone-isopropanol solutions in a sealed glass tube. The tuning fork

was excited electromagnetically and the resonant frequencies were measured using an electrody-

namic pick-up, which had a coil with a permanent magnet inside it. A good agreement was found

between experimental results and those predicted analytically. Using micro-polar fluid theory,

Azma et al. [148] developed analytically an effective damping coefficient for a laterally oscil-

lating comb-finger immersed in viscous fluid. They found that the damping ratio significantly

increased as the micro-finger length (surface area) and temperature were increased. However,

they observed a lower effect while increasing the gap size and thickness.

Water medium has a high dielectric constant 80 times compared to the air medium. Thus,

immersing MEMS actuators/sensors has the advantage to achieve large responses with low power

consumption compared to other mediums [118, 119, 125]. Zidan et al. [149] studied the pull-in

voltage of a cantilever switch in water. They used COMSOL multiphysics to calculate pull-in
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voltage in air and water media. As a result, they found the pull-in voltage in water was reduced

significantly 8.2 times than in air, from Vpi = 44 V in air to Vpi = 5.36 V in water, and that due

to the high permittivity of water, εr = 80.4. The structure, though, was not immersed completely

in water. It was immersed only 85% to avoid surface tension as well as a stiction effect of the

drain side.

MEMS actuators in aqueous media have several excitation techniques including electrostati-

cally, electromagnetically, or thermally. A micro-gripper was demonstrated by Su et al. [150] as

a magnetic actuator operating in air and in water media. Two cantilevers were made of magnetic

materials in order to develop attractive and/or repulsive forces between each other. Experimen-

tal results were measured using a vibrating magnetometer. Sameoto et al. [118] investigated

optical, electrostatic, and electrothermal actuators in air and DI-water, using image analysis soft-

ware (IMAQ). Parallel plate and comb drive actuators were excited electrostatically in air and in

water. Standard thermal actuators (STA) and chevron actuators were excited thermally in both

mediums. A drop of DI-water was placed on top of the actuators and covered with a glass lid.

The electrostatic and thermal actuators were excited at f = 1 MHz and f = (0.05 − 1) MHz,

respectively. They found that the deflection of the electrostatic actuators, parallel plate and comb

drive, increased significantly by 60-70 times in DI-water than in air. However, the deflection

of the thermal actuators was found to be very low, due to the water thermal conductivity, since

thermal conductivity of water is 20 times higher than air. The measured deflections of Chevron

and STA actuators in water were found to be 5-9% and 0%, respectively.

In addition, Zhou et al. [122] developed three polymer-based actuators: Nafion ionic con-

duction actuator, Parylene thermal actuator, and Polyaniline (PANI) actuator, which have an

advantage of achieving large deflection with low power consumption. They were actuated ther-

mally, by either exciting them directly by passing current or by heating up the fluid environment.

The actuators were based on the stress gradient due to moving ions across the structural layers,
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the stress gradient due to the variation of the thermal expansion coefficients of the layers, and the

volumetric change due to reversible electromechanical oxidation reduction (redox), respectively.

They observed experimentally that electrolysis (bubbles) in DI-water can be treated significantly

using parylene material deposited on top of the actuator metal layer when excited by a voltage

V > 1.8 V. Ramos et al. [133] studied thermally the excited laser beam effect along a microcan-

tilever coated with a gold layer at the first three flexural vibration modes. The microcantilever

responses were detected using a photodetector and all of the experiments were conducted in

DI-water and Poly-MethylMethAcrylate (PMMA). They found experimentally while exciting

the laser beam at the middle of the microcantilever beam, that the amplitude at the resonance

frequency increased significantly by 125 times compared to the free-end response. The heat

transfer, therefore, was determined to be smaller at the cantilever free-end than along the micro

cantilever root.

MEMS sensors in aqueous media have recently seen much attention. Two commonly used

sensing mechanism to identify a target mass in a liquid media are static and dynamic sensing

modes [94,120,124,127]. The analyte can be detected statically or dynamically based on induced

stress/strain changes (measuring deflection) or measuring variations in the frequency shift due

to a target mass in the fluid media, respectively. Heinrich et al. [151] and Dufour et al. [90]

introduced analytically a static model of a cantilever beam coated with a viscoelastic material.

They used relaxation time, diffusion time of the analyte into the coating material as a detection

mechanism. Sounart et al. [119] introduced a comb drive actuator excited electrostatically. Static

deflection was measured optically via an optical microscope connected to a CCD camera and

using image recognition software (NI IMAQ) in order to measure the actuator displacement while

immersed in ethylene glycol (EG). They found that the actuation frequency can be increased at

least one order of magnitude by accumulating a few nanometers of the native oxide layer in order

to reduce electrolysis and polarization issues.

18



In dynamic detection, measuring variations of the resonant frequency are widely used to

quantify absorbed mass in liquid media [90,112,123,124,129,135]. Braun et al. [124] developed

two bio-cantilever beams coated by avidin and biotin in order to detect proteins of biotinylated

and streptavidin latex beads, respectively. The cantilever beam was actuated piezoelectrically

and the response was measured optically using a position-sensitive detector (PSD) at its fun-

damental frequency. Frequency and phase shifts at its resonant frequency were used to detect

latex beads. A comparison of its amplitude and phase before and after adding latex beads was

used to indicate detection. Their results show that exciting high frequency modes leads to an

increase in frequency shifts due to added mass and consequently enhances the sensor sensitivity

to 2.5 pg/Hz. Vančura et al. [129] demonstrated biochemical sensors fabricated utilizing CMOS

fabrication technology. The sensor consists of a microcantilever beam excited electromagnet-

ically and measured piezoresistivelly, using a Wheatstone bridge. The sensor was coated by

two polymers, poly(isobutene) and poly(epichlorohydrine) to detect ethylbenzene, xylene, and

toluene with various concentrations (0–400) ppm mixed in DI-water. The variations in the reso-

nant frequency was demonstrated as a detection mechanism. The minimum detectable mass was

measured as 50 pg of xylenel at concentration of 6 mg/L.

In addition, Verbridge et al. [112] conducted experiments on biological sensors of nano clamped-

clamped and cantilever beams vibrating at the first out-of plane mode. The sensors were excited

and detected optically by modulating the amplitudes of a blue laser beam and red laser beam

(photodiode), respectively. All of their experimental tests were conducted in air and in fluid us-

ing alcohol, water, acetone and buffer solutions. They found that the effect of viscous damping

can be reduced significantly when the sensor dimensions were scaled down to the nano-scale.

As a result, the sensor can achieve a quality factor of Q ∼= 400 in air and Q ∼= 3 – 10 in liquid.

IIic et al. [72] introduced a nano-cantilever detector that can detect a virus by measuring a shift

in resonance frequency corresponding to its mass. They experimentally achieved a minimum
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detectable mass of 3 fg. Tao et al. [135] demonstrated a bio-chemical sensor consisting of a

cantilever beam operated in air and DI-water to detect Escherichia coli and Hg2+. The sensor is

excited electrothermally at the in-plane mode by passing a current through the excitation resistors

in order to reduce fluid damping as well as fluid mass. The response was measured Piezoresis-

tivelly using a Wheatstone bridge. They used a closed loop resonant system to enhance and

develope a sensor quality factor in water in the range of Q = 14 to Q = 249.

Burg et al. [152] demonstrated a nano-cantilever beam excited electrostatically in soft vac-

uum. A U-microchannel was implemented in the structure to reduce fluid mass effect. Their

detection was based on measuring the shift in the resonant frequency due to adsorbed mass.

They measured nano-particles as bacteria and proteins optically, via photodetector (PSD), with

a resolution of of 1 ag adsorbed mass with a quality factor of Q =15000. Park et al. [74] intro-

duced a mass sensor supported by four folded springs in order to monitor the evaporation rates of

microdroplets of water and dimethyl sulfoxide (DMSO) at various temperatures. The sensor was

excited electomagntically in the out-of plane mode, and the motions were measured optically

using a laser-Doppler vibrometer. Measuring the shift in the resonant frequency was conducted

to demonstrate the microdroplet evaporation time at various temperatures.

Exciting MEMS sensors in water electrostatically has the advantage of achieving high electri-

cal density with minimal current requirements. It produces large oscillations and well-regulated

force with small power consumption [118,119,153]. Also, it does not put significant restrictions

on the sensor design process which leads to a simplified the fabrication process, and thereby

reduces its cost.

Recently, researches have moved on investigate nonlinearities in MEMS resonators/sensors

immersed in fluids. Jabbari et al. [139] introduced an analytical model of an electrostatic can-

tilever beam excited at the first out-of plane mode immersed in water, acetone, and carbon tetra-

chloride. Frequency response curves were obtained as a function of fluid mass and fluid viscosity.

20



They found that the fluid viscosity has the effect of increasing the softening nonlinearity in the

system. The highest response in amplitude was found while immersing the beam in water. Also,

they found that the pull-in voltage in water is minimal compared to other fluids and this is due

to the dielectric constant of water. Sharafkhani et al. [154] studied the stability and transient

response of a fixed-fixed beam excited electrostatically in fluids of Butane, Benzene, Phenol,

and Carbon tetrachioride. They found not only that the electrical properties can alter transient

response, but also that fluid inertial effect (fluid added mass) leads to a shift in the structural

stability point and its pull-in voltage. They also found that each fluid has a transient period and

pull-in voltage different from others. They showed that the fluid density effect can be reduced as

the structural gap is increased.

1.5 Scope

The objective of this research is to design and demonstrate MEMS actuators and sensors oper-

ating in gaseous and aqueous media. Bifurcation gas sensor was designed to detect qualitatively

ethanol vapor in dry nitrogen in a fashion of a binary detection. An analog mass sensor was also

designed to detect added mass electrically by measuring current. An analog chemical sensor

submerged in water was designed to detect mercury in DI-Water.

We demonstrate a dynamic gas sensor based on a cyclic fold bifurcation where a stable orbit

and an unstable orbit collide at the fold point. The sensor is actuated by a combined AC-DC

voltage at a frequency close to that point. The region around that fold is sensitive to perturbations.

At a threshold limit of perturbations, the response jump-up towards a ‘larger’ sized response.

This phenomena will be used to realize binary detection. Releasing ethanol gas inside the test

enclosure will cause a jump due to sorbed mass to a polymeric sensing material. A laser-Doppler

vibrometer and an oscilloscope will be utilized to observe the jump-up optically and electrically.
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We demonstrate an analog mass sensor and underwater sensor operating in air and water. The

added mass sensor was utilized to measure the variation in the effective mass electrically. The

underwater sensor was designed to detect mercury molecules in water. The detection mechanism

is based on measuring a frequency-shift due to the effect of added mass. A polymeric sensing

material, which has a high selectively to mercury, was deposited on the sensor. An electrical

detection mechanism using a lock-in amplifier was utilized to measure the sensor response.

This research project is organized as follow: in Ch. 2, we present identification of the non-

linear dynamic behaviors of actuators. In Ch. 3, we present detailed numerical and experimental

results for the dynamic gas sensor. In Ch. 4, we present experimental results of an analog mass

sensor operated in air. In Ch. 5, we present experimental demonstration of the underwater sen-

sor submerged in a mixture solution of DI-water with mercury. In Ch. 6, we conclude all the

experimental findings and present the future plans for the existing projects.

1.6 Author’s Current Contribution

My contribution in this work includes experimental and analytical studies of MEMS actuators

and sensors. Experimental investigation of the nonlinear dynamic behaviors of actuators have

been reported. Those numerous phenomenon have been employed for applications as gas and
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strated. Also, a closed-form sensitivity for bifurcation sensors was derived. An analog mass

sensor was also introduced. A chemical sensor submerged in water was demonstrated. I carried
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Chapter 2

Characterization of Nonlinear Electrostatic
MEMS Sensors

In this chapter, characterization processes have been conducted to investigate the nonlinear dy-

namic behavior of sensors. Numerous nonlinear dynamics and routes to chaos have been found

and illustrated. Global and local bifurcations under the mechanisms of Shilnikov bifurcation

and cyclic-fold bifurcation were intensively investigated, respectively. Also, period doubling

bifurcation P-2, period three P-3, and period six P-6 were observed.

In addition, experimental evidence of the new intermittency dubbed switching intermittency,

as well as the traditional intermittencies of type-I and type-II were demonstrated. Quasiperiod-

icity and a homoclinic tangle leading to chaos were also reported.

2.1 Experimental Setup

Experiments were conducted on two types of electrostatic MEMS sensors vibrating in their first

out-of-plane bending mode. Sensor # 1, Fig. 2.1 (a), is a microcantilever beam, whereas sen-
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(a) sensor # 1 (b) sensor # 2

Figure 2.1: SEM pictures of the sensors

sor # 2, Fig. 2.1 (b), has a circular plate at the end of the beam. Substrate electrodes provide

electrostatic actuation.

The sensors were fabricated using the PolyMUMPs fabrication process [155], Fig. 2.2 . The

beams were fabricated in the Poly 1 structural layer with dimensions of (175 × 10 × 2 µm3) for

sensor # 1 and (115 × 10 × 2 µm3), for sensor # 2. Substrate electrodes were patterned in the

Poly0 layer under the full beam length. The gap underneath the beam is etched in the second

oxide layer resulting in a gap distance of d = 2 µm for both sensors. The material properties

of polysilicon are ρ = 2300 kg/m3, E = 160 GPa and ν = 0.22. A polysilicon electrode is

patterned in the Poly0 layer, Fig. 2.2 (b) and (d), to act as a bottom electrode covering the full

length of the beam.

Two gold pads are patterned at the root of the beam and end of the bottom electrode, Fig. 2.1.

They are used to excite the sensor electrostatically with a harmonic waveform:

V (t) = Va + Va cos(2πft) (2.1)

The modulation index was set to m = 1 throughout our experiments in order to maximize the

sensor oscillations [19].
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(a) Top-view (b) Front-view section A-A

(c) Top-

view

(d) Front-view section A-A

Figure 2.2: Layout of the PolyMUMPs fabricated sensor #1 and sensor #2
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Electrostatic actuation typically results in multi-frequency excitation. This can be seen by

observing the relationship among electrostatic force, voltage, and displacement w(x, t):

Fe =
αV (t)2

(d− w)2
(2.2)

Substituting with the voltage waveform described in Eq.(2.1)

Fe = α
(d−w)2

(
3
2
V 2
a + 2V 2

a sin(2πft)− 1
2
V 2
a cos(4πft)

)
(2.3)

= α
(d−w)2 (Fdc + F1 sin(2πft)− F2 cos(4πft))

We note that the electrostatic forcing is composed of voltage and displacement proportional

components. The former comprise of static Fdc, first harmonic F1, and second harmonic F2

components, while the latter represents a hard nonlinearity that approaches a singularity as dis-

placement increases. Therefore, the response of the sensor at any given frequency contains

components corresponding to the excitation frequency f and its second harmonic 2f . Setting

the modulation index to unity guarantees that the dominant forcing term is the first harmonic F1

except in frequency ranges where the second harmonic is resonant while the first is not.
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(a) vibrometer

(b) Multi-points scan

Figure 2.3: The experimental setup

The sensor is placed in a metal test enclosure to protect against stray magnetic fields. A laser-

Doppler vibrometer (LDV) [156] is used to measure sensor responses optically, Fig. 2.3 (a). A

function generator applied the desired waveform and an oscilloscope collects optical measure-

ments of the motions. A Multi-point scan was performed to investigate the out-of plane mode

shape as shown in Fig. 2.3 (b).
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2.1.1 Frequency Response

Sensor #1

We characterized the sensor by carrying out forward and backward frequency sweeps of the

actuation waveform over a wide frequency range. The slew rate was set to 2.5 kHz/s to minimize

transient effects. Time-domain data was collected using an oscilloscope in time windows of 0.4 s

at a sampling rate of fs = 313 kHz. The frequency response was obtained by evaluating the RMS

of the measured signal over a time window of twenty excitation periods (20T ).

Figure 2.4: The measured frequency-response curve for Va = 7.350 V. Forward sweep is shown

in blue line and backward sweep is shown in red

The frequency-response curve of the beam tip velocity over the range f = [50–90] kHz is

shown in Fig. 2.4 for an excitation amplitude of Va = 7.350 V. The forward sweep is shown in

blue and the backward sweep in red. The effective nonlinearity of the sensor is softening due

to the dominance of electrostatic forcing over mechanical hardening. As a result, the dominant

peak in the frequency-response curve (nonlinear resonance) is skewed to the left.

The curve is composed of an upper branch of larger orbits and a lower branch of smaller
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orbits. The two branches terminate a cyclic-fold bifurcation. The response jumps up and down

between the two branches at those bifurcation points without going through pull-in. The jump-up

occurs during a forward sweeps while the jump-down occurs during a backward sweeps. This

forcing level is slightly beyond the multivaluedness limit, as a result both bifurcations (and the

resulting jumps) are located at almost the same frequency f = 60.313 kHz. The flatness in

the upper branch demarcates the increasing importance of the nonlinear squeeze-film damping

mechanism for larger orbits that approach the substrate.

Discrete peaks appear in the frequency-response curve at f = 60 kHz in the forward sweep

and f = 61 kHz in the backward sweep. At these locations, the sensor response diverges from

smaller, lower branch, orbits to larger orbits and vice versa.

Figure 2.5: The measured frequency-response curve for Va = 7.446 V. Forward sweep is shown

in blue and backward sweep is shown in red

The frequency-response curve of the beam tip velocity for a larger excitation amplitude of

Va = 7.446 V is shown in Fig. 2.5. The flat region in the upper branch extends over a larger

frequency range as more orbits become larger and approach the substrate. We observed a middle

branch between the upper and lower branches in this curve which does not appear at the lower
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forcing level curve, Fig. 2.4. Tapping mode oscillations occur along this branch during which the

sensor tip comes into line-contact with the substrate. The branch is characterized by a positive

slope due to the substrate limiting the amplitude of sensor displacement to a distance similar to

the capacitive gap. As a result, the measured velocity varies almost linearly with the excitation

frequency along this branch.

(a) f = 51.87 kHz (b) f = 57.91 kHz (c) f = 66 kHz

Figure 2.6: The FFT of the tip velocity along the (a) lower, (b) middle and (c) upper branches

We compare the sensor response at typical points along these branches in Fig. 2.5. The fig-

ure shows the FFT of the tip velocity in dB-scale. Along the lower branch, forced response

is observed at the excitation frequency f = 51.87 kHz and its higher harmonics, Fig. 2.6 (a).

Along the middle branch, an excitation frequency of f = 57.91 kHz results in tapping mode

oscillations, thereby elevating the noise floor by ∼ 18 dB and introducing other harmonics in

the response spectrum, Fig. 2.6 (b). Along the upper branch, the stronger nonlinearity present in

the larger orbit at f = 66 kHz produces other harmonics beside f and its multiples but does not

elevate the noise floor, Fig. 2.6 (c).

A homoclinic entanglement occurs at the meeting point of upper and middle branches (f =

58 kHz). The entanglement between the stable and unstable manifolds of the saddle interrupts

the safe basin of oscillations. It precludes larger orbits. Instead, it sends the sensor into contact
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with the substrate and tapping mode oscillations. In backward sweeps, those oscillations persist

along the mid-branch until the response passes the nonlinear resonance and falls down to the

lower branch at f = 55.986 kHz. During a forward sweeps, the response jumps up from the

lower branch to the mid-branch at the lower cyclic fold bifurcation point f = 56.810 kHz. A

hysteric region appears between these jumps.

Figure 2.7: The measured frequency-response curve for Va = 7.725 V. Forward sweep is shown

in blue line and backward sweep is shown in red

Increasing the excitation amplitude to Va = 7.725 V, we obtained the frequency response over

a wider frequency range of f = [5.0–90] kHz, Fig. 2.7. For excitation frequencies below 5 kHz,

no periodic motions were observed with the sensor going into and remaining in contact with

the substrate throughout the excitation cycle. The frequency-response curve shows peaks in the

vicinity of the superharmonic resonances of order two and three as well as primary resonance.

Tapping mode (middle branch) orbits, characterized by a positive slope in the response curve,

were observed in a low-frequency non-resonant region f = [5.0− 6.490] kHz and in the vicinity

of the superharmonic resonance of order-two f = [28.385 − 32.892] kHz as well as primary

resonance f = [53.0− 70.0] kHz.
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Jumps were also observed at the superharmonic resonance of order-two where a hysteretic

region developed with a jump-up occurring during forward sweeps at f = 28.822 kHz and a

jump-down occurring during backward sweeps at f = 28.385 kHz. At the primary resonance,

there was no hysteresis with the jump-up during forward sweeps and and jump-down during

backward sweeps occurring at the same frequency f = 53 kHz. The mechanisms underlying

the jumps at superharmonic resonance are the same as those discussed above. On the other

hand, both jumps at primary resonance occur due to the homoclinic entanglement resulting in

further erosion of the safe basin of motion as the excitation level increases. It precludes lower

branch orbits at frequencies beyond f = 53 kHz and upper branch orbits at frequencies below

f = 71.097 kHz. Throughout this range, the only possible motions are tapping mode oscillations.

In the non-resonant region, a jump-down occurs during forward frequency sweeps from the

tapping branch to the lower branch, whereas a jump-up from the lower branch to the tapping

branch occurs during backward sweeps. A hysteretic region exists between these two jumps.

We note that this behavior is the reverse of that observed in the hysteric regions located in the

vicinity of primary resonance for Va = 7.446 V and superhamronic resonance for Va = 7.725 V,

where the jump-up occurs during forward sweeps and the jump-down during backward sweeps.

Further, we note that the size of the tapping-mode orbits observed at low-frequency is large even

though they occur in a non-resonant region f/f1 << 1.

Sensor #2

Frequency-response curves of the tip velocity were obtained under a constant voltage waveform

(electrostatic force) to characterize the sensors response over a wide frequency range. Each

frequency-response curve is composed of a forward and a backward frequency sweep, Fig. 2.8.

The voltage amplitude and frequency range were Va=7.125 V and f = [5–60] kHz. The slew rate

was set to 2.5 kHz/s to minimize transient effects. Data was collected in time windows of 0.4 s
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at a sampling frequency of fs = 313 kHz. The time-domain data was post-processed to obtain

the RMS velocity of the tip over a time window of 20 excitation periods (T ) and assigned to the

frequency value at the window mid-point.

(a)

Figure 2.8: Frequency-response curves of sensors #2 excited at voltage amplitude Va=7.125 V.

Forward and backward frequency-sweeps are colored in blue and red, respectively

The positive slope lines appearing in the frequency range of f = [5.0−10.627] kHz, Fig. 2.8,

are evidence of tapping mode oscillations where the sensor tip comes into regular contact with

the substrate. In these ranges, the tip displacement is almost constant (similar to the gap distance

d = 2 µm) due to the limiting effect of the substrate. As a result, the velocity frequency-response

varies almost linearly with frequency.

A jump-down occurs during the forward sweep for sensor #1 and sensor #2 from the branch

of tapping orbits to a branch of freely oscillating orbits at 9.876 kHz, whereas a jump-up from

that branch to the tapping branch occurs during backward sweeps at 10.627 kHz. A hysteretic

region exists between the two jumps, Fig. 2.8.

We note that both sensors go under pull-in and tapping oscillations in a low-frequency region

away from resonance, f/f1 << 1. While dynamic pull-in and tapping oscillations also occur in
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the vicinity of resonances for sensor # 1, sensor #2 does not experience pull-in or tapping in that

region. This raises questions about the reason for the appearance of large oscillations away from

resonance and the nature of the pull-in instability they trigger there.

2.2 Non-Resonant Dynamics

2.2.1 Sensor # 1

The sensor was excited by a voltage waveform Va = 6.8625 V at discrete frequencies; f = 10

and 25 kHz. The velocity and displacement time-histories of the sensor tip and the corresponding

phase-portraits are shown in Fig. 2.9. The response at f = 10 kHz displays the large oscillations

mentioned above unlike the case at f = 25 kHz. The Planar projection of the phase-portrait

at f = 10 kHz reveals a Shilnikov orbit homoclinic to a saddle-focus, Fig. 2.9 (b). The orbit

is composed of a flow along the unstable manifold of the saddle that is captured by a nearby

stable focus to be re-injected in the vicinity of the saddle [46]. The red-dashed line in the phase

portrait demarcates the gap limit of the sensor. The time-history, Fig. 2.9 (a), shows a fast-slow

dynamics where the voltage varies slowly, the tip is pulled-in periodically coming into contact

with the substrate where the displacement is held constant for a period of time before pulling off

in a fast motions and settling down close to the equilibrium position. A 3-D phase-portrait of the

orbit is shown in Fig. 2.9 (c).

The process of pulling-in corresponds to the flow along the unstable manifold of the saddle,

settling down after pull-off corresponds to the stable focus, and re-injection occurs due to the

cyclic rise in voltage. The sensor crosses the saddle point as the instantaneous voltage crosses

the static pull-in voltage, VPs. However, we note that static pull-in is not relevant to this process.

In fact, the RMS of the voltage waveform is less than VPs. This behavior is repeated periodically
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over the excitation cycle. Beyond the bifurcation point at the peak of the tapping branch, the

sensor presents a regular forced response as shown in Fig. 2.9 (d) and (e) at f = 25 kHz. As

a result, the orbit size shrinks from a displacement of 2 µm at f = 10 kHz to 1.120 µm at f =

25 kHz.

(a) f = 10 kHz (b) f = 10 kHz (c) f = 10 kHz

(d) f = 25 kHz (e) f = 25 kHz

Figure 2.9: Tip velocity and displacement time-histories and phase portrait for the voltage wave-

form Va = 6.8625 V

Increasing the excitation voltage to Va = 7.725 V shrinks the frequency domain where low

frequency large oscillations occur. The experimentally measured velocity and displacement time-

histories and the corresponding phase portraits at excitation frequencies of f = 6.4, and 7 kHz

are shown in Fig. 2.10 for time spans of 2.560, and 2800 excitation periods, respectively.

While similar behavior to that described above is observed here, Shilnikov bifurcation is

located at f = 6.49 kHz. Similarly, the orbit size shrinks from a displacement of 2.624 µm at

f = 6.4 kHz to 1.12 µm at f = 7.0 kHz. While oscillations typical of a stable foci can be
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(a) f = 6.4 kHz (b) f = 6.4 kHz (c) f = 6.4 kHz

(d) f = 7 kHz (e) f = 7 kHz

Figure 2.10: Tip velocity and displacement time-histories and its phase portrait excited at voltage

amplitude of Va = 7.725 V at f = 6.4 and 7 kHz, respectively

observed in Fig. 2.10 (d), they result from the sensor rebounding from its maximum deflection

point as can be seen in the corresponding time-history, Fig. 2.10 (d). The complexity of the

orbit is merely a reflection of the interaction between the slow time-scale of the forcing and

the fast time-scale of the sensor fundamental mode. No tapping or flow along the unstable

manifold are observed in Fig. 2.10 (d) and (e). The fast-slow dynamics in this region result in

two distinct trains of peaks in the frequency domain, corresponding to the forcing frequency and

to the fundamental natural frequency of the sensor. For this waveform, we observed fast-slow

dynamic interactions in the region extending from the bifurcation point (f = 6.49 kHz) until it

approaches the superharmonic resonance of order-three (f ≈ 25 kHz).
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(a) f = 12 kHz (b) f = 12 kHz

(c) f = 16 kHz (d) f = 16 kHz

(e) f = 17 kHz (f) f = 17 kHz

Figure 2.11: Tip velocity and displacement time-histories and corresponding to phase portraits

at voltage waveform of Va = 7.725 V

As the excitation frequency increased, fast-slow dynamics were also observed beyond the

Shilnikov bifurcation. In this case, the Shilnikov-like orbits do not involve tapping as seen in

Fig. 2.11 at f = 12, 16, and 17 kHz. The time-histories show that in all three cases the sensor

oscillates freely in air, approaches but does not reach the substrate, before rebounding as the elec-

trostatic force drops (slow dynamics). The corresponding phase portraits, show that the sensor

spirals in towards the equilibrium position corresponding to the DC voltage (fast dynamics).
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(a) f = 20 kHz (b) f = 20 kHz

(c) f = 25 kHz (d) f = 25 kHz

Figure 2.12: Tip velocity and displacement time-histories and corresponding to phase portraits

under voltage waveform Va = 7.725 V

The size of the sensor orbit shrunk as the excitation frequency increased, which is seen at

f = 20 and 25 kHz, Fig. 2.12. In this case, the response approaches that of a forced oscillator as

the time-scale of forcing approach that of resonant dynamics. As a result, the orbit size shrinks

from more than 3 µm at f = 17 kHz to 1.2 µm at f = 25 kHz.
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(a) f = 7 kHz (b) f = 9 kHz

(c) f = 10 kHz (d) f = 20 kHz

(e) f = 32 kHz

Figure 2.13: Tip velocity FFTs response of the Sensor in dB-scale (0 dB = 1 mm/s) at a voltage

amplitude of Va = 7.725 V

The fast dynamics, which results in ring-down oscillations as the sensor spirals in towards its

equilibrium, leave telltale signs in the FFT of the sensor response. Equally-spaced peaks appear

at submultiples of the forcing frequency corresponding the number of ring-down oscillations

above the noise floor. As the frequency of excitation increase, the importance of fast-slow dy-

namics decrease as can be seen in the drop in the number of amplitude of the submultiple peaks

in Fig. 2.13.
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2.2.2 Sensor # 2

The same quasi-pull-in behavior was observed in sensor #1 while the sensor #2 was excited at

a voltage amplitude of Va = 7.125 V. The sensor excited initially by a frequency of f = 7 kHz.

The velocity and displacement time-histories, velocity FFTs, and corresponding to phase portrait

were collected as shown in, Fig. 2.14. The sensor tip goes to pull-in while the voltage cycle

increases and rebounds freely oscillating in air while the voltage cycle releases as shown in

Fig. 2.14 (a).

(a) f = 7 kHz (b) f = 7 kHz (c) f = 7 kHz

Figure 2.14: Voltage waveform, tip velocity, and tip displacement time-histories and correspond-

ing to phase portraits for sensor # 2 under the voltage waveform Va = 7.125 V

Further, the excitation voltage was dropped to a voltage amplitude of Va = 6.750 V at the

excitation frequencies f = 5, 6, 7, 8 and 10 kHz, we obtained the tip velocity and displacement

time-histories and the corresponding phase-portraits shown in Fig. 2.15. Shilnikov orbits homo-

clinic to a saddle focus were observed in all of the cases, Figs. 2.15 (b), (d), (f), (h), and (j).

The stable focus oscillations occur over a shorter settling time because of the sensor's lower

quality factor (Q = 2.1). Comparing the voltage waveform to the displacement time-history,

Fig. 2.15 (a) and (c), shows that the sensor pulls-in as the instantaneous voltage crosses the value

of static pull-in. Subsequently, it maintains in contact with the substrate until the instantaneous

voltage drops below the pull-off voltage.
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(a) f = 5 kHz (b) [f = 5 kHz

(c) f = 6 kHz (d) f = 6 kHz

(e) f = 7 kHz (f) f = 7 kHz

(g) f = 8 kHz (h) f = 8 kHz

(i) f = 10 kHz (j) f = 10 kHz

Figure 2.15: Voltage waveform, tip velocity, and tip displacement time-histories and correspond-

ing to phase portraits for sensor # 2 under the voltage waveform Va = 6.750 V
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A forced response was found while the sensor was excited at frequencies of f = 13, 15, 20

and 25 kHz. The voltage waveform, velocity and displacement time-histories and corresponding

to phase portraits are shown in Fig. 2.16. We note the sensor oscillates freely in air in this case

with no interaction with the substrate.

(a) f = 13 kHz (b) f = 13 kHz

(c) f = 15 kHz (d) f = 15 kHz

(e) f = 20 kHz (f) f = 20 kHz

(g) f = 25 kHz (h) f = 25 kHz

Figure 2.16: Voltage waveform, tip velocity, and tip displacement time-histories and the corre-

sponding phase portraits for sensor # 2 under the voltage waveform Va = 6.750 V
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Shilnikov Chaos

Shilnikov chaos was observed as an infinite countable set represented by an unstable saddle focus

and stable real line, (ρ±iω,−λ). It is occurs subsequent to a supercritical-Hopf bifurcation. This

behavior is represented by the unstable saddle-focus forming unstable period-doubling spirals

away from the saddle and contracted by the stable manifold to be re-injected it back to the

saddle. The re-injection occurs due to tapping oscillations where the sensor tip interacts with the

substrate.

Discrete excitation frequencies were conducted at f = 10, 13.7, 13.734, and 30 kHz at volt-

age amplitude of Va = 7.125 V. The velocity and displacement time-histories, velocity FFTs, and

phase portrait were collected as shown, Fig. 2.17.

(a) f = 10 kHz (b) f = 10 kHz (c) f = 10 kHz

(d) f = 13.70 kHz (e) f = 13.70 kHz (f) f = 13.70 kHz
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(g) f = 13.734 kHz (h) f = 13.734 kHz (i) f = 13.734 kHz

(j) f = 30 kHz (k) f = 30 kHz (l) f = 30 kHz

Figure 2.17: Voltage waveform, tip velocity, and tip displacement time-histories colored in ma-

genta, blue, and red, respectively, velocity FFTs in dB-scale (0dB= 1m/s), and phase portrait

under the voltage waveform of Va = 7.125 V

Shilnikov to a saddle-focus was also observed at the excitation frequency f = 10 13.70 kHz

and f = 13.734 kHz where the stable saddle-focus spirals toward the saddle and was re-injected

through the unstable manifold to pull-in, Fig. 2.17 (a-i). The pull-in time period was found to

shorten when the excitation frequency increased.

A period three P-3 under the mechanism of Shilnikov chaos was found while the excitation

frequency increased to f = 13.70 and 13.734 kHz, Fig. 2.17 (g-i). We note the chaotic behavior

of P-3 does not associate with pull-in where the sensor freely oscillates in air. A periodic behavior

of period one P-1 was found at f = 30 kHz, which is in the vicinity of superharmonic resonance,

Fig. 2.17 (m-o) whereas the sensor response cleared from the chaotic region.

The voltage waveform was increased to Va = 7.650 V under the same excitation frequency

f = 10 and 13 kHz, Fig. 2.18, which resulted in Shilinikov chaos. The chaotic tapping oscilla-
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tions are shown in the velocity and displacement time-histories, Fig. 2.18 (a), while the corre-

sponding phase portrait, Fig. 2.18 (b), shows the resulting banded chaotic attractor. This chaotic

attractor was found to extend over the frequency [10− 18] kHz during frequency up-sweep.

(a) f = 10 kHz (b) f = 10 kHz

(c) f = 13 kHz (d) f = 13 kHz

Figure 2.18: Tip velocity and displacement time-histories and corresponding to phase portraits

under the voltage waveform Va = 7.650 V

Shilnikov chaos was observed at excitation frequencies of f = 15.860, 16, 16.06, 16.139 and

16.142 kHz, Fig. 2.19. The velocity in dB-scale and phase portraits show the chaotic behavior

at this vicinity. The elevated noise floor in the velocity FFTs in dB-scale demarcate chaotic

behavior interacting with the substrate.

46



(a) f = 15.860 kHz (b) f = 15.860 kHz (c) f = 15.860 kHz

(d) f = 16 kHz (e) f = 16 kHz (f) f = 16 kHz

(g) f = 16.060 kHz (h) f = 16.060 kHz (i)

(j) f = 16.139 kHz (k) f = 16.139 kHz (l) f = 16.139 kHz

(m) f = 16.142 kHz (n) f = 16.142 kHz (o) f = 16.142 kHz

Figure 2.19: Tip velocity and displacement time-histories, velocity FFTs in dB-scale scale (0

dB = 1 mm/s), and corresponding to phase portrait under the voltage waveform Va = 7.650 V
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Intermittency Type-III

The excitation frequency was further increase to f = 16.319, 16.320, 16.40, 16.430, and 16.480 kHz,

Fig. 2.20. An intermittency type-III subsequent to a period-doubling bifurcation route to chaos

was observed. Fast-slow dynamic behavior which represent two signals are atop of each other in

the velocity and displacement time-histories: a carrier signal at high frequency where represents

a departure line from the saddle, and a baseband signal with low frequency where it represents the

saddle-focus approaching the saddle with a negative slope Fig. 2.20 (a,d,g,j). It is also showing

clearly a chaotic behavior in the velocity in dB-scale and its phase portraits.

(a) f = 16.319 kHz (b) f = 16.319 kHz (c) f = 16.319 kHz

(d) f = 16.320 kHz (e) f = 16.320 kHz (f) f = 16.320 kHz

(g) f = 16.40 kHz (h) f = 16.40 kHz (i) f = 16.40 kHz
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(j) f = 16.430 kHz (k) f = 16.430 kHz (l) f = 16.430 kHz

(m) f = 16.480 kHz (n) f = 16.480 kHz (o) f = 16.480 kHz

Figure 2.20: Voltage waveform, tip velocity, and tip displacement time-histories colored in ma-

genta, blue, and red, respectively, velocity FFTs in dB-scale (0 dB = 1 mm/s), and phase portrait

under the voltage waveform of Va = 7.650 V

The dynamic behavior went to period doubling bifurcations after the intermittency behav-

ior. The velocity and displacement time-histories, velocity FFT and corresponding phase portrait

were collected with time spans of 33.1, and 17.3 excitation periods, Fig. 2.21. Period-doubling of

P-2 and period three P-3 were found at the excitation frequencies of f = 16.55, and 17.30 kHz,

respectively. The tapping oscillations in the chaotic orbit of P-3 was observed in the displacement

time-histories; however, the transversal flatness at the left-side of the phase portrait demarcates

the tip interaction with the substrate, Fig. 2.21 (c). As the excitation frequency increased further

to f = 17.30and 18 kHz, the sensor response cleared from the chaotic region to period-doubling

of P-2, Fig. 2.21 (d-f) and (g-i). Lastly, the sensor went back to period one orbit while the excita-

tion frequency increased to f = 30 kHz, Fig. 2.21 (j-l).

A superharmonic resonance of order-three was also observed when the excitation frequency
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increased to f = 16.55 kHz, Fig. 2.21 (a-c). Tapping oscillations were observed in the displace-

ment time-history. Fast-slow dynamics disappeared from the sensor response as it approached

the superharmonic resonance of order-two at f = 17.30 and 18 kHz, Fig. 2.21 (f-i), with orbit

peak-to-peak displacement reaching 3.01 µm and 2.752 µm, respectively . As the excitation fre-

quency increased away from the superharmonic resonance of order-two, the orbit size shrunk to

a peak-to-peak displacement of 2.048 µm, Fig. 2.21 (l), at f = 30 kHz.

(a) f = 16.55 kHz (b) f = 16.55 kHz (c) f = 16.55 kHz

(d) f = 17.30 kHz (e) f = 17.30 kHz (f) f = 17.30 kHz

(g) f = 18 kHz (h) f = 18 kHz (i) f = 18 kHz

50



(j) f = 30 kHz (k) f = 30 kHz (l) f = 30 kHz

Figure 2.21: Voltage waveform, tip velocity, and tip displacement time-histories colored in ma-

genta, blue, and red, respectively, velocity FFTs in dB-scale (0 dB = 1 mm/s), and phase portrait

under the voltage waveform of Va = 7.650 V

As a case study, a backward frequency sweep was conducted to investigate the sensor dy-

namic behavior in a reverse direction. The sensor was excited at frequencies of f = 30, 13.70, 10,

and 7 kHz at voltage waveform of Vac = Vdc = 7.125 V, Fig. 2.22.

(a) f = 30 kHz (b) f = 30 kHz

(c) f = 13.70 kHz (d) f = 13.70 kHz
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(e) f = 10 kHz (f) f = 10 kHz

(g) f = 7 kHz (h) f = 7 kHz

Figure 2.22: Voltage waveform, tip velocity, and tip displacement time-histories colored in ma-

genta, blue, and red, respectively, and corresponding to phase portraits under the voltage wave-

form of Va = 7.125 V

The sensor response started by a periodic forced-orbit at an excitation frequency of f =

30 kHz, Fig. 2.22 (a). Chaos appeared in the vicinity of the superharmonic resonance of order-

three as the frequency dropped to f = 13.70 kHz, Fig. 2.22 (c). The velocity and displacement

time-histories and corresponding phase portraits confirm the existence of chaos. Shilnikov orbits

homoclinic to a saddle focus were observed as the excitation frequency dropped further to f =

10 and 7 kHz. The velocity and displacement time-histories and the corresponding phase portraits

show the characteristic spiraling oscillations of the focus and the tapping oscillations instigated

by the unstable manifold of a saddle, Fig. 2.22 (e-h).
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(a) f = 12.032 kHz (b) f = 12.032 kHz (c) f = 12.032 kHz

(d) f = 12.018 kHz (e) f = 12.018 kHz (f) f = 12.018 kHz

(g) f = 11.998 kHz (h) f = 11.998 kHz (i) f = 11.998 kHz

(j) f = 11.992 kHz (k) f = 11.992 kHz (l) f = 11.992 kHz
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(m) f = 11.972 kHz (n) f = 11.972 kHz (o) f = 11.972 kHz

(p) f = 11.955 kHz (q) f = 11.955 kHz (r) f = 11.955 kHz

(s) f = 11.950 kHz (t) f = 11.950 kHz (u) f = 11.950 kHz

(v) f = 11.930 kHz (w) f = 11.930 kHz (x) f = 11.930 kHz

Figure 2.23: Excitation signal, velocity, and displacement time-histories colored in magenta,

blue, and red, respectively, velocity in logarithmic scale (0 dB = 1 mm/s), and phase portrait

excited at voltage amplitude of Va = 6.750 V

Period doubling bifurcation of P-2 at f = 12.032, 12.018, 11.998, and 11.992, Fig. 2.23 (a-i),

route to chaotic behavior of P-3 at f = 11.972, 11.955, and 11.950 were observed, Fig. 2.23 (m-
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u). The elevated floor in the velocity response in dB-scale scale demarcates chaos where the

tip interacts with the substrate. The sensor dynamic response went back to periodic orbit with

tapping oscillations while the excitation frequency set to f = 11.930 kHz, Fig. 2.23 (v-x).

2.3 Superharmonic Resonance of Sensor #1

Since the effective nonlinearity is softening, the frequency response curves of the sensor are

skewed to the left. It is therefore more tractable to observe the evolution of the resonant dynamics

in a descending frequency sequence as the response grows along the upper branch, is interrupted

by tapping mode oscillations along the middle branch, then jumps down to the lower branch.

2.3.1 Period-Doubling

Initially, the orbit grows as the frequency of excitation drops toward the superharmonic resonance

of order-two f → 1
2
f1. Large period-one (P-1) orbits were observed at the excitation frequency

f = 32 kHz when exciting the sensor by an amplitude voltage of Va = 7.725 V as shown in

Fig. 2.24 (a-c). It results in a forced response, superharmonic resonance of order two, located

at f = 1
2
f1 and f = fn, Period-doubling of P-2 following after P-1, Fig. 2.24 (d-f) was also

observed while the sensor excited at a frequency of f = 31 kHz.
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(a) P-1 f = 32 kHz (b) P-1 f = 32 kHz (c) P-1 f = 32 kHz

(d) P-2 f = 31 kHz (e) P-2 f = 31 kHz (f) P-2 f = 31 kHz

Figure 2.24: A period doubling from P-1 two P-2 occurs as the excitation frequency drops from

f = 32 kHz to f = 31 kHz at a voltage amplitude of Va = 7.725 V

2.3.2 Shilnikov Chaos

Shilnikov chaos was observed as an infinite countable set represented by an unstable saddle fo-

cus and stable real line, (ρ± iω,−λ). It is occurs subsequent to a supercritical-Hopf bifurcation.

This behavior is represented by the unstable saddle-focus forming unstable period-doubling spi-

rals away from the saddle and contracted by the stable manifold to be re-injected back to the

saddle. The re-injection occurs due to tapping oscillations where the sensor tip interacts with

the substrate. This behavior is also known by Rossler [157, 158]. This behavior was intensively

observed in chemical [55, 159, 160] and optical [161–166] applications.

Chaotic behaviors of banded chaos, P-6, and P-3 were observed at excitation frequencies

of f = 31.20, 29.90, and29.60 kHz and voltage amplitude Va = 7.725 V. The tip velocity

and displacement time-histories, velocity response in dB-scale, and corresponding to phase
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portraits were collected over time span of 12.48, 11.96, and 11.84 excitation periods, respec-

tively, Fig. 2.25. The velocity response in dB-scale demarcate the banded chaos at f = 31.20 kHz,

Fig. 2.25 (b) in addition to P-6 and P-5 inside the chaotic window at distinct frequencies of

f = 29.90, and 29.60 kHz, respectively, Fig. 2.25 (e) and (h).

(a) f = 31.20 kHz (b) f = 31.20 kHz (c) f = 31.20 kHz

(d) f = 29.90 kHz (e) f = 29.90 kHz (f) f = 29.90 kHz

(g) f = 29.60 kHz (h) f = 29.60 kHz (i) f = 29.60 kHz

Figure 2.25: Tip velocity and displacement time-histories, FFT velocity in dB-scale (0dB= 1m/s),

and corresponding to phase portraits under voltage waveform Va = 7.725 V

A countable set of periodic unstable oscillations instigated by an unstable saddle-focus were

found experimentally in the vicinity of superharmonic resonance Fig.2.26. The re-injected pro-

cess occurred due to the tapping-mode oscillations. The velocity and displacement time-histories

show the laminar flow was interpreted by bursts at regular intervals, Fig. 2.26 (a),(c) and (e). The
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sensor was initially excited at f = 30 kHz at a voltage waveform of Va = 7.725 V. It shows

Shilnikov chaos with evolving countable successive sets of periods over time span of 60 exci-

tation periods. Same behavior was observed when the RMS voltage increased to Va = 7.950 V

at excitation frequency of f = 30 kHz over time span of 600, Fig 2.26 (c) and (d). Also, same

behavior was found when the RMS voltage dropped to Va = 6.862 V at the excitation frequency

of f = 26.50 kHz over time span of 53 excitation periods, Fig 2.26 (e) and (f).

(a) f = 30 kHz (b) f = 30 kHz

(c) f = 30 kHz (d) f = 30 kHz

(e) f = 26.50 kHz (f) f = 26.50 kHz

Figure 2.26: Tip velocity and displacement time-histories and corresponding phase portraits

under a voltage waveform of Va = 7.725, 7.950, and 6.862 V
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The sensor starts with a periodic forced response at the excitation frequency of f = 27.30 kHz

and voltage amplitude of Va = 6.862 V. The tip velocity and displacement, velocity response in

dB-scale, and corresponding phase portraits collected over a time span of 27.30 excitation peri-

ods are shown in Fig. 2.27 (a-c). The sensor response went to period-doubling of P-2 while the

excitation frequency dropped to f = 27.150 kHz. The tip velocity and displacement, velocity

response in dB-scale, and corresponding phase portrait collected over a time span of 27.15 ex-

citation periods are shown in Fig. 2.27 (d-f). Then, the sensor went to period-doubling of P-4

while the excitation frequency dropped further to f = 27.030 kHz. The tip velocity and displace-

ment, velocity response in dB-scale, and corresponding phase portrait collected over a time span

of 27.030 excitation periods are shown in Fig. 2.27 (g-i). The elevated noise floor indicates this

excitation frequency is located inside the chaotic window.

(a) f = 27.30 kHz (b) f = 27.30 kHz (c) f = 27.30 kHz

(d) f = 27.150 kHz (e) f = 27.150 kHz (f) f = 27.150 kHz
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(g) f = 27.030 kHz (h) f = 27.030 kHz (i) f = 27.030 kHz

Figure 2.27: Tip velocity and displacement time-histories, FFTs velocity in logarithmic dB-scale

(0 dB = 1 mm/s) and corresponding phase portraits under voltage waveform Va = 6.862 V

In addition, chaotic behaviors were instigated right after the intermittency type-III at the exci-

tation frequencies of f = 26.980, 26.930, 26.890, 26.710, and 26.60 kHz and a voltage waveform

of Va = 6.862 V, Fig. 2.28. The displacement and voltage time-histories and corresponding phase

portraits were collected over a time span of 26.98, 26.93, 26.89, 53.42, and 53.20 excitation peri-

ods, respectively. Also, the FFT velocity response was measured over a frequency bandwidth of

100 kHz.

(a) f = 26.980 kHz (b) f = 26.980 kHz (c) f = 26.980 kHz

(d) f = 26.930 kHz (e) f = 26.930 kHz (f) f = 26.930 kHz

Figure 2.28: Tip velocity and displacement time-histories, velocity FFTs in dB-scale (0 dB = 1

mm/s), and phase portraits under voltage waveform Va = 6.862 V
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The period-doubling bifurcation P-2 route to chaos was observed while the sensor was excited

at f = 26.980 kHz Fig. 2.28 (a-c). A chaotic behavior of banded chaos was observed at f =

26.930 kHz Fig. 2.28 (d-f) as a evidence of the sensor is inside a chaotic region.

(a) f = 26.890 kHz (b) f = 26.890 kHz (c) f = 26.890 kHz

(d) f = 26.710 kHz (e) f = 26.710 kHz (f) f = 26.710 kHz

(g) f = 26.60 kHz (h) f = 26.60 kHz (i) f = 26.60 kHz

Figure 2.29: Tip velocity and displacement time-histories, velocity FFTs in dB-scale (0 dB = 1

mm/s), and phase portraits under voltage waveform Va = 6.862 V

In addition, a chaotic orbit of period-3 was found at f = 26.890 kHz, Fig. 2.29 (a-c). The

laminar flow starts to develop with evolving intermittent bursts over a time span while dropping

the excitation frequency further to f = 26.710 and 26.60 kHz. The tip velocity and displace-

ment time-histories show the time span of bursts increases as the excitation frequency decreases,

Fig. 2.29 (d) and (g). The raised noise floor of FFT velocity and phase portraits demarcate the
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existence of tapping oscillations, Fig. 2.29 (b), (e) and (h). Loosing the sensor periodicity inside

the chaotic region can be seen in, Fig. 2.29 (f) and (i).

2.3.3 Intermittency Type-II

Intermittency type-II was observed as aperiodic oscillations of the sensor at f = 29 kHz. It

occurs subsequent to subcritical-Hopf bifurcation [46]. The beam was excited electrostatically

by Va = 7.725 V as shown in Fig. 2.30.

(a) (b)

(c)

Figure 2.30: (a) Sensor tip velocity and displacement time-histories, (b) velocity response in

linear-scale and (c) phase portrait at f = 29 kHz and voltage amplitude of Va = 7.725 V

The velocity and displacement time-histories were taken over 0.0116 million excitation pe-

riods. Aperiodic oscillations were interrupted by a set of bursts as shown in Fig. 2.30 (a). The
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envelope of the time history looks like a beating modulation behavior which is considered a

trademark of intermittency of type-II [54]. Also, the velocity FFTs depicts the presence mixture

of low and high frequencies demarcate as a baseband and carrier of a modulated signal. A dense

phase portrait, velocity and displacement responses, is shown in Fig. 2.30 (c).

2.3.4 Intermittency Type–III

Intermittency type-III was observed when the sensor was excited at excitation frequencies of

f = 26.260 and 26 kHz at voltage waveform of Va = 6.8625 V. laminar flow is observed in the

vicinity of ghost orbit at the superharmonic resonance. The laminar flow grows over a time and

interrupted by bursts at irregular intervals. Laminar flow is characterized by a time-envelope

proportional to nT [46]. The re-injection to the ghost orbit was instigated by involving tapping-

mode oscillations, where the tip comes into contact to the substrate. Twelve and eight bursts

were measured over a time span of 52.52 and 104 excitation periods, respectively, Fig. 2.31. The

velocity FFT response in dB-scale shows the elevated noise floor due the interaction with the

substrate, Fig. 2.31 (b) and (e). The process of laminar flow derives to tapping oscillations were

also shown in the phase portraits, Fig. 2.31 (c) and (f).
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(a) f = 26.260 kHz (b) f = 26.260 kHz (c) f = 26.260 kHz

(d) f = 26 kHz (e) f = 26 kHz (f) f = 26 kHz

Figure 2.31: Tip velocity and displacement time-histories, FFTs velocity in dB-scale (0 dB = 1

mm/s), and corresponding phase portraits under voltage waveform Va = 6.8625 V

2.3.5 Full Chaos

Full chaos was experimentally observed in the electrostatic MEMS sensor. Non-periodic orbits

were observed indicating classical chaos. The beam was excited electrostatically with an ampli-

tude voltage of Va = 8.025 V at excitation frequency of f = 18.70 kHz as shown in Fig. 2.32.
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(a) f = 18.7 kHz (b)

(c)

Figure 2.32: Beam velocity and displacement time-histories and its phase portrait at f =

18.70 kHz excited electrostatically at amplitude voltage of Va = 8.025 V

The velocity and displacement time-histories were captured from the oscilloscope over a time

span of t = 2 s, Fig. 2.32(a). We can see clearly that the periodicity of the orbits were lost and

are now filling the space in the phase portrait depicted in Fig. 2.32(b).

2.4 Primary Resonance of Sensor #1

We investigate the sensor response in the vicinity of the primary resonance. The impedance

of the sensor at resonance is minimal which increases the chance of amplifying the response.

However, the response is limited by the sensor capacitive gap.
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Primary and Secondary Resonances

A low-frequency pulse train (f = 1 kHz) with an amplitude of 3 V and a duty cycle of 0.8% was

applied to the sensor #1 to determine its natural frequency. The velocity time-history and FFT

of the tip velocity was measured and the dominant peak at fn = 78 kHz was identified as the

fundamental natural frequency, Fig. 2.33 (a) and (b). The quality factor was calculated from the

measured FFs utilizing half-power bandwidth method and found to beQ = 5.484. A multi-points

scan, comprising 60 measurement points along the beam axis, was carried out under the exci-

tation signal of a pulse train to identify the fundamental out-of plane mode shape, Fig. 2.33 (c).

(a) (b)

(c) Multi-points scan

Figure 2.33: (a) The sensor velocity time-history and excitation voltage colored in blue and red,

(b) the velocity FFTs response, and (c) multi-points scan

The sensor response under primary was investigated by applying an excitation amplitude of
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Va = 6 V at f = fn. The response (tip velocity) is shown in Fig. 2.34 in the time and frequency

domains. The FFT is db-scales with 0 dB set equivalent to 1 m/s. The dominant peak was found

at the fundamental natural frequency, f = fn. Higher harmonics also appeared at the even and

odd multiples of the excitation frequency 2fn, 3fn, 4fn and 5fn due to the presence of strong

quadratic and cubic nonlinearities.

(a) sensor respnses in time doamin (b) sensor FFTs respnses in dB-scale

Figure 2.34: sensor tip velocity under primary resonance excitation f = fn = 78 kHz

The same experimental procedure was employed to investigate superharmonic resonance

with the excitation frequency set to f = 39 kHz. The response in time and frequency domains is

shown in Fig. 2.35. In this case, peaks appear in the frequency domain at the forcing frequency

f = 1
2
fn and its multiples fn, 3

2
fn, 2fn, 5

2
fn, 3fn, 7

2
fn, 4fn, and 9

2
fn.

2.4.1 Banded Chaos

A banded chaotic attractor was Along this branch. Banded chaos, unlike classical full chaos, does

not fill-in the attractor in phase-space. It was observed at excitation frequencies of f = 61 kHz,

f = 60.7 kHz, f = 60 kHz, f = 59.86 kHz, and f = 59.80 kHz as shown in Fig. 2.36.
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(a) (b)

Figure 2.35: sensor tip velocity under superharmonic resonance excitation f = 1
2
fn = 39 kHz

(a) f = 61 kHz (b) f = 60.70 kHz (c) f = 60 kHz (d) f = 59.80 kHz

(e) f = 59.86 kHz

Figure 2.36: Phase Portraits of banded chaos excited the sensor at voltage amplitude of Va =

7.725 V

The same phenomenon was also observed when the RMS voltage dropped to Va = 6.90 V at

frequencies of f = 50.90 kHz, f = 50.70 kHz, and f = 50.50 kHz as shown in Fig. 2.37.
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(a) f = 50.90 kHz (b) f = 50.70 kHz (c) f = 50.50 kHz

Figure 2.37: Phase Portraits of banded chaos excited at voltage amplitude of Va = 6.90 V

It appears that the banded chaotic attractor develops through a Ruelle-Takens scenario [46,

167–170], where a secondary Hopf results in two-period periodic (quasiperiodic) orbits followed

by another Hopf bifurcation, torus breakdown and chaos. This route to chaos was observed at

a lower excitation level Va = 7.45 V. Fig. 2.38 shows linear and and dB-scale FFTs of the orbit

obtained at f1 = 61 kHz. The side bands appearing around the excitation frequency at nf1 ± f2
are a clear indicator of a quasiperiodic orbit [169, 171, 172]. We note that the frequency created

by the secondary Hopf bifurcation f2 = 4 kHz is incommensurate with f1.

(a) (b)

Figure 2.38: Tip velocity and displacement time-histories, velocity FFTs in linear-scale and dB-

scale (0 dB = 1 mm/s), and corresponding to phase portrait at voltage amplitude of Va = 7.45 V

at frequency of f = 61 kHz
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2.4.2 Isolated P-6 Windows

An isolated P-6 window was observed at f1 = 60 kHz within the banded chaotic attractor. The

tip velocity and displacement time-histories, the velocity FFT, and corresponding phase portrait

of the orbit are shown in Fig. 2.39 (a)-(c). Harmonics of the P-6 orbit appears at f1 = 10 kHz

and its multiples in Fig. 2.39 (b). A quasiperiodic orbit was observed when the excitation fre-

quency dropped to f = 59.86 kHz, Fig. 2.39 (d)-(h) as indicated by the appearance of a sec-

ondary harmonic train at nf1 ± f2, in addition to the nf1 train, Fig. 2.39 (e). The new frequency,

f2 ≈ 4.56 kHz appears due to a secondary Hopf bifurcation. The dense orbit in the phase space,

Fig. 2.39 (f), is another indicator of quasiperiodicity.

(a) f = 60 kHz (b) f = 60 kHz (c) f = 60 kHz

(d) f = 59.86 kHz (e) f = 59.86 kHz (f) f = 59.86 kHz

Figure 2.39: Tip velocity and displacement time-histories, velocity FFTs in dB-scale (0 dB = 1

mm/s), and corresponding to phase portrait at voltage amplitude of Va = 7.725 V

Another torus breakdown occurs resulting in banded chaos when the excitation frequency is

decreased to f = 59.80 kHz, Fig. 2.40 (a-c). As a result, the power level in the secondary peaks

at nfa± f2 drops. Decreasing the excitation frequency further to f = 58.40 kHz brings back the
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isolated P-6 periodic window, Fig. 2.40 (d-f).

(a) f = 59.80 kHz (b) f = 59.80 kHz (c) f = 59.80 kHz

(d) f = 58.40 kHz (e) (f)

Figure 2.40: Tip velocity and displacement time-histories, FFTs velocity in dB-scale (0 dB = 1

mm/s), and corresponding to phase portrait at voltage amplitude of Va = 7.725 V

The same isolated P-6 window was also observed at a higher excitation voltage Va = 8.025 V

at f1 = 61.7 kHz, Fig. 2.41. In this case, the FFT of the orbit, Fig. 2.41 (b), is made of a train of

f1/6 kHz and its higher harmonics.

(a) (b) (c)

Figure 2.41: Tip velocity and displacement time-histories, velocity FFTs in dB-scale (0dB= 1

mm/s), and corresponding to phase portrait at voltage amplitude of Va = 8.025 V at f =

61.70 kHz
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At f = 56 kHz, Fig. 2.42 a P-2 orbit appears. It constitutes the lower bound on the banded

chaotic attractor.

(a) P-1 f = 56 kHz (b) P-1 f = 56 kHz (c) P-1 f = 56 kHz

Figure 2.42: Tip velocity and displacement time-histories, velocity FFTs in dB-scale (0 dB = 1

mm/s), and corresponding to phase portrait at voltage amplitude of Va = 7.725 V

2.4.3 Switching Intermittency of Type-II

During a forward frequency-sweep, the sensor was excited by the voltage waveform Va =

7.725 V at an excitation frequency of f = 57.0 kHz further away from the lower cyclic-fold

bifurcation. At this location, a homoclinic entanglement invades the safe basin of motion de-

stroying the large freely oscillating orbit of the upper branch [43]. As a result, laminar flow is

observed in the vicinity of that ghost orbit. The response grows over time before bursting away

to be arrested by a chaotic attractor involving tapping-mode oscillations.

Experimental measurements of the velocity and displacement-time histories, collected over

0.57 million excitation periods, are shown in Fig. 2.43. The sensor spends irregular time in-

tervals around the ghost orbit and on the chaotic attractor. Laminar flow is characterized by

a time-envelope proportional to nT . The velocity and displacement time-histories show that

laminar flow corresponds to free oscillations while the chaotic attractor involves tapping-mode

oscillations.The re-injection from the chaotic attractor to the ghost orbit is noise induced. This
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(a) f = 57 kHz (b) f = 57 kHz

Figure 2.43: Velocity and displacement time-histories colored in blue and red, respectively, of

the sensor tip excited by the voltage amplitude Va = 7.725 V

behavior was found to persist over long-time with the only variation being in the intervals of time

spent in laminar flow and on the chaotic attractor.

Increasing the voltage waveform to Vac = Vdc = 7.87 V while holding the frequency of

excitation at f = 57 kHz, increased the average time intervals the sensor spent on the chaotic

attractor but did not introduce a significant change in the size of the attractor. Fig. 2.44 shows

two shots of the velocity and displacement time-histories of sensor tip separated by 96 seconds.

Each shot is composed of 0.57 million excitation cycles. The time stretches occupied by the

chaotic attractor are marked by a sudden drop in the displacement range towards the substrate.
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(a) (b)

(c) (d)

(e)

Figure 2.44: Velocity and displacement time-histories colored in blue and red, respectively, of

the sensor tip excited by the voltage amplitude Va = 7.870 V at f = 57 kHz

The same behavior was obtained while the excitation frequency increased to f = 57.20 kHz,

Fig. 2.45. We found the laminar flow of the velocity and displacement time-histories increased

over time span of 0.572 million excitation cycles as the excitation frequency increased resulting

in less bursts occurred. The chaotic region was also spends more time compared the previous
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case in Fig. 2.44.

(a) (b)

(c) (d)

Figure 2.45: Velocity and displacement time-histories colored in blue and red, respectively, of

the sensor tip excited by the voltage amplitude Va = 7.870 V at f = 57.20 kHz

As frequency was further increased, the sensor spent more time on the chaotic attractor re-

sulting in banded chaos at f = 58 kHz, as shown Fig. 2.46. A further increase in the frequency

results in the sensor moving from the intermediate branch of the frequency response curve to the

upper branch where oscillations become free and periodic.
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(a) (b)

(c) (d)

Figure 2.46: Velocity and displacement time-histories colored in blue and red, respectively, of

the sensor tip excited by the voltage amplitude Va = 7.870 V at f = 58 kHz

2.4.4 Switching Intermittency of Type-I

Also, switching intermittency of a ghost orbit to large orbits and a ghost orbits to chaotic orbits

were also demonstrated.

The sensor was excited during a forward frequency sweep, the sensor was excited by the

voltage waveform Va = 7.870 V at an excitation frequency of f = 54.40 kHz. The elevated

voltage increased the strength of the electrostatic field and moved the location of the cyclic-fold

bifurcation below f . Instead of the intermittency of type-I expected beyond the cyclic-fold, we

observed a switching intermittency of type-I.

The measured velocity time-history over 2.176 million excitation periods is shown in Fig. 2.47.

76



Laminar flow (smaller oscillations) in the vicinity of the ghost orbit gradually grows over time

to be interrupted at irregular intervals by bursts. However, the bursts are not characterized by

irregular dynamics as in the case of an intermittency of type-I. Instead, they are arrested by the

substrate with the ensuing contraction resulting in a larger tapping-mode periodic orbit typical

of the intermediate branch of the frequency-response curve. The sensor spent irregular time in-

tervals on this attractor before being re-injected to the vicinity of the ghost orbit due to external

disturbances.

(a) (b)

Figure 2.47: Velocity time-history of the sensor tip excited at f = 54.40 kHz by the voltage

amplitude of Va = 7.870 V

We found a finite frequency range where this behavior was persistent. Increasing the fre-

quency of excitation to f = 54.50 kHz, the same behavior was observed. However, we found

that the average time spent on the tapping-mode orbit increased as shown in Fig. 2.48. Even-

tually, as the frequency of excitation increased the response settled-down on the intermediate

branch where the time-history of the response is composed only of periodic tapping-mode oscil-

lations.
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(a) (b)

Figure 2.48: Velocity time-history of the sensor tip excited at f = 54.50 kHz by the voltage

amplitude of Va = 7.870 V

2.4.5 Intermittency Type-I

Intermittency type-I is one of the chaotic nonlinear dynamic behaviors. It has aperiodic oscil-

lations leading to chaos [46]. Intermittency of type I was demonstrated experimentally in an

electrostatic MEMS sensor. These nonlinear dynamic behaviors were observed as the control

parameters, voltage and frequency, were varied.

During a forward frequency sweep, the sensor was excited by a voltage amplitude of Va =

7.780 V at an excitation frequency of f = 54 kHz. The elevated RMS voltage increased the

strength of the electrostatic field and moved the location of the cyclic-fold bifurcation below f .

Experimental measurements of the velocity time-history over 21.6 million excitation periods,

Fig. 2.49, show laminar flow in the vicinity of the ghost orbit gradually growing over time to be

interrupted at irregular intervals by bursts. The time-envelope of the laminar flow intervals is

of the order of
√
nT which is a characteristic of an intermittency of type-1 [46], where T is the

period and n is an integer.
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(a) (b)

Figure 2.49: Tip velocity time history at f = 54 kHz excited electrostatically at voltage ampli-

tude of Va = 7.870 V

In Fig. 2.49, thirteen bursts were observed over 21.6 million excitation periods. The hard

stroke at the end of each burst indicates tapping towards the substrate as shown in Fig. 2.49(b).

This intermittent behavior leads to the chaotic behaviors. Further, we observed that the burst has

taken more time to occur while the excitation frequency increased to f = 54.20 kHz as shown in

Fig. 2.50. Two bursts were captured over 2.168 million excitation periods.

During a forward frequency-sweep, the sensor was excited by a voltage amplitude of Va =

7.780 V at an excitation frequency of f = 54.70 kHz further away from the lower cyclic-fold

bifurcation. At this location, a homoclinic bifurcation has destroyed the large freely oscillating

orbit belonging to the upper branch of the frequency-response curve [43]. As a result, laminar

flow is observed in the vicinity of that ghost orbit. The response grows over time before bursting

and being re-injected back by involving tapping-mode to small oscillations, Fig. 2.51. Laminar

flow is characterized by a time-envelope proportional to nT . The displacement time-history

shows that laminar flow corresponds free oscillations while the chaotic attractor involves tapping-

mode oscillations.
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(a) (b)

Figure 2.50: Tip velocity time-history at f = 54.20 kHz excited electrostatically at amplitude

voltage of Va = 7.870 V

(a) (b)

Figure 2.51: Tip velocity time-history at f = 54.70 kHz excited electrostatically at voltage

amplitude of Va = 7.870 V

Experimental measurements of the velocity and displacement time-histories, collected over

0.547 million excitation periods involving six bursts within the time span. The same behavior

was observed while sweeping the frequency at f = 56 kHz, f = 56.50 kHz, and f = 56.70 kHz

as shown in Fig. 2.52.

In addition, the excitation voltage was increased to Va = 8.025 V in an effort to investigate
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(a) f = 56.50 kHz (b)

(c) f = 56 kHz (d)

Figure 2.52: Tip velocity and displacement time-histories excited by voltage amplitude of Va =

7.870 V

all of the chaotic behaviors while varying the control parameters, namely, voltage and frequency.

Five bursts were observed at f = 54.80 kHz observed over 1.096 million excitation periods,

Fig. 2.53 (a) and (b). The phase portraits show the response confined in space while some irreg-

ular point present due to tapping oscillations, Fig. 2.53 (c) and (d).
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(a) (b)

(c) (d)

Figure 2.53: Tip velocity and displacement time-histories and corresponding phase portrait at

f = 54.80 kHz and voltage amplitude of Va = 8.025 V colored in yellow and blue, respectively

2.4.6 Chaotic Attractors

Period three (P-3) and six (P-6) were observed while the sensor excited at voltage amplitude

of Va = 6.86 V. These class of periodic window is located inside the chaotic attractor. Pe-

riod three (P-3) occurs as f = k
2
fn. It was found while the sensor excited at frequency of

f = 50.50 kHz and f = 52.40 kHz, Fig. 2.54. The tip velocity and displacement time-histories

were measured and shown three periods in a one complete cycle, Fig. 2.54 (a) and (d). It is also

clearly shown in the velocity FFTs response in dB-scale, Fig. 2.54 (b) and (e) as well as its phase

portraits , Fig. 2.54 (c) and (f).
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(a) P-3 f = 52.40 kHz (b) P-3 f = 52.40 kHz (c) P-3 f = 52.40 kHz

(d) P-3 f = 50.50 kHz (e) P-3 f = 50.50 kHz (f) P-3 f = 50.50 kHz

Figure 2.54: Tip velocity and displacement time-histories, FFT velocity in dB-scale (0 dB = 1

mm/s), and corresponding phase portrait under excitation voltage amplitude of Va = 6.86 V

Period six, P-6, was also found inside the chaotic region at the excitation frequency of f =

51.740 kHz as shown in Fig. 2.55. The tip velocity and displacement time-histories show six

periods in a complete one cycle, Fig. 2.55 (a). It is also clearly shown in the velocity response in

dB-scale as well as its phase portrait, Fig. 2.55 (b) and (c).

(a) P-6 f = 51.740 kHz (b) P-6 f = 51.740 kHz (c) P-6 f = 51.740 kHz

Figure 2.55: Excitation signal, tip velocity, and displacement time-histories, velocity in dB-scale

(0 dB = 1 mm/s), and corresponding phase portrait colred in magenta, blue and red, respectively,

at excitation voltage of Va = 6.86 V

Further, a forced response was obtained when the excitation frequency was increased to f =

83



53 kHz and f = 53.50 kHz, respectively. Shrinking down the periodic orbits to P-1 interpret

the end limit of the chaotic chaotic region of the sensor and presents the classical electrostatic

forced responses, Eq.(2.2). The velocity and time-histories, velocity FFTs responses in dB-scale

in addition to phase portrait were shown in Fig. 2.56.

(a) P-1 f = 53 kHz (b) P-1 f = 53 kHz (c) P-1 f = 53 kHz

(d) P-1 f = 53.50 kHz (e) P-1 f = 53.50 kHz (f) P-1 f = 53.50 kHz

Figure 2.56: Tip velocity and displacement time-histories excited at a voltage amplitude of Va =

6.86 V

2.4.7 Period-Doubling Bifurcation

Period-doubling was demonstrated at half of the excitation frequency and its integer multi-

ples, f = k f1
2

, where k is an integer. It results a forced response located at f = f1 and

f = 1
2
f1. The velocity and displacement responses were collected in the steady state region,

Fig. 2.57, at the excitation frequency of f = 50.50 kHz and voltage amplitude Va = 6.90 V.

The velocity time history, Fig. 2.57 (a) shows four periods in each periodic cycle. The ve-

locity FFTs shows the excitation frequency f = 50.50 kHz and its sub-integer multiples as

f = 12.625, 25.25, and 37.875 kHz, Fig. 2.57 (b). Also. the phase portrait show period-doubling
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bifurcation P-2 as shown in, Fig. 2.57 (c).

(a) (b) (c)

Figure 2.57: Tip velocity time history, FFTs velocity response, and corresponding phase portraits

at frequencies at f = 50.5 kHz excited at voltage amplitude of Va = 6.90 V

2.4.8 Homoclinic Bifurcation

Homoclinic bifurcation were demonstrated as another route to chaos [40, 46]. A homoclinic

bifurcation is a sequence of transverse intersections between the stable and unstable manifolds

to a saddle point [40, 173]. A formation of a horseshoe is present as a results of homoclinic

tangle [33]. One of the characteristics of the horseshoe phenomena is having a countable infinity

set of periodic orbits [174]. In our case, a countable infinite set of periodic-orbits was observed

experimentally. To our knowledge, this is the first time this phenomenon is being observed in

electrostatic MEMS sensors.
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(a) (b)

(c) (d)

Figure 2.58: Beam velocity frequency response in logarithmic scale and its phase portrait at

f = 51 kHz excited electrostatically at amplitude voltage of Va = 6.90 V, (0 dB = 1 mm/s)

A homoclinic orbit to a saddle was observed while the beam was excited at a frequency of

f = 51 kHz and a voltage amplitude of Va = 6.90 V. The orbit falls on the homoclinic orbit of the

sensor with a deformed un-symmetrical orbit with a nose directed toward the saddle as shown in

Fig. 2.58 (b). The orbits start and end at the same saddle point indicating one of the homoclinic

orbit characteristics. The elevated noise floor demarcates the sensor is inside chaotic region as

shown in Fig. 2.58 (c) and (d).
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(a) (b)

(c) (d)

Figure 2.59: Beam velocity frequency response in logarithmic scale and its phase portrait at

f = 51.5 kHz excited electrostatically at amplitude voltage of Va = 6.90 V, (0 dB = 1 mm/s)

Further, the symmetry of homoclinic orbits were broken into a period-doubling of P-2 when

the excitation frequency increased to f = 51.50 kHz as shown in Fig. 2.59. The velocity and

displacement time-histories, FFTs in linear scale, FFTs in dB-scale, and corresponds to phase

portrait show the period-doubling of P-2, Fig. 2.59. This region show the upper-bound of homo-

clinic bifurcation region.
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Chapter 3

Binary Dynamic MEMS Gas Sensors

Binary gas sensors detect the presence of a target gas in a binary fashion. Compared to analog

sensors which quantify the concentration of a gas, binary sensors do not measure the concentra-

tion of the gas but indicate the status of gas concentration using a discrete signal as: ‘1’, above a

threshold, and ‘0’, below it. The cyclic-fold bifurcation in electrostatic MEMS is exploited here

to create those discrete (binary) output states. An electrostatic MEMS actuator is equipped with

a polymer highly selective to ethanol to create an ethanol vapor gas sensor.

3.1 Gas Sensor

The sensor was fabricated using the PolyMUMPs fabrication process [155], Fig. 3.1, to satisfy

the following design criteria:

• Minimize the thickness to increase sensitivity.

• Minimize the beam width to reduce squeeze-film damping.

• Maximize the distance between the actuation pads to reduce leakage current.
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Figure 3.1: Layout of the PolyMUMPs fabricated gas sensor: (a) top-view and (b) front-view

along section A–A

It features a cantilever beam fabricated in Poly2 structural layer with dimensions (175 × 10 ×

1.5 µm3) and material properties ρ = 2300 kg/m3 and E = 160 GPa. A gap (d = 2 µm) is etched

under the beam in the second oxide layer. The ground electrode is patterned in Poly0 layer under

the length of the beam. Two gold pads are patterned at the root of the beam and the end of the

bottom electrode to apply potential difference.

A polymer with affinity to ethanol vapor, poly (2,5-dimethyl aniline) (P25DMA) [175], was

deposited onto the beam top surface using manual manipulator. The polymer was dispersed

in a 1% solution of ethylene glycol. The reduced wettability of the solution prevents it from

running off the beam edges. Six drops of polymer-glycol solution were deposited along the outer

half of the beam length in stages to avoid solution overflow. The ethylene glycol was allowed to

evaporate in air, leaving polymer residue atop the beam. Fig. 3.2 shows the sensor before, during,

and after deposition.

The sensor is actuated by a biased voltage signal. It exploits the qualitative change before

and after dynamic pull-in as a sensing mechanism. It acts as a binary logic gate with states of

low (no detection) before pull-in and high (detection) after pull-in. Detection can be observed

either optically, via a laser-Doppler vibrometer (LDV), or electrically by measuring impedance
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(a) (b)

(c)

Figure 3.2: The cantilever beam (a) before (b) during and (c) after deposition P25DMA and

glycol evaporation

between the two pads.

3.2 Analytical Model

The gas sensor is actuated under a quasi- electrostatic MEMS actuator. It consists of a micro-

cantilever beam vibrating in z-direction, as shown in Fig. 3.3 (a). The beam length, width, and

thickness are denoted l, b, and h, respectively. The cantilever beam is coated with a detector

polymer, coupled to an electrode located at a distance d underneath it, and actuated by AC and

DC voltage. The detection mechanism is built based on detecting a jump, changing in ampli-

tude, at a cyclic fold bifurcation point due to an added mass (sorbed ethanol molecules) to the

cantilever beam.

The model of this sensor is developed based on Newton’s second law, Eq.( 3.1) which de-
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(a) Sensor schematic (b) white light profilometer

(c) SEM picture

Figure 3.3: Gas sensor

scribing the dynamic behavior of the system. It treats the microbeam as an elastic continuum and

prismatic, an Euler-Bernoulli beam. From Newton’s second law∑
Fz = ρA

∂2ŵ(x̂, t̂)

∂t̂2
dx̂ (3.1)

where ρ is the beam mass density, A is the area cross-section, and w(x̂, t̂) is the beam deflection.

The total forces subjected on the small element, dx̂, shown in Fig. 3.4 (b) are

V − (V + dV ) + f(x̂, t̂)dx̂ = ρA
∂2ŵ(x̂, t̂)

∂t̂2
dx̂ (3.2)

where V is the transverse internal shear force, dV is the change in transverse internal shear force,

and f(x̂, t̂) is applied distributed force per unit length. The change in the internal shear force can
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Figure 3.4: (a) A schematic of the gas sensor (b) A free body diagram of infinitesimal element

along the beam

be written as

dV =
∂V

∂x̂
dx̂ (3.3)

Further, taking the total internal moments, M(x̂, t̂), at point A located at the left side of the

small element, dx̂, shown in Fig. 3.4 (b). We note that rotational inertia at point A is very small

which can be neglected, we get

−M + fdx̂
dx̂

2
− (V + dV )dx̂+ (M + dM) = 0 (3.4)

where M and dM refer to the internal moment and the change in the internal moment, respec-

tively. Using Chain rule, the change in the internal moment can be written as

dM =
∂M

∂x̂
dx̂ (3.5)

Substituting Eqs.( 3.3)–(3.5) into Eq.( 3.4), we obtain

f
d2x̂

2
− V dx̂− ∂V

∂x̂
d2x̂+

∂M

∂x̂
dx̂ = 0 (3.6)
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For small dx̂, all the nonlinear terms in Eq.( 3.6) are dropped to get

V =
∂M

∂x̂
(3.7)

Based on Euler-Bernoulli beam theory, the internal bending moment M(x̂, t̂) for a linear

elastic beam can be described in terms of curvature 1
ρ(x̂,t̂)

as

M(x̂, t̂) =
EI

ρ(x̂, t̂)
(3.8)

where E is Young’s modulus of the structural material, and I is the cross-section moment of

inertia. If the slop of the cantilever beam is small, then the curvature can be approximated [176]

as
1

ρ
≈ ∂2ŵ

∂x̂2
(3.9)

where ŵ(x, t) is the displacement of the beam. We excited the beam utilizing an electrostatic

force as a applied force generating a voltage difference between moving beam and fixed electrode

which follows as:

f(x̂, t̂) =
1

2
εb

V (t̂)2

(d− ŵ)2
(3.10)

where ε = 8.854× 10−12 F/m is the air permittivity, b is the beam width, d is the unactuated gap

between cantilever beam and the substrate, and V (t̂) is the applied voltage difference which can

be defined as

V (t̂) = Vdc + Vac cos(Ω̂t̂) (3.11)

where Vdc is the bias voltage, Vac is the amplitude of the alternating voltage, and Ω̂ is the excita-

tion frequency. Substituting Eqs.( 3.7)–(3.10) into Eq.( 3.2) we get

EI
∂4w

∂x̂4
+ ρA

∂2ŵ

∂t̂2
=

1

2
εb

(Vdc + Vac)
2

(d− ŵ)2
(3.12)
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which describes equation of motion for a transverse undamped-forced beam. Alternatively, it

can be written as

ρA ¨̂w + EI ŵiv =
1

2
εb

(Vdc + Vac)
2

(d− ŵ)2
(3.13)

where overdot stands for the derivative with respect to time t̂ and the prime stands for the deriva-

tive with respect to position along the beam axis x̂. The quadratic relationship between voltage

and electrostatic force results in a multi-frequency excitation where a harmonic waveform pro-

duces a force component (∝ 2VdcVac) with a frequency of Ω and another component (∝ 1
2
V 2
ac)

with a frequency of 2Ω .

Two main sources of damping were added in the system EOM which are: a linear viscous

damping, ĉ, due to the structural damping in the system, and a nonlinear squeeze-film damping,

ĉs, due to vibrating cantilever in a narrow gap resulting in air trapped, therefore Eq.( 3.13) yields

to

ρA ¨̂w + (ĉ+ ĉs) ˙̂w + EI ŵiv =
1

2
εb

(Vdc + Vac)
2

(d− ŵ)2
(3.14)

where is the effect of squeeze-film damping can be formulated from [100, 177]as:

ĉs =
µ̂b̂3

(1 + 6Kn)(d− ŵ)3
where kn =

λ

d
(3.15)

µ̂, Kn, λ are the air viscosity, Knudsen number, the mean free path of air at ambient pressure,

λ = 60 nm.

We included the in-extensibility effect [106], which account for the apparent beam length, L,

shortening due to bending under electrostatic force. As a result, the beam stiffness increased and

that will slightly alter the structural behavior. We note electrostatic force emerges a softening

nonlinearity effect, which skewed the frequency response curve to the left, in-extensibility effect

will cause hardening nonlinearity effect, which try to skewed the frequency response to the right.
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The equation of motion, therefore, will be as

ρA ¨̂w + (ĉ+ ĉs) ˙̂w + EI ŵiv − EA

2L
ŵ′′
∫ L

0

(
ŵ′
)2
dx̂ =

1

2
εb

(Vdc + Vac)
2

(d− ŵ)2
(3.16)

Also, accounting for electrostatic fringing field [178] by modifying the beam width by the

effective beam width, we obtain

be = b
(

1 + 0.65
d− ŵ
b

)
(3.17)

thus equation of motion will become as follow:

ρA ¨̂w + (ĉ+ ĉs) ˙̂w + EI ŵiv − EA

2L
ŵ′′
∫ L

0

(ŵ′)2dx̂ =
1

2
εbe

(Vdc + Vac)
2

(d− ŵ)2
(3.18)

and the associate boundary conditions are

ŵ(0, t̂) = 0 and ŵ′(0, t̂) = 0

ŵ′′(L, t̂) = 0 and ŵ′′′(L, t̂) = 0
(3.19)

For convenience, we introduce the nondimensional variables

w =
ŵ

d
, x =

x̂

L
, t =

t̂

τ
(3.20)

where τ is a time scale. Substituting Eq.( 3.20) into Eq.( 3.18), we obtain the nondimensional

equation of motion in the form as follow:

ẅ + (c+ cs) ẇ + wiv − α1w
′′
∫ 1

0

(
w′
)2
dx = (3.21)

α
(

1 + 0.65
1− w
b/d

)(Vdc + Vac)
2

(1− w)2

the associate boundary conditions are

w(0, t) = 0 and w′(0, t) = 0

w′′(1, t) = 0 and w′′′(1, t) = 0
(3.22)
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where parameters are defined as

α =
εbL4

2EId3
, c =

µ1l
4

EIτ
, α1 = 6

(d
h

)2
, (3.23)

τ =

√
ρAL4

EI
µ = µ̂

( b
d

)3 τ
m

The nondimensional squeeze-film damping coefficient cs is formulated as [179]

cs =
µ2τ

m(1 + 6Kn)

( b

d(1− w)

)3
(3.24)

where µ2 is air viscosity. Knudsen number (Kn = λ/d) is the ratio of the mean free path of air

particles at ambient temperature and pressure (λ = 60 nm) to the capacitive gap. The term 1
(1−w)

is expanded in a first-order Taylor series around the static deflection (w = ws) and substituted

back into Eq. (3.24) to obtain

cs ≈
µ2b

3τ

md3(1− ws)2(1 + 6Kn)

1 + w − 2ws
(1− w)2

(3.25)

3.2.1 Eigenvalue Problem

To find out natural frequencies and mode shapes, we solved an eigenvalue problem for cantilever

beam subjected to a free vibration mode. For simplicity, all nonlinear, damping, and forcing

terms were dropped from Eq.( 3.21). Therefore, we obtain

ẅ(x, t) + wiv(x, t) = 0 (3.26)

To solve Eq.( 3.26), we assumed a solution in the form

w(x, t) = φn(x)eiwnt (3.27)

Then, substituting Eq.( 3.27) into Eq.( 3.26), we get

φivn (x)− w2
nφn(x) = 0 (3.28)
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where the boundary conditions at x = 0 are

φn = 0 and φ
′

n = 0 (3.29)

at x = 1

φ
′′

n = 0 and φ
′′′

n = 0 (3.30)

To solve Eq. (3.28), we assume a solution in the from

φn(x) = Cesx (3.31)

Thus, substituting Eq.( 3.31) in Eq.( 3.28), it becomes

s4 − w2
n = 0 (3.32)

solving Eq.( 3.32) which gives four roots as

s1,2 = ±
√
wn and s3,4 = ±i

√
wn (3.33)

Then, substituting all the four roots of Eq.( 3.33) into Eq.( 3.31) to get the free vibration mode

shape

φn(x) = C1 e
√
wn + C2 e

−√wn + C3 e
i
√
wn + C4 e

−i√wn (3.34)

Or alternatively, it can be written as

φn(x) = C1 cosh(β1x) + C2 sinh(β2x) + C3 cos(β3x) + C4 sin(β4x) (3.35)

where Ci are constants which can be found from the structural boundary conditions, and β de-

noted by

β1,2 = ±
√
wn and β3,4 = ±i

√
wn (3.36)
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Applying the boundary conditions found in Eqs.( 3.29,3.30) into Eq.( 3.35)yields four algebraic

equations in the Ci as follows:
1 0 1 0

0 β 0 β

β2 coshβ β2 sinhβ −β2 cosβ −β2 sinβ

β3 sinhβ β3 coshβ β3 sinβ −β3 cosβ





C1

C2

C3

C4


=



0

0

0

0


(3.37)

Solving Eq.( 3.37) by equating the determinant of the coefficients by zero, and find nontrivial so-

lutions. This leads to the characteristic equation which gives natural frequencies of the cantilever

beam

cosβ coshβ + 1 = 0 (3.38)

We solved Eq.( 3.38) numerically using Mathematica software to find nth natural frequencies of

the system. The system mode shapes are determined by manipulating Eq.( 3.37), and found the

three constants, C1, C2, and C3 with respect to the forth one, C4, which can be arbitrary. The

general mode shape for undeflected cantilever beam is

φn(x) = Cn[(cosh(βnx)− cos(βnx))− kn (sinh(βnx)− sin(βnx))] (3.39)

where

kn =
cosh(βnx) + cos(βnx)

sinh(βnx) + sin(βnx)

The first three normalized nondimensional mode shapes, choosing Cn = 1, given in Eq.( 3.39)

are shown in Fig. 3.5. The first, second and third bending natural frequencies were found at

f1 = 64.82 kHz, f2 = 406.23 kHz, and f3 = 1.14 MHz, respectively.

The general solution of Eq.( 3.21) can be obtained using Galerkin method, which is one of the

weighted residual methods, to discretize the governing equation to transform partial differential
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Figure 3.5: The first three nondimensional bending mode shapes of the cantilever beam length

over its gap

equations (PDE) into a set of nonlinear ordinary differential equations (ODE) of the micro beam.

The weighting functions are chosen to be the same as the trial functions according to the Galerkin

method [180, 181]. We use the mode shapes as trial functions in the Galerkin method for the

undamped free vibration problem of the cantilever beam. Thus, the solution is assumed in the

form of

w(x, t) =
N∑
i=1

φn(x)qn(t) (3.40)

where N is the required number of modes, φn(x) is the trial function, mode shape, and qn(t) is

the generalize coordinates in the time domain. After multiplying Eq.( 3.21) by (1− w)2 in both

sides, substituting Eq.( 3.40) into Eq.( 3.21), we get

N∑
n=1

(
φnq̈n + (c+ cs)φnq̇n + φivn qn − α1φ

′′

nqn

∫ 1

0

( N∑
n=1

φ
′

nqn
)2
dx
)(

1−
N∑
n=1

φnqn

)2
=

α
(
Vdc + Vac

)2(
1 + 0.65

d

b
− 0.65

d

b

N∑
n=1

φnqn

) (3.41)

We note this equation just represents the equation parameters for one mode only. However, we
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accounted for three modes in our case. Applying Galerkin technique by multiplying Eq.( 3.41)

by φi in both sides and integrating along the cantilever beam length from x = 0 to x = 1. Then,

solving the system by applying orthogonality conditions [180] to decouple the system into a set

of nth ordinary-differential equations in terms of the generalize coordinate, qn describing modal

participation.

A closed-form expression was developed for the static deflection, denoted ws(x), under DC

voltage and estimate the maximum range of travel. The static problem can be formulated by

setting the time derivatives and the AC forcing term in Eqs.( 3.21) equal to zero, which yields

wivs (x)− α1w
′′
s

∫ l

0

(
w′s
)2
dx = α

(
1 + 0.65

1− ws(x)

b/d

) V 2
dc

(1− w)2
(3.42)

and the associate boundary conditions at x = 0 are

ws(0) = 0 and w
′

s(0) = 0 (3.43)

and at x = 1, the boundary conditions are

w
′′

s (1) = 0 and w
′′′

s (1) = 0 (3.44)

The Galerkin method was used to transform Eq. (3.42) into a set of algebraic equations by

substituting the modal expansion

ws(x) =
N∑
i=1

qiφi(x) (3.45)

into the equation, we obtained N algebraic equations describing the static equilibrium(
1−

N∑
n=1

φnqn

)2( N∑
n=1

φivn qn − α1

N∑
n=1

φ′′nqn

∫ 1

0

( N∑
n=1

φ
′

nqn

)2
dx
)

= αV 2
dc

×
(

1 + 0.65
d

b

(
1−

N∑
n=1

φnqn
)) (3.46)
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where φi(x) is the ith mode shape of a straight cantilever beam and qi is the corresponding modal

coefficient. Numerical solution of this set of algebraic equations showed that three modes were

enough to converge to the stable and unstable branches of the static deflection-voltage curve

while one-and two-mode expansions diverged at higher DC voltage values. Therefore, a three-

mode approximation has been adopted to model the beam deflection throughout this work. The

static pull-in voltage, where the stable and unstable equilibria branches collide at a saddle-node

bifurcation [182], was found to be Vpi = 14.421 V corresponding to a maximum stable deflection

of wpi = 39.7 % of the initial gap d.

Another Galerkin expansion was used to separate time and space in the dynamic response

wd(x, t) and rewrite the total deflection as

w(x, t) = ws(x) +
N∑
i=1

ui(t)φi(x) (3.47)

where ui is the ith dynamic modal coefficient. Substituting this form in Eqs. (3.21), imposing the

orthogonality condition among the mode shapes, and using Eq. (3.42), we obtained a reduced-

order model (ROM), a set of three ODEs, describing the dynamic response.(
1− ws −

N∑
n=1

φnqn

)2( N∑
n=1

φnq̈n + (c+ cs)
N∑
n=1

φnq̇n + wivs +
N∑
n=1

φivn qn

− α1

(
w′′s +

N∑
n=1

φ′′nqn

)∫ 1

0

(
w′s +

N∑
n=1

φ
′

nqn

)2
dx
)

= α
(
Vdc + Vac

)2
×
(

1 + 0.65
d

b

(
1− ws −

N∑
n=1

φnqn
))

(3.48)

Numerically integrating the ROM for 500 excitation periods (T = 1/f), we found the response

as the RMS of the beam tip velocity evaluated over the last 100T . The frequency response-curve

was constructed numerically, tip velocity as a function of f , for the waveform Vdc = 7.20 V and

Vac = 7.20 V, Fig. 3.6. The forward frequency sweep is shown with a blue line and the backward

sweep is shown with a red line.
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Figure 3.6: The simulated frequency-response curve for the waveform Vdc = 7.20 V and Vac =

7.20 V

The peak in the vicinity of f = 35 kHz results from the combined effects of a primary

resonance of the forcing component proportional to 1
2
V 2
ac and a superharmonic resonance of the

forcing component proportional to 2VdcVac. The dominant peak in the frequency-response curve

represents primary resonance of the force component proportional to 2VdcVac. It is skewed to

the left due to the dominance of the softening electrostatic nonlinearity. An unstable branch (not

shown) connects the left and right stable branches. A lower and an upper cyclic-fold bifurcation

exist at the lower and upper ends of the unstable branch [182]. Our target in this study was to

exploit the lower cyclic-fold bifurcation as a detection mechanism.
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3.3 Sensitivity Analysis

The sensitivity of a bifurcation-based sensor is the ratio of the change in location of the bifurca-

tion point to the added mass. We re-introduce the dimensional equation of motion of the beam

as:

Mẅ + ĉ l ẇ + kelw
iv − EAs

2
w′′
∫ l

0

(w′)2dx =
εAe(Vdc + Vac)

2

2(d− w)2
(3.49)

where M and ke = Γ1EI are the effective mass and stiffness of the sensor, Γ1 is a modal

coefficient defined in appendix (A), and As and Ae are the cross-sectional and electrode areas.

To obtain the location of the cyclic-fold bifurcation, we derive the modulation equations of the

beam. Assuming the absence of modal interactions, we adopt a one-mode approximation of the

total displacement:

w(x, t) = qsφ1(x) + u(t)φ1(x) (3.50)

where qs and u(t) are the amplitudes of static and dynamic displacement, respectively, and φ1(x)

is the directly excited mode.

Substituting this approximation into Eq. (3.49), multiplying the result by φ1(x), integrating

over the cantilever beam length, and applying the orthogonality conditions [180], we reduce the

system into an ordinary-differential equation in terms of the generalize coordinate qs and u(t):

ü+ µ l u̇+ ω2
nu+ ω2

nu
2 + ω2

nu
3 = λ cos(Ωt) (3.51)

The effective mass of the sensor can be defined as

M = m+md = ρbhl +md ≈ ρbhl (3.52)

where m and md are the beam mass and the deposited polymer mass on the sensor, respectively.
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We assume the deposited mass is negligible. The coefficients of Eq.(3.51) are defined as

µ =
ĉ

M

ω2
n =

1

12
h3E Γ1ψ2 −

3

2
q2s E Γ2 ψ1 − C2Vdcψ2

α2 = −3

2
qsE Γ2 ψ1 −

3

2
C3Vdcψ2

α3 = −1

2
E Γ2 ψ1 − 2C4Vdcψ2

λ = C1ψ2

where modal coefficients Γ1 and Γ2 and the electrostatic field coefficients C1, C2, C3, and C4 are

defined in appendix (A) and

ψ1 =
As
M
, ψ2 =

Ae
M

The frequency-response equation under primary resonance excitation Ω = ωn + σ can be

written as [46]

a2 σ2 + κ2 a6 − 2Aa4 σ +
1

4
µ2 a2 =

( λ

2ωn

)2
(3.53)

where ωn =
√
α1 and the coefficient of effective nonlinearity, κ, is

κ =
9ω2

nα3 − 10α2
2

24ω3
n

(3.54)

and the forcing amplitude is

λ = ψ2C1fac

and fac is the amplitude of the AC voltage.

The cyclic-fold bifurcation point occurs at a point in the frequency-response curve where the

slope approaches infinity, or alternatively [182]

∂σ

∂a
= 0 (3.55)
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Applying this condition to the frequency-response equation, Eq. (3.53), yields

σ◦ = κ a2◦ (3.56)

where (a◦, σ◦) are the amplitude and frequency, respectively, of the cyclic-fold bifurcation.

The beam sensitivity in the vicinity of the cyclic-fold bifurcation is defined as the change in

the location of the bifurcation point, δσ◦, due to the change of the beam mass δM

Sm =
δσ◦
δM

(3.57)

Using Eq. (3.56) in Eq. (3.57) yields,

Sm = a2◦
δκ

δM
+ 2a◦κ

δa◦
δM

(3.58)

We solve for the response amplitude a◦ at the bifurcation point by substituting for σ◦ from

Eq. (3.56) into Eq. (3.53) to get

a◦ =
λ

µωn
(3.59)

Substituting for a◦ and κ, from Eqs. (3.54) and (3.59), in Eq. (3.58), we found the sensitivity as

Sm =
l2b4Q2

128 ĉ2M5 ω5
n

γV 2
acC

2
1 =

l2b4Q2

128M3/2 k
7/2
e

γV 2
acC

2
1 (3.60)

where γ is a static constant which can be defined as

γ = −4L2Vdc
(
15C2

3Vdc − 12C2C4Vdc + C4h
3EΓ1

)
+ hLEΓ2

(
12Vdc

(
C2 + 6C4q

2
s − 10C3qs

)
− h3EΓ1

)
− 42h2E2 q2sΓ

2
2
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Figure 3.7: Sensitivity curves studied while increasing the AC-voltage amplitude at Vac =

6.125, 7.125, and 8.125 V colored in blue, red, and green, respectively, and effective mass

We used this formula to study the relationships among the strength of the electrostatic field,

at a unity modulation index, the effective mass M , and sensitivity and obtained the sensitivity

curves shown in Fig. 3.7. The curves were obtained for three levels of the electrostatic field

corresponding to Vdc = Vac = 6.125, 7.125, and 8.125 V as the effective mass varies from that

of the current sensor M = 6.12 pg to twice that value. We found that sensitivity increases

nonlinearly with field strength and drops with the effective mass. The results indicate that the

sensitivity formula, Eq. (3.60), can be utilized to optimize sensor sensitivity.

3.4 Sensor Characterization

A white light profilometer [183], Fig. 3.3 (b), was used to measure the beam length and width.

They were found to be identical to the design values. On the other hand, we found significant
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inter-chip and intra-chip variability in the beam thickness and capacitor gap. Variation was also

found among PolyMUMPs fabrication runs.

3.4.1 Parameter Identification Of Sensor Dimensions

Uncertainties in the sensor dimensions play a role in determining the sensor response. Further,

we found inter-chip and intra-chip dimensional and material property variability among Poly-

MUMPs runs used to fabricate the sensors. A white light profilometer [183] was used to measure

the in-plane dimensions of the beam, Fig. 3.3 (b), listed in Table 3.1. The beam length, width

and gap were found to be identical to the design values. We estimated the beam thickness as

h = 1.8 µm by matching the measured static pull-in voltage to that predicted numerically.

Table 3.1: Estimated sensor dimensions

L (µm) b (µm) h (µm) d (µm)

175 10 1.8 2

3.4.2 Static Pull-in

The variation of the static deflection with the DC voltage is obtained by solving Eq.( 3.46) for

a given Vdc. Four modes were employed in the Galerkin expansion resulting in four algebraic

equations. Comparison with the results for 1-4 modal expansions showed that the three- and four-

mode solutions were consistently convergent, while the one and two-mode solutions diverged for

higher DC voltage values. Therefore, a three-mode approximation has been adopted to model

the beam deflection throughout this work.

107



The model ignores the beam weight. To examine this assumption, we calculated the static

deflection of the beam under its own weight and found that the maximum deflection at the beam

tip as w(1) = 6.2 nm. This is equivalent to 0.0031 % of the initial gap, small enough to validate

our assumption.

The numerically calculated static deflection at the beam tip ws(1) is shown versus the DC

voltage Vdc in Fig. 3.8. Two branches of solutions are observed: a lower branch (solid blue line)

of stable equilibria and an upper branch (dashed red line) of unstable equilibria. Only the stable

branch is realizable experimentally. The static deflection increases along the stable branch as

the DC voltage increases until the ‘pull-in‘ point. At this point the stable and unstable branches

collide and the sensor loses stability. The voltage corresponding to this point is called the static

pull-in voltage Vps.

Figure 3.8: Nondimensional beam deflection ws(1) under DC voltage Vdc

Beyond Vps, there are no equilibrium solutions and the cantilever beam jumps down to-

108



ward the bottom electrode. This qualitative change in the sensor state is called a saddle-node

bifurcation [182]. The static pull-in voltage and deflection were calculated at the beam tip as

Vps = 14.421 V and wps = 39.7 % of the initial gap d as depicted in Fig. 3.8.

The model accounts for the electrostatic fringing-field. To study the impact of that field on the

model, we calculated the beam tip deflection for Vdc = 13 V with and without the fringing-field.

We found that accounting for the fringing-field increases the beam tip deflection byw = 0.817 %.

We used a similar procedure to determine the impact of beam in-extensibility on the model and

found that it decreases the beam tip deflection by w = 5.88 % of the initial gap for Vdc = 13 V.

Figure 3.9: A screen capture of the laser vibrometer interface showing displacement of the can-

tilever beam tip w(1) (solid line) during pull-in

A triangular voltage waveform was applied to the sensor using a function generator (AFG3000C).

The signal frequency was set to f = 150 Hz to ensure a quasi-static response. The beam tip

velocity and displacement were measured using a laser Doppler vibrometer (MSV 400) [156],

Fig. 3.9. An oscilloscope (MSO2024B) was used to record the excitation signal and the mea-

sured tip velocity and displacement, Fig. 3.10. As the voltage was increased linearly along the

positive-slope ramp, the beam deflected continuously towards the substrate. The peak voltage of

the waveform was increased manually in steps of 15 mV until pull-in occurred. It was detected

as a sudden change in the beam deflection, Fig. 3.10. As the voltage dropped along the negative
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ramp, the beam stayed in contact with the substrate until the voltage was close to 0 V.

Figure 3.10: A screen capture showing the excitation voltage (green line), beam tip velocity

(yellow line), and displacement (blue line)

This technique was used to estimate the static pull-in voltage as (Vpi = 14.55 V). The capac-

itive gap (ws(1) = 1.63 µm) was measured as the displacement of the beam tip from its neutral

position at 0 V to the pull-in position, in contact with the substrate. Using the gap distance and the

measured dimensions in Eq. (3.42), we estimated the beam thickness as h = 1.8 µm by matching

the measured static pull-in voltage to that predicted by the equation.

3.4.3 Fundamental Natural Frequency

The fundamental mode shape of the sensor was excited by applying the pulse train shown with a

magenta line in Fig. 3.11, with amplitude of 3 V, frequency of 1 kHz, and a 0.8% duty cycle, to the

beam in atmospheric pressure. The time-history of the beam tip velocity was measured optically

using the vibrometer and recorded using the oscilloscope. It was averaged over 512 samples and

is shown with the yellow line in Fig. 3.11. The damped natural frequency and quality factor were
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obtained from the time-history as fd = 70 kHz and Q = 5.484. The settling time was measured

as ts = 73.8 µs.

Figure 3.11: The averaged time-history of the beam tip velocity under a pulse train with f =

1 kHz and an amplitude of 3 V

3.4.4 Bifurcation Point

The frequency-response curve of the sensor was obtained in the vicinity of primary resonance

to locate the cyclic-fold bifurcation. Forward and backward frequency sweeps were carried out

over the frequency range f = [40–90] kHz. The bias voltage and excitation amplitude were set

to Vdc = Vac = 6.86 V. A slow slew rate of f = 2.5 kHz/s was used to minimize transient effects.

Data was collected using an oscilloscope in time windows of 0.4 s each and a sampling rate of

fs = 313 kHz. The frequency-response curve, Fig. 3.12, was obtained by post-processing the

data to evaluate the RMS of the beam tip velocity over a time window of 20T and assigning it to

the frequency at the window mid-point.
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Figure 3.12: The measured frequency-response curve for Vdc = Vac = 6.86 V. The forward

sweep is shown in blue and the backward sweep is shown in red

The forward sweep is shown in blue and the backward sweep in red, Fig. 3.12. The jump-up

during the forward sweep at fpl = 48.50 kHz corresponds to the lower cyclic-fold bifurcation.

The jump-down during the backward sweep at fpu = 46.50 kHz corresponds to the upper cyclic-

fold bifurcation. The mid-sized orbits observed right after the jump-up and before the jump-down

correspond to tapping-mode oscillations involving the beam tip interaction with the substrate.

The region between the two jumps demarcates hysteresis in the sensor response. The flatness

in the right branch of the curve is indicator of the dominance of squeeze-film damping for large

orbits.
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3.4.5 Experimental Limitations

Static Charge Shock

Static charges are generated from contact between two surfaces, such as fabrics. All materials

are made of atoms and electrons; thus, electrons can move from one material to another upon

contact. Low humidity helps to accumulate static charges [184]. The human body is a good

insulator (highly resistive) as a result, it accumulates static charges. Thus, if an operator wears

fabric material and/or rubber shoes, static charges tend to accumulate on his/her body. Upon

touching a chip, the static charges are released into the specimen through electrical connections

resulting in charge shock and stiction either in line-contact or area-contact as shown in Fig. 3.13.

Operators were instructed to wear Electrical Discharge Strips (EDS) connected to the common

ground of the vibrometer to protect the specimen from static charges.

Figure 3.13: Fringe lines over the cantilever beam representing a stiction as a line-contact

Dielectric Charging

Electrostatic charging poses a serious impediment to experimental measurements. It occurs due

to buildup of static charges on dielectric layers in a MEMS, which turns them into voltage sources

within the MEMS. Specifically, charge buildup on a dielectric layer within the actuation capacitor

with the same polarity as the excitation voltage will reduce the effective voltage drop across the
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capacitor. This is particularly exacerbated by the cantilever beam coming into contact with the

bottom electrode during static pull-in.

In our experiments, we observed that dynamic pull-in voltage increased/decreased after re-

peated pull-in cycles. We postulate that changes is due to the formation of a native oxide layer

on the bottom polysilicon electrode due to extended exposure to air. Literature shows that ex-

tended exposure of bare polysilicon surfaces to air leads typically to the formation of 1 − 3 nm

thick native oxide layers [185, 186]. However, devices fabricated using PolyMUMPs have been

shown to possess an extremely thick, up to 30 nm, native oxide layer [187]. This layer of silicon

dioxide serves as a dielectric layer that contributes to contact resistance and leads buildup of

trapped charges, thus modifying the pull-in voltage [188,189]. The maximum observed increase

in pull-voltage was ∼ 220 mV.

3.4.6 Experimental Setup

The experimental setup, Fig. 3.14, is composed of the sensor placed inside a test chamber, a

function generator, a high voltage amplifier, an oscilloscope, and two gas canisters containing

nitrogen and a pre-calibrated ethanol vapor charge. A laser-Doppler vibrometer is used to mea-

sure the sensor response optically. The test chamber is equipped with two BNC ports and a

quartz glass window to allow for optical detection. The gas pressure in both canisters is set to

P = 20 psi to reduce variation between the sensor performance in air and inside the test chamber.

This ensures any response is not due to the pressure effect.
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Figure 3.14: The experimental setup

During the experiment, the function generator applies the desired voltage waveform and fre-

quency, f◦, to the sensor. Then, the nitrogen canister valve is opened, subjecting the polymeric

sensing material to a flow of Grade IV nitrogen for 15 minutes in order to release ethanol and

other sorbed molecules, thereby reseting it. Next, the valve of a pre-calibrated ethanol canis-

ter is opened to allow pre-calibrated ethanol flow into the test chamber. The sensor response

is measured using the vibrometer and monitored using a CCD video camera to detect the jump

corresponding to the cyclic-fold bifurcation. The oscilloscope records the beam tip velocity and

displacement measured by the vibrometer.

The operating point of the sensor is set at a frequency f◦ just below the lower cyclic-fold bi-

furcation fpl. A manual forward sweep starting from fpl−10 Hz was carried out with a frequency

step of f = 1 Hz to obtain a better estimate of the bifurcation point fpi. We define the operational

set-off frequency as: δf = fpi − f◦. A stability study was carried out to determine the closest

operating point under ambient external disturbances by increasing the set-off frequency δf in

115



steps of 1 Hz. A set-off frequency was declared stable if it was sustainable for longer then 15

minutes. We found the minimum set-off frequency for the experimental setup to be δf = 5 Hz.

3.5 Results and Discussion

Test gases made of a mixture of ethanol vapor, with variable concentrations, and dry nitrogen

were used to determine the sensor detection limit to ethanol vapor for the voltage waveform

Vdc = Vac = 6.86 V and set-off frequency of δf = 50 Hz.

3.5.1 Ethanol Concentration of 5 ppm

(a) Before (b) After

Figure 3.15: The FFT of the velocity before (a) and after (b) gas release at excitation voltage

Vdc = Vac = 6.86 V

A pre-calibrated gas mixture of 5 ppm ethanol vapor in dry nitrogen was slowly released into the

chamber. Detection (dynamic pull-in) occurred within a second of gas release. The FFTs of the

sensor velocity before and after detection are shown in Fig 3.15. Fast detection indicates that the

sorbed mass is well beyond the sensor threshold for a set-off frequency of δf = 50 Hz.
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(a) Before (b) Before

(c) After (d) After

Figure 3.16: The time-histories (a and c) of the sensor velocity (yellow), displacement (blue),

and excitation signal (magenta), and phase portraits (b and d) before and after gas release at

excitation voltage Vdc = Vac = 6.86 V

The velocity and displacement time-histories before and after gas release, shown in Fig 3.16 (a)

and (c), were recorded using the oscilloscope. Comparing figures Fig. 3.15 (a) and (b) and fig-

ures Fig. 3.16 (a) and (c) shows a significant increase in the response amplitude corresponding

to a jump from the lower branch to the mid-branch of response. The orbit, Fig 3.16 (b), un-

derwent a period-doubling bifurcation resulting in the observation of a P-2 orbit after detection,

Fig 3.16 (d). To investigate repeatability, the experiment was repeated three times, appendix B.1,

resulting in detection within 1 s in all three cases.
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3.5.2 Ethanol Concentration of 1 ppm

(a) Before (b) After

Figure 3.17: The FFT velocity response before (a) and after (b) at excitation voltage Vdc = Vac =

6.86 V

A mixture of 1 ppm ethanol vapor in dry nitrogen was slowly released into the chamber. Detec-

tion occurred after 75 seconds of gas release, Fig 3.17. The length of time required for detection

indicates that the sorbed mass was small enough to marginally exceed the cyclic-fold bifurcation

point. Therefore, 1 ppm ethanol is closer to the sensor detection threshold for δf = 50 Hz.
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(a) Before (b) Before

(c) After (d) After

Figure 3.18: The time-histories (a and c) of the sensor velocity (yellow), displacement (blue),

and excitation signal (magenta), and phase portraits (b and d) before and after gas release at

excitation voltage Vdc = Vac = 6.86 V

The velocity and displacement time-histories of the sensor before and after detection are

shown in Fig. 3.18. Comparing figures Fig. 3.17 (a) and (b) and figures Fig. 3.18 (a) and (c)

shows a significant increase in the response amplitude corresponding to a jump from the lower

branch to the mid-branch of response. Similarly, the phase portraits before and after detection,

Fig 3.18 (b) and (d), show that the orbit underwent a period-doubling bifurcation resulting in a

P-2 orbit after detection. The experiment was repeated three times, appendix B.2, resulting in

detection in all three cases with a detection time of 79± 22.23 s.
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3.5.3 Ethanol Concentration of 100 ppb

(a) Before (b) After

Figure 3.19: The FFT velocity response before (a) and after (b) gas release at excitation voltage

Vdc = Vac = 6.86 V

The same procedure was repeated for a mixture of 100 ppb ethanol vapor in dry nitrogen. Detec-

tion occurred after 121 seconds of gas release, Fig 3.19. Detection time increased again because

the sorbed mass was much closer to the detection limit for our set-off frequency (δf = 50 Hz).

The time-histories and phase portraits of the sensor before and after detection are shown

in Fig. 3.20. Comparing figures Fig. 3.19 (a) and (b) and figures Fig. 3.20 (a) and (c) show a

significant increase in amplitude after detection corresponding to a jump from the lower branch

to the mid-branch of response. In this case, the response orbit went from P-1, Fig 3.20 (b), to

P-3, Fig 3.20 (d), after detection which indicates that it landed in a periodic window within a

chaotic attractor just beyond the bifurcation point. The experiment was repeated three times,

appendix B.3, resulting in detection with same characteristics in all three cases and a detection

time of 137.67± 13.89 s.
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(a) Before (b) Before

(c) After (d) After

Figure 3.20: The time-histories (a and c) of the sensor velocity (yellow), displacement (blue),

and excitation signal (magenta), and phase portraits (b and d) before and after gas release at

excitation voltage Vdc = Vac = 6.86 V

3.5.4 Ethanol Concentration of 50 ppb

The same procedure was repeated again for a mixture of 50 ppb ethanol vapor in dry nitrogen.

No detection was observed within 900 seconds of gas release indicating that the sorbed mass

was not large enough to exceed the bifurcation point. The experiment was repeated three times,

appendix B.4, resulting no detection in all three cases, thereby demonstrating that the detection

limit at δf = 50 Hz is more than 50 ppb.

Comparing the dynamic binary sensor to the static binary sensor [22, 107], we found that

for an ethanol concentration of 5 ppm the dynamic sensor was faster at a detection time of 1 s

compared to 7 s for the static sensor. In addition, the dynamic sensor was more sensitive at a
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(a) Before (b) After

Figure 3.21: The FFT velocity response before (a) and after (b) gas release at excitation voltage

Vdc = Vac = 6.86 V

detection limit of 100 ppb compared to 5 ppm for the static sensor. Since our minimum stable

set-off frequency was δf = 5 Hz, linear extrapolation suggests that the minimum detectable

concentration of the dynamic binary sensor can be as low as 10 ppb.

While linear theory suggests that dynamic detection is more sensitive than static detection, it

attributes that to dynamic amplification and limits sensitivity enhancement to the same order as

the quality factor (Q = 5.484 in our case). This would have suggested a detection limit of 1 ppm.

We attribute the discrepancy between this prediction and our experimentally demonstrated sen-

sitivity of 100 ppb to sensitivity improvement achieved via bifurcation-based sensing.

Finally, we note that all experiments were conducted in air on a probe station that was not

isolated from ground vibrations. Not only were there no precautions against external distur-

bances, but also deliberate attempts were made to disturb the sensors via tapping on the probe

station. However, no false positives were detected in any of the experiments conducted on this

sensor. This observation indicates that the stability of MEMS inertial sensors against external

disturbances is better than that of macro-sized inertial sensors because of their minute masses.
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Chapter 4

Analog Dynamic Bifurcation Mass Sensors

A mass sensor was designed to measure the variation of minute added mass as an analog fashion

measurement. Unlike the binary sensor which quantifies the added mass qualitatively, analog

sensors can be utilized to measure the added mass quantitatively as another way of detection. The

Shilnikov bifurcation was employed to operate the sensor away from resonance and measure the

shift in frequency as well as the change in current through tapping-mode oscillations. The change

in frequency and current measurement will be utilized to quantify the added mass electrically.

An electrostatic MEMS sensor is equipped with a polymer to represent the added mass on the

actuator.

4.1 Sensor

The sensor was fabricated using the PolyMUMPs fabrication process [155], Fig. 4.1. It features

a cantilever beam attached with a circular plate at the end. The structural layer was fabricated

in Poly2 with material properties ρ = 2300 kg/m3, E = 160 GPa, and ν = 0.22. The beam

dimensions are (115 × 10 × 2 µm3), and the radius of plate is r = 15 µm. A gap (d = 2 µm)
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Figure 4.1: Layout of the PolyMUMPs fabricated gas sensor: (a) top-view and (b) front-view

along section A–A

is etched under the beam in the second oxide layer. The ground electrode is patterned in Poly0

layer under the length of the beam. Two gold pads are patterned at the root of the beam and the

end of the bottom electrode to apply potential difference.

4.2 Numerical Model

A finite element model (FEM) of the mass sensor was created in COMSOL to calculate its nat-

ural frequencies and mode shapes. The model was made of 23599 tetrahedral elements, 10420

triangular elements, 790 edge elements, and 20 vertex elements. It did not account for the electro-

static field or fluid-structure interactions. The model shows the first four mode shapes and natural

frequencies of the mass sensor constructed from eigenvalue analysis in COMSOL, Fig. 4.2.
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Figure 4.2: The first four undamped mode shapes of the mass sensor obtained from eigenvalue

analysis

The first mode shape is the first out-of-plane bending mode, Fig. 4.2 (a), with a natural fre-

quency of f1 = 54.95 kHz. The second mode shape is the second bending mode, Fig. 4.2 (b),

with a natural frequency of f2 = 428.21 kHz. The third mode shape is the first lateral bending

mode, Fig. 4.2 (c), with a natural frequency of f3 = 474.51 kHz. The fourth mode shape is

the first torsional mode, Fig. 4.2 (d), with a natural frequency of f4 = 763.74 kHz. The widely

spaced modes reduce the possibility of modal interaction between the sensing mode, the first

torsional mode, and other modes of sensor vibrations.

125



4.3 Experimental Setup

The experimental setup, Fig. 4.3, is composed of the sensor placed inside a test chamber, a func-

tion generator, a high voltage amplifier, an oscilloscope, lock-in amplifier and added mass, the de-

tection polymer of P25DMA. A laser-Doppler vibrometer is used to measure the sensor response

optically. Also, the lock-in amplifier is used to measure the sensor current electrically [190].

Figure 4.3: The experimental setup

A polymer, poly (2,5-dimethyl aniline) (P25DMA) [175], was utilized to represent added

mass on the sensor. It is deposited onto the plate top surface. The polymer was dispersed in a

1% solution of ethylene glycol. The reduced wettability of the solution prevents it from running

off the beam edges. Eight drops of polymer-glycol solution were deposited in the middle of

the circular-plate to avoid solution overflow. The ethylene glycol was allowed to evaporate in

air, leaving polymer residue atop the plate. Fig. 4.4 shows the sensor before, during, and after

deposition process.
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(a) No polymer

(b) During deposition

(c) After evaporation

Figure 4.4: Deposition of P25DMA and glycol evaporation

The sensor is actuated by a biased voltage waveform. It exploits the quantitative change

before and after depositing the added mass. It acts as a analog mass sensor where the shift in

frequency and change in current measurement will quantify the added mass. Detection can be

measured either optically, via a Laser Doppler vibrometer, or electrically by measuring current

between the two pads.

4.4 Sensor Characterization

The sensor is actuated by applying a voltage waveform of Vdc=Vac across the beam and the

substrate, Fig. 4.5. The sensor response was measured optically, via a Laser-Doppler vibrometer,

and electrically by measuring impedance between the two pads.
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(a) (b)

Figure 4.5: Mass sensor (a) Sensor schematic and (b) SEM picture

4.4.1 Fundamental Natural Frequency

The fundamental mode shape of the sensor was excited by applying a pulse train shown with a

magenta line in Fig. 4.6, with amplitude of 3 V, frequency of 1 kHz, and a 0.8% duty cycle, to

the sensor in atmospheric pressure. The tip velocity time-history of the sensor was measured

optically using the vibrometer and recorded using the oscilloscope. It was averaged over 512

samples and is shown with the yellow line in Fig. 4.6 (a). The damped natural frequency and

quality factor were obtained from the time-history as fd = 54 kHz and Q = 2.1. The settling

time was measured as ts = 61.70 µs. The velocity FFTs response was also recorded from the

vibrometer. It shows the highest peak velocity response at the sensor’s natural frequency, fd =

54 kHz, Fig. 4.6 (b) .
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(a) Time-history (b) FFTs velocity

Figure 4.6: (a)the averaged tip velocity time-history under a pulse train with f = 1 kHz and an

amplitude of 3 V colored in yellow and magenta, respectively, and (b) FFTs velocity response

4.4.2 Bifurcation Point Before Deposition

The frequency-response curve of the sensor was obtained in the vicinity of primary resonance to

locate the Shilnikov bifurcation region. Forward and backward frequency sweeps were carried

out over the frequency range f = [5–60] kHz. The excitation voltage waveform was set to Vdc =

Vac = 7.125 V. A slow slew rate of f = 2.5 kHz/s was used to minimize transient effects.

Data was collected using an oscilloscope in time windows of 0.4 s each and a sampling rate of

fs = 313 kHz. The frequency-response curve, Fig. 4.7, was obtained by post-processing the data

to evaluate the RMS of the beam tip velocity over a time window of 20T and assigning it to the

frequency at the window mid-point.
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Figure 4.7: The measured frequency-response curve for Vdc = Vac = 7.125 V. Forward sweep is

shown in blue and backward sweep is shown in red

The forward sweep is shown in blue and the backward sweep in red, Fig. 4.7. The jump-

up during the backward sweep at fpu = 10.627 kHz corresponds to the lower branch to the

upper tapping branch. The jump-down during the forward sweep occurs at fpd = 9.876 kHz

and corresponds to the upper tapping branch to the lower branch. The positive slope in both

forward and backward sweep demarcate the tapping-mode oscillations involving the sensor tip

interaction with the substrate. The region between the two jumps demarcates hysteresis in the

sensor response.

4.5 Results and Discussion

The mass sensor was characterized again after deposition to investigate the effect of added mass

on the sensor natural frequency. The same experimental procedure as explained above in sec-

tion 4.4.1 was conducted. The measured natural frequency was found as f = 51 kHz, Fig. 4.8.
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The FFTs velocity, Fig. 4.8 (a), and velocity time-history, Fig. 4.8 (b), demarcate a drop by 3 kHz

in the sensor natural frequency, compared to the un-deposited one, and that is due to the effect of

added mass.

(a) Before (b) After

Figure 4.8: (a) The FFT of the velocity, and (b) velocity time-history under a pluse of f = 1kHz

with a voltage amplitude V = 3 V colored in blue and red, respectively

The frequency-response curve of the sensor was obtained again after deposition carrying

out the same experimental procedure explained above in section 4.4.2. Forward and backward

frequency sweeps were carried out over the frequency range f = [5–60] kHz showing in Fig. 4.8

.
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Figure 4.9: The measured frequency-response curve for Vdc = Vac = 7.125 V. Forward and

backward sweeps before deposition is colored in blue and red, and after deposition colored in

magenta and black

The forward sweep is represented by the magenta line and the backward sweep by the black

line, Fig. 4.9. The jump-up during the backward sweep at fpu = 11 kHz corresponds to the

lower branch to the upper tapping branch. The jump-down during the forward sweep occurs

at fpd = 9.270 kHz and corresponds to the upper tapping branch to the lower branch, where

the sensor oscillates freely in air. The positive slopes in both forward and backward sweeps

demarcate the tapping-mode oscillations involving the sensor tip interaction with the substrate.

The region between the two jumps demarcates hysteresis in the sensor response.

It is clearly seen that there is a frequency shift while doing froward and backward sweeps

before and after depositing added mass. The shift in forward frequency-sweeps was found as

fd − f◦ = 606 Hz located in the vicinity of the Shilnikov bifurcation region. Also, the shift

in backward frequency-sweeps was found as fd − f◦ = 373 Hz existing in the vicinity of the

Shilnikov bifurcation region. We note that all experiments were conducted in air on a probe

132



station that was not isolated from ground vibrations.

In addition, the lock-in amplifier was utilized to measure the motion induced current before

and after depositing the added mass. A forward frequency sweep was obtained over a frequency

range of f = [10−80] kHz at the voltage waveform Vdc = Vac = 7.125 V . The current measure-

ment was looked at the second harmonic with respect to the excitation frequency and that due to

the effect of electrostatic force, Fig. 4.10.

Figure 4.10: Forward frequency-response curve measured electrically for un-deposited sensor at

the voltage waveform Vdc = Vac = 7.125 V

The current amplitude was found in the Shilnikov bifurcation range Ish = 4 nArms whereas

at the primary resonance was found to be Ip = 16.26 nArms. Then, the current was measured

after depositing the added mass and sweeping the frequency over a range of f = [5 − 80] kHz

at voltage waveform of Vdc = Vac = 6.90 V, Fig. 4.11. We found the current amplitude after

depositing the added mass increased six times in the vicinity of Shilnikov region and three times

in the vicinity of the primary resonance, Ish = 24.48 nArms and Ip = 54.82 nArms, respectively
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.

Figure 4.11: Forward frequency-response curve measured electrically for deposited sensor at the

voltage waveform Vdc = Vac = 6.90 V

To sum up, a new sensing mechanism under Shilnikov bifurcation was demonstrated. It

exploits a quantitative change in the sensor state before and after depositing added mess via

tapping mode oscillations. A polymeric sensing material was deposited atop surface of the sensor

plate to represent added mass. A variation in the frequency as well as current amplitude were

observed before and after depositing the added mass. The sensor was excited electrostatically.

Two detection methods were conducted: optically via LDV and electrically using the lock-in

amplifier. We found the current increased six-fold in vicinity of Shilnikov bifurcation due to

adding a mass of 301 pg. Also, the current was found increased three-fold in vicinity of primary

resonance.

Further, this detection method will be extend in the future to implement an analog bifurcation-

based gas sensor instigating in the vicinity of Shilnikov bifurcation region where the tapping
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oscillations will be employed to measure the added mass electrically. The polymeric sensing

material which has high selectivity to a target gas will be employ to sorbed added mass to en-

hanced the sensor sensitivity and selectivity.
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Chapter 5

Underwater Sensors

In this chapter, a chemical sensor was designed to detect mercury acetate in water. A frequency-

shift mechanism due to the variation of added-mass was utilized as the detection mechanism

to simply differentiate between safe and unsafe concentrations. The sensor is equipped with a

polymer highly selective to mercury. A mercury acetate solution of 100 ppm in deionized-water

(DI-water) was utilized to demonstrate the functionality of the sensor. The sensor is excited

electrostatically, and the response was measured electrically.

5.1 Sensor Design

Two sensors were fabricated using an SOI fabrication process [191]. The structural layer of

sensor #1, Fig. 5.1 (a), and of sensor #2, Fig. 5.1 (b), are made of a silicon layer (Si) with Young’s

modulus of E = 129 GPa. The sensors consist of a cantilever beam with dimensions of (175 ×

10.5 × 30 µm3) and (250 × 25 × 30 µm3), respectively. The lateral gap in between the sensor

and side-electrode is g = 3 µm. Two side electrodes are patterned on either side of the platform.

A gold contact pads is patterned and attached to the cantilever beam as well as at the back-side
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of the lateral electrodes. The pads are used to to apply actuation voltage and to drive current

through the silicon structural layer to reset the sensor via Joule heating.

(a) (b) (c)

(d)

Figure 5.1: Layout of the SOI fabricated underwater sensor (a) sensor #1 top-view, (b) sensor #2

top-view and (c) front-view of the cross-section A-A

The sensor was designed by following these criteria:

• Maximize the beam cross-sectional dimensions to increase the sensor natural frequencies

and, therefore, sensitivity and quality factor.
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• Maximize the beam thickness to minimize fluid damping.

• Maximize the distance between the actuation electrodes and the sensor-platform to mini-

mize squeeze film damping, electrolysis, and leakage current.

5.2 Modal Analysis

A finite element model (FEM) was utilized to construct the sensors’ undamped natural frequen-

cies and those corresponding mode shape in air. Higher modes were investigated. We choose to

target the mode shapes in the vicinity of f = [60− 78] MHz. The eighth mode shapes of sensor

#1 were determined as shown in Fig. 5.2. The model is made of 12096 tetrahedral elements of

2220 triangular elements, of 216 edge elements, and of 8 vertex elements. It does not account

for the electrostatic field or fluid-structure interactions.

Figure 5.2: Undamped mode shapes of sensor #1 obtained from eigenvalue analysis

The first mode shape is the eighth lateral bending mode, Fig. 5.2 (a), with a natural fre-

quency of f1 = 62.27 MHz. The second mode shape is the seventh out-of plane bending mode,
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Fig. 5.2 (b), with a natural frequency of f2 = 63.88 MHz. The third mode shape is the eighth

torsional mode, Fig. 5.2 (c), with a natural frequency of f3 = 67.56 MHz. The fourth mode shape

is the ninth torsional mode, Fig. 5.2 (d), with a natural frequency of f4 = 69.38 MHz. The fifth

mode shape is the forth bulk mode, Fig. 5.2 (e), with a natural frequency of f5 = 73.36 MHz.The

sixth mode shape is the eleventh torsional mode, Fig. 5.2 (f), with a natural frequency of f6 =

74.14 MHz. The seventh mode shape is the twelfth torsional mode, Fig. 5.2 (g), with a natural

frequency of f7 = 75.24 MHz. The eighth mode shape is the eighth out-of plane bending mode,

Fig. 5.2 (h), with a natural frequency of f8 = 75.38 MHz.

Figure 5.3: The sixth undamped mode shapes of sensor #2 obtained from eigenvalue analysis

Similarly, the eighth mode shapes of sensor #2 were determined in the vicinity of f =

[60 − 80] MHz as shown in Fig. 5.3. The model is made of 43946 tetrahedral elements of 4216

triangular elements, 300 edge elements, and 8 vertex elements. It does not account for the elec-

trostatic field or fluid-structure interactions.

The first mode shape is the eighth torsional mode, Fig. 5.3 (a), with a natural frequency of
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f1 = 63.28 MHz. The second mode shape is the ninth lateral mode, Fig. 5.3 (b), with a natural

frequency of f2 = 63.66 MHz. The third mode shape is the fifth bulk mode, Fig. 5.3 (c), with a

natural frequency of f3 = 65.94 MHz. The fourth mode shape is the tenth out-of plane bending

mode, Fig. 5.3 (d), with a natural frequency of f4 = 66.66 MHz. The fifth mode shape is the ninth

torsional mode, Fig. 5.3 (e), with a natural frequency of f5 = 71.71 MHz. The sixth mode shape

is the tenth lateral mode, Fig. 5.3 (f), with a natural frequency of f6 = 72.56 MHz. The seventh

mode shape is the eleventh out-of plane bending mode, Fig. 5.3 (g), with a natural frequency of

f7 = 75.06 MHz. The eighth mode shape is the sixth bulk mode, Fig. 5.3 (h), with a natural

frequency of f8 = 79.63 MHz.

We are interested in operating the sensor laterally to reduce the added mass and fluid damping

and thus limits the change in the sensor resonant frequency to the range of [5-10]% [134], since

shearing the water laterally reduces fluid resistance [108, 144].

5.3 Electrostatic Actuation

The underwater sensor employs electrostatic actuation by applying a voltage difference between

the platform and one of the two side electrodes, an electrostatic force develops and vibrates

the beam laterally [1, 153]. The operation of electrostatic parallel-plate actuators underwater

increases their efficiency 60 to 70 times compared to air [118], since the dielectric constant of

water is 80 times larger than that of air. It has the advantage of achieving large response with

low power consumption compared to operation in other media [118, 119, 125]. Electrolysis can

be avoided by exciting the sensor with a modulated signal where the carrier frequency is high

enough (f ≥ 1 MHz) to minimize the effects of the slow chemical reactions responsible for

separating water molecules and generating gas bubbles [94, 118, 119]
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5.4 Detection Method

The sensor employs an analog detection based on measuring a frequency-shift in water. Unlike

the dynamic pull-in phenomenon discussed in Section 3.4.2 which measures the added mass

qualitatively, a quantitative method of detection was applied to detect mercury ions in water.

A polymeric sensing material which has high selectivity to mercury was utilized to capture the

mercury ions and increase the sensor effective mass. Mercury (II) acetate in solution was utilized

as a target to demonstrate the sensor functionality with a concentration of 100 ppm. As the target

concentration in water increases, the number of ions captured by the polymer increases until

their ‘added mass’ reaches a critical value. The variation in the frequency-response curve will

be utilized as a metric for electric detection. The sensor was excited electrostatically by an AC

voltage, Vac, to eliminate electrolysis and bubble effects. A lock-in amplifier was utilized to

measure the current between the beam and the side-electrode.

5.5 Experimental Setup

The experimental setup is similar to that of the mass sensor described in Section 4.3. It is com-

posed of the sensor inside a test enclosure, a function generator, an actuation printed circuit board

(PCB), and a transimpedance amplifier. A test enclosure with dimensions of (19× 19× 3 mm3)

was fabricated utilizing Polydimethylsiloxane (PDMS) to allow for dual optical, through the

CCD camera, and electrical, using the transimpedance-amplifier, detection. It was housed on

top of an actuation PCB as shown in Fig. 5.4. A pico-pump was utilized to control the water

flow-rate and reduce the possibility of stiction.
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Figure 5.4: Experimental setup

The board dimensions are (70 × 70 mm2), Fig. 5.5 (a). It was coated by a solder resist made

of a liquid photoimageable ink (Probimer 77) to avoid electrically leakage once the enclosure is

filled with water. It used to provide electrical access to the sensor inside the enclosure. Electrical

traces was designed and printed on the back side of the board to protect against water leakage

from test enclosure as shown in Fig. 5.5 (b).

A polymer with affinity to mercury, Polyacrylamide (PAM), was deposited onto the beam top

surface. The polymer was dispersed in a solution of ethylene glycol. The reduced wettability

of the solution prevents it from running off the beam edges. Five and seven drops of polymer-

glycol solution were deposited onto sensor #1 and sensor #2, respectively, along the beam length

in stages to avoid solution overflow. The ethylene glycol was allowed to evaporate in air, leaving

142



(a) (b)

Figure 5.5: (a) The front-side of the actuation PCB showing the chip socket and (b) the back side

of the board showing the electrical traces

polymer residue atop the beam. Fig. 5.6 shows the sensor before, during, and after deposition.

5.6 Results and Discussion

Experiments was conducted by placing the sensor inside the chip socket and covering them with

the test enclosure. The test enclosure was filled with deionized (DI) water at a flow rate of

1.5 µL/s to avoid stiction. The operating voltage V◦ was applied, while the sensor was com-

pletely immersed in water with the analyte at the desired concentration. The sensor response was

monitored continuously using a video CCD camera and a transimpedance amplifier to measure

output current. A frequency sweep was conducted on the two sensors and the results compared

while submerging the sensor in water solution only and in water and mercury acetate acetate

solution. The pH of the water solution and that of the of mercury acetate with water solution

were measured using pH indicator paper and found as 5 and 6, respectively.
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(a) Before (b) After

(c) Before (d) After

Figure 5.6: Sensor #1 (top) and sensor #2 (bottom) before and after deposition of PAM and

ethylene glycol evaporation

The effect of pH variations between water and mercury acetate solution were further studied

by submerging two electrodes into two separate vials of water and the mixture solution. The two

electrodes were excited electrostatically by a voltage amplitude of Vac = 9 V and the current was

measured using lock-in amplifier over a frequency range of f = [32− 37] MHz, Fig. 5.7 (a). We

found a noticeable drop in the current amplitude measurement in the vicinity of f = 33.3 MHz

as ∆i ∝ 997 pArms as well as a drop in frequency by ∆f ∝ 100.502 kHz. Similarly, the

sweeping range was increased to f = [32− 39] MHz at the same excitation voltage, Fig. 5.7 (b).
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(a) (b)

Figure 5.7: The current measurement of excited electrodes in Water vial and mixture of water

with mercury in another vial over a frequency range of (a) f = [32 − 37] MHz and (b) f =

[32− 39] MHz

We found also a noticeable drop in the current measurement in the vicinity of f = 38 MHz as

∆i1 ∝ 1.691 nArms, as well as a drop in frequency ∆f ∝ 70.351 kHz.

5.6.1 Sensor #1

The same experimental procedure was utilized after submerging the sensor completely with a

pre-defined rate. The sensor was excited electrostatically at voltage amplitude of V(ac) = 9 V,

sweeping the frequency over a range of f = [32 − 37] MHz and collecting the current mea-

surement, Fig. 5.8 (a). A significant drop in frequency was observed by ∆f = 1.18 MHz while

injecting the mercury acetate solution. Also, we observed a significant increased in the current

amplitude ∆i = 1.27 nArms. We postulate the increase in amplitude due to the pH, which might

cause the effective mass of the sensor to vary.

Similarly, the sweeping range was increased to f = [32 − 39] MHz at the same excitation

voltage, Fig. 5.8 (b). A significant drop in frequency was observed by ∆f = 1.10 MHz while in-
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(a) (b)

Figure 5.8: The current measurement of sensor #1 submerged in water and mercury acetate

solution excited at voltage amplitude Vac = 9 V and over a frequency range of (a) f = [32 −
37] MHz and (b) f = [32− 39] MHz

jecting the mercury acetate solution to the sensor. Also, we again observed a significant increase

in the current amplitude ∆i = 2.08 nArms.

5.6.2 Sensor #2

Same experimental procedure was employed as explained above. The sensor was excited elec-

trostatically at voltage amplitude of V(ac) = 9 V, sweeping the frequency over a range of

f = [32 − 37] MHz and collecting the current measurement, Fig. 5.9 (a). A significant drop

in frequency was observed by ∆f = 4.371 MHz while injecting the mercury acetate solution.

Also, we observed a significant increased in the current amplitude ∆i = 14.68 nArms. We postu-

late the increased in amplitude due to the pH, which might cause the effective mass of the sensor

to vary.
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(a) (b)

Figure 5.9: The current measurement of sensor #2 submerged in water and mercury acetate

solution excited at voltage amplitude Vac = 9 V and over a frequency range of (a) f = [32 −
37] MHz and (b) f = [32− 39] MHz

Subsequently, the sweeping range was increased to f = [32 − 39] MHz at the same excita-

tion voltage, Fig. 5.8 (b). A significant drop in frequency was observed by ∆f = 3.7638 MHz

while injecting the mercury acetate. Also, we observed a significant increase in the current am-

plitude ∆i = 14.646 nArms. We postulate the mode interaction has a role of varying the current

measurement.

To sum up, we demonstrated an electrostatic sensor operated in aqueous media to detect mer-

cury ions. The sensor was submerged completely in deionized-water with a pre-defined flow-rate

of 1.5 µL/s. The sensor was excited in higher modes to reduce the side-effects of the chemical

reactions, bubbles, as well as enhancing sensor sensitivity. A polymeric sensing material (PAM)

was utilized to sorb mercury in water. A solution of water and mercury acetate with a concentra-

tion of 100 ppm was released to the sensor utilizing the same pre-defined flow-rate. The response

was measured electrically using the lock-in amplifier. Our sensor was able to measure frequency

shift ∆f = 1.18 MHz in sensor #1 and ∆f = 4.37 MHz in sensor #2.
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Chapter 6

Conclusions and Future Work

6.1 Nonlinear Electrostatic MEMS Sensors

We identified a new type of pull-in instabilities in electrostatic sensors dubbed quasi-static pull-

in. It occurs under periodic excitations, unlike the case for the traditional static pull-in instability,

in a non-resonant frequency range much lower than the fundamental natural frequency f/f1 <<

1, unlike the case for the dynamic pull-in instability. The phenomenon were replicated and

verified in two independent MEMS electrostatic sensors oscillating in ambient air.

We found that quasi-static pull-in is driven by a fast-slow dynamic interaction between the

slowly varying electrostatic excitation and the fast response of the sensor's fundamental mode. It

manifests itself by the appearance of Shilnikov orbits homoclinic to a saddle-focus under wave-

forms where the instantaneous voltage approaches static pull-in voltage VPs. It is characterized

by large tapping-mode oscillations where the sensor periodically goes to pull-in through a saddle-

node bifurcation before pulling-off and settling close to the unactuated equilibrium. The settling

time is function of the sensor's quality factor. While stable focus oscillations were clearly ob-

servable in sensor # 1 due to a higher quality factor (Q = 5.4) and a longer settling time, they
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were not as clear for sensor # 2 with where the quality factor was lower at Q = 2.1.

A Shilnikov bifurcation demarcates the boundary between the frequency range of Shilnikov

orbits involving quasi-static pull-in and Shilnikov-like orbits involving fast-slow dynamics but no

tapping interactions with the substrate. A hysteretic region exists in the vicinity of the Shilnikov

bifurcation bounded at the lower end by a jump-down during forward frequency sweeps and a

jump-up during backward frequency sweeps. This is in contrast to the hysteric region observed

in the vicinity of dynamic pull-in under a softening effective nonlinearity.

In addition, nonlinear chaotic behaviors were observed experimentally for the two sensors,

sensor #1 and sensor #2. Shilinikov chaos instigated by Shilnikov to a saddle-focus was observed

in the vicinity of a slow-varying region where the excitation frequency is way less than the

sensor resonances, f/f1 << 1. Secondary resonances and period doubling of P-2, P-3, and P-6

were experimentally investigated. Different routes to chaos were found and demonstrated in the

vicinity of resonances. Intermittency type-I, and type-II were observed as a results of cyclic-

fold bifurcation and secondary Hopf-bifurcation, respectively. A new class of intermittencies,

dubbed switching intermittency, was found in the oscillations of an electrostatic MEMS sensor in

ambient air. Switching intermittency is characterized by stretches of laminar flow in the vicinity

of a ghost orbit interrupted at irregular interval by bursts. Unlike other intermittencies, the bursts

do not involve irregular motions. Instead they were arrested by a contracting orbit where they

can spend irregular intervals of time before being re-injected into the area of the ghost orbit. In

our case, contraction is provided by impacts of the sensor tip on the substrate and re-injection is

noise induced.

We identified two types of switching intermittencies. In type-I, the intermittency evolves

as a control parameter is increased into stable periodic tapping mode oscillations. In type-II,

the intermittency evolves as a control parameter increases into a chaotic attractor. Both types

were found to occupy a finite region in the forcing parameter space, amplitude and frequency

149



of the voltage waveform in our case. Further, banded chaos was demonstrated as a result of

intermittency, quasiperiodicity orbits, and homoclinic tangles. Full chaos was further observed

as a result of losing orbit periodicity. We note that all the experimental results were demonstrated

in air.

6.2 Binary Dynamic Gas Sensor

We utilized a novel sensing mechanism that exploits the qualitative change in the sensor state

before and after a dynamic bifurcation in electrostatic MEMS (dynamic pull-in) to realize an

ethanol vapor sensor. Our sensing mechanism has the dual advantages of allowing for binary

sensing and improving sensitivity. A mathematical model of the sensor was introduced and

solved numerically to estimate the location of the cyclic-fold bifurcation underlying dynamic

pull-in. To determine the exact location of the bifurcation point, the frequency-response of the

sensor was obtained experimentally. In the process, we identified a middle-branch of response

between the lower and upper branches of response traditionally observed in electrostatic MEMS.

The sensor oscillates in air on the lower and upper branches but taps intermittently on the sub-

strate along the middle branch. This is the first time this branch has been observed experimentally

in electrostatic MEMS.

A closed-form sensitivity formula was derived for bifurcation-based sensors exploiting a

cyclic-fold bifurcation. We found that sensitivity was proportional to the electrostatic field and

counter-proportional to the effective mass. We note that our sensitivity function represents a

set-off frequency infinitesimally close to the bifurcation point (δf → ∞), whereas the set-off

frequency in our experiment was finite δf = 50 Hz. As the set-off frequency decreases, the real-

ized sensitivity will approach that predicted by Eq. (3.60). Further, this formula should be used

to optimize the sensor dimensions and operating conditions in order to maximize sensitivity.
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The sensor was excited by biased waveform with an amplitude and frequency that place

it close to the bifurcation point, such that the added mass sorbed by the detector material in

the presence of ethanol would send it past it. The minimum detectable gas concentration is

dependent on the minimum realizable set-off frequency δf as well as the type and distribution

of the detector polymer coat on the sensor surface. However, no attempt was made to optimize

the set-off frequency δf or the polymer distribution, since the purpose of this study is limited to

demonstration of feasibility.

Experimental investigation demonstrated that at a set-off frequency of δf = 50 Hz our sensor

can detect a binary logic high for ethanol concentrations down to a minimum of 100 ppb within a

maximum detection time of 137.67± 13.89 s. A stable period P-2 orbit was observed for ethanol

concentrations of 5 ppm and 1 ppm, which resulted in sorbed masses large enough to take the

sensor beyond a stable period-doubling bifurcation lying within the mid-branch of response,

Fig. 3.12. The smaller sorbed mass at the lower concentration of 100 ppb, landed the sensor

within a chaotic attractor, also on the mid-branch but closer to the bifurcation point. In this case,

the sorbed mass was marginally larger than the detection limit as indicated by the long time

required for the sensor to clear the bottleneck in the vicinity of the cyclic-fold bifurcation [182].

6.3 Analog Dynamic Bifurcation Mass Sensor

We demonstrated a new sensing mechanism under Shilnikov bifurcation that exploits a quanti-

tative change in the sensor state before and after depositing added mess via tapping mode oscil-

lations. A polymeric material was deposited on the top surface of the sensor plate to represent

added mass. A variation in the frequency as well as current amplitude were observed before and

after depositing the added mass. The sensor was excited electrostatically and the response was

measured optically as well as electrically using laser-Doppler vibrometer and lock-in amplifier,
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respectively. We found the current increased six-fold due to adding a mass of 301 pg in vicinity

of Shilnikov bifurcation. Also, the current increased three-fold due to adding a mass of 301 pg in

vicinity of primary resonance. This method will be extend in the future to implement an analog

gas sensor instigating in the vicinity of Shilnikov bifurcation region where the tapping oscilla-

tions will be employed to measure the added mass electrically. The polymeric sensing material

which has high selectivity to a target gas will be employ to sorbed added mass. This method

could be utilized to quantify the added precisely at specific frequency via current measurement.

6.4 Underwater Sensor

We demonstrate a sensing mechanism to detect mercury ions in deionized-water. The sensor was

submerged completely in water with a pre-defined flow-rate of 1.5 µl/s. A polymeric sensing

material (PAM) was utilized to sorb mercury in water. A solution of water and mercury acetate

with a concentration of 100 ppm was released to the sensor utilizing the same pre-defined flow-

rate. The senor was excited electrostatically, and the response measured electrically using lock-

in amplifier. Higher excitation modes were employed to reduce the side-effects from chemical

reactions as well as enhancing sensor sensitivity. A frequency-shift was observed while the

sensor was subjected to mercury solution. Our sensors were able to measure a frequency shift of

∆f = 1.18 MHz in sensor #1 and ∆f = 4.37 MHz in sensor #2. More investigations required

in the future to reach the ultimate target of this sensor to implement a binary bifurcation sensor

operating in a regular tap water. The bifurcation sensing mechanism will allow us to detect a

minute mercury ion concentration in water.
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6.5 Contributions
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2. M. S., Al-Ghamdi, M. E., Khater, and E. M. Abdel-Rahman. ”Switching intermittency”,
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lidis, A. H. Nayfeh, A. K. S. Abdel-Aziz, and M. Basha, “Binary MEMS gas sensors,“
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static MEMS,“ International Congress of Theoretical and Applied Mechanics, Montreal,

Canada, August 2016, paper # 130098.
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Appendix A

Sensitivity Analysis of Bifurcation Sensor

The electrostatic force was expanded using Taylor series expansion accounting for quadratic and

cubic nonlinearities. Using a Galerkin expansion for both the static and dynamic components

and applying orthogonality conditions [180] to decouple the system to an ordinary-differential

equation in terms of the generalize coordinate qs and u(t). The dynamic equation of motion can

be written in terms of the generalized coordinate u(t)

ü +µ l u̇+
(

1
12
h2 l E Γ1ψ1 − 3

2
E ψ1q

2
s Γ2 − C2Vdcψ2

)
u

−3
2

(
Eqs Γ2 ψ1 + C3Vdcψ2

)
u2

−
(
1
2
E Γ2 ψ1 + 2C4Vdcψ2

)
u3 = C1 ψ2 Vac

+2C2 ψ2 Vac u+ 3C3 ψ2 Vac u
2 + 4C4 ψ2 Vac u

3

A small bookkeeping parameter, ε is utilized to scale the dynamic components of the re-

sponse [46]. Expanding the electrostatic force term around the equilibrium position ws(x), or-

dering displacement at O(ε), damping at O(ε2), forcing term at O(ε3), and dropping terms of
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order O(ε4) and higher, the equation of motion reduces to

ü+ µ l u̇+
(

1
12
h2 LEψ1Γ1 − 3

2
E ψ1q

2
sΓ2 − ψ2VdcC2

)
u

−3
2

(
Eψ1qsΓ2 + ψ2VdcC3

)
u2 −

(
1
2
E ψ1 Γ2 + 2ψ2VdcC4

)
u3

= ψ2VacC1

where the parameters are defined as

Γ1 =
∫ l
0
φiv(x)φ(x)dx

Γ2 =
∫ l
0
φ(x)′2dx

∫ l
0
φ(x)′′ φ(x)dx

C1 = εVdc
∫ l
0

1
(d−ws)2

φ(x)dx

C2 = 2εVdc
∫ l
0

1
(d−ws)3

φ(x)2dx

C3 = 3εVdc
∫ l
0

1
(d−ws)4

φ(x)3dx

C4 = 4εVdc
∫ l
0

1
(d−ws)5

φ(x)4dx

Ci = εVdc
∫ i
0

φi(x)
(d−qsφ(x))i+1dx

where Ci (i = 1, 2, 3, 4) is a general form of the electrostatic force coefficients.
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Appendix B

Experimental Results of Bifurcation
Dynamic Gas Sensor

All the repeated results of the bifurcation gas sensors subjected to 5 ppm, 1 ppm, 100 ppb, and

50 ppb ethanol concentrations were reported. All these repeated results used the same experimen-

tal procedure that interprets in section 3.4.6. The operating frequency was set at f◦ = −50 Hz

below cyclic fold-bifurcation point.
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(a) Before (b) After

Figure B.1: The velocity FFT response before (a) and after (b) at excitation voltage Vdc = Vac =

6.86 V

B.1 5 ppm Ethanol Vapor In Dry Nitrogen

2nd trial After purging the test chamber with dry nitrogen for 15 minutes, a mixture of 5 ppm

ethanol vapor in dry nitrogen was slowly released into the chamber. Detection (dynamic pull-in)

occurred in a second from gas release, Fig. B.1. Fast detection indicates that the sorbed mass is

well beyond the sensor threshold at this operating point (f◦ − 50 Hz).
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(a) Before (b) Before

(c) After (d) After

Figure B.2: The time-histories (a and c) of the sensor velocity (yellow), displacement (blue),

and excitation signal (magenta), and phase portraits (b and d) before and after gas release at

excitation voltage Vdc = Vac = 6.86 V

The velocity and displacement time histories were recorded using the oscilloscope before and

after gas release as shown in Fig. B.2 (a) and (c). Period doubling bifurcation of order two was

observed after detection occurred due to the sorbed mass as shown in Fig. B.2 (b) and (d).
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(a) Before (b) After

Figure B.3: The velocity FFT response before (a) and after (b) at excitation voltage Vdc = Vac =

6.86 V

3nd trial After purging the test chamber with dry nitrogen for 15 minutes, a mixture of 5 ppm

ethanol vapor in dry nitrogen was slowly released into the chamber. Detection (dynamic pull-in)

occurred in one second from gas release, Fig. B.3. Fast detection indicates that the sorbed mass

is well beyond the sensor threshold at this operating point (f◦ − 50 Hz).
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(a) Before (b) Before

(c) After (d) After

Figure B.4: The time-histories (a and c) of the sensor velocity (yellow), displacement (blue),

and excitation signal (magenta), and phase portraits (b and d) before and after gas release at

excitation voltage Vdc = Vac = 6.86 V

The velocity and displacement time histories were recorded using the oscilloscope before and

after gas release as shown in Fig. B.4 (a) and (c). Period doubling bifurcation of order two was

observed after detection occurred due to the sorbed mass as shown in Fig. B.4 (b) and (d).
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B.2 1 ppm Ethanol Vapor In Dry Nitrogen

2nd trial After purging the test chamber with dry nitrogen for 15 minutes, a mixture of 1 ppm

ethanol vapor in dry nitrogen was slowly released into the chamber. Detection (dynamic pull-in)

occurred in 45 seconds from gas release, Fig. B.5. The length of time required for detection

indicates that the sorbed mass was small enough to marginally exceed the cyclic-fold bifurcation

point. Therefore, 1 ppm ethanol is very close to the sensor detection threshold at this operating

point.

(a) Before (b) After

Figure B.5: The velocity FFT response before (a) and after (b) at excitation voltage Vdc = Vac =

6.86 V

The velocity and displacement time histories were recorded using the oscilloscope before and

after gas release as shown in Fig. B.6 (a) and (c). Period doubling bifurcation of order two was

observed after detection occurred due to the sorbed mass as shown in Fig. B.6 (b) and (d).
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(a) Before (b) Before

(c) After (d) After

Figure B.6: The time-histories (a and c) of the sensor velocity (yellow), displacement (blue),

and excitation signal (magenta), and phase portraits (b and d) before and after gas release at

excitation voltage Vdc = Vac = 6.86 V

3nd trial After purging the test chamber with dry nitrogen for 15 minutes, a mixture of 1 ppm

ethanol vapor in dry nitrogen was slowly released into the chamber. Detection (dynamic pull-in)

occurred in one minute and 48 seconds from gas release, Fig. B.7. The length of time required for

detection indicates that the sorbed mass was small enough to marginally exceed the cyclic-fold

bifurcation point. Therefore, 1 ppm ethanol is very close to the sensor detection threshold at this

operating point.
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(a) Before (b) After

Figure B.7: The velocity FFT response before (a) and after (b) at excitation voltage Vdc = Vac =

6.86 V

The velocity and displacement time histories were recorded using the oscilloscope before and

after gas release as shown in Fig. B.8 (a) and (c). Period doubling bifurcation of order two was

observed after detection occurred due to the sorbed mass as shown in Fig. B.8 (b) and (d).
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(a) Before (b) Before

(c) After (d) After

Figure B.8: The time-histories (a and c) of the sensor velocity (yellow), displacement (blue),

and excitation signal (magenta), and phase portraits (b and d) before and after gas release at

excitation voltage Vdc = Vac = 6.86 V

B.3 100 ppb Ethanol Vapor In Dry Nitrogen

2nd trial After purging the test chamber with dry nitrogen for 15 minutes, a mixture of 1 ppm

ethanol vapor in dry nitrogen was slowly released into the chamber. Detection (dynamic pull-in)

occurred in two minutes and 35 seconds from gas release, Fig. B.9. The length of time required

for detection indicates that the sorbed mass was small enough to marginally exceed the cyclic-

fold bifurcation point. Therefore, 1 ppm ethanol is very close to the sensor detection threshold at
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[H]

(a) Before (b) After

Figure B.9: The velocity FFT response before (a) and after (b) at excitation voltage Vdc = Vac =

6.86 V

this operating point.

The velocity and displacement time histories were recorded using the oscilloscope before and

after gas release as shown in Fig. B.10 (a) and (c). Period doubling bifurcation of order two was

observed after detection occurred due to the sorbed mass as shown in Fig. B.10 (b) and (d).
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(a) Before (b) Before

(c) After (d) After

Figure B.10: The time-histories (a and c) of the sensor velocity (yellow), displacement (blue),

and excitation signal (magenta), and phase portraits (b and d) before and after gas release at

excitation voltage Vdc = Vac = 6.86 V

3nd trial After purging the test chamber with dry nitrogen for 15 minutes, a mixture of 1 ppm

ethanol vapor in dry nitrogen was slowly released into the chamber. Detection (dynamic pull-in)

occurred in two minutes and 17 seconds from gas release, Fig. B.11. The length of time required

for detection indicates that the sorbed mass was small enough to marginally exceed the cyclic-

fold bifurcation point. Therefore, 1 ppm ethanol is very close to the sensor detection threshold at

this operating point.
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(a) Before (b) After

Figure B.11: The velocity FFT response before (a) and after (b) at excitation voltage Vdc = Vac =

6.86 V

The velocity and displacement time histories were recorded using the oscilloscope before and

after gas release as shown in Fig. B.12 (a) and (c). Period doubling bifurcation of order two was

observed after detection occurred due to the sorbed mass as shown in Fig. B.12 (b) and (d).
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(a) Before (b) Before

(c) After (d) After

Figure B.12: The time-histories (a and c) of the sensor velocity (yellow), displacement (blue),

and excitation signal (magenta), and phase portraits (b and d) before and after gas release at

excitation voltage Vdc = Vac = 6.86 V

B.4 50 ppb Ethanol Vapor In Dry Nitrogen

2nd trial Same procedure was applied by releasing slowly a mixture of 100 ppb ethanol vapor in

dry nitrogen into the chamber. No detection (dynamic pull-in) was observed during 15 minutes

from gas release, Fig. B.13. As a results, this demonstrates the upper bound of the sensor limit

to detect ethanol at the operating frequency, f◦ = −50 Hz. The sorbed mass was small enough

to remain but did not exceed the cyclic fold bifurcation point.
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(a) Before (b) After

Figure B.13: The velocity FFT response before (a) and after (b) at excitation voltage Vdc = Vac =

6.86 V

The velocity and displacement time-histories of the sensor before and after detection were

recorded using the oscilloscope, Fig. B.14 (a) and (c). No changes in the velocity amplitude was

observed in the two figures. Also, the phase portrait shows only one orbit before and after gas

release, Fig B.14 (b) and (d).
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(a) Before (b) Before

(c) After (d) After

Figure B.14: The time-histories (a and c) of the sensor velocity (yellow), displacement (blue),

and excitation signal (magenta), and phase portraits (b and d) before and after gas release at

excitation voltage Vdc = Vac = 6.86 V

3nd trial Same procedure was applied by releasing slowly a mixture of 100 ppb ethanol vapor in

dry nitrogen into the chamber. No detection (dynamic pull-in) was observed during 15 minutes

from gas release, Fig. B.15. As a results, this demonstrates the upper bound of the sensor limit

to detect ethanol at the operating frequency, f◦ = −50 Hz. The sorbed mass was small enough

to remain but did not exceed the cyclic fold bifurcation point.
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(a) Before (b) After

Figure B.15: The velocity FFT response before (a) and after (b) at excitation voltage Vdc = Vac =

6.86 V

The velocity and displacement time-histories of the sensor before and after detection were

recorded using the oscilloscope, Fig. B.16 (a) and (c). No changes in the velocity amplitude were

observed in the two figures. Also, the phase portrait shows only one orbit before and after gas

release, Fig. B.16 (b) and (d).
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(a) Before (b) Before

(c) After (d) After

Figure B.16: The time-histories (a and c) of the sensor velocity (yellow), displacement (blue),

and excitation signal (magenta), and phase portraits (b and d) before and after gas release at

excitation voltage Vdc = Vac = 6.86 V
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