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Abstract 

There is a rapid increase in the number of older adults around the world. This 

directly translates to an increase in the number of people living with health complications 

that are more prevalent in the elderly population, such as post-stroke conditions. Current 

rehabilitation techniques for stroke and other disorders are limited in effectiveness, which 

calls for the development of new approaches such as brain-computer interface (BCI) 

applications in neurorehabilitation.  

The majority of BCI applications are based on electroencephalogram (EEG) and 

other physiological signals to detect user intention and provide feedback. However, many 

of the signal processing algorithms currently used have been developed on data from a 

much younger population. There is a need to investigate how age-related changes directly 

affect EEG signals and extend to BCI control, specifically for older adults.   

In this thesis research, EEG response to vibro-tactile stimulation from 11 younger 

adults (21.7±2.76 years old) and 11 older adults (72.0±8.07 years old) were investigated. 

The results showed that, firstly, the spatial pattern of the cortical activation in older subjects 

was significantly different from that in younger adults (older adults had a reduced 

lateralization in activation); and secondly, there is a general overall power reduction in the 

EEG from older adults compared to younger adults. This suggests that the approach for 

designing BCI applications for older adults must be fundamentally differently than that for 

younger adults. This need is further shown in the average BCI performance accuracy 

classifying left vs. right was 64.5±7.75% for the older adults, which was more than 20% 

lower and statistically different (t(20)= -4.3, p <0.001) than that in the younger subjects, 
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which was 85.3±14.1%. Compared to current works in the field, this research is unique in 

its examination of age-related differences in EEG signals and is the only work we are aware 

of that examines the age-related differences in EEG  response to vibro-tactile stimulation. 

This finding should be further investigated with other BCI paradigms such as motor 

imagery in order to confirm the impact of age on BCI control. Further, provided that this 

age-related difference persists across different modalities, it is then necessary to fine-tune 

the algorithmic approaches to fit the intended application to the target population.   
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Chapter 1. 

Introduction 

1.1 Global aging population and stroke 

In 2017, the global population of individuals aged 60 years and older totaled 962 

million – this number was more than twice as that in 1980, when it was 382 million [1]. 

The World Health Organization estimates this number to reach nearly 2.1 billion by 2050 

– more than double that today [1], [2]. With increasing age comes an increase in the 

burdens of chronic and noncommunicable disease. Ischemic heart disease and stroke are 

the two leading causes of mortality and disease burden in those aged 60 and older [3]. This 

imposes a significant impending burden on global health and is one of the leading causes 

of mortality and serious long-term disability [4], [5]. In the United States, stroke costs the 

national healthcare system 23.2 billion dollars annually [6]. Globally in 2013, there were 

6.5 million deaths from stroke, making it the second-leading cause of death behind 

ischemic heart disease [4].  

1.1.1 What is stroke?  

Our brains require a constant blood flow to deliver oxygen and nutrients as well as 

remove cellular metabolic waste [6]. Stroke occurs when there is a severe or complete lack 

of blood flow to the brain as a result of any cerebrovascular disease or neurological injury. 

The obstruction of arterial blood flow to the brain causes portions of the brain to become 
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deprived of oxygen, hence causing a cascade of mechanisms that lead to brain tissue 

ischemia and ultimately infarction [6], [7]. There are two main types of strokes, ischemic 

stroke and hemorrhagic stroke. Ischemic stroke accounts for the majority (87%) of strokes, 

and is caused by the obstruction or clogging of major arteries in the cerebral circulation, 

limiting the oxygen-rich blood from flowing to certain brain areas. Hemorrhagic stroke, 

accounting for the rest of strokes, occurs as a result of rupture of vascular lesions within 

the cerebrovasculature [6] – this can occur in the intracerebral or subarachnoid space [7].  

1.1.2 Rehabilitation 

The problem with current rehabilitation strategies is that the majority (80%) of 

stroke survivors are left with residual deficits in fine motor upper limb control [8]. In 

addition, after the first 3 months post-stroke, further recovery is often slow or non-existent 

[9]. Current physical training techniques, such as constraint-induced movement therapy 

(CIMT) or bilateral arm training, have been shown to be useful in helping to improve motor 

functioning in chronic stroke patients [9]. However, the challenge is that these options are 

not applicable for patients with severe limb weakness because residual movements are 

required for therapeutic feedback [10], [11]. New approaches are needed to provide more 

effective and targeted post-stroke rehabilitation, and this is an area where brain-computer 

interfaces can be useful. 

1.2 Brain-computer Interface 

Over the past twenty years, neural engineering has emerged as a new field in 

neuroscience and engineering to link brain activity with external devices [12]. This 

technology is called brain-computer interface (BCI), and can provide a new output channel 
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of communication for users, without the reliance on neuromuscular pathways [13]. It 

records brain waves and sends them to the computational system to complete the intended 

task. This builds a bridge of bi-directional communication between the human brain and 

the external world.  

 BCI demonstrate promising potential as a novel approach for neurorehabilitation, 

as it works by either substituting for the loss of normal neuromuscular output or inducing 

activity-dependent brain-plasticity to restore normal brain function, both of which have 

been shown to support recovery [9], [14]–[17]. BCIs can be used regardless of the severity 

of the post-stroke paresis as it is dependent upon brain activity alone [18]. Much of the 

research in the field of non-invasive BCI stroke rehabilitation training leverage the brain’s 

EEG changes in Sensory-Motor Rhythms (SMR) [15], [19]. SMR refers to the oscillatory 

activity observed in the somatosensory and motor areas of the brain when activated. Upon 

stimulation, specific body parts causes a decrease in SMR activity in the respective 

sensorimotor cortex brain area, called the event-related desynchronization (ERD) [20]. 

SMR has been deemed a good fit for stroke rehabilitation because of its close relation to 

motor activity, it is easily accessible by EEG, and that it has a higher signal-to-noise ratio 

[15], [21]. However, research to date has shown limited effectiveness when BCI-based 

rehabilitation systems are put into practice [15]. Potential reasons for this lack in 

effectiveness of BCI-based rehabilitation may include changes in the brain induced by 

stroke, or other neurological conditions, altering and functions. Additionally, normal aging 

and the impacts that it has on the brain may also play a significant role in contributing to 

this challenge. Hence, if we are to create more effective BCI applications for older adults, 
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such as BCI-based stroke rehabilitation systems, it is critical that we grasp an 

understanding of how aging impacts neuroelectrophysiology. 

1.3 Physiology of Aging 

Healthy aging is often accompanied by changes in the brain that include declines 

in processing speed, working memory, long-term memory, inhibitory functions, brain 

structural size, and white matter integrity [22]. The impacts of aging include a complex 

interaction of genetics, biology, and environmental factors [23]. PET and fMRI studies 

report that compared to younger adults, older adults show a recruitment of brain regions 

with reduced lateralization [24], displaying a relative overactivation of additional brain 

regions that are not activated by younger adults when performing the same tasks [25]. 

Often, this additional activated region is the same site that is activated in younger adults 

but in the opposite hemisphere [26]. This pattern of increased symmetry of activation in 

older adults has been referred to as Hemispheric Asymmetry Reduction in Older Adults 

(HAROLD) [26]. More generally, this age-related overactivation is thought of as a 

compensatory mechanism, and has been termed the compensation-related utilization of 

neural circuits hypothesis (CRUNCH) [25]. These terms and its implications will be further 

explained in Chapter 2. 

1.4 Aging and BCI  

The average age of the stroke population in BCI stroke rehabilitation clinical 

studies is over 55 years of age [15]. Meanwhile, the fundamental algorithms on which BCI 
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stroke rehabilitation methodologies are based on, that leverage SMR, have been developed 

on younger adults and have not been validated on an older population [12], [21], [27]. 

Theoretically, in order to create an optimal product the target end-users, it is critical to 

develop, test, and validate the solutions with representatives from the population of 

interest; in this case, developing BCI classifiers with older adults. Hence, the fact that the 

algorithm design was created with populations of a distinctly different age group compared 

to the target user population raises a fundamental concern that should be addressed.  

As aforementioned, there exists a change in the location of brain activation to be 

more bilateral throughout the aging process. As SMR and popular signal 

processing/enhancing methods are based on spatial information (i.e. the use of common 

spatial pattern and Laplacian filtering) [28], it raises the concern of whether this difference 

can challenge one of the prominent algorithms that stroke rehabilitation methodologies are 

based on.  

As haptic vibro-tactile stimulation on the wrist provides a consistent activation of 

the somatosensory motor cortex and is also used in rehabilitation, we chose to use this 

method for investigating the age-related differences in brain response. Other more popular 

BCI paradigms such as motor imagery [29] which are more dependent on subjective 

interpretation are the next step of investigation for this research. This thesis focuses on 

investigating the impact of aging on SMR, specifically in the brain’s response to vibro-

tactile stimulation on the left and right wrist, and the potential larger impacts of this on BCI 

classification and neurorehabilitation. 

1.5 Scope 
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This research aims to answer the following research questions:  

1) What are the effects of aging on somatosensory-response in EEG signals with 

respect to the C3 and C4 channels?  

2) How does the above effects translate to a difference in BCI control in terms of 

BCI classification accuracy?  

By specifically analyzing the effects of aging on somatosensory-response in EEG 

and how this translates to a difference in BCI control, we can obtain a greater understanding 

on how aging may impact the use of a BCI system. The findings of this study holds critical 

implications for future designs of BCI applications specifically for an older population.  

1.6 Outline 

This thesis begins with Chapter 2, which surveys the peer-reviewed literature 

explaining the fundaments of BCI, its common applications, and relation to rehabilitation 

and age-related EEG changes. This will set the context of this thesis research comparing 

age-related differences in somatosensory response to vibro-tactile stimulation. Chapter 3 

outlines the methods used for thesis-related experimentation while Chapter 4 presents the 

results. Chapter 5 discusses the research findings and future insights. Chapter 6 contains 

the key take-away messages and their relevance to the field.  
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Chapter 2.  

Literature Review 

2.1 What is a Brain-computer Interface? 

Brain-computer Interfaces (BCIs), also called Brain-Machine Interfaces (BMIs), 

are systems that are able to detect, analyze and decode recorded brain signal activities to 

control an external device to carry out desired actions [18], [30], [31]. BCIs offer an 

alternative to natural communication and control by bypassing the body’s normal physical 

efferent output channels. The system translates signals directly from the brain and not the 

peripheral system, hence requiring the cooperation and adaptation of the user to the BCI 

system, and the system to be trained with the user’s signals [11], [30]. With each decoded 

output, the user can receive feedback on this output, which in turn affects their subsequent 

brain signal outputs [14]. This bi-directional relationship between the user and the system 

is used to individually tailor the control system and provides the basis for 

neurorehabilitation. 

The BCI system is often misconceived to be a “mind-reading system”, however, 

simply passively reading brain signals with an electroencephalography EEG does not 

constitute a BCI; the user must generate brain signals that encode intentions, the system 

must then be trained on this signal and to be able to classify subsequent signals for the 

desired output [18].  
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2.2 What does a BCI consist of?  

A typical BCI system consists of four sequential components: 1) signal acquisition, 

2) feature extraction, 3) feature translation, and 4) device output/ feedback [18].  

2.2.1 Component 1: Signal acquisition 

There are a number of ways to measure electrophysiological brain activity: 

electroencephalography (EEG), electrocorticography (ECoG), magnetoencephalography 

(MEG), and electrical signal acquisition in single neurons [32] are just some examples. 

Other physiological measures include retrieving the hemodynamic response of activated 

neurons’ response to glucose, using means such as functional magnetic resonance (fMRI), 

positron emission tomography (PET), and functional near-infrared spectroscopy (fNIR) 

[32]. Currently, fMRIs and PETs are impractical for mass adoption due to their size and 

cost – EEGs are much more commonly used for its accessibility and ease of use. 

The most common signal used by BCIs is the electrical signals produced mainly by 

neuronal postsynaptic membrane polarity changes due to the activation of voltage gated-

or ion-gated channels [18]. There are a variety of ways in which this signal can be acquired, 

and they can be categorized as non-invasive or invasive. Non-invasively, the electrodes are 

placed on the scalp (i.e. EEG); invasively, intracranial electrodes are inserted at the cortical 

surface subdural or epidural (i.e. ECoG), or within the brain (via single unit spikes and 

local intracortical field potentials) [14].  

Comparing invasive and non-invasive signal acquisition methods  

Each method, invasive or non-invasive, holds unique advantages and 

disadvantages, and is useful for different applications and/or different users. Non-invasive 

recording methods such as EEG are convenient, safe, and inexpensive, hence making BCI 
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technology accessible to a larger population [33]. This method has also been highly 

researched for applications in neuroscience, engineering, and signal processing due to the 

advancement of this type of BCI systems’ usability, information transfer, and robustness 

of modern machine learning and signal processing techniques [34]. However, non-invasive 

EEG recordings are limited by a reduced topographical spatial resolution and frequency 

range. In addition, since it is recorded on the scalp, they are extremely susceptible to artifact 

contamination from electro-oculographic (eye movements) or electromyographic (muscle 

contractions), as well as other noise contaminants [14], [33]. Invasive methods such as 

ECoG and intracortical methods have better topographical resolutions and wider frequency 

ranges, but the surgical implantation of electrode arrays on the cortical surface or within 

the brain is required [14]. 

The main differences between invasive and non-invasive signals are: 1) the number 

and type of neurons that the signal is obtained from, 2) the frequency of signals acquired, 

and 3) the spatial distortion. Firstly, the number of neurons that non-invasive methods read 

signals from will be much larger than invasive methods such as ECoG. This means that for 

non-invasive methods, the signals are not as spatially targeted, and may be subjected to 

contamination from near-by neurons. Secondly, the human body tissue acts as a low-pass 

filter, attenuating high-frequency signals. This means non-invasive measure can only 

analyze low-frequency neuronal activities (lower than ~90Hz, and even lower for dry EEG 

electrodes) [35]. On the other hand, invasive signals can preserve signal frequency up to 

several kHz. Third, the spatial distortion of the extracellular space is composed of media 

of different electrophysiological properties which influence how the fields spread before 

being detected. The field further spreads in the cerebrospinal fluid, skull, and scalp, causing 
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spatial distortion before being detected by EEG electrodes. The frequency-dependent phase 

shifts might be stronger when signals spread across larger distances (such as in EEG) and 

might disintegrate temporal consistency across signal components [35]. In this thesis work, 

we chose to use non-invasive EEG recording for its cost, practicality, and its higher 

likelihood of adoption for masses in real-world scenarios. 

EEG-based BCIs  

An EEG-based BCI system typically consists of electrodes, amplifiers, A/D 

converter, and a recording device [32]. The electrodes detect the signal from the scalp, the 

amplifier processes the analog signal, enlarging the amplitudes of the EEG signals, and the 

A/D converter digitizes the signals. Subsequently, the recording device stores, processes, 

and displays the data according to the BCI system’s intended purposes [32]. 

EEG signals are measured as potential differences over time between the signals 

detected by the active electrodes and the reference electrode; the ground electrode 

measures the differential voltage between the active and reference points. These EEG 

electrodes are typically made of silver chloride (AgCl) disks that are 1 to 3 mm in diameter 

[36]. Their placements are placed according to the 10-20 international system, based on 

external cranial landmarks, assuming the underlying cranial structures correlate with the 

outer scalp locations [37]. The digitized signals are subjected to one or more of a variety 

of feature extraction procedures, such as spatial filtering, voltage amplitude measurements, 

spectral analyses, or single-neuron separation [30]. BCIs can use signal features that are in 

the time domain (e.g. evoked potential amplitudes or neuronal firing rates) or the frequency 

domain (e.g. mu or beta-rhythm amplitudes) [30].  
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In order to record accurate signals, the electrode-scalp contact impedance should 

typically be between 1kΩ and 10 kΩ. This impedance can depend on several factors 

including the interface layer, electrode surface area, and temperature [32]. The user of EEG 

gel can reduce the impedance between the scalp and electrodes, but it is also extremely 

cumbersome for the user as it requires extensive clean up. One of the challenges of using 

BCI is the effect of non-CNS artifacts. It is possible for a BCI to ensure that the features 

chosen are not contaminated by EMG, electrooculography (EOG), or other non-CNS 

artifacts [30]. Muscle activation and eye movement and contribute to the electrical activity 

recorded from the scalp, due to the dipoles they generate [32]. The following subsection 

will address the methods that can be used to overcome some of these challenges. 

There are also multiple types of signals that can be used to control a BCI. In current 

BCI systems, signals used include: visual evoked potentials (VEPs), P300 evoked 

potential, slow cortical potential (SCP), and sensorimotor rhythms (SMR) [32], [38], and 

selective sensation (SS) [39]. VEPs are brain activity modulations that occur in the visual 

cortex after receiving a visual stimulus, it increases as the stimulus is moved closer to the 

central visual field [32]. P300 evoked potentials are positive peaks due to infrequent 

auditory, visual, or somatosensory stimuli. The P300 response is elicited around 300ms 

after an oddball stimulus, among frequent stimuli. The less probably the stimulus, the larger 

the amplitude of the response peak [30], [32].  The P300 response is not drastically affected 

by whether or not the subject is gazing at the target, whereas the VEP is strongly dependent 

on gaze direction. SCPs are slow voltage shifts in the EEG that lasts a second to several 

seconds; negative SCPs are correlated with increase neuronal activity while positive SCPs 

coincide with decreased activity [32]. Lastly, SMR is comprised of mu/ Rolandic band (7–
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13 Hz) and beta (13–30 Hz) rhythms. The amplitude of SMR varies with the actual or 

imagined movement, which people can learn to generate and modulate at will to control a 

BCI [32]. The SMR is the signal that we chose to further investigate in this experiment, as 

it is closely related to the goal to recover physical functional movements in stroke  

rehabilitation and other neurological disorders. Within SMR, there are two kinds of 

amplitudes: event-related desynchronization (ERD) and event-related synchronization 

(ERS). ERD indicates a power decrease, which occurs when the respective brain region is 

activated by real or imagination of movement, and ERS shows power increase, occurring 

when not activated [40]. Both are slow to onset and also requires a refractory period to 

return to baseline [41]. This was a key consideration for the design of this experiment 

protocol; a rest period was allocated to allow for the SMR to return to baseline after each 

stimulation task to ensure that each trial is independent and unaffected by the refractory 

period of the trial immediately prior.  

2.2.2  Component 2: Feature extraction/ signal processing 

The user’s intentions are encoded as signals and later decoded to determine the 

intended output. Between the input and output process is the extraction of features and 

measuring of the signals’ characteristics to determine the output results. There are a variety 

of features that have been used to control a BCI. These include EEG amplitude (of evoked 

potentials (e.g., P300) or particular rhythms (e.g. sensorimotor rhythms) [14]), band power, 

power spectral density values, autoregressive and adaptive autoregressive parameters, 

time-frequency features, and inverse model-based features [42]. Multichannel EEG 

recordings provide a blurry image of brain activity, hence spatial filters are extremely 

useful in single-trial analysis to improve the signal-to-noise ratio. [34] 
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 One of the more popular feature extraction algorithms for BCI is Common Spatial 

Patterns (CSP) [34]. CSP works by decomposing and extracting raw spatial pattern features 

from EEG signals from two population, or classes, of single trials. It learns the spatial filters 

to maximize the discriminability of two classes, followed by using a classifier to identify 

the user’s intention from these features [43]. These patterns help to maximize the difference 

between the classes, and it was used in EEG to detect abnormalities, and later used to 

discriminate movement-related patterns [44]. This method has been proven to be very 

effective in BCI competitions [45], but despite its known efficacy and widespread 

popularity, CSP is known to be very sensitive to noise and is prone to overfitting [43]. As 

well, the intrinsic limitation of the CSP method is that it is only possible to discriminate 

between two classes [46]. In this study, the two classes are right and left wrist vibro-tactile 

stimulation. We used CSP to help enhance the spatial activation features in the EEG 

response, however as we will later discuss, this may not be the most optimal method 

especially for older adults. 

Event-related desynchronization/ synchronization (ERD/ERS) 

One of the basic features of SMR’s ERD/ERS measurement is the EEG power 

within identified frequency bands, displayed relative (as a percentage) to the power of the 

same EEG derivation recorded during the reference (or baseline) period a few seconds 

before the event occurs [21], [41]. SMR decreases its amplitude (SMR desynchronization) 

during processing of motor information (ERD) and increases in amplitude when inactivated 

(ERS) [41].  

The standard method to compute the time course of ERD includes the following 

[41]:  
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1. Bandpass filtering all event-related trials;  

2. Squaring of the amplitude samples to obtain power samples; 

3. Averaging of power samples across all trials; 

4. Average overtime samples to smooth the data and reduce variability. 

2.2.3 Component 3: Signal translation 

The translation of detected signal features into device commands are typically 

achieved using an algorithm that automatically estimate the class of data as represented by 

a feature vector [42]. This is a pattern recognition system that typically involves two 

phases: the calibration and the feedback phase. During the calibration phase, EEG data is 

collected to train a classifier, while during the feedback phase, the user inputs neural signals 

from their brain into the system to control applications [34]. There are multiple categories 

of classification algorithms, including: linear classifiers, neural networks, nonlinear 

Bayesian classifiers, nearest neighbour classifiers and a combination of multiple classifiers 

[14], [42]. The most popular algorithm for BCI applications are linear classifiers, due to 

the limited sample size which accompanies most BCI experiments – this is also the method 

used to classify the two classes in this study. We used the Linear Discriminant Analysis 

(LDA) to classify left hand stimulation versus right hand stimulation. This method was 

chosen due to the limited amount of data to train on.  LDA is a very commonly used in BCI 

applications; it assumes normal distribution of the data, with equal covariance matrix for 

both classes [42]. LDA has been successfully used in a large number of BCI systems such 

as motor imagery based BCI, P300 speller, multiclass, and asynchronous BCI [42]. The 

main limitation of LDA is its linearity that it will have poor performance on complex, 

nonlinear EEG data.  
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2.2.4 Component 4: Device output/ feedback 

Finally, the BCI system will output the user’s selections through commands to 

operate an external device, providing functions such as letter selection, cursor control, 

robotic arm operation, and more [18]. The device provides feedback to the user, closing 

the control loop, and leveraging the brain’s natural ability to change itself (neural plasticity) 

to achieve better control of the system and to attain the desired neurorehabilitation 

outcomes [14].  

Neural plasticity is the ability of our nervous system to reorganize its structure, 

function, and connection in response to training [11]. Plasticity in neurons and synapses of 

the CNS provides for the learning of new information and acquisition of new skills [14]. 

The use of BCI is in itself a skill, as changes in the brain’s electrophysiological signals are 

reflections of central nervous system (CNS) activity into the intended products of that 

activity: messages and commands that act on the world [30]. BCIs also depend on feedback 

and on adapting the brain’s activity based on that feedback. This bi-directional adaptive 

process is a critical component of how people learn to use a BCI system. 

BCI is a bi-adaptive process where people learn to use a sensorimotor rhythm-based 

BCI system begin by using various kinds of motor imagery to modify rhythm amplitudes 

[14]. Over time, the training allows the user to control the BCI system through the 

familiarity of control modalities as well as acquiring skills that both the user and the system 

learn and maintain [14].  

By extension, the algorithm that is used to decode intentions should accommodate 

for human factors such as diurnal change or fatigue. Adapting to the user’s individualized 

states and needs is a key aspect as users are also learning to modulate their own brainwaves 
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voluntarily through appropriate feedbacks (i.e. visual, tactile) [33]. This revisits the issue 

that the factor of age and its impacts are often overlooked in BCI literature. As 

aforementioned, aging can significantly affects the spatial features in cerebral activation. 

Since commonly used BCI feature enhancement methods are relying on this exact aspect 

of spatial activation differentiation, it is critical that this aspect is taken into consideration 

when designing the underlying algorithm. This is especially important when the target user 

population for the BCI application is of an older age group, such as for stroke rehabilitation.  

Stroke may impact an individual’s EEG response in multiple ways, through multiple 

avenues of changes to the person’s physical and emotional health and abilities. Stroke 

affects the body’s functioning and structure, limits one’s functional activities, and restricts 

one’s participation in their self-care [9]. All these factors are simultaneously influenced by 

environmental and personal factors bi-directionally, which plays into the equation of 

stroke’s ultimate effect on EEG – this can be variable for each individual [9]. We will 

further discuss the aspects of rehabilitation and user groups in the following section.  

2.3 BCI uses and users 

BCI can be especially useful for those with severe neuromuscular disorders that 

disrupt the neuromuscular channels through which the brain communicates with and 

controls its external environment [30]. Examples of such conditions that impair the neural 

pathway or the muscles themselves include late stage amyotrophic lateral sclerosis (ALS), 

lock-in syndrome, brainstem stroke, brain or spinal cord injury, cerebral palsy, muscular 

dystrophies, multiple sclerosis [30]. These conditions impair the neural pathways that 

control or impair the muscles, and affect nearly two million people in the United States 
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alone, and far more around the world [30]. Those most severely affected may lose all 

voluntary muscle control, including eye movement and respiration, and may be completely 

locked in to their physical body, unable to communicate [30]. While people who have these 

conditions are unable to produce voluntary muscle movements, their sensory and cognitive 

functions are typically only minimally affected by the disease. Hence, an alternative avenue 

for communication is to potentially use electroencephalograph (EEG) signals to control an 

assistive device that helps people restore daily functioning. The goal is to enable people to 

operate devices with reliable, consistent control, to communicate and interact with their 

environment, ultimately improving the quality of their lives. This can be accomplished by 

the user indicating their intentions through a speller system, robotic device control, or 

predetermined choice selections (i.e. the selection of letters on a screen or controlling a 

wheelchair) [14], [32], [47]. In 1991, Wolpaw et al. demonstrated that it is possible to 

control a cursor on a computer screen by modulating the sensorimotor rhythm amplitude, 

without actual movement execution or sensations [11], [48]. 

Fundamentally, there are multiple ways in which this is achieved. The BCI can 

increase the capacities of remaining pathways; restore functions by detouring the neuronal 

pathway breaks that control muscle movement; provide the brain with new, non-muscular 

communication and control channels; and/or decipher the individual’s thoughts, or intent, 

by solely relying on the detected brain activity [30].  

In terms of rehabilitation, BCIs hold the potential to restore the user’s innate motor 

functioning by inducing and guiding activity-dependent brain plasticity, and restoring 

typical brain functions by affecting motor learning [14]. This neurorehabilitation effect is 

based on neural plasticity, the ability of our nervous system to reorganize its structure, 
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function and connections in response to repetitive training [11]. It is influenced by 

environmental factors, the user’s motivation and attention, as well as timing [11]. By 

providing feedback on intended movements, it is possible to restore the “action-perception 

coupling” and induce neural plasticity [11]. The goal of neurorehabilitation is to improve 

behavior by inducing adaptive changes in dysfunctional neural system while also avoiding 

maladaptive plasticity, through carefully designed exercises combined with neurofeedback 

[11]. Similarly, the process of learning to operate BCI systems depend on the existence of 

neural plasticity, and is thought to follow a similar learning process [14]. The user pays 

close attention to a motor task by activating or deactivating specific brain signals, achieving 

control of the system whilst adjusting their own method of BCI control at the same time 

[14]. In 2013, Ramos-Murguialday et al. showed that post-stroke participants could learn 

how to control their sensorimotor rhythm desynchronization, especially when contingent 

feedback was provided [10]. The feedback in this study, for the experiment group, was the 

concurrent movement of an orthosis attached to the paralyzed limb; the control group 

patients’ movement of the orthosis occurred randomly, unrelated to SMR control [10]. This 

suggests that our brain can learn to change, and serves as the fundamental basis for 

neurorehabilitation such as stroke [40]. This also revisits the hinging question of whether 

age makes a difference in BCI applications. If stroke is more prevalent in an older 

population, and if aging changes the brain’s expression of topological signals, it is logical 

that the algorithm should be designed specifically to this change. Currently, the algorithm 

is developed on younger populations, which is problematic in that we may not be creating 

appropriate technology that matches the abilities of the people they are intended to support.  
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Chapter 3. 

Age-related Differences in Somatosensory 

EEG response to Vibro-tactile stimulation 

3.1  Methods 

We examined the EEG response of 11 older adults and 11 younger adults with 

respect to vibro-tactile stimulation on either the left or right wrist. Each stimulation trial 

lasts 5 seconds, in total 80 trials (40 left, 40 right) were delivered to each wrist in random 

order. We aim to analyze the age-related differences in the cerebral response to this 

stimulation. 

3.1.1 Participants 

Older adult participants were recruited from the Waterloo Research in Aging 

Participant Pool (WRAP). A phone script was followed to recruit the participants (see 

Appendix A). The younger participants were recruited from the surrounding community 

via physical advertising posters. A total of 11 older adults and 11 younger adults were 

recruited to participate in this study. The inclusion criteria was age above 18, and the 

exclusion criteria was any known neurological disorders. This study was approved by the 

Office of Research Ethics of University of Waterloo, Waterloo, Canada (ORE# 21401). 

3.1.2 EEG recording & mechanical somatosensory stimulation  
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EEG signals were recorded using a 32-channel wireless g.Nautilus EEG system 

(g.tec, Austria), see Figure 1 for the EEG cap.  

 

Figure 1. g.Nautilus 32-channel EEG cap  

Electrodes were placed according to the extended International 10–20 system, 

which has been standardized by the American Electroencephalographic Society (see 

Appendix B for the layout of the 32-channel setup of the 10-20 system) [32]. The reference 

electrode was located on the right earlobe, and the ground electrode was located on the 

forehead. A hardware notch filter at 60 Hz was used, and signals were digitally sampled at 

250Hz. 

Mechanical vibration stimulation was applied to the dorsal side of left and right 

wrists using wrist bands with linear resonance actuators (type C10-100, Precision 

Microdrivers Ltd.) sewn inside. See Figure 2 for the wristband.  
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Figure 2. Wrist bands with vibration stimulation device built 

The two vibration stimulators were connected to and driven by a Sound Blaster E5, 

a high-resolution USB DAC Amplifier (Creative Inc.). The vibration magnitude was 

adjusted for each subject between the range of maximum amplitude and half maximum 

amplitude at the resonant frequency. The optimal amplitude was adjusted based on 

feedback from the subjects, such that they could comfortably and clearly feel the vibration 

above their perceptual threshold. The device standard operating procedure is outlined in 

Appendix C. 

3.1.3 Experiment setup & paradigm 

EEG signals were recorded from the subjects before, during, and after stimulation. 

The subjects were seated in an armchair with their forearms and hands relaxed on the 

armrest. They faced a computer monitor placed approximately 2m away at eye level (see 

Figure 3).  
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Figure 3. Experiment setup 

Prior to EEG recording, subjects were shown their EEG in real time on the 

computer screen to demonstrate how to avoid motor artifacts caused by eye blinks, jaw 

clenching, and body movements. Subjects were asked to limit these physical movements 

during the EEG recording. 

The experimental session consisted of two runs of continuous EEG recording. In 

each run, the subject performed 40 trials for a total of 80 trials. In each trial, subjects were 

visually prompted to perceive the feelings on their left or right wrist while a simultaneous 

vibration was applied to the respective wrist. The sequence of events in each trial is 

illustrated in Figure 4 and described in detail below.  
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Figure 4. Experimental protocol for a single run. 

At -3s (the start of each trial), a white fixation cross (“+”) appeared at the center of 

the dark screen and it lasts throughout the entire trial until rest. At -1s, subjects received a 

175 Hz vibration burst lasting 0.2s on the median tendon of both wrists simultaneously, 

with equal intensity as a prompt for the task to follow. At 0s, either left or right wrist vibro-

tactile stimulation would be applied, accompanied by a left or right pointing red visual cue 

superimposed the white cross. The vibro-tactile stimulation lasted for 5s, while the visual 

cue lasted for 1.5s. At 5s, the unilateral vibro-tactile stimulator stopped, and the white cross 

on the screen disappeared. A rest time of 1.5s was given, followed by an additional random 

rest time of 0 to 2s to prevent subject habituation. Each run contained 20 trials of both left 

and right task applied in random order. A 2-4 min rest was given between runs. See Figure 

5 for the participant’s view during the experiment.  
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Figure 5. The participant interface during the experiment 

3.1.4 Data preprocessing & signal decomposition 

Offline signal processing was performed where the EEG data was manually 

corrected for artifacts using EEGLAB toolbox prior to analyzing event-related spectral 

perturbations (ERSP) and event-related desynchronization (ERD) / event-related 

synchronization (ERS) [49]. Artifacts were removed in two steps: 1) trials containing non-

ocular artifacts (i.e. large drifts, electrode spikes, saturation) were removed; 2) independent 

component analysis (ICA) was used to remove ocular artifact components from the 

remaining epochs; this approach has been used in previous work, such as [49]–[51]. 

A fourth-order Butterworth filter was applied to the raw EEG signals prior to further 

spatial filtering. In this study, common spatial pattern (CSP) is used for prior to the 

classification of EEG epochs into either ‘left’ or ‘right’ hand stimulation. CSP is performed 
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by simultaneous diagonalization of the covariance matrices of the data from two classes 

(left and right for this research) [44]. See below for the details of CSP. 

The kth trial of the EEG signal before CSP filtering is represented as Ek with 

dimensions 𝐶 × 𝑁, where 𝐶 is the number of EEG channels and 𝑁 is the number of sample 

points of the trial. The normalized spatial covariance of the EEG can be obtained from  

𝐶$ = 	
𝐸$𝐸$(

trace(𝐸$𝐸$( )
 (1) 

where 𝑘 is the trial index and ′ denotes the transpose operator and trace(x) is the 

sum of the diagonal elements of x [44]. For each of the two classes to be separated, let the 

spatial covariance: 

 𝐶- = 	 . 𝐶$
$Î	/0

																	𝐶1 = 	 . 𝐶$
$Î	/2

 (2) 

where 𝑆- and 𝑆1 are the two index sets for the two separate classes, left and right, 

respectively [44]. The projection matrix 𝑊 is obtained from the augmented generalized 

eigen-decomposition, (𝐶- + 𝐶1)𝑊 = 	𝜆𝐶1𝑊. The rows of 𝑊 are spatial filters; the column 

of 𝑊78are spatial patterns. The filtered signals 𝑍$ = 𝑊𝐸$ is uncorrelated between each of 

the 𝑘th trials. The feature vectors for classification were obtained by taking the log variance 

of the first three and last three rows of the spatially filtered signal 𝑍$, as these correspond 

to the three largest eigenvalues for one class and three smallest eigenvalues for the opposite 

class [44]. These retained CSP components (rows) were then used as inputs to linear 

discriminative analysis (LDA) for classification. 

 

3.1.5 Event-related spectral perturbations (ERSP) 
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ERSP visualizes the mean change in spectral power relative to a baseline [52]. The 

baseline reference interval for ERSP calculation was taken from -2 to -1.2s, which is the 

0.8s interval prior to the onset of the bilateral vibration burst. Each spectral transform of 

individual response epochs is normalized by dividing by their respective mean baseline 

spectra [53]. After performing the artifact removal mentioned above, Small-Laplacian 

(nearest-neighbour) filtering was applied to the EEG as a high-pass spatial filter to 

accentuates localized activity and reduces more diffused activity [54]. The ERSP at 

channels C3 and C4 (which correlates with the activation of the left and right hand 

respectively) was calculated after small Laplacian filter was applied, to visualize right and 

left stimulation, respectively. The resulting ERSP visualizes the mental processes and 

cortical responses to left or right vibro-tactile stimulation. 

3.1.6 Event-related desynchronization/ synchronization  

ERD and ERS are respectively defined as the percentage of EEG power decrease 

or power increase with respect to a baseline reference. Average ERD/ERS displays the 

activation and deactivation of brain regions. It is calculated in a defined frequency band in 

relation to a baseline reference interval [40]. The baseline reference interval for the 

ERD/ERS calculation was taken from -2 to -1.2s, which is the 0.8s period prior to the onset 

of the bilateral vibration burst. Similar to ERSP calculation, the small-Laplacian (nearest-

neighbour) [54] was applied to the EEG after artifacts (such as ocular and physical 

muscular movements) were removed [50]. The value of the Laplacian at each electrode is 

calculated by combining the value at the location with values of surrounding electrodes. 

For small-Laplacian it takes the four immediately adjacent electrodes. The distance of the 

surrounding electrodes determines the spatial filtering characteristics; as distance 
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decreases, the Laplacian becomes more sensitive to potentials with higher spatial 

frequency. Hence this gives small-Laplacian gives a high signal-to-noise ratio, especially 

for spatially concentrated tasks such as respective hand/wrist activation.  

The statistical significance of the ERD/ERS was verified by applying a t-percentile 

bootstrap statistic to calculate confidence intervals with a significance level of α = 0.05.  

The quantification of ERD/ERS was calculated in following three steps: 1) 

Bandpass small Laplacian filtered signals between alpha-beta (8-26 Hz) frequency band; 

2) Band power calculation, and 3) Epoch averaging to obtain grand average ERD/ERS. 

ERD/ERS topoplots sample points were plotted after averaged over the specified time 

intervals. 

3.1.7 BCI Offline Classification 

The raw EEG data was used for analyzing BCI classification accuracy to simulate 

the performance from online BCI. Therefore, no artifact removal was done for the analysis 

on BCI performance. A 10 ×  10 cross validation method was used to evaluate the 

classification accuracy of each modality. Firstly, the trials were randomly permutated (40 

trials for class one and 40 trials for class two). Secondly, the trials in each class were 

equally divided into ten partitions. Each partition is used as a testing set, classified by the 

classifier trained on the remaining nine partitions – this yields a classification accuracy for 

each partition. The training set was used to obtain the CSP components and the parameters 

of the LDA classifier, which were then used to classify the testing set. This process is 

repeated ten times, hence generating 100 classification accuracy indexes [44]. These results 

are averaged to generate a final classification result. 
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The EEG data from 0 to 2s was used from each epoch for classification accuracy 

calculation. No trials were discarded to simulate online classification accuracy. There was 

high inter-subject variation for discriminative frequency bands, hence smaller sub-

frequency bands were used in the subsequent analysis: theta (θ, 6-8 Hz), low alpha (α-, 8-

10 Hz), alpha (α, 8-13 Hz), upper alpha (α+, 10-13 Hz), low beta (β-, 13-20 Hz), beta (β, 

13-26 Hz), upper beta (β+, 20-26 Hz), alpha-beta (αβ, 8-26 Hz), and gamma (η, 10-16 Hz). 

10 ×  10 cross validation was performed for all sub-frequency band to evaluate BCI 

performance, and the frequency band that resulted with the highest classification accuracy 

was individually selected for each subject.  

3.1.8 Statistics  

The data for ERD/ERS, the data was averaged over segments of 0.2s and the 

difference between left and right stimulation was analyzed via an independent-sample t-

test with Bonferroni correction for each segment. An independent-samples t-test was also 

used to compare BCI performance accuracies between younger and older adult 

populations. This statistical test was chosen because we are comparing between two 

populations with small sample sizes.  

Our null hypotheses are: 1) there is no difference between C3 and C4 in each of the 

tasks performed, and 2) that there is no difference between younger and older adults in BCI 

classification accuracy. The significance level of all tests were set at α=0.05. 

3.2 Results 

3.2.1 Participants 
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Participants were 11 older adults (ages 56~83; 8 female) and 11 younger adults 

(ages 18~25; 6 female). All participants were BCI naïve, right handed, had normal or 

corrected vision, with no reports of psychiatric or neurological disorders, vascular diseases, 

use of psychiatric drugs, or any drugs affecting the central nervous system. All subjects 

provided informed consent prior to participation. 

The age of the older (72.0±8.07 years old) and younger (21.7±2.76 years old) adult 

populations were significantly different (t=21.8, p<0.001). The number of years of 

education of the younger (16.2±3.0 years) and older (4.8±2.67 years) adults were not 

significantly different (t=-1.25, p=0.226). 

3.2.1 Event-related Spectral Perturbation 

A comparison of the older and younger adults’ ERSP at small-Laplace filtered C3 

and C4 channels is shown in Figure 6. For younger subjects, after the unilateral (left or 

right) vibration stimulation is applied at 0s, a prominent bilateral desynchronization is 

observed in the alpha-beta frequency band (8-26 Hz), for approximately 0.5s – this is 

highlighted for visual purposes with the white rectangles in Figure 6. Following this 

bilateral activation is a sustained contralateral desynchronization centered in the high-alpha 

frequency band (10-14 Hz) – this is outlined with red bounding boxes. However, for older 

subjects only the bilateral desynchronization was present (outlined by orange bounding 

boxes); the latter sustained contralateral desynchronization seen in younger subjects was 

absent.  

Another observation is the ipsilateral synchronization in the alpha frequency band 

(7.5-12.5 Hz) that is present in both the younger and older subjects, appearing 
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approximately from 2 to 4s – outlined with rounded black bounding boxes However this is 

much more prominent in the younger adults than in the older adults. 

 

Figure 6. Average ERSP for all younger and older adults before & during vibro-tactile 

stimulation, which lasted between seconds 0 – 5.  
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3.2.2 Event-related desynchronization/ synchronization 

The ERD/ERS was plotted within the alpha-beta (8-26 Hz) frequency because this 

band is shown to contain the most discriminative information from the ERSP analysis 

above (Figure 6). The ERD/ERS topoplots in response to the 200ms bilateral stimulation 

at -1s (on both left and right wrist) was averaged over -0.4 to -0.1s (Figure 7). It is evident 

that the desynchronization at channels C3 and C4 are more pronounced in younger adults 

but was absent for older adults (Figure 8a). In the younger adults, there was a prominent 

synchronization centered around the central-parietal region and parietal lobe at channels 

CP1, CP2 and PZ, which was absent in the older adults.  

 

 

Figure 7. Bilateral vibro-tactile stimulation ERD/ERS topoplot averaged over -0.4 to -

0.1s in response to the 200ms bilateral stimulation at -1s. 
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(a) 

(b) 

Figure 8. Comparison of average ERD/ERS of younger and older participants – greater 

contrast between left and right in younger adults 
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Calculated in alpha-beta frequency band (8-26 Hz). a) denotes the ERD/ERS change for 
channels C3 and C4 over time; the center dashed line shows the averaged ERD/ERS 
while the shading around the dash line indicates averaged ERD/ERS±SD. The thick black 
line on the bottom superimposing the graph indicates regions of significant difference 
(averaged over intervals of 0.2s) between the two channels (p<0.05, with Bonferroni 
correction). b) displays the ERD/ERS averaged over the interval 0.25 to 1s as a 
topograph.  

For the ERD/ERS in response to the sustained vibro-tactile stimulation from 0 to 

5s, a distinct contralateral oscillatory desynchronization was observed for younger adults 

but was absent for older adults (Figure 8a). For younger adults, the desynchronization of 

the channel associated with the respective wrist being stimulated (EEG channel C4 for left 

hand and channel C3 for right hand) would reach a maximum of 70% power decrease 

compared to baseline, sustaining until the end of the trial at 5s; for older participants, this 

differentiation was neither as clearly visible nor sustained. The power decrease on both 

sides reaching a maximum of 40% and rebounding back to baseline immediately (at 0.5s), 

indicate a brief bi-lateral activation in response to a unilateral stimulation. Further, the 

standard deviation for older adults is especially large during left hand stimulation, with 

channel C4 completely overlapping C3. As indicated by the horizontal black lines at the 

bottom of the plots in Figure 8a, the lateralization pattern is distinct and significantly 

different in the younger adults but not in the older adults, especially for left (non-dominant) 

hand stimulation. The mean of ERD/ERS across the scalp over the period from 0.25 to 1s 

is displayed as topographs in Figure 8b. The desynchronization of channel C3 and C4 are 

distinctly less prominent and diffused in the older adults compared to the younger adults.   

3.2.3 BCI Classification Accuracy 
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Figure 9. BCI classification performance accuracy – most optimal frequency band labeled 

Calculated separately for younger and older adults. Error bars indicate one standard 
deviation. The frequency band that yielded the highest classification result is shown 
below the x-axis. 

Figure 9 compares the offline BCI classification performance for the aggregated 

right and left vibro-tactile sensation task for individual older adults and younger adult 

subjects, respectively. The exact percentages are displayed in table format in Appendix C. 

The average left vs. right BCI performance accuracy of older subjects was 64.5±7.75%, 

more than 20% lower than that of the younger subjects (85.3±14.1%) and statistically 

significantly different (t(20)= -4.3, p <0.001). 

  

B) 
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Chapter 4. 

Discussion 

Our results showed that age-related electrophysiological changes in healthy older 

adults significantly affected SMR characteristics in EEG compared to younger adults. Such 

changes have critical implications for BCI applications such as BCI-based stroke 

rehabilitation, which target at older population but are currently developed and validated 

with much younger population. The significant reduction in activation power spectrum in 

older adults (seen in Figure 7 & 8) indicates older adult EEG signals are more susceptible 

to noise and interferences than EEG from younger adults. More importantly, SMR in older 

adults demonstrated a significantly reduced lateralization, seen through ERSP (Figure 6) 

and ERD/ERS (Figure 8) in the somatosensory cortex in response to vibro-tactile 

stimulation, compared to younger adults. These visibly different characters in EEG resulted 

in a significantly lower BCI classification accuracy for the older adults (Figure 9). For 5 

out of 11 of the younger adults, the frequency α+  band yielded the highest classification 

result, while that in the older adults is more wide-spread. This indicate that there may not 

be a concentrated frequency band to target when developing BCIs for the older population, 

and that the application for each user may need to be more individualized in order to yield 

a better performance.  

Our findings may be explained by changes in the physical structure of the brain 

including cognition, neurology, and biochemistry, as well as physical features in the body. 

Structurally, the brain undergoes an age-related volume reduction that non-uniformly 
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affects the majority of brain regions [55]. The greatest shrinkage is usually in the caudate, 

cerebellum, frontal cortex, insula, anterior cingulate gyrus, superior temporal gyrus, and 

inferior parietal lobule  [55], [56]. The areas being activated in this task (left or right-hand 

stimulation) is the somatosensory cortex; its structure may be affected by the natural aging 

of the brain. Cognitively, it is established that aging causes a decrease in processing speed, 

working memory capacity, inhibitory functions, and long-term memory [22]. Thus, while 

changes in the brain because of the stroke likely play a significant role, our results indicate 

that the physiological changes brought about by normal aging may also be a contributing 

factor to the poor performance of BCI algorithms for stroke survivors that has been found 

in previous works [15]. 

This decreased lateralization of activation can be viewed in two contrasting ways: 

1) compensation view, which considers the age-related asymmetry reduction to help 

counteract age-related neurocognitive decline; and 2) dedifferentiation view, which 

considers this to reflect a difficulty in recruiting specialized neural mechanisms [26]. 

Similarly, there are also two different explanations on the origin of age-related asymmetry 

reduction: 1) psychogenic view, which attributes it to a change in cognitive strategies; 

whereas the 2) neurogenic view, posits it to originate from a change in neural mechanisms 

[26]. The psychogenic view may explain the quick rebound of the ERD/S back to baseline 

from the older subjects, indicating an increased efficiency in the brain for normalizing the 

sensation. In addition, since all the subjects are right handed, hence this view may also 

partially explain the relative greater sensitivity for the right wrist in comparison to the left 

wrist in the senior population. These theories may help to explain the decrease in 
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lateralization observed in the data, however it is out of the scope of this research to be able 

to postulate the dominance of one explanation over another.  

Alternative physiological factors that may contribute to the observed changes in 

EEG include age-related changes in scalp thickness [57], [58] and skin sensitivity due to 

mechanoreceptor loss [59]. The scalp thickness change is supported by an additional 

observation made by the experimenter that there was a noticeably longer EEG electrode 

set-up time for the older adults compared to younger subjects in using the conductance gel 

to decrease scalp impedance. We speculate this may be due to a difference in scalp 

thickness or dryness. In terms of skin sensitivity, a decline in the density of sensory 

receptors lead to an increase in tactile sensory threshold and decrease in sensation [60]. 

Sensory receptors involved include: Vater-Pacinian corpuscles in the dermal-hypodermal 

junction, which primarily feels pressure and vibration, and most sensitive to frequencies 

60–400 Hz; Meissner corpuscles in the dermal papillae, which mediates touch sensation, 

and responds maximally to frequencies 20–50 Hz, and Merkle disks, which are sensitive 

to frequencies 5–15 Hz [61]. These receptors fine-tune the threshold for detecting 

sensation. The total number of sensory nerve fibres activated determines the intensity of 

sensation. As the stimulation produced by the actuators used in this experiment was 27 Hz, 

modulated with a 175 Hz sine carrier wave, it primarily targets the Vater-Pacinian 

corpuscles which feels vibration.  

Since many EEG processing algorithms for BCI are based on exploiting the 

lateralization of SMR (e.g., CSP and Laplacian methods), our finding that the classification 

accuracy in elderly is significantly lower than the younger population by over 20% 

indicates that normal aging results in a detrimental impact on the performance of these 
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classification methods. A recent study by Volosyak et al. [62] investigated the age-

associated difference in BCI performance by examining the accuracy and speed of a steady-

state visual evoked potential (SSVEP)-based BCI spelling application. The results showed 

that older adults had a significantly lower information transfer rate compared to younger 

adults [62]. Volosyak et al. attributed their results to smaller SSVEP amplitudes for older 

adults as well as slower reaction time and learning ability [62]. Our findings are in 

agreement with this previous research in that we found similar patterns of amplitude 

reduction in the older adult population, except we measured it in the ERD power amplitude. 

However, different from [4], we further demonstrated the significant reduction of 

lateralization in ERD/ERS. Our research suggests that population alternative algorithms 

and approaches need to be developed for BCI systems for older adults with less dependence 

on lateralization is required. 

Our results agree with the CRUNCH hypothesis proposed by Reuter-Lorenz et al. 

[63] and HAROLD theory proposed by Cabeza et al. [26], both of which suggest a 

compensatory account of neural circuits that results in a more symmetrical activation in the 

senior’s brain compared to younger adults. This can be observed in our results in the ERSP 

as well as ERD/ERS (Figures 6–8). This is a crucial aspect as the change in the locality 

and strength of activation can significantly alter BCI classification accuracy (as seen in 

Figure 9), especially when relying on spatial information from CSP and Laplacian filters. 

This finding is crucial to the field of BCI rehabilitation such that we need to re-think the 

fundamental elements, such as laterality-based activation, on which many of the traditional 

methods are based on, and develop new tactics that utilize appropriate measures to enable 

older adults to adequately use BCI applications such as for rehabilitation. 
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4.1 Confounding factors and limitations 

Physiological confounding factors that may have played a role in the observed 

differences include scalp thickness [57], [58] and skin sensitivity due to mechanoreceptor 

loss [59], [60], and there may well be others. In our research, we noted it takes a noticeably 

longer time to set up the EEG electrodes and noticed an increased scalp impedance for the 

older adults. We speculate this to be due to a difference in scalp thickness or dryness, and 

we recommend this to be taken into consideration for future research and application 

targeting older adults. Moreover, we accounted for the differences in skin sensitivity by 

calibrating all participants’ perception of the vibration prior to the start of the trials, to 

accommodate for the changes in the perceptual threshold with aging.  

 Methodologically, since all the older participants were recruited from the Waterloo 

Research in Aging Participant Pool, there might be inherent bias in the homogeneity of the 

participant recruitment source. We also recognize that a larger sample size would be more 

favourable in demonstrating significance; our limited sample size is a major limitation. 

However, we have demonstrated significant results based on a smaller size, therefore, there 

is no need for a larger sample size for the current study. In the future, we are looking to 

further investigate the age-related differences on other BCI modalities such as motor 

imagery (MI). As MI is also based on lateralization of activation, we suspect there will also 

be significant changes that accompanies aging in this paradigm. All subjects (older and 

younger adults) in this study were right handed; while this can be a potential 

methodological bias, this factor is matched between the two age group populations being 

compared, and hence it should not be a major point of concern. 
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Other limitations of our research are factors out of our control, which include 

individual lifestyle and habits such as physical and cognitive exercise, social status and life 

experience that may influence EEG [64]. We also used LDA as our classification 

technique, which has limited performance on more complex, non-linear data; other 

aforementioned classification techniques may potentially yield better or worse results, 

depending on the signal features that is used to train the model. In addition, other BCI 

modalities and signals may also drastically shift the results. As this study only investigated 

sensorimotor rhythm (SMR), generalizations to other types of signals is premature. 

However, as SMR are the basis for most BCI-based neurorehabilitation techniques, it 

prompts the field to take the factor of age and the accompanied brain’s changes that take 

place into consideration when designing future BCI applications for older adults. In 

addition, as we only have investigated this age-related difference in healthy older 

populations, in order to apply the findings to BCI rehabilitation, we need to verify the 

findings in a post-stroke population. This paradigm may also be a way to assess the 

heterogeneity in stroke populations. This further consolidates the need to design algorithms 

to tailor to the changing EEG signals in the older population.  
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Chapter 5. 

Conclusion  

BCI-based applications and neurorehabilitation are poised as novel approaches to 

functional restoration and rehabilitation that are currently being developed and pursued. 

Older adults are the majority of the target population of these applications, such as stroke 

rehabilitation; however, the algorithms that underlie these methods were developed on 

younger adults. As our brains change with age, the cortical activation of an older adult will 

be drastically different from a younger individual. This research investigated whether aging 

impacts BCI performance, as this will then affect BCI applications with older adults. 

This thesis research investigated the impacts of aging on the brain’s response to 

vibro-tactile stimulation. The primary find is that aging correlates with a substantial EEG 

power reduction and a reduction in the lateralization of activation in the somatosensory 

cortex. This change in the topographical cortex activation resulted in a significantly 

lowered BCI performance classification accuracy, as the features were enhanced based on 

spatial cortical activation information. This indicates that future BCI research should 

further investigate into the impact of aging on other paradigms and develop appropriate 

measures to accommodate these age-related differences in BCI applications. 

In the future, one strategy to train older subjects to better utilize a BCI may be to 

use neuromodulation methods such as non-invasive brain stimulation or repeated practice 

to help increase the lateralization of cortex activation; however, this must be balanced with 

the consideration that the reduction in lateralization may be due to a compensatory 
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mechanism. On the algorithmic side, alternative features should be investigated into for 

training the algorithm, in order to improve the classification performance of the BCI 

systems. Deep learning may be applied to leverage and excavate features that may not have 

been previously used. Ultimately, both the user and the machine must co-adapt in order to 

achieve a seamless experience. 
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Appendix  

Appendix A: Telephone Recruitment Script  

“Hi [potential participant's name], my name is [telephone recruiter] and I work 

with Dr. Ning Jiang and Dr. Jennifer Boger in the Systems Design Engineering Department 

at the University of Waterloo. I am contacting you because you provided your name and 

contact details through the Waterloo Research in Aging Participant Pool and indicated that 

you would be interested in being contacted about research studies needing participants. The 

reason I’m calling is that we are conducting a studying a study on aging and the brain. We 

are currently seeking paid participants to be in this study. Would you be interested in 

hearing more about this study?” Basically, we ask our participants to perform simple tasks 

like lifting the foot and shifting their attention, and during this time, we will be measuring 

be brain signals using a non-invasive cap. 

[IF NO] Thank you for your time. Good-bye. 

[IF YES] Continue 

This study will be a single session that take place at the University of Waterloo and 

will run for about 60 minutes. In appreciation of your time commitment, you will receive 

$15 per session. I would like to assure you that this study has been reviewed and received 

ethics clearance through a University of Waterloo Research Ethics Committee. However, 

the final decision about participation is yours. Would you be interested in participating?” 

[If NO] Thank you for your time. Good-bye. 

[IF YES] Thank you; we appreciate your interest in our research! 
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(Schedule a mutually agreeable time to come to laboratory) 

“Let me give you some important information about the study. Have you got a pen 

and piece of paper? The name of the study is “Age-related effects on EEG and Implications 

for Brain-computer Interface.” My name is [recruiter]. The study is being conducted in the 

East Campus 4 building, at 295 Philip Street, Waterloo. Do you require transportation to 

come here?  

[if YES] 

On the day of your session, we will send a taxi to your place at [mutually agreeable 

time]. [confirm address]. The taxi will bring you to the East Campus 4 lot where I will wait 

for you. After the testing a taxi will bring you back to your place.  

[if NO] 

On the day of your session, please meet me in the East Campus 4 lot [give directions 

if needed]. We will provide you with a parking pass or cover any needed parking costs.  

Also, if you wear glasses or contact lenses to correct your vision, or if you use a 

hearing aid, please bring them with you to the session.” I look forward to meeting you on 

[day and time of session]. Thank you very much for helping us with our research!” 
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Appendix B: 32-channel setup ext. 10-20 system 

 
g.Nautilus Channel Layout, available from: http://www.gtec.at/Products/Hardware-and-

Accessories/g.Nautilus-Specs-Features 
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Appendix C: Device Standard Operating 

Procedures  

The following steps detail the protocol for the setup process of the EEG headset 

used during the experiment of the presented thesis.  

1. EEG cap is mounted on the head of the participant, with electrode located at the 

international standard 10-20 positions, which is an internationally recognized 

method to describe and apply the location of scalp electrodes in an EEG 

experiment. The “10” and “20” refers to the actual distance between adjacent 

electrodes are either 10% or 20% of the total front-back or right-left distance of the 

skull; 

2. Conductive gel is applied to the EEG electrodes on the EEG cap;  

3. One vibration stimulation wrist band is worn on each wrist; 

4. Participant seat on the comfortable chair, and the instruction will be given regarding 

the motor tasks to be performed. 

Clean up: 

5. The participant will be provided with showering facility, soap, shampoo, and towels 

to clean off the conductive gel from their hair if they choose; 

6. The EEG cap will be thoroughly cleaned with water and scrubbed to remove all 

trace of debris and conductive gel. The cap will be blow-dried and stored;   

7. The wrist band will be wiped with an alcohol pad to be disinfected between users.  
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Appendix D: Classification accuracy percentage 

Table 1. Older adult BCI classification accuracy 
The left vs. right classification accuracy for older adults is shown, with the optimal 
frequency band in brackets.  

Subject Performance 
Accuracy (%) 

Senior 1 58.87 ± 1.81 (β-) 
Senior 2 65.75 ± 2.90 (α) 
Senior 3 63.75 ± 3.17 (αβ) 
Senior 4 67.75 ± 4.16 (θ) 
Senior 5 61.25 ± 4.49 (α) 
Senior 6 55.13 ± 4.51 (η) 
Senior 7 59.75 ± 3.11 (θ) 
Senior 8 67.00 ± 4.09 (β+) 
Senior 9 83.87 ± 2.08 (β) 
Senior 10 58.00 ± 6.75 (β-) 
Senior 11 67.87 ± 3.44 (αβ) 

 

Table 2. Younger adult BCI classification accuracy  
The left vs. right classification accuracy for older adults is shown, with the optimal 
frequency band in brackets.  

Subject Performance 
Accuracy (%) 

Young 1 89.25 ± 1.58 (η) 

Young 2 80.50 ± 2.37 (η) 
Young 3 99.50 ± 0.65 (α+) 
Young 4 52.25 ± 2.27 (β) 
Young 5 86.50 ± 1.84 (α+) 
Young 6 99.50 ± 0.65 (α+) 
Young 7 94.50 ± 1.05 (α+) 
Young 8 71.75 ± 1.88 (αβ) 
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Young 9 97.50 ± 0.59 (α+) 
Young 10 0.7887 ± 0.0297 (β+) 
Young 11 0.8763 ± 0.0190 (η)  

 
 


