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Abstract

Transitive factorizations faithfully encode many interesting objects. The well-known ones include
ramified coverings of the sphere and hypermaps. Enumeration of specific classes of such objects
have been known for quite some time now. Hurwitz numbers, monotone Hurwitz numbers
and hypermaps numbers were discovered using different techniques. Recently, Carrell and
Goulden found a unified algebraic approach to count these objects in genus 0. Jucys-Murphy
elements and centrality play important roles in establishing induction relations. Such a method is
interesting in its own right. Its corresponding combinatorial decomposition is however intriguingly
mysterious. Towards a understanding of direct combinatorial analysis of multiplication of arbitrary
permutations, we consider methods, especially operators on symmetric functions, and related
problems in symmetric groups.
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Chapter 1

Introduction

This thesis is motivated by counting problems of a family of objects that come up in many
different areas of mathematics [22]. Grothendieck calls them Dessins d’Enfants — children’s
drawings. Algebraic geometers see them coming from moduli spaces of complex algebraic curves.
Mathematical physicists often use them to model objects arising from quantum mechanics.
Topologists know them as branched coverings of the Riemann sphere. Bijective combinatorialists
prefer to think of them as (combinatorial) maps — 2-cell embeddings of graphs on orientable
surfaces. Conveniently, all of the above can be encoded as factorizations of permutations.

Not surprisingly, enumerative problems of permutation factorizations are posed and studied in
many different ways. One often counts factorizations with respect to a genus parameter due to
connections to branched covering of the Riemann sphere. For example, the earliest result dates
back to 1886 when Hurwitz sketched the proof for the number of genus 0 branched coverings
where all but 1 branching points are simple [18]. The geometry of Hurwitz Numbers remains an
active research area [21]. On the other hand, physical interpretations of factorizations lead to
interest in enumerating maps equipped with some additional objects, e.g. spanning trees. Such
problems are of course inherently more difficult. Many are open problems [2].

There are many beautiful results in permutation factorizations that promote the subject from
within combinatorics. A classic one is the enumeration of minimum factorizations of a full n-cycle
into transpositions. The answer is the tree number n"~2. Elegant results like this often excite
combinatorialists for they tend to reveal interesting decompositions. For example, Bousquet-
Mélou and Schaeffer discovered a fruitful bijection between factorizations whose corresponding
combinatorial maps are connected and certain families of decorated trees [3]. This bijection has
been extended in many different directions to count various classes of combinatorial maps with or
without additional structures [1, 9]. For a survey on the planar combinatorial maps, see [28].

The symmetric group algebra is a suitable setting for permutation factorization problems. Its
centre, consisting of elements that commute with every element, can be identified with symmetric



functions. This correspondence opens doors to many effective algebraic enumerative techniques.
Goulden and Jackson were the first to write down a proof for the aforementioned Hurwitz number
using symmetric functions and combinatorial analysis on multiplication of transpositions [16].
Moreover, this correspondence is often a 2-way street. Many interesting questions in symmetric
functions arise from working with permutation factorizations. A well-known one is the so called
b-conjecture regarding coefficients of Jack symmetric functions [11].

Many methods have been used to attack enumeration of permutation factorizations. Although
it is not possible to list them all, we nonetheless give references to some relevant works here.
Tutte enumerated various classes of combinatorial maps using the so called quadratic method [17,
Section 2.9]. Representation theory and symmetric functions are used by Goulden and Jackson
[16], Goulden, Guay-Paquet, and Novak [12, 13], and Carrell and Goulden [!]. Integrable hierarchy
is used by Goulden and Jackson [15], Carrell and Chapuy [5], and Carrell [6]. Bijective approaches
have been used by Bousquet-Mélou and Schaeffer [3].

One of the recent results is a unified algebraic proof of three special classes of permutation
factorizations discovered using very different tools [1]. An interesting induction technique is used
in the centre of group algebra. The purpose of this thesis is to collect methods related to this
approach to obtain induction relations in the symmetric groups.

1.1 Overview

One of the contributions of this thesis is to bring together results related to operators on
symmetric functions that model an induction behaviour in symmetric groups involving multiplica-
tion by Jucys-Murphy elements. We survey works by Lassalle [21], Féray [10] and Carrell and
Goulden Carrell and Goulden. Another contribution of this thesis is a generalization of Lassalle’s
group specific operators to operators that describes the same behaviour simultaneously for all
symmetric groups, thus providing a more general context for extension. Our generalization allows
systematic and possibly computation for such operators as oppose to Lassalle’s ad-hoc approach.

Section 1.2 is a brief discussion on related counting problems on permutation factorizations.
We consider permutation factorizations in connected and not necessarily connected cases.

Chapter 2 is a short essay where we set up combinatorial and algebraic frameworks. We bring
in relevant facts from representations of finite groups and symmetric functions. We explain how
each of these tools enters the big picture.

Chapter 3 describes a family of differential operators £ which is one of the tools for finding
induction relations. As an application of £ operators, we obtain some linear relations in central
characters.

Chapter 4 considers a problem generalized from permutation factorizations in the not necessarily
connected case. Using linear relations in central characters, we obtain induction relations for their



coefficients. We also discuss the combinatorics in a special case which leads to a generating series
involving contents defined in Chapter 6.

Chapter 5 picks apart the £ operators. The method used in Chapter 4 is extended to obtain
another family of operators U first considered by Carrell and Goulden. The combinatorics of
these operators involves an add-a-vertex operation and multiplication by powers of Jucys-Murphy
elements. As we will see, the £ operators are group specific. We present a new result generalizing
that to a family called £(t) operators that does not depend on a particular symmetric group.
In other words, the £(t) operators describe the same multiplication by Jucys-Murphy elements
behaviour simultaneously for all symmetric groups. We also reveal a natural parameter h and
obtain a generating series with respect to h using some tools from mathematical physics.

Chapter 6 is our final chapter. Generalizing from 3 classes of permutation factorizations,
we define a generating series ®f (w)(z,y,p) involving contents of partitions. The U operators
and its combinatorial interpretation are used to obtain a partial differential equation for which
of (I)(z, y, p) is the unique solution satisfying some initial condition. We will also see that the h
parameter can be interpreted as the genus of U operators. As a final application, we obtain a
partial differential equations for the genus 0 portion of ®f (x)(z, Y, P).

1.2 Two Counting Problems

Let 0g € 8,, be an arbitrary permutation. An (unrestricted and ordered) m-factorization of oq
is a tuple (o1,...,0.,) such that o1,...,0, € 8, and o1 --- 0y, = 0¢. For example, (id,id) and
((12), (12)) are all the ordered 2-factorizations of the identity permutation id € 82. For each m > 1,
one can ask for the number of m-factorizations of gg. The answer is fairly straightforward: If
m = 1, then the factorization is unique. For m > 2, we can first freely choose m — 1 permutations
01y...,0m—1 from 8,. The last factor o, = a;nl_l oy 100 is then completely determined.
Therefore the answer is n!™ 1.

The problem is not much more difficult when we require some but not all factors to be
chosen from non-empty strict subsets of 8,,. Let Si,...,S, be non-empty subsets of 8, with
some S; = §8,,. We can freely choose o € S, for k € {1,...,i—1,i+1,...,m}. Then o; =

oY o togot Uijrll is completely determined. Hence, the answer is [S1|- - [Sy|/n!. If all
restriction sets Si,. .., S, are non-empty strict subsets of §,,, then knowledge about the last choice

o; becomes crucial. In general, this is a challenging problem. Some structure on the restrictions is
required to make it tractable.

This motivates the class expansion problem: Given conjugacy classes Cy,..., Gy, of 8§, not
necessarily distinct, what is the cycle type of the product oy - - - o, if 0; must be chosen from C;
fori=1,...,m?



The class expansion problem has a nice formulation in the group algebra C[8,]. We explain
these notions and properties in the next chapter. It turns out that conjugacy classes are linearly
independent in C[8,,] and products of conjugacy classes are linear combinations of conjugacy
classes. So the class expansion problem can be restated as follows: Let Cq,...,Cy,, be conjugacy
classes in C[8,,], not necessarily distinct. Let C, € 8,, be another conjugacy class. What is the
coefficient of C, in Cy---Cp, ¢ This is equivalent to counting m-factorizations with restrictions
Ci,...,C and gg € C,.

Historically speaking, class expansion with a connectivity condition attracted more attention
than the vanilla version thanks to various bijections. An m-factorization o1 - - -0, = 0g in 8, is
transitive if the subgroup (o1, ...,0p,) acts transitively on {1,...,n}. Equivalently, the diagram
obtained by superimposing functional diagrams of individual factors o1, - , o, is connected.

There is a well-known bijection between transitive m-factorizations and branched coverings of
the Riemann sphere. The transitivity condition translates to topological connectedness of covering
spaces. Furthermore, m-factorizations also faithfully encode (combinatorial) hypermaps — certain
2-cell embedding of graphs on orientable surfaces. The transitivity condition again translates to
connectedness of surfaces.

More interestingly, the genera of corresponding branched covering and the hypermap for a
given transitive m-factorization agree. Hence, transitive factorizations are often enumerated with
respect to a genus parameter defined using the Riemann-Hurwitz formula: If an m-factorization
01+ 0m = 09 in 8, is transitive with oy € €, then the genus h of its corresponding branched
covering is given by

m

n— (o) + Z <n - E(Cyc(ai))> =2n—2+ 2h,
i=1

where cyc(o;) is the cycle type of o; and ¢(«) is the number of parts in . Minimum transitive

factorizations are the ones with genus 0. We now give a historical account of related results.

Enumeration of minimum transitive factorizations into transpositions is the first result of its
kind. The genus condition together with cycle type restriction completely determines the number
of factors. The number of minimum transitive factorizations of oy € C, in §,, into transpositions
is

{(a) o
- £(a)—3 i
(n+£4(a) —2)In ZI;Il i
Hurwitz [18] wrote down a proof sketch in 1886. Fast forward a century, Goulden and Jackson [10]

rediscovered this result in 1997 independently by analyzing the combinatorics of joins and cuts of
transpositions acting on arbitrary permutations. This is usually called the Hurwitz number.

In 2000, Bousquet-Mélou and Schaeffer [3] enumerated minimum transitive factorizations with
no restriction on conjugacy classes. In this case, the number of factors is no longer determined by



genus. The number of minimum transitive m-factorizations of oy € C, in §,, is

(m—Dn-1)1 9 /ma; —1
m((m—l)n—awz'H( aj >

Their method involves a bijection to constellations. This is usually called the m-hypermap number.

In 2013, Goulden, Guay-Paquet, and Novak [12] considered Hurwitz Numbers with a twist and
obtained a similar formula. A list of transpositions (a1b1),. .., (ambm) with a; < b; is monotone if
b1 < bg < --- < by Similar to Hurwitz numbers, the number of factors is determined by genus.
The number of minimum transitive factorizations of oy € G, in §8,, into monotone transpositions is

0{

(2n+£ —3 H<2%>

Their proof uses sophisticated algebraic tools that capture the finer details of join and cut actions
on the level of generating series. This is called the monotone Hurwitz number. Similar problems
in higher genera have also been studied by the same group of authors [13].

Proofs of the above formulas took different approaches. A common feature is the use of
induction on the number of factors. Carrell and Goulden took a different point of view. A wunified
algebraic method is obtained when induction is applied on the order of the group 8,, [1]. Their
work will be described in Chapter 6.

A similar technique was used in an earlier paper by Lassalle [24] who studied a generalized
factorization problem (without the transitivity condition). The generalized class expansion problem
in §,, is the determination of the coefficients

. (Zfél)ﬁ‘a)---(Zfém)Ga)z[ea] TN e e,

akn alFn a) . a®)n

where fo(f) are scalars for i =1,...,m and a F n.

Linear combinations of conjugacy classes are central elements of C[S,]. A celebrated fact is
that such elements can be written as symmetric polynomials evaluated at Jucys-Murphy elements.
Let Ji, ..., Jy, denote Jucys-Murphy elements in C[S,,]. The first result of this kind is due to Jucys
[20]: For k=1,...,n

er(Ji, o dn) = Y, Ca,

akFn
L(a)=n—Fk

where ey, is the k-th elementary symmetric functions.



Motivated by connections to mathematical physics, Lascoux and Thibon [23] considered the
expansion of power sum symmetric functions and obtained a solution as the constant term of the
following generating series

1
V(z;q) — 1)pY,
- D —gn " B0
where V' is a vertex operator
k 2 NI
V(zig) =exp | Y (¢" - Dpw- > (=g A
k>1 >1

and p; and piL are the power sum symmetric functions and their adjoints respectively.

Lassalle [241] engineered a family of differential operators in the underlying variables of
symmetric polynomials. These operators provide a unified approach to obtaining recurrences for
the expansion of some fundamental families of symmetric functions. This method recovers the
results of Jucys and Lascoux-Thibon. New results include recurrences of expansion of complete
symmetric functions and 1-row Hall-Littlewood symmetric functions.

Lassalle’s work and a follow up by Féray will be described in Chapter 3, 4 and 5.



Chapter 2

Background

2.1 Partitions

A partition of a positive integer n, denoted as A F n, is a weakly decreasing sequence of
positive integers A = (A1, ..., Ax) such that A\; 4+ --- + Ay = n. The set of all partitions is denoted
by P ={a btk n:n>1}. The \;’s are called parts of A. The sum of parts is called the weight of
A, denoted as |A|. The number of parts in A is called the length or degree of A, denoted as £(\).
For each i € N, the number of times ¢ appears in A is called the multiplicity of 7 in A, denoted
as m;(A). The vector (m1(A), ma(N),...) is known as the multiplicity vector of \. In writing a
partition, we often use a shorthand A = (n"»W (n — 1)1 ... 1m(1DN) The commas are
omitted sometimes. For example, the partition A = (5,3,3,2,1,1) - 15 is written as A = (532212).

Partitions have useful geometric representations. The Ferrers diagram of A+ n is an array of
left-justified boxes such that there are A; number of boxes in row i. Row indices grow from top to
bottom and column indices grow from left to right. The top-left box has coordinate (1,1). The
conjugate of a partition A - n is obtained by reflecting its Ferrers diagram along the diagonal. It is
denoted as X'. For example, the Ferrers diagrams corresponding to A = (532212) and its conjugate
N = (64312) are drawn below.

[ ] [ ]

Figure 2.1: Ferrers Diagrams of A = (532212) and )\ = (64312).



We introduce some notations for manipulating partitions. Let «, 5 be partitions not necessarily
of the same weight. We say 3 is contained in « as a subshape, denoted as § C «. More precisely,
B C «a if m;(a) > m;(B) for all ¢ > 1. For any partition v, define '\ U v the partition obtained
by removing parts of 5 from « then adding parts of v if 8 C o and o\ U v = 0 otherwise. We
can write this in terms of their multiplicity vectors

a\pBUv = (1m1(a)*m1(5)+m1(v), gma(e)=ma(B)+ma(v) ),

if @ C . Note the above operations do not commute in general. For example, if A\ = (4331), then
A\ (3)U(2) = (4321) but A\ (2) U (3) = 0 since A does not contain a row of length 2.

We will encounter the following operations quite often. The operation « \ (i) U (i + 1) means
we replace a part ¢ with ¢ + 1 in o. If o does not have a part ¢ then o\ (i) U (i +1) = 0. The
operation « \ (i,7) U (i + j) says we join an i-part and a j-part to make an (¢ 4+ j)-part. The
operation « \ (i 4 j) U (4,7) says we cut an (i + j)-part into an i-part and a j-part.

For convenience, we denote for any o € P

2.2 The Symmetric Groups

The symmetric group Sx is the group of permutations on some ground set X. When X =
{1,...,n}, we denote §,, = 841,...n}- The cycle type cyc(o) of a permutation o € 8, is the multiset
of lengths of cycles in o when represented as a product of disjoint cycles. Hence, cyc(o) is a
partition of n. A conjugacy class of §,, contains all permutations of the same cycle type. We
denote a conjugacy class by €, where a F n.

The group algebra C[S,] is the vector space over C spanned by §,, treated as formal symbols.
Hence, an element v € C[§,,] has the form

v = Zvaa, ve € C.

UESTL

Additions in C[8,,] are performed pointwise and multiplication as convolutions, i.e.,

Zuaa + Zvﬂr :Z(ug—i-vg)a

oESy TESy 0ESy



and

E U T g V| = g UgVUrOT,

oESH TESH o,mES,
where the multiplication o is carried out in §,,.

The group algebras are useful in combinatorics since convolution is faithful to Cartesian
products of §,,. They are also instances of representations. The next section outlines the general
theory of representations of finite groups with a focus on the group algebras.

2.2.1 Representations of Finite Groups

We follow the textbook by Sagan [27] in this section. Unless otherwise stated, all groups in
this section are finite. Let G be a finite group. A matriz representation of G is a set of d x d
invertible matrices {X(g) : g € G}, not necessarily distinct, with complex entries such that

X(9)X(h) = X(gh)

where the multiplication gh is carried out in G. Note X is a homomorphism from G to GL(d) the
group of invertible complex d x d matrices. The degree of X is d which is also is also the rank of the
matrix X (id). We can also phrase representations in a coordinate free setting. The group GL(d) is
isomorphic to the group GL(V') of invertible linear transformations of some d-dimensional vector
space V. If we replace GL(d) with GL(V) in the above definition, we get an equivalent definition
in terms of modules. A G-module is a vector space V together with a homomorphism G — GL(V).
We can easily convert a G-module to a matrix representation. Given a G-module, we simply take
the matrices representing its action on some basis in the usual way. Conversely, given a matrix
representation, the vector space V = Span{ey, ..., es} makes GL(d) = GL(V). A representation
of G can mean either a matrix representation or a G-module whichever is convenient.

It is possible to define representations over other fields, but we confine ourselves to C in this
thesis.

It is clear from the definition that a G-module V carries a group action on bases of V. The
converse is also possible. If G acts on some set S and CS is the vector space spanned by linear
combinations of S, then this action extended linearly to all of CS is a G-module. The group
algebra C[8,,] was defined in this way. Note not all representations induced from group action
have a natural multiplication structure. For example, the G-module G{1,...,n} induced by
permutation action does not have a natural multiplication. However, we can always obtain an
algebra when G acts on itself by multiplication. This is called the group algebra of GG, denoted as
ClqGl.



Superficial differences between modules are captured by isomorphism. Let U, V be G-modules.
A G-homomorphism is a vector space homomorphism ¢ : U — V such that

gp(u) = ¢(gu)

forall g € G and u € U. If ¢ is also a vector space isomorphism, then we say ¢ is a G-isomorphism.
If there exists a G-isomorphism between U and V, then we say U and V are equivalent as
G-modules, or simply equivalent, denoted by U = V. Otherwise, they are inequivalent. In terms
of matrix representations X and Y of the same degree, they are equivalent if and only if there
exists an invertible matrix 7" of the same degree such that

TX(g)T ' =Y(g), forallgeg.

Let V be a G-module. The G-action on a basis of V' partitions them into orbits and G-action
is closed under each orbit. If O is one of such orbits, then the subspace Spanc O is once again a
G-module. In general, a subspace W C V is a submodule if W itself is a G-module. A G-module
is said to be irreducible if the only submodules are the trivial ones — {0} and itself. Otherwise, it
is said to be reducible. Let U be another G-modules. The multiplicity of U in V is the number of
distinct submodules in V' that are equivalent to U.

For example, any 1-dimensional G-module is automatically irreducible. The permutation
representation C{1,...,n} of a permutation group G < §,, is reducible because it contains a
1-dimensional submodule W = Span{l + --- +n}.

When a G-module V' contains a submodule W, its compliment U, defined by V. =W @ U, is
necessarily another G-module. An important reducibility result in representation theory is due to
Masche. It states that every G-module V' can be decomposed into irreducible modules. This is
known as complete reducibility of representation of finite groups.

Theorem 2.1 (Masche). Let Vv V) be g complete list of pairwise inequivalent irreducible
G-modules. Then any G-modules V' can be decomposed into

k
VePmvo,

=1

for some non-negative integers mq, ..., my.

The multiplicity coefficients m;’s are related to an algebra associated with representations. Note
the kernel and the image of a G-homomorphism are also G-modules. In particular, Schur’s Lemma
states that non-zero G-homomorphisms between irreducible G-modules must be G-isomorphisms.

10



Using the notation from Masche’s Theorem, denote Hom(V(i), V') the space of G-homomorphisms
from V® to V. Write Masche’s Theorem in terms of precise decompositions

ki

V= @ @ m,jV(i)

i=1 j=1

where m; ;’s are linearly independent G-homomorphisms from V' to isomorphic copies of V@ in
V. We can show m; = dim Hom(V(i), V') by thinking of them as projections. Hence one is led to
study the matrix version of Hom(V, V') because it is easier. If X is a matrix representation of G,
then its commutant algebra is

Com(X) = {T € Mat(d) : TX(g9) = X(9)T, g € G} = Hom(V, V).

It is fairly straightforward to show that the only matricies commuting with X (g) for all g € G are
scalar multiples of the identity matrix. With some work, we can get the following decomposition

k
Com(X) = {@ (M, @ 14,) : My, € Mat(m;),i=1,.. .,k} and dim Z(Com(X)) =k,
i=1

where Z(Com(X)) is the centre of the commutant algebra.

A group algebra and its commutant algebra are isomorphic. To see this, we can check that
the right multiplication maps ¢4(h) = hg are all the elements of Hom(C[G], C[G]). It follows
that the number of inequivalent irreducible representation of C[G] is k = dim Z(C[G]). A central
element ¢ € Z(C[G)) satisfies v = ¢v¢~! for all v € C[G]. By considering conjugation action on
basis elements, we immediately see that if o, 7 € G are in the same conjugacy class, then their
coefficients in v must be the same. In other words, the centre Z(C[G]) is spanned by conjugacy
classes (as 1-dimensional sums of their elements).

Centres of group algebras and a particular basis which turn out to be projections onto
irreducible representations of §,, and will play a central role in this thesis. For now, we continue
with general theory.

Farly representation theory was developed using only a simple statistics called group characters.
This turns out to be an extremely useful tool. Not only will it help us to find decompositions of
group algebras but it also provide connections to other areas of mathematics.

Let X be a matrix representation of a group G. The character of a representing matrix X (g)
is
x(g) = tr X(g).

If X and Y are equivalent representations, then there exists an invertible matrix 71" such that
TX(9)T~! =Y(g). Since similar matrices have the same trace, we have

tr X(g) = tr TX(9)T~' = tr Y (g).

11



In other words, characters are invariant for representations.

Broadly speaking, invariants are useful objects in mathematics. This is also the case for
characters. An elementary consequence of conjugation points us in the right direction: If g, ¢’ € G
live in the same conjugacy class, then for some h € G we have x(g) = x(hgh™!) = x(¢').

So characters live in the space K(G) of class functions — the algebra of functions f: G — C
such that f(g) = f(h) if g, h belong to the same conjugacy class. Let Cy,...,C; be a complete
list of conjugacy classes of G. A natural basis for K(G) is the set of indicator functions 41, ...,
where 6;(g) = 1 if g € C; otherwise J;(g) = 0. Addition on K(G) is performed pointwise and
multiplication is performed as convolution: If ¢, ¢ € K(G), then

() (9) = Y wlg)(gh™).

heG

The space K(G) has a nice inner product. Define

(0, ) = |é,| S e,

geG

for all p,7 € K(G). The indicator functions are pairwise orthogonal, i.e., (6;,0;) = §;;|C;|/|G|. A
pleasant surprise is that the irreducible characters are orthonormal.

Theorem 2.2. Let (), ... . x®) be a complete list of irreducible characters of a representation
of G. Then ' '
(XX = g5

This theorem has an important consequence. Let V be G-module with character x and
decomposition into pairwise inequivalent irreducible representations V. =mi VS @ -« @ my, VF).
For each i =1,...,k, let X(i) be the character of the irreducible representation V(@ . Then the
above theorem implies (x, x()) = m; for each s = 1,..., k. If W is another G-module with the
same character x, then it follows immediately that V = W by simply comparing multiplicity of
irreducible representations. Hence, characters are not just invariants of representations. They in
fact completely determine representations.

Now we can decompose group algebra C[G]|. We need to answer 2 questions:

1. How many irreducible representations are there?

2. What are their multiplicities?

We deal with the second question first. Let y be the character of C[G] with representing
matrix X. Note X (g) is a {0, 1}-matrix with exactly one 1 in each row and exactly one 1 in each

12



column. Let g € G. If X(g) has a 1 on its diagonal, then there exists some h € G such that
gh = h. But that implies g = id. Hence, x(g) = 0 unless g = id. Then

BoxX®) = = 3" x(g)xP(g71) = x (id).
Gl 2

Hence each irreducible appears in C[G] with multiplicity being its dimension.

To answer the first question, we use the fact that the number of inequivalent irreducible
representations in C[G] is the dimension of its centre Z(C[G]). Let K, ..., Kj be the conjugacy

classes of G. A routine computation shows Z(C[G]) is spanned by conjugacy classes C, ..., C
where
G’i = Z g.
geK;

Orthonormality of irreducible characters implies they are linearly independent in K(G).
Together with their correspondence with conjugacy class, we get that they in fact form a basis
of X(G). Furthermore, by identifying conjugacy the class basis of Z(C[G]) with the indicator
function basis of X(G), we see that they are isomorphic as algebras.

We now turn our attention to the case G = §,,.

Corollary 2.3. There is exactly one irreducible representation of 8, for each conjugacy class of
S,. We have
C[S,] = @D (dim VIV,
AFn

where V> is the irreducible representation corresponding to the conjugacy class Cy.

The construction of irreducible representations of 8,, will be treated in the next section. We
conclude the general theory by introducing a pair of important tools.

Let H < G be subgroups. Let X be a matrix representation of G with character y. The
restriction of X to H is simply X% = {X(h) : h € H}. We use similar notation x|% for its
character. Now suppose Y is a degree d matrix representation of H with character . The
induction of X to G is the block matrix

Y1i(9) = [Y(gf lggj)]' L
1,7=1,...,

where g1 H,...,gxH is a complete list of distinct H-cosets and Y (xz) = [0]gxq if x ¢ H. The
notation for its character is ng. An elementary property of an induced representation is that
the choice of coset representatives is irrelevant. The following property provides a hint to finding
irreducible representations of §,,.

13



Proposition 2.4. Let H < G be groups with a complete list of distinct H-cosets H = {q1 H, ..., gL H}.
Let CH be the representation extended from G acting on H by (left) multiplication. Then

CH = 115.

2.2.2 Specht Modules

We now construct irreducible representations of 8, known as Specht modules, denoted by
S*, A+ n. Masche’s theorem tells us that every representation is the direct sum of some irreducible
representations. The clever trick is to find a total orderin% MDD < oo < A®) of partitions of n and
construct a sequence of representations M ,\<1>7 % A% guch that 2 = MY is irreducible
and M contains only copies of S’\(l), e S with multiplicity of gAY being 1.

Let A= (A1,...,A;) and o = (1, ..., ;) be partitions of n. In lexicographic ordering, A < p if
there exists some m > 1 such that A, < pi, but Ay = pg for k=1,...,m — 1. It is easily verified
that this is a total order. The order we will use is the reverse lexicographic order. For example,
partitions of 5 in reverse lexicographic order are

(5) < (41) < (32) < (311) < (221) < (2111) < (17).

Let A = (A1,...,Ax) F n be a partition. A tableau t of shape A is Ferrers diagram of A
labelled with 1,...,n, one for each box. We denote the set of tableaux of shape A by Tab(\). The
symmetric group 8,, acts on ¢ by permuting its labels. Let #; be the set of labels in row ¢ of . The
row stabilizer subgroup for ¢ is defined as Ry = 8z, X --+ X 8, . Since row labels are are pairwise
disjoint, we can write p = p1 - - - pr where we view p; as an element of 8,, by adding enough fixed
points. The column stabilizer subgroup of t is C; = Ry where t’ is the conjugate (with labels) of
t. Similarly, we can write 7 = (m1,...,m\,) € Cy as m = 71 - - - my, by viewing each m; € 8,,. The
tabloid associated to t is

t= Z pt.

pER:
Permutation action on tabloids is defined as ot = ot for all o € §,,. Define r; = > sgn(m)7.

The polytabloid associated to t is defined as

er = Kyt = Z sgn(m)mt.

TeCly

weCly

It is straightforward to check that these objects are well-defined and ge; = e, for all o € §,,.
1]2]
3]
Cy =id+ (13). Then x; = id — (13). The tabloid and the polytabloid associated to ¢ are

f (11204 [2[1] ana et:(l 7). [2 1\>_<3 2], [2 3\). 21)
3 3 3 3 1 1

For example, let t = be a tableau. Its stabilizer subgroups are R; = id + (12) and
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Let A - n. Let S* denote the vector space spanned by {e; : ¢t € Tab(\)}. This is naturally a
subspace of M* = Span{ : t € Tab()\)}. The 8, action on tabloids implies S* and M* are both
8,-modules. The S*, A n are called the Specht modules of §,,.

The submodule theorem is used to show that S* are irreducible. Proofs for the following
results can be found in [27].

Theorem 2.5. If U is a submodule of M>, then either S* C U or U C (S*)*+.

Let STY(A) denote the set of standard Young tableaux of shape . It turns out that er,T" €
STY (\) are linearly independent. One can then use a straightening algorithm involving Garnir
elements to show that every polytabloid can be written as a linearly combinations of these basis.

Theorem 2.6. A basis of the Specht module S* is {er : T € STY(\)}.

In group algebra 8,,, there exists central elements F* = y*/H, one for each partitions \ - n
such that FAFH = 5/\11?)\ for all p F n. These are projection operators from C[8,] to S* and they
can be used to construct Specht modules algebraically. Since they are clearly linearly independent,
they are also a basis of Z,,. The following basis change formula is most useful in this thesis.

Lemma 2.7. The central elements F* = I%’ A n are orthogonal idempotents. Furthermore, we
have

A
X(in A
A (1m) A _ Xa g
Fh=— > X)Ca and ea_yeayzxA FA,
aFn AFn (1)

The F* are in fact minimum central projections onto irreducible representations contained in
C[8,]. See [8, Section 1.2] for details. By group algebra decomposition, we immediately have

ZCFA:L

2.3 Jucys-Murphy Elements

In group algebra C[8,,], Jucys-Murphy elements are the sums of transpositions
Jy=(LEk)+ 2,k)+---+(k—1k), k=2,...,n.

For cosmetic reasons, we define J; = 0. They were first studied by Jucys [20] and later in-
dependently by Murphy [26]. We list several properties that are useful in this thesis. For
detailed descriptions of these results and related theorems, especially a construction of irreducible
representations of the symmetric groups starting with Jucys-Murphy elements, please see [3, 30].

First, note Jo, ..., J, pairwise commute. They generate the symmetric group in the following
sense.

15



Theorem 2.8. Let t be an indeterminate. Then

[0+ 70 = 3 arttereo,
k=1

gESy

Note that the left-hand side of the above lemma is the generating series E(t) for elementary
symmetric polynomials. By comparing coefficients of ¢, we get the following property.

Corollary 2.9. Let eg(x1,...,x,) denote the elementary symmetric polynomial of degree k. Then
ex(Ji, . )= Y. Ca
alFn
L(a)=n—k

Consider 83 for example. We have

eo(J1, J2,J3) =1 = Cri3)
e1(Ji,Jo, J3) = J1 + Jo + J3

= (12) + (13) + (23) = C(ay)
eo(J1, Jo, J3) = J1Jo + J1J3 + JoJ3

= (12)(13) + (12)(23) = C3)
es(Ji, J2, J3) = J1JaJs = 0.

Theorem 2.10. The centre Z,, is generated by symmetric polynomials in Sym, evaluated at
Jucys-Murphy elements.

Jucys-Murphy elements are simultaneous eigenoperators for Young’s basis.

Theorem 2.11. Let A+ n. Then for k =1,...,n and for each standard Young tableau T of
shape A we have
Jpvr = c(T_l(k:))vT,

where T~Y(k) is the cell in tableau T with label k and c(T~1(k)) is its content in .

To state the next theorem, we introduce a notation. For a partition A - n, we denote the set
of contents by c) = {¢(OJ) : O € A}. Symmetric polynomials evaluated at contents of a partition
is denoted as f(cy) = f(c(O) : O e N). If p F k with & < n, then we pad ¢, with enough 0’s so
that f(c,) is well-defined.

Theorem 2.12. Let f € Sym,, be a symmetric polynomial. Then for each A Fn we have
FOL - Ia)x = Fleax™
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2.4 Symmetric Functions

Our algebraic tools of choice are symmetric function due to their useful correspondence to the
centre of the group algebras. In this section, we recall fundamental facts of the algebra Sym.

2.4.1 Fundamental Bases

Let x1,...,x, be algebraically independent indeterminates. A permutation o € §,, acts on a
polynomial f € Z[x1, ..., x| by permuting its variables, i.e., (0 f)(z1,...,20) = f(To(1)s - - - s To(n))-
A polynomial f € Z[xy,...,x,] is symmetric if of = f for all 0 € §,,. Let Sym,, C Z[z1, ..., ]
denote the set of symmetric polynomials in x1,...,z,. It is straightforward to check that Sym,, is
closed under addition and multiplication. So Sym,, is a commutative ring with unity.

A monomial symmetric polynomial my(z1,...,x,) indexed by a partition A F d is a homoge-
neous symmetric polynomial of degree d obtained by the minimum symmetrization under §,, of
2}tz where we set A; = 0 if i > £(\). Note my(x1,...,2,), A d are linearly independent.
Hence, the vector space over Z spanned by {m)(z1,...,z,) : A F d} is the set of homogeneous
symmetric polynomials having degree d, denoted by Symz. We set Sym® = Z. So Sym,, is a
vector space with a compatible multiplication, i.e., an algebra. Furthermore, if f € Sym? and
g€ Symf{, then fg € Symfﬁ'd,. This means Sym,, is a graded algebra (by degree) and we write

Sym,, = @ Sym¢.
d>0

It is advantageous to think in countably many variables. A permutation o € §,, acts on a
formal power series in x1,x2,... by permuting the first n variables. A symmetric function is a
formal power series f € Z[[z1,x2,...]] such that of = f for any permutation o € §,, and any
n > 1. The argument list of a symmetric function is preferred for a cleaner presentation. If
f € Sym, then f(z1,...,2,,0,0,...) € Sym,,.

A monomial symmetric function my with A F d is a homogeneous symmetric function of degree
d obtained by the minimum symmetrization of $1\1$§\2 -+ under all symmetric groups where we
set A\; = 0 if ¢ > £(\). Similar to that of the polynomial case, {m : A - d} is linearly independent
over Z and forms a basis for the vector space of homogeneous symmetric functions of degree d,
denoted as Sym?. The algebra Sym is also graded by degree, i.e.,

Sym = @ Sym“.

d>0

An elementary symmetric functions is ey, = miky where (1) is the partition having & number
of 1’s. Define eg = 1. For example,

e = X172 + T1T3 + - -+ + ToT3 + Toxy + - + X374+ T3T5 + -
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A monomial in ej contains k distinct variables each having exponent 1. So its generating series
E(t) marked by degree has a simple form

E(t) =) epth =] +ait).

k>0 i>1

The Fundamental Theorem of Symmetric Functions says each symmetric function can be written
uniquely as a polynomial in elementary symmetric functions. In other words, we have an algebra
isomorphism

Sym = Zley, ez, . . .].

Then the vector space Sym? has another basis {ex : A= d} where ey = ey, en, .
Another intimately related family is the family of complete symmetric functions defined by
hp=> my, k>1.
A=k

Define hg = 1. Each monomial of degree k appears in h; exactly once. Hence, its generating series
marked by degree also have a nice form

Hﬁ%z}:hﬂk:111;2¢~

k>0 i>1

The two families are related through an algebra homomorphism w : Sym — Sym defined by
w: e +— hg for all k> 1 and extended to all of Sym. The relation E(t)H(—t) = 1 together with
the fact H(t)~! exists means w is an involution. So w is an algebra isomorphism, known as the
fundamental involution. It follows that the complete symmetric functions are also algebraically
independent so we have another isomorphism Sym 2 Z[hq, hg, ...]. The vector space Symd has a
third basis {hy : A\ F d} where hy = hy, hy, - -.

A power sum symmetric function, or simply just power sum, is pp = mr) where (k) is an

one-part partition. They have simple expressions, e.g., pr = a:’f + :U’QC + ---. On the generating
series level,
Rt tk
log H(t) = szl T ZszE
i>1 k>1 k>1

We take this as the definition for its generating series P(t). This relation also produces a pair of
recurrence relations

k k—1
1
hi = ;hk_im and - py = khy — Z_Zlhk_z-pi, k> 1.
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This triangularity implies the power sums are algebraically independent over Q. Hence, {p, : « F k}
forms a vector space basis for Symle consisting of homogeneous symmetric functions having degree
d with coefficients in Q. We also have an isomorphism Symg = @dzlsymfl@ >~ Qlp1,p2, .- -]

Now we introduce a more interesting family of symmetric function which provides many
connections into the world of combinatorics. The Schur polynomial s)(x1,...,z,) with A+ k is

defined as \ .
det (aciﬁn_])
ij=1,...n

det (x?_]>
i G=1,

This is a homogeneous symmetric polynomial of degree k. Schur polynomials {sy : A - d} forms a
vector space basis for Sym?. The proof of this fact can be found in standard symmetric functions
textbooks, for example [27]. Another standard fact is the Jacobi- Trudi identity which says

s>\(a:1, e ,l‘n) =

sx (@1, ..., xn) = det (hy,—jyi(1,..., 20))

ij=1,...,n"

The h’s can be interpreted as generating series for certain families of lattice paths. One can apply
Gessel-Viennot methodology to show that sy(z1,...,zy) is the generating series for all non-crossing
families. The non-crossing families are in one-to-one correspondence with semi-standard Young
tableaux.

Recall a tableau is a filling of some Ferrers diagram. A semi-standard Young tableau of shape
A is a filling with symbols 1, ..., n of its Ferrers diagram where symbols are allowed to repeat with
the condition that labels must increase strictly down the columns but increase only weakly along
the rows. The weight of a tableau T is the vector (my(T), ma(T),...,m,(T)) where m;(T) is the
number of times the symbol ¢ appears in T. The combinatorial definition of Schur polynomial is

Sx(T1y. .y xn) = Zle(T) g7
T

ranging over all semi-standard Young tableaux of shape A\. We extend our vocabulary to say

le(T) 2T i the weight of T

The combinatorial definition extends easily to countable many variables. The Schur function

indexed by a partition A is
sy = Zlﬂlﬂl(T)w;f@(T) .
T

ranging over semi-standard Young tableaux filled with symbols 1,2, .... Note Jacobi-Trudi identity
continues to hold in this setting. Not surprisingly, the fourth Z basis of Sym” is {sx: A\F Kk}
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s1) = 2] (2] (3] 3], ...

Figure 2.2: Tableaux Definition of s(o1).

The tableau definition is a hint that Schur functions are closely related to the group algebras.
Let T be a tableau of shape A with weight x7 - - - z,,. This means T contains exactly one of each
symbol 1,...,n. This uniqueness forces row-weakness to become row-strictness. Hence T is in fact
a standard Young tableaux. So the coefficient of x; -- -z, in sy is the number of Young tableaux
of shape A. From Section 2.2.2, we know this is the §8,, irreducible character X?l")'

The full detail will be explained in Section 2.5. For now, we continue with the structure of
Sym.

2.4.2 Orthogonality and Adjoint Operators

The space Sym has a nice inner product. Define

(ha,my) = 0z

for all partitions A, 4 and extend bi-linearly to all of Sym. We summarize its elementary properties
of as follows. For all f,g € Sym, we have

g9) = (g, f), i.e., (-,-) is symmetric, and
(ii) (f,g) > 0and (f,g) =0if and only if f = g, i.e., (-,-) is positive definite, and
(iii) (w(f),w(9)) = (f,g), i.e., the fundamental involution w is an isometry.
The power sums are orthogonal with (p.,pg) = z(a)dapg for all partitions «, 3. There is a
general criterion for when two basis are orthogonal.

Theorem 2.13 (Cauchy). If {uy} and {v,} are two bases for Sym. Then (ux,v,) = 0x, for all
partitions A, u if and only if

1
ZU)\(.%'l,.%'g, .. -)Uu(yby% .. ) = H D E——
A

iz T i
A pair of bases that satisfy Cauchy’s formula are called dual bases. By definition, the complete
symmetric functions are dual to the monomial ones. Another pair is {p,} and {p,/z(a)}. More

interestingly, Schur functions are self-dual.
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Theorem 2.14.

ZS)\(xhx%”')Sk(yhy%"'): H 1

1—zy;
X ij>1 1

It turns out treating f as an operator f : g — fg for all g € Sym is useful for our purpose.
The operator f+ adjoint to f as a multiplication operator is defined as

(f*g9,9") = (9, fd), 9,9 € Sym.

Adjoint operators are also called skewing operators. Let A, u be partitions such that A is
contained in A. A skew shape A/ is obtained by removing boxes belonging to A\ from the Ferrers
diagram of p. A semi-standard skew tableau of shape p/\ is a filling of the skew shape p/A with
strictly increasing columns and weakly increasing rows. Here is an example. The weight of a skew
tableaux 7" is the vector (my(T"), ma(T),...).

2[2
[1]4

Figure 2.3: A shew tableau of shape p/A with p = (3,3,2) and A = (2,1) of weight (1,2,1,1)

We can extend Schur functions to include skew shapes. A skew Schur function is defined as

S/ = Z H $;7wi(T)_

T i>1

where T' sums over all semi-standard skew tableaux of shape p/A and m;(7") is the number of i’s
inT.

Theorem 2.15 (Littlewood-Richardson). Let A, u, v be partitions. Then
<Sl/7 5)\3,u> = <3u//\7 3,u>'

Remark. For completeness, we note that (s, /25 s, is called the Littlewood-Richardson coefficient
of skew-shape v/ with type p. These coefficients are widely studied due to its importance in
representation theory.

Now consider the adjoint operator hé‘. Let A, u be partitions. The duality between {hy)} and
{m,} implies (hy, f) = [my]f. Then

(hismp, ) = (my, higha) = (M, Bage) = Suxom)-
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That means when h,ﬁmu is expanded in the monomial basis, the only non-zero coefficient is
indexed by a partition obtained by removing a part of size k£ from p. Hence, hkLm“ = M\ (k)
where m,\ ;) = 0 if 11 does not contain a part of length k. It follows that for any f € Sym,,_, we
have

(P )1, 20, 0) = [af 1] f (@1, Ty ).
This implies
n+1
F@i, o tng1) = f(@1,. 20,00+ Y ab (b (@, 20, 0) (2.2)
k=1

when f is thought of as a formal power series in x,,1. In the case f belongs to a family with nice
enough structure and the summation reduces to something of smaller order in the same family,
we get recursive definitions. For example,

ep(T1, . o Tn, Tnt1) = €k(1, .-, T, 0) + Tpyrep_1(21, ..., Tp,0).

Recursive families in Sym, Theorem 2.10, and results from the next section are the basic
ingredients behind finding induction relations in the symmetric groups. Section 4.1 discusses this
idea in more detail.

Lastly we briefly consider adjoints of power sums. Recall as multiplication operators acting on
power sums they simply insert rows into the target, i.e., pxpa = Pauk)- Their adjoints “undo” the
- 0

add-a-row operation. It is straightforward to verify that pé =iz and

P Po = imi(Q)pay (k)

where m;(a) is the number of i’s in a. The p;’s and p;-’s turn out to be a valuable tool.
Add/remove-a-row operation will be used extensively in Section 5.5. The reason this operation
is so useful is because of correspondence between p,’s and conjugacy classes in centre of group
algebras which we now describe.

2.5 The Characteristic Map

The centre of group algebra Z,, is intimately connected to symmetric polynomials. We have
already discussed the connection through Jucys-Murphy elements in Theorem 2.10. Now we
describe a natural correspondence through characters.

Let d > 1. Define a map between vector spaces ch? : Z; — Sym?

p
ch®: x — Zxa—a,
okd o
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where y is a (not necessarily irreducible) character of 84. A fundamental result is that ch? is an
inner product preserving isomorphism.

Theorem 2.16. If A\ - d and x* is an irreducible character of 84, then

ch?(x*) = sy.

A proof can be found in [27].

Let Z = ©4>1%24 and define ch = ©g>1 ch?. The above result can be extended to an algebra
isomorphism ch : Z — Sym. Furthermore, we can take advantage of the basis change formula in
24 and T = x*/H), to get

chie,) =22 ard

Za

We can formulate factorization problems using the characteristic map. We say an element
¢ € Z,, is set-like if it can be written as
¢= Z SOgea,

akFn

where ©§, € {0,1}. Clearly, if ¢ € Z,, is set-like then we can identify it with a set Se(n) = U{Cq :
abn,ps =1} Let (1,...,Cm € Zn be set-like elements and let ¢ = (1 -+ Gn. Then ¢ = [Ca]¢
counts the number of m-factorizations of a permutation in €, with restrictions S¢,,...,Sc,,. Then
we have a generating series

1
PS¢ — — § ¢
n(p) ChC TL' @a|ea|poé'

“abn

This tool is particularly useful when restriction sets can be described simultaneously for all
symmetric groups using Theorem 2.10. We say a symmetric function f € Sym is set-like if for
each n > 0 its corresponding central element f(Ji,...,J,) is set-like. Let fi,..., f,, € Sym be
set-like and let f = f1--- fi,. Foreachn >0 and atn

ol = 1Calf(J1,- s ) = [Cal i1, Jn) - fin( sy Tn)

counts the number of m-factorizations of a permutation in €, with restrictions described by
fi,..., fm as subsets of 8,,. Let

1
f _ _ f
&/ (p) =ch f(J1,...,Jn) = p E ©!|Capa-

akFn

Sum over all n > 0 and substitute zp; for p;. Then

o/ (2,p) =) %7: > ellCalpa =D "0 (p). (2.3)

n>0  aFn n>0
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is an exponential generating series in z for the m-factorizations problem with restrictions described
by fi,..., fm. Furthermore, p, marks a product whose cycle type is a. By standard theory
of generating series [17], the logarithm of an exponential generating series is an exponential
generating series for its connected objects. Recall in Section 1.2, connected factorizations are
transitive factorizations. Hence,

U/ (z,p) = log ®/(z,p)

is the generating series for transitive m-factorizations with restriction described by f1,..., fm.
We now use this method to recover a generating series first proved by Goulden and Jackson [15].

Example 2.17. Let

E = E($1,---,$n;t)’t:1 = H(l + ;).
i>1

By Theorem 2.8, we have E(Jy,...,J,) = 8,. Then W¥™" (2, p) is the generating series for transitive
m-factorizations with no restrictions. These factorizations are also known as m-hypermaps.

Recall Y., 3* = 1. By Theorem 2.12, we have

O (z,p) =D Z"hE™(J1,.... Jp) > F"

n>0 AFn
—Z ZchEch
n>0 AFn
—Z Z—Emc)\ ) ch x*
n>0 " AFn
TS )
n>0 " AFn

But E™(cy) = [[qea(1 + ¢(d)). Hence, the m-hypermap generating series can be written as

E™ (2, p) = log Z len s,\H 1+¢0) . (2.4)

n>0 " An OeA

Chapter 6 is devoted to study generating series of this form in more detail.

Character map allows one to define another multiplication on Sym. Let f, g € Sym?, define

fx g = ch(ch™'(f)ch™'(9)),
where the multiplication ch™!(f) ch™!(g) is carried out in Z¢. For example

1

S\ X S = ch(x*x*) = Y
(1)
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We extend this to all of Sym by setting F' x G = 0 if both are homogeneous but deg F' # deg G.
This definition was first written down by Lascoux and Thibon [23].

This is a useful tool for describing multiplication behaviours in group algebra as operators in
symmetric functions. If we think of w € C[§,,] as a multiplication operator, then its corresponding
element chw as a multiplication operator on symmetric functions faithfully describes the action of
w in group algebra.

The interesting case is the existence of operators in symmetric functions that describes the
behaviours of multiplication in group algebra simultaneously in all symmetric groups. The first such
operator is the join-cut operator A describing the behaviour of multiplication by transpositions.
It will be described in Section 5.1. We then use A to derive a family of operators that describe a
lifting behaviour in the symmetric groups.
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Chapter 3

A Family of Differential Operators

Characters arise in a natural way in the pursue of counting problems introduced in Section 1.2.
Consider multiplication of conjugacy classes from central orthogonal idempotent point of view
using Lemma 2.7. Multiplication of conjugacy classes turns into convolution of central orthogonal

idempotents. This is rather easy to write down since multiplication of idempotents are trivial. If
a, B+ n, then

A LA
XaX
Cals = [CallCs] Y 2557

AFn (Xf\ln))z

Then after expanding V’s in terms of C,’s we have

1CalCs] <= XaX3X)
[€5]€as = == 5 > =5
N )\Fn X(ln)

One is then hopeful that obtaining relations in characters would be a useful first step in getting
recurrence relations for above coefficients. This is the approach taken by Lassalle.

Since characters correspond to Schur functions under the characteristic map, we turn to
operations on symmetric functions to find such relations in characters. Jack symmetric functions
enter the picture because they are generalizations of Schur functions and possesses a uniqueness
property. Macdonald found a differential operator D(¢) on symmetric polynomials for which
Jack functions are simultaneous eigenfunctions. Lassalle [21] turned its specialization on Schur
functions into a family of operators £ to muscle out linear relations in central characters.

The goal of this chapter is to describe this development.
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3.1 Macdonald’s Operator

We give a brief historical account of a family of operators to be introduced in Section 3.2.

In the interest of finding relations on characters, we turn to generalizations of Schur functions.
Note Schur functions are characterized by (i) orthogonality and (ii) triangularity with respect
to monomial symmetric functions. It turns out many useful symmetric functions also share this
property. Let Sym®Q(() denote the ring of symmetric functions over the field of rational functions
Q(¢). It is a well-known fact that this space has a nice orthogonal basis.

Theorem 3.1. Define an inner product (pa,pg)c = (5a52a(€(°‘) on Sym ® Q(¢). There are unique
symmetric functions Jy = Jx(x;¢) € Sym ® Q(¢) indexed by partitions such that

(i) (Jx, Juye =0 if X\ p, and

(1t) [my)Jx =0 if p > X in dominance order, and
(iii) [mam]Jdxy = nlif [A\] = n.

These symmetric functions Jy are called Jack symmetric functions and are very interesting
in general. Their polynomial specialization Jy(z1,...,z,;¢) = Jx(z1,...,2,,0,0,...;() are
homogeneous of degree |\| and Jy(x1,...,2n;¢) = 0if £(A) > n. They form a basis for Sym ® Q(()
and they generalize Schur functions

J(x;1) = Hysx(x) = Hy$».

Theorem 3.1 was obtained by Macdonald [25, Chapter VI] in a more general setting of symmetric
algebra Sym ® Q(q,t) where Q(q, t) is the field of rational functions in ¢ and ¢ over Q. Macdonald
shows that there exists symmetric functions Py\(x;¢q,t) € Sym ® Q(q,t) and differential operators
D;, such that the polynomial specialization Fy(z1,...,%;q,t) are simultaneous eigenfunctions
with distinct eigenvalues.

A specialization of D] operators is the following

_¢ d
Z’“a2+ > k_xk/axk (3.1)

1<k,k' <n
KAk

We first need to check self-adjointness. We compute its action on power sums. The process is
mechanical but tedious. Let o be a partition. By product rule, for £ > 1

() ()
) )
a — ; a\ (v i o\ (o 2
Far? ;((%kp Z>p\ ) ;awk Pad\ (o) (3.2)
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Then

()
Z pa - Za, = Dpa + Z QiQjPa)\ (ai,05)U(ai+ay)
k= 1<4,5<l()
i#]
Furthermore, for any b > 1
b+1 g+ b
Yk VK
2 >, Ee= ) Z >
1<kp<n K = \<kg<n kT 0 '
< <k,k'<n a=01<k,k'<n
k;«ék’ k#K' k#K
b—1 n
=2(n—D)pp+ > _ >y “(pa — =f)
a=1 k=1
b—1
=(@2n—b—1)ps+ Y Pbaba
a=1
Therefore, we have
warﬁ-l
R I D S
1<k k'< =1 1<k,k'<
k;ék’ Tkt
£(a) a;—1
<az 2n —o; — 1 pa + Z QiPo\ (o) U(a,0—a)
=1 a=1

Putting the two together, we get

ailci —Dpa+ Y

QOGP (v 0 )U( a4y
1<4,j<f(a)
G|

) |

+ lﬁ(a) a;(
2 2

=1

a;—1
2n —a; — 1 pcx + Z QiPa\ (a;)U(a 0 — a)) :

a=1
Then we can read off the self-adjointness.

Lemma 3.2. The operator D(() is self-adjoint, i.e.,

(D) 9)¢ = (f, D(O)g)¢
for any symmetric polynomials f,g € Sym,, @ Q(().

29

(3.4)

(3.5)



The Py(x;q,t) functions are commonly known as the Macdonald symmetric functions. These
are generalizations of Hall-Littlewood functions, Zonal polynomials and Jack symmetric functions,
and hence Schur functions. The proof of Theorem 3.1, when specialized by replacing the dominance
order with reverse lexicographical order, can be used to obtain the following result due to Stanley

[29]-

Theorem 3.3. The Jack symmetric polynomials Jy with £(\) < n form a full set of eigenfunctions
of operator D(() with eigenvalues

b = Cb(X) = b(A) + [A[(n — 1),

2(A) /. L(A) (N
where b(\) = Zi(zl) (i—1)N = Zi(zl) (21).
Proof. We want to take advantage of the uniqueness of Jack symmetric functions described in
Theorem 3.1. Let < be the reverse lexicographical order on partitions {\ - n}. Compute D(()
with respect to monomial basis. We find a nice triangularity relation

D(()mx = > by, Abmn,
H<A

with byy = by # 0.

We want to obtain a set of orthogonal eigenvectors {Ey : A - n} of D({). Note A = (1") is the
smallest partition in reverse lexicographical order. Triangularity says D({)my = byxxmy = bym.
Set E(iny = myqny. If p is the second smallest partition of n in reverse lexicographical order, then
triangularity implies some linear combination of my and m, is an eigenvector of D((). Apply
Gram-Schmidt to obtain E,. It follows that E, is also a linear combination of my,m,. Repeat
this process until we obtain a full set of eigenvectors of D({). Note we have triangularity by
design, i.e., for each A F n, we have

By= ey
H<A

Since E are orthogonal by Gram-Schmidt and lower triangular with respect to the monomials,
it follows from Theorem 3.1 that each E) differs from Jy by a scalar constant. So the Jack
symmetric functions are also eigenfunctions of D(¢). The eigenvalues follows from the values of
bax- L]

3.2 Lassalle’s Differential Operators

The character map faithfully translates conjugacy class C, to power sum p,z(a)~!. Hence,
the combinatorics of D(() is best understood through its action on power sums. As multiplication
operators they simply add parts. Symmetrized differentiation with respect to x; removes parts.
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Now we define a family of operators in Sym, due to Lassalle [21]. Define Lo = p; as
multiplication operator and

Ly =[D(1),Ly_1], foreach k> 1. (3.6)
We will refer to this family of operators collectively as £ operators. Their actions on Schur
functions are easy to understand.

Lemma 3.4. For each partition A

Lpsa(x1,...,xpn) = Z (C(D)+n71)ksu(x1,...,xn), for each k > 0.
p=x+0

Proof. Note that b(\) in Theorem 3.3 can be written as a summation over cells, i.e.,

bA) =D > i—1= Y (i—1) and b\)= D (G—1)

i=1j=1 (i.5)€X (6,5) €A

Hence

bN) =b(A) = D (j—i) =) 0.

(i,7)EA Oex
Therefore, D(1)sy = (p1(cx) + |A|(n — 1))sy by Theorem 3.3. Furthermore,

Lisy(z1, ... xn) = (D1)p1 — p1D(1))sa(x1, ..., 2n)

= > (D@ = D @)+ (ul = 1A= 1) | sulz1,. .., 20)

p= 0 \O'ep e
= > (@ +n-1)su(21,...,T0).
p=x+0
The result follows by a straightforward induction. O

The actions of £ operators on power sums are not easy to write down due to cancellations in
nested commutators. The first few operators can be computed by brute force. Lassalle does so by
generalizing D(1). Define for each a > 1 a pair of differential operators on Sym,,

Sl Iyl y 0

E,=) af and Dy =) Th=—5+ .

— oxp 2 — oz, \<hF<n Tp — T Oxy,
kA

Note Dy = D(1). Equation (3.2), (3.3), and (3.4) imply the following pair of formulas.

31



Lemma 3.5. For any partition o € P and any a > 2
£(a)
Eopa = Z QPa\ (a)U(a+a—1)s
i=1

and

Dapa = Z Z QiPa (a)U(r,s) T Z Q0GP (o0 )U(;+a+a—2)

r,s>1 1<i,j<l()
r+s a+k—2 i#]

£(a)

+ Z(Qn — @)Pa\ (ay)U(ai+a—2)
i=1

We omit the proof of the following result as we will later obtain a generalized version.

Lemma 3.6. We have

LO = P1,
L1 =Fy+ (n — l)pl,
Lo =2D3+ FEy + (n — 1)2p1

3.3 Linear Relations in Characters

For X\, a F n, define the central character indexed by A evaluated at « by

O = jof) Xa
Since |Cq|/n! = z(a)~!, we have
Jr(1) = Hysy = Z H ‘ Xapa = Zﬁapa (3.7)
akn akn
The following result is due to Lassalle [24, Theorem 4.1] and the third relation is stated in a

slightly different form here.

We need a notation for summing over all “add-a-box” operation. Let A\ - n be a partition. An
outer corner of A is a cell O such that the shape obtained by adding [J to A, denoted as A + [, is

still a partition.
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Theorem 3.7. Let A\bn and B+ (n+1). Then

Y. F =% (3.8)
p=A+0
H) .
> 77 B = > i(mi(B) + 103 4100 (3.9)
p=x+0 " H i>1
oy y
Z FC(D)Q% = Z <U (mi(8) +1)(m;(B) + 6ij + 1)92\(¢+j+1)u(z‘,j)
p=x4+0""H i,j>1
+ (@ + 37— 1) (mirj—1(B) + 1)02\(i7j)u(i+j—1)>> (3.10)

where sums Tun over outer boxes of \.

The quantities H/H,, and the summation }; _, %C(D)k will be explained in the Sec-

tion 3.4. We also postpone the full proof until Section 5.3 where cleaner expressions of £ operators
are obtained. For now, we outline Lassalle’s original approach.

Proof Sketch. Consider applying Lo to the polynomial version of Equation (3.7). On one hand,
we have

LQH)\S/\(xlv cee a-rn) = Z H)\(C(D) +n— 1)25/1«('7;15 s >$n)'
pu=A+0

In the summation, multiply by H,/H, and apply Equation (3.7) again to H,s,(x1,..., ).

Z Z HA +n— 1)295p5(a;1,...,xn),

B-(n+1) u=2+0 “
H)\
= > Z )2+ 2(n— 1)e(0) + (n — 1)) O4pa(a1,. .., zn).
BH(n+1) p= >\+D
Note that this is an expression in n — 1 with coefficients in Sym,,.

On the other hand, use the expression for £ in Lemma 3.6 and apply Lemma 3.5. By linearity
of £ operators, we get an expression

> 0xLapa =Y 03 (L) + LY ()0 — 1) + L (p)(n — 1)?) (3.11)

akFn akn

where L&i) (p) are expressions in Sym,, not involving n.

To conclude the proof, we simply identify coefficients of n — 1. O

33



3.4 Transition Measures

To take advantage of £ operators, we collect some results involving the quantity Hy/H,
appearing in Theorem 3.7. Proofs can be found in [24].

The (discrete) transition measure of A with respect to an outer corner [J is

_ hH)

1 (0) i,

For k > 0, the k-th moment of the transition measure of X is

DN = Y n@eD)*

p=x+0

where the sum goes over outer corner cells of A\. The following result is due to Lassalle [2] using
the theory of shifted symmetric functions.

Theorem 3.8. Let A - n be a partition. Then
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Chapter 4

Generalized Class Expansion

Let f € Sym,, be a symmetric function. Theorem 2.10 states that f(Ji,...,J,) is an element
in Z,. It is natural to ask for an expression in the basis consisting of conjugacy classes. The
expansion coefficients <p£ of f indexed by partitions a - n are defined as

FUL L Tn) =D plea.

akFn

In Section 1.2 we introduced this problem as generalized class expansion. Expansion coefficients
are obviously useful in understanding the centre of the group algebra. When f encodes interesting
factorizations in 8, expansion coefficients are counting coefficients for not necessarily transitive
factorizations. Hence useful techniques on class expansion problems could be tweaked and adapted
into tools on transitive factorization problems. This is our motivation to understand Lassalle’s
work.

In this chapter, we aim to apply linear relations to obtain induction relations in expansion
coefficients whenever a reduction strategy is applicable. We pay special attention to complete
symmetric functions. Féray noticed that the expansion of complete symmetric functions affords a
nice combinatorial point of view where multiplication by transpositions enters the picture. This
argument paves way to a unified algebraic method for counting transitive factorizations which we
explain in Chapter 6.
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4.1 General Strategy

First, we translate generalized class expansion to a problem in central characters. Note
multiplication of central orthogonal idempotents is trivial by Lemma 2.7. If a, A\ - n, then

Co
e = |eal 3 ool i

uEn @)
_ Hx Ao
- z(a) Xa
= 9rFA.

Let f € Sym,, with expansion coefficients gp(J; where a - n. Then by Theorem 2.12 we have for

each A - n
f(Jla"'a ZSoge 3&\ Z@fe)\?A
abFn atFn
By Theorem 2.12 f(J1,...,Jn)F* = f(cx\)Fr. So we have
flen)Fr = Zapfﬁ)‘?)‘ (4.1)
atln

The problem is now amenable to the linear relations in central characters developed in
Section 3.3. The idea behind this method is best first illustrated through an example. The
simplest one is the expansion of ex(Jy, ..., J,). The general strategy will be discussed in full detail
at the end of the section.

Let A Fn. Our goal is to apply Theorem 3.7. Recall
ek(xla s 7xn7$n+1) = ek(ﬂjl, -y T, 0) + CCnJ,_lek_l(fEl, <oy Tn, 0)

If £ =X+ 0, then

ek(cu) = ek(C)\) + C(D)ek_l(ck).
Multiply the above by vx(O)c(0)? and sum over all u = A + O where [J is an outer corner A\. We
obtain 2 equations to which we apply Theorem 3.8:

Y- n@exlen) = To(Nex(en) +Ti(N)er—1(cx)

p=x+0
= ex(cy), (4.2)
> n(@e@er(en) = Ti(N)ex(er) + Ta(Nex—1(ca)
p=A+0
= neg_1(cy). (4.3)
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Now we apply Theorem 3.7 to the left-hand side of each of these equations after writing both
sides in terms of central characters. For Equation (4.2), we have

> @ity = ex(en)
alFn
= > ef Y. w(Oey

BH(n+1) ,u:)\—HZl
= D 30w
B(n+1)

For Equation (4.3), we have

nz OO = nex_1(cy)

akFn
= D ert Y n@eO)s

B (nt1) p=r10
Z wgt Z mi(8) + D03 i 11y00)-
B(n+1) 121

Since central characters are non-zero multiples of irreducible characters, they are linearly
independent. Compare the coefficients of central characters to get a pair of relations

ek = ‘/’au(1) (4.4)
ngpa' Tt = Zlmi(a)spzk\(i)u(i—i-l)‘ (4.5)
i>1

Lemma 4.1. Equations (4.4) and (4.5) determines ¢Sk for all k > 0 and all partitions o.

Proof. We proceed by a triple induction, first on k, on n, then on min(«). Note for k=0
e = 0(1ny,a, forall abmn,n > 1.

Suppose for some k > 1 the coefficient gpf,f’l has been determined for all o« = n and n > 1. The
initial condition on the inner induction is n = 1 and goff) = 0. Now suppose for some n > 1, the
coefficient &+ has been determined for all a = n. We need to determine (pgc) for all 6 Fn+ 1.

Note if min(5) = 1, then Equation (4.4) implies
75 =Yy
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which has been determined by hypothesis. Suppose further for some b > 1 the coefficient gog’i has
been determined for all * with min(5*) <b. Let  F (n+ 1) with min(5) = b+ 1. Remove a box
from the smallest part of j, i.e., choose a = 5\ (b+1) U (b). Note my(c) = 1. Then Equation (4.5)
can be written as

er __ €r—1 . e
b = —npa" " + szz(a)apa’“\(i)u(iﬂ).
i>1
i2b
But every non-zero summand has a part j. Their coefficients have already been determined by
hypothesis. Finally, o' has already been determined by the 2 outer induction hypotheses. [

Corollary 4.2. Equations (4.4) and (4.5) imply for each k >0 and n > 1

ek(Jla"'vjn): Z ea-

akFn

L(a)=n—k

Proof Sketch. Replace the inner most induction hypothesis by the following: Suppose for some
Jj=>1

(pek _ 17 ﬂ(ﬂ*) =n—k
A 0, otherwise,

for all min(8*) < j. O

Now we describe the general strategy. If A - n and u = A + O for some outer corner [ of A,
then by Equation (2.2) we have a recurrence

deg f

fle) = flea) + Y @) (hi f)len).

k=1

Let gx = hklf and let 7 > 0. Multiply above by 7, (0)c(0)? and sum over all outer boxes [J of
A. We get

deg f
> n@e@) flen) = TiA) f(ex) + Y Tirr(Mgr(en)-
p=x+0 k=1

We look for symmetric functions F, G with known class expansion coefficients. The pair should
satisfy
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and

deg f
Y @@ Glen) = Y Tisk(Ngrlen),
p=A+0 k=1

for some ¢ > 0. Expand f, F,G in terms of central characters. Then expansion coefficients of
f, F, G are related by

Soodh | S m@e@yey | =3 "Eo++ D f | DD n@e)iey |,

B(n+1) p=A+0 akn BH(n+1) p=A+0
for some j > 0.

If ¢ and j are sufficiently small, then we can apply Theorem 3.7 to reduce weights of all
partitions appearing in brackets by 1. We obtain relations in ¢ by comparing coefficients of 6.

Typically we take f from a family of recursively defined symmetric functions, say fi,k > 1 so
that Equation (2.2) simplifies to

fk(xl, - ,xn+1) = fk(.%'l, - ,$n,0) + :c“fb(xl, A 7~75n+1)

for some a < k and b < k. In such case, the path of finding G completely bypasses the non-
trivial task of evaluating I'(A\). Proceed by a double induction to assume fi(J1,...,J,,0) and
fo(J1, ..., Jnt1) both have known expansion coefficients. Apply the general strategy with ¢ = 0.
Then we take advantage of I'g(\) = 1 and simply let F' = f and G = f,. Depending on the values
of a,b, we may have to apply the general strategy more than once with increasing values of ¢ to
obtain desirable relations.

In the above demonstration of class expansion of ex, we applied the general strategy with
1=0,1. When i =0, we used F' =¢; and G =0. When i = 1, we used F' = nep_; and G = 0.

4.2 Expansion of Complete Symmetric Polynomials

Now we apply the above strategy to obtain a recurrence for the coefficients of the generalized
class expansion of central elements corresponding to complete symmetric polynomials.

Fix n > 1. Consider hj € Sym,, | as a power series in x, 1. Then we have

k

hi(z1, ... Tn, Tpt1) = hi(z1, ..., 20,0) + ZazﬁlJrlhk_j(xl, ey Ty, 0)
=1

= hp(z1,. .20, 0) + Tpprhp—1(T1, . Tny Trg1).
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Fix some A F n. By Equation (4.1), the expansion of the corresponding central element has a
recurrence for each p = A+ 0

hk(cu) = hk(C)\) + C(D)hkfl(cu).

We get
Y- n(@hi(en) = Tohrler) + D (O)e(O)hr-1(cy)
p=A+0 p=x+0
= hi(ex) + D> n(O)e(Dhr1(cy) (4.6)
p=x+0
> n@e(Dhi(en) =Tihkler) + D WO)e(D)?hr—1(cy)
p=2+0 p=A+0
= > (@D he—1(cy). (4.7)
pu=A+0

Expand each hy, into central characters. Equation (4.6) becomes

Yoo DD m@es | = e+ > e > @)

BH(n+1) p=x+0 akn B(n+1) p=X+0

Apply Theorem 3.7 to summations in brackets. We get

Y 050w =D weiat D > erimi(B) + DOy

B-(n+1) akn BH(n+1) i>1

Identify the coefficients of central characters on both sides. For a fixed a F n, we have

h
90 S Z Zmz a< zl)U(H-l) (48)
i>1

After expansion, Equation (4.7) becomes

ST Y n@e@iile) = Y wr Tt Y @)

Br(n+1)  p=A+0 Br(n+1) p=A+0

Apply Theorem 3.7 to both sides to get

Yo Y imiB) + VeSO i = D D < B) + 1)(m;(8) + 8ij + 103 (14 5+ 1)0(1.9)

p=A+013i>1 p=A+01,75>1

+ (i +J—1)(mirj—1(B) + 1)93\(i,j)u(i+j—1)>-
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Identify coefficients of central characters. We get the second recurrence relation. For each ao - n
and 7 > 1

. .. hp_
PUACEAETIEDY (”mi(a)(mj () = 0i5) e\ igyuii+1)

i>1 2,51
. . hy_
+ (Z +J— 1)777,1‘_,_]‘_1(a)tpali(il_i_j_l)u(i7j)> . (49)

Corollary 4.3. Equations (4.8) and (4.9) together determine expansion coefficients @ for all
k>0 and o € P.

Proof. We use a triple induction first on k, on n, then on min(«). All steps are very similar to
the ones in the proof of Lemma 4.1. For & = 0, we have hg = 1. So

1, a=)
ho _ ’
Yo {O, a e P

Suppose for some k£ > 0 the coefficient gogk’l has been determined for all n > 1 and a = n. The
Iy

initial condition on the inner induction is n = 1 and Py = 0 since hi(J1) = 0 for all & > 1.
Now suppose for some n > 1, the coefficient cpgk has been determined for all & - n. We need to
determine gog’“ for all 5+ (n+1).

In the case of min(3) = 1, we let 8 = a U (1). Equation (4.8) implies

wgk = gt + Z imi(a)sf’];'{&l)uwly
i>1
All coefficients in the RHS have been determined by hypothesis. Suppose further for some b > 1
the coeflicient gog’: has been determined for all g* with min(5*) < b. Let g F (n + 1) with
min(3) = b+ 1. Remove a box from the smallest part of 3, i.e., choose « = 3\ (b+ 1) U (b). Note
my(a) = 1. Then Equation (4.9) can be written as

h ; "
b@ﬁk - _ Z zmi(a)@ali(i)u(“rl)
i>
i;?ll)

.. hp_
# 3 (iimi@)mse) + 35l o
4,7>1

. . hy—
47— 1)mi+j—1(O‘)‘Pali(ilj—nua,j))'
All coefficients on the RHS has been determined by hypothesis. O
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L (I 2 3 4 5 6 7

(6%

(11) 1 1 1

(2) 1 1 1 1
(111) 3 11 43

(21) 1 5 21 85
(3) 2 10 42

(1111) 6 A1 316

(211) 1 10 91 820
(22) 1 20 231

(31) 2 25 252

(4) 5 70 735
(11111) 10 105 1240

(2111) 1 16 231 3382
(221) 1 28 567

(311) 2 42 714

(32) 2 84 1974
(41) 5 126 2415
(5) 14 420

Table 4.1: Coefficients of Low Order hx(J1, ..., Jn).

4.3 A Partial Differential Equation

Consider expressing the above recurrence as a relation on the generating series level. Define

Ttzp) =Y 'Y = j{jqa Calpa.

k>1 n>0 " akln

Note & = ®*(¢, z, p) is ordinary in ¢ but exponential in 2. Since z(a) = |C4|/n!, we can rewrite

it as
Ztkz Z@hk pa

k>1 n>1 akFn

Let « € P. Then pf-pau(l)z(a U (1))~ = paz(a)~!. Furthermore if i > 1 and 8 € P, then

imi(a) 22 = p; Pa\(i) Pau(i+1) DB

an - = )
2@ e @) M PRI+ D) - 20)

(4.10)
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In particular, if 5 =« '\ (i) then

im-p—a:p-pJ‘ Do ()i
ZZ(OZ) iPi+1Pa\(i)U(i+1)-

Multiply Equation (4.8) by paz(a)~'z1**1¢% and sum over all a € P and k > 1. Then

left — handside = Z Z Z goau(l) Pa "'Htk

k>1n>1akn
Pau(1)
Z Zz 29‘7 2(aU (1))
k>1 n>1 akFn
k n+1 hy PB
S DI SN
E>1 n>l B(n+1)

lep

Note if 8 € P does not contain a part of size 1, then pfpﬁ = 0. Together with the fact 90?1) =
for all k > 1, we can free the restriction in the inner summation and sum over n > 0. Then the
left-hand side is simply pL(IDH Now consider the summation in the RHS. We have

RHS=> 33"} @Z’< Dugienimi(@) 21(93) Lk

i>1 k>1n>1atn

=ty Y Tyt Zcph’“ DU(it1) PiPia e

i>1 k>1 n>1 akn

=t Zpipﬁl Z tht Z 2"t Z @Zhl Z}()g)

i>1 k>1 n>1 B(n+1)
i+1€B

Pa\(i)u(i+1)
\ (@)U (i+1))

Similar to the previous case, if 5 € P does not contain a part of size ¢ + 1, then pf;rlpﬁ =0.In
particular pf;lp(l) =0 for all © > 1. Hence we can free the restriction in the inner-most sum and

sum over n > 0. Equation (4.8) can be written as a PDE

pr @ = 20H +t2p2-pijjr1¢H. (4.11)
i>1

Similarly, multiply Equation (4.9) by paz(a)~'z1%*1t* and sum over all @ € P and k > 1.
Apply relation (4.10) to the summand in the RHS. For any partition o € P and 4,j > 1 we have

Pa n Pa\(4,5)U(i+5+1) . ..
5i' — N — PiPiPiy; P - . ) = ) ’
Vate) TIPS ) UG b ) ST )

L Pa 1L Po\(i45-1)U(4,5) . L
= Dmiyj1() == = pitj-10; Pj — — = -1).
(Z+j )m +7 1(a)Z(Oé) p+] 1P p] Z(Oé\(l—i‘]—l)u('b,])) usulgﬁ O[\(,L_’_j )

ijmi(a)(mj(a) —
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Note the left-hand side of Equation (4.9) is similar to the RHS of Equation (4.8). Hence, we
can express Equation (4.9) as a PDE

> i ® =t | Y pipipii i+ piviapip; | @7 (4.12)
i>1 i,j>1
Combining Equation (4.11) and (4.12), we get the following result.
Proposition 4.4. The series ® is the unique solution to the partial differential equation
pr® =20+ | > pipipdy i1 + pivjoapipy | @7, (4.13)
1,521
with initial condition ®H(t,0,p) = 1.

Equation (4.13) reveals an interesting combinatorial property of £ operators. From the
derivation above, the differential operator pi- kills off all p,z(a)~! where o does not contain a
part of size 1 and pipaz(a) ™' = paa)z(a\ (1)1, Since poz(a) ™ marks a conjugacy class, we
can interpret pf as a projection operator 8,41 — Sy41 defined

l? / +1: +1
l:alb—>{a o'(n )=n o' € 8n11.

0, otherwise,

Clearly, the range of the above projection can be identified with the canonical embedding of §, in
Snt1. Féray took advantage of it and provided a combinatorial proof of Equations (4.8) and (4.9).

4.4 Féray’s Combinatorial Arguments

We prove Equations (4.8) and (4.9) using a combinatorial argument due to Féray [10]. Recall
. R
Sogﬁ(l) = it + szi(a)sf?ak 5 (4.8)
i>1
. h .. h
Zlmi(a)wai(i)u(i+l) =, <z3mi(a)(mj(a) +0i)Pal i.g)uii 1)
i>1 ,521
. . h
04~ Ui 2 @i ) (19)
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With mild abuse of notation, let pi- : C[8,,4+1] — C[8,] denote the extension of above projection
operator with its range restricted to S, i.e., define

, odn+1)=n+1
pro’ = o o ) o' €8,
0, otherwise,

where o is obtained from ¢’ by removing the fixed point n 4+ 1. Extend linearly to all of C[8,,4+1].
We will use ¢’ to denote adding n + 1 as a fixed point to o € §,,.

Recall Equations (4.8) and (4.9) are derived from the group algebra recurrence
hk(Jl, ey Jn+1) = hk(Jl, coeydn, 0) + Jn+1hk_1(,]1, ey Jn+1).

Let o € §,, with cycle type o - n. Consider its coefficient after applying p;- to the above equation.
A surviving permutation 7 in pfhk(Jl, ..+, Jnt1) must contain n + 1 as a fixed point by definition.
Hence, the cycle type of 7 can be expressed as S U (1) for some unique 5 + n. Hence,

h
[olpthi(Jr, .y Jng1) = Pati1)”
Since every permutation in hg(J1, ..., J,,0) has n+ 1 as a fixed point, we get
[o]pt P (1, -y Iy 0) = [0]hi (T, -, Jn) = @F.
For the rightmost term, we note as operator [¢]pi = [¢']. Then

aJn+1)
aJn+l)

0Pt Tnsthi—1(J1, - .. Tng1) = [0') Tug1hi—1(J1, .-
= [o'Jns1lhi—1(J1, - .

= [, n+ Do Th1(J1, .., Jnt1).
v=1

For each v € {1,...,n}, the cycle structure of (v,n + 1) - ¢’ differs from that of ¢’ by only the
cycle containing v and n + 1. Note

(v,n+1)-(v,0(v),...,0% Yvjs)) = (v,0(v),...,0% (v),n +1),

where «, is the order of the cycle containing v. Hence the cycle type of (v,n + 1) - o’ is
a\ (ay) U (ay + 1). It follows that

. hi—
{U]pi_‘]n-i-lhk—l(‘]l) SRR Jn—i—l) = Z Zmi(a)wai il)U(i+1)'
i>1

We get Equation (4.8) by putting the above together.
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To get the second relation, we apply pf after multiplying the group algebra recurrence by
Jn+1- Note

Tni1he(J1y ooy Tng1) = Tt hi (1, oy Tny 0) + Ty ihi—1 (J1s ooy i)

Again we consider the coefficient of o after applying pi to the above. Its coefficient from the
left-hand side is
Ry
[U]plLJn—Hhk(Jb oy Iny1) = ‘Pali(i)u(lqu)-

Since 7 € hg(J1,...,Jn,0) contains n 4+ 1 as a fixed point, then every monomial in J, 17 does
not contain n + 1 as a fixed point. Hence, [o]pi Jni1hi(J1,- .., Jn,0) = 0. For the last expression,
we want to evaluate

n

oIt Jo i1 (J1, 1) = > [(wn+ 10,0+ Doy (1, Jngr).
u,v=1

distinct

/

We need to figure out the cycle type of (u,n + 1)(v,n + 1)o’.
(u,n 4+ 1)(v,n + 1)o’ differ from that of ¢’ only on cycles containing u and v. There are 2 cases.

Note the cycle structure of

(i) Suppose u,v both appear in a cycle of length a; with 0%(u) = v and ¢®(v) = u. Then
(u,n+1)- (v,n+1)- (v,0(0),...,0" W), u,0(u)...,0% 1 (u))
=(u,n+1)- (v,0),...,0°W),u,0(w)..., 0% Y(u),n+1)
(0,0(0), -, L), m 4 1) - (0w -, 0L a).

P) n+1 n+1
n+1

v v v

Joinn +1 Cut

Figure 4.1: u and v appear in the same cycle.

Hence the cycle type of (u,n+ 1) (v,n+1)-0"is a\ (e;) U (a,b+ 1). Note there are «;
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choices for v. The corresponding coefficient is

h . . h
Z Y it onu@psny = D d = Dmii (@@t i 106

i=1 a,b>1 3,j>1
a+b=q;

(ii) Suppose u,v appear in different cycles of lengths «,, and v, respectively. Then

(w,n+1)-(v,n+1) - (v,0),...,6 1)) (u,0(u),...,0c% (u))
=(u,n+1)- (v,00),...,0 Y v),n+1)- (u,0o(u),...,c* ()

=(,0(v),...,0 ), u,o(u),...,0% (u),n +1).
u /—\ /—\ u
n+1
N ~ n+1
\—/ v
Join n+1 Join

Figure 4.2: u and v appear in different cycles.

Hence the cycle type of (u,n+1)-(v,n+1) 0" is a\ (ay, ay) U (ay + o, +1). For each pair of
distinct 4,5 = 1,...,¢(c), there are o; choices for u and «a; choices for v. The corresponding
coefficient is

£(a) b
Z alajgoa\(a“ag)u (ei+o+1) Z ijmi(a (@) = 61J)(Pa\(i,j)u(i+j71)‘
i,j=1 i,j2>1

distinct

Note the term d;; deals with the case when we choose 2 distinct i-cycles.

Putting the 2 cases together, we have Equation (4.9). This concludes the proof.

This method can be extended to prove new induction relations. The relation

1 Pau) Do >
P au®)  2a) CZ1
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can be used to interpret pr as a projection operator. For each n > 1, define pr : C[S,] — CI8,] as

o , (n—k+1,...,n)is a cycle in o,
prUZ{ ’{1,...,nfk} ( ) y

otherwise.

Note the cycle (n k+1,...,n) can be replaced by any cycle on the ground set {n —k+1,...,n}.
The operator pb simply removes some pre-determined b-cycle containing n+1 so that the remalning
permutation lives in 8, ;. We achieve the desired effect

Py Caum) = Ca.

Theorem 4.5. The relation

h hk 1 hk 1
9%6( b) =01 Wﬂ T Zﬁﬂ‘%\ BUB+b) T Z Paoirsy 021 (4.14)
j=1 r,s>1
T+S:b

completely determines expansion coefficients (pg’“ forallk >1 and B € P.

We first recover Equations (4.8) and (4.9). Let o € P be chosen arbitrarily. Set b = 1 and
8 = a. We get

(:0 Z Zml O¢< ZI)U(H—l)

1>1

If i > 1, specializing f = a \ («;) and b = «a; + 1 yields

hi hi—1 hi—1
(poc\ (ai)U(e;+1) Z Oé]soa\(omocJ JU(ai+o+1) + Z Qpa\(ai)u(r,s)'
7>1 r,s>1
Ve r+s=a;+1

Multiply through by «; and sum over all ¢ > 1. We get Equation (4.9) after re-indexing. The
term ¢; ; in Equation (4.9) is accounted for by the condition j # i.

Proof of Theorem 4.5. Let b > 1 and let ¢ € §,11— be a permutation with cycle type « +
(n+1—0b). We apply pr to the group algebra recurrence

hk(Jl, e Jn+1) = hk(Jl, RN Jn, 0) =+ Jn+1hk_1(,]1, e Jn+1).

Note

h
p#hk(Jla s n+1 Z Spﬁk 6,3 = Z Soafj(b) ea'
B(n+1) at(n+1—k)

In other words [o]pyhi(J1, ..., Jnt1) = [Calpith(J1, .-y Jng1) = @Zﬁ(b)'
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Since hg(J1, ..., Jn,0) is the canonical embedding of 8,, in 8,41 with n+ 1 being a fixed point,
then [o)pyhi(J1, ..., Jn,0) = 5171790316. Now let o* € 8,11 denote the permutation obtained from
o by adding the cycle (n+1,...,n+ k). Then

[01pis Tn 1l (T, - - -y 1) = [0 T (1, - o Tng)
= [Jn+10*]hk(J1a-- s Int1)

—Z ’Un—l-l hk(J17---7Jn+1)-

Once again, there are 2 cases.

e If v is in the ground set of ¢, then v and n+ 1 appear in 2 different cycles in ¢* by definition.
Hence, the cycle type of (v,n+ 1) 0" is a\ (o) U (o + b) for some «; € . It follows that

n+1—k

* h
Z; [(v,n + 1)o"he(J1, .., Jnt1) Z%%I{(;Z U(ai+b)"

e If v is not on the ground set of o, then v and n+1 both appear in the cycle (n—k+1,...,n+1).
The cycle (n+1,...,n + k) is cut into 2 smaller cycles by (v,n + 1). Hence, the cycle type
of (v,n+1)-0*is aU(r,s) for some r,s > 1 such that r + s = b. It follows that

n+1 (o) .
Yoo o+ D)ot (i, Jngn) = Y Posiris)”
v=n+1—k+1 r,s=b
r,s>1
The proof of Corollary 4.3 can be repeated to prove that this is a recurrence relation. ]

We remark that since pr is a differential operator on Sym, its action can be interpreted
as marking a canonical cycle in §,. In the context of the above proof, the canonical cycle is
mn—k+2,...,n+1).

Finally, consider turning induction relation (4.14) into a differential equation in terms of ®*.

Note
hk pﬁ 1 hk pﬁu(b)

PR (8) P RO (B U (b))
If we sum over 3 € P, then the summand can no longer be collected into ®¥. The problem is
uniqueness. If a € P, then there are non-unique choices 8 € P such that U (b) = a. We would
have to sum over 3 of the form « \ (o;) for some ¢ and then sum over i > 1. As explained in the
paragraph following the statement of Theorem 4.5, we recover Lassalle’s result. Hence, the PDE
is Equation (4.13). This is not surprising since Lassalle’s relations and Féray’s relation are both
obtained from the same group algebra recurrence.
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4.5 Related Results

For completeness, we include some known results on expansions of other symmetric functions.
We omit the proofs since they are fairly similar to the derivation of Equations (4.8) and (4.9).
These results are due to Lassalle.

Using Theorem 3.8, we can expand the product e [24, Proposition 5.2]. For n >k > 1

ety = Y Zmi(a)(;>€a+ 3 (Z)—Zmi(a)<;) e,

akn i>2 akFn 1>2
L(a)=n—k—1 L(a)=n—k+1
The power sums have an obvious 2 term recursive definition: pg(x1,...,Zn+1) = pp—1(T1,. .., Tn,0)+

”H Apply the general strategy we obtain [24, Equation 6.1]

au(l) = gt +Z””Z a\ )u(z+1)’

i>1

p
Z“”Z Pariuiiry) = —Pa

3 (iimita)mye) = Bl o

4,521

+(+7— 1)mi+j1(Ol)<pilc\(il+j—1)u(i,j)>'

Note that the power sum expansion coefficients recurrence are very similar to the ones
for complete symmetric functions. Lassalle considered Hall-Littlewood symmetric functions
P, = P,(z). These are generalizations of well-known symmetric functions. In the one-row case, we
recover P(0) = hy and Pj(1) = pg. Lassalle worked out the following recurrences [24, Equations
(8.1) and (8.2)]

o = Pk 4 Z im;(a)p <E3U(i+1)
i>1

E im;( P gk
i\Y)Po\()Ui+1) — Pa
1>1

+ Z (ijmi(a)(mj(a) — 0i5) Zk\(;])u(zﬂﬂ)

5,521

04— D2 @F i )
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Generalized class expansion can also be thought of from partial permutations and shifted
symmetric functions point of view. These objects have origin in representation theory [19]. Each
of the above expansion coefficients can be studied in terms of shifted symmetric functions. For
discussion in this direction, see Section 2.8 of [24]. For generating series of expansion coefficients
of complete shifted symmetric functions, see Section 9 of [21].
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Chapter 5

Revisiting with Lassalle’s Operators

Féray’s argument is reminiscent of an argument by Goulden and Jackson. The combinatorial
analysis of transposition acting on a permutation was used in [16] to count transitive factorizations
into transpositions. In this Chapter, we derive finer details of £ operators from this point of view.

We distill a family of operators U due to Carrell and Goulden [1]. The combinatorics of these
operators describes “lifting” actions moving from &, to 8,1 involving Jucys-Murphy elements.
More interestingly, the U operators describe these “lifting” operations simultaneously for all
symmetric groups. We will also see that a parameter h naturally arises as an elementary property
from both algebraic and combinatorial points of view. In the closing section of this chapter,
the development of a generating series targeting this A parameter is treated using some tools
motivated by mathematical physics.

5.1 Joins and Cuts

We first consider an operator due to Goulden [11]. Choose arbitrarily some n > 1 and let
A=J +- -+ J,. Weomit n from the notation as it is unnecessary. We will see shortly its
algebraic counterpart describes its behaviour simultaneously for all symmetric groups. Consider
the multiplication A - ¢ in C[8,]. It turns out this action has a neat description as a differential
operator on Sym. Jucys-Murphy elements provide a quick proof of its action on Schur functions.

Theorem 5.1. For each \ € P, we have

Asy = pi(ca)sa.
Proof. Note Asy =ch ((J1+---+ J) - x*). The result follows from Theorem 2.12 since
(Ji+ -+ J)x* = prle)x™
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O]

We only sketch the proof of the following result since it is very similar to the proof of
Theorem 4.5.

Theorem 5.2.

1 1.1 1L
A=2>, (piﬂpi pj + pipipii; )-
4,521
Proof Sketch. Let o € C, be any permutation. Choose distinct vertices u,v € 1,...,n. The cycle

structure of (uv) - o only differs from that of o by the cycles in ¢ containing u,v. There are 2
cases.

If u,v appear in the same cycle in o, then (uv) cuts the cycles into 2 smaller cycles, one of
length i containing u and the other of length j containing v. The cycle type of (uv) - o is hence
a\ (i+7)U(4,7). This case is captured by pjpip,f;j.

&S
e

Figure 5.1: Cut Case

If u,v appear in different cycles, say of lengths i and j respectively, then (uv) joins these 2
cycles into a bigger cycle of length i + j. The cycle type of (uv) - o is hence a \ (4,7) U (i + j).
This case is captured by piﬂpilp]*.

ol

Figure 5.2: Join Case

<
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The % accounts for the symmetry that each (uv) could be chosen in 2 different ways. O
We observe the following obvious properties from the above 2 theorems.

(i) A is an eigenoperator on Schur functions, and

(ii) A is self-adjoint since (pipjpﬁ;j)l = piﬂ-pﬁ-pjl.

Note the expression in Theorem 5.2 does not depend on n. So A describes the action
J1+ -+ -+ Jy, simultaneously for all n > 1. Furthermore, comparing this expression with D(1), we

get D(1) = A+ (n—1)€& where
&= pi,
i>1
since Epy = |a|pa. Now let ¢ be an indeterminate. Define Lo(t) = p1 and

Then it follows immediately that Li(n — 1) = Ly, for all n,k > 1.

5.2 Ups and Downs

We can pick apart £(t) operators to obtain a finer description of £ operators. Such results
will be used to prove Theorem 3.7 in Section 5.3. Define Ug = p; and Dy = pi- and

uk = [A,uk,l] and ®k = ['Dkfl,A], k 2 1. (51)
These operators were first studied by Carrell and Goulden to count transitive factorizations

[4]-

Note by definition, Ui~ = Dy,. Similar to that of £ operators, their actions on Schur functions
are easy to compute.

Lemma 5.3. For k > 0, we have

Uksy = Z c(O)Fs, and Dysy = Z c(O)Fs,,.
p=x+0 p=A—0

Proof. Let A+ n. By Murnaghan-Nakayama rule, we have

Ugsy = Z s, and Dosy = Z Sp-

p=x+0 p=x—-0
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Then by induction, we have

Wsr= 3 pile )@ —pre)e@ s, = 3 @,
p=x+0 p=A+0

Similarly we get the action for Dysj. O

Using the commutation relation [paL, pp] = adqp, we can compute the first few values of Uy
directly from the definition. However, the process quickly becomes complicated and unmanageable.
Its computation heavy proof can be found in the Appendices.

Lemma 5.4.

Up = p1,
1
U = Zpi—HPi ;
i>1
L Lol
Uy = Z (pipjpi+j_1 + Pitj+1P; Pj ) ;
1,521

1 .
Us = 2 Z (i + )PP + Z Z pipipirpy | + Z PitjDRP} Pitk—1

1,521 ,j>1 i j>1 i,5,k>1
i+j=i'+j'+1
s 1. L
+ E Di+jDP; E Dy Dy
5,521 i',5'>1

Note U has already appeared before in Section 4.3. Equation (4.13) can be rewritten as

U@ = 207 + >U, 0.

We only treat U operators in the following sections. Analogous results can be obtained for D
operator by simply taking adjoints.

5.3 Proof of Theorem 3.7

We need to express L (t) in terms of U;’s. We do so by comparing their actions on Schur
functions.
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Theorem 5.5. For each k > 1, we have
E ok '
Lp(t) = Z <Z>Utk
=0
Proof. By repeating the computation in the proof of Lemma 3.4, we get

L= 3 () + ),

p=A+0

:Zk(;<’:>tk S (),

pu=A+0
k
k .
-y (,)tk—zuiSA.
: i
1=0
The result follows since Schur functions form a basis of Sym. 0

We are now in a position to get a short proof of Theorem 3.7. The grunt work has already
been carried out in Lemma 5.4.

Proof of Theorem 3.7. Consider applying Lo(t) to Hys) in 2 different ways. On one hand,

2
9 ‘
Lo(t)Hasn= > (Z> > OUipat®.

=0 akn

On the other hand,

2
2 —1
Lg(t)H)\S)\ = Z (Z,>H,\ui8)\t2 .

i=0
Identify coefficients of 7. For i = 0, 1,2, we have

Hy\Ujsy = Z OAUi D

akFn

After applying U;, the left-hand side becomes

> n@e@) Husy = > n(@e(D)'05 | pg.

p=A+0 Br(nt+1) \p=r+0

To conclude the proof, we simply replace U;p, with corresponding expression from Lemma 5.4
and identify coefficients of pg for 5+ (n + 1). O
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This proof follows the approach in Lassalle’s original proof. Our improvement is a cleaner way
to package and compute the commutator relations using Theorem 5.5.

5.4 Combinatorial Interpretation

We observe that U, Us, Us are all differential operators. This is of course true in general.
Consider the generating series

xk
U(z) = Zukﬁ

k>0
Theorem 5.6. We have U(x) = exp(xA)py exp(—xA). Furthermore,

k
Uz, w) = % > wh > u(k, h, o, B)paps -

k>0 " R>0 a,BEP
|a|=|B8]+1
£(a)+4(B)=k+1—2h

for some constants u(k, h, a, ).

Proof. The recursive definition of Uy can be instead written as nested brackets. We have

k

U = [A [+ [Apr] -] =) (1) <’;> AFip AL (5.2)
=0
Then
k xk Ak i —A)
U(z) = sz' k! (k )|p1( il )
k>0 i=0
Az)t  (—zA)
—Z(i;)l’l( ]')
4,70

= exp(zA)p1 exp(—zA).

We prove the restrictions |a| = ||+ 1 and ¢(a) +£(B8) < k+1—2h for some h > 0 by induction
on k. The process is rather straightforward despite the appearances of long expressions. The base
case has already been verified in Lemma 5.4.

Now suppose u(k, h, a,ﬁ)papf; is a monomial in Uy for some k,h > 0. Then |a| = |F| + 1 and
la)+0(B)=k+1—2h. Let J = Zi’jzlpiﬂ-pf-pj- so that A = %(H + HL)
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Note
3, papp] = > (piﬂpfpfpapé —papémﬂp#p}) :
ij>1

Since pil’s are differential operators, we apply the product rule to get

()
ENNZIEDY ( > (p%pas) (pjpat) PitjPo\(aw,00)PF

ij>1 \st=1
s#t

(o) £(a)

+> (pfpas) PitiPa\(a)P] PF + D (pfpat) PitjPar\(an)Pi P
s=1 t=1

«8)
-3 (pé}pi-i-j) papé\(gr)pfp]*> :

r=1

We look at each monomial p,\pi appearing in the above expression. There are 3 cases because
the 2 expressions in the second line have the same form.

Line 1. We have A = o\ (as,a4) U (i 4+ j) and p = 8. If (pilp%)(pj-pat) # 0, then ay =i and
a; = j. Hence, |A| = |p| + 1. It follows that |A| = |«|. Furthermore,

N +l(p)=k+2—-2(h+1).
Line 2. We have A = a \ (as) and pp = BU (j). If pjpa, # 0, then a5 = i. It follows that
Al = |a| 4+ j and |p| = |B| + j. Hence, |A| = |u| + 1. Furthermore, ¢(A) + €(p) = k + 2 — 2h.

Line 3. We have A =a and 8=\ (8,) U (3,7). If péTij #0, then 3, =i+ j. It follows that
p = |B|. Hence, |\| = |u| + 1. Furthermore, ¢(\) 4+ () = k + 2 — 2h.

Similarly, note

3" papf] = > (pipjpiijpapé — papapipjpﬁj> -
ij>1
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Apply the product rule to get

()
3, papg) =Y (Z (pﬁjpar) PiPiPa\(ar)PF

,J r=1
«B)
= > (vhipi) (Phs) PabBi o0
5;1;:751
¢(8) (8)
B Z (Pipi) PaDiD3\(3,)Pirts — Z (P?tpj) Pwm?\(ﬁﬂ%) :
s=1 t=1

We look at each monomial pApi appearing in the above expression. There are again 3 cases
because the 2 expressions in the last line have the same form.

Line 1. We have A = a \ (a,) U (¢,7) and p = 3. If pzﬁjpar # 0, then o, =7 + j. It follows that
|A| = |a|. Hence || = || + 1. Furthermore, ¢(\) + ¢(p) = k + 2 — 2h.

Line 2. We have A = a and p = S\ (Bs, Bt) U (i + 7). If (péspi)(pétpj) # 0, then 85 =i and
Bt = j. It follows that |u| = |5]. Hence |A| = |p| + 1. Furthermore,

0N + () =k +2—2(h+1).

Line 3. We have A =a U (i) and p= g\ (B) U (i + 7). If pipi # 0, then f; =i. It follows that
|A\| = a+j and |u| = B+ j. Hence, |A| = |u| + 1. Furthermore, ¢(\) 4+ () = k + 2 — 2h.

The result follows by induction. O

By taking adjoints, we get the dual result for D operators. The U operators bump up the
total degree by 1 and D operators knock down the total degree by 1.

The parameter h emerges naturally from matching pairs of pf"s and p;’s. The actions of
U operators on power sums bring us closer to a combinatorial interpretation. We introduce a
notation: If o € 8, then we write o’ € 8,,.1 for its canonical embedding by adding n + 1 as a
fixed point.

Lemma 5.7. If a - n, then
Upa = Z Peyc(ro’)s

TEJ§+1

where T € Jﬁﬂ is @ monomial and o € 8, can be any permutation with cycle type «.
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Proof. For each partition A, denote V* by the vector space carrying the corresponding irreducible
representation of 8,,. For each o € §,,, we denote its representing matrix with respect to Young’s
basis by M7 and its character by x*(o) = Xéyc(a) = tr(MD).

Consider Ugp, for some a - n. Expand p, in terms of Schur functions, apply the definition of
U, and rearrange summations to get

IR YD DI (= LD SIS ) S (=i Y24 P

AFn p=A+0 pH(n+1) A=p—0

where o is a permutation of cycle type . But M 5n+1 is a diagonal matrix with contents of n + 1
in corresponding tableaux of shape p on its diagonal. And the set of standard tableaux of shape
@ with n + 1 in a common cell O forms the basis V#~". So the inner sum above simplifies to

> e@FM) = MY, ML = MY,

1 19
A=p—0 n+ n+

s (5.3)

where ¢’ is induced from o by adding n + 1 as a fixed point. By linearity of trace, we conclude

ukpa = Z tr(MZl:+1G/)SM = Z ZX“(T)SM = Z Peye(r)-

pH(n+1) TeJk, ol pkn reJk o’

Note if cyc(o) = a then ch(o) = po/|a|!. Tt follows that

Pa
ch(Jf o) = > ch(m'):uka.

TEJ’;Jrl
In other words, Uy, is the operator that describes the action J%,; o p; where p; : C[8,] = C[8y41]
is the canonical embedding operator defined as pi(c) = o’.
As operators on group algebras, the canonical projection pf and canonical embedding p;
indeed form an adjoint pair since
<p{'71',0’> = 67r,a’ = <7T7p10>7

for all m € 8,41 and o € 8,. It follows that Dy, describes the action of p{- o (J¥ ;). Note
P1Pa = Pau(1) and pipa = pa\(1) for any o € P. Hence as operators on symmetric functions they
faithfully describe their group algebra counterparts.

We summarize the interpretation for p; and pﬁ below for £ > 1. Fix a canonical choice of
permutation s on the ground set {n +1,...,n + k}. Then multiplication by py is the canonical
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embedding (with respect to o) operator adding to each permutation in §,, the cycle x and pﬁ is
the canonical projection (with respect to k) filtering permutations not having x in their cycles.
Furthermore, p; and pi with respect to the same x are adjoint operators. In particular, when
k=1 then k = (n+ 1) is a fixed point and pl,pf- are the adjoint pair describing add-a-point
embedding and remove-a-point projection simultaneously for all symmetric groups.

We now turn to the parameter h. The appearance of Jucys-Murphy elements suggests we
consider joins and cuts as we did with multiplication by transpositions in Section 5.1. We shall
see that h counts the number of a certain type of joins. The combinatorial interpretation of
monomials in the Join-Cut operator A naturally lends themselves to this application.

Recall a monomial piﬂpfpj- in A describes the action of joining an i-cycle to a j-cycle to
form an (i 4 j)-cycle marked by p;y;. The subscript in the monomial (after differentiation and
multiplication) pi+jpf-p]*pa is the resulting cycle type. We say an operator pf‘ grabs an i-cycle.
Similarly, a monomial pipjpi{rj describes the action of cutting an (¢ + j)-cycle into an i-cycle and
a j-cycle. The subscript in the monomial (after differentiation and multiplication) pipjpf;jpa is
the resulting cycle type.

Let k>0 and n > 1 and a - n. To understand the h parameter, we interpret each monomial
in Ugp. An example is provided after the statement of Theorem 5.8.

Consider the cycle type of 7o’ where 7 € JT’LC 10" and 0 € C,. Write as a product of
transpositions 7 = 7 - - - 71 where 71,...,7x € J,1r1. We consider the multiplication 7o’ in stages.
Note the 0-th stage is the embedding ¢’ = p1o. Hence define ¢(® = ¢’ and

0'(7') :7'2-,1-0(1‘_1), forizl,...,k:.

For i =0,...,k, the canonical cycle in ¢ is the one containing the vertex n + 1. The cycles
in o are called initial cycles. We denote s; the length of the canonical cycle in ¢ . In particular,
s1 = 1.

The action of 7; - o1 is split into 2 cases:

e The canonical cycle is cut into 2 cycles. The one not containing n + 1 is called the spare
cycle (at stage 7). Denote the length of the spare cycle by ¢;. We grab a canonical cycle by
psli and split it into a spare cycle marked by p;, and the canonical cycle of the next stage
marked by ps,,,. The operator monomial describing this action is ps,,, ptipé-i.

e The canonical cycle is joined to another cycle of length —t;. We grab the canonical cycle by
psll, and another cycle by pfti and join them to form the canonical cycle of the next stage
marked by ps,,,. The operator monomial describing this action is ps,_, pfti psli.
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Denote! p_, = paL for a > 1. It follows that in either case the actions are described by

1
psi+1ptipsi .

Therefore the cycle type of o(®) is the subscript in the monomial (after differentiations and
multiplications)

(p8k+1ptkps%€) [ (ps2pt1p§1) plpa. (5.4)

Note pfpi is a scalar for 7 > 0. The above contributes to Uyp, a monomial

(5.4) = u(k, 7, @)ps, ., D1y, (pjkpsk) Doy Py (psﬁpl) Pa
= u(k7 7_7 Q)psk+1ptk o 'pt1pa (55)

for some scalar u(k, T, «). Note that there are k + 1 operators in the last line. This expression
also preserves the action performed at each stage. A join is described by p; for some ¢; < —1 and
a cut is described by py, for some ¢; > 1.

We now reduce Expression (5.5) by commuting into the form pAp/f. Consider 2 cases to a join

action.

e If the canonical cycle is joined to an essential cycle, then we call the action an essential join.

e If the canonical cycle is joined to a spare cycle created at some previous stage, then we call
the action a spare join.

If at stage i we have a spare join, then by definition there exists some 7’ < 7 such that ¢; < 0 and
ty +t; = 0. Commute operators so that p;, appears immediately to the left of p;,. If there is
some 4" such that i < i’ < i and t; = t;», the we chooses the largest one to be i'. We get

psk+1ptk o 'pti o 'pti/ t 'pt1 - psk+1ptk e (ptipti/) o 'pt1~

The total number of operators in the right-hand side goes down by 2 since py,pt, = pt;p—t, is a
scalar.

Suppose there are h number of spare joins and j number of essential joins. Then the above
reduction results in

1 1
pskatk Pt Pa = U(k, T, Q, h)pal t 'pak+1,2}L,jpb1 o 'pbjpa

where a;,b; > 1 and u(7, o, k, h) # 0 is some scalar. We have just derived the following result.

L This is common in mathematical physics literatures on vertex operators. They like to use oy; = p;- and a_; = p;
for i > 1.
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Theorem 5.8. Suppose a-n and o € Cy. If T,...,71 € Jpi1, then 1 --- 110" contributes to
Ugpa @ monomial

U(k, T, Q, h)pal o 'pak+1_2h_jpg_l e le;;pOé
for some h > 0 and some scalar u(k,7,a,h) # 0. The parameter h counts the number of spare
joins. Moreover, we have

(b1+"‘+bj) — (a1 +---+ak+1_2h_j) = —1. (5.6)

Proof. We have already proved the first part. For the second part, note s;11 = s; + t; implies
Si+1 = 1+4+t1 + -+ t;. In particular, sxy1 =1+t + - - - + t; implies Equation (5.6). d

To illustrate the above process, we consider an example. Let k = 4 and o = (123)(45) € Ss.
Consider 7 = (26)(46)(26)(16). Let oo = cyc(o) = (32).

(0). We embed o into 8g using the canonical embedding p;.

1

j Apply p1
B — e

3 2

S

3 2

S I
L IS

The change in cycle type is recorded in the calculation p1pa = p32yu(1) = P(321)-

(1). We have o¢ = (123)(45)(6). The action 7 = (16) on og is a join.

Py Pt )
4 1 4 6 Tt
NP
_—
6 ¢
5 3 2 5 3 2

The change in cycle type is recorded in the calculation p4p§-p1lpa = D(321)\(31)U(4) = P(42)-

(2). We have o1 = (1234)(36). The action 72 = (26) on oy is a cut. The spare cycle (23) is drawn
with dash lines.

pi P2
4 6 1 4 6 1
0 > = (26) O ~_ -
_— 7T TN
- »
5 3 2 5 ?\\—//2
b2



The change in cycle type is recorded in the calculation pgpgpip(@) = P2)\(4)u(22) = P(222)-

(3). We have o9 = (45)(23)(16). The action 73 = (46) on o3 is an essential join.

The change in cycle type is recorded in the calculation p4p2Lp2Lp(222) = P(222)\(22)U(4) = P(42)-

(4). We have o3 = (23)(1456). The action 74 = (26) on o3 is a spare join.

The change in cycle type is recorded in the calculation pgp%pip(zg) = P2)\(4,2)U(6) = P(6)-

So 7o’ = (145236). Note the 5 stages of multiplication 7o’ are captured by

(pep% o ) (mpgL Py ) (pzpmf) <p4psL pr ) P1 - Pa

which reduces to (ignoring scalar multiples)

PeDa (pim) Py (pzlpz) Po (pim) 3 (pfpl) - Pa = P6PI DI P2PT * Pa
= PeP3 D3 * Pa-

Note that the right-hand side of the first equality is what we expect from Equation (5.5). The
contribution to Uyp,, is pgpipﬁpa with A = 1. This completes the example.

Corollary 5.9. For each k > 0 we have
(0) . 1 k —|— 1 1 1L
U, _Zk;+1< J 2 Par ***Pag1—; Py " Po;-

j=1 A1,y Qft1—5,01500,05 21
a1+---+ak+1,j+1:b1+---+b]~
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Proof. Note h = 0 means there is no spare joins. In the notations above (replacing si11 by g1
for convenience), this amounts to counting sequences of non-zero integers ty11, t, . . . , t1 such that

1 Htg+--+t=-1
such that each partial sum represeting the length of the canonical cycle at stage i satisfies

bttt +1>1, i>1

Suppose there are j number of essential joins. We choose j number of ¢;’s to be negative. There
are clearly (kjl) such choices. By the Cycle Lemma, we must divide by k 4 1 so that the above 2
conditions are satisfied. Assign a; and b; such that as multisets {a1,...,ap4+1—;} = {t; >0:9 > 1}
and {bl,...,bj} = {ti <0:12> 1}.

Finally, note the first stage is always an essential join so that 7 > 1. Since sgy1 = tx11 > 1 s0
k+1— 7 > 1. We conclude that j must be chosen from {1,...,k}. ]

5.5 Operator Generating Series

We wish to find expressions for U (z) = [w"]U(z, w). The proof of Theorem 5.6 doesn’t seem
useful. In this section, we describe a different method to get explicit expressions for UM (z).

The Join-Cut operator A can be thought of as a simultaneous description of multiplication
actions by

pl(Jl,...,Jn)

in all symmetric groups. Lascoux and Thibon considered a generalization [23]. The pair were
interested in finding an operator D on symmetric functions simultaneously describing multiplication

actions by
n

Fu(t) = pk(J1,- -, In) 1= > (exp(Ji) — 1)

k>1 i=1

n

in all symmetric groups. A method called Bosonisation from mathematical physics was proven
effective. The Bosonisation of an operator on symmetric functions uses its action on Schur
functions to find an expression in terms of p;’s and p;-’s. They found a generating series

th +—k
V =V(q,t,p,p-) = ex ( k2 _ —k/2) “ ) ex ( k/2 _ —k:/2) N
(¢.t,p,p") = exp ; q q pe | exp ; ¢"? —q Pk

such that
[tV —1
(q1/2 _ q—1/2)2
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Note € = ;= pipi is used in Section 5.1 to define £(t) operators.

A related family of operators is called the Bernstein operators [25, Example 29, p. 95]. Recall
H(t), E(t), P(t) denote generating series for complete, elementary and power sum symmetric
functions. Define B(t) = H(t)E+(—t~'). The Berstein operators are B,, = [t"]B(t),n € Z. Their
adjoints are denoted as B;-,n € Z. Since H(t) = log P(t) and H(t)E(—t) = 1, we immediately

have
k —
—ZBM"—exp(Zpktk) exp( ij‘t >

nez k>0 k>0

~

=B =en (- Snd )ew (o).
nez k>0 k>0

It is well known that Berstein operators are creation operators for Schur function, i.e.,
B)\kBAk71 o 'B)\l 1= S)\-

It does so by Pieri’s rule to create each row successively starting from the longest one. We now
introduce some operations on partitions then state a result due to Carrell and Goulden [5] that
describe their actions on Schur functions.

Given a partition A, its rim hook is the skew shape p/A where p is the smallest partition
containing A and the cells (1, A\ + 1), (A} + 1,1) such that u/X is edge connected. Note each
partition is determined uniquely by its rim hook. A cell on the rim hook of A lies below A if it
appears below A on its Ferrers diagram. Similarly, a cell on the rim hook of A lies to the right of
A if it appears to the right of A\ on its Ferrers diagram.

A border strip p/ ) is a skew shape that is also an edge-connected subset of the rim hook of .
We can simply specify a border strip by the contents of its cells. Its length is the number of boxes
and its height ht(u/A) is the number of rows minus 1.

For example, the rim hook of A = (4, 3,3, 1) with its contents filled in is shown in the following
diagram. The cells labelled —2,1,2,4 lay to the right of A and cells —4, —2,—1,2 lay below A.
Note the subset {—2,...,3} of the rim hook is not a border strip since it is not a skew shape
(cannot be obtained by /A for any p € P).

\4
2 3 2
1 1
—2-10 —2-10

—4-3

Figure 5.3: The rim hook and a border strip (having height 2) of A = (4,3,3,1).
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Suppose A - n is a partition and c is an integer. If the cell in the rim hook of A with content ¢
lies below A, then define b .\ to be the partition obtained from A by removing the last cell from
each row ending in a cell with content greater than ¢ and adding a cell to the end of each column
ending in a cell with content is less or equal to ¢. Otherwise b.A = 0. Define 7.(\) to be the
number of rows of A above [.

The following diagram illustrates this operation in a 2-step process using A = (4,3, 3, 1) from
the above example. Cells to be removed are marked with — and cells to be inserted are marked
with +. If b\ # 0, then |bA| = |A| + c.

-] | - |

b o = - = and b_1\ = — =

+ +

Figure 5.4: b_oX = (3,2,2,1,1) and b_1 A = (3,2,2,2,1)

Similarly, define an operation b} as follows. If the cell in the rim hook of A with content c lies
to the right of A, then define b5\ to be the partition obtained from A by removing the last cell
from each column ending with a cell having content less than ¢ and adding a cell to the end of
each row ending with a cell having content greater or equal to c. If b5\ # 0, then [bIA| = |A| — c.
Define 7%(\) to be the number of rows in A above O.

BN = —

Figure 5.5: bj(\) = (5,4,1)

Theorem 5.10. If A € P and n,m € Z, then

*

an/\ = (—l)r"()‘)sbn)\ and Bi_mS)\ = (_1)rm()\)3b;§1)\~

Note the above statement is modified slightly to use the language of b-operations instead of
codes of partitions (also known as the abacus model of partitions). Now Consider applying b, b, to
a partition A. We again use the partition A = (3,2,2,1,1) as an example. The difference between
A and byb;, A are labelled with o denoting cells added to A and x denoting cells removed from A.
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b_1biA= bsbiA=

Figure 5.6: b,by, A

Observe that in both cases, the difference between b,b;, A and X is a border strip of length
|n —m| — 1. This in fact is a general phenomenon.

Theorem 5.11. Suppose A € P and n,m € Z such that byb},\ # 0.

o Ifn>m, then B,BZ,, s\ = (—1)"W/ Vs, where p/X is a border strip of length n —m such
that ¢,y = {m,m+1,...,n—1}.

e Ifn <m, then B,B*, s\ = (—1)ht(’\/“)su where N/ is a border strip of length m — n such
that cy/y = {n,n+1,...,m—1}.

If n =m, then BanmsA = S).

Proof. Note by definition we have

BanmS)\ _ (_1)Tn(bfn/\)+7”fn()\)3bnb:n/\_

Denote v = b, X and p = b,b), A. Let 0 = (4, j) be the cell in the rim hook of A with content
m and let O = (¢, j') be the cell in the rim hook of v with content n.

We prove the first case but only sketch the other 2 because they are similar.

e Suppose m < n.

Because [ lies to the right of A, every column to the left of (0 in A has length at least 1.
Then every column to the left of [ in v has length at least ¢ — 1. So the last cell in each
column to the left of OJ has content less or equal to (j —1) — (¢ — 1) = m. But m < n. So
cells removed by b, are put back by b,. Since p # 0, the cell ' must lay below v. Then
each row above [’ has length at least j/. The last cell in each row has content at least
j' =i =n. But n > m. So cells in rows above [ in v added by b, are removed by b,,. The
cell in v above [ is the last cell in a column with content m + 1 < n. So b, adds UJ to u.
Hence, the number of cells in p/X is n —m.
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Note 77, (\) is the number of rows above O and 7, (v) is the number of rows above [0'. So
(=)@ = ()W) = (1) — (i —1) — 1

is the number of rows between [J and [0’ (non-inclusive). This is precisely the height of u/\.
Note p/A is clearly a border strip.

Suppose m > n. Note 7 < 7/i. So every cell added by b* is removed by b. Similarly, cells
added by b form a subset of the cells added by b*. Note

(=)@ = ()N = (1) — (- 1) — 1
is the number of rows between [’ and [J. This is exactly the height of A\/pu.

Suppose m = n. Note that cells in A removed by b}, is put back by b, because their are the
last cells in columns of v to the left of [ and their contents are at most m. Similarly, cells
in v added by b;, are removed by b,, because they are the last cells in rows above J and
their contents are greater than m.

This completes the proof. O

The following corollary leads to an expression of U(z).

Corollary 5.12. Let q be an indeterminate. If A € P and k > 1, then

(14172 B(tg" ) BH(tg ™), = S (- 1) g(Ereun k) g
17

[t—k}q—l/ng(tq1/2)lgi(tq—4/2)3A ::jg:(__l)hdk/p)q(EZDGA/Mc(D)/k)S#
I

where the sum run over all u such that /X (or A/ respectively) is a rim hook of size k.

When k£ =1 and ¢ = €”, we have

—x/2 x/2 1 f:p2
[tYe*/2 B(te*/?) B (te™*/ Z Z S“k:'

u=A+0k>0

It follows that

U(z) = [t']e /2 B(te*?) B (te=*/?).

Using the V series introduced by Lascoux and Thibon, we can find an useful expression for

U(x).
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Theorem 5.13.

1 tk 1=k
() =] ]QSinh(x/Q) exp kE>1 2 sinh( ka:/2)pk exp (2 sinh(kx/2)py, z >

Proof. We use the following 2 elementary properties of exponentials of differential operators. For
any scalars a,b and indeterminate z, we have

o (42161 = (o0 (021 Y (o2 o)

where we treat f(z) as a multiplication operator and
0
exp(a@) exp(bz) = exp(ab) exp(bz). (5.8)

Using these properties with z = pg, we have the following operator identity

exp <Z akpé‘) exp ( > bmpm> = [ exp <akk88k> exp(bmpm)

k>1 m>1 km>1
= H <exp (akka> exp(bmpm)> exp <akka>
s Opk dp

= H Ske.m XD (karbm) exp(bmpm) exp(arpi)
km>1

= exp Zkakbk exp mepm €xXp Zakpljc_

E>1 m>1 E>1

for scalars ag, by. We get the second equality by applying Equation (5.7) with f = exp(by,pm) and
the third equality by applying Equation (5.8) to the first term.

Note B(tq'/?)B*(tq='/?) can be written as

exp Zq PE | exp Z KL k exp Z @ v l exp Zq

k>1 k>1 m>1 m>1

k/24k k:/2t k —m/2tm m/2¢—m

J_
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Apply the above operator identity to the middle 2 terms. We have

—m/2tm

g AR q 1
e S — —_—
S DR A P D DR A
E>1 m>1
—k/24—k —k/24k —m/24m —k/24—k
_ e A/ q t qg T t o
=exp Zk 2 ? exp Z_Tm exp Z
E>1 m>1 k>1
1 qu/2tm qfk/Qt k L
e [T T e (X
m>1 k>1

Note ¢g—1/2 1_;,1 = q1/2_1q_1/2. Putting everything together, we have

1
g2 1/2\ pLp,—1/2 1
/B(tq / )B~(tq /) ﬁV(QJtvpap )-

We conclude by substituting ¢ = e” and recalling sinh(x) =

By expanding sinh, we can get a more detailed expression of U. Note

o (x/2)2i+1 kx/? 21,+1 tk kx/? 2@+1 Ltfk
W) = [t [ > QW exp > )2 @i+ 1) PPy | P 222 @i+ 1) g
i>0 k>1 >0 E>1 >0

-1
27 2i+1 in—i—l

_ [+17,.—1 337 L—1
=l ;2%(2@'+1)! P Z222(2z+1) Qui(t) | exp ;221'(21'“)!@2@“ R

where ‘ ‘ )
t)=>Y Kpet" and QF(t7") =) Kpit", j>0.
E>1 E>1
The second term is (multiplicatively) invertible because its constant term is 1. To pick up a
monomial papﬁm in the coefficient of ¢!, we take =121 from the first 2 terms, poz!(®)+2h

from the second, and pémf(ﬁ)“’13 from the third term. Then we arrive at a different proof of
Theorem 5.6 which states for all k, h > 0 we have

u = > u(k, b, @, B)papj,
a,BEP
loo|=[B]+1

0(a)+0(B)=k+1—2h

72



where u(k, h, «, §) are scalars.

From the above paragraph, the contribution to the h parameter comes from the last 3 terms.
Hence we insert w? in the last 3 terms to mark genus by w. Let Q;(t) = Q;(t) + Qi (t). We then
get for each h > 0

-1
2,2 2i,.2i+1

(R) () — [4/2h417,.—1 _wrr wre
UV (z) = [w*"t ]z g (51 1 1] exp E
i>0 i>0

Qai(t)

22i(2i 4+ 1)1 %

We can read off U () for small values of h.
UO(2) = [~ exp (2Go(0))
U @) = (1) (Qalt) — =) exp (Q0(0)
U (@) = [ o (55°Qa(0)? + 3 Qu(r) — 102 Qa(t) — 32 exp (G0 (1))

In particular, we have an algebraic proof of Corollary 5.9.
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Chapter 6

Enumeration of Transitive
Factorizations

We have all the bells and whistles to take on the transitivity condition in permutation
factorization problems. In Section 1.2, we introduced 3 classes of transitive factorizations problems.
Each problem was solved using a different method. Using the tools introduced in last chapter,
Carrell and Goulden found a unified algebraic approach to all 3 problems. Our intent is to describe
this method.

Being eigenvalues of Jucys-Murphys elements, contents of partitions show up in an interesting
way. We first develop a generating series involving contents of partitions. The U operators, whose
action on Schur functions involve contents, are used to determine a partial differential equation.
The results on the h parameter are used to derive a partial differential equation for genus 0 content
series.

We should mention that the combinatorial analysis of multiplication of arbitrary permutations
remains a open problem. The inductive nature of U operators and the success of this method
seem to suggest a new avenue. However, we were unsuccessful in this persuit.

6.1 Content Series

In this section, we derive 3 generating series for well-known classes of transitive factorizations
introduced in Section 1.2. We then distill a family of series indexed by a univariate series involving
contents of partitions. Once again, we use Jucys-Murphy elements to find a combinatorial
interpretation.
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We first consider transitive factorizations with no restrictions. Their counts are known as the
m-hypermap numbers where m is the number of factors. We have already derived their generating
series in Example 2.17. It is

Gonly, ) = log | 3020 S xoysr TT 1+ we@)™ | (6.1)

n>0  AFn dex

We now consider transitive factorizations into transpositions. Their counts are the Hurwitz
numbers. Consider an expression in the group algebra for not-necessarily-transitive factorizations
into transpositions. If 74, ..., 7, are transpositions in §,,, then we can naturally associate a graph
on vertices {1,...,n} using 7;’s as edges. Since order matters in a factorization, an edge 7; is
labelled with its position ¢. Hence, if n > 0 then

1
@nH:Z%(eh-i-'“—FJn)m
m>0 "

is the group algebra expression for all not-necessarily-transitive factorizations into transpositions
in 8,,. Note the inner summation can be written as an exponential function. Then we can rewrite

OH = exp(p1(J1,...,J,)). This is a central element in C[S,,]. Hence, it has a class expansion
Off =) i e,
akFn

Take its image under the characteristic map. Then ch™ ©H is its generating series in power sums
with p, marking the cycle type a of a product oy = 71 --- 7y, for some m > 0. We now take
advantage of Theorem 2.12. Note >, F* = 1 where F* are central orthogonal idempotents.
Multiply by z"™ and sum over n > 0 to get an expression for all transposition factorizations for all
groups. Following the computation for hypermap numbers, we have

A
ch ) 2ol <Z ”ﬁ) = 2" chmexp(pi(y, .. "J"»J%

n>0 AFn n>0 AFn

z" n! n A
— Z = Z F)\ ch™ exp(p1(J1,-- ., Jn))x
n>0 AFn

Zn
= Z ] Z Xf\w) exp(p1(ca))sa

n>0  AFn

:Zgzmwﬂmwm.

n>0  AFn Oex
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Let y mark the length of a factorization. Note connected objects in factorizations are exactly
the transitive ones. Hence the generating series for transitive factorizations into transpositions is

zTL
H(y,z,p) =log | >~ > xpms [ exo(ye(@) | . (6.2)
n>0  AFn Oex

Lastly, we consider transitive monotone factorizations into transpositions. Their counts are
known as monotone Hurwitz Numbers. Recall from Section 1.2, a factorization into transpositions

oo = (a1b1) - -+ (amby,) is monotone if a; < b; for all i = 1,...,m and by < --- < by,. We call
each distinct b; a pivot. The multiplicity of a pivot b; is the number of times it appears as some
bj. A monotone transposition factorization pivoted at by,--- , by is one with pivots bq,...,b; and

by < -+ < br. We first write down a group algebra expression for not-necessarily connected ones
in 8,,. Let a1,...,a, > 0 be integers. Then

Jor... gan
is the group algebra expression for monotone transposition factorizations pivoted at {i > 1 : a; > 0}.
Then _
o= . S

ay,...,an>0

is the group algebra expression for all not-necessarily-transitive monotone transposition factoriza-
tions in 8,. Note the summation is secretly

O =N " m(J,..., Jn).

k>0

Hence @51 is a central element in CI[8,] with class expansion
O =2 D ¢t
k>0 atn

It follows that its image under the characteristic map is a generating series in power sums with p,
marking the cycle type « of a monotone transposition factorization og = (a1b1) - - - (ambm). We
again take advantage of Theorem 2.12 to get

chz:@ﬁI <Z&"A> = ZznZChnth<Jla'“7Jn);<2\

n>0 AFn n>0 AFn k>0

n n 1
=2 % > X{im) Ch};[l 1_7JZ.X)\

n>0 AFn
=> 55wl g
n! (ar) 1—¢(O)
n>0 AEn Oex
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Let y mark the length of a factorization. It follows that the generating series for transitive
monotone transposition factorization is

H(y, z,p) = log Z len sl == |- (6.3)

n>0 " An DGA

The generating series for all 3 special classes contain a product involving contents of partitions.
Let f(z) be a formal power series. A content series indexed by f(x) is

eI (y,2,p) = %T: 2 X [T 1(we@

n>0  AFn Oex

We also define the connected content series to be \I/f(z)(y,z,p) = log ®(y, z,p). It follows
immediately that the content series generalize the generating series of the 3 aforementioned special
classes:

G = pi+a)"
H = v°®),
H=ygl-2"

The content series ®/(*) is a generating of a family of central elements parameterize by f.
The expression in the above definition can be thought of as a “decomposition” into irreducible
representations in the following sense. Let F'(x) = [[,~; f(z;). Then its specialization F'(Jy, ..., J,)
describes some central element in 8,, for each n > 1. So F describes a family of central elements
simultaneously for all symmetric groups. Then by Theorem 2.12, we get

/@) (y,2,P) Zz chz:frrA (yJi, ... ydn).
n>0 AFn

Recall 3 is the projection onto irreducible representation indexed by A. Hence, FAF(Jy,. .., J,)
is the irreducible portion of the generating series group algebra expression F'(Jy,...,J,). But
>y T =1 s0 we get

/@) (y,z,p) = ch Y 2"F(yJi, ..., yJn). (6.4)

n>0

Recall from Section 1.2 that the genus of a transitive factorization is given by the Riemann-
Hurwitz formula. Conveniently, if f(x) = (1 — x)~!, then F(x) = H(x;1) is the generating
series for complete symmetric functions which, when evaluated at Jucys-Murphy elements, encode
monotone transposition factorizations.
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Lemma 6.1. Let fo, f1,... be indeterminate and let f(x) = ZiZO fixt. Then
WOy, z,p) = > 0y, 2,p),
920

where

\I/f (y,2,p) Z Zw g, n—l—ﬂ(a) 2+29

n>1 n! abn

for some polynomial ¥(g, ) in fi, fa,....

Proof. Consider monotone transposition factorizations. Mark a monotone factorization in

gg = (albl) cee (ambm)

by ffl <o fimp, if the multiplicity of pivot j is ij and cyc(og) = o. Sum over all possible choices
of i1,42,... and o € P. It follows immediately from Equation (6.4) that

DI DTN

2>0 aFn

where /% (f1,...) is a series in f;’s and it marks all monotone transpositions factorizations whose
products have cycle type a.

It follows that W/(®) (y,z,p) is the generating series for transitive monotone transposition fac-
torizations. If o9 = (a1b1) - - - (amby,) is a genus ¢ transitive monotone transpositions factorization,
then by Riemann-Hurwitz formula we have

n—~La)+m=n—{(a)+ Z <n - E(cyc((aibi)))> =2n — 2+ 2g.
i=1

In other words, m = n+ 2+ ¢(a) —2g. Since y marks the length of a factorization, we immediately

have
/@ (y, 2, p) ZZ Zw g, a)pay" )220 (6.5)
g>0n>1 n! akFn

as desired. ]

We say that \Ilg(m) (y, z,p) is the genus g connected content series.
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6.2 A Partial Differential Equation

The U operators are related to Sekiguchi-Debiard operators because they have a similar range
of summation. Define for k > 0 eigenoperators for Schur functions

n
eksu = T E C(D)kxf\lnfl) 5#-
X o

We only need to use the fact that for any A\ € P
Cosa = |A|sa.

Theorem 6.2. Let f(z) =35, fixt and g(x) = > >0 gizt with go # 0 be formal power series.

Then g~ exists and &9 @) s the unique solution to the partial differential equation

ST fyl | @@ = [N ge; | ol

i>0 i>0
with, initial condition 9" (y,0,p) = 1.

Proof. We start with the left-hand side.

s _ (O
LS giyie | ol @) = IZ ZHf D;;g giy’

>0 n>0 nl pkEn De,u

Z C(D/)X?n—l)su

(1 ) p=0+0m

SOOI I - = UZE N
)

Cc
n>0 ,u,F(n—i-l) p=A+0"Oep 9y

c(d))
S z:llgim @)y

n>0 ©pk(nA41) p=A0 Op y

D;éD'
f yc
= I 316 Flye@))s,,
n>0 " AFn nex J u A0V
(S | s
i>0
We can read off the initial condition from the definition of ®f9~ (@), O
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Corollary 6.3. Let f(z) =), f;x® be a formal power series. Then the content series ®f(®) s
the unique solution to the partial differential equation

S il | @ = ;’ o/ @ (6.6)

: 0z
1>0
with initial condition ®f(®) (y,0,p) = 1.

Proof. Apply the above theorem with g = 1. Note Cys, = |u|s, for any p € P. We get

S fyu | 70 =27e > %7: > xtmsa [ Flye(@)

i>0 n>0 Arn Oex
0
— 2 ol
0z
Again, we can read off the initial condition from the definition of ®f®). O

6.3 (Genus Specific PDE

The genus 0 case of the 3 special classes mentioned in derivation of the content series have all
been enumerated. As a final application of the U operators, we consider Equation (6.6) from a
genus point of view. We illustrate the process of getting genus specific partial differential equations
by obtaining the genus 0 one.

We need a little lemma on differentiation.

Lemma 6.4. Let F = F(p) be a formal power series in power sums with no constant term.
Suppose € P with £(8) = m. Denote By U---U By = [m] a partition of {1,...,m} into pairwise
disjoint and non-empty sets. Then

vy exp(F) = Zm: > (pé(BI)F) ( E(Bk)F) exp(F).

k=1 ByU---UBy,=[m]

Proof. Note exp(F) is well-defined and by the chain rule we have p;- exp(F) = (p;- F) exp(F) and
by the product rule

pip} exp(F) = ((pilp]*F) + (pfF) (p]*F)) exp(F).
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If B C [m] is non-empty, then we denote pg(py = [[;cpps;- Let B1U---U By = [m]. Then by
product rule we have

2 () - () eso(F)

k
= | (8. F) (3o F) - (phmF) + 2 (php8F) T1 (wiis)F) | o).

i=1 1<j<k
i#]

Note pém pé(bi) = pé( Biu{m})" Since partitions of [m] can be partitioned into partitions where
m is a singleton or not, we conclude by induction on m. O

Now consider Equation (6.6). We expand Uy, into its monomials and focus on its action using
the above lemma. We will find that monomials from both sides have weight yl@l+¢(®)=2+2h fo;
some h.

Note ®/(®) = exp ¥/(®), Then Equation (6.6) can be written as

g Fey* Uy exp 0/ @) = aa exp U/(®), (6.7)
z
k>0

Expand Uy’s by Theorem 5.6 and apply above Lemma with F = U Multiply through by
zexp(—W/(*#)) to get rid of the byproduct exp(¥/(®)). The left-hand side of the above equation
becomes

£(B)
i+ Y 3 3 3 w(k, by, B,8) 25" e (Pé(Bl)‘l’f(‘T)) (Pé(Bi)‘I’f(x)> ,

E>1 a,BeP i=1 BiU---UB;=[{(8)]
h=>0 la|=|8]+1
L) +L4(B)=k+1—2h

Expand ¥7/(*) by Equation (6.5). Every monomial in pé( Bj)\Iff (#) has the form (up to scaling)

L +4(7)—2+2
pg(Bj)prMyM ™) 3

It follows that a monomial in the left-hand side has the form (up to scaling)

€] W 4o(~MDYy—242 L
My D1+ ) +g1)...<p5(3i)p7(i)z

k L (@) O | +0(yD)—2+2g;
2Y Pa (p/g(Bl)pW)z g () =2+ g)

for some k > 1 and gi1,...,9; > 0. Note the p,’s are power sum symmetric functions not
multiplication operators. Hence if p, = pép7 # 0 (ignoring scalars), then |u| = |y| — |8] and
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O(p) = £(y) — €(B). It follows that if p,2NyX is a monomial after applying pt, then we must have

il =lal+ 3 (W01 = 18(8))))
j=1

=la| -8+ R -1
=N,

() = t0) + 3 (£0) — (By)) = t) — €8) + 3~ 44")

=k+1-2n—208)+ ) (yY).
j=1

It follows that

¢
K=k+) I+ -2+ 2
j=1

=k+(lpu| —1)+ (b(n) — k —1+2h +20(B)) — 2i + 29

= lpl+€(n) =2+ 2(h +£(B) —i+g),
where ¢ = g1 + -+ ¢;. Note £(8) —i>0so h =h+ () —i+g¢ > 0. In summary, every
monomial in the left-hand side of Equation (6.7) has the form

puzNyK = pﬂz\u\—ly\u\ﬁ(u)—%?h’ and A > 0.

A monomial in the RHS is much easier to compute. Multiply by zexp(—¥/(®)) and apply the
chain rule. We have

3} 0
z exp(—\IJf(x))& exp(W/(@)) = zallff(x).

Theorem 6.5. Let f(x) =3 ), fexk and ¥g = Vo(z, p) = log @g(x)(l,z,p). Then \i/g(x) is the
unique solution to the partial differential equation

k k © flg) s 7 .
S D (48 DI SR A o TR0} R

k>1 520 a1,.,ap41-52>1
ar+-Fagp1—j=s+1

with initial condition {[](])‘(a:) (0,p)=0and €=}, D}
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Proof. Compare coefficients for monomials in Equation (6.7) with A" = h” = 0.

Since € = %, the RHS of Equation (6.7) is

0 0
flz) E f(z)
Z@z\l’ 0z Wi

R'">0

Take coefficient of A” = 0 we get %\Pg @),

On the left-hand side, these correspond to monomials with
h+4B)—i+g =0.
But A >0 and ¢’ > 0. So we must have

(B)=14, h=0, and g;=1,...,1.

Note h = 0 implies we are in fact only applying u,ﬁo) ’s in the left-hand side of Equation (6.7).

Note g1 = --- = g; = 0 implies U,EO) acts on ‘llgf). Finally, note ¢(8) = i implies |B1| =---|B;| =1
and we get the left-hand side of the genus 0 PDE after setting y = 1 as desired. O

From this proof, we see that the h parameter from the U operators can be interpreted as genus
in the sense of Riemann-Hurwitz formula. Using sophisticated tools in symmetric functions and
eventually Lagrange Inversion, Carrell and Goulden [4] solved this PDE for the aforementioned 3
special classes of transitive factorizations verifying that their coefficients are indeed the desirable
counts.
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APPENDICES

Computation of U,

Recall Up = p; and Uy = [A,Up_1] for k£ > 1. Let

1 1 1 1L
J= Z pi+jpi p; and JT = Z DiDjPiyj-
4,521 4,521
Then we use A = %(3 + J4) break up the computation into 2 parts.
1,1 1L 1L 1,1
3, U] = Z Pi+jP; Pj Pk+1Pg — PkDPk Pi+jP; Dj

i,5,k>1

= Y piripi (0] Pra)PE + Pits (D7 Prs)DF PR — Pr(PR DI )P DT

i,5,k=1
: 11 : 1.1 L 11
= Z]pi—FjPi i1+ Z WPi+jD; Pi—1 — Z (4 + J)Pitj+1Pi+j+1D; pj
i>1 i>2 i,5>1
Jj22 Jj=1
11
=2 pijpip;
4,521

L 1 1 1
[@5W]) = ) pipipisPrIDE — PPk PP
i7j7k21

= > pipi(i k)P — P (P D)DiDiG; — Pe1pi (PR P )PiT
i1

. . 1 . 1 :
= Z (i + J)PiPjPitj—1 — Pi+1DjPit; — inijrlpz‘LJ,-j

ij>1
. . L . 1 . €L
= i+ Dpipipin1 — Y6 = Dpipipiyj—1 — > (G = Vpipipitj
i,j>1 i>2 i>1

i>1 j>2

i
=2 Z PiPjPitj—1-
i,j>1
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To get the last equality in [Hl, U,], we throw ¢ = 1 into the second summation in the second last
expression since (¢ — 1) = 0. Ditto for the rightmost sum. Hence, we have

1
Us = > pisji1Di P + PibiPitj—1-
1,521
Computation of Uj.
We compute the 4 terms of Uz = [A, Us].
Ifi,4,7,5' > 1, then
1 1
[pipjpiﬂapi'}?jfpyﬂuﬂ
1 1 1 1
= (pi+jpi’> PiPjpj Py -1+ (pi+jpj’) PiPjPiPir+j -1
1 1 1 1
- <pi’+j’—1pi> PjPi'Dj' Pitj — (pi’+j/—1pj> PiPi P Pitj-
Sum over all 4, 7,7, 5/ > 1 we have

1 1
> " [pipipij Pipi P
0.4, >1

:Z Z(iJrj)Pz‘Pjpj’pz‘ijJrj’—l + Z(er)pz‘pjpﬂpﬁjwq

4>l \j'21 i'>1
-/ -/ L -/ -/ L
= > | 2o = Dppinppitip | = | DG 5 = Dpipinypiis sy
i, j'>1 \j=21 jz1
i
=2 Z PiPjPkPitjtk—1-
,5,k21

If 4, 4,4, 7 > 1, then
i3 P} s PPy DT 4 1)
= (vfoi) (vwsr) isivtip + (piwy) (pipe) piaspircs
+ (pfpif> PitiPyPi D1 + (p%pj/) PitiPit D Diry 11
+ (p]*pw) pi+jpj’p£_p§7+j’—l + (Pf]%’f) Pi+jpifpfpilf+jf—1
-

1 1 1
pi’—i—j/—lpi-i-j) biDyP; Py s
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and

[Py Pirs j1—1 PitiPi D]

= - (ﬁm) (ﬁ%‘) pi'+j'+1pf+j - (pfpj) (Pf/pz) Pz"+j’+1pz‘L+j
— (pf/ pi) Pirj 1D DD — (pipj) Pirj+1DiDj P
- (pj/pi) Pir 41D DI Diyj — (pj/pj) Pir+1DiDy P

+ (pﬁjpifﬂfﬂ) PipiDi D

Sum over all 4, 7,4, 7' > 1. We have

D Wpiipi vy pipypiy 1) + Pipypiy 1, Pisipi D]

i,5,0,5' 21
.. 1 .. 1 i 1 o) -/
= E <Z]pi+jpi+j—1 + Z]pi+jpi+j—1> - E (Z J Pi+j'+1Pir 450 — V) pi'+j’+1pz’/+j’)
i,j>1 i',j'>1

. 1 1 . 1, 1
-+ Z Z sz—i—]p]’p] pi-ﬁ-j/—l + Z Zpl+]p2/p_] pi’—i—i—l

i,j21 \j'>1 i'>1
v 1,1 v 11
- E E VPi' 45 +1PjP Pyt | — E U Pi' 4§ +1PiPj Dyt
i',j'>1 \j=1 i>1

. 1 L . 1 1
+ > A D dpiapiripr g | + | D dpieipepi v

1,521 \Jj'>1 i'>1
.7 1 1 ./ 1.1
- E E J Pi'+§'+1PiPir D40 | — E J Pir+j'+1PiPy Piy 5
i 21 \i21 j=1

+ S Gy | — D > (@ +5 = Dpepypivy

1,521 \i/'+j'=i+j—1 i/,5'>1 \i+j=it'4+j5'—1

= Z (i + j)pi—I—jsz:i-j—l + Z Z pipjpiL/ij’

ij>1 izl 4 g'>1
i+j=i'+j'+1

+2 Z Dit jPD; Pi—1 + 2 Z DitiPAD} Pjii—1-
i jk>1 ijk>1
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If 4, 4,7, 7 > 1, then

1.1 1.1 1 €L 1,1 1 1 1. 1
[pi+jp; p; 7pi’+j/+1pi’pj’] = Di+jD; (pj Pz"+j’+1> Py Py — P45 +1Py (pj’pi-l-j) Di P

1 I 1 111
+ Pitj (pz- pi/+j'+1> P PPy — P44/ +1 (pi/piﬂ') Pjp; Py -
Summing over 1, 5,7, 7 > 1, we have

L(L L1 L L 1.1
Z Pi+;iP; (pj pi/+j/+1) DirPy — Pir+j'+1Dy (pj'pi+j> D; Pj

i,5,8',j'>1
. 1 1,1 . 1 1. 1
= E JPi+;D; E Py Py — E JDi! 5" +1DPy E p; b
i,j>1 i, >1 i, >1 521

P45 H1=j J'=i+y

. 1 1.1 . 1 1L
= E IPi+;5P; E by Py | — IPi+j+1D; E Pirpjr
/j/>1

4,521 i’,j'>1 >
i+ +1=j J=1+j'
1L : 1.1 11
= E Pit+j+1D; E ((] + V)pirpy _pi’pj’)
i>1 i'§'>1
Jj>0 i'+j' =5
Z 1 Z 11
= Pi+;D; by pyr-
4,521 i',j'>1
i/-‘rj/—l-l:j

By symmetry, we have

1,1 1,1 1 1,1
E [pi+jPi Py s Pir+jr+1Py Pyi] = 2 E Pi+;jP; E Py Py -
il §'>1 ij>1 i,j'>1
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