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Abstract

Transitive factorizations faithfully encode many interesting objects. The well-known ones include
ramified coverings of the sphere and hypermaps. Enumeration of specific classes of such objects
have been known for quite some time now. Hurwitz numbers, monotone Hurwitz numbers
and hypermaps numbers were discovered using different techniques. Recently, Carrell and
Goulden found a unified algebraic approach to count these objects in genus 0. Jucys-Murphy
elements and centrality play important roles in establishing induction relations. Such a method is
interesting in its own right. Its corresponding combinatorial decomposition is however intriguingly
mysterious. Towards a understanding of direct combinatorial analysis of multiplication of arbitrary
permutations, we consider methods, especially operators on symmetric functions, and related
problems in symmetric groups.
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Chapter 1

Introduction

This thesis is motivated by counting problems of a family of objects that come up in many
different areas of mathematics [22]. Grothendieck calls them Dessins d’Enfants — children’s
drawings. Algebraic geometers see them coming from moduli spaces of complex algebraic curves.
Mathematical physicists often use them to model objects arising from quantum mechanics.
Topologists know them as branched coverings of the Riemann sphere. Bijective combinatorialists
prefer to think of them as (combinatorial) maps — 2-cell embeddings of graphs on orientable
surfaces. Conveniently, all of the above can be encoded as factorizations of permutations.

Not surprisingly, enumerative problems of permutation factorizations are posed and studied in
many different ways. One often counts factorizations with respect to a genus parameter due to
connections to branched covering of the Riemann sphere. For example, the earliest result dates
back to 1886 when Hurwitz sketched the proof for the number of genus 0 branched coverings
where all but 1 branching points are simple [18]. The geometry of Hurwitz Numbers remains an
active research area [21]. On the other hand, physical interpretations of factorizations lead to
interest in enumerating maps equipped with some additional objects, e.g. spanning trees. Such
problems are of course inherently more difficult. Many are open problems [2].

There are many beautiful results in permutation factorizations that promote the subject from
within combinatorics. A classic one is the enumeration of minimum factorizations of a full n-cycle
into transpositions. The answer is the tree number nn−2. Elegant results like this often excite
combinatorialists for they tend to reveal interesting decompositions. For example, Bousquet-
Mélou and Schaeffer discovered a fruitful bijection between factorizations whose corresponding
combinatorial maps are connected and certain families of decorated trees [3]. This bijection has
been extended in many different directions to count various classes of combinatorial maps with or
without additional structures [1, 9]. For a survey on the planar combinatorial maps, see [28].

The symmetric group algebra is a suitable setting for permutation factorization problems. Its
centre, consisting of elements that commute with every element, can be identified with symmetric
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functions. This correspondence opens doors to many effective algebraic enumerative techniques.
Goulden and Jackson were the first to write down a proof for the aforementioned Hurwitz number
using symmetric functions and combinatorial analysis on multiplication of transpositions [16].
Moreover, this correspondence is often a 2-way street. Many interesting questions in symmetric
functions arise from working with permutation factorizations. A well-known one is the so called
b-conjecture regarding coefficients of Jack symmetric functions [14].

Many methods have been used to attack enumeration of permutation factorizations. Although
it is not possible to list them all, we nonetheless give references to some relevant works here.
Tutte enumerated various classes of combinatorial maps using the so called quadratic method [17,
Section 2.9]. Representation theory and symmetric functions are used by Goulden and Jackson
[16], Goulden, Guay-Paquet, and Novak [12, 13], and Carrell and Goulden [4]. Integrable hierarchy
is used by Goulden and Jackson [15], Carrell and Chapuy [5], and Carrell [6]. Bijective approaches
have been used by Bousquet-Mélou and Schaeffer [3].

One of the recent results is a unified algebraic proof of three special classes of permutation
factorizations discovered using very different tools [4]. An interesting induction technique is used
in the centre of group algebra. The purpose of this thesis is to collect methods related to this
approach to obtain induction relations in the symmetric groups.

1.1 Overview

One of the contributions of this thesis is to bring together results related to operators on
symmetric functions that model an induction behaviour in symmetric groups involving multiplica-
tion by Jucys-Murphy elements. We survey works by Lassalle [24], Féray [10] and Carrell and
Goulden Carrell and Goulden. Another contribution of this thesis is a generalization of Lassalle’s
group specific operators to operators that describes the same behaviour simultaneously for all
symmetric groups, thus providing a more general context for extension. Our generalization allows
systematic and possibly computation for such operators as oppose to Lassalle’s ad-hoc approach.

Section 1.2 is a brief discussion on related counting problems on permutation factorizations.
We consider permutation factorizations in connected and not necessarily connected cases.

Chapter 2 is a short essay where we set up combinatorial and algebraic frameworks. We bring
in relevant facts from representations of finite groups and symmetric functions. We explain how
each of these tools enters the big picture.

Chapter 3 describes a family of differential operators L which is one of the tools for finding
induction relations. As an application of L operators, we obtain some linear relations in central
characters.

Chapter 4 considers a problem generalized from permutation factorizations in the not necessarily
connected case. Using linear relations in central characters, we obtain induction relations for their
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coefficients. We also discuss the combinatorics in a special case which leads to a generating series
involving contents defined in Chapter 6.

Chapter 5 picks apart the L operators. The method used in Chapter 4 is extended to obtain
another family of operators U first considered by Carrell and Goulden. The combinatorics of
these operators involves an add-a-vertex operation and multiplication by powers of Jucys-Murphy
elements. As we will see, the L operators are group specific. We present a new result generalizing
that to a family called L(t) operators that does not depend on a particular symmetric group.
In other words, the L(t) operators describe the same multiplication by Jucys-Murphy elements
behaviour simultaneously for all symmetric groups. We also reveal a natural parameter h and
obtain a generating series with respect to h using some tools from mathematical physics.

Chapter 6 is our final chapter. Generalizing from 3 classes of permutation factorizations,
we define a generating series Φf(x)(z, y,p) involving contents of partitions. The U operators
and its combinatorial interpretation are used to obtain a partial differential equation for which
Φf(x)(z, y,p) is the unique solution satisfying some initial condition. We will also see that the h
parameter can be interpreted as the genus of U operators. As a final application, we obtain a
partial differential equations for the genus 0 portion of Φf(x)(z, y,p).

1.2 Two Counting Problems

Let σ0 ∈ Sn be an arbitrary permutation. An (unrestricted and ordered) m-factorization of σ0
is a tuple (σ1, . . . , σm) such that σ1, . . . , σm ∈ Sn and σ1 · · ·σm = σ0. For example, (id, id) and
((12), (12)) are all the ordered 2-factorizations of the identity permutation id ∈ S2. For each m ≥ 1,
one can ask for the number of m-factorizations of σ0. The answer is fairly straightforward: If
m = 1, then the factorization is unique. For m ≥ 2, we can first freely choose m− 1 permutations
σ1, . . . , σm−1 from Sn. The last factor σm = σ−1m−1 · · ·σ

−1
1 σ0 is then completely determined.

Therefore the answer is n!m−1.

The problem is not much more difficult when we require some but not all factors to be
chosen from non-empty strict subsets of Sn. Let S1, . . . , Sn be non-empty subsets of Sn with
some Si = Sn. We can freely choose σk ∈ Sn for k ∈ {1, . . . , i − 1, i + 1, . . . ,m}. Then σi =
σ−1i−1 · · ·σ

−1
1 σ0σ

−1
m · · ·σ−1i+1 is completely determined. Hence, the answer is |S1| · · · |Sm|/n!. If all

restriction sets S1, . . . , Sm are non-empty strict subsets of Sn, then knowledge about the last choice
σi becomes crucial. In general, this is a challenging problem. Some structure on the restrictions is
required to make it tractable.

This motivates the class expansion problem: Given conjugacy classes C1, . . . ,Cm of Sn, not
necessarily distinct, what is the cycle type of the product σ1 · · ·σm if σi must be chosen from Ci
for i = 1, . . . ,m?
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The class expansion problem has a nice formulation in the group algebra C[Sn]. We explain
these notions and properties in the next chapter. It turns out that conjugacy classes are linearly
independent in C[Sn] and products of conjugacy classes are linear combinations of conjugacy
classes. So the class expansion problem can be restated as follows: Let C1, . . . ,Cm be conjugacy
classes in C[Sn], not necessarily distinct. Let Cα ∈ Sn be another conjugacy class. What is the
coefficient of Cα in C1 · · ·Cm? This is equivalent to counting m-factorizations with restrictions
C1, . . . ,Cm and σ0 ∈ Cα.

Historically speaking, class expansion with a connectivity condition attracted more attention
than the vanilla version thanks to various bijections. An m-factorization σ1 · · ·σm = σ0 in Sn is
transitive if the subgroup 〈σ1, . . . , σm〉 acts transitively on {1, . . . , n}. Equivalently, the diagram
obtained by superimposing functional diagrams of individual factors σ1, · · · , σm is connected.

There is a well-known bijection between transitive m-factorizations and branched coverings of
the Riemann sphere. The transitivity condition translates to topological connectedness of covering
spaces. Furthermore, m-factorizations also faithfully encode (combinatorial) hypermaps — certain
2-cell embedding of graphs on orientable surfaces. The transitivity condition again translates to
connectedness of surfaces.

More interestingly, the genera of corresponding branched covering and the hypermap for a
given transitive m-factorization agree. Hence, transitive factorizations are often enumerated with
respect to a genus parameter defined using the Riemann-Hurwitz formula: If an m-factorization
σ1 · · ·σm = σ0 in Sn is transitive with σ0 ∈ Cα, then the genus h of its corresponding branched
covering is given by

n− `(α) +
m∑
i=1

(
n− `(cyc(σi))

)
= 2n− 2 + 2h,

where cyc(σi) is the cycle type of σi and `(α) is the number of parts in α. Minimum transitive
factorizations are the ones with genus 0. We now give a historical account of related results.

Enumeration of minimum transitive factorizations into transpositions is the first result of its
kind. The genus condition together with cycle type restriction completely determines the number
of factors. The number of minimum transitive factorizations of σ0 ∈ Cα in Sn into transpositions
is

(n+ `(α)− 2)!n`(α)−3
`(α)∏
i=1

ααii
(αi − 1)!

.

Hurwitz [18] wrote down a proof sketch in 1886. Fast forward a century, Goulden and Jackson [16]
rediscovered this result in 1997 independently by analyzing the combinatorics of joins and cuts of
transpositions acting on arbitrary permutations. This is usually called the Hurwitz number.

In 2000, Bousquet-Mélou and Schaeffer [3] enumerated minimum transitive factorizations with
no restriction on conjugacy classes. In this case, the number of factors is no longer determined by
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genus. The number of minimum transitive m-factorizations of σ0 ∈ Cα in Sn is

m
((m− 1)n− 1)!

((m− 1)n− `(α) + 2)!

`(α)∏
i=1

(
mαj − 1

αj

)
.

Their method involves a bijection to constellations. This is usually called the m-hypermap number.

In 2013, Goulden, Guay-Paquet, and Novak [12] considered Hurwitz Numbers with a twist and
obtained a similar formula. A list of transpositions (a1b1), . . . , (ambm) with ai < bi is monotone if
b1 ≤ b2 ≤ · · · ≤ bm. Similar to Hurwitz numbers, the number of factors is determined by genus.
The number of minimum transitive factorizations of σ0 ∈ Cα in Sn into monotone transpositions is

(2n+ `(α)− 3)!

(2n)!

`(α)∏
j=1

(
2αj
αj

)
.

Their proof uses sophisticated algebraic tools that capture the finer details of join and cut actions
on the level of generating series. This is called the monotone Hurwitz number. Similar problems
in higher genera have also been studied by the same group of authors [13].

Proofs of the above formulas took different approaches. A common feature is the use of
induction on the number of factors. Carrell and Goulden took a different point of view. A unified
algebraic method is obtained when induction is applied on the order of the group Sn [4]. Their
work will be described in Chapter 6.

A similar technique was used in an earlier paper by Lassalle [24] who studied a generalized
factorization problem (without the transitivity condition). The generalized class expansion problem
in Sn is the determination of the coefficients

[Cα]

(∑
α`n

f (1)α Cα

)
· · ·

(∑
α`n

f (m)
α Cα

)
= [Cα]

∑
α(1),··· ,α(k)`n

f
(1)

α(1) · · · f
(m)

α(m)Cα(1) · · ·Cα(m) ,

where f
(i)
α are scalars for i = 1, . . . ,m and α ` n.

Linear combinations of conjugacy classes are central elements of C[Sn]. A celebrated fact is
that such elements can be written as symmetric polynomials evaluated at Jucys-Murphy elements.
Let J1, . . . , Jn denote Jucys-Murphy elements in C[Sn]. The first result of this kind is due to Jucys
[20]: For k = 1, . . . , n

ek(J1, . . . , Jn) =
∑
α`n

`(α)=n−k

Cα,

where ek is the k-th elementary symmetric functions.
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Motivated by connections to mathematical physics, Lascoux and Thibon [23] considered the
expansion of power sum symmetric functions and obtained a solution as the constant term of the
following generating series

1

(q − 1)(1− q−1)
(V (z; q)− 1)pn1 ,

where V is a vertex operator

V (z; q) = exp

∑
k≥1

(qk − 1)pk
zk

k

∑
`≥1

(1− q−`)p⊥`
z−`

`


and pi and p⊥i are the power sum symmetric functions and their adjoints respectively.

Lassalle [24] engineered a family of differential operators in the underlying variables of
symmetric polynomials. These operators provide a unified approach to obtaining recurrences for
the expansion of some fundamental families of symmetric functions. This method recovers the
results of Jucys and Lascoux-Thibon. New results include recurrences of expansion of complete
symmetric functions and 1-row Hall-Littlewood symmetric functions.

Lassalle’s work and a follow up by Féray will be described in Chapter 3, 4 and 5.
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Chapter 2

Background

2.1 Partitions

A partition of a positive integer n, denoted as λ ` n, is a weakly decreasing sequence of
positive integers λ = (λ1, . . . , λk) such that λ1 + · · ·+ λk = n. The set of all partitions is denoted
by P = {α ` n : n ≥ 1}. The λi’s are called parts of λ. The sum of parts is called the weight of
λ, denoted as |λ|. The number of parts in λ is called the length or degree of λ, denoted as `(λ).
For each i ∈ N, the number of times i appears in λ is called the multiplicity of i in λ, denoted
as mi(λ). The vector (m1(λ),m2(λ), . . . ) is known as the multiplicity vector of λ. In writing a
partition, we often use a shorthand λ = (nmn(λ), (n− 1)mn−1(λ), · · · , 1m(1)(λ)). The commas are
omitted sometimes. For example, the partition λ = (5, 3, 3, 2, 1, 1) ` 15 is written as λ = (532212).

Partitions have useful geometric representations. The Ferrers diagram of λ ` n is an array of
left-justified boxes such that there are λi number of boxes in row i. Row indices grow from top to
bottom and column indices grow from left to right. The top-left box has coordinate (1, 1). The
conjugate of a partition λ ` n is obtained by reflecting its Ferrers diagram along the diagonal. It is
denoted as λ′. For example, the Ferrers diagrams corresponding to λ = (532212) and its conjugate
λ′ = (64312) are drawn below.

Figure 2.1: Ferrers Diagrams of λ = (532212) and λ′ = (64312).
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We introduce some notations for manipulating partitions. Let α, β be partitions not necessarily
of the same weight. We say β is contained in α as a subshape, denoted as β ⊆ α. More precisely,
β ⊆ α if mi(α) ≥ mi(β) for all i ≥ 1. For any partition ν, define α \ β ∪ ν the partition obtained
by removing parts of β from α then adding parts of ν if β ⊆ α and α \ β ∪ ν = 0 otherwise. We
can write this in terms of their multiplicity vectors

α \ β ∪ ν = (1m1(α)−m1(β)+m1(ν), 2m2(α)−m2(β)+m2(ν), . . . ),

if α ⊆ β. Note the above operations do not commute in general. For example, if λ = (4331), then
λ \ (3) ∪ (2) = (4321) but λ \ (2) ∪ (3) = 0 since λ does not contain a row of length 2.

We will encounter the following operations quite often. The operation α \ (i) ∪ (i+ 1) means
we replace a part i with i + 1 in α. If α does not have a part i then α \ (i) ∪ (i + 1) = 0. The
operation α \ (i, j) ∪ (i + j) says we join an i-part and a j-part to make an (i + j)-part. The
operation α \ (i+ j) ∪ (i, j) says we cut an (i+ j)-part into an i-part and a j-part.

For convenience, we denote for any α ∈ P

z(α) =
|Cα|
n!

=
∏
i≥1

imi(α)mi(α)!.

2.2 The Symmetric Groups

The symmetric group SX is the group of permutations on some ground set X. When X =
{1, . . . , n}, we denote Sn = S{1,...,n}. The cycle type cyc(σ) of a permutation σ ∈ Sn is the multiset
of lengths of cycles in σ when represented as a product of disjoint cycles. Hence, cyc(σ) is a
partition of n. A conjugacy class of Sn contains all permutations of the same cycle type. We
denote a conjugacy class by Cα where α ` n.

The group algebra C[Sn] is the vector space over C spanned by Sn treated as formal symbols.
Hence, an element v ∈ C[Sn] has the form

v =
∑
σ∈Sn

vσσ, vσ ∈ C.

Additions in C[Sn] are performed pointwise and multiplication as convolutions, i.e.,∑
σ∈Sn

uσσ

+

∑
π∈Sn

vππ

 =
∑
σ∈Sn

(uσ + vσ)σ
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and ∑
σ∈Sn

uσσ

∑
π∈Sn

vππ

 =
∑

σ,π∈Sn

uσvπσπ,

where the multiplication σπ is carried out in Sn.

The group algebras are useful in combinatorics since convolution is faithful to Cartesian
products of Sn. They are also instances of representations. The next section outlines the general
theory of representations of finite groups with a focus on the group algebras.

2.2.1 Representations of Finite Groups

We follow the textbook by Sagan [27] in this section. Unless otherwise stated, all groups in
this section are finite. Let G be a finite group. A matrix representation of G is a set of d × d
invertible matrices {X(g) : g ∈ G}, not necessarily distinct, with complex entries such that

X(g)X(h) = X(gh)

where the multiplication gh is carried out in G. Note X is a homomorphism from G to GL(d) the
group of invertible complex d×d matrices. The degree of X is d which is also is also the rank of the
matrix X(id). We can also phrase representations in a coordinate free setting. The group GL(d) is
isomorphic to the group GL(V ) of invertible linear transformations of some d-dimensional vector
space V . If we replace GL(d) with GL(V ) in the above definition, we get an equivalent definition
in terms of modules. A G-module is a vector space V together with a homomorphism G→ GL(V ).
We can easily convert a G-module to a matrix representation. Given a G-module, we simply take
the matrices representing its action on some basis in the usual way. Conversely, given a matrix
representation, the vector space V = Span{e1, . . . , ed} makes GL(d) = GL(V ). A representation
of G can mean either a matrix representation or a G-module whichever is convenient.

It is possible to define representations over other fields, but we confine ourselves to C in this
thesis.

It is clear from the definition that a G-module V carries a group action on bases of V . The
converse is also possible. If G acts on some set S and CS is the vector space spanned by linear
combinations of S, then this action extended linearly to all of CS is a G-module. The group
algebra C[Sn] was defined in this way. Note not all representations induced from group action
have a natural multiplication structure. For example, the G-module G{1, . . . , n} induced by
permutation action does not have a natural multiplication. However, we can always obtain an
algebra when G acts on itself by multiplication. This is called the group algebra of G, denoted as
C[G].
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Superficial differences between modules are captured by isomorphism. Let U, V be G-modules.
A G-homomorphism is a vector space homomorphism ϕ : U → V such that

gϕ(u) = ϕ(gu)

for all g ∈ G and u ∈ U . If ϕ is also a vector space isomorphism, then we say ϕ is a G-isomorphism.
If there exists a G-isomorphism between U and V , then we say U and V are equivalent as
G-modules, or simply equivalent, denoted by U ∼= V . Otherwise, they are inequivalent. In terms
of matrix representations X and Y of the same degree, they are equivalent if and only if there
exists an invertible matrix T of the same degree such that

TX(g)T−1 = Y (g), for all g ∈ G.

Let V be a G-module. The G-action on a basis of V partitions them into orbits and G-action
is closed under each orbit. If O is one of such orbits, then the subspace SpanC O is once again a
G-module. In general, a subspace W ⊆ V is a submodule if W itself is a G-module. A G-module
is said to be irreducible if the only submodules are the trivial ones — {0} and itself. Otherwise, it
is said to be reducible. Let U be another G-modules. The multiplicity of U in V is the number of
distinct submodules in V that are equivalent to U .

For example, any 1-dimensional G-module is automatically irreducible. The permutation
representation C{1, . . . , n} of a permutation group G ≤ Sn is reducible because it contains a
1-dimensional submodule W = Span{1 + · · ·+ n}.

When a G-module V contains a submodule W , its compliment U , defined by V = W ⊕ U , is
necessarily another G-module. An important reducibility result in representation theory is due to
Masche. It states that every G-module V can be decomposed into irreducible modules. This is
known as complete reducibility of representation of finite groups.

Theorem 2.1 (Masche). Let V (1), . . . , V (k) be a complete list of pairwise inequivalent irreducible
G-modules. Then any G-modules V can be decomposed into

V ∼=
k⊕
i=1

miV
(i),

for some non-negative integers m1, . . . ,mk.

The multiplicity coefficients mi’s are related to an algebra associated with representations. Note
the kernel and the image of a G-homomorphism are also G-modules. In particular, Schur’s Lemma
states that non-zero G-homomorphisms between irreducible G-modules must be G-isomorphisms.
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Using the notation from Masche’s Theorem, denote Hom(V (i), V ) the space of G-homomorphisms
from V (i) to V . Write Masche’s Theorem in terms of precise decompositions

V =

k⊕
i=1

i⊕
j=1

πi,jV
(i)

where πi,j ’s are linearly independent G-homomorphisms from V to isomorphic copies of V (i) in
V . We can show mi = dim Hom(V (i), V ) by thinking of them as projections. Hence one is led to
study the matrix version of Hom(V, V ) because it is easier. If X is a matrix representation of G,
then its commutant algebra is

Com(X) =
{
T ∈ Mat(d) : TX(g) = X(g)T, g ∈ G

} ∼= Hom(V, V ).

It is fairly straightforward to show that the only matricies commuting with X(g) for all g ∈ G are
scalar multiples of the identity matrix. With some work, we can get the following decomposition

Com(X) =

{
k⊕
i=1

(Mmi ⊗ Idi) : Mmi ∈ Mat(mi), i = 1, . . . , k

}
and dimZ(Com(X)) = k,

where Z(Com(X)) is the centre of the commutant algebra.

A group algebra and its commutant algebra are isomorphic. To see this, we can check that
the right multiplication maps ϕg(h) = hg are all the elements of Hom(C[G],C[G]). It follows
that the number of inequivalent irreducible representation of C[G] is k = dimZ(C[G]). A central
element ζ ∈ Z(C[G]) satisfies v = ζvζ−1 for all v ∈ C[G]. By considering conjugation action on
basis elements, we immediately see that if σ, τ ∈ G are in the same conjugacy class, then their
coefficients in v must be the same. In other words, the centre Z(C[G]) is spanned by conjugacy
classes (as 1-dimensional sums of their elements).

Centres of group algebras and a particular basis which turn out to be projections onto
irreducible representations of Sn and will play a central role in this thesis. For now, we continue
with general theory.

Early representation theory was developed using only a simple statistics called group characters.
This turns out to be an extremely useful tool. Not only will it help us to find decompositions of
group algebras but it also provide connections to other areas of mathematics.

Let X be a matrix representation of a group G. The character of a representing matrix X(g)
is

χ(g) = trX(g).

If X and Y are equivalent representations, then there exists an invertible matrix T such that
TX(g)T−1 = Y (g). Since similar matrices have the same trace, we have

trX(g) = trTX(g)T−1 = trY (g).
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In other words, characters are invariant for representations.

Broadly speaking, invariants are useful objects in mathematics. This is also the case for
characters. An elementary consequence of conjugation points us in the right direction: If g, g′ ∈ G
live in the same conjugacy class, then for some h ∈ G we have χ(g) = χ(hgh−1) = χ(g′).

So characters live in the space K(G) of class functions — the algebra of functions f : G→ C
such that f(g) = f(h) if g, h belong to the same conjugacy class. Let C1, . . . ,Ck be a complete
list of conjugacy classes of G. A natural basis for K(G) is the set of indicator functions δ1, . . . , δk
where δi(g) = 1 if g ∈ Ci otherwise δi(g) = 0. Addition on K(G) is performed pointwise and
multiplication is performed as convolution: If ϕ,ψ ∈ K(G), then

(ϕψ)(g) =
∑
h∈G

ϕ(g)ψ(gh−1).

The space K(G) has a nice inner product. Define

〈ϕ,ψ〉 =
1

|G|
∑
g∈G

ϕ(g)ψ(g−1),

for all ϕ,ψ ∈ K(G). The indicator functions are pairwise orthogonal, i.e., 〈δi, δj〉 = δij |Ci|/|G|. A
pleasant surprise is that the irreducible characters are orthonormal.

Theorem 2.2. Let χ(1), . . . , χ(k) be a complete list of irreducible characters of a representation
of G. Then

〈χ(i), χ(j)〉 = δij .

This theorem has an important consequence. Let V be G-module with character χ and
decomposition into pairwise inequivalent irreducible representations V = m1V

(1) ⊕ · · · ⊕mkV
(k).

For each i = 1, . . . , k, let χ(i) be the character of the irreducible representation V (i). Then the
above theorem implies 〈χ, χ(i)〉 = mi for each i = 1, . . . , k. If W is another G-module with the
same character χ, then it follows immediately that V = W by simply comparing multiplicity of
irreducible representations. Hence, characters are not just invariants of representations. They in
fact completely determine representations.

Now we can decompose group algebra C[G]. We need to answer 2 questions:

1. How many irreducible representations are there?

2. What are their multiplicities?

We deal with the second question first. Let χ be the character of C[G] with representing
matrix X. Note X(g) is a {0, 1}-matrix with exactly one 1 in each row and exactly one 1 in each
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column. Let g ∈ G. If X(g) has a 1 on its diagonal, then there exists some h ∈ G such that
gh = h. But that implies g = id. Hence, χ(g) = 0 unless g = id. Then

〈χ, χ(i)〉 =
1

|G|
∑
g∈G

χ(g)χ(i)(g−1) = χ(i)(id).

Hence each irreducible appears in C[G] with multiplicity being its dimension.

To answer the first question, we use the fact that the number of inequivalent irreducible
representations in C[G] is the dimension of its centre Z(C[G]). Let K1, . . . ,Kk be the conjugacy
classes of G. A routine computation shows Z(C[G]) is spanned by conjugacy classes C1, . . . ,Ck
where

Ci =
∑
g∈Ki

g.

Orthonormality of irreducible characters implies they are linearly independent in K(G).
Together with their correspondence with conjugacy class, we get that they in fact form a basis
of K(G). Furthermore, by identifying conjugacy the class basis of Z(C[G]) with the indicator
function basis of K(G), we see that they are isomorphic as algebras.

We now turn our attention to the case G = Sn.

Corollary 2.3. There is exactly one irreducible representation of Sn for each conjugacy class of
Sn. We have

C[Sn] =
⊕
λ`n

(dimV λ)V λ,

where V λ is the irreducible representation corresponding to the conjugacy class Cλ.

The construction of irreducible representations of Sn will be treated in the next section. We
conclude the general theory by introducing a pair of important tools.

Let H ≤ G be subgroups. Let X be a matrix representation of G with character χ. The
restriction of X to H is simply X↓GH = {X(h) : h ∈ H}. We use similar notation χ↓GH for its
character. Now suppose Y is a degree d matrix representation of H with character ψ. The
induction of X to G is the block matrix

Y ↑HG (g) =

[
Y (g−1i ggj)

]
i,j=1,...,k

where g1H, . . . , gkH is a complete list of distinct H-cosets and Y (x) = [0]d×d if x /∈ H. The
notation for its character is ψ↑GH . An elementary property of an induced representation is that
the choice of coset representatives is irrelevant. The following property provides a hint to finding
irreducible representations of Sn.
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Proposition 2.4. Let H ≤ G be groups with a complete list of distinct H-cosets H = {g1H, . . . , gkH}.
Let CH be the representation extended from G acting on H by (left) multiplication. Then

CH = 1↑GH .

2.2.2 Specht Modules

We now construct irreducible representations of Sn known as Specht modules, denoted by
Sλ, λ ` n. Masche’s theorem tells us that every representation is the direct sum of some irreducible
representations. The clever trick is to find a total ordering λ(1) < · · · < λ(k) of partitions of n and
construct a sequence of representations Mλ(1) , · · · ,Mλ(k) such that Sλ

(1)
= Mλ(1) is irreducible

and Mλ(i) contains only copies of Sλ
(1)
, . . . , Sλ

(i)
with multiplicity of Sλ

(i)
being 1.

Let λ = (λ1, . . . , λi) and µ = (µ1, . . . , µj) be partitions of n. In lexicographic ordering, λ < µ if
there exists some m ≥ 1 such that λm < µm but λk = µk for k = 1, . . . ,m− 1. It is easily verified
that this is a total order. The order we will use is the reverse lexicographic order. For example,
partitions of 5 in reverse lexicographic order are

(5) < (41) < (32) < (311) < (221) < (2111) < (15).

Let λ = (λ1, . . . , λk) ` n be a partition. A tableau t of shape λ is Ferrers diagram of λ
labelled with 1, . . . , n, one for each box. We denote the set of tableaux of shape λ by Tab(λ). The
symmetric group Sn acts on t by permuting its labels. Let ti be the set of labels in row i of t. The
row stabilizer subgroup for t is defined as Rt = St1 × · · · × Stk . Since row labels are are pairwise
disjoint, we can write ρ = ρ1 · · · ρk where we view ρi as an element of Sn by adding enough fixed
points. The column stabilizer subgroup of t is Ct = Rt′ where t′ is the conjugate (with labels) of
t. Similarly, we can write π = (π1, . . . , πλ1) ∈ Ct as π = π1 · · ·πλ1 by viewing each πi ∈ Sn. The
tabloid associated to t is

t =
∑
ρ∈Rt

ρt.

Permutation action on tabloids is defined as σt = σt for all σ ∈ Sn. Define κt =
∑

π∈Ct sgn(π)π.
The polytabloid associated to t is defined as

et = κtt =
∑
π∈Ct

sgn(π)πt.

It is straightforward to check that these objects are well-defined and σet = eσt for all σ ∈ Sn.

For example, let t = 1 2
3

be a tableau. Its stabilizer subgroups are Rt = id + (12) and

Ct = id+ (13). Then κt = id− (13). The tabloid and the polytabloid associated to t are

t = 1 2
3

+ 2 1
3

and et =

(
1 2
3

+ 2 1
3

)
−

(
3 2
1

+ 2 3
1

)
. (2.1)
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Let λ ` n. Let Sλ denote the vector space spanned by {et : t ∈ Tab(λ)}. This is naturally a
subspace of Mλ = SpanC{t : t ∈ Tab(λ)}. The Sn action on tabloids implies Sλ and Mλ are both
Sn-modules. The Sλ, λ ` n are called the Specht modules of Sn.

The submodule theorem is used to show that Sλ are irreducible. Proofs for the following
results can be found in [27].

Theorem 2.5. If U is a submodule of Mλ, then either Sλ ⊆ U or U ⊆ (Sλ)⊥.

Let STY(λ) denote the set of standard Young tableaux of shape λ. It turns out that eT , T ∈
STY(λ) are linearly independent. One can then use a straightening algorithm involving Garnir
elements to show that every polytabloid can be written as a linearly combinations of these basis.

Theorem 2.6. A basis of the Specht module Sλ is {eT : T ∈ STY(λ)}.

In group algebra Sn, there exists central elements Fλ = χλ/Hλ one for each partitions λ ` n
such that FλFµ = δλµF

λ for all µ ` n. These are projection operators from C[Sn] to Sλ and they
can be used to construct Specht modules algebraically. Since they are clearly linearly independent,
they are also a basis of Zn. The following basis change formula is most useful in this thesis.

Lemma 2.7. The central elements Fλ = χλ

Hλ
, λ ` n are orthogonal idempotents. Furthermore, we

have

Fλ =
χλ(1n)

n!

∑
α`n

χλαCα and Cα = |Cα|
∑
λ`n

χλα
χλ(1n)

Fλ.

The Fλ are in fact minimum central projections onto irreducible representations contained in
C[Sn]. See [8, Section 1.2] for details. By group algebra decomposition, we immediately have∑

λ`n
Fλ = 1.

2.3 Jucys-Murphy Elements

In group algebra C[Sn], Jucys-Murphy elements are the sums of transpositions

Jk = (1, k) + (2, k) + · · ·+ (k − 1, k), k = 2, . . . , n.

For cosmetic reasons, we define J1 = 0. They were first studied by Jucys [20] and later in-
dependently by Murphy [26]. We list several properties that are useful in this thesis. For
detailed descriptions of these results and related theorems, especially a construction of irreducible
representations of the symmetric groups starting with Jucys-Murphy elements, please see [8, 30].

First, note J2, . . . , Jn pairwise commute. They generate the symmetric group in the following
sense.
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Theorem 2.8. Let t be an indeterminate. Then

n∏
k=1

(t+ Jk) =
∑
σ∈Sn

σt`(cyc(σ)).

Note that the left-hand side of the above lemma is the generating series E(t) for elementary
symmetric polynomials. By comparing coefficients of t, we get the following property.

Corollary 2.9. Let ek(x1, . . . , xn) denote the elementary symmetric polynomial of degree k. Then

ek(J1, . . . , Jn) =
∑
α`n

`(α)=n−k

Cα.

Consider S3 for example. We have

e0(J1, J2, J3) = 1 = C(13)

e1(J1, J2, J3) = J1 + J2 + J3

= (12) + (13) + (23) = C(21)

e2(J1, J2, J3) = J1J2 + J1J3 + J2J3

= (12)(13) + (12)(23) = C(3)

e3(J1, J2, J3) = J1J2J3 = 0.

Theorem 2.10. The centre Zn is generated by symmetric polynomials in Symn evaluated at
Jucys-Murphy elements.

Jucys-Murphy elements are simultaneous eigenoperators for Young’s basis.

Theorem 2.11. Let λ ` n. Then for k = 1, . . . , n and for each standard Young tableau T of
shape λ we have

JkvT = c(T−1(k))vT ,

where T−1(k) is the cell in tableau T with label k and c(T−1(k)) is its content in λ.

To state the next theorem, we introduce a notation. For a partition λ ` n, we denote the set
of contents by cλ = {c(�) : � ∈ λ}. Symmetric polynomials evaluated at contents of a partition
is denoted as f(cλ) = f(c(�) : � ∈ λ). If µ ` k with k < n, then we pad cµ with enough 0’s so
that f(cµ) is well-defined.

Theorem 2.12. Let f ∈ Symn be a symmetric polynomial. Then for each λ ` n we have

f(J1, . . . , Jn)χλ = f(cλ)χλ.
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2.4 Symmetric Functions

Our algebraic tools of choice are symmetric function due to their useful correspondence to the
centre of the group algebras. In this section, we recall fundamental facts of the algebra Sym.

2.4.1 Fundamental Bases

Let x1, . . . , xn be algebraically independent indeterminates. A permutation σ ∈ Sn acts on a
polynomial f ∈ Z[x1, . . . , xn] by permuting its variables, i.e., (σf)(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).
A polynomial f ∈ Z[x1, . . . , xn] is symmetric if σf = f for all σ ∈ Sn. Let Symn ⊆ Z[x1, . . . , xn]
denote the set of symmetric polynomials in x1, . . . , xn. It is straightforward to check that Symn is
closed under addition and multiplication. So Symn is a commutative ring with unity.

A monomial symmetric polynomial mλ(x1, . . . , xn) indexed by a partition λ ` d is a homoge-
neous symmetric polynomial of degree d obtained by the minimum symmetrization under Sn of
xλ11 · · ·xλnn where we set λi = 0 if i > `(λ). Note mλ(x1, . . . , xn), λ ` d are linearly independent.
Hence, the vector space over Z spanned by {mλ(x1, . . . , xn) : λ ` d} is the set of homogeneous
symmetric polynomials having degree d, denoted by Symd

n. We set Sym0
n = Z. So Symn is a

vector space with a compatible multiplication, i.e., an algebra. Furthermore, if f ∈ Symd
n and

g ∈ Symd′
n , then fg ∈ Symd+d′

n . This means Symn is a graded algebra (by degree) and we write

Symn =
⊕
d≥0

Symd
n.

It is advantageous to think in countably many variables. A permutation σ ∈ Sn acts on a
formal power series in x1, x2, . . . by permuting the first n variables. A symmetric function is a
formal power series f ∈ Z[[x1, x2, . . . ]] such that σf = f for any permutation σ ∈ Sn and any
n ≥ 1. The argument list of a symmetric function is preferred for a cleaner presentation. If
f ∈ Sym, then f(x1, . . . , xn, 0, 0, . . . ) ∈ Symn.

A monomial symmetric function mλ with λ ` d is a homogeneous symmetric function of degree
d obtained by the minimum symmetrization of xλ11 x

λ2
2 · · · under all symmetric groups where we

set λi = 0 if i > `(λ). Similar to that of the polynomial case, {mλ : λ ` d} is linearly independent
over Z and forms a basis for the vector space of homogeneous symmetric functions of degree d,
denoted as Symd. The algebra Sym is also graded by degree, i.e.,

Sym =
⊕
d≥0

Symd.

An elementary symmetric functions is ek = m(1k) where (1k) is the partition having k number
of 1’s. Define e0 = 1. For example,

e2 = x1x2 + x1x3 + · · ·+ x2x3 + x2x4 + · · ·+ x3x4 + x3x5 + · · · .
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A monomial in ek contains k distinct variables each having exponent 1. So its generating series
E(t) marked by degree has a simple form

E(t) =
∑
k≥0

ekt
k =

∏
i≥1

(1 + xit).

The Fundamental Theorem of Symmetric Functions says each symmetric function can be written
uniquely as a polynomial in elementary symmetric functions. In other words, we have an algebra
isomorphism

Sym ∼= Z[e1, e2, . . . ].

Then the vector space Symd has another basis {eλ : λ ` d} where eλ = eλ1eλ2 · · · .

Another intimately related family is the family of complete symmetric functions defined by

hk =
∑
λ`k

mλ, k ≥ 1.

Define h0 = 1. Each monomial of degree k appears in hk exactly once. Hence, its generating series
marked by degree also have a nice form

H(t) =
∑
k≥0

hkt
k =

∏
i≥1

1

1− xit
.

The two families are related through an algebra homomorphism ω : Sym→ Sym defined by
ω : ek 7→ hk for all k ≥ 1 and extended to all of Sym. The relation E(t)H(−t) = 1 together with
the fact H(t)−1 exists means ω is an involution. So ω is an algebra isomorphism, known as the
fundamental involution. It follows that the complete symmetric functions are also algebraically
independent so we have another isomorphism Sym ∼= Z[h1, h2, . . . ]. The vector space Symd has a
third basis {hλ : λ ` d} where hλ = hλ1hλ2 · · · .

A power sum symmetric function, or simply just power sum, is pk = m(k) where (k) is an

one-part partition. They have simple expressions, e.g., pk = xk1 + xk2 + · · · . On the generating
series level,

logH(t) =
∑
i≥1

∑
k≥1

xki
tk

k
=
∑
k≥1

pk
tk

k
.

We take this as the definition for its generating series P (t). This relation also produces a pair of
recurrence relations

hk =
1

k

k∑
i=1

hk−ipi and pk = khk −
k−1∑
i=1

hk−ipi, k ≥ 1.
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This triangularity implies the power sums are algebraically independent over Q. Hence, {pα : α ` k}
forms a vector space basis for Symd

Q consisting of homogeneous symmetric functions having degree

d with coefficients in Q. We also have an isomorphism SymQ = ⊕d≥1Symd
Q
∼= Q[p1, p2, . . . ].

Now we introduce a more interesting family of symmetric function which provides many
connections into the world of combinatorics. The Schur polynomial sλ(x1, . . . , xn) with λ ` k is
defined as

sλ(x1, . . . , xn) =
det
(
x
λj+n−j
i

)
i,j=1,...,n

det
(
xn−ji

)
i,j=1,...,n

.

This is a homogeneous symmetric polynomial of degree k. Schur polynomials {sλ : λ ` d} forms a
vector space basis for Symd

n. The proof of this fact can be found in standard symmetric functions
textbooks, for example [27]. Another standard fact is the Jacobi-Trudi identity which says

sλ(x1, . . . , xn) = det
(
hλj−j+i(x1, . . . , xn)

)
i,j=1,...,n

.

The h’s can be interpreted as generating series for certain families of lattice paths. One can apply
Gessel-Viennot methodology to show that sλ(x1, . . . , xn) is the generating series for all non-crossing
families. The non-crossing families are in one-to-one correspondence with semi-standard Young
tableaux.

Recall a tableau is a filling of some Ferrers diagram. A semi-standard Young tableau of shape
λ is a filling with symbols 1, . . . , n of its Ferrers diagram where symbols are allowed to repeat with
the condition that labels must increase strictly down the columns but increase only weakly along
the rows. The weight of a tableau T is the vector (m1(T ),m2(T ), . . . ,mn(T )) where mi(T ) is the
number of times the symbol i appears in T . The combinatorial definition of Schur polynomial is

sλ(x1, . . . , xn) =
∑
T

x
m1(T )
1 · · ·xmn(T )n ,

ranging over all semi-standard Young tableaux of shape λ. We extend our vocabulary to say

x
m1(T )
1 · · ·xmn(T )n is the weight of T .

The combinatorial definition extends easily to countable many variables. The Schur function
indexed by a partition λ is

sλ =
∑
T

x
m1(T )
1 x

m2(T )
2 · · · ,

ranging over semi-standard Young tableaux filled with symbols 1, 2, . . . . Note Jacobi-Trudi identity
continues to hold in this setting. Not surprisingly, the fourth Z basis of Symk is {sλ : λ ` k}
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s(21) = 1 1
2

+ 1 2
2

+ 1 1
3

+ 1 2
3

+ 1 3
2

+ 1 3
3

+ · · ·

Figure 2.2: Tableaux Definition of s(21).

The tableau definition is a hint that Schur functions are closely related to the group algebras.
Let T be a tableau of shape λ with weight x1 · · ·xn. This means T contains exactly one of each
symbol 1, . . . , n. This uniqueness forces row-weakness to become row-strictness. Hence T is in fact
a standard Young tableaux. So the coefficient of x1 · · ·xn in sλ is the number of Young tableaux
of shape λ. From Section 2.2.2, we know this is the Sn irreducible character χλ(1n).

The full detail will be explained in Section 2.5. For now, we continue with the structure of
Sym.

2.4.2 Orthogonality and Adjoint Operators

The space Sym has a nice inner product. Define

〈hλ,mµ〉 = δλµ

for all partitions λ, µ and extend bi-linearly to all of Sym. We summarize its elementary properties
of as follows. For all f, g ∈ Sym, we have

(i) 〈f, g〉 = 〈g, f〉, i.e., 〈·, ·〉 is symmetric, and

(ii) 〈f, g〉 ≥ 0 and 〈f, g〉 = 0 if and only if f = g, i.e., 〈·, ·〉 is positive definite, and

(iii) 〈ω(f), ω(g)〉 = 〈f, g〉, i.e., the fundamental involution ω is an isometry.

The power sums are orthogonal with 〈pα, pβ〉 = z(α)δαβ for all partitions α, β. There is a
general criterion for when two basis are orthogonal.

Theorem 2.13 (Cauchy). If {uλ} and {vµ} are two bases for Sym. Then 〈uλ, vµ〉 = δλµ for all
partitions λ, µ if and only if∑

λ

uλ(x1, x2, . . . )vµ(y1, y2, . . . ) =
∏
i,j≥1

1

1− xiyj
.

A pair of bases that satisfy Cauchy’s formula are called dual bases. By definition, the complete
symmetric functions are dual to the monomial ones. Another pair is {pα} and {pα/z(α)}. More
interestingly, Schur functions are self-dual.
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Theorem 2.14. ∑
λ

sλ(x1, x2, . . . )sλ(y1, y2, . . . ) =
∏
i,j≥1

1

1− xiyj
.

It turns out treating f as an operator f : g 7→ fg for all g ∈ Sym is useful for our purpose.
The operator f⊥ adjoint to f as a multiplication operator is defined as

〈f⊥g, g′〉 = 〈g, fg′〉, g, g′ ∈ Sym.

Adjoint operators are also called skewing operators. Let λ, µ be partitions such that λ is
contained in λ. A skew shape λ/µ is obtained by removing boxes belonging to λ from the Ferrers
diagram of µ. A semi-standard skew tableau of shape µ/λ is a filling of the skew shape µ/λ with
strictly increasing columns and weakly increasing rows. Here is an example. The weight of a skew
tableaux T is the vector (m1(T ),m2(T ), . . . ).

3
2 2

1 4

Figure 2.3: A shew tableau of shape µ/λ with µ = (3, 3, 2) and λ = (2, 1) of weight (1, 2, 1, 1)

We can extend Schur functions to include skew shapes. A skew Schur function is defined as

sµ/λ =
∑
T

∏
i≥1

x
mi(T )
i .

where T sums over all semi-standard skew tableaux of shape µ/λ and mi(T ) is the number of i’s
in T .

Theorem 2.15 (Littlewood-Richardson). Let λ, µ, ν be partitions. Then

〈sν , sλsµ〉 = 〈sν/λ, sµ〉.

Remark. For completeness, we note that 〈sν/λ, sµ〉 is called the Littlewood-Richardson coefficient
of skew-shape ν/λ with type µ. These coefficients are widely studied due to its importance in
representation theory.

Now consider the adjoint operator h⊥k . Let λ, µ be partitions. The duality between {hλ} and
{mµ} implies 〈hλ, f〉 = [mλ]f . Then

〈h⊥kmµ, hλ〉 = 〈mµ, hkhλ〉 = 〈mµ, hλ∪(k)〉 = δµ,λ∪(k).
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That means when h⊥kmµ is expanded in the monomial basis, the only non-zero coefficient is
indexed by a partition obtained by removing a part of size k from µ. Hence, h⊥kmµ = mµ\(k)
where mµ\(k) = 0 if µ does not contain a part of length k. It follows that for any f ∈ Symn+1, we
have

(h⊥k f)(x1, · · · , xn, 0) = [xkn+1]f(x1, . . . , xn, xn+1).

This implies

f(x1, . . . , xn, xn+1) = f(x1, . . . , xn, 0) +
n+1∑
k=1

xkn+1(h
⊥
k f)(x1, . . . , xn, 0) (2.2)

when f is thought of as a formal power series in xn+1. In the case f belongs to a family with nice
enough structure and the summation reduces to something of smaller order in the same family,
we get recursive definitions. For example,

ek(x1, . . . , xn, xn+1) = ek(x1, . . . , xn, 0) + xn+1ek−1(x1, . . . , xn, 0).

Recursive families in Sym, Theorem 2.10, and results from the next section are the basic
ingredients behind finding induction relations in the symmetric groups. Section 4.1 discusses this
idea in more detail.

Lastly we briefly consider adjoints of power sums. Recall as multiplication operators acting on
power sums they simply insert rows into the target, i.e., pkpα = pα∪(k). Their adjoints “undo” the

add-a-row operation. It is straightforward to verify that p⊥k = i ∂
∂pk

and

p⊥k pα = imi(α)pα\(k),

where mi(α) is the number of i’s in α. The pi’s and p⊥i ’s turn out to be a valuable tool.
Add/remove-a-row operation will be used extensively in Section 5.5. The reason this operation
is so useful is because of correspondence between pα’s and conjugacy classes in centre of group
algebras which we now describe.

2.5 The Characteristic Map

The centre of group algebra Zn is intimately connected to symmetric polynomials. We have
already discussed the connection through Jucys-Murphy elements in Theorem 2.10. Now we
describe a natural correspondence through characters.

Let d ≥ 1. Define a map between vector spaces chd : Zd → Symd

chd : χ 7→
∑
α`d

χα
pα
zα
,
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where χ is a (not necessarily irreducible) character of Sd. A fundamental result is that chd is an
inner product preserving isomorphism.

Theorem 2.16. If λ ` d and χλ is an irreducible character of Sd, then

chd(χλ) = sλ.

A proof can be found in [27].

Let Z = ⊕d≥1Zd and define ch = ⊕d≥1 chd. The above result can be extended to an algebra
isomorphism ch : Z→ Sym. Furthermore, we can take advantage of the basis change formula in
Zd and Fλ = χλ/Hλ to get

chd(Cα) =
pα
zα
, α ` d.

We can formulate factorization problems using the characteristic map. We say an element
ζ ∈ Zn is set-like if it can be written as

ζ =
∑
α`n

ϕζαCα,

where ϕζα ∈ {0, 1}. Clearly, if ζ ∈ Zn is set-like then we can identify it with a set Sζ(n) = ∪{Cα :

α ` n, ϕζα = 1}. Let ζ1, . . . , ζm ∈ Zn be set-like elements and let ζ = ζ1 · · · ζm. Then ϕζα = [Cα]ζ
counts the number of m-factorizations of a permutation in Cα with restrictions Sζ1 , . . . , Sζm . Then
we have a generating series

Φζ
n(p) = ch ζ =

1

n!

∑
α`n

ϕζα|Cα|pα.

This tool is particularly useful when restriction sets can be described simultaneously for all
symmetric groups using Theorem 2.10. We say a symmetric function f ∈ Sym is set-like if for
each n ≥ 0 its corresponding central element f(J1, . . . , Jn) is set-like. Let f1, . . . , fm ∈ Sym be
set-like and let f = f1 · · · fm. For each n ≥ 0 and α ` n

ϕfα = [Cα]f(J1, . . . , Jn) = [Cα]f1(J1, . . . , Jn) · · · fm(J1, . . . , Jn)

counts the number of m-factorizations of a permutation in Cα with restrictions described by
f1, . . . , fm as subsets of Sn. Let

Φf
n(p) = ch f(J1, . . . , Jn) =

1

n!

∑
α`n

ϕfα|Cα|pα.

Sum over all n ≥ 0 and substitute zpi for pi. Then

Φf (z,p) =
∑
n≥0

zn

n!

∑
α`n

ϕfα|Cα|pα =
∑
n≥0

znΦf
n(p). (2.3)
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is an exponential generating series in z for the m-factorizations problem with restrictions described
by f1, . . . , fm. Furthermore, pα marks a product whose cycle type is α. By standard theory
of generating series [17], the logarithm of an exponential generating series is an exponential
generating series for its connected objects. Recall in Section 1.2, connected factorizations are
transitive factorizations. Hence,

Ψf (z,p) = log Φf (z,p)

is the generating series for transitive m-factorizations with restriction described by f1, . . . , fm.

We now use this method to recover a generating series first proved by Goulden and Jackson [15].

Example 2.17. Let

E = E(x1, . . . , xn; t)
∣∣
t=1

=
∏
i≥1

(1 + xi).

By Theorem 2.8, we have E(J1, . . . , Jn) = Sn. Then ΨEm(z,p) is the generating series for transitive
m-factorizations with no restrictions. These factorizations are also known as m-hypermaps.

Recall
∑

λ`n F
λ = 1. By Theorem 2.12, we have

Φf (z,p) =
∑
n≥0

zn chEm(J1, . . . , Jn)
∑
λ`n

Fn

=
∑
n≥0

zn
∑
λ`n

chEm(cλ)
χλ

Hλ

=
∑
n≥0

zn

n!

∑
λ`n

n!

Hλ
Em(cλ) chχλ

=
∑
n≥0

zn

n!

∑
λ`n

χλ(1n)E
m(cλ)sλ.

But Em(cλ) =
∏

�∈λ(1 + c(�)). Hence, the m-hypermap generating series can be written as

ΨEm(z,p) = log

∑
n≥0

zn

n!

∑
λ`n

χλ(1n)sλ
∏
�∈λ

(1 + c(�))

 . (2.4)

Chapter 6 is devoted to study generating series of this form in more detail.

Character map allows one to define another multiplication on Sym. Let f, g ∈ Symd, define

f × g = ch(ch−1(f) ch−1(g)),

where the multiplication ch−1(f) ch−1(g) is carried out in Zd. For example

sλ × sµ = ch(χλχµ) =
1

χλ(1n)
sλ.
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We extend this to all of Sym by setting F ×G = 0 if both are homogeneous but degF 6= degG.
This definition was first written down by Lascoux and Thibon [23].

This is a useful tool for describing multiplication behaviours in group algebra as operators in
symmetric functions. If we think of ω ∈ C[Sn] as a multiplication operator, then its corresponding
element chω as a multiplication operator on symmetric functions faithfully describes the action of
ω in group algebra.

The interesting case is the existence of operators in symmetric functions that describes the
behaviours of multiplication in group algebra simultaneously in all symmetric groups. The first such
operator is the join-cut operator ∆ describing the behaviour of multiplication by transpositions.
It will be described in Section 5.1. We then use ∆ to derive a family of operators that describe a
lifting behaviour in the symmetric groups.
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Chapter 3

A Family of Differential Operators

Characters arise in a natural way in the pursue of counting problems introduced in Section 1.2.
Consider multiplication of conjugacy classes from central orthogonal idempotent point of view
using Lemma 2.7. Multiplication of conjugacy classes turns into convolution of central orthogonal
idempotents. This is rather easy to write down since multiplication of idempotents are trivial. If
α, β ` n, then

CαCβ = |Cα||Cβ|
∑
λ`n

χλαχ
λ
β(

χλ(1n)

)2Fλ.
Then after expanding Fλ’s in terms of Cγ ’s we have

[Cγ ]CαCβ =
|Cα||Cβ|
n!

∑
λ`n

χλαχ
λ
βχ

λ
γ

χλ(1n)
.

One is then hopeful that obtaining relations in characters would be a useful first step in getting
recurrence relations for above coefficients. This is the approach taken by Lassalle.

Since characters correspond to Schur functions under the characteristic map, we turn to
operations on symmetric functions to find such relations in characters. Jack symmetric functions
enter the picture because they are generalizations of Schur functions and possesses a uniqueness
property. Macdonald found a differential operator D(ζ) on symmetric polynomials for which
Jack functions are simultaneous eigenfunctions. Lassalle [24] turned its specialization on Schur
functions into a family of operators Lk to muscle out linear relations in central characters.

The goal of this chapter is to describe this development.
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3.1 Macdonald’s Operator

We give a brief historical account of a family of operators to be introduced in Section 3.2.

In the interest of finding relations on characters, we turn to generalizations of Schur functions.
Note Schur functions are characterized by (i) orthogonality and (ii) triangularity with respect
to monomial symmetric functions. It turns out many useful symmetric functions also share this
property. Let Sym⊗Q(ζ) denote the ring of symmetric functions over the field of rational functions
Q(ζ). It is a well-known fact that this space has a nice orthogonal basis.

Theorem 3.1. Define an inner product 〈pα, pβ〉ζ = δαβzαζ
`(α) on Sym⊗Q(ζ). There are unique

symmetric functions Jλ = Jλ(x; ζ) ∈ Sym⊗Q(ζ) indexed by partitions such that

(i) 〈Jλ, Jµ〉ζ = 0 if λ 6= µ, and

(ii) [mµ]Jλ = 0 if µ > λ in dominance order, and

(iii) [m(1n)]Jλ = n! if |λ| = n.

These symmetric functions Jλ are called Jack symmetric functions and are very interesting
in general. Their polynomial specialization Jλ(x1, . . . , xn; ζ) = Jλ(x1, . . . , xn, 0, 0, . . . ; ζ) are
homogeneous of degree |λ| and Jλ(x1, . . . , xn; ζ) = 0 if `(λ) > n. They form a basis for Sym⊗Q(ζ)
and they generalize Schur functions

J(x; 1) = Hλsλ(x) = Hλsλ.

Theorem 3.1 was obtained by Macdonald [25, Chapter VI] in a more general setting of symmetric
algebra Sym⊗Q(q, t) where Q(q, t) is the field of rational functions in q and t over Q. Macdonald
shows that there exists symmetric functions Pλ(x; q, t) ∈ Sym⊗Q(q, t) and differential operators
Dr
n such that the polynomial specialization Fλ(x1, . . . , xn; q, t) are simultaneous eigenfunctions

with distinct eigenvalues.

A specialization of Dr
n operators is the following

D(ζ) =
ζ

2

n∑
k=1

x2k
∂2

∂x2k
+

∑
1≤k,k′≤n
k 6=k′

x2k
xk − xk′

∂

∂xk
. (3.1)

We first need to check self-adjointness. We compute its action on power sums. The process is
mechanical but tedious. Let α be a partition. By product rule, for k ≥ 1

∂

∂xk
pα =

`(α)∑
i=1

(
∂

∂xk
pαi

)
pα\(αi) =

`(α)∑
i=1

αix
αi−1
k pα\(αi). (3.2)
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Then
n∑
k=1

x2k
∂2

∂x2k
pα =

`(α)∑
i=1

αi(αi − 1)pα +
∑

1≤i,j≤`(α)
i 6=j

αiαjpα\(αi,αj)∪(αi+αj). (3.3)

Furthermore, for any b ≥ 1

2
∑

1≤k,k′≤n
k 6=k′

xb+1
k

xk − xk′
=

∑
1≤k,k′≤n
k 6=k′

xb+1
k − xb+1

k′

xk − xk′
=

b∑
a=0

∑
1≤k,k′≤n
k 6=k′

xb−ak xak′

= 2(n− 1)pb +

b−1∑
a=1

n∑
k=1

xb−ak (pa − xak)

= (2n− b− 1)pb +

b−1∑
a=1

pb−apa. (3.4)

Therefore, we have

2
∑

1≤k,k′≤n
k 6=k′

x2k
xk − xk′

∂

∂xk
pα =

`(α)∑
i=1

2
∑

1≤k,k′≤n
k 6=k′

xαi+1
k

xk − xk′
αipα\(αi)

=

`(α)∑
i=1

(
αi(2n− αi − 1)pα +

αi−1∑
a=1

αipα\(αi)∪(a,αi−a)

)
.

Putting the two together, we get

D(ζ)pα =
ζ

2

`(α)∑
i=1

αi(αi − 1)pα +
∑

1≤i,j≤`(α)
i 6=j

αiαjpα\(αi,αj)∪(αi+αj)


+

1

2

`(α)∑
i=1

(
αi(2n− αi − 1)pα +

αi−1∑
a=1

αipα\(αi)∪(a,αk−a)

)
. (3.5)

Then we can read off the self-adjointness.

Lemma 3.2. The operator D(ζ) is self-adjoint, i.e.,

〈D(ζ)f, g〉ζ = 〈f,D(ζ)g〉ζ ,

for any symmetric polynomials f, g ∈ Symn ⊗Q(ζ).
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The Pλ(x; q, t) functions are commonly known as the Macdonald symmetric functions. These
are generalizations of Hall-Littlewood functions, Zonal polynomials and Jack symmetric functions,
and hence Schur functions. The proof of Theorem 3.1, when specialized by replacing the dominance
order with reverse lexicographical order, can be used to obtain the following result due to Stanley
[29].

Theorem 3.3. The Jack symmetric polynomials Jλ with `(λ) ≤ n form a full set of eigenfunctions
of operator D(ζ) with eigenvalues

bλ = ζb(λ′)− b(λ) + |λ|(n− 1),

where b(λ) =
∑`(λ)

i=1 (i− 1)λi =
∑`(λ)

i=1

(λ′i
2

)
.

Proof. We want to take advantage of the uniqueness of Jack symmetric functions described in
Theorem 3.1. Let ≤ be the reverse lexicographical order on partitions {λ ` n}. Compute D(ζ)
with respect to monomial basis. We find a nice triangularity relation

D(ζ)mλ =
∑
µ≤λ

bλµmµ, λ ` n,

with bλλ = bλ 6= 0.

We want to obtain a set of orthogonal eigenvectors {Eλ : λ ` n} of D(ζ). Note λ = (1n) is the
smallest partition in reverse lexicographical order. Triangularity says D(ζ)mλ = bλλmλ = bλmλ.
Set E(1n) = m(1n). If µ is the second smallest partition of n in reverse lexicographical order, then
triangularity implies some linear combination of mλ and mµ is an eigenvector of D(ζ). Apply
Gram-Schmidt to obtain Eµ. It follows that Eµ is also a linear combination of mλ,mµ. Repeat
this process until we obtain a full set of eigenvectors of D(ζ). Note we have triangularity by
design, i.e., for each λ ` n, we have

Eλ =
∑
µ≤λ

eλµmλµ.

Since Eλ are orthogonal by Gram-Schmidt and lower triangular with respect to the monomials,
it follows from Theorem 3.1 that each Eλ differs from Jλ by a scalar constant. So the Jack
symmetric functions are also eigenfunctions of D(ζ). The eigenvalues follows from the values of
bλλ.

3.2 Lassalle’s Differential Operators

The character map faithfully translates conjugacy class Cα to power sum pαz(α)−1. Hence,
the combinatorics of D(ζ) is best understood through its action on power sums. As multiplication
operators they simply add parts. Symmetrized differentiation with respect to xi removes parts.
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Now we define a family of operators in Symn due to Lassalle [24]. Define L0 = p1 as
multiplication operator and

Lk = [D(1),Lk−1], for each k ≥ 1. (3.6)

We will refer to this family of operators collectively as L operators. Their actions on Schur
functions are easy to understand.

Lemma 3.4. For each partition λ

Lksλ(x1, . . . , xn) =
∑

µ=λ+�

(c(�) + n− 1)k sµ(x1, . . . , xn), for each k ≥ 0.

Proof. Note that b(λ) in Theorem 3.3 can be written as a summation over cells, i.e.,

b(λ) =
∑̀
i=1

λi∑
j=1

i− 1 =
∑

(i,j)∈λ

(i− 1) and b(λ′) =
∑

(i,j)∈λ

(j − 1).

Hence
b(λ′)− b(λ) =

∑
(i,j)∈λ

(j − i) =
∑
�∈λ

c(�).

Therefore, D(1)sλ = (p1(cλ) + |λ|(n− 1))sλ by Theorem 3.3. Furthermore,

L1sλ(x1, . . . , xn) = (D(1)p1 − p1D(1))sλ(x1, . . . , xn)

=
∑

µ=λ+�

∑
�′∈µ

c(�′)−
∑
�′′∈λ

c(�′′) + (|µ| − |λ|)(n− 1)

 sµ(x1, . . . , xn)

=
∑

µ=λ+�

(c(�) + n− 1) sµ(x1, . . . , xn).

The result follows by a straightforward induction.

The actions of L operators on power sums are not easy to write down due to cancellations in
nested commutators. The first few operators can be computed by brute force. Lassalle does so by
generalizing D(1). Define for each a ≥ 1 a pair of differential operators on Symn

Ea =

n∑
k=1

xak
∂

∂xk
and Da =

1

2

n∑
k=1

xak
∂2

∂x2k
+

∑
1≤k,k′≤n
k 6=k′

xak
xk − xk′

∂

∂xk
.

Note D2 = D(1). Equation (3.2), (3.3), and (3.4) imply the following pair of formulas.
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Lemma 3.5. For any partition α ∈ P and any a ≥ 2

Eapα =

`(α)∑
i=1

αipα\(αi)∪(αi+a−1),

and

Dapα =

`(α)∑
i=1

∑
r,s≥1

r+s=a+k−2

αipα\(αi)∪(r,s) +
∑

1≤i,j≤`(α)
i 6=j

αiαjpα\(αi,αj)∪(αi+αj+a−2)

+

`(α)∑
i=1

(2n− a)pα\(αi)∪(αi+a−2)

We omit the proof of the following result as we will later obtain a generalized version.

Lemma 3.6. We have

L0 = p1,

L1 = E2 + (n− 1)p1,

L2 = 2D3 + E2 + (n− 1)2p1.

3.3 Linear Relations in Characters

For λ, α ` n, define the central character indexed by λ evaluated at α by

θλα =
Hλ

z(α)
χλα.

Since |Cα|/n! = z(α)−1, we have

Jλ(1) = Hλsλ =
∑
α`n

Hλ
|Cα|
n!

χλαpα =
∑
α`n

θλαpα. (3.7)

The following result is due to Lassalle [24, Theorem 4.1] and the third relation is stated in a
slightly different form here.

We need a notation for summing over all “add-a-box” operation. Let λ ` n be a partition. An
outer corner of λ is a cell � such that the shape obtained by adding � to λ, denoted as λ+ �, is
still a partition.
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Theorem 3.7. Let λ ` n and β ` (n+ 1). Then∑
µ=λ+�

Hλ

Hµ
θµβ = θλβ\(1), (3.8)

∑
µ=λ+�

Hλ

Hµ
c(�)θµβ =

∑
i≥1

i(mi(β) + 1)θλβ\(i+1)∪(i) (3.9)

∑
µ=λ+�

Hλ

Hµ
c(�)2θµβ =

∑
i,j≥1

(
ij(mi(β) + 1)(mj(β) + δij + 1)θλβ\(i+j+1)∪(i,j)

+ (i+ j − 1)(mi+j−1(β) + 1)θλβ\(i,j)∪(i+j−1)

)
, (3.10)

where sums run over outer boxes of λ.

The quantities Hλ/Hµ and the summation
∑

µ=λ+�
Hλ
Hµ
c(�)k will be explained in the Sec-

tion 3.4. We also postpone the full proof until Section 5.3 where cleaner expressions of L operators
are obtained. For now, we outline Lassalle’s original approach.

Proof Sketch. Consider applying L2 to the polynomial version of Equation (3.7). On one hand,
we have

L2Hλsλ(x1, . . . , xn) =
∑

µ=λ+�

Hλ(c(�) + n− 1)2sµ(x1, . . . , xn).

In the summation, multiply by Hµ/Hµ and apply Equation (3.7) again to Hµsµ(x1, . . . , xn).

=
∑

β`(n+1)

∑
µ=λ+�

Hλ

Hµ
(c(�) + n− 1)2θµβpβ(x1, . . . , xn),

=
∑

β`(n+1)

∑
µ=λ+�

Hλ

Hµ

(
c(�)2 + 2(n− 1)c(�) + (n− 1)2

)
θµβpβ(x1, . . . , xn).

Note that this is an expression in n− 1 with coefficients in Symn.

On the other hand, use the expression for L2 in Lemma 3.6 and apply Lemma 3.5. By linearity
of L operators, we get an expression∑

α`n
θλαL2pα =

∑
α`n

θλα

(
L(0)
α (p) + L(1)

α (p)(n− 1) + L(2)
α (p)(n− 1)2

)
, (3.11)

where L
(i)
α (p) are expressions in Symn not involving n.

To conclude the proof, we simply identify coefficients of n− 1.
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3.4 Transition Measures

To take advantage of L operators, we collect some results involving the quantity Hλ/Hµ

appearing in Theorem 3.7. Proofs can be found in [24].

The (discrete) transition measure of λ with respect to an outer corner � is

γλ(�) =
Hλ

Hµ
.

For k ≥ 0, the k-th moment of the transition measure of λ is

Γk(λ) =
∑

µ=λ+�

γλ(�)c(�)k.

where the sum goes over outer corner cells of λ. The following result is due to Lassalle [24] using
the theory of shifted symmetric functions.

Theorem 3.8. Let λ ` n be a partition. Then

Γ0(λ) = 1, Γ1(λ) = 0, Γ2(λ) = n and Γ3(λ) = 2p1(cλ).
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Chapter 4

Generalized Class Expansion

Let f ∈ Symn be a symmetric function. Theorem 2.10 states that f(J1, . . . , Jn) is an element
in Zn. It is natural to ask for an expression in the basis consisting of conjugacy classes. The
expansion coefficients ϕfα of f indexed by partitions α ` n are defined as

f(J1, . . . , Jn) =
∑
α`n

ϕfαCα.

In Section 1.2 we introduced this problem as generalized class expansion. Expansion coefficients
are obviously useful in understanding the centre of the group algebra. When f encodes interesting
factorizations in Sn, expansion coefficients are counting coefficients for not necessarily transitive
factorizations. Hence useful techniques on class expansion problems could be tweaked and adapted
into tools on transitive factorization problems. This is our motivation to understand Lassalle’s
work.

In this chapter, we aim to apply linear relations to obtain induction relations in expansion
coefficients whenever a reduction strategy is applicable. We pay special attention to complete
symmetric functions. Féray noticed that the expansion of complete symmetric functions affords a
nice combinatorial point of view where multiplication by transpositions enters the picture. This
argument paves way to a unified algebraic method for counting transitive factorizations which we
explain in Chapter 6.
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4.1 General Strategy

First, we translate generalized class expansion to a problem in central characters. Note
multiplication of central orthogonal idempotents is trivial by Lemma 2.7. If α, λ ` n, then

CαF
λ = |Cα|

∑
µ`n

|Cα|
χµ(1n)

χµαF
µFλ

=
Hλ

z(α)
χλαF

λ

= θλαF
λ.

Let f ∈ Symn with expansion coefficients ϕfα where α ` n. Then by Theorem 2.12 we have for
each λ ` n

f(J1, . . . , Jn)Fλ =
∑
α`n

ϕfαCαF
λ =

∑
α`n

ϕfαθ
λ
αF

λ.

By Theorem 2.12 f(J1, . . . , Jn)Fλ = f(cλ)Fλ. So we have

f(cλ)Fλ =
∑
α`n

ϕfαθ
λ
αF

λ. (4.1)

The problem is now amenable to the linear relations in central characters developed in
Section 3.3. The idea behind this method is best first illustrated through an example. The
simplest one is the expansion of ek(J1, . . . , Jn). The general strategy will be discussed in full detail
at the end of the section.

Let λ ` n. Our goal is to apply Theorem 3.7. Recall

ek(x1, . . . , xn, xn+1) = ek(x1, . . . , xn, 0) + xn+1ek−1(x1, . . . , xn, 0).

If µ = λ+ �, then
ek(cµ) = ek(cλ) + c(�)ek−1(cλ).

Multiply the above by γλ(�)c(�)i and sum over all µ = λ+ � where � is an outer corner λ. We
obtain 2 equations to which we apply Theorem 3.8:∑

µ=λ+�

γλ(�)ek(cµ) = Γ0(λ)ek(cλ) + Γ1(λ)ek−1(cλ)

= ek(cλ), (4.2)∑
µ=λ+�

γλ(�)c(�)ek(cµ) = Γ1(λ)ek(cλ) + Γ2(λ)ek−1(cλ)

= nek−1(cλ). (4.3)

36



Now we apply Theorem 3.7 to the left-hand side of each of these equations after writing both
sides in terms of central characters. For Equation (4.2), we have∑

α`n
ϕekα θ

λ
α = ek(cλ)

=
∑

β`(n+1)

ϕekβ

∑
µ=λ+�

γi(�)θµβ

=
∑

β`(n+1)

ϕekβ θ
λ
β\(1).

For Equation (4.3), we have

n
∑
α`n

ϕ
ek−1
α θλα = nek−1(cλ)

=
∑

β`(n+1)

ϕ
ek−1

β

∑
µ=λ+�

γi(�)c(�)θµβ

=
∑

β`(n+1)

ϕ
ek−1

β

∑
i≥1

i(mi(β) + 1)θλβ\(i+1)∪(i).

Since central characters are non-zero multiples of irreducible characters, they are linearly
independent. Compare the coefficients of central characters to get a pair of relations

ϕekα = ϕekα∪(1) (4.4)

nϕ
ek−1
α =

∑
i≥1

imi(α)ϕekα\(i)∪(i+1). (4.5)

Lemma 4.1. Equations (4.4) and (4.5) determines ϕekα for all k ≥ 0 and all partitions α.

Proof. We proceed by a triple induction, first on k, on n, then on min(α). Note for k = 0

ϕe0α = δ(1n),α, for all α ` n, n ≥ 1.

Suppose for some k ≥ 1 the coefficient ϕ
ek−1
α has been determined for all α ` n and n ≥ 1. The

initial condition on the inner induction is n = 1 and ϕek(1) = 0. Now suppose for some n ≥ 1, the

coefficient ϕekα has been determined for all α ` n. We need to determine ϕ
(k)
β for all β ` n+ 1.

Note if min(β) = 1, then Equation (4.4) implies

ϕekβ = ϕekβ\(1),
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which has been determined by hypothesis. Suppose further for some b ≥ 1 the coefficient ϕekβ∗ has
been determined for all β∗ with min(β∗) ≤ b. Let β ` (n+ 1) with min(β) = b+ 1. Remove a box
from the smallest part of β, i.e., choose α = β \ (b+ 1)∪ (b). Note mb(α) = 1. Then Equation (4.5)
can be written as

bϕekβ = −nϕek−1
α +

∑
i≥1
i 6=b

imi(α)ϕekα\(i)∪(i+1).

But every non-zero summand has a part j. Their coefficients have already been determined by
hypothesis. Finally, ϕ

ek−1
α has already been determined by the 2 outer induction hypotheses.

Corollary 4.2. Equations (4.4) and (4.5) imply for each k ≥ 0 and n ≥ 1

ek(J1, . . . , Jn) =
∑
α`n

`(α)=n−k

Cα.

Proof Sketch. Replace the inner most induction hypothesis by the following: Suppose for some
j ≥ 1

ϕekβ∗ =

{
1, `(β∗) = n− k
0, otherwise,

for all min(β∗) ≤ j.

Now we describe the general strategy. If λ ` n and µ = λ+ � for some outer corner � of λ,
then by Equation (2.2) we have a recurrence

f(cµ) = f(cλ) +

deg f∑
k=1

c(�)k(h⊥k f)(cλ).

Let gk = h⊥k f and let i ≥ 0. Multiply above by γλ(�)c(�)i and sum over all outer boxes � of
λ. We get ∑

µ=λ+�

γλ(�)c(�)if(cµ) = Γi(λ)f(cλ) +

deg f∑
k=1

Γi+k(λ)gk(cλ).

We look for symmetric functions F,G with known class expansion coefficients. The pair should
satisfy

F (cλ) = Γi(λ)f(cλ)
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and

∑
µ=λ+�

γλ(�)c(�)jG(cµ) =

deg f∑
k=1

Γi+k(λ)gk(cλ),

for some i ≥ 0. Expand f, F,G in terms of central characters. Then expansion coefficients of
f, F,G are related by

∑
β`(n+1)

ϕfβ

 ∑
µ=λ+�

γλ(�)c(�)iθµβ

 =
∑
α`n

ϕFα θ
λ
α + +

∑
β`(n+1)

ϕGβ

 ∑
µ=λ+�

γλ(�)c(�)jθµβ

 ,

for some j ≥ 0.

If i and j are sufficiently small, then we can apply Theorem 3.7 to reduce weights of all
partitions appearing in brackets by 1. We obtain relations in ϕ by comparing coefficients of θλα.

Typically we take f from a family of recursively defined symmetric functions, say fk, k ≥ 1 so
that Equation (2.2) simplifies to

fk(x1, . . . , xn+1) = fk(x1, . . . , xn, 0) + xafb(x1, . . . , xn+1)

for some a ≤ k and b < k. In such case, the path of finding G completely bypasses the non-
trivial task of evaluating Γ(λ). Proceed by a double induction to assume fk(J1, . . . , Jn, 0) and
fb(J1, . . . , Jn+1) both have known expansion coefficients. Apply the general strategy with i = 0.
Then we take advantage of Γ0(λ) = 1 and simply let F = fk and G = fb. Depending on the values
of a, b, we may have to apply the general strategy more than once with increasing values of i to
obtain desirable relations.

In the above demonstration of class expansion of ek, we applied the general strategy with
i = 0, 1. When i = 0, we used F = ek and G = 0. When i = 1, we used F = nek−1 and G = 0.

4.2 Expansion of Complete Symmetric Polynomials

Now we apply the above strategy to obtain a recurrence for the coefficients of the generalized
class expansion of central elements corresponding to complete symmetric polynomials.

Fix n ≥ 1. Consider hk ∈ Symn+1 as a power series in xn+1. Then we have

hk(x1, . . . , xn, xn+1) = hk(x1, . . . , xn, 0) +

k∑
j=1

xjn+1hk−j(x1, . . . , xn, 0)

= hk(x1, . . . , xn, 0) + xn+1hk−1(x1, . . . , xn, xn+1).
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Fix some λ ` n. By Equation (4.1), the expansion of the corresponding central element has a
recurrence for each µ = λ+ �

hk(cµ) = hk(cλ) + c(�)hk−1(cµ).

We get ∑
µ=λ+�

γλ(�)hk(cµ) = Γ0hk(cλ) +
∑

µ=λ+�

γλ(�)c(�)hk−1(cµ)

= hk(cλ) +
∑

µ=λ+�

γλ(�)c(�)hk−1(cµ) (4.6)

∑
µ=λ+�

γλ(�)c(�)hk(cµ) = Γ1hk(cλ) +
∑

µ=λ+�

γλ(�)c(�)2hk−1(cµ)

=
∑

µ=λ+�

γλ(�)c(�)2hk−1(cµ). (4.7)

Expand each hk into central characters. Equation (4.6) becomes

∑
β`(n+1)

ϕhkβ

 ∑
µ=λ+�

γλ(�)θµβ

 =
∑
α`n

ϕhkα θ
λ
α +

∑
β`(n+1)

ϕ
hk−1

β

 ∑
µ=λ+�

γλ(�)c(�)θµβ

 .

Apply Theorem 3.7 to summations in brackets. We get∑
β`(n+1)

ϕhkβ θ
λ
β\(1) =

∑
α`n

ϕhkα θ
λ
α +

∑
β`(n+1)

∑
i≥1

ϕhkβ i(mi(β) + 1)θλβ\(i+1)∪(i).

Identify the coefficients of central characters on both sides. For a fixed α ` n, we have

ϕhkα∪(1) = ϕhkα +
∑
i≥1

imi(α)ϕ
hk−1

α\(i)∪(i+1). (4.8)

After expansion, Equation (4.7) becomes∑
β`(n+1)

ϕhkβ

∑
µ=λ+�

γλ(�)c(�)hk(cµ) =
∑

β`(n+1)

ϕ
hk−1

β

∑
µ=λ+�

γλ(�)c(�)2θµβ .

Apply Theorem 3.7 to both sides to get∑
µ=λ+�

∑
i≥1

i(mi(β) + 1)ϕhkβ θ
λ
β\(i+1)∪(i)j =

∑
µ=λ+�

∑
i,j≥1

(
ij(mi(β) + 1)(mj(β) + δij + 1)θλβ\(i+j+1)∪(i,j)

+ (i+ j − 1)(mi+j−1(β) + 1)θλβ\(i,j)∪(i+j−1)

)
.
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Identify coefficients of central characters. We get the second recurrence relation. For each α ` n
and i ≥ 1 ∑

i≥1
imi(α)ϕhkα\(i)∪(i+1) =

∑
i,j≥1

(
ijmi(α)(mj(α)− δij)ϕ

hk−1

α\(i,j)∪(i+j+1)

+ (i+ j − 1)mi+j−1(α)ϕ
hk−1

α\(i+j−1)∪(i,j)

)
. (4.9)

Corollary 4.3. Equations (4.8) and (4.9) together determine expansion coefficients ϕhkα for all
k ≥ 0 and α ∈ P.

Proof. We use a triple induction first on k, on n, then on min(α). All steps are very similar to
the ones in the proof of Lemma 4.1. For k = 0, we have h0 = 1. So

ϕh0α =

{
1, α = ()

0, α ∈ P.

Suppose for some k ≥ 0 the coefficient ϕ
hk−1
α has been determined for all n ≥ 1 and α ` n. The

initial condition on the inner induction is n = 1 and ϕhk(1) = 0 since hk(J1) = 0 for all k ≥ 1.

Now suppose for some n ≥ 1, the coefficient ϕhkα has been determined for all α ` n. We need to
determine ϕhkβ for all β ` (n+ 1).

In the case of min(β) = 1, we let β = α ∪ (1). Equation (4.8) implies

ϕhkβ = ϕhkα +
∑
i≥1

imi(α)ϕ
hk−1

α\(i)∪(i+1).

All coefficients in the RHS have been determined by hypothesis. Suppose further for some b ≥ 1
the coefficient ϕhkβ∗ has been determined for all β∗ with min(β∗) ≤ b. Let β ` (n + 1) with
min(β) = b+ 1. Remove a box from the smallest part of β, i.e., choose α = β \ (b+ 1) ∪ (b). Note
mb(α) = 1. Then Equation (4.9) can be written as

bϕhkβ = −
∑
i≥1
i 6=b

imi(α)ϕhkα\(i)∪(i+1)

+
∑
i,j≥1

(
ijmi(α)(mj(α) + δij)ϕ

hk−1

α\(i,j)∪(i+j+1)

+ (i+ j − 1)mi+j−1(α)ϕ
hk−1

α\(i+j−1)∪(i,j)

)
.

All coefficients on the RHS has been determined by hypothesis.
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α
k

1 2 3 4 5 6 7

(11) 1 1 1
(2) 1 1 1 1

(111) 3 11 43
(21) 1 5 21 85
(3) 2 10 42

(1111) 6 41 316
(211) 1 10 91 820
(22) 1 20 231
(31) 2 25 252
(4) 5 70 735

(11111) 10 105 1240
(2111) 1 16 231 3382
(221) 1 28 567
(311) 2 42 714
(32) 2 84 1974
(41) 5 126 2415
(5) 14 420

Table 4.1: Coefficients of Low Order hk(J1, . . . , Jn).

4.3 A Partial Differential Equation

Consider expressing the above recurrence as a relation on the generating series level. Define

ΦH(t, z,p) =
∑
k≥1

tk
∑
n≥0

zn

n!

∑
α`n

ϕhkα |Cα|pα.

Note ΦH = ΦH(t, z,p) is ordinary in t but exponential in z. Since z(α) = |Cα|/n!, we can rewrite
it as

ΦH =
∑
k≥1

tk
∑
n≥1

zn
∑
α`n

ϕhkα
pα
z(α)

.

Let α ∈ P. Then p⊥1 pα∪(1)z(α ∪ (1))−1 = pαz(α)−1. Furthermore if i ≥ 1 and β ∈ P, then

imi(α)
pα
z(α)

= pi
pα\(i)

z(α \ (i))
and p⊥i+1

pβ∪(i+1)

z(β ∪ (i+ 1))
=

pβ
z(β)

. (4.10)
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In particular, if β = α \ (i) then

imi
pα
z(α)

= pip
⊥
i+1pα\(i)∪(i+1).

Multiply Equation (4.8) by pαz(α)−1z|α|+1tk and sum over all α ∈ P and k ≥ 1. Then

left− handside =
∑
k≥1

∑
n≥1

∑
α`n

ϕhkα∪(1)
pα
z(α)

zn+1tk

=
∑
k≥1

tk
∑
n≥1

zn+1
∑
α`n

ϕhkα∪(1)p
⊥
1

pα∪(1)

z(α ∪ (1))

= p⊥1
∑
k≥1

tk
∑
n≥1

zn+1
∑

β`(n+1)
1∈β

ϕhkβ
pβ
z(β)

.

Note if β ∈ P does not contain a part of size 1, then p⊥1 pβ = 0. Together with the fact ϕhk(1) = 0
for all k ≥ 1, we can free the restriction in the inner summation and sum over n ≥ 0. Then the
left-hand side is simply p⊥1 ΦH . Now consider the summation in the RHS. We have

RHS =
∑
i≥1

∑
k≥1

∑
n≥1

∑
α`n

ϕ
hk−1

α\(i)∪(i+1)imi(α)
pα
z(α)

zn+1tk

= t
∑
i≥1

∑
k≥1

tk−1
∑
n≥1

zn+1
∑
α`n

ϕ
hk−1

α\(i)∪(i+1)pip
⊥
i+1

pα\(i)∪(i+1)

z(α \ (i) ∪ (i+ 1))

= t
∑
i≥1

pip
⊥
i+1

∑
k≥1

tk−1
∑
n≥1

zn+1
∑

β`(n+1)
i+1∈β

ϕ
hk−1

β

pβ
z(β)

.

Similar to the previous case, if β ∈ P does not contain a part of size i+ 1, then p⊥i+1pβ = 0. In
particular, p⊥i+1p(1) = 0 for all i ≥ 1. Hence we can free the restriction in the inner-most sum and
sum over n ≥ 0. Equation (4.8) can be written as a PDE

p⊥1 ΦH = zΦH + t
∑
i≥1

pip
⊥
i+1Φ

H . (4.11)

Similarly, multiply Equation (4.9) by pαz(α)−1z|α|+1tk and sum over all α ∈ P and k ≥ 1.
Apply relation (4.10) to the summand in the RHS. For any partition α ∈ P and i, j ≥ 1 we have

ijmi(α)(mj(α)− δij)
pα
z(α)

= pipjp
⊥
i+j+1

pα\(i,j)∪(i+j+1)

z(α \ (i, j) ∪ (i+ j + 1))
, using β = α \ (i, j),

(i+ j − 1)mi+j−1(α)
pα
z(α)

= pi+j−1p
⊥
i p
⊥
j

pα\(i+j−1)∪(i,j)

z(α \ (i+ j − 1) ∪ (i, j))
, using β = α \ (i+ j − 1).

43



Note the left-hand side of Equation (4.9) is similar to the RHS of Equation (4.8). Hence, we
can express Equation (4.9) as a PDE

∑
i≥1

pip
⊥
i+1Φ

H = t

∑
i,j≥1

pipjp
⊥
i+j+1 + pi+j−1p

⊥
i p
⊥
j

ΦH . (4.12)

Combining Equation (4.11) and (4.12), we get the following result.

Proposition 4.4. The series ΦH is the unique solution to the partial differential equation

p⊥1 ΦH = zΦH + t2

∑
i,j≥1

pipjp
⊥
i+j+1 + pi+j−1p

⊥
i p
⊥
j

ΦH , (4.13)

with initial condition ΦH(t, 0,p) = 1.

Equation (4.13) reveals an interesting combinatorial property of L operators. From the
derivation above, the differential operator p⊥1 kills off all pαz(α)−1 where α does not contain a
part of size 1 and p⊥1 pαz(α)−1 = pα\(1)z(α \ (1))−1. Since pαz(α)−1 marks a conjugacy class, we

can interpret p⊥1 as a projection operator Sn+1 → Sn+1 defined

p⊥1 : σ′ 7→

{
σ′, σ′(n+ 1) = n+ 1

0, otherwise,
σ′ ∈ Sn+1.

Clearly, the range of the above projection can be identified with the canonical embedding of Sn in
Sn+1. Féray took advantage of it and provided a combinatorial proof of Equations (4.8) and (4.9).

4.4 Féray’s Combinatorial Arguments

We prove Equations (4.8) and (4.9) using a combinatorial argument due to Féray [10]. Recall

ϕhkα∪(1) = ϕhkα +
∑
i≥1

imi(α)ϕ
hk−1
α , (4.8)

∑
i≥1

imi(α)ϕhkα\(i)∪(i+1) =
∑
i,j≥1

(
ijmi(α)(mj(α) + δij)ϕ

hk
α\(i,j)∪(i+j+1)

+ (i+ j − 1)mi+j−1(α)ϕhkα\(i+j−1)∪(i,j)

)
. (4.9)
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With mild abuse of notation, let p⊥1 : C[Sn+1]→ C[Sn] denote the extension of above projection
operator with its range restricted to Sn, i.e., define

p⊥1 σ
′ =

{
σ, σ′(n+ 1) = n+ 1

0, otherwise,
σ′ ∈ Sn.

where σ is obtained from σ′ by removing the fixed point n+ 1. Extend linearly to all of C[Sn+1].
We will use σ′ to denote adding n+ 1 as a fixed point to σ ∈ Sn.

Recall Equations (4.8) and (4.9) are derived from the group algebra recurrence

hk(J1, . . . , Jn+1) = hk(J1, . . . , Jn, 0) + Jn+1hk−1(J1, . . . , Jn+1).

Let σ ∈ Sn with cycle type α ` n. Consider its coefficient after applying p⊥1 to the above equation.
A surviving permutation τ in p⊥1 hk(J1, . . . , Jn+1) must contain n+ 1 as a fixed point by definition.
Hence, the cycle type of τ can be expressed as β ∪ (1) for some unique β ` n. Hence,

[σ]p⊥1 hk(J1, . . . , Jn+1) = ϕhkα∪(1).

Since every permutation in hk(J1, . . . , Jn, 0) has n+ 1 as a fixed point, we get

[σ]p⊥1 hk(J1, . . . , Jn, 0) = [σ]hk(J1, . . . , Jn) = ϕkα.

For the rightmost term, we note as operator [σ]p⊥1 = [σ′]. Then

[σ]p⊥1 Jn+1hk−1(J1, . . . , Jn+1) = [σ′]Jn+1hk−1(J1, . . . , Jn+1)

= [σ′Jn+1]hk−1(J1, . . . , Jn+1)

=
n∑
v=1

[(v, n+ 1)σ′]hk−1(J1, . . . , Jn+1).

For each v ∈ {1, . . . , n}, the cycle structure of (v, n + 1) · σ′ differs from that of σ′ by only the
cycle containing v and n+ 1. Note

(v, n+ 1) · (v, σ(v), . . . , σαv−1(vjs)) = (v, σ(v), . . . , σαv−1(v), n+ 1),

where αv is the order of the cycle containing v. Hence the cycle type of (v, n + 1) · σ′ is
α \ (αv) ∪ (αv + 1). It follows that

[σ]p⊥1 Jn+1hk−1(J1, . . . , Jn+1) =
∑
i≥1

imi(α)ϕ
hk−1

α\(i)∪(i+1).

We get Equation (4.8) by putting the above together.
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To get the second relation, we apply p⊥1 after multiplying the group algebra recurrence by
Jn+1. Note

Jn+1hk(J1, . . . , Jn+1) = Jn+1hk(J1, . . . , Jn, 0) + J2
n+1hk−1(J1, . . . , Jn+1).

Again we consider the coefficient of σ after applying p⊥1 to the above. Its coefficient from the
left-hand side is

[σ]p⊥1 Jn+1hk(J1, . . . , Jn+1) = ϕhkα\(i)∪(i+1).

Since τ ∈ hk(J1, . . . , Jn, 0) contains n+ 1 as a fixed point, then every monomial in Jn+1τ does
not contain n+ 1 as a fixed point. Hence, [σ]p⊥1 Jn+1hk(J1, . . . , Jn, 0) = 0. For the last expression,
we want to evaluate

[σ]p⊥1 J
2
n+1hk−1(J1, . . . , Jn+1) =

n∑
u,v=1
distinct

[(u, n+ 1)(v, n+ 1)σ′]hk−1(J1, . . . , Jn+1).

We need to figure out the cycle type of (u, n + 1)(v, n + 1)σ′. Note the cycle structure of
(u, n+ 1)(v, n+ 1)σ′ differ from that of σ′ only on cycles containing u and v. There are 2 cases.

(i) Suppose u, v both appear in a cycle of length αi with σa(u) = v and σb(v) = u. Then

(u, n+ 1) · (v, n+ 1) · (v, σ(v), . . . , σb−1(v), u, σ(u) . . . , σa−1(u))

=(u, n+ 1) · (v, σ(v), . . . , σb(v), u, σ(u) . . . , σa−1(u), n+ 1)

=(v, σ(v), . . . , σb−1(v), n+ 1) · (u, σ(u), . . . , σa−1(u)).

u

v

u

v

n+ 1

u

v

n+ 1
n+ 1

Join n+ 1 Cut

Figure 4.1: u and v appear in the same cycle.

Hence the cycle type of (u, n+ 1) · (v, n+ 1) · σ′ is α \ (αi) ∪ (a, b+ 1). Note there are αi
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choices for v. The corresponding coefficient is

`(α)∑
i=1

∑
a,b≥1
a+b=αi

αiϕ
hk−1

α\(αi)∪(a,b+1) =
∑
i,j≥1

(i+ j − 1)mi+j−1(α)ϕhkα\(i+j−1)∪(i,j).

(ii) Suppose u, v appear in different cycles of lengths αu and αv respectively. Then

(u, n+ 1) · (v, n+ 1) · (v, σ(v), . . . , σαv−1(v)) · (u, σ(u), . . . , σαu−1(u))

=(u, n+ 1) · (v, σ(v), . . . , σαv−1(v), n+ 1) · (u, σ(u), . . . , σαu−1(u))

=(v, σ(v), . . . , σαv−1(v), u, σ(u), . . . , σαu−1(u), n+ 1).

u

v

u

v

n+ 1

u

n+ 1

v
n+ 1

Join n+ 1 Join

Figure 4.2: u and v appear in different cycles.

Hence the cycle type of (u, n+1) · (v, n+1) ·σ′ is α\ (αu, αv)∪ (αu+αv +1). For each pair of
distinct i, j = 1, . . . , `(α), there are αi choices for u and αj choices for v. The corresponding
coefficient is

`(α)∑
i,j=1
distinct

αiαjϕ
hk−1

α\(αi,αj)∪(αi+αj+1) =
∑
i,j≥1

ijmi(α)(mj(α)− δij)ϕ
hk−1

α\(i,j)∪(i+j−1).

Note the term δij deals with the case when we choose 2 distinct i-cycles.

Putting the 2 cases together, we have Equation (4.9). This concludes the proof.

This method can be extended to prove new induction relations. The relation

p⊥b
pα∪(b)

z(α ∪ (b))
=

pα
z(α)

, b ≥ 1
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can be used to interpret p⊥b as a projection operator. For each n ≥ 1, define p⊥b : C[Sn]→ C[Sn] as

p⊥b σ =

{
σ
∣∣
{1,...,n−k}, (n− k + 1, . . . , n) is a cycle in σ,

0, otherwise.

Note the cycle (n− k+ 1, . . . , n) can be replaced by any cycle on the ground set {n− k+ 1, . . . , n}.
The operator p⊥b simply removes some pre-determined b-cycle containing n+1 so that the remaining
permutation lives in Sn−k. We achieve the desired effect

p⊥b Cβ∪(b) = Cβ.

Theorem 4.5. The relation

ϕhkβ∪(b) = δ1,bϕ
hk
β +

∑
j≥1

βjϕ
hk−1

β\(βj)∪(βj+b) +
∑
r,s≥1
r+s=b

ϕ
hk−1

β∪(r,s), b ≥ 1 (4.14)

completely determines expansion coefficients ϕhkβ for all k ≥ 1 and β ∈ P.

We first recover Equations (4.8) and (4.9). Let α ∈ P be chosen arbitrarily. Set b = 1 and
β = α. We get

ϕhkα∪(1) = ϕhkα +
∑
i≥1

imi(α)ϕ
hk−1

α\(i)∪(i+1).

If i ≥ 1, specializing β = α \ (αi) and b = αi + 1 yields

ϕhkα\(αi)∪(αi+1) =
∑
j≥1
j 6=i

αjϕ
hk−1

α\(αi,αj)∪(αi+αj+1) +
∑
r,s≥1

r+s=αi+1

ϕ
hk−1

α\(αi)∪(r,s).

Multiply through by αi and sum over all i ≥ 1. We get Equation (4.9) after re-indexing. The
term δi,j in Equation (4.9) is accounted for by the condition j 6= i.

Proof of Theorem 4.5. Let b ≥ 1 and let σ ∈ Sn+1−b be a permutation with cycle type α `
(n+ 1− b). We apply p⊥b to the group algebra recurrence

hk(J1, . . . , Jn+1) = hk(J1, . . . , Jn, 0) + Jn+1hk−1(J1, . . . , Jn+1).

Note
p⊥b hk(J1, . . . , Jn+1) =

∑
β`(n+1)

ϕhkβ p
⊥
b Cβ =

∑
α`(n+1−k)

ϕhkα∪(b)Cα.

In other words [σ]p⊥b hk(J1, . . . , Jn+1) = [Cα]p⊥b hk(J1, . . . , Jn+1) = ϕhkα∪(b).
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Since hk(J1, . . . , Jn, 0) is the canonical embedding of Sn in Sn+1 with n+ 1 being a fixed point,
then [σ]p⊥b hk(J1, . . . , Jn, 0) = δ1,bϕ

hk
α . Now let σ∗ ∈ Sn+1 denote the permutation obtained from

σ by adding the cycle (n+ 1, . . . , n+ k). Then

[σ]p⊥k Jn+1hk(J1, . . . , Jn+1) = [σ∗]Jn+1hk(J1, . . . , Jn+1)

= [Jn+1σ
∗]hk(J1, . . . , Jn+1)

=

n∑
v=1

[(v, n+ 1)σ∗]hk(J1, . . . , Jn+1).

Once again, there are 2 cases.

• If v is in the ground set of σ, then v and n+ 1 appear in 2 different cycles in σ∗ by definition.
Hence, the cycle type of (v, n+ 1) · σ∗ is α \ (αi) ∪ (αi + b) for some αi ∈ α. It follows that

n+1−k∑
v=1

[(v, n+ 1)σ∗]hk(J1, . . . , Jn+1) =

`(α)∑
i=1

αiϕ
hk−1

α\(αi)∪(αi+b).

• If v is not on the ground set of σ, then v and n+1 both appear in the cycle (n−k+1, . . . , n+1).
The cycle (n+ 1, . . . , n+ k) is cut into 2 smaller cycles by (v, n+ 1). Hence, the cycle type
of (v, n+ 1) · σ∗ is α ∪ (r, s) for some r, s ≥ 1 such that r + s = b. It follows that

n+1∑
v=n+1−k+1

[(v, n+ 1)σ∗]hk(J1, . . . , Jn+1) =

`(α)∑
r,s=b
r,s≥1

ϕ
hk−1

α(r,s).

The proof of Corollary 4.3 can be repeated to prove that this is a recurrence relation.

We remark that since p⊥b is a differential operator on Sym, its action can be interpreted
as marking a canonical cycle in Sn. In the context of the above proof, the canonical cycle is
(n− k + 2, . . . , n+ 1).

Finally, consider turning induction relation (4.14) into a differential equation in terms of ΦH .
Note

ϕhkβ∪(b)
pβ
z(β)

= p⊥b ϕ
hk
β∪(b)

pβ∪(b)

z(β ∪ (b))
.

If we sum over β ∈ P, then the summand can no longer be collected into ΦH . The problem is
uniqueness. If α ∈ P, then there are non-unique choices β ∈ P such that β ∪ (b) = α. We would
have to sum over β of the form α \ (αi) for some i and then sum over i ≥ 1. As explained in the
paragraph following the statement of Theorem 4.5, we recover Lassalle’s result. Hence, the PDE
is Equation (4.13). This is not surprising since Lassalle’s relations and Féray’s relation are both
obtained from the same group algebra recurrence.
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4.5 Related Results

For completeness, we include some known results on expansions of other symmetric functions.
We omit the proofs since they are fairly similar to the derivation of Equations (4.8) and (4.9).
These results are due to Lassalle.

Using Theorem 3.8, we can expand the product e(k1) [24, Proposition 5.2]. For n ≥ k ≥ 1

e(k1)(J1, . . . , Jn) =
∑
α`n

`(α)=n−k−1

∑
i≥2

mi(α)

(
i

2

)
Cα +

∑
α`n

`(α)=n−k+1

(n
2

)
−
∑
i≥2

mi(α)

(
i

2

)Cα.

The power sums have an obvious 2 term recursive definition: pk(x1, . . . , xn+1) = pk−1(x1, . . . , xn, 0)+
xn+1
k . Apply the general strategy we obtain [24, Equation 6.1]

ϕpkα∪(1) = ϕpkα +
∑
i≥1

imi(α)ϕ
pk−1

α\(i)∪(i+1),∑
i≥1

imi(α)ϕpkα\(i)∪(i+1) = −ϕpk−1
α

+
∑
i,j≥1

(
ijmi(α)(mj(α)− δij)ϕ

pk−1

α\(i,j)∪(i+j+1)

+ (i+ j − 1)mi+j−1(α)ϕ
pk−1

α\(i+j−1)∪(i,j)

)
.

Note that the power sum expansion coefficients recurrence are very similar to the ones
for complete symmetric functions. Lassalle considered Hall-Littlewood symmetric functions
Pα = Pα(z). These are generalizations of well-known symmetric functions. In the one-row case, we
recover Pk(0) = hk and Pk(1) = pk. Lassalle worked out the following recurrences [24, Equations
(8.1) and (8.2)]

ϕPk = ϕPkα +
∑
i≥1

imi(α)ϕ
Pk−1

α\(i)∪(i+1)∑
i≥1

imi(α)ϕPkα\(i)∪(i+1) = −nzϕPk−1
α

+
∑
i,j≥1

(
ijmi(α)(mj(α)− δij)ϕ

pk−1

α\(i,j)∪(i+j+1)

+ (i+ j − 1)mi+j−1(α)ϕ
pk−1

α\(i+j−1)∪(i,j)

)
.
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Generalized class expansion can also be thought of from partial permutations and shifted
symmetric functions point of view. These objects have origin in representation theory [19]. Each
of the above expansion coefficients can be studied in terms of shifted symmetric functions. For
discussion in this direction, see Section 2.8 of [24]. For generating series of expansion coefficients
of complete shifted symmetric functions, see Section 9 of [24].
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Chapter 5

Revisiting with Lassalle’s Operators

Féray’s argument is reminiscent of an argument by Goulden and Jackson. The combinatorial
analysis of transposition acting on a permutation was used in [16] to count transitive factorizations
into transpositions. In this Chapter, we derive finer details of L operators from this point of view.

We distill a family of operators U due to Carrell and Goulden [4]. The combinatorics of these
operators describes “lifting” actions moving from Sn to Sn+1 involving Jucys-Murphy elements.
More interestingly, the U operators describe these “lifting” operations simultaneously for all
symmetric groups. We will also see that a parameter h naturally arises as an elementary property
from both algebraic and combinatorial points of view. In the closing section of this chapter,
the development of a generating series targeting this h parameter is treated using some tools
motivated by mathematical physics.

5.1 Joins and Cuts

We first consider an operator due to Goulden [11]. Choose arbitrarily some n ≥ 1 and let
∆ = J1 + · · · + Jn. We omit n from the notation as it is unnecessary. We will see shortly its
algebraic counterpart describes its behaviour simultaneously for all symmetric groups. Consider
the multiplication ∆ · σ in C[Sn]. It turns out this action has a neat description as a differential
operator on Sym. Jucys-Murphy elements provide a quick proof of its action on Schur functions.

Theorem 5.1. For each λ ∈ P, we have

∆sλ = p1(cλ)sλ.

Proof. Note ∆sλ = ch
(
(J1 + · · ·+ Jn) · χλ

)
. The result follows from Theorem 2.12 since

(J1 + · · ·+ Jn)χλ = p1(cλ)χλ.
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We only sketch the proof of the following result since it is very similar to the proof of
Theorem 4.5.

Theorem 5.2.

∆ =
1

2

∑
i,j≥1

(
pi+jp

⊥
i p
⊥
j + pipjp

⊥
i+j

)
.

Proof Sketch. Let σ ∈ Cα be any permutation. Choose distinct vertices u, v ∈ 1, . . . , n. The cycle
structure of (uv) · σ only differs from that of σ by the cycles in σ containing u, v. There are 2
cases.

If u, v appear in the same cycle in σ, then (uv) cuts the cycles into 2 smaller cycles, one of
length i containing u and the other of length j containing v. The cycle type of (uv) · σ is hence
α \ (i+ j) ∪ (i, j). This case is captured by pjpip

⊥
i+j .

u

v

u

v

cut

Figure 5.1: Cut Case

If u, v appear in different cycles, say of lengths i and j respectively, then (uv) joins these 2
cycles into a bigger cycle of length i + j. The cycle type of (uv) · σ is hence α \ (i, j) ∪ (i + j).
This case is captured by pi+jp

⊥
i p
⊥
j .

u

v

u

v

Figure 5.2: Join Case
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The 1
2 accounts for the symmetry that each (uv) could be chosen in 2 different ways.

We observe the following obvious properties from the above 2 theorems.

(i) ∆ is an eigenoperator on Schur functions, and

(ii) ∆ is self-adjoint since (pipjp
⊥
i+j)

⊥ = pi+jp
⊥
i p
⊥
j .

Note the expression in Theorem 5.2 does not depend on n. So ∆ describes the action
J1 + · · ·+ Jn simultaneously for all n ≥ 1. Furthermore, comparing this expression with D(1), we
get D(1) = ∆ + (n− 1)E where

E =
∑
i≥1

pip
⊥
i ,

since Epα = |α|pα. Now let t be an indeterminate. Define L0(t) = p1 and

Lk(t) = [∆ + tE,Lk−1], k ≥ 1.

Then it follows immediately that Lk(n− 1) = Lk for all n, k ≥ 1.

5.2 Ups and Downs

We can pick apart L(t) operators to obtain a finer description of L operators. Such results
will be used to prove Theorem 3.7 in Section 5.3. Define U0 = p1 and D0 = p⊥1 and

Uk = [∆,Uk−1] and Dk = [Dk−1,∆], k ≥ 1. (5.1)

These operators were first studied by Carrell and Goulden to count transitive factorizations
[4].

Note by definition, U⊥k = Dk. Similar to that of L operators, their actions on Schur functions
are easy to compute.

Lemma 5.3. For k ≥ 0, we have

Uksλ =
∑

µ=λ+�

c(�)ksµ and Dksλ =
∑

µ=λ−�
c(�)ksµ.

Proof. Let λ ` n. By Murnaghan-Nakayama rule, we have

U0sλ =
∑

µ=λ+�

sµ and D0sλ =
∑

µ=λ−�
sµ.

55



Then by induction, we have

Uksλ =
∑

µ=λ+�

p1(cµ)c(�)k−1 − p1(cλ)c(�)k−1sµ =
∑

µ=λ+�

c(�)ksµ.

Similarly we get the action for Dksλ.

Using the commutation relation [p⊥a , pb] = aδab, we can compute the first few values of Uk
directly from the definition. However, the process quickly becomes complicated and unmanageable.
Its computation heavy proof can be found in the Appendices.

Lemma 5.4.

U0 = p1,

U1 =
∑
i≥1

pi+1p
⊥
i ,

U2 =
∑
i,j≥1

(
pipjp

⊥
i+j−1 + pi+j+1p

⊥
i p
⊥
j

)
,

U3 =
1

2

∑
i,j≥1

(i+ j)pi+jp
⊥
i+j−1 +

∑
i,j≥1

∑
i′,j′≥1

i+j=i′+j′+1

pipjp
⊥
i′ p
⊥
j′

+
∑
i,j,k≥1

pi+jpkp
⊥
j p
⊥
i+k−1

+
∑
i,j≥1

pi+jp
⊥
i

∑
i′,j′≥1

i′+j′+1=j

p⊥i′ p
⊥
j′ .

Note U2 has already appeared before in Section 4.3. Equation (4.13) can be rewritten as

U0Φ
H = zΦH + t2U2Φ

H .

We only treat U operators in the following sections. Analogous results can be obtained for D

operator by simply taking adjoints.

5.3 Proof of Theorem 3.7

We need to express Lk(t) in terms of Ui’s. We do so by comparing their actions on Schur
functions.
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Theorem 5.5. For each k ≥ 1, we have

Lk(t) =

k∑
i=0

(
k

i

)
Uit

k−i.

Proof. By repeating the computation in the proof of Lemma 3.4, we get

Lk(t)sλ =
∑

µ=λ+�

(c(�) + t)tsµ

=
k∑
i=0

(
k

i

)
tk−i

∑
µ=λ+�

c(�)isµ

=
k∑
i=0

(
k

i

)
tk−iUisλ.

The result follows since Schur functions form a basis of Sym.

We are now in a position to get a short proof of Theorem 3.7. The grunt work has already
been carried out in Lemma 5.4.

Proof of Theorem 3.7. Consider applying L2(t) to Hλsλ in 2 different ways. On one hand,

L2(t)Hλsλ =

2∑
i=0

(
2

i

)∑
α`n

θλαUipαt
2−i.

On the other hand,

L2(t)Hλsλ =
2∑
i=0

(
2

i

)
HλUisλt

2−i.

Identify coefficients of i. For i = 0, 1, 2, we have

HλUisλ =
∑
α`n

θλαUipα.

After applying Ui, the left-hand side becomes

∑
µ=λ+�

γλ(�)c(�)iHµsµ =
∑

β`(n+1)

 ∑
µ=λ+�

γλ(�)c(�)iθµβ

 pβ.

To conclude the proof, we simply replace Uipα with corresponding expression from Lemma 5.4
and identify coefficients of pβ for β ` (n+ 1).
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This proof follows the approach in Lassalle’s original proof. Our improvement is a cleaner way
to package and compute the commutator relations using Theorem 5.5.

5.4 Combinatorial Interpretation

We observe that U1,U2,U3 are all differential operators. This is of course true in general.
Consider the generating series

U(x) =
∑
k≥0

Uk
xk

k!
.

Theorem 5.6. We have U(x) = exp(x∆)p1 exp(−x∆). Furthermore,

U(x,w) =
∑
k≥0

xk

k!

∑
h≥0

wh
∑
α,β∈P
|α|=|β|+1

`(α)+`(β)=k+1−2h

u(k, h, α, β)pαp
⊥
β .

for some constants u(k, h, α, β).

Proof. The recursive definition of Uk can be instead written as nested brackets. We have

Uk = [∆, [· · · , [∆, p1] · · · ]] =
k∑
i=0

(−1)i
(
k

i

)
∆k−ip1∆

i. (5.2)

Then

U(x) =
∑
k≥0

k∑
i=0

k!
xk

k!

∆k−i

(k − i)!
p1

(−∆)i

i!

=
∑
i,j≥0

(∆x)i

i!
p1

(−x∆)j

j!

= exp(x∆)p1 exp(−x∆).

We prove the restrictions |α| = |β|+1 and `(α)+`(β) ≤ k+1−2h for some h ≥ 0 by induction
on k. The process is rather straightforward despite the appearances of long expressions. The base
case has already been verified in Lemma 5.4.

Now suppose u(k, h, α, β)pαp
⊥
β is a monomial in Uk for some k, h ≥ 0. Then |α| = |β|+ 1 and

`(α) + `(β) = k + 1− 2h. Let J =
∑

i,j≥1 pi+jp
⊥
i p
⊥
j so that ∆ = 1

2(J + J
⊥

)
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Note
[J, pαp

⊥
β ] =

∑
i,j≥1

(
pi+jp

⊥
i p
⊥
j pαp

⊥
β − pαp⊥β pi+jp⊥i p⊥j

)
.

Since p⊥i ’s are differential operators, we apply the product rule to get

[J, pαp
⊥
β ] =

∑
i,j≥1

(
`(α)∑
s,t=1
s 6=t

(
p⊥i pαs

)(
p⊥j pαt

)
pi+jpα\(αs,αt)p

⊥
β

+

`(α)∑
s=1

(
p⊥i pαs

)
pi+jpα\(αs)p

⊥
j p
⊥
β +

`(α)∑
t=1

(
p⊥j pαt

)
pi+jpα\(αt)p

⊥
i p
⊥
β

−
`(β)∑
r=1

(
p⊥βrpi+j

)
pαp
⊥
β\(βr)p

⊥
i p
⊥
j

)
.

We look at each monomial pλp
⊥
µ appearing in the above expression. There are 3 cases because

the 2 expressions in the second line have the same form.

Line 1. We have λ = α \ (αs, αt) ∪ (i + j) and µ = β. If (p⊥i pαs)(p
⊥
j pαt) 6= 0, then αs = i and

αt = j. Hence, |λ| = |µ|+ 1. It follows that |λ| = |α|. Furthermore,

`(λ) + `(µ) = k + 2− 2(h+ 1).

Line 2. We have λ = α \ (αs) and µ = β ∪ (j). If p⊥i pαs 6= 0, then αs = i. It follows that
|λ| = |α|+ j and |µ| = |β|+ j. Hence, |λ| = |µ|+ 1. Furthermore, `(λ) + `(µ) = k + 2− 2h.

Line 3. We have λ = α and β = β \ (βr) ∪ (i, j). If p⊥βrpi+j 6= 0, then βr = i+ j. It follows that
µ = |β|. Hence, |λ| = |µ|+ 1. Furthermore, `(λ) + `(µ) = k + 2− 2h.

Similarly, note

[J⊥, pαp
⊥
β ] =

∑
i,j≥1

(
pipjp

⊥
i+jpαp

⊥
β − pαpβpipjp⊥i+j

)
.
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Apply the product rule to get

[J⊥, pαp
⊥
β ] =

∑
i,j

(
`(α)∑
r=1

(
p⊥i+jpαr

)
pipjpα\(αr)p

⊥
β

−
`(β)∑
s,t=1
s 6=t

(
p⊥βspi

)(
p⊥βtpj

)
pαp
⊥
β\(βs,βt)p

⊥
i+j

−
`(β)∑
s=1

(
p⊥βspi

)
pαpjp

⊥
β\(βt)p

⊥
i+j −

`(β)∑
t=1

(
p⊥βtpj

)
pαpip

⊥
β\(βt)p

⊥
i+j

)
.

We look at each monomial pλp
⊥
µ appearing in the above expression. There are again 3 cases

because the 2 expressions in the last line have the same form.

Line 1. We have λ = α \ (αr) ∪ (i, j) and µ = β. If p⊥i+jpαr 6= 0, then αr = i+ j. It follows that
|λ| = |α|. Hence |λ| = |µ|+ 1. Furthermore, `(λ) + `(µ) = k + 2− 2h.

Line 2. We have λ = α and µ = β \ (βs, βt) ∪ (i + j). If (p⊥βspi)(p
⊥
βt
pj) 6= 0, then βs = i and

βt = j. It follows that |µ| = |β|. Hence |λ| = |µ|+ 1. Furthermore,

`(λ) + `(µ) = k + 2− 2(h+ 1).

Line 3. We have λ = α ∪ (i) and µ = β \ (βt) ∪ (i+ j). If p⊥βtpi 6= 0, then βt = i. It follows that
|λ| = α+ j and |µ| = β + j. Hence, |λ| = |µ|+ 1. Furthermore, `(λ) + `(µ) = k + 2− 2h.

The result follows by induction.

By taking adjoints, we get the dual result for D operators. The U operators bump up the
total degree by 1 and D operators knock down the total degree by 1.

The parameter h emerges naturally from matching pairs of p⊥i ’s and pi’s. The actions of
U operators on power sums bring us closer to a combinatorial interpretation. We introduce a
notation: If σ ∈ Sn, then we write σ′ ∈ Sn+1 for its canonical embedding by adding n + 1 as a
fixed point.

Lemma 5.7. If α ` n, then

Ukpα =
∑

τ∈Jkn+1

pcyc(τσ′),

where τ ∈ Jkn+1 is a monomial and σ ∈ Sn can be any permutation with cycle type α.
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Proof. For each partition λ, denote V λ by the vector space carrying the corresponding irreducible
representation of Sn. For each σ ∈ Sn, we denote its representing matrix with respect to Young’s
basis by Mλ

σ and its character by χλ(σ) = χλcyc(σ) = tr(Mλ
σ ).

Consider Ukpα for some α ` n. Expand pα in terms of Schur functions, apply the definition of
Uk, and rearrange summations to get

Ukpα =
∑
λ`n

χλα
∑

µ=λ+�

c(�)ksµ =
∑

µ`(n+1)

tr

 ∑
λ=µ−�

c(�)kMλ
σ

 sµ,

where σ is a permutation of cycle type α. But Mµ
Jn+1

is a diagonal matrix with contents of n+ 1
in corresponding tableaux of shape µ on its diagonal. And the set of standard tableaux of shape
µ with n+ 1 in a common cell � forms the basis V µ−�. So the inner sum above simplifies to∑

λ=µ−�
c(�)kMλ

σ = Mµ

Jkn+1
Mµ
σ′ = Mµ

Jkn+1σ
′ , (5.3)

where σ′ is induced from σ by adding n+ 1 as a fixed point. By linearity of trace, we conclude

Ukpα =
∑

µ`(n+1)

tr(Mµ

Jkn+1σ
′)sµ =

∑
τ∈Jkn+1σ

′

∑
µ`n

χµ(τ)sµ =
∑

τ∈Jkn+1σ
′

pcyc(τ).

Note if cyc(σ) = α then ch(σ) = pα/|α|!. It follows that

ch(Jkn+1σ
′) =

∑
τ∈Jkn+1

ch(τσ′) = Uk
pα
n!
.

In other words, Uk is the operator that describes the action Jkn+1 ◦ p1 where p1 : C[Sn]→ C[Sn+1]
is the canonical embedding operator defined as p1(σ) = σ′.

As operators on group algebras, the canonical projection p⊥1 and canonical embedding p1
indeed form an adjoint pair since

〈p⊥1 π, σ〉 = δπ,σ′ = 〈π, p1σ〉,

for all π ∈ Sn+1 and σ ∈ Sn. It follows that Dk describes the action of p⊥1 ◦ (Jkn+1)
⊥. Note

p1pα = pα∪(1) and p⊥1 pα = pα\(1) for any α ∈ P. Hence as operators on symmetric functions they
faithfully describe their group algebra counterparts.

We summarize the interpretation for pk and p⊥k below for k ≥ 1. Fix a canonical choice of
permutation κ on the ground set {n+ 1, . . . , n+ k}. Then multiplication by pk is the canonical
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embedding (with respect to σ) operator adding to each permutation in Sn the cycle κ and p⊥k is
the canonical projection (with respect to κ) filtering permutations not having κ in their cycles.
Furthermore, pk and p⊥k with respect to the same κ are adjoint operators. In particular, when
k = 1 then κ = (n + 1) is a fixed point and p1, p

⊥
1 are the adjoint pair describing add-a-point

embedding and remove-a-point projection simultaneously for all symmetric groups.

We now turn to the parameter h. The appearance of Jucys-Murphy elements suggests we
consider joins and cuts as we did with multiplication by transpositions in Section 5.1. We shall
see that h counts the number of a certain type of joins. The combinatorial interpretation of
monomials in the Join-Cut operator ∆ naturally lends themselves to this application.

Recall a monomial pi+jp
⊥
i p
⊥
j in ∆ describes the action of joining an i-cycle to a j-cycle to

form an (i+ j)-cycle marked by pi+j . The subscript in the monomial (after differentiation and
multiplication) pi+jp

⊥
i p
⊥
j pα is the resulting cycle type. We say an operator p⊥i grabs an i-cycle.

Similarly, a monomial pipjp
⊥
i+j describes the action of cutting an (i+ j)-cycle into an i-cycle and

a j-cycle. The subscript in the monomial (after differentiation and multiplication) pipjp
⊥
i+jpα is

the resulting cycle type.

Let k ≥ 0 and n ≥ 1 and α ` n. To understand the h parameter, we interpret each monomial
in Ukpα. An example is provided after the statement of Theorem 5.8.

Consider the cycle type of τσ′ where τ ∈ Jkn+1σ
′ and σ ∈ Cα. Write as a product of

transpositions τ = τk · · · τ1 where τ1, . . . , τk ∈ Jn+1. We consider the multiplication τσ′ in stages.
Note the 0-th stage is the embedding σ′ = p1σ. Hence define σ(0) = σ′ and

σ(i) = τi−1 · σ(i−1), for i = 1, . . . , k.

For i = 0, . . . , k, the canonical cycle in σ(i) is the one containing the vertex n+ 1. The cycles
in σ are called initial cycles. We denote si the length of the canonical cycle in σ(i). In particular,
s1 = 1.

The action of τi · σ(i−1) is split into 2 cases:

• The canonical cycle is cut into 2 cycles. The one not containing n+ 1 is called the spare
cycle (at stage i). Denote the length of the spare cycle by ti. We grab a canonical cycle by
p⊥si and split it into a spare cycle marked by pti and the canonical cycle of the next stage
marked by psi+1 . The operator monomial describing this action is psi+1ptip

⊥
si .

• The canonical cycle is joined to another cycle of length −ti. We grab the canonical cycle by
p⊥si and another cycle by p⊥−ti and join them to form the canonical cycle of the next stage
marked by psi+1 . The operator monomial describing this action is psi+1p

⊥
−tip

⊥
si .
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Denote1 p−a = p⊥a for a ≥ 1. It follows that in either case the actions are described by

psi+1ptip
⊥
si .

Therefore the cycle type of σ(k) is the subscript in the monomial (after differentiations and
multiplications) (

psk+1
ptkp

⊥
sk

)
· · ·
(
ps2pt1p

⊥
s1

)
p1pα. (5.4)

Note p⊥i pi is a scalar for i > 0. The above contributes to Ukpα a monomial

(5.4) = u(k, τ, α)psk+1
ptk

(
p⊥skpsk

)
ptk−1

· · · pt1
(
p⊥s1p1

)
pα

= u(k, τ, α)psk+1
ptk · · · pt1pα (5.5)

for some scalar u(k, τ, α). Note that there are k + 1 operators in the last line. This expression
also preserves the action performed at each stage. A join is described by ptj for some tj ≤ −1 and
a cut is described by pti for some ti ≥ 1.

We now reduce Expression (5.5) by commuting into the form pλp
⊥
µ . Consider 2 cases to a join

action.

• If the canonical cycle is joined to an essential cycle, then we call the action an essential join.

• If the canonical cycle is joined to a spare cycle created at some previous stage, then we call
the action a spare join.

If at stage i we have a spare join, then by definition there exists some i′ < i such that ti < 0 and
ti′ + ti = 0. Commute operators so that pti appears immediately to the left of pti′ . If there is
some i′′ such that i′ < i′′ < i and ti′ = ti′′ , the we chooses the largest one to be i′. We get

psk+1
ptk · · · pti · · · pti′ · · · pt1 = psk+1

ptk · · ·
(
ptipti′

)
· · · pt1 .

The total number of operators in the right-hand side goes down by 2 since ptipti′ = ptip−ti is a
scalar.

Suppose there are h number of spare joins and j number of essential joins. Then the above
reduction results in

psk+1
ptk · · · pt1pα = u(k, τ, α, h)pa1 · · · pak+1−2h−jp

⊥
b1 · · · p

⊥
bj
pα

where ai, bi ≥ 1 and u(τ, α, k, h) 6= 0 is some scalar. We have just derived the following result.

1This is common in mathematical physics literatures on vertex operators. They like to use αi = p⊥i and α−i = pi
for i ≥ 1.
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Theorem 5.8. Suppose α ` n and σ ∈ Cα. If τk, . . . , τ1 ∈ Jn+1, then τk · · · τ1σ′ contributes to
Ukpα a monomial

u(k, τ, α, h)pa1 · · · pak+1−2h−jp
⊥
b1 · · · p

⊥
bj
pα

for some h ≥ 0 and some scalar u(k, τ, α, h) 6= 0. The parameter h counts the number of spare
joins. Moreover, we have

(b1 + · · ·+ bj)− (a1 + · · ·+ ak+1−2h−j) = −1. (5.6)

Proof. We have already proved the first part. For the second part, note si+1 = si + ti implies
si+1 = 1 + t1 + · · ·+ ti. In particular, sk+1 = 1 + t1 + · · ·+ tk implies Equation (5.6).

To illustrate the above process, we consider an example. Let k = 4 and σ = (123)(45) ∈ S5.
Consider τ = (26)(46)(26)(16). Let α = cyc(σ) = (32).

(0). We embed σ into S6 using the canonical embedding p1.

1

23

4

5

1

23

4

5
6

Apply p1

p1

The change in cycle type is recorded in the calculation p1pα = p(32)∪(1) = p(321).

(1). We have σ0 = (123)(45)(6). The action τ1 = (16) on σ0 is a join.

1

23

4

5
6

τ1 = (16)
1

23

4

5

6

p⊥1p⊥3
p4

The change in cycle type is recorded in the calculation p4p
⊥
3 p
⊥
1 pα = p(321)\(31)∪(4) = p(42).

(2). We have σ1 = (1234)(36). The action τ2 = (26) on σ1 is a cut. The spare cycle (23) is drawn
with dash lines.

τ2 = (26)
1

23

4

5

6 1

23

4

5

6
p⊥4 p2

p2
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The change in cycle type is recorded in the calculation p2p2p
⊥
4 p(42) = p(42)\(4)∪(22) = p(222).

(3). We have σ2 = (45)(23)(16). The action τ3 = (46) on σ2 is an essential join.

τ3 = (46)
1

23

4

5

6 1

23

4

5

6

p⊥2

p4

p⊥2

The change in cycle type is recorded in the calculation p4p
⊥
2 p
⊥
2 p(222) = p(222)\(22)∪(4) = p(42).

(4). We have σ3 = (23)(1456). The action τ4 = (26) on σ3 is a spare join.

τ4 = (26)
1

23

4

5

6

p⊥4

1

23

4

5

6

p6

p⊥2

The change in cycle type is recorded in the calculation p6p
⊥
2 p
⊥
4 p(42) = p(42)\(4,2)∪(6) = p(6).

So τσ′ = (145236). Note the 5 stages of multiplication τσ′ are captured by(
p6p
⊥
2 p
⊥
4

)(
p4p
⊥
2 p
⊥
2

)(
p2p2p

⊥
4

)(
p4p
⊥
3 p
⊥
1

)
p1 · pα

which reduces to (ignoring scalar multiples)

p6p
⊥
2

(
p⊥4 p4

)
p⊥2

(
p⊥2 p2

)
p2

(
p⊥4 p4

)
p⊥3

(
p⊥1 p1

)
· pα = p6p

⊥
2 p
⊥
2 p2p

⊥
3 · pα

= p6p
⊥
2 p
⊥
3 · pα.

Note that the right-hand side of the first equality is what we expect from Equation (5.5). The
contribution to U4pα is p6p

⊥
2 p
⊥
3 pα with h = 1. This completes the example.

Corollary 5.9. For each k ≥ 0 we have

U
(0)
k =

k∑
j=1

1

k + 1

(
k + 1

j

) ∑
a1,...,ak+1−j ,b1,...,bj≥1

a1+···+ak+1−j+1=b1+···+bj

pa1 · · · pak+1−jp
⊥
b1 · · · p

⊥
bj
.
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Proof. Note h = 0 means there is no spare joins. In the notations above (replacing sk+1 by tk+1

for convenience), this amounts to counting sequences of non-zero integers tk+1, tk, . . . , t1 such that

tk+1 + tk + · · ·+ t1 = −1

such that each partial sum represeting the length of the canonical cycle at stage i satisfies

ti + · · ·+ t1 + 1 ≥ 1, i ≥ 1

Suppose there are j number of essential joins. We choose j number of ti’s to be negative. There
are clearly

(
k+1
j

)
such choices. By the Cycle Lemma, we must divide by k + 1 so that the above 2

conditions are satisfied. Assign ai and bj such that as multisets {a1, . . . , ak+1−j} = {ti > 0 : i ≥ 1}
and {b1, . . . , bj} = {ti < 0 : i ≥ 1}.

Finally, note the first stage is always an essential join so that j ≥ 1. Since sk+1 = tk+1 ≥ 1 so
k + 1− j ≥ 1. We conclude that j must be chosen from {1, . . . , k}.

5.5 Operator Generating Series

We wish to find expressions for U(h)(x) = [wh]U(x,w). The proof of Theorem 5.6 doesn’t seem
useful. In this section, we describe a different method to get explicit expressions for U(h)(x).

The Join-Cut operator ∆ can be thought of as a simultaneous description of multiplication
actions by

p1(J1, . . . , Jn)

in all symmetric groups. Lascoux and Thibon considered a generalization [23]. The pair were
interested in finding an operator D on symmetric functions simultaneously describing multiplication
actions by

Fn(t) =
∑
k≥1

pk(J1, . . . , Jn)
tn

n!
=

n∑
i=1

(exp(Ji)− 1)

in all symmetric groups. A method called Bosonisation from mathematical physics was proven
effective. The Bosonisation of an operator on symmetric functions uses its action on Schur
functions to find an expression in terms of pi’s and p⊥i ’s. They found a generating series

V = V (q, t,p,p⊥) = exp

∑
k≥1

(
qk/2 − q−k/2

)
pk
tk

k

 exp

∑
k≥1

(
qk/2 − q−k/2

)
p⊥k
t−k

k


such that

D =
[t0]V − 1(

q1/2 − q−1/2
)2 − E.
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Note E =
∑

i≥1 pip
⊥
i is used in Section 5.1 to define L(t) operators.

A related family of operators is called the Bernstein operators [25, Example 29, p. 95]. Recall
H(t), E(t), P (t) denote generating series for complete, elementary and power sum symmetric
functions. Define B(t) = H(t)E⊥(−t−1). The Berstein operators are Bn = [tn]B(t), n ∈ Z. Their
adjoints are denoted as B⊥n , n ∈ Z. Since H(t) = logP (t) and H(t)E(−t) = 1, we immediately
have

B(t) =
∑
n∈Z

Bnt
n = exp

(∑
k≥0

pk
tk

k

)
exp

(
−
∑
k≥0

p⊥k
t−k

k

)

B⊥(t) =
∑
n∈Z

B⊥n t
n = exp

(
−
∑
k≥0

pk
tk

k

)
exp

(∑
k≥0

p⊥k
t−k

k

)
.

It is well known that Berstein operators are creation operators for Schur function, i.e.,

BλkBλk−1
· · ·Bλ1 · 1 = sλ.

It does so by Pieri’s rule to create each row successively starting from the longest one. We now
introduce some operations on partitions then state a result due to Carrell and Goulden [5] that
describe their actions on Schur functions.

Given a partition λ, its rim hook is the skew shape µ/λ where µ is the smallest partition
containing λ and the cells (1, λ1 + 1), (λ′1 + 1, 1) such that µ/λ is edge connected. Note each
partition is determined uniquely by its rim hook. A cell on the rim hook of λ lies below λ if it
appears below λ on its Ferrers diagram. Similarly, a cell on the rim hook of λ lies to the right of
λ if it appears to the right of λ on its Ferrers diagram.

A border strip µ/λ is a skew shape that is also an edge-connected subset of the rim hook of λ.
We can simply specify a border strip by the contents of its cells. Its length is the number of boxes
and its height ht(µ/λ) is the number of rows minus 1.

For example, the rim hook of λ = (4, 3, 3, 1) with its contents filled in is shown in the following
diagram. The cells labelled −2, 1, 2, 4 lay to the right of λ and cells −4,−2,−1, 2 lay below λ.
Note the subset {−2, . . . , 3} of the rim hook is not a border strip since it is not a skew shape
(cannot be obtained by µ/λ for any µ ∈ P).

4

2 3

1

−2 −1 0

−4 −3

2

1

−2 −1 0

Figure 5.3: The rim hook and a border strip (having height 2) of λ = (4, 3, 3, 1).
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Suppose λ ` n is a partition and c is an integer. If the cell in the rim hook of λ with content c
lies below λ, then define bcλ to be the partition obtained from λ by removing the last cell from
each row ending in a cell with content greater than c and adding a cell to the end of each column
ending in a cell with content is less or equal to c. Otherwise bcλ = 0. Define rc(λ) to be the
number of rows of λ above �.

The following diagram illustrates this operation in a 2-step process using λ = (4, 3, 3, 1) from
the above example. Cells to be removed are marked with − and cells to be inserted are marked
with +. If bcλ 6= 0, then |bcλ| = |λ|+ c.

b−2λ =

−
−
−

−2

+

=

−2

and b−1λ =

−
−
−

+ −1

+

=

−1

Figure 5.4: b−2λ = (3, 2, 2, 1, 1) and b−1λ = (3, 2, 2, 2, 1)

Similarly, define an operation b∗c as follows. If the cell in the rim hook of λ with content c lies
to the right of λ, then define b∗cλ to be the partition obtained from λ by removing the last cell
from each column ending with a cell having content less than c and adding a cell to the end of
each row ending with a cell having content greater or equal to c. If b∗cλ 6= 0, then |b∗cλ| = |λ| − c.
Define r∗c (λ) to be the number of rows in λ above �.

b∗1λ =

+

+

− − 1

−

=
1

Figure 5.5: b∗1(λ) = (5, 4, 1)

Theorem 5.10. If λ ∈ P and n,m ∈ Z, then

Bnsλ = (−1)rn(λ)sbnλ and B⊥−msλ = (−1)r
∗
m(λ)sb∗mλ.

Note the above statement is modified slightly to use the language of b-operations instead of
codes of partitions (also known as the abacus model of partitions). Now Consider applying bnb

∗
m to

a partition λ. We again use the partition λ = (3, 2, 2, 1, 1) as an example. The difference between
λ and bnb

∗
mλ are labelled with ◦ denoting cells added to λ and × denoting cells removed from λ.
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b−1b
∗
1λ=

× ×
b5b
∗
1λ=

◦
◦ ◦
◦

Figure 5.6: bnb
∗
mλ

Observe that in both cases, the difference between bnb
∗
mλ and λ is a border strip of length

|n−m| − 1. This in fact is a general phenomenon.

Theorem 5.11. Suppose λ ∈ P and n,m ∈ Z such that bnb
∗
mλ 6= 0.

• If n > m, then BnB
⊥
−msλ = (−1)ht(µ/λ)sµ where µ/λ is a border strip of length n−m such

that cµ/λ = {m,m+ 1, . . . , n− 1}.

• If n < m, then BnB
⊥
−msλ = (−1)ht(λ/µ)sµ where λ/µ is a border strip of length m− n such

that cλ/µ = {n, n+ 1, . . . ,m− 1}.

If n = m, then BnB
⊥
−msλ = sλ.

Proof. Note by definition we have

BnB
⊥
−msλ = (−1)rn(b

∗
mλ)+r

∗
m(λ)sbnb∗mλ.

Denote ν = b∗mλ and µ = bnb
∗
mλ. Let � = (i, j) be the cell in the rim hook of λ with content

m and let �′ = (i′, j′) be the cell in the rim hook of ν with content n.

We prove the first case but only sketch the other 2 because they are similar.

• Suppose m < n.

Because � lies to the right of λ, every column to the left of � in λ has length at least i.
Then every column to the left of � in ν has length at least i− 1. So the last cell in each
column to the left of � has content less or equal to (j − 1)− (i− 1) = m. But m < n. So
cells removed by b∗m are put back by bn. Since µ 6= 0, the cell �′ must lay below ν. Then
each row above �′ has length at least j′. The last cell in each row has content at least
j′ − i′ = n. But n > m. So cells in rows above �′ in ν added by b∗m are removed by bn. The
cell in ν above � is the last cell in a column with content m+ 1 ≤ n. So bn adds � to µ.
Hence, the number of cells in µ/λ is n−m.
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Note r∗m(λ) is the number of rows above � and rn(ν) is the number of rows above �′. So

(−1)rn(ν)+r
∗
m(λ) = (−1)r

∗
m(λ)−rn(ν) = (i− 1)− (i′ − 1)− 1

is the number of rows between � and �′ (non-inclusive). This is precisely the height of µ/λ.
Note µ/λ is clearly a border strip.

• Suppose m > n. Note i ≤ i′i. So every cell added by b∗ is removed by b. Similarly, cells
added by b form a subset of the cells added by b∗. Note

(−1)rn(ν)+r
∗
m(λ) = (−1)rn(ν)−r

∗
m(λ) = (i′ − 1)− (i− 1)− 1

is the number of rows between �′ and �. This is exactly the height of λ/µ.

• Suppose m = n. Note that cells in λ removed by b∗m is put back by bn because their are the
last cells in columns of ν to the left of � and their contents are at most m. Similarly, cells
in ν added by b∗m are removed by bn because they are the last cells in rows above � and
their contents are greater than m.

This completes the proof.

The following corollary leads to an expression of U(x).

Corollary 5.12. Let q be an indeterminate. If λ ∈ P and k ≥ 1, then

[tk]q−1/2B(tq1/2)B⊥(tq−1/2)sλ =
∑
µ

(−1)ht(µ/λ)q(
∑

�∈µ/λ c(�)/k)sµ,

[t−k]q−1/2B(tq1/2)B⊥(tq−1/2)sλ =
∑
µ

(−1)ht(λ/µ)q(
∑

�∈λ/µ c(�)/k)sµ,

where the sum run over all µ such that µ/λ (or λ/µ respectively) is a rim hook of size k.

When k = 1 and q = ex, we have

[t1]e−x/2B(tex/2)B⊥(te−x/2)sλ =
∑

µ=λ+�

∑
k≥0

c(�)ksµ
xk

k!
.

It follows that
U(x) = [t1]e−x/2B(tex/2)B⊥(te−x/2).

Using the V series introduced by Lascoux and Thibon, we can find an useful expression for
U(x).
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Theorem 5.13.

U(x) = [t1]
1

2 sinh(x/2)
exp

∑
k≥1

2 sinh(kx/2)pk
tk

k

 exp

(
2 sinh(kx/2)p⊥k

t−k

k

)
.

Proof. We use the following 2 elementary properties of exponentials of differential operators. For
any scalars a, b and indeterminate z, we have

exp

(
a
∂

∂z

)
f(z) =

(
exp

(
a
∂

∂z
f(z)

))
exp

(
a
∂

∂z

)
(5.7)

where we treat f(z) as a multiplication operator and

exp(a
∂

∂z
) exp(bz) = exp(ab) exp(bz). (5.8)

Using these properties with z = pk, we have the following operator identity

exp

(∑
k≥1

akp
⊥
k

)
exp

(∑
m≥1

bmpm

)
=
∏

k,m≥1
exp

(
akk

∂

∂pk

)
exp(bmpm)

=
∏

k,m≥1

(
exp

(
akk

∂

∂pk

)
exp(bmpm)

)
exp

(
akk

∂

∂pk

)
=
∏

k,m≥1
δk,m exp (kakbm) exp(bmpm) exp(akp

⊥
k )

= exp

∑
k≥1

kakbk

 exp

∑
m≥1

bmpm

 exp

∑
k≥1

akp
⊥
k


for scalars ak, bk. We get the second equality by applying Equation (5.7) with f = exp(bmpm) and
the third equality by applying Equation (5.8) to the first term.

Note B(tq1/2)B⊥(tq−1/2) can be written as

exp

∑
k≥1

qk/2tk

k
pk

 exp

∑
k≥1
−q
−k/2t−k

k
p⊥k

 exp

∑
m≥1
−q
−m/2tm

m
p⊥m

 exp

∑
m≥1

qm/2t−m

m
p⊥m

 .
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Apply the above operator identity to the middle 2 terms. We have

exp

∑
k≥1
−q
−k/2t−k

k
p⊥k

 exp

∑
m≥1
−q
−m/2tm

m
p⊥m


= exp

∑
k≥1

k
q−k/2t−k

k

q−k/2tk

k

 exp

∑
m≥1
−q
−m/2tm

m
pm

 exp

∑
k≥1
−q
−k/2t−k

k
p⊥k


=

1

1− q−1
exp

∑
m≥1
−q
−m/2tm

m
pm

 exp

∑
k≥1
−q
−k/2t−k

k
p⊥k

 .

Note q−1/2 1
1−q−1 = 1

q1/2−q−1/2 . Putting everything together, we have

q−1/2B(tq1/2)B⊥(tq−1/2) =
1

q1/2 − q−1/2
V (q, t,p,p⊥).

We conclude by substituting q = ex and recalling sinh(x) = ex−e−x
2 .

By expanding sinh, we can get a more detailed expression of Uk. Note

U(x) = [t1]

∑
i≥0

2
(x/2)2i+1

(2i+ 1)!

−1 exp

∑
k≥1

∑
i≥0

2
(kx/2)2i+1

(2i+ 1)!
pk
tk

k

 exp

∑
k≥1

∑
i≥0

2
(kx/2)2i+1

(2i+ 1)!
p⊥k
t−k

k


= [t1]x−1

∑
i≥0

x2i

22i(2i+ 1)!

−1 exp

∑
i≥0

x2i+1

22i(2i+ 1)!
Q2i(t)

 exp

∑
i≥0

x2i+1

22i(2i+ 1)!
Q⊥2i(t

−1)

 ,

where
Qj(t) =

∑
k≥1

kjpkt
k and Q⊥j (t−1) =

∑
k≥1

kjp⊥k t
k−1

, j ≥ 0.

The second term is (multiplicatively) invertible because its constant term is 1. To pick up a
monomial pαp

⊥
β x

k in the coefficient of t1, we take x−1+2h1 from the first 2 terms, pαx
`(α)+2h2

from the second, and p⊥β x
`(β)+2h3 from the third term. Then we arrive at a different proof of

Theorem 5.6 which states for all k, h ≥ 0 we have

U
(h)
k =

∑
α,β∈P
|α|=|β|+1

`(α)+`(β)=k+1−2h

u(k, h, α, β)pαp
⊥
β ,
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where u(k, h, α, β) are scalars.

From the above paragraph, the contribution to the h parameter comes from the last 3 terms.
Hence we insert w2i in the last 3 terms to mark genus by w. Let Q̃i(t) = Qi(t) +Q⊥i (t). We then
get for each h ≥ 0

U(h)(x) = [w2ht1]x−1

∑
i≥0

w2ix2i

22i(2i+ 1)!

−1 exp

∑
i≥0

w2ix2i+1

22i(2i+ 1)!
Q̃2i(t)

 .

We can read off U(h)(x) for small values of h.

U(0)(x) = [t1]x−1 exp
(
xQ̃0(t)

)
U(1)(x) = [t1]

1

24

(
Q̃2(t)− x

)
exp

(
xQ̃0(t)

)
U(2)(x) = [t1]

1

5760

(
5x5Q̃2(t)

2 + 3x4Q̃4(t)− 10x4Q̃2(t)− 3x3
)

exp
(
xQ̃0(t)

)
.

In particular, we have an algebraic proof of Corollary 5.9.
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Chapter 6

Enumeration of Transitive
Factorizations

We have all the bells and whistles to take on the transitivity condition in permutation
factorization problems. In Section 1.2, we introduced 3 classes of transitive factorizations problems.
Each problem was solved using a different method. Using the tools introduced in last chapter,
Carrell and Goulden found a unified algebraic approach to all 3 problems. Our intent is to describe
this method.

Being eigenvalues of Jucys-Murphys elements, contents of partitions show up in an interesting
way. We first develop a generating series involving contents of partitions. The U operators, whose
action on Schur functions involve contents, are used to determine a partial differential equation.
The results on the h parameter are used to derive a partial differential equation for genus 0 content
series.

We should mention that the combinatorial analysis of multiplication of arbitrary permutations
remains a open problem. The inductive nature of U operators and the success of this method
seem to suggest a new avenue. However, we were unsuccessful in this persuit.

6.1 Content Series

In this section, we derive 3 generating series for well-known classes of transitive factorizations
introduced in Section 1.2. We then distill a family of series indexed by a univariate series involving
contents of partitions. Once again, we use Jucys-Murphy elements to find a combinatorial
interpretation.
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We first consider transitive factorizations with no restrictions. Their counts are known as the
m-hypermap numbers where m is the number of factors. We have already derived their generating
series in Example 2.17. It is

Gm(y, z,p) = log

∑
n≥0

zn

n!

∑
λ`n

χλ(1n)sλ
∏
�∈λ

(1 + yc(�))m

 . (6.1)

We now consider transitive factorizations into transpositions. Their counts are the Hurwitz
numbers. Consider an expression in the group algebra for not-necessarily-transitive factorizations
into transpositions. If τ1, . . . , τm are transpositions in Sn, then we can naturally associate a graph
on vertices {1, . . . , n} using τi’s as edges. Since order matters in a factorization, an edge τi is
labelled with its position i. Hence, if n ≥ 0 then

ΘH
n =

∑
m≥0

1

m!
(J1 + · · ·+ Jn)m

is the group algebra expression for all not-necessarily-transitive factorizations into transpositions
in Sn. Note the inner summation can be written as an exponential function. Then we can rewrite
ΘH
n = exp(p1(J1, . . . , Jn)). This is a central element in C[Sn]. Hence, it has a class expansion

ΘH
n =

∑
α`n

ϕe
p1

α Cα.

Take its image under the characteristic map. Then chn ΘH
n is its generating series in power sums

with pα marking the cycle type α of a product σ0 = τ1 · · · τm for some m ≥ 0. We now take
advantage of Theorem 2.12. Note

∑
λ`n F

λ = 1 where Fλ are central orthogonal idempotents.
Multiply by zn and sum over n ≥ 0 to get an expression for all transposition factorizations for all
groups. Following the computation for hypermap numbers, we have

ch
∑
n≥0

znΘH
n

(∑
λ`n

Fλ

)
=
∑
n≥0

zn
∑
λ`n

chn exp(p1(J1, . . . , Jn))
χλ

Hλ

=
∑
n≥0

zn

n!

∑
λ`n

n!

Hλ
chn exp(p1(J1, . . . , Jn))χλ

=
∑
n≥0

zn

n!

∑
λ`n

χλ(1n) exp(p1(cλ))sλ

=
∑
n≥0

zn

n!

∑
λ`n

χλ(1n)sλ
∏
�∈λ

exp(c(�)).
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Let y mark the length of a factorization. Note connected objects in factorizations are exactly
the transitive ones. Hence the generating series for transitive factorizations into transpositions is

H(y, z,p) = log

∑
n≥0

zn

n!

∑
λ`n

χλ(1n)sλ
∏
�∈λ

exp(yc(�))

 . (6.2)

Lastly, we consider transitive monotone factorizations into transpositions. Their counts are
known as monotone Hurwitz Numbers. Recall from Section 1.2, a factorization into transpositions
σ0 = (a1b1) · · · (ambm) is monotone if ai < bi for all i = 1, . . . ,m and b1 ≤ · · · ≤ bm. We call
each distinct bi a pivot. The multiplicity of a pivot bi is the number of times it appears as some
bj . A monotone transposition factorization pivoted at b1, · · · , bk is one with pivots b1, . . . , bk and
b1 ≤ · · · ≤ bk. We first write down a group algebra expression for not-necessarily connected ones
in Sn. Let a1, . . . , an ≥ 0 be integers. Then

Ja11 · · · J
an
n

is the group algebra expression for monotone transposition factorizations pivoted at {i ≥ 1 : ai > 0}.
Then

Θ
~H
n =

∑
a1,...,an≥0

Ja11 · · · J
an
n

is the group algebra expression for all not-necessarily-transitive monotone transposition factoriza-
tions in Sn. Note the summation is secretly

Θ
~H
n =

∑
k≥0

hk(J1, . . . , Jn).

Hence Θ
~H
n is a central element in C[Sn] with class expansion

Θ
~H
n =

∑
k≥0

∑
α`n

ϕhkα Cα.

It follows that its image under the characteristic map is a generating series in power sums with pα
marking the cycle type α of a monotone transposition factorization σ0 = (a1b1) · · · (ambm). We
again take advantage of Theorem 2.12 to get

ch
∑
n≥0

Θ
~H

(∑
λ`n

Fλ

)
=
∑
n≥0

zn
∑
λ`n

chn
∑
k≥0

hk(J1, . . . , Jn)
χλ

Hλ

=
∑
n≥0

zn

n!

∑
λ`n

χλ(1n) ch
n∏
i=1

1

1− Ji
χλ

=
∑
n≥0

zn

n!

∑
λ`n

χλ(1n)sλ
∏
�∈λ

1

1− c(�)
.
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Let y mark the length of a factorization. It follows that the generating series for transitive
monotone transposition factorization is

~H(y, z,p) = log

∑
n≥0

zn

n!

∑
λ`n

χλ(1n)sλ
∏
�∈λ

1

1− yc(�)

 . (6.3)

The generating series for all 3 special classes contain a product involving contents of partitions.
Let f(x) be a formal power series. A content series indexed by f(x) is

Φf(x)(y, z,p) =
∑
n≥0

zn

n!

∑
λ`n

χλ(1n)sλ
∏
�∈λ

f(yc(�)).

We also define the connected content series to be Ψf(x)(y, z,p) = log Φ(y, z,p). It follows
immediately that the content series generalize the generating series of the 3 aforementioned special
classes:

G = Ψ(1+x)m ,

H = Ψe(x),

~H = Ψ(1−x)−1
.

The content series Φf(x) is a generating of a family of central elements parameterize by f .
The expression in the above definition can be thought of as a “decomposition” into irreducible
representations in the following sense. Let F (x) =

∏
i≥1 f(xi). Then its specialization F (J1, . . . , Jn)

describes some central element in Sn for each n ≥ 1. So F describes a family of central elements
simultaneously for all symmetric groups. Then by Theorem 2.12, we get

Φf(x)(y, z,p) =
∑
n≥0

zn ch
∑
λ`n

FλF (yJ1, . . . , yJn).

Recall Fλ is the projection onto irreducible representation indexed by λ. Hence, FλF (J1, . . . , Jn)
is the irreducible portion of the generating series group algebra expression F (J1, . . . , Jn). But∑

λ`n F
λ = 1 so we get

Φf(x)(y, z,p) = ch
∑
n≥0

znF (yJ1, . . . , yJn). (6.4)

Recall from Section 1.2 that the genus of a transitive factorization is given by the Riemann-
Hurwitz formula. Conveniently, if f(x) = (1 − x)−1, then F (x) = H(x; 1) is the generating
series for complete symmetric functions which, when evaluated at Jucys-Murphy elements, encode
monotone transposition factorizations.
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Lemma 6.1. Let f0, f1, . . . be indeterminate and let f(x) =
∑

i≥0 fix
i. Then

Ψf(x)(y, z,p) =
∑
g≥0

Ψf(x)
g (y, z,p),

where

Ψf(x)
g (y, z,p) =

∑
n≥1

zn

n!

∑
α`n

ψ(g, α)pαy
n+`(α)−2+2g,

for some polynomial ψ(g, α) in f1, f2, . . . .

Proof. Consider monotone transposition factorizations. Mark a monotone factorization in

σ0 = (a1b1) · · · (ambm)

by f i11 · · · f imm pα if the multiplicity of pivot j is ij and cyc(σ0) = α. Sum over all possible choices
of i1, i2, . . . and α ∈ P. It follows immediately from Equation (6.4) that

Φf(x)(y, z,p) =
∑
z≥0

zn

n!

∑
α`n

ϕhkα (f1, . . . )pα

where ϕhkα (f1, . . . ) is a series in fi’s and it marks all monotone transpositions factorizations whose
products have cycle type α.

It follows that Ψf(x)(y, z,p) is the generating series for transitive monotone transposition fac-
torizations. If σ0 = (a1b1) · · · (ambm) is a genus g transitive monotone transpositions factorization,
then by Riemann-Hurwitz formula we have

n− `(α) +m = n− `(α) +
m∑
i=1

(
n− `

(
cyc((aibi))

))
= 2n− 2 + 2g.

In other words, m = n+ 2 + `(α)−2g. Since y marks the length of a factorization, we immediately
have

Ψf(x)(y, z,p) =
∑
g≥0

∑
n≥1

zn

n!

∑
α`n

ψ(g, α)pαy
n+`(α)−2+2g (6.5)

as desired.

We say that Ψ
f(x)
g (y, z,p) is the genus g connected content series.
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6.2 A Partial Differential Equation

The U operators are related to Sekiguchi-Debiard operators because they have a similar range
of summation. Define for k ≥ 0 eigenoperators for Schur functions

Cksµ =

 n

χµ(1n)

∑
µ=λ+�

c(�)kχλ(1n−1)

 sµ.

We only need to use the fact that for any λ ∈ P

C0sλ = |λ|sλ.

Theorem 6.2. Let f(x) =
∑

i≥0 fix
i and g(x) =

∑
i≥0 gix

i with g0 6= 0 be formal power series.

Then g−1 exists and Φfg−1(x) is the unique solution to the partial differential equation∑
i≥0

fiy
iUi

Φfg−1(x) = z−1

∑
i≥0

giy
iCi

Φfg−1

with initial condition Φfg−1
(y, 0,p) = 1.

Proof. We start with the left-hand side.

z−1

∑
i≥0

giy
iCi

Φfg−1(x) = z−1
∑
n≥0

zn

n!

∑
µ`n

∏
�∈µ

f(yc(�))

g(yc(�))

∑
i≥0

giy
i n

χµ(1n)

∑
µ=�+�′′′′

c(�′)χλ(1n−1)sµ

=
∑
n≥0

zn

n!

∑
µ`(n+1)

∑
µ=λ+�′

∏
�∈µ

f(yc(�))

g(yc(�))
g(yc(�))χλ(1n)sµ

=
∑
n≥0

zn

n!

∑
µ`(n+1)

∑
µ=λ+�′

∏
�∈µ
�6=�′

f(yc(�))

g(yc(�))
f(yc(�))χλ(1n)sµ

=
∑
n≥0

zn

n!

∑
λ`n

χλ(1n)
∏
�∈λ

f(yc(�))

g(yc(�))

∑
µ=λ+�′

f(yc(�′))sµ

=

∑
i≥0

fiy
iUi

Φfg−1(x).

We can read off the initial condition from the definition of Φfg−1(x).
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Corollary 6.3. Let f(x) =
∑

i≥0 fix
i be a formal power series. Then the content series Φf(x) is

the unique solution to the partial differential equation∑
i≥0

fiy
iUi

Φf(x) =
∂

∂z
Φf(x) (6.6)

with initial condition Φf(x)(y, 0,p) = 1.

Proof. Apply the above theorem with g = 1. Note C0sµ = |µ|sµ for any µ ∈ P. We get∑
i≥0

fiy
iUi

Φf(x) = z−1C0

∑
n≥0

zn

n!

∑
λ`n

χλ(1n)sλ
∏
�∈λ

f(yc(�))

=
∂

∂z
Φf(x)

Again, we can read off the initial condition from the definition of Φf(x).

6.3 Genus Specific PDE

The genus 0 case of the 3 special classes mentioned in derivation of the content series have all
been enumerated. As a final application of the U operators, we consider Equation (6.6) from a
genus point of view. We illustrate the process of getting genus specific partial differential equations
by obtaining the genus 0 one.

We need a little lemma on differentiation.

Lemma 6.4. Let F = F (p) be a formal power series in power sums with no constant term.
Suppose β ∈ P with `(β) = m. Denote B1 t · · · tBk = [m] a partition of {1, . . . ,m} into pairwise
disjoint and non-empty sets. Then

p⊥β exp(F ) =
m∑
k=1

∑
B1t···tBk=[m]

(
p⊥β(B1)

F
)
· · ·
(
p⊥β(Bk)F

)
exp(F ).

Proof. Note exp(F ) is well-defined and by the chain rule we have p⊥i exp(F ) = (p⊥i F ) exp(F ) and
by the product rule

p⊥i p
⊥
j exp(F ) =

(
(p⊥i p

⊥
j F ) +

(
p⊥i F

)(
p⊥j F

))
exp(F ).
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If B ⊆ [m] is non-empty, then we denote pβ(B) =
∏
i∈B pβi . Let B1 t · · · tBk = [m]. Then by

product rule we have

p⊥βm

(
p⊥β(B1)

F
)
· · ·
(
p⊥β(Bk)F

)
exp(F )

=

(p⊥βmF)(p⊥β(B1)
F
)
· · ·
(
p⊥β(Bk)F

)
+

k∑
i=1

(
p⊥βmp

⊥
β(Bi)

F
) ∏

1≤j≤k
i 6=j

(
p⊥β(Bj)F

) exp(F ).

Note p⊥βmp
⊥
β(bi)

= p⊥β(Bi∪{m}). Since partitions of [m] can be partitioned into partitions where
m is a singleton or not, we conclude by induction on m.

Now consider Equation (6.6). We expand Uk into its monomials and focus on its action using
the above lemma. We will find that monomials from both sides have weight y|α|+`(α)−2+2h for
some h.

Note Φf(x) = exp Ψf(x). Then Equation (6.6) can be written as∑
k≥0

fky
kUk exp Ψf(x) =

∂

∂z
exp Ψf(x). (6.7)

Expand Uk’s by Theorem 5.6 and apply above Lemma with F = Ψf(x). Multiply through by
z exp(−Ψf(x)) to get rid of the byproduct exp(Ψf(x)). The left-hand side of the above equation
becomes

zp1 +
∑
k≥1
h≥0

∑
α,β∈P
|α|=|β|+1

`(α)+`(β)=k+1−2h

`(β)∑
i=1

∑
B1t···tBi=[`(β)]

v(k, h, α, β, i)zykpα

(
p⊥β(B1)

Ψf(x)
)
· · ·
(
p⊥β(Bi)Ψ

f(x)
)
.

Expand Ψf(x) by Equation (6.5). Every monomial in p⊥β(Bj)Ψ
f(x) has the form (up to scaling)

p⊥β(Bj)pγz
|γ|y|γ|+`(γ)−2+2g.

It follows that a monomial in the left-hand side has the form (up to scaling)

zykpα

(
p⊥β(B1)

pγ(1)z
|γ(1)|y|γ

(1)|+`(γ(1))−2+2g1
)
· · ·
(
p⊥β(Bi)pγ(i)z

|γ(i)|y|γ
(i)|+`(γ(i))−2+2gi

)
for some k ≥ 1 and g1, . . . , gi ≥ 0. Note the pγ ’s are power sum symmetric functions not
multiplication operators. Hence if pµ = p⊥β pγ 6= 0 (ignoring scalars), then |µ| = |γ| − |β| and
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`(µ) = `(γ)− `(β). It follows that if pµz
NyK is a monomial after applying p⊥, then we must have

N = |γ(1)|+ · · ·+ |γ(i)|+ 1,

|µ| = |α|+
i∑

j=1

(
|γ(1)| − |β(Bj)|

)
= |α| − |β|+R− 1

= N,

`(µ) = `(α) +

i∑
j=1

(
`(γ(i))− `(Bj)

)
= `(α)− `(β) +

j∑
i=1

`(γ(i))

= k + 1− 2h− 2`(β) +

i∑
j=1

`(γ(j)).

It follows that

K = k +
∑̀
j=1

|γ(j)|+ `(γ(j))| − 2 + 2gi

= k + (|µ| − 1) + (`(µ)− k − 1 + 2h+ 2`(β))− 2i+ 2g′

= |µ|+ `(µ)− 2 + 2(h+ `(β)− i+ g′),

where g′ = g1 + · · · + gi. Note `(β) − i ≥ 0 so h′ = h + `(β) − i + g′ ≥ 0. In summary, every
monomial in the left-hand side of Equation (6.7) has the form

pµz
NyK = pµz

|µ|−1y|µ|+`(µ)−2+2h′ and h′ ≥ 0.

A monomial in the RHS is much easier to compute. Multiply by z exp(−Ψf(x)) and apply the
chain rule. We have

z exp(−Ψf(x))
∂

∂z
exp(Ψf(x)) = z

∂

∂z
Ψf(x).

Theorem 6.5. Let f(x) =
∑

k≥0 fkx
k and Ψ̂0 = Ψ̂0(z,p) = log Φ

f(x)
0 (1, z,p). Then Ψ̂

f(x)
0 is the

unique solution to the partial differential equation

zp1+z
∑
k≥1

fk
k + 1

k∑
j=1

(
k + 1

j

)∑
s≥0

∑
a1,...,ak+1−j≥1

a1+···+ak+1−j=s+1

pa1 · · · pak+1−j [u
s]

∑
i≥1

(
p⊥i Ψ̂

f(x)
0 ui

)j

= EΨ̂
f(x)
0 .

with initial condition Ψ̂
f(x)
0 (0,p) = 0 and E =

∑
i≥1 pip

⊥
i .
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Proof. Compare coefficients for monomials in Equation (6.7) with h′ = h′′ = 0.

Since E = ∂
∂z , the RHS of Equation (6.7) is

z
∂

∂z
Ψf(x) =

∑
h′′≥0

∂

∂z
Ψ
f(x)
h′′ .

Take coefficient of h′′ = 0 we get ∂
∂zΨ

f(x)
0 .

On the left-hand side, these correspond to monomials with

h+ `(β)− i+ g′ = 0.

But h ≥ 0 and g′ ≥ 0. So we must have

`(β) = i, h = 0, and gj = 1, . . . , i.

Note h = 0 implies we are in fact only applying U
(0)
k ’s in the left-hand side of Equation (6.7).

Note g1 = · · · = gi = 0 implies U
(0)
k acts on Ψ

(f)
0 . Finally, note `(β) = i implies |B1| = · · · |Bi| = 1

and we get the left-hand side of the genus 0 PDE after setting y = 1 as desired.

From this proof, we see that the h parameter from the U operators can be interpreted as genus
in the sense of Riemann-Hurwitz formula. Using sophisticated tools in symmetric functions and
eventually Lagrange Inversion, Carrell and Goulden [4] solved this PDE for the aforementioned 3
special classes of transitive factorizations verifying that their coefficients are indeed the desirable
counts.

84



References
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APPENDICES

Computation of U2

Recall U0 = p1 and Uk = [∆,Uk−1] for k ≥ 1. Let

J =
∑
i,j≥1

pi+jp
⊥
i p
⊥
j and J⊥ =

∑
i,j≥1

pipjp
⊥
i+j .

Then we use ∆ = 1
2(J + J⊥) break up the computation into 2 parts.

[J,U1] =
∑
i,j,k≥1

pi+jp
⊥
i p
⊥
j pk+1p

⊥
k − pkp⊥k pi+jp⊥i p⊥j

=
∑
i,j,k≥1

pi+jp
⊥
i (p⊥j pk+1)p

⊥
k + pi+j(p

⊥
i pk+1)p

⊥
j p
⊥
k − pk(p⊥k pi+j)p⊥i p⊥j

=
∑
i≥1
j≥2

jpi+jp
⊥
i p
⊥
j−1 +

∑
i≥2
j≥1

ipi+jp
⊥
j p
⊥
i−1 −

∑
i,j≥1

(i+ j)pi+j+1pi+j+1p
⊥
i p
⊥
j

= 2
∑
i,j≥1

pi+j+1p
⊥
i p
⊥
j .

[J⊥,U1] =
∑
i,j,k≥1

pipjp
⊥
i+jpk+1p

⊥
k − pk+1p

⊥
k pipjp

⊥
i+j

=
∑
i,j,k≥1

pipj(p
⊥
i+jpk+1)p

⊥
k − pk+1(p

⊥
k pi)pjp

⊥
i+j − pk+1pi(p

⊥
k pj)p

⊥
i+j

=
∑
i,j≥1

(i+ j)pipjp
⊥
i+j−1 − ipi+1pjp

⊥
i+j − jpipj+1p

⊥
i+j

=
∑
i,j≥1

(i+ j)pipjp
⊥
i+j−1 −

∑
i≥2
j≥1

(i− 1)pipjp
⊥
i+j−1 −

∑
i≥1
j≥2

(j − 1)pipjp
⊥
i+j−1

= 2
∑
i,j≥1

pipjp
⊥
i+j−1.
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To get the last equality in [J⊥,U1], we throw i = 1 into the second summation in the second last
expression since (i− 1) = 0. Ditto for the rightmost sum. Hence, we have

U2 =
∑
i,j≥1

pi+j+1p
⊥
i p
⊥
j + pipjp

⊥
i+j−1.

Computation of U3.

We compute the 4 terms of U3 = [∆,U2].

If i, j, i′, j′ ≥ 1, then

[pipjp
⊥
i+j , pi′pj′p

⊥
i′+j′−1]

=
(
p⊥i+jpi′

)
pipjpj′p

⊥
i′+j′−1 +

(
p⊥i+jpj′

)
pipjpi′p

⊥
i′+j′−1

−
(
p⊥i′+j′−1pi

)
pjpi′pj′p

⊥
i+j −

(
p⊥i′+j′−1pj

)
pipi′pj′p

⊥
i+j .

Sum over all i, j, i′, j′ ≥ 1 we have∑
i,j,i′,j′≥1

[pipjp
⊥
i+j , pi′pj′p

⊥
i′+j′−1]

=
∑
i,j≥1

∑
j′≥1

(i+ j)pipjpj′p
⊥
i+j+j′−1

+

∑
i′≥1

(i+ j)pipjpi′p
⊥
i+j+i′−1


−
∑
i′,j′≥1

∑
j≥1

(i′ + j′ − 1)pjpi′pj′p
⊥
i+i′+j′−1

−
∑
j≥1

(i′ + j′ − 1)pipi′pj′p
⊥
i+i′+j′−1


=2

∑
i,j,k≥1

pipjpkp
⊥
i+j+k−1.

If i, j, i′, j′ ≥ 1, then

[pi+jp
⊥
i p
⊥
j , pi′pj′p

⊥
i′+j′−1]

=
(
p⊥j pi′

)(
p⊥i pj′

)
pi+jp

⊥
i′+j′−1 +

(
p⊥j pj′

)(
p⊥i pi′

)
pi+jpi′+j′−1

+
(
p⊥i pi′

)
pi+jpj′p

⊥
j p
⊥
i′+j′−1 +

(
p⊥i pj′

)
pi+jpi′p

⊥
j p
⊥
i′+j′−1

+
(
p⊥j pi′

)
pi+jpj′p

⊥
i p
⊥
i′+j′−1 +

(
p⊥j pj′

)
pi+jpi′p

⊥
j p
⊥
i′+j′−1

−
(
p⊥i′+j′−1pi+j

)
pi′pj′p

⊥
i p
⊥
j ,
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and

[pi′pj′p
⊥
i′+j′−1, pi+jp

⊥
i p
⊥
j ]

=−
(
p⊥j′pi

)(
p⊥i′ pj

)
pi′+j′+1p

⊥
i+j −

(
p⊥j′pj

)(
p⊥i′ pi

)
pi′+j′+1p

⊥
i+j

−
(
p⊥i′ pi

)
pi′+j′+1pjp

⊥
j′p
⊥
i+j −

(
p⊥i′ pj

)
pi′+j′+1pip

⊥
j′p
⊥
i+j

−
(
p⊥j′pi

)
pi′+j′+1pjp

⊥
i′ p
⊥
i+j −

(
p⊥j′pj

)
pi′+j′+1pip

⊥
i′ p
⊥
i+j

+
(
p⊥i+jpi′+j′+1

)
pipjp

⊥
i′ p
⊥
j′ .

Sum over all i, j, i′, j′ ≥ 1. We have∑
i,j,i′,j′≥1

[pi+jp
⊥
i p
⊥
j , pi′pj′p

⊥
i′+j′−1] + [pi′pj′p

⊥
i′+j′−1, pi+jp

⊥
i p
⊥
j ]

=
∑
i,j≥1

(
ijpi+jp

⊥
i+j−1 + ijpi+jp

⊥
i+j−1

)
−
∑
i′,j′≥1

(
i′j′pi′+j′+1p

⊥
i′+j′ − i′j′pi′+j′+1pi′+j′

)

+
∑
i,j≥1

∑
j′≥1

ipi+jpj′p
⊥
j p
⊥
i+j′−1

+

∑
i′≥1

ipi+jpi′p
⊥
j p
⊥
i′+i−1


−
∑
i′,j′≥1

∑
j≥1

i′pi′+j′+1pjp
⊥
j′p
⊥
i′+j

−
∑
i≥1

i′pi′+j′+1pip
⊥
j′p
⊥
i+i′


+
∑
i,j≥1

∑
j′≥1

jpi+jpj′p
⊥
j p
⊥
j+j′−1

+

∑
i′≥1

jpi+jpi′p
⊥
j p
⊥
i′+j−1


−
∑
i′,j′≥1

∑
i≥1

j′pi′+j′+1pjp
⊥
i′ p
⊥
j+j′

−
∑
j≥1

j′pi′+j′+1pip
⊥
i′ p
⊥
i+j′


+
∑
i,j≥1

 ∑
i′+j′=i+j−1

(i+ j)pipjp
⊥
i′ p
⊥
j′

− ∑
i′,j′≥1

 ∑
i+j=i′+j′−1

(i′ + j′ − 1)pi′pj′p
⊥
i p
⊥
j


=
∑
i,j≥1

(i+ j)pi+jp
⊥
i+j−1 +

∑
i,j≥1

∑
i′,j′≥1

i+j=i′+j′+1

pipjp
⊥
i′ p
⊥
j′

+ 2
∑
i,j,k≥1

pi+jpkp
⊥
j p
⊥
i+k−1 + 2

∑
i,j,k≥1

pi+jpkp
⊥
i p
⊥
j+k−1.
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If i, j, i′, j′ ≥ 1, then

[pi+jp
⊥
i p
⊥
j , pi′+j′+1p

⊥
i′ p
⊥
j′ ] = pi+jp

⊥
i

(
p⊥j pi′+j′+1

)
p⊥i′ p

⊥
j′ − pi′+j′+1p

⊥
i′

(
p⊥j′pi+j

)
p⊥i p

⊥
j

+ pi+j

(
p⊥i pi′+j′+1

)
p⊥j p

⊥
i′ p
⊥
j′ − pi′+j′+1

(
p⊥i′ pi+j

)
p⊥j′p

⊥
i p
⊥
j .

Summing over i, j, i′, j′ ≥ 1, we have∑
i,j,i′,j′≥1

pi+jp
⊥
i

(
p⊥j pi′+j′+1

)
p⊥i′ p

⊥
j′ − pi′+j′+1p

⊥
i′

(
p⊥j′pi+j

)
p⊥i p

⊥
j

=
∑
i,j≥1

jpi+jp
⊥
i

∑
i′,j′≥1

i′+j′+1=j

p⊥i′ p
⊥
j′ −

∑
i′,j′≥1

jpi′+j′+1p
⊥
i′

∑
i,j≥1
j′=i+j

p⊥i p
⊥
j

=
∑
i,j≥1

jpi+jp
⊥
i

 ∑
i′,j′≥1

i′+j′+1=j

p⊥i′ p
⊥
j′

− jpi+j+1p
⊥
i

 ∑
i′,j′≥1
j=1′+j′

p⊥i′ p
⊥
j′


=
∑
i≥1
j≥0

pi+j+1p
⊥
i

∑
i′,j′≥1
i′+j′=j

(
(j + 1)p⊥i′ p

⊥
j′ − p⊥i′ p⊥j′

)

=
∑
i,j≥1

pi+jp
⊥
i

∑
i′,j′≥1

i′+j′+1=j

p⊥i′ p
⊥
j′ .

By symmetry, we have∑
i,j,i′,j′≥1

[pi+jp
⊥
i p
⊥
j , pi′+j′+1p

⊥
i′ p
⊥
j′ ] = 2

∑
i,j≥1

pi+jp
⊥
i

∑
i′,j′≥1

i′+j′+1=j

p⊥i′ p
⊥
j′ .
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