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Abstract 

We propose a new formulation for controlling inventory in a two-echelon distribution system 

consisting of one warehouse and multiple non-identical retailers. In such a system, customer 

demand occurs based on a normal distribution at the retailers and propagates backward 

through the system. The warehouse and the retailers have a limited capacity for keeping 

inventory and if they are not able to fulfill the demand immediately, the demand will be lost. 

All the locations review their inventory periodically and replenish their inventory 

spontaneously based on a periodic Randomized Ordering (RO) policy. The RO policy 

determines order quantity of each location in each period by subtracting corresponding on-
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hand inventory at the beginning of that period from a deterministic decision variable. We 

propose a mathematical model to find the optimal RO policies such that an average systemwide 

cost consisting of ordering, holding, shortage, and surplus costs is minimized. We use the first 

and second moments of on-hand inventory as auxiliary variables. A remarkable advantage of 

this model is calculating the immediate fill rate of all locations without adding new variables 

and facing the curse of dimensionality. Using two numerical examples with stationary and non-

stationary demand settings, we validate and evaluate the proposed model. For validation, we 

simulate the optimal RO policy and demonstrate that the optimal first and second moments of 

on-hand inventory from our model reasonably follow the corresponding moments obtained 

through simulation. Furthermore, we evaluate the RO policy by drawing a comparison between 

the optimal RO policy and the optimal well-known      
    

   policy. The results confirm that 

the RO policy could outperform (     ) policy in terms of the average systemwide annual cost. 

 

 Keywords: Multi-echelon inventory system; Periodic review; Randomized ordering policy; 

Stationary and non-stationary demand patterns; Simulation-based optimization  

 

1. Introduction and Brief Literature Review 

A supply chain is a network in which procurement of raw material, transformation of raw 

material to intermediate and finished products, and distribution of finished products to 

customers are performed (Lee and Billington (1993)). In different stages of such networks, 

inventory may be kept in the form of raw material, work-in-process, and finished product to 

confront the uncertainties. In many industries, inventory is the second largest cost after 

production costs (Ertogral and Rahim, 2005). Ganeshan (1999) states a fact that between 20 to 60 

percent of the total assets in a company is assigned to inventory. Therefore, one of the main 

goals of industries might be to find the optimal policies to control inventories such that the 

respective costs are minimized. In other words, to stay competitive in today’s fast changing 

business environment, companies should have an efficient control policy for managing their 

inventories.  

Inventory management has been studied for more than half a century. After developing the 

well-known policy of Economic Order Quantity (EOQ) proposed by Harris (1913) for managing 

inventory in a single echelon inventory system, many researchers and practitioners have 

investigated this issue using different operating policies under various assumptions for single 

and multi-echelon inventory systems.  The study of multi-echelon inventory management dates 

back to the 1960’s, when Clark and Scarf (1960) investigate a two-echelon serial inventory 

system and presented the optimality conditions of         policy. 

Moreover, the study of multi-echelon distribution systems dates back to the 1960’s, when 

Sherbrook (1968) investigated the (     ) policy, called METRIC, for a one warehouse multi-

retailer (OWMR) distribution system. As an extension to Sherbrook’s model, Graves (1985) 



  

proposed an exact expression for the expected value and the variance of unsatisfied orders at the 

retailers under         policy. Afterwards, researchers have studied the OWMR distribution 

system under different settings. We summarize all the relevant work in the literature of the 

OWMR distribution system in Table 1. Although the literature on the OWMR distribution 

systems is rich, there are still some restrictions to be relaxed.  

Figure 1. An OWMR distribution system 

As illustrated in Table 1, the majority of researchers have considered unsatisfied demand as 

backordered demand, while in reality approximately 85% of unsatisfied demand is lost (Bijvank 
and Vis (2011)). Modeling complexity of the lost demand situations is one of the reasons that the 

majority of researchers have considered backordered demand situations which are less realistic 

compared to similar situations with lost demand. Moreover, in a real distribution system, 

retailers may have different characteristics such as demand size, capacity limitation, ordering 
policy, and etc. In this case, dealing with all the retailers in an OWMR system identically is a 

simplifying assumption that makes the problem less realistic. Table 1 shows that this 

simplification has been a common assumption in the literature. Furthermore, considering 

capacity limitation for all the locations (i.e., warehouse and retailers) is not a straightforward 
task.  

Table 1. Literature review on the OWMR distribution system 

In this study, we consider an OWMR distribution system consisting of one-warehouse and   

non-identical retailers as illustrated in Figure 1. In such a system, all locations, i.e., the warehouse 

and all the retailers, monitor their inventory periodically. Customer demand happens just at the 

lowest echelon where the retailers are located. We would like to contribute to the literature of the 

OWMR distribution systems by providing a new mathematical model under the following 

assumptions: 

1) Lost sale situation at all the locations, 

2) Non-identical retailers, 

3) Different capacity limitation for all the locations, 

4) Stationary and non-stationary customer demand patterns, and 

5) A new randomized ordering policy, which is straightforward to implement in reality.   

We were inspired by a model called FP (authors’ initials) model which proposed by Fletcher and 

Ponnambalam (1996) for reservoir management. The FP model is stablished based on the first 

and the second moments of storage as stochastic variables. Mahootchi et al. (2012) applied the FP 

model to a single location inventory system and showed that the extended FP model 

outperforms (   ) policy in terms of the expected annual cost and service level.  In this work, we 

extend the single location model, proposed by Mahootchi et al. (2012), to a two-echelon 

distribution system consisting of one warehouse and multiple non-identical retailers. Based on 

the common definition of the OWMR distribution systems, customer demand occurs just at the 



  

lowest echelon, where retailers are located. Thus, this makes it challenging to apply our model to 

an OWMR system. For instance, it is not clear that what is the best way to transfer demand from 

downstream echelon to the upstream echelon. Or how to estimate the first two moments of on-

hand inventory at the warehouse. Clearly, we face joint probabilities at the upstream echelon and 

calculating cost terms, immediate fill rate, and the first two moments of on-hand inventory 

locations which are located at upstream is not a straightforward task.  

This paper is organized as follows:  Section 2 is dedicated to present the problem definition 

and the respective notations. This section also provides detailed information on finding the first 

and second moments of on-hand inventory, calculating the immediate fill rates, and extending a 

mathematical formulation for the problem. Section 3 presents validation and evaluation of the 

proposed model using two test problems with different demand patterns. Concluding remarks 

are presented in Section 4. 

 

   

  



  

2. Problem Formulation 

2.1. Problem Description and Notations 

This research was conducted based on a capacitated two-echelon distribution system consisting 

of one warehouse and   retailers, in which the warehouse, at the upper echelon, supplies all the 

retailers at the lower echelon, and in turn the retailers supply products to the end customers 

(see Figure 1 for more illustration). The central warehouse receives products from an outside 

supplier with ample stock. We use term location to refer to either the warehouse or a retailer. All 

the locations monitor their inventory, periodically. We use subscript   to indicate the location (0 

is the warehouse and retailers are locations 1 through  ) and superscript   to indicate the 

review period. In each period, the customer demand happens just at the retailers, which is 

independent and normally distributed with mean   
  and standard deviation   

 . Let   
  be the 

demand during period  . At each location, there is a capacity limit   
  that serves as an upper 

limit on the amount of on-hand inventory that can be kept in each period. Let   
  be on-hand 

inventory of location   at the end of period  . Keeping inventory imposes a holding cost   
  per 

item per period. All locations use a periodic randomized ordering policy to take place an order 

equal to   
 . Replenishment decisions take effect instantaneously and there is no replenishment 

lead time. Although we can relax this constraint by assuming that the lead time, l, is a small 

predefined value which is sufficiently less than the respective period, t. It means that the 

optimal order obtained through solving the mathematical model should be performed in t-l to 

be replenished at the end of period t.  Each order incurs a fixed cost   
  regardless of the size of 

the order.  When the order arrives at location   and the location does not have enough space, 

then the additional products should be sold in a secondhand market with price   
  per item, 

which is less than purchase price. In addition, unsatisfied demand is lost and a penalty cost   
  

per item and per time unit should be paid. The goal is to obtain the optimal ordering policies for 

all the locations in the system such that the long-run systemwide annual cost consisting of 

ordering, holding, shortage, and surplus costs is minimized. Without loss of generality, we 

assume that the planning horizon is finite and it is divided into   periods of equal length. 

For more concision, define the following mathematical notations:               ,      

          , and              ,              . Let      be the expectation operation 

and       be the probability density function of random variable  .  

2.2. Randomized Ordering Policy 

In the remainder of this paper, we call a solution   to our problem a policy. Any policy   for the 

problem is represented by a         matrix where each   
  represents the order quantity of 

location   at the beginning of period  . Since the order quantity cannot be a negative number, 

then for all                          ,  we have   
    . The policy   is a periodic ordering 

policy in which the order quantity of each location at the beginning of each period is 

determined by subtracting the on-hand inventory at the end of the previous period from a non-



  

negative number. Then,   
    

    
   , where   

  is a non-negative decision variable. Because 

on-hand inventory at the end of each period   
    is a stochastic variable, then the ordering 

policy   
  is stochastic, as well. Therefore, we call policy   a Randomized Ordering (RO) policy. It 

is well-known that the structure of optimal ordering policies for most multi-echelon stochastic 

inventory systems are either unknown or extremely complex; consequently, it is challenging to 

implement them in practice (Chu and Shen 2010). However, the RO policy is easy to understand 

and to implement in practice.  

2.3. Analysis 

We break down the demand   
  into two parts, the constant part (the mean of demand) and the 

random part (white noise). Then, we can write   
  as  

(1)   
    

    
 , 

where   
  is a zero-mean random normal variable       

  .  Let    
    

   be the probability 

density function of   
 , then  

(2)    
    

   
 

     
 
  
 
 
 
 
  
 

  
  

 

  

All replenishment lead times are assumed to be zero, i.e., ordered products are distributed and 

received instantaneously or lead times are less than considered period interval, t. There are four 

main events during a period, which may occur based on the following order:  

I. At the beginning of each period, the warehouse monitors its on-hand inventory and then 

determines the order quantity from the outside supplier. The retailers, respectively, 

monitor their on-hand inventory and then decide on their order quantities from the 

warehouse.  

II. The products from the outside supplier arrive at the warehouse and the warehouse then 

allocates them to the retailers.  

III. The products from the warehouse arrive at the retailers and the retailers with received 

products, meet customer demands during the period. 

IV. At the end of each period, all the locations should sell their surplus (i.e., more on-hand 

inventory than their capacity limit) in a second market.  

Remark: Since all the locations place their order at the beginning of the period and they have 

information on current available space   
    

   , it is not sensible to order more than     
    

   ; 

otherwise, they have to sell the surplus in the second market with a lower price than purchase 

price. This logic is consistent with the results that we get from optimization in the numerical 

analysis part. Hence, under optimal RO policy the surplus is zero. We are aware of the fact that 

surplus concept in inventory management is not realistic; however, we need this concept for the 

theoretical concept of capacity.   



  

2.3.1. The First Two Moments of On-hand Inventory at Downstream  

We define the dynamics of the on-hand inventory at location   in terms of two consecutive 

periods. Let us introduce   
  which represents the potential on-hand inventory at the end of 

period  . Then we have 

(3)   
    

      
    

  

where   
  is demand during period  ,   

   and    
  are on-hand inventory and order quantity at 

the beginning of period  , respectively.    
  represents the potential on-hand inventory at the 

end of period  . Actually, Expression (3) represents the on-hand inventory at the end of period   

for a situation without capacity constraint. We know   
    

    
    and   

    
    

 . Then we 

can rewrite Expression (3) as follows. 

(4)   
    

    
    

  

After applying the capacity constraint, the on-hand inventory at the end of period   is 

(5)     
     

    
  
 

 

Equivalently, we can write Expression (5) in terms of indicator functions as Expression (6).   

(6) 
  
     

    
    

         
      

     
      

         
   

 

The indicator function of the potential on-hand inventory   
  takes zero or one value according 

to the following conditions: 

(7)       
      

    
                    

    
  

                                
  

(8)           
    

                            
    

                                
  

(9)     
         

    
                            

    
  

                                
  

At the end of each period, at most the value of one of these three indicator functions is one and 

the value of the other two is zero. It means that the potential on-hand inventory at the end of 

each period is either negative (shortage situation), or more than    
  (surplus situation), or 

bounded by zero and   
 .   

Now we can take the expected value of both sides of Expression (6) and apply linearity of 

expectation: 

(10)     
        

    
    

         
      

      
        

         
   , 

Since       
      

       
         

      after raising Expression (6) to the power of two and 

expanding it, we can take the expected value of both sides and apply linearity of expectation: 
 



  

(11)       
           

    
       

    
    

      
           

      
       

  
 
       

         
   . 

As a result, Expressions (10) and (11) represent the first and second moments of on-hand 

inventory at retailer at the end of period  , respectively.  

2.3.2. The First Two Moments of On-hand Inventory at Upstream  

As mentioned before, the customer demand occurs only in the downstream echelon where the 

retailers are located. Hence, there is no direct customer demand for the upstream echelon where 

the warehouse is located. However, the customer demand propagates backwards through the 

distribution network. It means that we should estimate the demand at the warehouse using the 

orders placed by downstream. We investigate the following three alternative ways to estimate 

the demand at the warehouse.   

(12)   
     

 

 

   

  I. 

(13)   
     

 

 

   

   
     II. 

(14)   
     

    
      

 

 

   

  III. 

In the first alternative, we estimate demand at upstream warehouse using the customer demand 

at all downstream retailers. Since the current on-hand inventory of the retailers has not been 

taken into account, this estimation is not comprehensive enough.  In the second alternative, we 

subtract the initial on-hand inventory of all the retailers from the total customer demand. Since, 

the second alternative avoids ordering from warehouse more than the total actual demand, the 

second alternative is more efficient than the first alternative. Knowing that at the end of period 

 , at each retailer the left on-hand inventory is equal to   
 , leads to make a more accurate 

estimation. Therefore, by adding the total left on-hand inventories at the end of the period to the 

second alternative, we will have alternative III.   

We restrict our analysis to the third alternative, which is the most comprehensive estimation for 

demand at upstream echelon. Then, using the same logic, we can derive the potential on-hand 

inventory at the end of period   for the warehouse as fallows. 

  
    

     
    

    
      

 

 

   

              (15) 

Similar to the retailers, we can write Expression (15) in terms of indicator functions. Then, 



  

(16)   
     

     
    

    
      

 

 

   

          
   

     
           

   
          

Now, we can take the expected value of both sides of Expression (16) and apply linearity of 

expectation: 

(17)     
        

     
    

    
      

 

 

   

          
   

      
             

   
       

Also, Since       
   
   

       
      

   
      after raising Expression (16) to the power of two and 

expanding it, we can take the expected value of both sides and apply linearity of expectation: 

     
           

     
    

      
 

 

   

 

 

    
    

     
    

      
 

 

   

 

    
                

       
               

   
                               

(18) 

As a result, Expressions (17) and (18) represent the first and second moments of on-hand 

inventory at the warehouse at the end of period  , respectively.  

From Expression (14) we can derive the mean and variance of demand at warehouse as 

Expressions (19) and (20), respectively.  

(19)   
     

      
         

  

 

   

                       

(20)       
       

  
 
       

           
  

 

   

                       

Preposition 1. The first and second moment of on-inventory of each location (i.e., the warehouse and the 

retailers) at the end of period   can be presented as the following closed-form expressions, respectively. 
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2) 

Proof of Preposition 1. For the proof of this proposition, we refer the reader to Appendixes A 

and B. 

 

2.4. The Immediate Fill Rates 

Here, the product availability at each location throughout the distribution network is calculated. 

We introduce service level as immediate fill rate or “off-the-shelf” concept. In other words, 

immediate fill rate is equivalent to a fraction of requirements met without delay (Lee and 

Billington (1993)). 

Lemma 1: Let   
  be the immediate or “off-the-shelf” fill rate at location   in period  . Then, for all 

         ; and          , 

  
    

 

 

 
 

 

     

 

 
  
    

 

        
  
 

 

 
 

 

           

Proof of Lemma 1. The random variable       is the indicator random variable for event  . 

When   occurs, then        ; otherwise,        .   

                                                            



  

We can use shortage event to calculate the immediate fill rate. Hence   
                

   

  . Based on Appendixes A and B, we can find             
    and             

   , 

respectively. Then, 

  
    

 

 
       

  
    

 

        
  

              



  

2.5. The Total Cost  

The expected systemwide annual cost,     , can be expressed as 

(21)    
 

                                 

where        is the expected systemwide annual ordering cost,        the expected 

systemwide annual holding cost,        the expected systemwide annual shortage cost, and 

       the expected systemwide annual surplus cost. We can express each of these costs as 

follows; 

The expected total annual ordering cost is 

(22)            
 

 

   

 

   

      
      

       

The expected total annual holding cost is 

(23)            
 

 

   

 

   

  
    

         
  

 
  

The expected total annual shortage cost is 

(24)            
 

 

   

 

   

 

  
 
  

      
  

  
   

 
   

    
   

       
   

   
    

  

 
 

 

 
 
     

 

 
  
    

 

        
  
 

 

 

 
 

 

  
 

The expected total annual surplus cost is 

(25)            
 

 

   

 

   

 

  
 
  

      
  

  
   

 
   

     
    

   
 

       
   

   
    

    
  

 

 

 
 
     

 

 
  
     

    
  

        
  

 

 

 

 
 

 

  
 

We have deferred all the corresponding proofs to Appendix C. 

 

3. Numerical Experiments 

In order to examine the validity and effectiveness of our formulation, we have performed a 

numerical study. In total, we consider two different test problems consisting of one warehouse 

and two non-identical retailers. One test problem involves stationary customer demand and the 

other considers non-stationary customer demand. In both test problems, we have an annual 

planning horizon with monthly review periods. Table 2 represents the parameter settings for 

the test problem with stationary demand. Also, Tables 3.1, and 3.2 represent the parameter 

settings for the test problem with non-stationary demand. Note that in the non-stationary 

test problem, the customer demands of the two retailers are different. 
 



  

Table 2. Parameter settings for test problem with stationary demand pattern 

 

Table 3.1. Parameter settings for the test problem with non-stationary demand pattern 

 

Table 3.2. Parameter settings for the test problem with non-stationary demand pattern 

As it is obvious, the proposed optimization model is non-convex, and therefore it is sensitive to 

initial solutions. Thus, the respective optimization process is implemented multiple times using 

different initial solutions. The best solution in terms of minimal optimal cost is selected for the 

verification step. The optimal values of   
  for all locations and periods are demonstrated in 

Tables 4 and 5 for both test problems. 

Table 4. The optimal values of   
  for each location in the test problem with non-stationary demand 

Table 5. The optimal values of   
  for each location in the test problem with stationary demand 

 

3.1. The Validation of the Optimal RO Policy  

For each test problem, we find the best RO policy for each location based on our model. We also 

obtain the expected value and standard deviation of on-hand inventory at all location. The 

accuracy of our formulation is then evaluated by simulation. We run a simulation for 96000 

periods (8000 years), in which the obtained RO policies from our model are used. The process is 

performed for both demand patterns and the respective results are illustrated in Figures 2 and 

3.  

Figure 2. The comparison of     
   and        

   from the optimization and the simulation for stationary demand 

In Figures 2 and 3, we draw a comparison between the proposed model and simulation for the 

test problems with stationary and non-stationary demand patterns, respectively.  As it is clear in 

Figures 2 and 3, the proposed model is capable of estimating the various inventory statistics of 

all the locations in the OWMR distribution system for both the stationary and the non-

stationary demand patterns, because the results of optimization and simulation are close to each 

other. As can be expected, the results are more accurate for expected values than standard 

deviations. These results also confirm that our approximations and estimations are quite 

effective leading to an efficient RO policy.  

Figure 3. The comparison of     
   and        

   from the optimization and the simulation for non-stationary demand 

The model can be validated by the average annual cost as well. This measurement criterion can 

be obtained using the following equation (Seifbarghy and Jokar, 2006): 



  

(26)   
                   

        
 

As it is demonstrated in Table 6, the errors for both stationary and non-stationary are quite 

reasonable which could be promising for managing other type of inventory system with more 

echelons and different configurations (e.g., parallel inventory structure and lateral shipment). 

Table 6. Comparison of results obtained from optimization and simulation models 

 

 

3.2. Evaluation of the RO policy  

The performance of our proposed optimization model, which results in a periodic policy with 

the review period (   ), could be evaluated using some classical policies such as the (     ) 

policy with     in which the system is reviewed periodically. If the inventory position is at or 

below  , an order should be placed to bring the inventory position up to level  . Otherwise, no 

orders should be placed. 

Unfortunately, there is no exact method in the literature to find the optimal parameters of 

(     ) where the unsatisfied demand is lost. A good approximate method to find the optimal 

parameters of (     ) where the unsatisfied demand is backordered was presented by 

Schneider & Rink (1991), and Schneider et al. (1995).  Here, an iterative approximation method 

is developed for the lost sale situation. The initial solution obtained from Schneider et al. (1995) 

algorithm is also used as an initial solution to implement the proposed iterative method for 

finding the parameters of the policy. This iterative method consists of two main phases: 

simulation and optimization. In the simulation phase, the current policy is evaluated by 

calculating the average annual cost, while in the optimization phase the current policy should 

be improved. We use the Matlab© optimization toolbox which is a derivative-based 

optimization algorithm, called Matlab "Fmincon" function, to generate new policies at each 

iteration. This process should be continued until a stop criterion is satisfied. The graphical view 

of the developed algorithm is demonstrated in Figure 4. 

 

Figure 4. An iterative simulation-based optimization 

In this method, the order quantity based on (     ) policy is determined by     and     

functions as Expression (27). 

(27)   
              

      
        

    
                        

where   
  is order quantity of location   in period  . 

The results of the optimal RO and (    
    

 )  policies for both test problems are provided in 

Table 7. We indicate the optimal RO policy by    policy. 

 



  

 

Table 7. Comparison of the optimal (R,  
 ,  

 ) and    policies 

As demonstrated in table 7, the RO policy is superior for both test problems.  

4. Conclusion  

In this paper, we propose a new formulation for controlling inventory in a two-echelon 

distribution system consisting of one warehouse and multiple non-identical retailers called 

OWMR system. In such systems, customer demands occur based on a normal distribution at the 

lowest echelon, where the retailers are located, and propagates backward through the system. 

The warehouse and the retailers have a limited capacity for keeping inventory and if they are 

not able to fulfill the demand immediately, the demand will be lost. All the locations review 

their inventory periodically and replenish their inventory spontaneously or within a small 

interval based on a periodic Randomized Ordering (RO) policy. The RO policy determines 

order quantity of each location in each period by subtracting corresponding on-hand inventory 

at the beginning of that period from a deterministic decision variable. We propose a 

mathematical model to find the optimal RO policies such that the average systemwide cost 

consisting of ordering, holding, shortage, and surplus costs is minimized. We use the first and 

second moments of on-hand inventory as auxiliary variables. A remarkable advantage of our 

model is calculating the immediate fill rate of all locations without adding new variables and 

facing the curse of dimensionality. 

Using two numerical examples with stationary and non-stationary demand settings, we 

validate and evaluate the proposed model. For the validation, we simulate the optimal RO 

policy and show that the optimal first and second moments of on-hand inventory from our 

model suitably follow the corresponding moments from simulation. Furthermore, we evaluate 

the RO policy by drawing a comparison between the optimal RO policy and the optimal well-

known      
    

   policy. The results demonstrate that the RO policy outperforms (     ) policy 

in terms of the average systemwide annual cost. 
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Appendix 

Appendix A. Downstream Echelon (Retailers) 

Appendix A.1. Calculation of           
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Knowing that the error function is defined as;        
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In a similar way, we can calculate the following terms.  

            
        

          
    

    
          

    
  

  
    

 

  

   
  

 

 

 

 
 
     

 

 
  
    

 

        
  
 

 

 

 
 
   

               
        

    
        

     
    

     
          

    
  

  

  
     

    
  

   
  

 

 

 

 
 
     

 

 
  
     

    
  

        
  

 

 

 

 
 

 

Appendix A.2. Calculation of     
              

    and      
                

    



  

Similar to the calculation of         
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Appendix B. Upstream Echelon (Warehouse) 

Appendix B.1. Calculation of individual           
   , (upstream echelon) 

              
          

    
         

     
    

      
 

 

   

   
    

  

          
    

    
        

 
  
     

     
    

      
  

    

   
    

      
  

      
 

 
 

 
 

 

Where       
    

     
   and        

        
   is a joint probability density function of the total demand in 

downstream as well as on-hand inventory of all the retailers at the beginning and the end of period  . 

Clearly, the total demand in downstream is independent of total on-hand inventory in downstream at the 

beginning of the period. For simplification, we assume that the total demand in downstream is 

independent of total on-hand inventory in downstream at the end of the period. Therefore, based on the 

aforementioned independencies, we can write  

              
          

    
  

  
     

     
    

      
  

    

   
    

      
  

      
 

   
  

 
 

 
 

     
     

        
    

      
 

 

   

   
    

    
     

     
    

      
 

 

   

                 

Using Tylor’s series first order approximation about       , we generate approximations of Equation    , 

as below.  

              
         

    
      

 

 

   

   
    

     
    

   

 

   

   
     

     
 

 

   

  

      
      

         
  

 

   

   
    

    
     

     
      

         
  

 

   

   

 

By putting 

  
     

      
         

 

 

   

                     
      

        
           

 

 

   

  

  Then we can write down               
    as the following closed-form expression. 



  

              
        

    
    

    
     

    
    

 

 
     

  
     

    
  

        
  

      
  
    

 

        
  
   

In a similar way, we can calculate the following terms; 

               
        

    
   

 

 
       

  
     

    
  

        
  

   

             
        

     
 

 
       

  
    

 

        
  
   

Appendix B.2. Calculation of     
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    we can calculate     
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follows; 

    
              

      
      

  

  
   

 
   

    
   

       
        

 
   

     
    

   
 

       
    

     
                

   

   
      

  

  
      

    
   

 
   

    
   

       
          

     
    

    
 
   

     
    

   
 

       
   

  
      

  

 
      

  
     

    
  

        
  

      
  
    

 

        
  
   

Appendix C. Calculation of the Expected Annual Cost 

Appendix C.1. Expected Fixed Ordering Cost 

We calculate the expected fixed ordering cost of location   in period   by the following expression  
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Appendix C.2. Expected Holding Cost 

We calculate the expected holding cost of location   in period   by taking the arithmetic mean of the 

expected on-hand inventory at the beginning      
      and at the end of the period      

   . Thus, we can 

write 

           
 

 

   

 

   

  
    

         
  

 
   

Appendix C.3. Expected Shortage Cost 



  

Recall that    
    represents shortage situation and      

   represents the amount of the shortage. 

Then, the expected shortage cost of location   in period   is equal to   
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Appendix C.3. Expected Surplus Cost 

When   
    

 , we are in surplus situation and the amount of the surplus is equal to    
    

  . Thus, the 

expected surplus cost of location   in period   is equal to   
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Figure 1. An OWMR distribution system 

 

 

 
   

 

 

 
   

 

 

 

Figure 2. The comparison of     
   and        

   from the optimization and the simulation for stationary demand 

 

 

 

 
   



  

 

 

 
   

 

 

 

Figure 3. The comparison of     
   and        

   from the optimization and the simulation for non-stationary demand 
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Figure 4. An Iterative simulation-based optimization 

 

  



  

Table 1. Literature review on the OWMR distribution system 

Authors Demand type Ordering policy Shortage Review Retailers 
Sherbrook (1968) Poisson         B C I 

Graves (1985) C. Poisson         B C I 

Schwarz et al (1985) Poisson       B C I 

Park and Kim (1989) Normal (   )/(   ) B C/P I 

Axsater (1990) Poisson         B C I 

Schneider and Rinks (1991) Stochastic       B P I 

Axsater (1993) Poisson       B C I 

McGavin et al. (1993) Poisson / Gamma Two-interval L P I 

Schneider et al. (1995) Stochastic       B P I 

Graves (1996) Poisson         B C I 

Axsater (1998) Poisson       B C N 

Ganeshan (1999) Poisson       B C I 

Cachon and Fisher (2000) Stochastic        B C I 

Andersson and Melchiors (2001) Poisson         B / L C I 

Cachon (2001a) Poisson       B C N 

Cachon (2001b) Stochastic        B C I 

Axater (2003) C Poisson       B C I 

Akbari Jokar and Seifbarghy (2006) Normal       B / L C I 

Seifbarghy and Akbari Jokar (2006) Poisson       B / L C I 

van Houtum (2006) Stochastic         B P I 

Al-Rifai and Rossetti (2007) Poisson       B C I 

Axsater et al. (2007) C. Poisson       B C I 

Gallego et al. (2007) Poisson / C. Poisson         B C I / N 

Hill et al. (2007) Poisson             L C I / N 

Monthatipkul and Yenradee (2008) Stochastic IDP L P I 

Haji et al. (2009) Poisson         L C N 

Chu and Shen (2010) Stochastic Power-of-two B P N 

Geng et al. (2010) Stochastic Up-to-level L P I / N 

Duc et al. (2010) Stochastic Up-to-level B P I 

Lee and Jeong (2010) Deterministic Power-of-two None P I 

Atan and Snyder (2012) Deterministic         B P I / N 

Yang et al. (2012) Deterministic Batch size B P I 

Basten and van Houtum (2013) Poisson         B C I 

Wang (2013) Poisson Up-to-level B P I 

Berling and Marklund (2014) Normal / C. Poisson        B C I 

Howard et al. (2015) Poisson         B / L C I / N 

Mateen et al (2015) Normal Up-to-level B P I 

Gayon et al. (2016) Deterministic JRP B / L P I 

Stenius et al. (2016) C. Poisson        B C I 

Feng et al. (2017) Stochastic Up-to-level L P I 

Turan et al. (2017) Stochastic Batch size L - I 

Verma  and Chatterjee (2017) Deterministic Batch size None P N 

C. Poisson: compound Poisson;   L: lost sale;   B: backorder;   C: continuous;   P: periodic;   I: identical;   N: non-identical 

 

 

 

 



  

Table 2. Parameter settings for test problem with stationary demand pattern 

  

 

 

0 

 

1 
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  - N(200, 900) N(200, 900) 

  
 

 1000 500 500 
  
 

 900 750 750 
  
 

 2 4 4 
  
 

 50 50 50 
  
 

 40 40 40 
  
  100 100 100 

 

Table 3.1. Parameter settings for the test problem with non-stationary demand pattern 

  

 

 

0 

 

1 

 

2 

   
  2000 1000 1000 

  
 

 500 400 400 
  
 

 80 50 50 
  
  1000 500 100 

 

Table 3.2. Parameter settings for the test problem with non-stationary demand pattern 

  t 1 2 3 4 5 6 7 8 9 10 11 12 

  
  0.2 0.2 0.2 0.6 0.6 0.6 0.2 0.2 0.2 0.1 0.1 0.1 

  
  1 1 1 2 2 2 6 6 6 2 2 2

 

  
  120 150 120 200 260 270 200 200 100 150 200 100 

   
    480 600 480 800 1040 1080 800 800 400 600 800 400 

  
 

 3 3 3 7 7 7 2 2 2 2 2 2 

  
 

 
3 3 3 7 7 7 2 2 2 2 2 2 

  
  150 300 100 200 200 270 200 300 150 150 200 100 

   
    600 1200 400 800 800 10080 800 1200 600 600 800 400 

  
 

 3 3 3 7 7 7 2 2 2 2 2 2 

  
 

 
3 3 3 7 7 7 2 2 2 2 2 2 

 

Table 4. The optimal   
  for each location in test problem with non-stationary demand 

               1 2 3 4 5 6 7 8 9 10 11 12 

    210.4 802.3 157.9 306.8 302.0 498.4 412.2 501.5 202.2 290.3 421.0 166.8 

    154.0 189.2 149.6 232.7 297.3 315.3 250.3 250.1 135.3 193.3 249.8 141.5 

    188.0 353.5 127.0 233.2 232.6 315.6 250.7 359.9 193.4 193.4 249.7 141.5 

  

 

 

 



  

Table 5. The optimal   
  for each location in test problem with stationary demand 

               1 2 3 4 5 6 7 8 9 10 11 12 

    374.3 379.1 381.2 369.2 393.7 364.5 698.8 364.9 382.5 379.7 378.7 359.8 

    245.2 244.0 240.0 252.5 241.4 247.7 239.6 242.6 242.6 242.9 236.3 361.0 

    194.6 193.1 189.8 502.7 191.1 198.6 189.3 191.3 193.0 193.0 187.8 235.3 

 

Table 6. Comparison of results obtained from optimization and simulation models 

 
Model type 

test problem with 

 stationary demand 

test problem with  

non-stationary demand 

      
Optimization 36453.0 19464.2 

Simulation 36009.0 19401.0 

  0.012  0.03  

 

Table 7. Comparison of the optimal (R,  
 ,  

 ) and    policies 

 non-stationary demand stationary demand  

     (R,  
 ,  

 )       (R,  
 ,  

 )  Optimal ordering policy 

19464.2 26498.0 36453.0 39744.6 Total average cost 

      Dominant policy 

 

 

 

  



  

Highlights: 

 

1- A new formulation is proposed for controlling inventory in a two-echelon distribution 

system consisting of one warehouse and multiple non-identical retailers. 

2- A periodic randomized ordering (RO) policy is extended to manage the inventory in a 

one warehouse and multiple retailers (OWMR) configuration subject to the following 

assumptions: 

 

 considering capacity limitation for all locations, 

 considering lost-sale situation instead of backorder, 

 considering stationary and non-stationary demand patterns, 

 considering identical and non-identical retailers. 

 

3- The immediate fill rate of all locations are obtained without adding new variables and 

facing the curse of dimensionality. 

 

 


