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Abstract 

 

Water quality in many regions of the Great Lakes Basin (GLB) has deteriorated due to numerous 

anthropogenic drivers, including increases in agricultural area, increased fertilizer use, intensive livestock 

production, and increases in human population densities. Excessive nutrient inputs from both point and 

non-point sources have accelerated eutrophication in inland watersheds and in receiving water bodies, and 

policy goals have recently been set to reduce phosphorus loading to Lake Erie by as much as 40%. Under 

such pressures, it is crucial to better our understanding of nutrient transport across the GLB and to 

identify key watershed drivers of both seasonal and annual nutrient loading from watersheds to the lakes. 

In this research study, I have utilized numerous metrics to characterize nutrient dynamics in Great Lakes 

Watersheds across a gradient of human impacts and have attempted to identify key controls on 

biogeochemical signatures.  As a part of this work, I paired water quality data from over 200 Great Lakes 

watersheds with land use and climate data to identify dominant controls on stream nutrient concentrations 

at the annual, seasonal, and event scales. At the annual scale, standardized regression analysis identified 

significant relationships between flow-weighted concentration (FWCs) and selected catchment 

characteristics. FWCs were found to be strongly linked to land-use variables such as combined 

agricultural and urban land, wetlands and tile drainage. Our quantification of these relationships was used 

to create spatial maps of annual nutrient concentrations and loads and to identify nutrient hotspots across 

the GLB. Specifically, high nutrient concentrations and export were observed in the Maumee and 

Sydenham River catchments, whereas lower concentrations and loads were found in Lake Superior 

catchments. At the seasonal scale, three primary seasonal nutrient regimes were identified: (1) ‘in-phase’ 

(positive correlation between monthly concentrations and discharge), (2) ‘out-of-phase’ (negative 

correlation), and (3) ‘stationary’ (no significant relationship). While in-phase seasonality was found to be 

the most common concentration regime for watersheds with higher levels of agricultural land use, nitrate 

seasonality in particular was found to be muted in watersheds with the highest agricultural land use, but to 

be more extreme in watersheds with less agriculture but higher amounts of forested area and higher 

wetland densities. Out-of-phase seasonality was found to be significantly associated with higher 

population densities and higher percent urban areas. At the event-scale, concentrations were found to be 

more variable with discharge for phosphorus than for nitrate. Additionally, Lake Erie showed 

significantly lower concentration variability in relation to discharge compared to all the other Lakes. As 

the Lake Erie basin also has higher agricultural land use than the other lakes, the more chemostatic 

concentration dynamics in these watersheds appears to be linked to agricultural nutrient use and suggests 

that agricultural nutrient legacies may be an important driver of current patterns in nutrient delivery to the 

lakes. 
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1.0 Introduction 

 

1.1 Background 

Eutrophication can be defined as the excessive growth of plants and algae from increased 

nutrient inputs such as phosphorus (P) and nitrogen (N), resulting in the depletion of dissolved 

oxygen in rivers, streams, lakes, and other water bodies (D.W. Schindler, 2006; Yang, Wu, Hao, 

& He, 2008). Although eutrophication can occur naturally in aquatic ecosystems, excessive 

nutrient inputs from anthropogenic sources can cause great ecological harm to receiving water 

bodies (Smith, Joye, & Howarth, 2006). Furthermore, the acceleration of eutrophication from 

additional nitrogen and phosphorus inputs can result in harmful algal blooms (HABs), which are 

typically dominated by cyanobacteria (Downing, Watson, & McCauley, 2001; Smith et al., 

2006). Cyanobacterial blooms in eutrophic waters can severely degrade aquatic ecosystems by 

generating toxins that can kill aquatic species, promote anoxic (oxygen-depriving) conditions in 

aquatic environments, reduce species diversity, and produce undesirable taste and odour in 

drinking water (Downing et al., 2001). Cyanobacterial blooms have been observed both locally 

and globally in eutrophic water bodies. For example, in May 2007, Lake Taihu, China’s third 

largest freshwater lake, experienced severe toxic cyanobacterial blooms, which were caused by 

nutrient enrichment from urban and agricultural development, as well as warm spring 

temperatures (Qin et al., 2010). In Canada’s Lake Winnipeg, notable increases in cyanobacteria 

have been observed since the mid-1990s as a result of P loadings from increased production of 

livestock and fertilizer application, as well as larger and more frequent spring floods in the Red 

River watershed (David W. Schindler, Hecky, & McCullough, 2012). Although many studies 

have explored the causes and effects of eutrophication, remediation and efforts to prevent the 

production of harmful algal blooms are still ongoing in many regions, including some of the 

Great Lakes (i.e. Lake Erie) in North America. 

The Laurentian Great Lakes house almost 21 percent of the world’s supply of surface fresh water 

and are an indispensable source of clean drinking water to over 24 million individuals across 

Canada and the United States (Environment Canada & U.S. Environmemntal Protection Agency, 

2014). In the 1960s, excessive algal blooms were identified as a major threat to the water quality 

of the Great Lakes (Beeton, 2002). Algal bloom occurrences and eutrophication have also been 
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noted in tributary watersheds within the basin (Scavia et al., 2014). Eutrophication in the Great 

Lakes regions has been attributed to increases in P export from agricultural watersheds, 

population increase, and excessive use of phosphorus-laden detergents (Dove & Chapra, 2015), 

and is considered a threat to public health, recreational activities, tourism, fisheries, and drinking 

water across many communities. To address these problems, the Great Lakes Water Quality 

Agreement (GLWQA) was signed in 1972 between Canada and the United States (IJC, 1972). 

This agreement set water quality objectives for the Lakes and emphasized the assurance of 

Canada and the United States in implementing pollution control programs that target municipal 

and industrial sectors (IJC, 1972). Revisions to the agreement have since been made to expand 

the objectives of protecting the Great Lakes Basin by focusing on the ‘restoration of the Great 

Lakes Basin Ecosystem’ rather than just improving water quality through pollution control (IJC, 

1978). In particular, a requirement to reduce P loadings and to meet specified concentration 

targets has been added to the 1978 GLWQA. This mandate has prompted regulatory authorities 

within Canada and the United States to develop control measures to reduce point-sources of P 

from sewage treatment plants (IJC, 1972; Dove & Chapra, 2015). Legislation to reduce the P 

content in detergents was first introduced in Canada during the 1970s, and was later followed by 

many U.S. States, including Illinois (the first State to limit phosphorus content in detergents), 

New York, Ohio, Michigan, and others (Litke, 1999). The policy change resulted in a reduction 

in total P loading and improved water quality conditions in the lakes up to the late 1980s (De 

Pinto, Young, & McIlroy, 1986; Dolan & Chapra, 2012). Since the mid-1990s however, there 

has been a resurgence of algal blooms, particularly from Lake Erie, which has become more 

eutrophic, as evident by the increases in cyanobacteria (Scavia et al., 2014).  

In 2011, Western Basin of Lake Erie experienced one of its largest algal blooms, potentially 

caused by intense precipitation events during the spring season, in combination with long-term 

agricultural and land-use practices, resulting in large bioavailable dissolved reactive phosphorus 

(DRP) export to the lake (Michalak et al., 2013). The re-eutrophication of Lake Erie, as well as 

the degradation of water quality in streams and rivers have led to revisions in the GLWQA to 

target present ecological issues in the Great Lakes Basin (Fryefield, 2013). For example, Annex 

6 (Aquatic Invasive Species) highlights control strategies to reduce populations of existing 

invasive species such as Dreissenid Mussels that may harm the Great Lakes (Canada & USA, 

2013). Annex 9 (Climate Change Impacts) has also been added to address the impacts of climatic 
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conditions in the Great Lakes Ecosystem (Canada & USA, 2013). Annex 4 (Nutrients) 

emphasizes the importance in reducing nutrient loads (specifically P) and improving regulations 

of point source and non-point source loading in open waters (Canada & USA, 2013; Fryefield, 

2013). The commitment of meeting phosphorus targets was further evident in 2015 with the 

agreement between the Canadian and U.S. government agencies to reduce phosphorus loadings 

by 40 percent (IJC, 2016). Addressing these present challenges requires identifying hotspots of 

pollution, assessing non-point sources of nutrient pollution, and quantifying seasonality and 

dominant controls of nutrient concentrations to effectively manage efforts in restoring water 

quality in the Great Lakes watersheds. 

 

1.2 Watershed Signatures 

In the recent past, there has been increasing interest in characterising watersheds based on easily 

identifiable metrics or “signatures” (Sivapalan, 2005). Such signatures can be used to describe, in 

a meaningful and practical manner, the hydrological variability that may be observed both 

spatially and temporally, and can potentially be linked with a range of catchment properties, 

including climate, soils, and land-use inputs (Sivapalan, 2005). Hydrographs, for example, 

provide temporal observations of discharge within a catchment. Metrics associated with 

visualized data such as hydrographs provide different and more organized ways of understanding 

catchment functionality, and can be easily compared across catchments at different scales, in 

different landscapes, and across varied climate conditions. Commonly used signatures that focus 

on streamflow response include inter-annual (e.g. year-to-year) streamflow patterns, regime 

curves (i.e. monthly-average streamflow behaviour), flow duration curves, and rainfall-runoff 

relationships such as the runoff coefficient (McMillan et al., 2014; Merz & Blöschl, 2009; 

Sivapalan, 2005). Hydrological signatures that focus on temporal or seasonal variability provide 

insights into different processes occurring within the catchment during specified time periods 

(Sivapalan, 2005). For example, south-eastern catchments in the U.S. (e.g. Georgia and Florida) 

have been shown to have strong seasonal precipitation that is ‘in-phase’ with potential 

evapotranspiration, whereas precipitation in western catchments of the U.S. (e.g. California and 

Idaho) exhibits ‘out of phase’ behaviour with potential evapotranspiration (Ye, Yaeger, 

Coopersmith, Cheng, & Sivapalan, 2012). Linking climate characteristics (that are spatially 



4 
 

consistent) to seasonal streamflow patterns becomes important when establishing a classification 

system for dominant processes, and relating catchments at a regional scale (Ye et al., 2012).  

Other hydrological signatures have also been used to identify key hydrologic patterns of 

watersheds. Some of these signatures include the time of concentration, defined as the time 

required for a droplet of water to travel from the most remote part of the catchment to the outlet 

(Aronica & Candela, 2007; Grimaldi, Petroselli, Tauro, & Porfiri, 2012); recession curves, 

defined as the decrease in measured discharge after a storm event (Brutsaert & Nieber, 1977; 

Harman, Sivapalan, & Kumar, 2009; Kirchner, 2009; Stoelzle, Stahl, & Weiler, 2013; Vogel & 

Kroll, 1992); and water age and residence time distributions (Sivapalan, 2005). These signatures 

help further our understanding of hydrological processes and can be used to estimate flood 

frequencies (Merz & Blöschl, 2009), improve the accuracy of hydrological models for 

streamflow estimation in ungauged basins (Grimaldi et al., 2012; Gupta, Wagner, & Yuqiong, 

2008), and assist in classifying watersheds based on land-use and climatic characteristics (Price, 

2011; Stoelzle et al., 2013). 

Work regarding the identification of biogeochemical signatures is relatively limited compared to  

hydrologic signatures; however, many studies within the past decade or more have begun to 

explore explicit linkages between hydrology and biogeochemical processes (Asano, Uchida, 

Mimasu, & Ohte, 2009; Burt & Pinay, 2005; Cirmo & McDonnell, 1997; P. M. Haygarth, 

Condron, Heathwaite, Turner, & Harris, 2005; Seibert et al., 2009). More recently, studies have 

explored controls on nutrient export at larger spatial scales using regression-based models in 

order to determine the source of these problems such as excessive eutrophication, and to 

establish effective remediation options to restore water quality (Robertson & Saad, 2011; Sinha 

& Michalak, 2016).  

One of the simplest biogeochemical signatures for a watershed could be considered to be the 

mean annual concentration or average annual loads of important solutes. Prediction of average 

nutrient loads, however, can be challenging due to the large temporal and seasonal variability in 

nutrient export, as well as the common use of sparse concentration datasets as a basis for the load 

estimation. Furthermore, exploring the spatial variability of mean annual concentrations across 

multiple catchments, without accounting for flow variability, can be misrepresentative when 

identifying dominant controls from catchment properties such as land-use, soil characteristics, 
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and climate. A simple alternative is the use of flow-weighted concentrations (FWC) as a metric 

(Basu, Thompson, & Rao, 2011). Flow-weighted concentrations are calculated as the sum of the 

product of concentration and discharge divided by the total sum of discharge (Godsey, Kirchner, 

& Clow, 2009). Use of flow-weighted concentrations rather than simple mean values for 

concentration or annual loads allows us to avoid issues related to high flow-variability across 

years while still adequately accounting for discharge-driven differences in concentration. 

 

1.2.1 Statistical Methodologies to estimate seasonal and annual loads from sparse concentration 

data 

As mentioned above, one of the continuous challenges in studying water quality is estimating 

stream solute loads. Specifically, the problem involves estimating average load based on sparse 

concentration measurements taken a few times during a year, coupled with daily mean discharge 

magnitudes. Many methodologies have been developed to estimate load, including simple 

averaging methods based on field measurement data, ratio estimators, and multiple regression 

models (or rating curves), which estimate concentration as a function of selected explanatory 

variables (Aulenbach & Hooper, 2006; Cochran, 1977; Cohn, 2005; Dolan, Yui, & Geist, 1981; 

Hirsch, Alexander, Smith, & Geological, 1991; Hirsch, Moyer, & Archfield, 2010; Preston, 

Bierman, & Silliman, 1989; Runkel, Crawford, & Cohn, 2004; and others). A common 

regression approach used in many studies is the LOAD ESTimator (LOADEST) model (Cohn, 

2005; Runkel et al., 2004). The LOADEST model estimates the natural-log of concentrations as 

a function of explanatory variables such as time, season, and discharge. Additional explanatory 

variables can also be added or removed from the model. For example, the L7 model is seven-

parameter LOADEST model that estimates the natural-log concentration as a function of the 

natural-log of discharge (in quadratic form), time (in quadratic form), and season (as a sinusoidal 

function) (Cohn, Caulder, Gilroy, Zynjuk, & Summers, 1992; Hirsch, 2014).  Estimated natural-

log concentrations are transformed back by taking the exponent and multiplying by a bias 

correction factor (BCF). This correction factor is applied in order to take into account that the 

expected value of concentration is not the exponent of the expected value of natural-log 

concentration (Cohn, 2005; Hirsch, 2014). Although the LOADEST model provides unbiased 

estimates of solute flux when model assumptions are met (Cohn, 2005), the accuracy of load 
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estimates is reduced when conditions move away from the model assumptions. These issues 

include 1) lack of a quadratic fit between concentration and discharge, 2) changes in seasonal 

patterns between concentration and discharge over time, 3) changes in concentration patterns 

with respect to high or low flows, and 4) lack of homoscedasticity in the residuals of the 

LOADEST model (Hirsch, 2014). Many studies that have relied upon the LOADEST model 

have led to poor estimation of nutrients loads, including catchments draining into Lake Decatur 

in Illinois (Guo, Markus, & Demissie, 2002), major river systems in Iowa and the Des Moines 

Lobe (Stenback, Crumpton, Schilling, & Helmers, 2011), and several watersheds draining into 

the Chesapeake Bay basin (Moyer, Hirsch, & Hyer, 2012). 

A more recent regression model developed by Hirsch et al., 2010 called the Weighted Regression 

on Time, Discharge and Seasons (WRTDS), was developed to address the issues found in the 

LOADEST model. The model equation for WRTDS is in some ways similar to the LOADEST 

model, as it relies upon time, discharge, and season as explanatory variables. WRTDS, however, 

estimates a unique set of coefficients at every estimation point. This is achieved by applying 

weighted regressions, where the weights are calculated as function of the ‘distance’ between the 

estimated point and the sample points in time, discharge, and seasons (Hirsch et al., 2010). A key 

advantage of WRTDS over LOADEST is its ability to create many unique models of 

concentration, in which the coefficients vary based on time, discharge, and seasons across the 

period of record (Hirsch et al., 2010; Qian Zhang, Harman, & Ball, 2016). In contrast, 

concentration estimates from LOADEST assume fixed coefficients over all times, discharges and 

seasons, making it less dynamic and adaptable versus the WRTDS model (Hirsch, 2014; Qian 

Zhang et al., 2016). Numerous recent studies have utilized WRTDS for load estimation, 

including those carried out for the Mississippi River (Sprague, Hirsch, & Aulenbach, 2011), 

Lake Champlain tributaries (Medalie, Hirsch, & Archfield, 2012), and the Susquehanna River 

Basin (Q. Zhang, Brady, & Ball, 2013; Qian Zhang et al., 2016).  

 

1.2.2 Dominant Controls on Stream Nutrient Concentrations 

Numerous important controls on nutrient concentrations and loads have been identified, 

including annual and seasonal precipitation (Piñol, Ávila, & Rodà, 1992; Sinha & Michalak, 

2016), antecedent moisture conditions (Biron et al., 1999) and nutrient uptake (Ensign & Doyle, 
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2006; Von Schiller et al., 2008). In addition, human-impacted watersheds (with primarily 

agricultural or urban activity), has been shown to be a key driver of stream water quality and 

nutrient export. The influences of land use on stream ecosystems range from increases in 

sedimentation and nutrient concentrations, to changes in hydrologic conditions and a loss of 

riparian vegetation (Allan, 2004). Many studies have explored the impacts of land use on stream 

water quality as well as the impacts of nutrient export in relation to geomorphology, soil 

characteristics and climate (Arheimer & Lidén, 2000; Carpenter et al., 1998; Hill, 1978; Johnson, 

Richards, Host, & Arthur, 1997; Sharpley et al., 1994; and others). Quantifying land use as a 

dominant control on stream water quality is important for the mitigation of excessive 

eutrophication and the development of effective watershed management practices for healthy 

stream ecosystems across the Great Lakes Basin. 

Stream nutrient concentrations are highly influenced by land use, particularly with regards to 

increases in agricultural activities and urbanization. Many studies have found the application of 

N and P fertilizers, which can lead to non-point source runoff, to be a dominant source of 

nutrient export in streams and rivers (e.g. Arheimer & Lidén, 2000; Han & Allan, 2008; Hill, 

1978; Johnson et al., 1997; Tian et al., 2016). Accordingly, the development of new conservation 

measures or management practices to mitigate issues of nutrient pollution, leads to the 

importance of mitigation efforts regarding stream water quality by addressing best management 

practices (BMP), which includes reducing the amount of fertilizers used in the landscape, 

adopting conservative tillage practices and minimizing anthropogenic impacts at a watershed 

level (Allan, 2004). 

Artificial and subsurface drainage systems can also be a significant control on nutrient 

concentration-discharge dynamics within a catchment by reducing surface flow and transferring 

excess precipitation to subsurface flow (Blann, Anderson, Sands, & Vondracek, 2009; Tian et 

al., 2016). The presence of these drainage systems may lead to further degradation of water 

quality in streams, rivers and lakes, as subsurface flow bypass riparian vegetation, which allows 

for the uptake of nutrients and overall reduction of nutrient export in lotic ecosystems (Blann et 

al., 2009). Poorly managed drainage ditches, created as a result of nutrient transport from tile and 

subsurface drainage, can impact stream water quality. Specifically, nitrogen and phosphorus 



8 
 

losses from drainage ditches can result in increased cultural eutrophication and degradation of 

stream ecosystems within the Great Lakes Basins (Ahiablame, Chaubey, Smith, & Engel, 2011).  

Urbanized landscapes also significantly affect hydrology and water quality in catchments across 

the Great Lakes. Increased development of impervious areas can cause major alterations in 

hydrology, including higher degrees of surface runoff from storm events (Paul & Meyer, 2001). 

More surface runoff may lead to poor nutrient filtration due to decreased hydraulic residence 

time (HRT), a lack of biological activity, and the removal of plants and vegetation that facilitate 

nutrient uptake (Allan, 2004; Paul & Meyer, 2001; Tian et al., 2016). Sources of nutrient export 

from urban (non-point source) runoff may include lawn fertilizers, pet waste, and poor operation 

of septic systems. (S. Carpenter et al., 1998). Additionally, wastewater and sewage treatment 

plants act as point sources and can be a major contributor to water quality degradation in 

streams, rivers and lakes (S. Carpenter et al., 1998; Paul & Meyer, 2001). Understanding the 

impacts of biogeochemical processes in relation to extensive urbanization of catchments is 

critical to reducing eutrophication in streams and receiving water bodies. 

 

1.2.3 Relationship between concentration and discharge 

Quantifying the relationship between concentration and discharge is important in understanding 

catchment behaviour (Musolff, Schmidt, Selle, & Fleckenstein, 2015; Thompson, Basu, 

Lascurain, Aubeneau, & Rao, 2011). Soil erosion, dynamic fluctuations in climate, and the 

continuous growth of agricultural, and urban development can affect both biogeochemical 

processes and the hydrological conditions of catchments (Musolff et al., 2015). Concentration-

discharge relationships for a range of nutrients and solutes have been studied over decades in 

landscapes that range from forested basins (Band, Tague, Groffman, & Belt, 2001; Creed & 

Band, 1998; Fiorentino et al., 2003; P. Haygarth et al., 2004; Hedin, Armesto, & Johnson, 1995; 

Valett, Crenshaw, & Wagner, 2002) to more recent agricultural and humanly impacted 

catchments (Basu et al., 2010; Musolff et al., 2015; Schwientek, Osenbrück, & Fleischer, 2013; 

Thompson et al., 2011). Additionally, hysteresis loops extrapolated from concentration-discharge 

plots have been used to construct mixing models based on different flow components (e.g. event 

water, soil water and groundwater) in order to determine the timing of solute mixing (Chanat, 

Rice, & Hornberger, 2002; Evans & Davies, 1998; Godsey et al., 2009). Analysis of 
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concentration-discharge patterns across larger spatial areas are beneficial in determining the 

effects of vegetation, soil type, and climate within the landscape (Likens & Buso, 2006). 

Although many studies have explored event-scale concentration-discharge dynamics, very little 

has been done in conjunction with seasonal and annual time scales. Additionally, studies 

focusing on biogeochemical processes have primarily been carried out at local scales (Likens & 

Buso, 2006). Therefore, there is a need to characterise and understand concentration-discharge 

dynamics at larger scales to clarify the nature of anthropogenic impacts on the environment, to 

assist in the prediction and forecasting of biogeochemical patterns, and to expand the role of 

policy and decision-making (S. R. Carpenter, 2002; Clark et al., 2001; Likens & Buso, 2006).  

Watersheds are generally considered to be either ‘chemostatic’ or ‘chemodynamic’ depending 

upon the nature of event-scale relationships between concentration and discharge. A chemostatic 

response occurs when concentrations remain relatively constant in time over significant 

fluctuations in discharge. Conversely, chemodynamic behaviour occurs when concentrations 

increase or decrease with discharge (Basu et al., 2010; Godsey et al., 2009; Thompson et al., 

2011). Chemostatic solute dynamics were first identified for geogenic species such as calcium, 

magnesium, and silica and have been explained by the nearly unlimited supply of these 

weathering-related solutes across a range of landscape types (Godsey et al., 2009; Thompson et 

al., 2011).  More recently, it has been noted that nutrients in anthropogenic landscapes, where 

decades of fertilizer application and intensive livestock production have led to an accumulation 

of legacy stores of nutrients in soils and groundwater (Basu et al., 2010; Musolff et al., 2015; 

Thompson et al., 2011; Van Meter & Basu, 2015), may also exhibit chemostatic behavior. This 

phenomenon is considered parallel to the chemostatic response of geogenic solutes. For 

phosphorus species, although legacy stores can also develop under intensive agriculture 

(Bruland, Grunwald, Osborne, Reddy, & Newman, 2006), chemodynamic responses have 

frequently been observed in agriculturally dominated catchments (Musolff et al., 2015; 

Thompson et al., 2011). This chemodynamic response can potentially be attributed to threshold-

driven transport of phosphorus such as the erosion of stream banks. Additionally, concentration-

discharge dynamics of soluble and total phosphorus may likely be influenced by the degree of 

sorption onto soil particles, particularly from sediments that reside at the channel bottom of 

streams and rivers (Thompson et al., 2011). 
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The relationship between concentration C and discharge Q identified in the literature has been 

found to follow a power law relationship: 

 

 𝐶 = 𝑎𝑄𝑏 (1) 

 

in which a and b are constants (Godsey et al., 2009). Concentration data are typically sparse, 

whereas discharge measurements are more continuous (e.g. instantaneous or daily averages) 

throughout the period of record (Hirsch, 2014; Lee et al., 2016). The exponent of the power law 

relationship (or equivalently, the slope of the C-Q relationship on log-log scale) provides a 

physical interpretation of the catchment. A slope of near-zero indicates that the catchment 

behaves ‘chemostatically’ (i.e. concentrations remain constant under variable discharge). A 

negative b-slope indicates a dilution signal and a positive slope shows an accretion pattern. 

Transforming the power law relationship (1) into linear form yields the following: 

 

 ln 𝐶 = ln 𝑎 + 𝑏 ln 𝑄 +  𝜀 (2) 

 

in which 𝜀 is a random error term. Slope-b magnitudes near zero (with a dilution signal) have 

been observed for geogenic solutes such as calcium, magnesium, sodium and silica in minimally 

human impacted catchments (Godsey et al., 2009).  These slope-b values, however, are not a 

sufficient metric for characterizing watershed solute behavior as chemostatic or chemodynamic 

because concentration variability can still be present with near-zero slope values.  In particular, 

changes in solute concentrations may not be significantly associated with changes in discharge, 

and concentrations may still show considerable variability due to a range of factors, from 

fluctuations in temperature and plant nutrient uptake (Duncan, Welty, Kemper, Groffman, & 

Band, 2017) to the presence of intermittent anthropogenic point sources.  An alternative metric 

that has proven useful (Musolff et al., 2015; Thompson et al., 2011) is the ratio between the 

coefficient of variation for concentration, (CVC) and the coefficient of variation for discharge 

(CVQ), as defined below:  
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 𝐶𝑉𝐶

𝐶𝑉𝑄
=  

𝜇𝑄

𝜇𝐶

𝜎𝐶

𝜎𝑄
 (3) 

 

The CV ratio (CVC/CVQ) provides a robust measure of variations in concentration in relation to 

variations in discharge, with smaller CV ratio values being indicative of chemostatic behavior. 

Low CV ratios for geogenic compounds, and consequently chemostatic behaviour, have been 

consistently observed in multiple catchments within the U.S. and Germany (Musolff et al., 2015; 

Thompson et al., 2011). In contrast, higher CV ratios and hence more chemodynamic export 

have generally been found for phosphorus species in agriculturally dominated watersheds 

(Musolff et al., 2015; Thompson et al., 2011). The CV ratio describes the variability of 

concentration with respect to the variability of discharge, whereas the slope-b identifies the type 

of chemodynamic behaviour, which can range from dilution (slope-b < 0) to accretion (slope-b > 

0) patterns (Musolff et al., 2015). 

 

1.3 Research Objectives 

In this research study, I focused on three temporal scales of aggregation to understand the 

dominant controls on stream nutrient concentrations. Our specific objectives are as follows:   

A) Annual Scale 

a. Quantify mean annual flow-weighted concentrations for selected watersheds 

within the Great Lakes Basin. 

b. Quantify dominant controls on flow-weighted concentrations, and use a multiple 

linear regression approach to predict flow-weighted concentrations for ungauged 

watersheds. 

c. Develop maps and loading estimates for nutrients across all five Great Lakes. 
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B) Seasonal Scale 

a. Identify dominant controls on seasonal patterns in flow-weighted nutrient 

concentrations. 

 

C) Event Scale 

a. Understand how concentration varies with discharge across a range of watersheds 

and land-use types, and determine key controls on the C-Q relationship. 

 

2.0 Materials and Methods  

 

2.1 Site Description 

The five Great Lakes covers approximately 240,000 km2 of surface water, with a total volume 

greater than 20,000 km3 (Macdonagh-Dumler, Pebbels, & Gannon, 2005). Fifty-nine percent of 

the watersheds draining into the Great lakes are in the US, while the remaining area is in Canada 

(Neff, Day, Piggott, & Fuller, 2005). Precipitation across the Great Lakes basin ranges from less 

than 680 mm of rainfall west of Lake Superior to greater than 1100 mm east of Lake Ontario 

(Neff et al., 2005). Land use across the basin varies from forested areas in the Lake Superior 

watersheds, to more agricultural and urban areas in the southern parts of the basin. Urban areas 

are concentrated along Lake Michigan in the metropolitan areas of Chicago and Milwaukee, as 

well as around Lake Ontario near the cities of Hamilton and Toronto. Metropolitan areas in the 

catchment area for Lake Huron include Flint and Saginaw-Bay City. 

Soil and geological characteristics vary spatially across the Great Lakes Watersheds. The more 

northern parts of the Great Lakes (e.g. Lake Superior) have a cooler climate and contain large 

amounts of granite bedrock, forested area and poor soil conditions including lack of nutrients to 

sustain healthy microbial activity (US Environmental Protection Agency & Government of 

Canada, 1995). The southern regions of the Great Lakes (Lake Erie, southern Lake Michigan, 

and Lake Ontario) have warmer climates and fertile soils which are readily used for agricultural 

development, particularly for watersheds draining to Lake Erie (US Environmental Protection 

Agency & Government of Canada, 1995).  
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2.2 Data Sources and Site Selection Criteria 

The Great Lakes watersheds include the Canadian provinces of Ontario and the U.S. States of 

Illinois, Indiana, Michigan, Minnesota, New York, Ohio, Pennsylvania and Wisconsin. Water 

quality data for Ontario and the eight Great Lake states were obtained from the Provincial Water 

Quality Monitoring Network (PWQMN) and the United States Geological Survey (USGS), 

respectively. Additionally, some water quality stations for NO3-N were obtained via the Water 

Quality eXchange (WQX) and Storage and Retrieval Data Warehouse (STORET) databases. 

Daily streamflow data was obtained from Environment Canada (EC) and USGS. Watersheds 

draining to the selected gauged stations were delineated using the hydrology toolbox in ArcMap 

v10.3. Watersheds in Ontario were separately delineated using the Ontario Flow Assessment 

Tool (OFAT) accessed from the Ontario Ministry of Natural Resources and Forestry. Streamflow 

and water quality stations were not always co-located. To address this issue, I selected 

streamflow stations that were sufficiently close to the water quality stations, based on the two 

following decision criteria: 1) The water quality and streamflow station lay on the same river 

stem; 2) the percent difference in drainage area between the water quality and streamflow station 

was less than 15%. Stations with data between 2000 and 2016 were selected. Using these criteria, 

I selected 179, 174 and 206 stations with water quality data for nitrate + nitrite-nitrogen (nitrate-

N), reactive orthophosphate-P (SRP) and total phosphorus-P (TP), respectively. 
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Figure 2.1.  Map of selected Water Quality sites  within the Great Lakes Region. 

 

Gridded data representing catchment variables (e.g. percent clay, tile drains, etc.) were extracted 

from various gridded databases, as described in subsequent paragraphs and summarized in 

Appendix B, using ArcMap v10.3 tools. To obtain mean numerical values for a watershed based 

on the accumulation of gridded cells, the area-weighted average was computed as follows: 
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𝑋𝑎𝑣𝑔

∑ 𝑋𝐺𝑖𝐴𝑖
𝑛
𝑖=1

∑ 𝐴𝑖
𝑛
𝑖=1

 (4) 

 

in which 𝑋𝑎𝑣𝑔 is the area-weighted average of a catchment variable for a particular watershed, 

𝑋𝐺𝑖 is the numerical value associated for the gridded cell in row 𝑖, 𝐴𝑖 is the area of the gridded 

cell in row 𝑖, and 𝑛 is the number of gridded cells appearing in the catchment.  

Canadian land-use data pertaining to agricultural, forested, urban and wetland areas were 

obtained from the 2015 Agriculture and Agri-Food Canada (AAFC) annual crop inventory. U.S. 

land-use data was obtained from the 2011 National Land Cover Database (NLCD). Land-use 

classifications of different land types (ex. agricultural, forested, etc.) were simplified, in that 

grid-codes identifying crops such as oats, wheat, corn, etc. were grouped to represent agricultural 

land. The recommended classification of land-types from the AAFC and NLCD were adopted in 

the analysis. 

Tile drainage data for the Canadian province of Ontario was obtained from Ontario Ministry of 

Agriculture, Food and Rural Affairs (OMAFRA, 2015). U.S. tile drainage data was obtained 

from the United States Census of Agriculture, National Agricultural Statistics Services (USDA, 

NASS, 2012). 

Global precipitation and temperature gridded data (at 1 km spatial resolution) were obtained 

from the WorldClim database (Fick & Hijmans, 2017). Gridded slope data for the U.S. Great 

Lakes area was extracted from the hydrologic landscape regions of the United States dataset 

(Wolock, Winter, & McMahon, 2004). Slope data pertaining to Canadian Great Lakes 

catchments were processed using the slope tool in ArcMap from a 30-meter digital elevation 

model (DEM), as well as extracted from OFAT after delineation.  

Gridded soil data were extracted from the National Soil Database (NSDB) for Ontario, Canada 

and the Soil Survey Geographic Database (SSURGO) for the United States. Additionally, the 

Harmonized World Soil Database (HWSD) was used to process percent sand, silt and clay data 

in the northern areas of Ontario due to large amounts of missing data from the NSDB 

surrounding those regions. 
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2.3 Estimation of Flow-Weighted Concentrations (FWC) 

The Weighted Regressions on Time, Discharge and Seasons (WRTDS) method developed by 

Hirsch et al (2010), is a non-linear model which was used to estimate seasonal and annual flow-

weighted concentrations from intermittently measured concentration and continuously measured 

flow data. Daily concentration values are estimated in WRTDS by: 

 

 ln(𝑐) =  𝛽0 +  𝛽1𝑡 + 𝛽2 ln(𝑄) + 𝛽3 sin(2𝜋𝑡) + 𝛽4 cos(2𝜋𝑡) +  𝜀 (5) 

 

in which ln(𝑐) the natural logarithm of concentration,  𝛽𝑖s  values are fitted regression 

coefficients using weighted least squares,  ln(𝑄) is the natural logarithm of daily mean 

streamflow Q, t is decimal time and ε is unexplained variation (Hirsch et al., 2010; Sprague et 

al., 2011). WRTDS is a highly flexible model that can be used to estimate daily concentrations 

and fluxes by utilizing and expanding on regression-based techniques. From (5), WRTDS 

combines the explanatory variables of time, discharge and seasons to estimate daily nutrient 

concentrations.  

In order to estimate a daily concentration point at ti, WRTDS selects neighboring points that are 

sufficiently close to the estimation point and calculates three distances in time, discharge and 

seasons (Hirsch et al., 2010; Sprague et al., 2011). The first distance is the time difference 

between t0 and ti; the second distance is the seasonal difference between the time of the year at to 

and the time of the year at the estimation point, ti in decimal years (for example, the seasonal 

difference between March 1, 2007 and March 1, 2011 is zero); the third distance is the difference 

between ln(Q0) and ln(Qi). The weight for each distance is calculated using the tri-cube weight 

function defined by Tukey as: 

 

 

𝑤 = {(1 − (
𝑑

ℎ
)

3

)

3

 𝑖𝑓 |𝑑| ≤ ℎ

0 𝑖𝑓 |𝑑| > ℎ

  (6) 
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in which 𝑤 is the weight, 𝑑 is the distance in either time, discharge or seasons, and ℎ is the half-

window width (Hirsch et al., 2010).The overall weight (6) for each observation is calculated as 

the product of the three individual weights (Hirsch & De Cicco, 2015; Hirsch et al., 2010; 

Sprague et al., 2011). Recommended half-window widths for time, discharge, and seasons were 

reported as 7 years, 0.5 years, and 2 natural log units (Hirsch & De Cicco, 2015). In this analysis, 

a half-window width of 100 years for the ‘time distance’ was used in order to make the weights 

for all observations near the estimation point equal. Setting a half-window width of 100 years 

yields weights of approximately 1 for all observations that fall near the estimation point. This 

approach provides greater influence of weights estimated from the seasonality and discharge 

‘distances’ of WRTDS. Average β1 estimates were greater than -1 or less than 1 for nearly all 

stations. Additionally, the differences in the flux bias static (described in more detail below) 

when setting the half-window widths for 7 years and 100 years were less than 5 percent for most 

stations. 

A key advantage in using WRTDS is its ability to provide unbiased estimates of daily 

concentrations and fluxes (Sprague et al., 2011). Namely, the coefficients 𝛽𝑖 from (5) are unique 

for each daily estimated concentration point based on weights derived from streamflow 

magnitude and its corresponding time (in years and seasons). Additionally, a unique bias 

correction factor for each estimation point was applied before transforming the natural-log 

concentration back to the original units in order to reduce the re-transformation bias (Duan, 

1983; Sprugel, 1983). Having unique coefficients to estimate a daily concentration value 

provides a dynamic approach to estimating nutrient export versus having a constant array of 

coefficients over the entire period of record (Sprague et al., 2011). 

In order to assess the accuracy of the WRTDS estimates, the flux bias statistic was computed for 

all stations. The following equations were used to compute the flux bias statistic: 

 

 
𝑃 =  (∑ 𝑘 ∗ 𝑐𝑖,𝐸𝐺𝑅𝐸𝑇 ∗ 𝑄𝑖

𝑛

𝑖=1

) (7) 
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𝑂 =  (∑ 𝑘 ∗ 𝑐𝑖,𝑂𝐵𝑆 ∗ 𝑄𝑖

𝑛

𝑖=1

) (8) 

 

 
𝐵 =

𝑃 − 𝑂

𝑃
 (9) 

 

in which 𝐵 is the flux bias statistic, 𝑃 is the sum of the estimated WRTDS flux on the sampled 

days, 𝑂 is the sum of the estimated fluxed from measured concentration and discharge data, 𝑘 is 

a units conversion factor = 86.4, 𝑐𝑖,𝐸𝐺𝑅𝐸𝑇 is the estimated concentration on the ith sampled day in 

mg/L, 𝑐𝑖,𝑂𝐵𝑆 is the measured concentration on the ith sampled day in mg/L, 𝑄𝑖 is the discharge on 

the ith sampled day in m3/s, and 𝑛 is the number of sampled days (Hirsch & De Cicco, 2015). A 

positive flux bias indicates over-predictions of WRTDS concentrations, whereas a negative flux 

bias indicates under-predictions of WRTDS concentrations during sampled day periods. Water 

quality stations with at least 40 data points between 2000 and 2016 were considered in the 

WRTDS analysis. Stations with flux bias estimates less than -0.15 or greater than 0.15 were 

omitted from further analysis. 

Seasonal and annual flow-weighted concentrations (FWC or Cf) were calculated from measured 

daily discharge and WRTDS-estimated daily concentrations using the following equation: 

 

 
𝐶𝑓

∑ 𝐶𝑖𝑄𝑖
𝑛
𝑖=1

∑ 𝑄𝑖
𝑛
𝑖=1

 (10) 

 

in which Cf is the flow-weighted concentration, Ci and Qi are the concentration and discharge on 

the ith day respectively, and 𝑛 is the number of days. In the above equation, the numerator is the 

annual nutrient load, and the denominator is the total annual discharge.  
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2.4 Metrics  

 

2.4.1 Seasonality Index (SI) 

The Seasonality Index (SI), a metric that has traditionally been used to assess the seasonality of 

precipitation (Walsh & Lawler, 1981), was used in the present analysis to quantify seasonal 

variations in monthly flow-weighted concentrations.  SI is calculated according to the following 

equation: 

 

 

𝑆𝐼𝐶𝑓
=

1

𝑀
∑ |𝑀𝑖 −

𝑀

12
|

12

𝑖=1

 (11) 

 

in which M is the monthly sum of the flow-weighted concentrations and Mi is the average flow-

weighted concentration in month i. The SI index was similarly used to calculate seasonal index 

values for flow-weighted concentrations.  The SI index is theoretically bound between 0 (if all 

months have the same export) and 1.83 (if all export occurs in one month) (Walsh & Lawler, 

1981). SI ≤ 0.2 describes even seasonal distribution, 0.2 < SI ≤ 0.4 describes an essentially even 

seasonal distribution with larger values in some months, 0.4 < SI ≤ 0.6 describes a seasonal 

distribution with small values in some months, and SI > 0.6 describes strong seasonal variation 

(Tian et al., 2016; Walsh & Lawler, 1981).  The seasonality index was computed using monthly 

concentrations based on aggregating the daily water quality data estimated from the WRTDS 

model. 

 

2.4.2 Slope-b and the Coefficient of Variation of Concentration-Discharge Relationships: 

Event scale concentration-discharge dynamics were captured using the slope-b and CV ratio (3) 

metrics. Slope-b was estimated from the C-Q relationships by equating the natural logarithm of 

concentration as a function of the natural logarithm of discharge (2). Linear regression was then 

applied to extract the slope-b value for each water quality station, using a p-value threshold less 
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than 0.05. Sampled (i.e. measured) water quality and daily discharge data were analysed to 

estimate the slope-b and CV ratio. 

 

2.5 Multiple Regression Model to Understand Dominant Controls: 

In order to understand dominant controls on biogeochemical signatures, generalized linear 

models describing flow-weighted nutrient concentrations as a function of catchment 

characteristics were developed and applied to the ungauged basins of the Great Lakes. A major 

concern when conducting multiple regression analysis is the presence of multicollinearity, where 

one explanatory variable may be correlated with one or many other explanatory variables. The 

inclusion of highly correlated explanatory variables can result in negative consequences in the 

multiple regression analysis, including signs and magnitudes in the slope coefficients that may 

not make sense, high sensitivity in the slope coefficients (ex. small changes in data points 

drastically alters coefficient magnitudes), and the removal of significant variables when using 

stepwise regression techniques (Graham, 2003; Helsel & Hirsch, 1992). A commonly used 

diagnostic to assess multicollinearity is assessing the variance inflation factor (VIF) and 

eliminating explanatory variables with VIFs > 10 in the multiple regression analysis that may 

otherwise cause problems (Chatterjee & Hadi, 2006).  

Model selection was carried out using the Akaike information criterion (AIC): 

 

 𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(𝐿̂) (12) 

 

in which 𝐿̂ is the maximum value of the likelihood function of the model and 𝑘 is the number of 

estimated parameters in the model. Techniques such as stepwise regression which utilizes 

computer algorithms have been developed to automatically determine the most preferred model 

(Helsel & Hirsch, 1992). The main limitation when using procedures such as the forwards or 

elimination method is that not all models are evaluated and therefore, the best model may not be 

selected by the computer algorithm. Because techniques such as stepwise regression do not 

always guarantee the best model, every possible model combination was evaluated. For example, 

if five x-variables were selected to estimate flow-weighted nitrate-N concentrations, then 31 (i.e. 
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25 − 1) models are evaluated and the best model (based on lowest AIC and highest r-squared 

value) is selected. In total, 127 models were evaluated for nitrate-N and 255 models were 

evaluated for phosphorus. Multiple regression equations were constructed based on the annual-

average FWC as a function of the (significant) catchment variables (see Appendix B for list of 

catchment variables). The best MLR model was chosen according to the lowest AIC value. 

 

2.6 Developing maps of flow-weighted concentrations across the Great Lakes Basin 

Spatial maps of flow-weighted concentrations (10) for nitrate-N, SRP, and TP were developed to 

identify regional patterns and hotspots across the Great Lakes Basin. Single standardized 

regression was first applied between WRTDS-estimated FWC and catchment variables in order 

to identify dominant controls that would later be used to develop MLR models. Prior to the 

regression analysis, flow-weighted concentrations were natural-log (LN) transformed to 

strengthen the normality and linearity of the relationships. Catchment characteristics such as soil 

texture, land use, average temperature, and other variables were used based on area-weighted 

averages for the selected gauged watersheds (4). Once the watershed characteristics (i.e. 

catchment variables) exerting dominant controls were identified, and the best MLR model to 

estimate FWC was constructed as described in section 2.5, the MLR model was applied for all 

ungauged watersheds across the Great Lakes Basin.  

 

2.7 Estimating tributary loads to the Great Lakes 

Annual average tributary loads from gauged and ungauged basins were estimated across the 

Great Lakes region. The St. Lawrence basin was omitted from the analysis, as our goal was to 

estimate tributary load exports directly to the five Great Lakes. For this purpose, inland 

watersheds were also merged with their respective nearshore watersheds. Merging inland 

watersheds with the correct nearshore watersheds was achieved by utilizing stream network 

shapefiles (derived from a DEM) in order to identify the appropriate drainage point for which the 

inland and nearshore watersheds meet. Flow-weighted concentrations as well as annual average 

discharge were recalculated to account for the larger watershed areas. Loads from gauged 

stations were estimated using the following equation: 
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 𝐿𝑁,𝑎𝑛𝑛𝑢𝑎𝑙 = 𝐶𝑓 ∗ 𝑄𝑎𝑛𝑛𝑢𝑎𝑙 (13) 

 

in which 𝐿𝑁,𝑎𝑛𝑛𝑢𝑎𝑙 is the annual-average nutrient load (i.e. nitrate-N, SRP and TP), 𝐶𝑓 is the 

flow-weighted concentration (FWC), and 𝑄𝑎𝑛𝑛𝑢𝑎𝑙 is the annual averaged discharge. For gauged 

watersheds, 𝐶𝑓 is the flow-weighted concentration calculated using the WRTDS model, and 

𝑄𝑎𝑛𝑛𝑢𝑎𝑙 is the annual-average discharge calculated from the measured data. For ungauged 

watersheds, 𝐶𝑓 is the flow-weighted concentration using the MLR model, and 𝑄𝑎𝑛𝑛𝑢𝑎𝑙 is the 

annual-average discharge estimated from the single regression model (Figure 2.2). 

 

 

Figure 2.2. Annual-average discharge as a function of drainage area (p-value < 0.001). Annual Q 

is the annual-average discharge estimated from selected gauged streamflow stations across the 

Great Lakes.  

 

Figure 2.2 shows a strong correlation between drainage area and average annual discharge (R2 = 

0.82). By applying the single and multiple regression models for discharge and flow-weighted 

concentrations respectively, loads from ungauged tributaries in the Great Lakes were estimated. 
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R² = 0.8233
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3.0 Results and Discussion 

 

3.1 Mean Annual Flow-weighted Concentrations 

 

3.1.1 Dominant controls on the mean annual FWC 

The mean annual FWC values across the Great Lakes watersheds ranged from 0.04 – 11 mg/L 

for nitrate, 1–275 ug/L for SRP, and 9 – 1100 ug/L for TP. Of the 223 stations analyzed in the 

study across all nutrients, 136 stations for nitrate, 124 stations for SRP, and 158 stations for TP 

had flux-biases (9) between ±0.15 and were used for further analysis. A flux bias near zero 

means the WRTDS model is generally unbiased with respect to high or low fluxes.  

Regression analysis was used to quantify dominant controls on the mean annual FWC. The 

results of the regression analysis indicate that land use is a primary driver of flow-weighted 

nutrient concentrations in the Great Lakes watersheds.  As shown in Fig. 3.1 (and subsequently 

Table 3.1), percent agricultural and urban land had the highest standardized coefficient and r-

square values of all the variables evaluated, explaining around 76% of the variability (on 

average) across all three constituents. The strong positive correlation between FWC and percent 

agricultural and urban land is consistent with the understanding that nonpoint source pollution is 

the major contributor of high nutrient concentrations in streams (S. Carpenter et al., 1998; 

Sharpley et al., 1994). A negative correlation was observed between FWC and percent wetland 

cover, highlighting the significant role of wetlands in reducing the nutrient concentrations in 

human impacted watersheds. Of course, it should be acknowledged that there is significant cross 

correlation with the agricultural land cover and the wetland cover. 

Significant positive relationships were observed between FWC and percent tile-drained area 

across all nutrients, illustrating the role of subsurface drainage networks in bypassing the nutrient 

filtering abilities of the soil and thus contributing to enhanced nutrient export (Basu et al., 2011). 

It is interesting to note that the standardized regression coefficient (SRC) between FWC and 

percent tile drainage is the highest for nitrate, and lowest for TP, while that for SRP lies in 

between. This is possibly because N is transported primarily through the subsurface pathway, 

and is thus most strongly affected by tile-drains, while P is transported in particulate and 
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dissolved forms through both surface and subsurface pathways and is thus less impacted by tile-

drains. This is further corroborated by the fact that the more soluble form of P (SRP) has a higher 

SRC value than TP, which also includes the particulate form. Strong significant (p-value < 

0.001) relationships between FWC and the percent silt and clay fraction of the soil was observed 

as well. This can be attributed to the fact that a greater fraction of silt and clay indicates more 

surface runoff and thus a lower potential for nutrient attenuation within the subsurface.  

 

Table 3.1. Individual regression analysis of flow-weighted nutrient concentrations. Concentration 

variables were natural -log transformed to increase linearity and normality. AGRIURB is the  

combined percent agricultural and urban land; FOR is the percent forest; WET is the percent 

wetlands; TD is the percent tile drains; PD is the population density (persons/km 2); SLP is the 

percent slope; SILTCLAY is the combined percent silt and clay conte nt; PRECIP is the annual 

average precipitation (mm/yr); TAVG is the annual average temperature ( oC).  
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Figure 3.1 .  Bar plots representing standardized individual regression coefficients for flow -

weighted concentrations against selected  catchment characteristic s. Blue and red bars indicate 

positive and negative relationships, respectively.  P Agri and Urban, P Wetland, P Tile drains, P 

Silt and Clay, and P Slope are fractional areas  (in %) of land-use and soil; Tavg is the  annual 

average temperature in oC; Precip is the annual average precipitation (mm/yr);  Pop Density is the 

population density (persons/km2).  *: p < 0.05; **: p < 0.001. 
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3.1.2 Multiple Linear Regression Model between FWC and Catchment Characteristics 

Multiple linear regression models were developed to estimate FWC in the ungauged areas of the 

Great Lakes, as a function of catchment characteristics. A collinearity analysis was used to 

eliminate some of the variables identified in the previous section. Pearson’s correlation 

coefficients and VIFs were computed to determine the degree of collinearity between catchment 

(i.e. explanatory) variables (Table 3.2). The collinearity table only includes catchment variables 

found to be significant (p-value < 0.05) based on individual regression analyses for each nutrient. 

For example, drainage area was found to be insignificant (p-value > 0.05) when regressed 

individually against (natural-log transformed) flow-weighted nitrate-N, SRP, and TP 

concentrations, and were therefore removed from the VIF analysis. This elimination allowed for 

better interpretation of the VIF values for each variable and aided in the selection of variables 

appropriate for the multiple regression analysis. 

 

Table 3.2. Pearson’s correlation coefficients of catchment variables.  P Agri and Urban 

(AGRIURB), P Forest (FOR), P Wetland (WET), P Tile drains (TD), P Silt and Clay 

(SILTCLAY), and P Slope (SLP) are fractional areas of land -use and soil; TAVG is the average 

temperature in °C; PD is the population density in persons/km 2 ; Red values represent insignificant 

(p-value > 0.05) correlation between catchment variables .  

 

 

 

Results from the collinearity table indicate percent combined agricultural and urban land, as well 

as percent forested land having the highest correlations with respect to all other catchment 

variables (VIF > 10). The percentage of forested land-variable was therefore excluded in the 

multiple regression analysis because the percent combined agricultural and urban land-variable is 
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more important when assessing human impacts on flow-weighted nutrient concentrations. Tables 

3.3 and 3.4 provides a summary of the p-values and coefficients for the top 3 selected multiple 

regression models based on lowest AIC (12). Model 1 for each nutrient was used to estimate 

flow-weighted concentrations for the entire Great Lakes Basin. FWC estimated from the top 

MLR models were compared with WRTDS-estimated FWC to assess the accuracy of the 

regression models (Figure 3.2). 

Table 3.3. Summary of p -values of the three top multiple regression models for (natural -log 

transformed) nitrate-N, SRP, and TP. INT is the intercept; AGRIURB is the combined percent 

agricultural and urban land; WET is the percent wetlands; TD is the percent tile drains; SLP is the 

percent slope; SILTCLAY is the combined percent silt and clay content; PRECIP is the annual 

average precipitation (mm/yr); TAVG is t he annual average temperature ( oC). 
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Figure 3.2. Predictive (1:1) measure of (natural -log transformed) MLR flow-weighted 

concentrations against WRTDS-estimated flow-weighted concentrations for nitrate -N, SRP, and 

TP. 
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MLR estimates of (natural-log transformed) flow-weighted concentrations for nitrate-N, SRP 

and TP show moderate predictive power with R2 values of 76%, 61%, and 67%, respectively. 

 

 3.1.3 Spatial Patterns in Mean Annual FWC 

Using the multiple regression equations developed for nitrate-N, SRP and TP, FWC were 

estimated across the Great Lakes Area (Figures 3.3 – 3.5). The northern watersheds of Lakes 

Superior, Michigan, Huron and Ontario all display low-to-moderate FWC levels, with nitrate-N 

concentrations below 1 mg/L, soluble phosphorus concentrations ranging between 1 and 15 

µg/L, and total phosphorus concentrations ranging between 9 and 90 µg/L. The majority of Lake 

Erie watersheds showed much higher FWC for all three nutrients compared with watersheds 

draining into Lake Superior and the northern watersheds of Lake Huron and Ontario. In 

particular, hotspots (nitrate-N > 5 mg/L; SRP > 70 µg/L; TP > 200 µg/L) can be identified near 

the lower-west region of Lake Erie, specifically in the Lower Maumee watershed, as well as in 

the Thames and Sydenham River that drains into Lake St. Clair. These watersheds are largely 

impacted by human activities which is reflected by their high levels of agricultural land-use and 

tile-drainage densities. The nearshore watersheds of Humber-Don, Niagara, Genesee, and 

Oswego surrounding the urban regions of Lake Ontario show moderate FWC levels for nitrate-N 

(0.1 – 3 mg/L), SRP (10 – 35 µg/L), and TP (50 – 200 µg/L). The Saginaw watershed draining to 

the Saginaw Bay in Lake Huron shows moderate nitrate-N (0.5-2 mg/L), SRP (20-30 µg/L) and 

TP (100-120 µg/L) FWC. Hotspots were consistently shown in the Ausable, Pigeon-Wiscoggin, 

and Birch-Willow watersheds in Lake Huron, where the combined fraction of agricultural and 

urban land, as well as tile drainage densities exceeded 70%, and 40%, respectively. The lower 

western catchments of Lake Michigan (e.g. Lower Fox, Milwaukee, and St. Joseph), which have 

high urban and agricultural land use, displayed moderate nitrate-N FWC ranging between 0.5 

and 3 mg/L. Here, SRP and TP FWC are relatively higher, ranging from 30-70 µg/L and 140-200 

µg/L, respectively. 
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Figure 3.3. Flow-weighted concentrations for nitrate -N across the Great Lakes Watersheds.  

 

Figure 3.4. Flow-weighted concentrations for SRP across the Great Lakes Watersheds.  
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Figure 3.5. Flow-weighted concentrations for TP across the Great Lakes Watersheds . 

 

3.1.4 Nutrient Ratios across the Great Lakes Watersheds 

In addition to mapping the annual FWC, I analyzed and mapped nitrate-N to SRP, nitrate-N to 

TP, and SRP to TP ratios across the Great Lakes Basin (Figures 3.6 – 3.8). Ratios were 

calculated based on molar values of nitrate-N, SRP and TP. 
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Figure 3.6.  Nitrate-N to SRP ratio across the Great Lakes watersheds . Ratios are estimated by 

using FWC concentrations in mol/L.  

 

Figure 3.7. Nitrate-N to TP ratio across the Great Lakes watersheds. Ratios are estimated by using 

FWC concentrations in mol/L. 
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Figure 3.8. SRP to TP ratio across the Great Lakes watersheds . Ratios are estimated by using 

FWC concentrations in mol/L.  

 

Nitrogen to phosphorus ratios were found to vary across all the Great Lakes, averaging between 

160 – 210 for nitrate-N/SRP, 20 – 50 for nitrate-N/TP and 0.2 – 0.3 for SRP/TP. Relatively 

higher ratios were observed in agriculturally dominated (> 50%) regions of the Lower Thames 

(SRP/TP > 0.4, nitrate-N/TP > 90) and Cedar (SRP/TP > 0.4, nitrate-N/TP > 50) watersheds in 

Lake Erie. Low to moderate SRP/TP ratios were observed in the Nipigon watershed (SRP/TP < 

0.2) in Lake Superior, as well as the French watershed (SRP/TP < 0.1) in northern Lake Huron. 

The N/P ratios were also found to be relatively lower in urban areas of Lake Michigan (Lower 

Fox, Milwaukee) and Lake Ontario (Niagara, Genesee, and Oswego). Interestingly, the Saginaw 

watershed in Lake Huron displayed very high N/SRP ratios (> 200) compared to N/TP (< 50) 

and SRP/TP (< 0.2) ratios. Additionally, the Ausable watershed illustrated consistently high 

ratios for N/SRP (> 200), N/TP (> 90), and SRP/TP (> 0.5).  
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3.1.5 Nutrient Loads to the Great Lakes 

In addition to analysing the spatial variability of nutrient concentrations across the Great Lakes, I 

also estimated nutrient loads (13) to determine the overall annual-average export to the lakes 

from tributary sources between 2000 and 2016. Estimating nutrient loads is important because it 

provides a quantitative understanding of the conditions (and status) of the Great Lakes. Although 

nutrient loads (specifically total phosphorus) to the Great Lakes were reduced after the 

implementation of the GLWQA in 1978, the Great Lakes are still experiencing water quality 

degradation such as excessive eutrophication, high rates of algae production, and hypoxia 

(Robertson & Saad, 2011). It is therefore important to quantify nutrient loads in the Great Lakes 

in order to better our understanding of present conditions and develop strategies to mitigate poor 

water quality in streams and their receiving water body. 

Maps of nutrient yields for nitrate-N, SRP and TP are shown in Figures 3.9 – 3.11. Higher 

nutrient yields were consistently displayed in Lake Erie watersheds for all constituents, 

averaging 13, 0.3, and 0.8 kg/ha/yr for nitrate-N, SRP and TP, respectively. Total phosphorus 

yields for Lake Erie ranged from 0.2 to 1.7 kg/ha/yr. In Lake Huron, total phosphorus yields 

ranged between 0.03 to 1.4 kg/ha/yr. For Lake Michigan, TP yields were estimated between 0.05 

and 1 kg/ha/yr. Lake Ontario TP yield estimates ranged from 0.05 to 0.7 kg/ha/yr. Finally, Lake 

Superior TP yields were between 0.02 – 0.3 kg/ha/yr. Most of Lake Superior watersheds 

estimated lower average tributary yields (0.7, 0.02, and 0.2 kg/ha/yr for nitrate-N, SRP and TP, 

respectively) compared to all other Lakes. Hotspots in Lake Erie for SRP and TP were identified 

in the lower Maumee watershed with nutrient yield estimates of 0.3 and 1.3 kg/ha/yr, 

respectively. Large nitrate-N yields were also identified in the Lower Thames and Cedar 

watersheds in Lake Erie (approximately 29 kg/ha/yr), as well as the Sydenham watershed that 

drains to Lake St. Clair (7 – 10 kg/ha/yr). Consistently high nutrient yields were seen in the 

lower-eastern watersheds of Lake Huron. Specifically, the Ausable and Pigeon-Wiscoggin 

watershed yields were both greater than 0.4 and 0.9 kg/ha/yr for SRP and TP, respectively. 

Watersheds in Lake Ontario (e.g. Niagara, Oak Orchard and Genesse) showed moderate nutrient 

yields, averaging 4.5, 0.1, and 0.5 kg/ha/yr for nitrate-N, SRP and TP, respectively. Additionally, 

high SRP and TP yields were observed in the Manitowoc-Sheboygan, Milwaukee, and Pike-Root 

catchments in Lake Michigan (5 – 9 kg/ha/yr for nitrate-N; 0.1 – 0.3 kg/ha/yr for SRP; 0.6 – 1 

kg/ha/yr for TP), which encompass high levels agricultural, urban and tile-drained land. 
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Figure 3.9. Nitrate-N yields across the Great Lakes Watersheds. 

 

Figure 3.10. SRP yields across the Great Lakes Watersheds.  
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Figure 3.11. TP yields across the Great Lakes  Watersheds. 

 

Total annual-average tributary loads for nitrate-N, SRP and TP were calculated for each lake 

(Figure 3.12). Lake Erie displayed the largest average annual export for all three constituents. 

Total phosphorus estimates to Lake Erie was approximately 6200 tonnes per annum.  
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Figure 3.12. Bar plots of annual -average tributary export for each lake.  

 

This is similar to estimates reported by Maccoux et al (2016) and Dolan and Chapra (2012) 

where Lake Erie TP loads for (only) monitored and unmonitored areas averaged approximately 

6690 tonnes per annum between 2003 and 2013 (Maccoux, Dove, Backus, & Dolan, 2016) and 

6610 tonnes per annum between 2000 and 2008 (Dolan & Chapra, 2012). Total annual-average 

SRP export to Lake Erie was estimated to be approximately 2020 tonnes per annum, which is 
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relatively close to results reported by Maccoux et al (2016), where the average load from the 

monitored and unmonitored tributary estimates was approximately 1680 tonnes per annum 

between 2009 and 2013. TP annual-average load estimates for Lakes Michigan and Huron were 

higher (approximately 3700 tonnes per annum for Lake Huron; 3300 tonnes per annum for Lake 

Michigan) compared to load estimates reported by Dolan and Chapra (2012) (1920 tonnes per 

annum for Lake Huron; 2720 tonnes per annum for Lake Michigan). Differences in the load 

estimations are likely attributed to the methodologies used to calculate nutrient loads from 

monitored and unmonitored stations across the Great Lakes. Dolan and Chapra (2012) and 

Maccoux et al (2016) applied the Stratified Beale’s Ratio Estimator to estimate monitored 

tributary loads, in which data are broken into one or multiple strata (or layers) depending on the 

concentration and flow (Dolan & Chapra, 2012; Dolan et al., 1981; Maccoux et al., 2016). For 

unmonitored tributaries, a unit area load (UAL) procedure was used, in which the unmonitored 

catchment loads are calculated based on nearby monitored watersheds (Dolan & Chapra, 2012; 

Maccoux et al., 2016). One limitation regarding this method is failing to take into account the 

different land-use types from monitored watersheds when applied to estimate loads in 

unmonitored areas. Nutrient export to Lake Ontario and Lake Superior were observed to be the 

lowest for all constituents. In particular, total phosphorus estimates for Lake Ontario and Lake 

Superior were approximately 1690 and 1870 tonnes per annum, respectively. This was also 

similar to estimates from Dolan and Chopra (2012) where Lake Ontario and Lake Superior 

tributary TP load estimates were approximately 2060 and 2320 tonnes per year. 

 

3.2 Intra-annual patterns in flow-weighted concentrations (Seasonality) 

Understanding seasonal variability is important for developing sampling and remedial strategies 

for controlling nutrient export from human-impacted watersheds (Pionke, Gburek, Schnabel, 

Sharpley, & Elwinger, 1999; Zhu, Schmidt, & Bryant, 2012). An understanding of seasonal 

variability is also important when attempting to identify key drivers of nutrient processes and can 

lead to improved model prediction at larger spatial and temporal scales (Von Schiller et al., 

2008). In the present work, I have attempted to characterize seasonal variations in flow-weighted 

concentrations using two different approaches: 1) use of a seasonality index (SI), which allows 

us to quantify the extent of monthly variations in concentration throughout the year; and 2) 

pattern identification with regard to relationships between monthly concentrations and monthly 
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discharge. A non-parametric statistical test, namely the Wilcoxon Rank-Sum (or Mann Whitney 

U) test, was applied to assess statistically significant differences between two groups. This test 

assumes independence between the two groups being compared, with no requirement for 

normality. For the first approach, the two groups that were compared were SI values less than the 

25th percentile, and SI values greater than the 75th percentile. For the second approach, the two 

groups that were compared were the pattern of interest, and the combined remaining patterns. 

For both approaches, the variables that were compared were the catchment characteristics (e.g. 

percent agricultural land, percent silt and clay, etc.). 

 

3.2.1 Seasonality Index 

The seasonality of the flow-weighted nutrient concentrations, as quantified by the SI values (11), 

was found to show some variation among the three nutrients (Table 3.5). More specifically, both 

SRP (SI = 0.35) and TP (SI = 0.32) was found to show significantly greater seasonality (p-value 

< 0.001 for SRP; p-value < 0.05 for TP) than nitrate. More significant than any of the differences 

between nutrients, however, is the difference between the seasonality of nutrient concentrations 

and the seasonality of watershed discharge.  SI values for discharge, which range from 0.43 to 

0.77, are approximately double the concentration SI values (0.20 – 0.35), suggesting that 

seasonal concentrations are relatively chemostatic in comparison with seasonal discharge 

dynamics. Additionally, significant differences between SI groups less than the interquartile 

range (IQR) and greater than the IQR were compared. Specifically, in the comparison of 

watersheds with high (SI > IQR) and low (SI < IQR) seasonality in flow-weighted 

concentrations, SI was found to be significantly associated (p-value < 0.05) with watershed 

characteristics (Table 3.6), although the watershed drivers appear to vary according to the 

constituent in question.   
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Table 3.5. Seasonality Index (SI) Values  for nitrate-N, SRP and TP; iq25 and iq75 are the 25th 

and 75th percentiles, respectively.   

 

 

Higher nitrate seasonality, for example, is significantly associated with a higher median percent 

wetland (17%), lower percent urban and agricultural areas (4% urban; 46% agricultural), lower 

population densities (17 persons/km2), and lower tile drainage densities (2%).  Greater nitrate 

seasonality is also significantly associated with higher latitudes across the Great Lakes 

watersheds.  These results suggest that seasonal variations in nitrate concentrations are greater in 

less disturbed landscapes, while the seasonality of more developed landscapes is dampened. 

 

Table 3.6. Median values of selected catchment characteristics based on SI less than 25 t h and 75 th 

percentiles. Blue values represent medians that are significantly lower, red values represent 

medians that are significantly higher.  
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Interestingly, the characteristics of watersheds with high TP and SRP seasonality are quite 

different, with high seasonality being associated with higher median percent agricultural area 

(TP, 65%; SRP, 63%), a higher tile drainage density (TP, 7%; SRP, 6%), a higher percent silt 

and clay content (TP, 66%; SRP, 66%), but lower percent forested area (SRP, 18%).  Thus, for P, 

higher seasonality is observed in more agricultural landscapes and less urban-developed areas.  

Notably, high discharge seasonality is also significantly associated (p-value < 0.05) with high 

percent agricultural area and high tile drainage densities, suggesting that the seasonality of P 

concentrations in both dissolved and particulate forms is more closely linked with discharge 

dynamics than that of nitrate. 

 

3.2.2 Monthly Regime Curves 

As discussed in Section 3.2.1, watershed solute concentrations often exhibit significant 

seasonality. To better characterize these seasonal patterns, correlations between concentrations 

and discharge were quantified at the monthly scale.  Through this analysis, three primary patterns 

of seasonal behavior were identified: (1) in-phase; (2) out-of-phase; and (3) stationary. In-phase 

behavior is characterized by a positive linear relationship (p-value < 0.05) between monthly 

flow-weighted concentrations and monthly mean discharge, while out-of-phase behavior has a 

negative linear relationship (p-value < 0.05).  In contrast, watersheds with biogeochemically 

stationary behavior exhibit no significant relationship with monthly discharge (p-value > 0.05) 

and little seasonality (SI < median SI). Table 3.7 summarizes the statistical differences between 

in-phase, out-of-phase, and stationary watershed groups in relation to individual catchment 

characteristics. 
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Table 3.7. Median values of Seasonality Index (SI) and selected catchment characteristics based 

on in-phase, out-of-phase, and stationary watershed groups for nitrate-N, SRP and TP. Blue values 

represent medians that are significantly lower, red values represent medians that are significantly 

higher,  and gray values show no significant difference.  

 

 

As shown in Figure 3.13 (a,b,c), in-phase watersheds commonly show maximum concentration 

values in winter or early spring, coinciding with increased winter stream flows and periods of 

spring snowmelt.  Notably, the highest discharge months are almost always either March or April 

(> 90% of watersheds), and watersheds exhibiting in-phase behavior for P also show 

concentration peaks during these two months (63% SRP; 60% TP). These results suggest that in-

phase behavior for P is strongly driven by discharge and landscape dynamics associated with 

snowmelt and overland flow. For nitrate-N, however, watersheds demonstrating in-phase 

behavior illustrate a lack of synchronicity between discharge and concentration values during the 

winter and spring months.  More specifically, the in-phase watersheds commonly show 

concentration peaks in the winter (December, January, and February) months (71% of in-phase 

watersheds), while only 26% show concentration peaks during March and April, when discharge 

peaks. Accordingly, although the relationships between monthly concentration and discharge for 

nitrate are significant for in-phase watersheds, the asynchrony between spring discharge peaks 

and winter concentration peaks suggests that higher nitrate concentrations are in general less 
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associated with surface hydrology than with other winter dynamics such as reduced plant uptake 

(Cambardella et al., 1999), high mineralization rates during freeze-thaw events (Matzner & 

Borken, 2008), and rising water tables providing connectivity between upland streams and high-

nitrate pore water (Molenat, Gascuel-Odoux, Ruiz, & Gruau, 2008).  

 

 

 

Figure 3.13. Concentration and flow regime curves for nitrate, total P, and soluble reactive P 

across the Great Lakes Basin.  Both concentration and discharge are represented here as 

normalized values to allow for comparison between watersheds. Our results show three  primary 

patterns of behavior: (1) In-Phase (panels a,b,c), characterized by positive significant 

relationships (p-value < 0.05) with discharge; (2) Out-of-Phase (panels d,e,f), characterized by 

negative significant relationships (p-value < 0.05) with discharge; and (3) Stationary (panels 

g,h,i) , characterized by low seasonality (SI < median SI) and no significant relationship with 

discharge (p-value > 0.05).  In all, these three patterns account for 77%, 80%, and 80% of all 

watersheds for nitrate -N, SRP, and TP, respectively.  

 

For all of the constituents, the in-phase concentration regimes are observed in watersheds with 

high percent agricultural areas (65%) and high tile drainage densities (>10%), as well as those 

with higher precipitations rates (>870 mm/year). In contrast, out-of-phase concentration regimes 
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(Figure 3.14 (d,e,f)) show clear summer concentration peaks, with the majority of out-of-phase 

watersheds demonstrating maximum concentrations in August (nitrate-N, 40%; SRP, 58%; TP, 

60%), a time that coincides with high plant nutrient uptake (Bennett, Mutti, Rao, & Jones, 1989), 

near-peak temperatures, and low streamflow conditions conventionally not associated with high 

stream concentrations.  For both nitrate-N and TP, the out-of-phase regime is somewhat rare, 

being observed in only 7% and 9% of the study watersheds, respectively. In contrast, the out-of-

phase pattern is the most common concentration regime for SRP, with 30% of watersheds 

exhibiting this behavior. For nitrate, the out-of-phase watersheds are clearly characterized by 

significantly higher (p-value < 0.05) population densities (264 persons/km2) and a higher percent 

urban area (15%), suggesting that effluent from wastewater treatment plants may be driving 

summer nitrate concentrations. Out-of-phase SRP behavior is also significantly (p-value < 0.05) 

linked to higher percent urban areas (11%), but population densities (84 persons/km2) are lower 

for the SRP out-of-phase watersheds than for watersheds showing this pattern for nitrate. Out-of-

phase TP watersheds, however, show no significant relationship with urban areas. Instead, they 

are distinguished by their relatively higher watershed slopes (2.5%) and smaller watershed areas 

(143 km2). In general, higher concentrations during periods of low summer flow are suggestive 

of point source contributions. Whether these are conventional point sources such as wastewater 

treatment plants, as suggested by the nitrate and SRP dynamics, or less conventional point 

sources such as wetlands or reservoirs, as may be the case with TP, may vary according to not 

only constituent, but the location of potential sources proximal to water quality sampling stations 

as well.  

The stationary concentration regime occurs in 26% of watersheds for nitrate-N, 23% for SRP, 

and 35% for TP. As can be seen in Figure 3.13 (g,h,i), the discharge seasonality remains 

equivalent to that seen in the other concentration regimes, but there is little to no variation in 

solute concentrations across seasons.  For nitrate, stationarity is particularly associated with low 

tile drainage densities (1.3%) and a somewhat higher urban footprint (population density, 90 

persons/km2; 12% urban area). In this case, lower tile drainage densities are likely reducing the 

transport of nitrate during the winter months, while higher population densities, through 

increased N loading from wastewater and industrial discharges, are increasing summer 

concentrations, resulting in a flattened concentration curve.  For SRP, very different drivers seem 

to be at play, as stationarity is significantly (p-value < 0.05) associated with lower population 
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densities (24 persons/km2) but higher percent wetland areas (14%).  In these relatively less-

impacted areas, wetlands appear to be a major driver of SRP regimes and may reflect seasonal 

variations in SRP internal loading dynamics, with the wetlands serving as a source during the 

low-flow summer months but a potential sink during winter and spring (Reddy, Diaz, Scinto, & 

Agami, 1995). 

 

3.3 Concentration-Discharge Relationships 

In Section 3.2, concentration-discharge relationships at a monthly scale were analyzed as a 

means of understanding linkages between watershed characteristics and varying seasonal 

concentration regimes for nitrate, total P, and soluble reactive P.  In this section, I explore how 

event-scale concentration-discharge dynamics vary across the Great Lakes Basin? 

 

3.3.1 Quantifying Event-Scale C-Q relationships in the Great Lakes Watersheds 

Event-scale concentration-discharge metrics have been developed as a means of classifying 

nutrient export regimes for catchments (P. Haygarth et al., 2004) and are increasingly becoming 

valuable tools for understanding catchment functionality (Musolff et al., 2015), simplifying 

predictions of biogeochemical signatures, and assisting managers to develop and implement 

strategies in improving water quality (S. R. Carpenter, 2002; Clark et al., 2001).  In the present 

study, I focused primarily on two metrics, “b-values” and concentration-discharge variance 

ratios. 

In some watersheds, concentrations may increase during rain or snowmelt events (accretion 

patterns), while in others, concentrations may decrease (dilution patterns), or remain relatively 

flat (chemostatic). The relationship between concentration and discharge is commonly 

understood to be in the empirical form of a power law function (1) (Basu et al., 2010; P. 

Haygarth et al., 2004; Vogel, Rudolph, & Hooper, 2005). Event-scale patterns can be 

characterized by the slope-b value, with high positive values representing accretion patterns and 

large negative values indicating dilution patterns. Within this framework, smaller slope-b values 

are associated with more chemostatic behavior (Basu et al., 2010; Godsey et al., 2009), meaning 
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that concentration remains constant regardless of variations in discharge. Figure 3.14 illustrates 

examples of selected catchments with accretion, dilution, and stationary patterns for selected 

nitrate-N catchments. The CV ratio (3) measures the overall variability in concentrations with 

respect to variations in discharge. Low CV ratios (< 0.3) indicate chemostatic behaviour whereas 

higher CV ratios illustrate chemodynamic behaviour of the catchment. Histogram plots (Figure 

3.15) were constructed to summarize the overall distribution of slope-b and CV ratio values for 

all constituents. Note that catchments with acceptable flux-biases (within ± 15%) and significant 

slope-b magnitudes (p-value < 0.05) are presented. Slope-b values in the Great Lakes watersheds 

ranged between -0.6 – 1.3 for nitrate-N, -0.7 – 1.3 for SRP, and -0.3 – 1.4 for TP. CV ratio 

magnitudes ranged from 0.1 to 4.0 for nitrate-N, 0.2 to 4.2 for SRP, and 0.2 to 3.3 for TP. 

Additionally, variation in the slope-b and CV ratio among the three nutrients were also found. 

Specifically, median slope-b for TP (0.30) was significantly (p-value < 0.05) higher than nitrate-

N (0.22), indicating stronger accretion patterns for phosphorus. Additionally, median CV ratio 

for nitrate-N (0.41) was significantly lower than both SRP (0.77) and TP (0.63), suggesting more 

chemostatic behaviour for nitrogen compared to chemodynamic behaviour which is more 

commonly observed for phosphorus (Basu et al., 2010; Thompson et al., 2011).  
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Figure 3.14.  Natural-log transformed C-Q plots of selected catchments for nitrate -N. Regression 

slopes were significant with p -value < 0.05.  
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Figure 3.15. Histogram plots of slope-b  and CV ratio 

 

3.3.2 Slope-b vs. CVR relationship 

The degree of correlation between slope-b (obtained from lnC – lnQ relationship) and CV ratio 

can be expressed with Pearson’s correlation coefficient (Jawitz & Mitchell, 2011). Musolff et al 

(2015) proposed a plot which visualizes the biogeochemical signatures of solutes and nutrients 

by combining the slope-b metric and CV ratio. The x-axis shows the CV ratio which describes 

the variability of concentrations with respect to the variability of discharge. The y-axis shows the 

slope-b magnitudes which describe the type of chemostatic behaviour of the watershed (i.e. 

accretion behaviour if slope-b > 0, dilution behaviour if slope-b < 0). Figure 3.16 illustrates the 

biogeochemical responses of selected watersheds in the Great Lakes region for nitrate-N, SRP 

and TP.  
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Figure 3.16. Slope-b as a function of CVR correlation plots for nitrate -N, SRP and TP. Blue 

represents Lake Erie catchments; green represents Lake Ontario catchments; red represents Lake 

Huron catchments; yellow represents Lake Michigan catchments; purple represents Lake Superior 

catchments.  Only stations with significant slopes (p-value < 0.05) are y shown.  

 

The plots provide a visual aid in understanding the extent to which concentration variability is 

driven by discharge, and also highlight other potential processes that may influence nutrient 

export (Musolff et al., 2015). Points that are on the dashed 1:1 line represent watersheds in which 

the CV ratio is primarily influenced by the slope-b. Points that deviate from the boundary line 

are ones in which other processes may affect CV variability like local denitrification, etc. 

(Musolff et al., 2015). Figure 3.17 shows a greater number of watersheds with significant 
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dilution pattern for nitrate-N (p-value < 0.05) and SRP catchments (26% nitrate-N; 27% for 

SRP); whereas, only 4% of TP catchments exhibit this type of behaviour. Additionally, CV ratios 

illustrate larger scatter for SRP (average CV ratio = 0.96) and TP (average CV ratio = 0.73), 

compared to nitrate-N (average CV ratio = 0.56). Differences in slope-b and CV ratios were also 

observed for individual lakes (Table 3.8). For example, median nitrate CV ratio and slope-b for 

Lake Erie were significantly lower than Lakes Huron, Michigan, Ontario, and Superior.  

 

Table 3.8. Median slope-b  and CV ratios for nitrate-N, SRP and TP based on Lake.  

 

 

Lower nitrate CV ratio for Lake Erie was also associated with higher median agricultural land 

(71%, p-value < 0.05), and higher tile drainage (23%, p-value < 0.05). Significantly lower CV 

ratio for TP in Lake Erie catchments was also associated with higher agricultural (73%) and tile 

drainage (34%) percentages. This chemostatic behavior in the intensively managed catchments 

surrounding Lake Erie is associated with high levels of agricultural production and points to the 

role of legacy as a buffer mechanism for reducing concentration variability (Basu et al., 2010; 

Musolff et al., 2015; Thompson et al., 2011). For Lake Ontario, median SRP slope-b was 

significantly lower compared to Lake Huron. Median nitrate-N and SRP slope-b values for 

Ontario were also significantly associated with lower agricultural (nitrate-N, 49%; SRP, 43%) 

and tile drainage (nitrate-N, 1%; SRP, 1%) areas, higher population densities (nitrate-N, 89 

persons/km2; SRP, 95 persons/km2), and higher percent slope (nitrate-N, 4%; SRP, 3%). 

Additionally, lower median slope-b for TP in Lake Michigan catchments were associated with 
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larger urban areas (10%) but lower percent slope (0.7%). For Lake Huron catchments, 

significantly higher median CV ratio for TP (0.76) was associated with higher forested area 

(24%), higher percent slope (3%), lower urban area (4%), and lower population density (21 

persons/km2).  

 

4.0 Study limitations and conclusions 

Nutrient pollution is a major driver of eutrophication in many water bodies across the Great 

Lakes Basin. This research study has focused on quantifying dominant controls on stream 

nutrient concentrations across the GLB at three temporal scales: annual scale, seasonal scale and 

event scale. Numerous watershed drivers, including land use, soil, climate and other watershed 

characteristics were analyzed to quantify controls on nutrient export. Regression analyses and 

other statistical techniques that were used in this study helped identify relationships between 

multiple variables that became important in identifying key hydrologic and biogeochemical 

signatures. 

The limitations encountered when using regression-based techniques for exploratory analysis 

include a lack of regularly obtained stream water quality measurements in certain monitoring 

locations, limited frequency of sampling measurements at certain times of the year (e.g., fewer 

sampling measurements in the winter versus summer season; low-flow season versus high-flow 

events, etc.), and the presence of multi-collinearity in the multiple regression analysis. 

Additionally, data pertaining to catchment characteristics such as land use and climate were 

static (i.e. changes in land-use over time were not considered).  

Future work may include assessing changes in biogeochemical signatures over time, e.g., 

exploring water quality before, during, and after the establishment of the GLWQA, particularly 

under changing land use and climate. Uncertainty analysis with regard to the WRTDS estimates 

(such as extracting the ‘standard errors’ of the model coefficients or applying Monte Carlo 

analyses) were beyond the scope of this study; however, it is critical to consider this component 

of error analysis in future work. Additionally, methods to estimate annual-average flow may also 

be improved. The current method utilizes a simple single-regression model where annual-

average discharge is a function of drainage area only. An alternative approach is to apply the 
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area ratio method (ARM), in which discharge in an unmonitored area is estimated by multiplying 

the ratio of the drainage areas for the unmonitored and nearby monitored gauging station, by the 

annual-average discharge of the nearby monitored discharge station (Emerson, Vecchia, & Dahi, 

2005; Fry et al., 2014). 

At the annual scale, mean annual flow-weighted nutrient concentrations for selected basins were 

computed within the Great Lakes Basin. FWC were then individually regressed against selected 

catchment characteristics, including percent agricultural and urban land use, percent silt and clay 

content, percent slope, and others. The results from our analysis showed land use (e.g. percent 

agricultural and urban land, percent wetlands, etc.) as the strongest driver of flow-weighted 

concentrations for nitrate-N, SRP and TP. Other significant drivers included percent silt and clay 

content (62%), and percent tile drainage (54%). Multiple regression analysis was used to 

estimate nutrient concentrations across the Great Lakes watersheds to identify nutrient hotspots. 

Hotspots for nitrate-N, SRP and TP were found in the Lake Erie watersheds, specifically the 

lower Maumee and Sydenham River catchments. Lowest nutrient concentrations were observed 

in Lake Superior watersheds. Moderate concentrations for nitrate-N (0.5 – 3 mg/L), SRP (15 – 

40 µg/L) and TP (100-180 µg/L) were found in the Lower Fox catchment of Lake Michigan and 

the Saginaw Bay catchment of Lake Huron.  

Annual average loads were estimated using multiple regression analysis to determine the total 

annual average export for each lake. Lake Erie was observed to have the highest load for all three 

nutrients, whereas Lake Superior showed the lowest average annual export, with the exception of 

total phosphorus. Spatial patterns across the Great Lakes showed Lake Erie Basins consistently 

generating the highest annual average yields (approximate 13, 0.3, and 0.8 kg/ha/yr for nitrate-N, 

SRP and TP, respectively). Hotspots for annual average SRP and TP loads were reflected in the 

human-impacted catchments of Lakes Erie (Lower Maumee and Sydenham), Huron (Ausable 

and Pigeon-Wiscoggin), and Michigan (Manitowoc-Sheboygan, Milwaukee, and Pike-Root).  

Seasonal variations in flow-weighted concentrations were explored based on the seasonality 

index and regime curve patterns. Findings from our analysis showed significantly higher 

seasonality for SRP and TP, compared to nitrate-N. Discharge seasonality was found to be much 

higher (0.43 – 0.77) than FWC seasonality (0.2 – 0.35). The seasonality index for FWC was 

found to be significantly associated with catchment characteristics. Higher nitrate-N seasonality 
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index values for example, were found to be linked with lower percent urban and agricultural 

areas, lower population densities, and lower tile drainage densities. In contrast, higher SI values 

for phosphorus were associated with larger agricultural area, higher tile drainage density, and 

lower forested area. 

Regime curves for flow-weighted concentrations were characterized based on correlations 

between monthly FWC and discharge. Three patterns of seasonal behaviour were identified, 

namely ‘in-phase’ (positive correlation between monthly FWC and monthly mean discharge), 

‘out-of-phase’ (negative correlation between monthly FWC and monthly mean discharge), and 

‘stationary’ (no significant relationship between monthly FWC and monthly mean discharge). 

Out-of-phase behaviour was more frequently observed for SRP than for nitrate-N or TP. 

Additionally, higher concentrations during low-flow periods suggests point-source contributions 

such as wastewater treatment plants, reservoirs, or wetlands (as a source). Stationary regime 

curves for nitrate-N may be attributed to lower export in the winter months in relation to lower 

tile drainage density, but higher export in the summer months from wastewater effluents in 

catchments with larger population density.  

Event-scale concentration-discharge metrics (i.e. slope-b and CV ratio) were estimated in order 

to understand concentration variability as a function of discharge and identify potential controls 

between concentration and discharge for catchments in the Great Lakes area. In my analysis 

based on the sampled watersheds within the Great Lakes, I observed significantly higher median 

slope-b values for TP compared to nitrate-N.  Additionally, the median CV ratio for nitrate-N 

was significantly lower than for both SRP and TP, suggesting more chemostatic behaviour for N 

and chemodynamic behaviour for P. The slope-b versus CV ratio plot illustrated a greater 

number of (significantly) dilution-driven catchments for SRP (35%) and nitrate-N (26%) 

compared to TP (4%). CV ratios for phosphorus were also observed to be higher compared to 

nitrate-N. Differences in slope-b and CV ratios between individual Lakes showed lower CV ratio 

for nitrate-N and TP in Lake Erie catchments, which were significantly associated with higher 

agricultural area and tile drainage densities. Median slope-b values for nitrate-N (0.20) and SRP 

(0.12) in Lake Ontario watersheds were associated with higher population densities and percent 

slope, as well as lower agricultural and tile drainage areas. Significantly lower slope-b and CV 

ratios for TP in Lake Michigan were associated with lower forest areas and lower percent slope. 
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Catchments in Lake Huron showed significantly higher median CV ratios for TP (0.76) 

compared to all other lakes, which was found to be associated with significantly higher forested 

area (24%).  
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Appendices 

Appendix A – Summary of water quality stations and associated error metrics for WRTDS 

Table A.1. Summary of sampled water quality stati ons across the Great Lakes. FluxB, PBS, and 

NSE are the Flux-bias, Percent Bias, and Nash-Sutcliffe, respectively.  
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Table A.2. Summary of sampled water quality stations across the Great Lakes. FluxB, PBS, and 

NSE are the Flux-bias, Percent Bias, and Nash-Sutcliffe, respectively.  
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Table A.3. Summary of sampled water quality stations across the Great Lakes. FluxB, PBS, and 

NSE are the Flux-bias, Percent Bias, and Nash-Sutcliffe, respectively.  
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Table A.4. Summary of sampled water quality stations across the Great Lakes. FluxB, PBS, and 

NSE are the Flux-bias, Percent Bias, and Nash-Sutcliffe, respectively.  
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Table A.5. Summary of sampled water quality stations across the Great Lakes. FluxB, PBS, and 

NSE are the Flux-bias, Percent Bias, and Nash-Sutcliffe, respectively.  
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Table A.6. Summary of sampled water quality stations across the Great Lakes. FluxB, PBS, and 

NSE are the Flux-bias, Percent Bias, and Nash-Sutcliffe, respectively.  
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Table A.7. Summary of sampled water quality stations across the Great Lakes. FluxB, PBS, and 

NSE are the Flux-bias, Percent Bias, and Nash-Sutcliffe, respectively.  
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Appendix B – Summary of Gridded Data Sources 

Table B.1. Summary of Data Sources for selected catchment characteristics  

Data Variable(s) Title 
Spatial 

Coverage 
Author(s)/Organization 

Land-use (Agriculture, 

Forested, Urban, 

Wetlands, etc.) 

Annual Crop Inventory (2015) Ontario Agriculture and Agri-Food Canada 

Land-use (Agriculture, 

Forested, Urban, 

Wetlands, etc.) 

National Land Cover Database 

(2011) 

U.S. Multi-Resolution Land Characteristics 

(MRLC) Consortium 

Soil Texture (Percent 

Sand, Silt, and Clay) 

Harmonized World Soil 

Database 

Global Food and Agriculture Organization of 

the United Nations (FAO), International 

Institute for Applied 

Systems Analysis (IIASA),  ISRIC-World 

Soil Information, Institute of Soil Science 

– Chinese 

Academy of Sciences (ISSCAS), Joint 

Research Centre of the European 

Commission (JRC) 

Soil Texture (Percent 

Sand, Silt and Clay) 

Detailed Soil Survey (DSS) Ontario National Soil Database (NSDB) 

Soil Texture (Percent 

Sand, Silt and Clay) 

Area- and Depth-Weighted 

Averages of Selected 

SSURGO Variables for the 

Conterminous United States 

and District of Columbia 

U.S. Michael E. Wieczorek, USGS-WRD 

MDWSC, Geographer 

Tile Drainage 

Percentages 

Tile Drainage Area shapefile Ontario Ontario Ministry of Agriculture, Food 

and Rural Affairs (OMAFRA) 

Tile Drainage 

Percentages 

Tile Drainage Area shapefile U.S. USDA, NASS, 2012 Census of 

Agriculture 

Climate (Precipitation 

and Temperature) 

Worldclim 2: New 1-km spatial 

resolution climate surfaces for 

global land areas (1970-2000) 

Global Fick, S.E. and R.J. Hijmans, 2017 

Slope Ontario Flow Assessment Tool 

(OFAT) 

Ontario Ministry of Natural Resources and 

Forestry 

Slope Hydrologic Landscape 

Regions of the US 

U.S. Wolock, D.M., Thomas, C.W., Gerard, 

M. 

Population Density Ontario Population 2011 

Census data 

Ontario UWaterloo Geospatial Center Library 

Population Density Sub-County 2010 Census data U.S. United States Census Bureau 
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Appendix C – Normal probability plots of residuals from MLR models used to estimate 

FWC across the Great Lakes Watersheds 

 

 

Figure C.1 Normal probability plots of MLR model residuals for nitrate -N, SRP and TP. 

 


