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Abstract

This dissertation is a collection of works on different topics based on holographic dualities. The

dualities studied here are the Kerr/CFT and AdS/CFT correspondence and the researches carried on

aim to check their robustness for some particular theories of gravity.

We first demonstrate that the Kerr/CFT duality can be extended to superentropic black holes,

which have non-compact horizons with finite area. The duality is robust as the near horizon limit

of these black holes commutes with their ultraspinning limit. We notice that the duality holds as

well for both the singly-spinning superentropic black holes in four dimensions and the double-spinning

superentropic black holes of gauged supergravity in five dimensions.

Second, we test the AdS/CFT duality in Lovelock gravity theories or higher curvature theories of

gravity in which we investigate the holographic Smarr relation beyond the large N limit. By making

use of the holographic dictionary, we obtain a holographic equation of state in the conformal field

theories (CFTs) dual to AdS spacetimes. We check the validity of this equation of state for a variety

of non-trivial black holes including rotating planar black holes in Gauss-Bonnet-Born-Infeld gravity

and non-extremal rotating black holes in minimal 5d gauged supergravity.

In the remaining part of this dissertation we return to investigate AdS/CFT duality, but now focus

on computational complexities defined in the CFTs dual to AdS black holes.

The first one is the volume-complexity, which consists in a duality between a quantum information

metric or Bures metric in a (d + 1)- dimension CFT and the volume of a maximum time slice in the

dual (d+ 2)- dimension AdS spacetime. We examine specific cases of black holes such as the Banados-

Teitelboim-Zanelli (BTZ) and the planar Schwarzschild-AdS black holes in (d+ 2)- dimensions, along

with their geon counterparts. Geons being quotient spaces of AdS black holes obtained from the

identification of the left and right boundaries of their conformal diagrams. We find that the proposed

duality relation remains the same for the geon space with a topological factor of 4.

The second one is the action-complexity, which conjectures a duality between the action of an AdS

bulk evaluated on a Wheeler-De Witt (WDW) patch and a CFT computational complexity providing

a measure of the minimum number of gates necessary to reach a target state from a reference state.

We compute the dependence of the CFT complexity on a boundary temporal parameter (time) and

find that its variation with time is commensurate with the rate of change of the bulk action on the

WDW patch. We remark that the action-complexity duality holds for the geons associated to these

black holes (with a topological factor up to 4) as well.
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Chapter 1

Introduction

The holographic principle, as a principle of string theory, states that a description of physics in the

volume of a region of space is encoded on a lower-dimensional boundary (such as a gravitational horizon

or an asymptotic region) of this region.

The principle was first proposed by ’t Hooft and was later reformulated by Susskind, where he

brought new ideas to ’t Hooft and Thorn’s previous works [1, 2]. In his work, Thorn observed that

gravity emerges in a holographic way from a lower-dimension description of string theory.

The holographic principle has also been inspired by black hole thermodynamics in which it is

conjectured that the maximal entropy in a given region scales as the square of the radius of that

region. In fact, following Hawking’s theorems [3], Bekenstein thought of black holes as maximum

entropy objects, i.e. objects that contain more entropy than any other object of the same volume [4].

In his work an upper bound was put on the entropy in a given region of space and that bound was

proportional to the area of that region. He thus realized that the entropy of a black hole is proportional

to the area of its event horizon. This entropy is also referred to as the Bekeinstein-Hawking entropy.

In the black hole context, the information content of an object falling into the black hole is retrieved

in surface fluctuations of the event horizon. This feature implies that the black hole information

paradox finds an answer in the framework of string theory [5]. The aforementioned papers on the

holographic principle or dualities were landmarks that spurred numerous investigations in the field.

Later, Brown and Henneaux proved that the asymptotic symmetry of a 2 + 1 gravitation theory

gives rise to a Virasoro algebra, whose two dimensional conformal field theory is the corresponding

quantum theory. Their work laid the foundation that has led to the Kerr/CFT duality which will be

discussed in detail later in this chapter.
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The greatest realization so far of the holographic principle is the AdS/CFT correspondence intro-

duced by Maldacena [6]. The AdS/CFT correpsondence or gauge/gravity duality, is a conjectured

duality between an Anti-de Sitter space in d+ 1 dimensions and a conformal field theory in d dimen-

sions in its boundary. It cannot be overlooked in the understanding of string theory (and quantum

gravity) because it provides a non-perturbative formulation of string theory. It also provides useful

material in the study of strongly coupled quantum field theories.

This duality is very useful as it represents a strong-weak duality, which means that the fields in the

quantum field theory are strongly coupled while the ones in the dual gravitational theory are weakly

coupled. This consideration implies that the fields in the gravitational theory are more mathematically

tractable. The fact of translating problems into a more mathematically tractable form in string theory

is a trick used in several aspects of other fields of theoretical physics such as condensed matter physics.

Many examples of the AdS/CFT correspondence have been proposed and the most famous of them

states that [6] “A type IIB string theory in (AdS5 × S5)N plus some appropriate boundary conditions

(and possibly also some boundary degree of freedom) is dual to N = 4 d = 3 + 1 U(N) super

Yang-Mills theory”. The subindex indicates the dependence of the radius of the AdS on N . Another

example of the correspondence states that [6] “A (0,2) conformal field theory is dual to M-theory on

(AdS7 × S4)N”.

As stated earlier in this chapter, for holographic dualities in general, the AdS/CFT correspondence

solves the black hole information paradox, to some extent, as it shows the evolution of a black hole

in a fashion that is consistent with quantum mechanics. In fact, in the context of the AdS/CFT

correspondence black holes are equivalent to a configuration of particles in the dual conformal field

theory. Since these particles are subject to the laws of quantum mechanics and thus evolve in a unitary

way, the black hole has to evolve in a unitary way as well.

The main weakness of the AdS/CFT correspondence resides in the fact that most of the black

holes considered are physically unrealistic, since most of the versions of the correspondence involve

high dimension spacetimes with unphysical supersymmetry [6, 7].

In [8] M. Guica et.al. proposed another form of holographic duality known as the Kerr/CFT

correspondence, which was a step towards understanding astrophysical black holes. The Kerr/CFT

correspondence applies to black holes that can be approximated to extreme Kerr black holes, i.e.

black holes with the largest possible angular momentum that is compatible with their mass. The

correspondence posits an equality relation between the Bekenstein-Hawking entropy of a Kerr black

hole and the Cardy entropy of a two-dimensional chiral field theory near its horizon [8].

In the past two decades many fields of theoretical physics have been orientated towards holographic
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dualities. These dualities establish equivalence relations between observables existing in a theory of

gravity and those in its dual field theory. In other words, the dynamics of observables defined in a field

theory can tell us about the way their corresponding observables in a dual gravitational theory evolve

and vice-versa. This fact is of tremendous interest as it becomes possible to get enough information

on the dynamics of a theory of gravity just by investigating some observables associated with its dual

field theory. This actually makes the field of holographic dualities very interesting and appealing.

This dissertation concentrates on providing additional theoretical evidence pertinent to the holo-

graphic principle. We extend these holographic dualities to new classes of black holes and gravitation

theories. These new classes of black holes include super-entropic black holes (or ultraspinning Kerr-

AdS-like black holes) and AdS quotient spaces known as geons. Their study provides new information

about holographic dualities since they have particular topologies that can either modify the form of

(or perhaps even prevent) holographic dualities or provide more evidence for their robustness.

In chapter 3, we study the Kerr/CFT correspondence for a new class of black holes referred to as

super-entropic black holes, which are new ultraspinning limits of Kerr-AdS black holes, in which the

rotation parameter a approaches the AdS radius l. Emparan and Myers [9] studied ultraspinning black

holes in the large angular momentum limit [10]. But this new class of four dimensional rotating black

hole solutions were elaborated in [11, 12] for both N = 2 gauged supergravity coupled to a vector

multiplet and Einstein-Maxwell-Λ theory. These black holes have the characteristic that their horizons

are non-compact but have finite area. Topologically the event horizon is a sphere with two punctures.

This feature provides a broader range of possible horizon topologies than what was previously thought.

Because of the features that characterize these black holes, an interesting question we investigate

concerns the existence of the Kerr/CFT correspondence near their horizons. Can the presence of the

punctures prevent them from exhibiting the Kerr/CFT correspondence when taking the near horizon

limit?

In chapter 4, we test the robustness of one of these holographic dualities namely, the AdS/CFT

correspondence in higher order curvature theories or Lovelock theories. A Lovelock theory of gravity

is a generalisation of Einstein’s general relativity to higher dimensions introduced by David Lovelock

[13]. This class of theories is said to resemble string-theory-inspired models of gravity because the

action contains, among others, a quadratic Gauss-Bonnet term. This quadratic term is present in

the low energy effective action of the heterotic string theory, and also in six dimensional Calabi-

Yau compactification of M-theory [14]. Despite being quadratic, the Gauss-Bonnet actions leads to

differential equations of second order and has the property of being ghost-free [15]. These considerations

make this class of theories interesting (as opposed to arbitrary higher-curvature theories of gravity).
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Basically, Lovelock theories of gravity appear to be useful in understanding how a theory of gravity

is corrected at short distances due to the presence of higher order curvature terms in their action. This

theory has also been considered as a testing ground to study the effects of introducing higher-curvature

terms in the context of AdS/CFT correspondence.

Now turning into what drives our attention, it is known that the introduction of the cosmological

constant as pressure (along with an associated volume) has led to the extension of the thermodynamic

phase space in the domain of black hole thermodynamics. The two new variables have led to the

realization that black holes can exhibit diverse phase behaviour comparable to those observed in gases,

superfluids and so on [16, 17, 18, 19, 20]. In fact, it has been found in black holes new phase behaviour

such as those seen in gels and polymers as well as triple points such as those observed in water. It was

also noticed that black holes in general are analogous to Van der Waals superfluids. The aforementioned

features have given rise to an emerging field known as black hole chemistry [21].

Since the introduction of a negative cosmological constant has in a certain way led to the holographic

depiction of black holes as systems dual to those in conformal field theories [6, 22, 23], it is of interest

to see how the variety of phase behaviours observed in black holes [21] is manifest in the dual field

theories.

In [24] the question of what the implications of black hole chemistry would be on the variables

in the boundary field theory of an AdS space has been studied. A holographic Smarr relation was

established in Einstein gravity via a holographic dictionary. The thermodynamic first law combined

with the Smarr relation in the bulk correspond to an equation of state in the boundary conformal field

theory.

In chapter 4, we aim to establish a holographic Smarr relation in the context of Lovelock gravity

by extending the holographic dictionary in order to include higher-order curvature contributions. We

shall also check the validity of the equation of state for some cases of Lovelock theories or black holes.

Prior to moving to the content of the next chapter we recall some important points on holographic

dualities. Dual connections between entanglement and geometry is a topic that researchers from many

fields of theoretical physics have been working on in recent years [25, 26, 27, 28, 29, 30]. Eternal AdS

black holes are known to be dual to the thermofield double (TFD) state, which is a state that entangles

two copies of the CFTs defined on the AdS boundaries. These copies of the CFTs are connected by a

wormhole or a Einstein-Rosen-Bridge (ERB). Since the boundary field reaches thermal equilibrium in

a (short) time that is of the order of the thermalization time β = 1/T (due certainly to entanglement),

whereas the ERB grows on a much larger time [31] , it implies that there must exist some quantities

in the field theory that evolve even after thermal equilibrium has been reached [32, 33].
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These hypotheses led Susskind to think of a holographic complexity as a quantity in the boundary

CFT whose the growth is equivalent to the evolution of the ERB [34, 35, 36]. Along with his collabo-

rators, he proposed two new quantities in a theory of gravity that both follow the growth of the ERB

at late time.

The first one is the volume-complexity, which states that the complexity of a state in the boundary

CFT is proportional to a maximal volume of a time slice connecting the boundaries (CFTs) [31, 34].

The second one is the action complexity, in which a computational complexity of the boundary state

is identified to the gravitational action evaluated in a particular region of the bulk referred to as the

Wheeler-De Witt (WDW) patch [37, 38]. But questions still remain regarding the interpretation of

these complexities in the boundary CFT.

In chapter 5, we study the volume-complexity conjecture based on the work done by Miyaji et al

[39] in which they introduced the CFT complexity as a quantity called the information metric or Bures

metric. The information metric is defined as the fidelity susceptibility of a state in the CFT. Indeed,

a marginal deformation was performed on the state and the scalar product between the state and its

deformation led to the fidelity susceptibility. It appeared that the late time growth of the information

metric was proportional to the one of the gravitational volume-complexity.

We probe this conjecture in chapter 5 by considering quotient spaces of AdS black holes called geons.

Geons are obtained through the identification of the two sides of the conformal diagram of eternal

AdS black holes. We compute the CFT volume-complexity of the geons along with its gravitational

counterpart and thus check the robustness of the conjecture for the geon case.

Moving from understanding the nature of a computational complexity in the CFT dual to a

codimension-one volume (volume) in the bulk, more recent work has suggested a deeper relationship

between CFT complexity and the bulk spacetime [37, 38] that we explore in chapter 6. Here we extend

our investigations of holographic complexity by considering the time-dependent action-complexity in

the CFT. This quantity was introduced as a measure of the minimum number of operations necessary

to approximate a unitary operator between a reference and target states of the CFT. We propose a

time-dependent action-complexity in the CFT whose the growth at late time is proportional to the

one associated to the gravitational action-complexity. We verify the conjecture for the geons case as

well.

In chapter 7, we summarize the most important results of this thesis and give some directions for

future work.
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Chapter 2

Some important background

This chapter is mainly intended to provide a brief background on conformal field theories as they play

a central role in the elaboration and understanding of what will follow in the present dissertation.

We shall start with the definition of a conformal transformation, then derive the conformal group

in d dimensions and finally study how a field theory transforms under a conformal map. We shall

also review the conformal invariance in d = 2 as this particular case is the smallest one and finds

applications in quantum field and string theories. In the context of the current work d = 2 conformal

field theories are connected to theories of gravity.

To end the chapter, we shall briefly review holographic dualities, the Kerr/CFT and AdS/CFT

correspondences as they are the ones which matter the most in this work, while insisting more on the

conformal field theory side. A short review on black hole chemistry shall appear as well.

2.1 Conformal transformation and global conformal invariance

A conformal transformation is defined as a map: x → x
′

mapping a point x to another x
′

and under

which the metric tensor transforms as [40]

g
′

µν(x
′
) = Λ(x)gµν . (2.1)

From (2.1) we can infer that more generally a transformation is said to be conformal if it does not

affect the angle between two arbitrary directions.

A conformal transformation can be locally thought of as a (pseudo) rotation and a dilation. The

set of conformal transformations forms a group which admits the Poincare group as a subgroup. The
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Poincare group corresponds to (Λ(x) = 1) in (2.1). In d dimensions the conformal group is identified

with the non-compact group SO(1, d+ 1).

Let us consider an infinitesimal transformation defined as

xµ → x
′µ = xµ + εµ(x) (2.2)

where εµ(x) is the parameter of the transformation such that the metric under this transformation

changes as

gµν → gµν − (∂µεν + ∂νεµ). (2.3)

In order that (2.3) be conformal, it must obey the condition

∂µεν + ∂νεµ = f(x)gµν (2.4)

with f(x) a function determined by

f(x) =
2

d
∂µε

µ. (2.5)

For the sake of simplicity, we assume that a conformal transformation is an infinitesimal deformation

of the metric

gµν = ηµν (2.6)

where ηµν = diag(−1, 1, ..., 1).

Appying a derivation on (2.4), then permuting indices and taking linear combinations, we have

∂µ∂νερ = ηµρ∂νf + ηνρ∂µf − ηµν∂ρf. (2.7)

After tracing the above equation over µ, ν

2∂2εµ = (2− d)∂µf (2.8)

and using (2.5), it follows

(2− d)∂µ∂νf = ηµν∂
2f. (2.9)

Hence

(d− 1)∂2f = 0. (2.10)

From (2.8) and (2.9), we get

∂µ∂νf = 0. (2.11)

The above equation is solved by the function

f(x) = A+Bµx
µ (2.12)

7



A and Bµ are constants.

Making use of (2.11) and (2.12) it results that the parameter of the conformal transformation obeys

∂µ∂νερ = C (2.13)

with C a constant. This leads to the expression

εµ = aµ + bµνx
ν + cµνρx

νxρ. (2.14)

A particular form of (2.14) gives rise to the infinitesimal transformation

x
′µ = xµ + 2(x.b)xµ − bµx2 (bµ constant) (2.15)

which is known as the special conformal transformation (SCT).

The different possible infinitesimal transformations we can generate are

x
′µ = xµ + aµ

x
′µ = αxµ

x
′µ = Mµ

ν x
ν

x
′µ =

xµ − bµx2

1− 2b.x+ b2x2
(2.16)

and correspond to the translation, dilation, rigid rotation and SCT respectively. The SCT in the last

line of (2.16) corresponds to the composition of an inversion (xµ → xµ

x2 ), a translation (x
µ

x2 → xµ

x2 − bµ)

and another inversion (x
µ

x2 − bµ → xµ−bµx2

1−2b.x+b2x2 ). For an infinitesimal parameter bµ (2.16) is equivalent

to (2.15).

These infinitesimal transformations are generated by the operators

Pµ = −i∂µ

D = −ixµ∂µ

Lµν = i(xµ∂ν − xν∂µ)

Kµ = −i(2xµxν∂ν − x2∂µ) (2.17)

which correspond to the translation, dilation, rigid rotation and SCT generators respectively. These
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operators obey the commutation rules given by[
D,Pµ

]
= iPµ[

D,Kµ

]
= −iKµ[

Kµ, Pν
]

= 2i(ηµνD − Lµν)[
Kρ, Lµν

]
= i(ηρµKν − ηρνKµ)[

Pρ, Lµν
]

= i(ηρµPν − ηρνPµ)[
Lµν , Lρσ

]
= i(ηνρLµσ + ηνσLνρ − ηµρLνσ − ηνσLµσ). (2.18)

The next step of this chapter consists in the construction of conformal invariants. To this end, we

consider functions Γ(xi) of N points xi that are left unchanged under all types of conformal transfor-

mations.

First, imposing translation and rotation invariance implies that any function Γ(xi) can depend only

on distances |xi − xj |. Scale invariance then implies that only ratios of distances, such as

|xi − xj |
|xk − xl|

are physically meaningful. Under SCT the distances |xi − xj | becomes

|x
′

i − x
′

j | =
|xi − xj |

(1− 2b.xi + b2x2
i )

1/2(1− 2b.xj + b2x2
j )

1/2
.

As we can clear see the functions
|xi−xj |
|xk−xl| are not invariant under SCT.

Thus, we are led to the conclusion that it is impossible to construct an invariant function Γ(xi)

with only 2 or 3 points and the simplest possibilities are the functions of 4 points

|x1 − x2||x3 − x4|
|x1 − x3||x2 − x4|

|x1 − x2||x3 − x4|
|x2 − x3||x1 − x4|

.

These expressions are known as anharmonic ratios or cross-ratios. For N distinct points there exist

N(N − 3)/2 independent ratios.

2.2 Conformal invariance in field theory

Here we review some basic notions on how a field theory transforms under conformal transformations

and its implications on quantities such as the two-point functions.

Under a conformal transformation x→ x
′
, a spinless field transforms as [40]

Φ(x)→ Φ
′
(x
′
) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆/d

Φ(x) (2.19)

9



with ∆ the scaling dimension, d the dimension of the spacetime and |∂x′/∂x| the Jacobian of the

conformal transformation of coordinates. A field transforming like (2.19) is called quasi-primary. We

infer that ∣∣∣∣∂x′∂x

∣∣∣∣ = Λ(x)−d/2 (2.20)

with Λ(x) introduced in (2.1).

Focusing now on quantum field theories, in which we define the two-point function of two fields

Φ1(x1) at the point x1 and Φ2(x2) at x2 is

〈Φ1(x1)Φ2(x2)〉 =
1

Z

∫
[dΦ]Φ1(x1)Φ2(x2) exp[−S[Φ]] (2.21)

where Z is the partition function, Φ1(x1) and Φ2(x2) are quasi-primary fields, Φ the set of all func-

tionally independent fields in the theory and S[Φ] the action, which we assume to be conformally

invariant.

Under a conformal transformation, the two-point function (2.21) transforms as

〈Φ1(x1)Φ2(x2)〉 =

∣∣∣∣∂x′∂x

∣∣∣∣−∆1/d

x=x1

∣∣∣∣∂x′∂x

∣∣∣∣−∆2/d

x=x2

〈Φ1(x
′

1)Φ2(x
′

2)〉. (2.22)

The scale transformation (x→ λx) invariance puts (2.22) into the form

〈Φ1(x1)Φ2(x2)〉 = λ∆1+∆2〈Φ1(λx1)Φ2(λx2)〉 (2.23)

Rotation and translation invariances gives to the two-point function the form

〈Φ1(x1)Φ2(x2)〉 = f(|x1 − x2|) (2.24)

where f(x) = λ∆1+∆2f(λx). Equation (2.24) can also be expressed as

〈Φ1(x1)Φ2(x2)〉 =
C12

|x1 − x2|∆1+∆2
(2.25)

with C12 constant coefficient.

The SCT invariance ∣∣∣∣∂x′∂x

∣∣∣∣ =
1

(1− 2b.x+ b2x2)d
(2.26)

imposes the constraint
C12

|x1 − x2|∆1+∆2
=

C12

γ∆1
1 γ∆2

2

(γ1γ2)(∆1+∆2)/2

|x1 − x2|∆1+∆2
(2.27)

with γi = 1− 2b.xi + b2x2
i and which is identically satisfied only if ∆1 = ∆2.

It thus results that two quasi-primary fields are correlated if and only if they have the same scaling

dimension. Therefore, the two-point function reads as

〈Φ1(x1)Φ2(x2)〉 =


C12

|x1 − x2|2∆1
if ∆1 = ∆2

0 otherwise

. (2.28)
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2.3 Conformal invariance in two dimensions

In this section we restrict our study to conformal field theories in two dimensions and overview some

of their important features.

Let us consider coordinates (z0, z1) on the plane, which transform under conformal transformations

as

zµ → ωµ(zν) with µ, ν = 0, 1 (2.29)

which implies the metric transformation

gµν =

(
∂ωµ

∂zα

)(
∂ων

∂zβ

)
gαβ . (2.30)

Introducing complex coordinates z and z̄ such as

z = z0 + iz1

z̄ = z0 − iz1 (2.31)

It follows (2.29) the transformation

z → ω(z). (2.32)

The set of global conformal transformations forms a group that is referred to as the special conformal

group.

The complete set of conformal mappings on the complex plane is

f(z) =
az + b

cz + d
with ad− bc = 1 (2.33)

and a, b, c, d are complex numbers.

Therefore the global conformal group on the complex plane (d = 2) is isomorphic to the group of

complex invertible 2× 2 matrices with determinant equal to 1, that is, to Sl(2,C). Note that Sl(2,C)

is isomorphic to the Lorentz group SO(3, 1) in four dimensions.

Prior to proceed further, we recall that a holomorphic infinitesimal transformation is expressed as

z
′

= z + ε(z) with ε(z) =

∞∑
n=−∞

cnz
n+1 (2.34)

assuming that the infinitesimal mapping admits a Laurent expansion around z = 0.

Considering that a spinless and dimensionless field Φ(z, z̄) on the complex plane satisfies

Φ
′
(z
′
, z̄
′
) = Φ(z, z̄)

= Φ(z
′
, z̄
′
)− ε(z

′
)∂
′
Φ(z

′
, z̄
′
)− ε̄(z̄

′
)∂̄
′
Φ(z

′
, z̄
′
) (2.35)
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we are led to the relation

δΦ = −ε(z)∂Φ− ε̄(z̄)∂Φ

=
∑
n

[
εnlnΦ(z, z̄) + ε̄n l̄nΦ(z, z̄)

]
(2.36)

in which the generators

ln = −zn+1∂z and l̄n = −z̄n+1∂z̄ (2.37)

have been introduced.

These generators satisfy the commutation rules[
ln, lm

]
= (n−m)ln+m[

l̄n, l̄m
]

= (n−m)l̄n+m[
ln, l̄m

]
= 0 (2.38)

and yield a conformal algebra which is the direct sum of two isomorphic algebras also known as the

Witt algebra.

In two dimensions, the notion of quasi-primary fields applies also to the fields with spins.

Let ∆ be the scaling dimension and s the planar spin. By defining a holomorphic transformation

h and his counterpart h̄ as

h =
1

2
(∆ + s) and h̄ =

1

2
(∆− s) (2.39)

we notice that under a conformal map z → ω(z) and z̄ → ω̄(z̄), the field theory transforms as

Φ
′
(ω, ω̄) =

(
dω

dz

)−h(
dω̄

dz̄

)−h̄
φ(z, z̄). (2.40)

In the case of an infinitesimal map

z → ω(z) such that ω = z + ε(z) and ω̄ = z̄ + ε̄(z̄) (2.41)

with ε and ε̄ very small, we obtain

δε,ε̄Φ = Φ
′
(z, z̄)− Φ(z, z̄)

= −(hΦ∂zε+ ε∂zΦ)− (h̄Φ∂z̄ ε̄+ ε̄∂z̄Φ). (2.42)

Thus, fields whose variations under local transformations in two dimension are expressed as in (2.42)

are defined as primary fields.

The correlation functions under a conformal transformation change as [40]

〈Φ1(ω1, ω̄1)...Φn(ωn, ω̄n)〉 =

n∏
i=1

(
dω

dz

)−hi
ω=ωi

(
dω̄

dz̄

)−h̄i
ω̄=ω̄i

〈Φ1(z1, z̄1)...Φn(zn, z̄n)〉 (2.43)

12



in which the distance xij between the points zi and zj is equal to (zij z̄ij)
1/2.

Hence the two-point function on the complex plane takes the form

〈Φ1(z1, z̄1)Φ2(z2, z̄2)〉 =
C12

(z1 − z2)2h(z̄1 − z̄2)2h̄
when (h1 = h2 = h or h̄1 = h̄2 = h̄). (2.44)

2.4 Holographic dualities

2.4.1 Kerr black holes and chiral conformal field theories in two dimensions

It has been recently conjectured that a duality exists that links extreme Kerr black holes to chiral

conformal field theories in two dimensions [8]. A key implication of the aforementioned conjecture

is the existence of an equality relation between the Bekenstein-Hawking entropy of an extreme Kerr

black hole and the Cardy entropy of a two dimensional conformal field theory defined near its horizon.

Here we do not need to be very explicit about the technical details on the subject and we leave them

to the next chapter.

Let us consider the near horizon limit of an extreme Kerr black hole (the angular momentum is

related to the mass J = M2). The resulting metric admits asymptotic symmetries preserved by some

diffeomorphisms. There exist consistent boundary conditions for which the asymptotic symmetry

generators (of the diffeomorphisms) form one copy of the Virasoro algebra 1 with central charge

cL = 12J [8].

We ensue from the above statement that the near horizon states can be identified with states of a

chiral half of a two-dimensional CFT.

In the extreme limit, the Frolov-Thorn 2 vacuum state reduces to a dimensionless temperature

(TL = 1/2π) thermal density matrix whose the conjugate energy is the zero mode generator l0 of the

Virasoro algebra.

The Cardy formula, under unitarity assumptions, gives a microscopic entropy for the CFT Smicro =

π2

3 cLTL = 2πJ which equates the macroscopic Bekenstein-Hawking entropy Smacro = A/4 =

2πJ where A is the horizon area of the Kerr black hole.

1The Virasoro algebra is widely used in two dimensional CFT and string theory and reads as the Witt algebra (2.38)

to which is added a central charge term as follows
[
ln, lm

]
= (n−m)ln+m + c

12
(n3 − n)δn+m,0.

2The Frolov-Thorn vacuum for the Kerr black hole is equivalent to the Hartle-Hawking vacuum for the Schwarzschild

black hole. The Frolov-Thorn vacuum is obtained by expanding the quantum field theory in eigenmodes of the asymptotic

energy ω and angular momentum m. After tracing over the states inside the horizon, the vacuum reads as a diagonal

density matrix in the energy-angular momentum eigenbasis.
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2.4.2 Anti-de Sitter spacetimes and conformal field theories

Since most of the topics covered in this dissertation are built around the AdS/CFT correspondence, it

is important in the current subsection to review some basic properties of Anti-de Sitter (AdS) spaces

that lead to the statement of a correspondence relation between these spacetimes and the conformal

field theories defined on their boundaries.

In order to derive the metric of an AdS spacetime we start with a five dimensional flat manifold

whose metric reads as [41]

ds2
5 = −du2 − dv2 + dx2 + dy2 + dz2 (2.45)

and embeds a hyperboloid given by

− u2 − v2 + x2 + y2 + z2 = −α2 (2.46)

where α is a real constant.

In terms of the coordinates (t
′
, ρ, θ, φ) one the hyperboloid defined via the relations

u = α sin t
′
cosh ρ

v = α cos t
′
cosh ρ

x = α sinh ρ cos θ

y = α sinh ρ sin θ cosφ

z = α sinh ρ sin θ sinφ (2.47)

(2.45) takes the form

ds2 = α2
[
− cosh2 ρdt

′2 + dρ2 + sinh2 ρdΩ2
2

]
. (2.48)

This corresponds to the metric of an AdS4 spacetime. In d dimensions, the AdS metric (2.48) becomes

ds2 = α2
[
− cosh2 ρdt

′2 + dρ2 + sinh2 ρdΩ2
d−2

]
. (2.49)

Introducing the variables

r = α sinh ρ

t = αt
′

(2.50)

eq.(2.49) now reads

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−2 (2.51)

where f(r) = 1 + r2/α2.
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AdS manifolds with metrics (2.49) or (2.51) are maximally symmetric Lorentzian solutions to

Einstein equation with constant negative curvature 3.

From the d dimensional form of (2.45) we infer that the large isometry group of AdSd is the

non-compact group SO(d− 1, 2).

Let us now turn our attention to field theories. Generally in these theories a ground state around

which is performed a perturbation expansion is sought-after. An AdSd spacetime along with its

isometry group SO(d− 1, 2) are a nice choice of maximally symmetric group states.

AdSd spacetimes appear to be the near horizon geometry of the extreme black holes and p-branes4,

which are very central to the understanding of the theory. p-branes are referred to as extended objects

with p spatial dimensions that move in a higher (particularly in 11 dimensions) dimensional spacetime.

p = 0 objects are point particles, p = 1 are strings, p = 2 are membranes and so on.

It is known that a supergravity theory is solved by a supersymmetric solution that admits one or

more spinor εI satisfying [42]

∇αεI +NαεI = 0 (2.52)

with ∇ the Levi-Civita connection and Nα a Clifford algebra valued one-form.

In an AdSd

Nα = ± 1

2R
γα α = 0, 1, ..., d− 1 (2.53)

where R is the AdS radius and γα are the generators of the Clifford algebra.

We thus notice that when we particularly consider the case of N 3-branes with large N , we find

that they have a supergravity description as a classical BPS 5 spacetime solution of a 10 dimension

type IIB supergravity theory admitting 16 Majorana-Weyl killing spinors εI . That is [43, 44],

ds2 = H−1/2(−dt2 + dx2) +H1/2dy2 (2.54)

with x ∈ E3, y ∈ E6 and H(y) an harmonic function on E6. E3 and E6 are the 3d and 6d Euclidean

spacetime respectively.

3A maximally symmetric d dimensional manifold with metric gµν has a Riemann tensor Rρσµν = κ(gρµgσν −

gρνgσµ) with κ a normalized measure of the Ricci curvature gieven by κ = R
d(d−1)

and R the Ricci scalar. κ < 0 for

AdS spacetime.
4A Dp-brane is an extended object with p spatial dimensions. It can be thought of as a p-dimensional hyperplane

moving in a d-dimensional space. Let xi(i = 1, ..., p) be the directions on the Dp-brane, it position is specified by

xa = 0 (a = p + 1, ..., d). The fact that the endpoints of the open string lie on the Dp-brane implies that the string

coordinates normal to the brane satisfy Dirichlet boundary conditions xa(τ, σ)|σ=0 = xa(τ, σ)|σ=π = x̄a.
5BPS states are named after Bogomolnyi, Prasad and Sommerfeld. Extremal (stable) black holes, which correspond

to the endpoint of the Hawking evaporation, are BPS states for extended supergravity theories. Extremal black holes

are characterized by the equivalence of their mass and charge [45].
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For N coinciding 3-branes,

H = 1 +

(
R

r

)4

(2.55)

with R = (g2
YMN)1/4ls and r = |y|. gYM is the gauge field coupling constant and ls the string

length.

Let us now focus on the near horizon geometry of (2.54) and (2.55). Near the horizon the isotropic

coordinates break down and for small r (2.54) becomes

ds2 =
r2

R2
(−dt2 + dx2) +

R2

r2
dr2 +R2dx2

5. (2.56)

Using the change of coordinates z = R/r we obtain from (2.56) the metric

ds2 =
1

z2
(dz2 + ηµνdx

µdxν) +R2dx2
5 (2.57)

with µ = 0, 1, ..., 3 and ηµν the Minkowski metric. We notice that the near horizon metric (2.56) or

(2.57) correpsonds to that of an AdS5 × S5 spacetime. It is also obvious to notice that the symmetry

group of the AdS5 × S5 is the same that the superconformal group in 3+1 spacetime dimension [46].

Indeed, the conformal symmetry group in 4d is isomorphic to the isometry group of the AdS5 spacetime

and the R-symmetry group is isomorphic to the SO(6) symmetry group of S5 as well.

From a couple of arguments (that we will not enumerate here) among which the above symmetry

arguments, it results a reasonable AdS/CFT duality conjectured in [6]: A type IIB 6 string theory in

(AdS5 × S5)N plus some appropriate boundary conditions (and possibly also some boundary degree of

freedom) is dual to N = 4 d = 3 + 1 U(N) super Yang-Mills theory.

2.5 Black hole chemistry

In this section we cover some key notions of black hole chemistry [21], as they represent an important

part in the understanding of the next two chapters particularly.

A fundamental relationship between gravitation, thermodynamics and quantum mechanics has been

established due to a number of theoretical arguments and calculations carried out over the past several

decades. Originally black holes were thought of as objects characterized by few basic parameters such

as their mass, charge and angular momentum [50]. They were also seen as entities absorbing all matter

and emitting nothing and had neither temperature nor entropy.

6One of the four ground states of closed string theories (type II) has the form |Rai 〉 ⊗ |Rbi 〉 ⊗ |p+,
−→p T 〉. |Rai 〉 (i =

1, 2 and a = 1, ..., 8) are the Ramond ground states or those subjected to fermionic boundary condition ΨI(τ, π) =

+ΨI(τ,−π). Type IIA strings are those for which the left and right Ramond ground states are different, i.e. i 6= j. Type

IIB strings are those whose the left and right Ramond ground states are the same, i.e. i = j.
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The study of quantum field theory in curved spaces has led to major changes in the understanding

of black holes. Indeed, it was found that black holes can radiate heat comparable to black body

radiation 7 and that the area of a black hole never decreases. Black hole radiation, while rooted in the

basic foundations of quantum physics, paradoxically leads to a loss of information [47, 48].

Following this approach, it was possible to interpret the area of the black hole horizon as the

thermodynamic entropy and its surface gravity as the thermodynamic temperature [51, 49]. In [52]

Hawking stated that the area of the event horizon of a black hole can never decrease. It appears that

this area law is similar to the second law of thermodynamics as noticed by Bekenstein.

Bardeen, Carter, and Hawking [51] subsequently formulated the 4 laws of black hole mechanics

under the assumption that the event horizon of a black hole is a Killing horizon (which is a null

hypersurface generated by a corresponding Killing vector field). These laws are:

1. The surface gravity κ of a stationary black hole is constant over its event horizon.

2. A rotating charged black hole with a mass M, angular momentum J and charge Q obeys

δM =
κ

8π
δA+ ΩδJ + ΦδQ.

3. Hawking’s area theorem states that the area A of a black hole event horizon can never decrease,

i.e. δA ≥ 0.

4. The surface gravity κ of a black hole cannot be reduced to zero in a finite number of steps.

From these laws it follows that black holes are physical thermodynamic systems that have temperatures

and entropies.

Recently, the introduction of the cosmological constant as the pressure of the black hole, along

with a volume, has given rise to a new set of techniques for studying the behaviour of black holes.

This approach has led to the discovery of new phase behaviour analogous to that observed in gels and

polymers. Triple points analogous to those in water have been observed as well in black holes.

These black holes have been understood as heat engines. It was also found that these black holes are

7Hawking discovered, when taking into account quantum effects, that black holes emit radiation [49] that has a black

body spectrum with a characteristic temperature

kBT =
~κ
2πc

where kB is the Boltzmann’s constant, c the speed of light, ~ the Planck’s constant and κ the black hole surface gravity.

The surface gravity κ is defined as

ξa∇aξb = κξb

where ξa is a normalized Killing vector that generates the horizon.
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analogous to Van der Waals fluid and exhibit various behaviour of substances encountered in everyday

life. These black hole features resulted in a field known as black hole chemistry [21, 53].

In the black hole thermodynamics language the thermodynamic energy E, temperature T and

entropy S correspond to the mass M , the surface gravity κ and the horizon area A of the black hole

respectively. These quantities are related as follows

E = M

T =
κ

2π

S =
A

4
. (2.58)

However, the correspondence breaks down when it comes to the first law of thermodynamics. Indeed,

the first law of thermodynamics and the corresponding black hole first law read as

dE = TdS − pdV + work terms and

dM =
κ

8π
dA+ ΩdJ + ΦdQ (2.59)

where ΩdJ + ΦdQ is regarded as the work terms.

It is clear to notice that the term pdV in the first equation of (2.59) does not have a counterpart in

the second equation of (2.59) [54]. To solve this problem, the mass of the black hole was interpreted

as the enthalpy of the spacetime [55].

This idea results from the consideration of the Smarr relation [56, 57], where in d dimensions [58]

it is given by

(d− 3)M = (d− 2)TS (2.60)

for a static asymptotically flat d-dimensional black holes.

The fact of introducing the cosmological constant as the pressure modifies the Smarr relation. In

fact, regarding the mass M as a function of both the horizon area and the cosmological constant, i.e.

M = M(A,Λ) and by the Euler’s theorem on homogeneous functions we obtain

(d− 3)M = (d− 2)
∂M

∂A
A− ∂M

∂Λ
Λ. (2.61)

Knowing that T = 4∂M∂A , equation (2.61) implies that the pressure p as a thermodynamic variable

[59, 60] takes the form

p = − Λ

8π
=

(d− 1)(d− 2)

16πl2
(2.62)

with the conjugate variable V = −8π ∂M∂Λ .
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Thus the modified Smarr relation and the extended first law of thermodynamics become

(d− 3)M = (d− 2)TS − 2pV and

dM = TdS + V dp. (2.63)
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Chapter 3

Super-entropic black holes and the

Kerr-CFT correspondence

This chapter is based on the exploration of the extension of the Kerr-CFT correspondence to a new

class of black holes known as super-entropic black holes. Its main purpose is to extend the domain

of application of the correspondence and prove that it is a reliable one (robust). The elaboration of

this chapter depends strongly on some basic notions on the Kerr-CFT correspondence that we have

briefly reviewed in section 2.4.1 and will see in more detail in the next few sections and the black hole

chemistry covered in section 2.5.

3.1 Introduction

In the past few years dualities between black holes and conformal field theories (CFT) have been

of considerable interest, yielding new insights into our understanding of gravity. One of the most

prominent among them is the “Kerr/CFT correspondence” [8], which established a duality between

the horizon of a Kerr black hole (bulk) and a 2d CFT. Many other intriguing results [61] have been

obtained since then.

Recently a new class of rotating black hole solutions was obtained from the Kerr–Newman-AdS

metrics [62, 11, 12]. These black holes have been called super-entropic insofar as their entropy is larger

than that expected from the reverse isoperimetric inequality conjecture [63], which states that the

thermodynamic volume of a black hole provides an upper bound on its entropy. The basic idea of

the procedure is to transform an azimuthal coordinate of a d-dimensional Kerr-AdS metric (written in
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rotating-at-infinity coordinates) and then take the limit as its associated rotation parameter approaches

the AdS length. The new azimuthal coordinate is then compactified, yielding a black hole whose horizon

is topologically a (d− 2)-sphere with two punctures. These black holes form a new ultraspinning limit

of the Kerr-AdS class of metrics, and possess a non-compact event horizon of finite area (and hence

finite entropy), the first example of such objects in the literature to date.

In this chapter we study the Kerr-CFT correspondence for super-entropic black holes. It is not

a-priori obvious that the correspondence exists, given the non-compactness of their event horizons; as

we shall see some but not all super-entropic black holes exhibit this correspondence. We will consider

specifically the superentropic limit of singly-spinning Kerr-Newmann-AdS black holes in d dimensions

[12] as well as the ultraspinning d = 5 black holes of minimal gauged supergravity [65, 64]. Similar

studies of Kerr-Newman-AdS black holes [61] found that there exists a correspondence between the

extremal versions of these black holes and a d = 2 (chiral half of a) CFT at its boundary. A key feature

of these metrics is that in their near-horizon (NH) limits, the resultant metrics acquire a new form

that has an extended asymptotic symmmetry group (ASG) whose generators depend strongly on the

boundary conditions imposed. These boundary conditions have to be chosen in such a way that the

charges associated with the diffeomorphisms preserving them satisfy a number of conditions such as

finiteness, integrability and so on. These constraints ensure the existence of the charges (generators of

diffeomorphisms); indeed, the consistency of the theory relies on them. Ignoring these constraints will

certainly lead to ill-defined diffeomorphism generators from which no physics can be deduced.

Moreover, the boundary conditions allow us to compute the central charges that stem from the

Virasoro algebra satisfied by the charges associated with the diffeomorphisms preserving the boundary

conditions. Once obtained, the central charges yield the CFT entropy SCFT via the Cardy formula,

which is expected to be identical to the Bekenstein-Hawking S entropy of the black hole, thereby

establishing the correspondence. It is not a-priori obvious that super-entropic black holes admit such

a correspondence, given their properties. It is the purpose of this chapter to demonstrate that such a

correspondence exists and indeed is robust.

The present chapter is organised as follows. In section two, we provide a brief review of the super-

entropic black hole, highlighting its thermodynamic quantities and its relationship to the Smarr relation

and the reverse isoperimetric inequality. In section three, we review the Kerr-CFT correspondence for

Kerr-AdS black holes, along with the choice of boundary conditions. We then consider the Super-

entropic-CFT correspondence, beginning with a Kerr-Newman-AdS black hole and taking both its

super-entropic and near horizon limits in either order, and obtain the same results in either case. In

section five, we perform a similar analysis for super-entropic black holes of minimal gauged supergravity

in d = 5 [65]. We conclude with some remarks on our results.
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3.2 Super-entropic black holes

In this section we review some important notions on super-entropic black holes and their construction.

In other words, we shall derive the thermodynamic quantities associated to these black holes and the

Smarr relation obeyed by these quantities. Let us start with the Kerr-Newman-AdS black hole metric

[64, 12]

ds2 = −∆a

Σa
[dt̄− a sin2 θ̄

dφ̄

Ξ
]2 +

Σa
∆a

dr̄2 +
Σa
S
dθ̄2 +

S sin2 θ̄

Σa
[adt̄− (r̄2 + a2)

dφ̄

Ξ
]2

A = − qr̄
Σa

(dt̄− a sin2 θ̄
dφ̄

Ξ
) (3.1)

where

Ξ = 1− a2

l2
, S = 1− a2

l2
cos2 θ̄, Σa = r̄2 + a2 cos2 θ̄

ωh =
a

a2 + r2
+

, ∆a = (r̄2 + a2)(1 +
r̄2

l2
)− 2mr̄ + q2.

ωh is the angular velocity and a is the rotation parameter of the black hole. Taking the ultraspinning

limit a→ l yields the super-entropic black hole, whose metric is given by [64, 12]

ds2 = −∆

Σ
[dt̄− l sin2 θ̄dψ̄]2 +

Σ

∆
dr̄2 +

Σ

sin2 θ̄
dθ̄

2
+

sin4θ̄

Σ
[ldt̄− (r̄2 + l2)dψ̄]2

A = − qr̄

Σ
(dt̄− lsin2θ̄dψ̄) (3.2)

where

Σ = r̄2 + l2 cos2 θ̄, ∆(r̄) = (l +
r̄2

l
)2 − 2mr̄ + q2 (3.3)

provided the rescaled coordinate ψ̄

ψ̄ =
φ̄

Ξ
, Ξ = 1− a2

l2
with a→ l (3.4)

is taken to be periodic, identifying ψ̄ ∼ ψ̄+µ. The quantity µ can be regarded as the chemical potential

of the black hole [12].

It is important to stress that the chemical potential defined here is not that used in the string

literature [66]; indeed it is independent of the electric charge. Rather this terminology arose from

considerations of holographic duality for non-relativistic field theories – the holographic dual of a d

dimensional spatial CFT is a gravitational solution in a bulk space of d + 3 dimensions1. This dual

spacetime (solution) realizes Galilean scaling as an isometry. For example, starting with the 5d planar

1In [67, 68], this spacetime has the form ds2 = r2(−2du dv− r2νdu2 + dx2) + dr2/r2, where x = (x1...xd) are the

spatial coordinates of the Galilean field theory and ν a positive integer. The light-cone coordinate u is the boundary

time coordinate and v is proposed to be treated as a compact coordinate.
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Schwarzschild-AdS black hole (times S5, with the geometry supported by the five-form flux F(5)) [69],

upon applying a transformation known as a Null Melvin Twist to this geometry [70] a new metric

is obtained2. The Killing generator of the horizon of the non-extremal solution takes a form, from

the gravitational perspective, that leads to a charge independent chemical potential3. It is in this

latter sense that the term ‘chemical potential is being employed for the solution under consideration in

this chapter. The asymptotic form of the metric (3.2) is AdS3, but with the compactified coordinate

ψ̄ becoming null. This feature is similar to that of the asymptotically Schroedinger and Galilean

spacetimes [69], and so the quantity µ was referred to as a chemical potential [64].

Trying to find roots of the function ∆(r), we notice that it admits roots r± only when

m ≥ m∗ ≡ 2r∗(
r2
∗
l2

+ 1) (3.5)

where

r2
∗ ≡

l2

3
[−1 +

√
4 + 3

q2

l2
] (3.6)

For an extremal black hole

r+ = r∗ m = 2r+(
r2
+

l2
+ 1) (3.7)

and we note that extremality can occur even if q = 0.

The super-entropic character of these black holes can be understood in the context of an extended

phase space framework [71], where the cosmological constant is identified with the thermodynamic

pressure according to

P = − Λ

8π
(3.8)

in d spacetime dimensions, with its conjugate quantity treated as thermodynamic volume V . The

2The metric reads

ds2 = r2
[
−
β2r2f

k
(dt+ dy)2 −

f

k
dr2 +

dy2

k
+ dx2

]
+
dr2

r2f
+

(dψ + Ã)

k
+ dΣ2

4

eφ =
1
√
k
, f = 1− r4+/r4, dÃ = 2J, k = 1 + β2

r4+

r4

F(5) = dC(4) = 2(1 + ∗)dψ × J × J, B(2) =
r2β

k
(fdt+ dy)× (dφ+ Ã)

β is a fixed parameter and r+the horizon radius. Performing a Kaluza-Klein reduction on that new metric [69], we

obtain a non-extremal solution which, in the light-cone coordinates, asymptotically approaches the extremal solution

(which has the Galilean scaling as an isometry).
3 The Killing generator of the horizon ξ = 1

β
∂
∂t

= ∂
∂u

+ 1
2β2

∂
∂v

. The chemical potential is µ = 1
2β2 .
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thermodynamic parameters of the super-entropic black hole are

M =
µm

2π
,

J = Ml,

Q =
µq

2π
,

Φ =
(q/l)x

1 + x2
,

ωh =
1

l(1 + x2)
,

K = l
(1− x2)[(1 + x2)2 + q2/l2]

8πx(1 + x2)
, (3.9)

A = 2µl2(1 + x2),

V =
2

3
l3µx(1 + x2) =

l

3
xA,

TH =
1

4πlx

[
3x2 − 1− q2/l2

1 + x2

]
,

S =
µ

2
l2(1 + x2) =

A

4

with x = r+/l. The quantities M,J,Q,Φ, ωh, V,K, TH , A and S are the mass, the angular momentum,

the charge, the electric potential, the angular velocity at the horizon, the volume, the conjugate

variable to the chemical potential µ, the Hawking temperature, the area and the entropy of the black

hole respectively. The first law of black hole thermodynamics is now extended to [57]

δM = TδS + ωhδJ + ΦδQ+ V δP (3.10)

with the quantities (3.9) satisfying the Smarr relation [57]

d− 3

d− 2
M = TS + ωhJ +

d− 3

d− 2
ΦQ− 2

d− 2
V P (3.11)

with d = 4. The quantity S in (3.9) violates the Reverse Isoperimetric Inequality, which asserts [63]

R ≡
(

(d− 1)V

ωd−2

) 1
d−1
(
ωd−2

A

) 1
d−2

≥ 1 (3.12)

where

ωd =
µπ

d−1
2

Γ
(
d+1

2

) (3.13)

It is straightforward to show that for the quantities in (3.9), we obtain

R =

(
x2

1 + x2

) 1
6

< 1 (3.14)

which clearly violates the inequality. The entropy of this class of black holes exceeds, for a given

thermodynamic volume, the bound set by (3.12), and hence are called super-entropic.
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These singly spinning super-entropic black holes have extensions in any dimension, with metric [64]

ds2 = −∆

ρ2
(dt̄− l sin2 θ̄dψ̄)2 +

ρ2

∆
dr̄2 +

ρ2

sin2 θ̄
dθ̄2 +

sin4 θ̄

ρ2
[ldt̄− (r̄2 + l2)dψ̄]2 + r̄2 cos2 θ̄dΩ2

d−4 (3.15)

where

∆ =
(
l +

r̄2

l

)2 − 2mr̄5−d, ρ2 = r̄2 + l2 cos2 θ

and dΩ2
d is the metric element on a d-dimensional sphere, where as before we identify ψ̄ ∼ ψ̄ + µ.

Writing $d = µπ
d−1

2

Γ( d+1
2 )

, their thermodynamic parameters are

M =
$d−2

8π
(d− 2)m,

ωh =
l

r2
+ + l2

,

T =
1

4πr+l2
[(d− 5)l2 + r2

+(d− 1)],

J =
2

d− 2
Ml,

S =
$d−2

4
(l2 + r2

+)rd−4
+ =

A

4
,

V =
r+A

d− 1
(3.16)

respectively denoting the mass, the angular velocity at the horizon, the Hawking temperature, the

angular momentum, the Bekenstein-Hawking entropy and the volume of the black holes respectively.

While there exist horizons in any d > 5 only when m > 0 and for d = 5 when m > l2/2, the

extremal limit exists only in d = 4. Specifically, extremal super-entropic black holes are those for

which

x2 =
5− d
d− 1

(3.17)

whose only non-trivial solution is for d = 4. Henceforth we shall only consider this case.

3.3 The Kerr-CFT limit

Here we review the Kerr-CFT correspondence for the Kerr-Newman-AdS black hole. We intend to

write the black hole metric in terms of the coordinates near its horizon. Returning to the metric (3.1)

in the extremal case and carrying out the near-horizon (NH) transformation

t̄ = r0t/ε

θ̄ = θ

r̄ = r+ + εr0r

φ̄ = φ+ Ξωhr0t/ε (3.18)
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where ε is a small parameter, it yields a metric of the form

ds2 = Γ(θ)[−r2dt2 +
dr2

r2
+ α(θ)dθ2 +

γ(θ)

Γ(θ)
(
dφ

Ξ
+ krdt)2]

A = f(θ)(
dφ

Ξ
+ krdt) (3.19)

in the ε → 0 limit where k is constant. The quantities Γ, α, γ, f are functions of the variable θ and

can be computed from (3.1). However (3.19) is quite general: the metric of any d = 4 stationary,

axisymmetric extremal black hole, with a compact horizon section of non-toroidal topology, will have

a near-horizon limit of the form (3.19), with Γ, α, γ, f taking specific values depending on the black

hole studied [72, 73]. Note that the new coordinates (t, φ, θ, r) are dimensionless. The quantity r0 is

a parameter with dimension of length whose value will be subsequently be fixed.

The metric (3.19) is invariant under the isometries [61]

K̄1 = ∂t,

K̄2 = t∂t − r∂r,

K̄3 = (
1

2r2
+
t2

2
)∂t − tr∂r −

k

r
∂ψ,

K1 = ∂ψ (3.20)

which generate a Sl(2,R)L × U(1)R symmetry group.

To study the corresponding CFTs, we will refer to the case of the Kerr-Newman- AdS black hole

explored in [61] and perform a similar analysis. The metric function ∆(r) in (3.1) has a root r+ when

m ≥ 2r∗

(
r2
∗
l2

+ 1

)

with

r2
∗ =

l2

6
[−1− a2/l2 +

√
1 + 14a2/l2 + a4/l4 + 12q2/l2]
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The thermodynamic quantities of the black hole (3.1) are

M = m,

J = Ma,

Q = q,

Φ =
qx

l(a2/l2 + x2)
,

ωh =
a/l2

a2/l2 + x2
,

A =
4π

Ξ
l2(a2/l2 + x2),

TH =
3x2(a2/l2 + x2) + 2x2Ξ− (a2/l2 + x2)− q2/l2

4πlx(a2/l2 + x2)
,

V =
2πl3

3

(a
2

l2 + x2)(2x2 + a2

l2 − x
2 a2

l2 ) + q2a2

l4

Ξ2x
(3.21)

respectively being its mass, the angular momentum, the charge, the electric potential, the angular

velocity at the horizon, the horizon area, the Hawking temperature and thermodynamic volume. For

an extremal black hole TH = 0 yielding

r+ = r∗ m = 2r∗(
r2
∗
l2

+ 1)

The Bekenstein-Hawking entropy as computed in [64, 12] takes the value

S =
π

Ξ
(a2 + r2

+) =
A

4
(3.22)

noting that φ is defined in the interval [0, 2π).

We now aim to compute the CFT entropy of the Kerr-Newman-AdS black-hole (3.1). To this end,

we first take the near horizon limit (3.18) and obtain the metric (3.19), with

Γ(θ) =
Σa+

1 + a2/l2 + 6x2
,

α(θ) =
1 + a2/l2 + 6x2

S
,

γ(θ) =
S

Σa+

l4(a2/l2 + x2)2 sin2 θ,

k = 2
(a/l)x

(a2/l2 + x2)(1 + a2/l2 + 6x2)
,

r2
0 = l2

a2/l2 + x2

1 + a2/l2 + 6x2
,

f(θ) = q
(1 + x2)

2x

(x2 − a2/l2 cos2 θ)

x2 + a2/l2 cos2 θ
(3.23)

and x = r+/l as before. The asymptotic symmetries of this metric contain diffeomorphisms ζ such
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that [61]

δζAµ = LζAµ,

δζgµν = Lζgµν , (3.24)

as well as a U(1) gauge transformation

δΛA = dΛ. (3.25)

We will shortly see that the diffeomorphism and gauge transformations (ζ,Λ) obey an algebra and

that their associated charges Qζ,Λ obey the same algebra up to a central charge term. The charge

difference between two neighbouring metrics gµν and gµν + δgµν is [8, 61]

δQζ,Λ =
1

8π

∫
(Kζ [h; g] +Kζ,Λ[h, a; g,A]) (3.26)

with

aµ = δAµ, hµν = δgµν ,

Kζ [h; g] =
1

4
εαβµν [ζνDµh− ζνDσh

µσ + ζσD
νhµσ +

1

2
hDνζµ − hνσDσζ

µ

+
1

2
hσν(Dµζσ +Dσζ

µ)]dxα × dxβ (3.27)

and

Kζ,Λ =
1

8
εαβµν [(−1

2
hFµν + 2Fµσhσ

ν − δFµν)(ζρAρ + Λ)− Fµνζσaσ − 2Fαµζνaα

− gµσgνρaσ(LζAρ + ∂ρΛ)]dxα × dxβ (3.28)

with δFµν = gµαgνβ(∂αaβ − ∂βaα).

In order that the integral (3.26) be well defined we must impose suitable boundary conditions which

fulfil the conditions given in [74, 75, 76]. The choice of boundary conditions determines the asymptotic

symmetry group (ASG), which is nothing but the allowed symmetries (those preserving the boundary

conditions) modulo the trivial ones (those for which the associated charges vanish). The idea is to make

the boundary conditions as weak as we can whilst keeping the consistency of the theory 4. Consistency

implies that the charges associated to the diffeomorphisms have to be finite (or may vanish). We show

in the appendix that the surface charges defined in (3.26) with the boundary conditions given in [8]

are finite and integrable. Choosing these same boundary conditions for the NH metric (3.19) yields

hµν ∼


O(r2) O(1) O(1/r) O(1/r2)

O(1) O(1/r) O(1/r)

O(1/r) O(1/r2)

O(1/r3)


4Making the boundary conditions weak amounts to choose them such that most of their contributions to the conserved

charges associated to the diffeomorphisms ζ vanish at infinity (r →∞). See eqs. (A-3) and (A-4).
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and for the gauge field

aµ ∼ O(r, 1/r, 1, 1/r2) (3.29)

all in the basis (t, φ, θ, r). Making the choice

Λ = −f(θ)ε(φ)

for the compensating gauge transformation [61] satisfies the above boundary conditions.

The most general diffeomorphism preserving these boundary conditions is

ξ = [C +O(1/r3)]∂t + [−rε′(φ) +O(1)]∂r +O(1/r)∂θ + [ε(φ) +O(1/r2)]∂φ (3.30)

where C is an arbitrary constant and ε(φ) an arbitrary smooth function of φ. This includes the

diffeomorphism

ζ = ε∂φ − rε′∂r (3.31)

where ε′ = dε/dφ. This yields the Virasoro algebra

i[ζm, ζn] = (m− n)ζm+n, ζn = ζ(εn) with εn = −e−inφ

and

[Λm,Λn]ζ = ζµm∂µΛn − ζµn∂µΛm

i[Λm,Λn]ζ = (m− n)Λm+n

which is the algebra of the ASG.

As noted above, the charges Qn associated with these diffeomorphisms and gauge transformations

(ζn,Λn) satisfy a similar algebra

i{Qm, Qn} = (m− n)Qm+n +
1

8π

∫
(Kζ [h; g] +Kζ,Λ[h, a; g,A])

= (m− n)Qm+n +
c

12
(m3 − αm)δm+n,0 (3.32)

the distinction being the central charge contribution, where α is a constant obtained after we parametrize

Qn. Proceeding as in [61] we therefore get a central charge

c =
3k

Ξ

∫ √
Γ(θ)γ(θ)α(θ)dθ. (3.33)

To determine the temperatures of the left and right-moving CFTs, we make use on one hand of

the first law

TdS = dM − (ωhdJ + ΦdQ) (3.34)
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and its extremality constraints

T exdS = dM − (ωexh dJ + ΦexdQ) = 0 (3.35)

to obtain

TdS = −[(ωh − ωexh )dJ + (Φ− Φex)dQ]. (3.36)

These variations can also been expressed as

dS =
dJ

TL
+
dQ

Te
(3.37)

We recall that for a scalar field its expansion in eigenmodes of the energy and angular momentum

is [8]

Φ =
∑
E,J,s

ΦE,J,s e
−iEt̄+iJψ̄fs(r, θ) (3.38)

for a Kerr-AdS black hole. Near the horizon, the factor

e−iEt̄+iJψ̄

becomes

e−iEt̄+iJψ̄ = e−i(E−ω
ex
h J)tr0/ε+iJψ

= e−inRt+inLψ (3.39)

upon using (3.18), where

nR = (E − ωexh J)r0/ε,

nL = J. (3.40)

For any system the density of states is ρ = eS , with S the entropy. Using this fact we extend the

preceding expressions of nR and nL for a Kerr-Newman-AdS black hole to

nR = (E − ωexh J − ΦexQ)r0/ε,

nL = J (3.41)

so that the density matrix in the energy and angular momentum eigenbasis has the Boltzmann weight-

ing factor

e−(E−ωhJ−ΦQ)/TH = e−(nR/TR)−(nL/TL)−Q/Te (3.42)
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and is a diagonal matrix when tracing over the modes inside the horizon. Comparing both sides of

this equation yields the temperatures of the left and right-moving CFTs

TL = −∂TH/∂x
∂ωh/∂x

∣∣∣∣
ex

,

TR =
THr0

ε

∣∣∣∣
ex

,

Te = −∂TH/∂x
∂Φ/∂x

∣∣∣∣
ex

(3.43)

as well as the Te term in (3.42). For extremal black holes TH = 0 we see that TR → 0 and a

straightforward computation shows that the temperature of the left-moving CFT is TL = 1
2πk and

Te =
1

2πq

[3(a2/l2 + 2x2) + 2Ξ− 1](a2/l2 + x2)

(x2 − a2/l2)
(3.44)

which is proportional to an inverse length (∼ l−1).

The upshot of this exercise is that an extremal Kerr-Newmann-AdS black hole is dual to a 2d

conformal field theory at its boundary with a mixed state whose density matrix is expressed below.

The Hartle-Hawking vacuum state is generalized around the Kerr-Newman-AdS black hole with a

density matrix

ρ = e
− J
TL
− Q
Te . (3.45)

Substituting our results into the CFT entropy from Cardy’s formula, which states that the entropy of

a unitary CFT at large T or with T � c satisfies 5

SCFT =
π2

3
cLTL (3.46)

yields

SCFT =
π

Ξ
l2(a2/l2 + x2) (3.47)

which is in agreement with the expression in (3.22). Conditions for the applicability of (3.46) have

been given in [8] in situations where T � c does not hold. We shall see that a sufficient condition

for the applicability of Cardy’s formula in the super-entropic case is to set the electric charge q to be

large.

5For a conformal field theory on a Euclidean torus, the partition function with periodic time is Z[β] = Tr e−βH =

e−βF . Very low temperature (β →∞) are characterized by the free energy dominated by the lowest energy state. It has

been shown [77] that the vacuum state on the cylinder has the Casimir energy H = −c/12 (c is the central charge) which

implies that the partition function takes the form Z → ecβ/12 as β →∞. In an Euclidean space both directions of the

torus are equivalent, i.e. we can assume that σ is the time and τ the space. Since we want the spatial direction to range

in the interval [0, 2π) we will use the transformation τ → 2π
β
τ, σ → 2π

β
σ. This yields the relation Z[4π2/β] = Z[β] and

implies that the partition function now reads as Z → e
cπ2

3β as β → 0. In the case of a 2d CFT, the entropy of a system

at large energy scales as S(E) → N
√
E where N is the number of degree of freedom of the system. From the above

equations, the free energy scales as F ∼ N2T 2 with N2 = c, so does E. It follows the Cardy formula S ∼ N2T = c T .
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SE SE-CFT

KCFTKNDS

Figure 3.1: The above diagram indicates the various limits we are considering for the Kerr-Newman-

AdS (KNDS) black hole: the Super-Entropic (SE) limit, the Kerr-CFT (KCFT) limit, and both limits

together (SE-KCFT). The horizontal arrows (in red) are the near horizon limit (NH) and vertical ones

(blue) the ultraspinning limit. The resulting black hole is obtained by taking both limits one after

another; we find that the same SE-KCFT limit results, indicating that the square commutes.

3.4 Super-entropic-CFT correspondence

In this section we establish that the ultraspinning super-entropic limit (3.2)–(3.4) commutes with the

Kerr-CFT limit (3.18), as shown in figure 3.1.

Let us first consider the lower path in figure 6.1a, which consists in starting with the Kerr-Newman-

AdS black hole and taking the super-entropic limit, obtaining (3.2). The next step is to take the

near-horizon limit of the extremal version of (3.2). We obtain the metric (3.19), now with

Γ(θ) =
l2

2

x2 + cos2 θ

1 + 3x2
,

α(θ) =
2

sin2 θ
(1 + 3x2),

γ(θ) = l2 sin4 θ
(1 + x2)2

x2 + cos2 θ
,

k =
x

(1 + x2)(1 + 3x2)
,

r2
0 =

l2

2

1 + x2

1 + 3x2
,

f(θ) = q
(1 + x2)

x

x2 − cos2 θ

x2 + cos2 θ
(3.48)

whose functions are also given by the a→ l limit of (3.23). The resulting metric likewise has the same

topology as that of the metric (3.2), with punctures at the poles [64, 12].

To compute the entropy of the corresponding CFT, the steps remain the same as described in the

previous sections. We impose the same boundary conditions and therefore the same diffeomorphisms
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and ASG. The central charge is now

c =
3kµ

2π

∫ √
Γ(θ)γ(θ)α(θ)dθ

=
3kµ

π
l2(1 + x2)

=
3xµl2

π(1 + 3x2)
(3.49)

using (3.48). We remark that c is very small when the electric charge q becomes very large.

Considering the extremality constraint of the extended first law, we obtain

T exdS = dM − (ωexh dJ + ΦexdQ+Kexdµ)

= 0 (3.50)

with µ the new thermodynamic variable whose conjugate is K in (3.9). The first law then takes the

form

TdS = −[(ωh − ωexh )dJ + (Φ− Φex)dQ+ (K −Kex)dµ] (3.51)

or alternatively

dS =
dJ

TL
+
dQ

Te
+
dµ

Tµ
. (3.52)

In this case the Boltzmann factor reads as

e−(E−ωhJ−ΦQ−Kµ)/TH (3.53)

and we extend nR and nL as follows

nR = (E − ωexh J − ΦexQ−Kexµ)r0/ε,

nL = J. (3.54)

It then takes the final form

e−nR/TR−nL/TL−Q/Te−µ/Tµ . (3.55)

Evaluating nR at the extremal limit, we find that it vanishes, unlike the situation for the Kerr-CFT

case. Hence nR can be interpreted as a quantity that measures a deviation from the extremal limit of

a super-entropic black hole.
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It follows from the preceding relations that

TL = −∂TH/∂r+

∂ωh/∂r+

∣∣∣∣
ex

,

TR =
r0

ε
TH

∣∣∣∣
ex

,

Te = −∂TH/∂r+

∂Φ/∂r+

∣∣∣∣
ex

,

Tµ = −∂TH/∂r+

∂K/∂r+

∣∣∣∣
ex

(3.56)

which are explicitly

TL =
1

2πk
=

(1 + x2)(1 + 3x2)

2πx
,

TR = 0,

Te =
1

πq

(3x2 + 1)(x2 + 1)

(x2 − 1)
,

Tµ =
1

2l2
(1 + 3x2)

x2
. (3.57)

We remark that Tµ is a quantity inversely proportional to the square of a length (∼ l−2). Furthermore,

TL � c for sufficiently large q, justifying the use of Cardy’s formula (3.46) at least in this regime. We

therefore find upon insertion of (3.49) into (3.46) that

SCFT =
µ

2
l2(1 + x2) (3.58)

for the extremal super-entropic black hole.

Turning now to the upper path in 3.1, we must take the limit a→ l in the metric (3.19) using the

functions (3.23). This is straightforward and yields exactly the equations (3.48), where (as in (3.4))

we must rescale φ→ ψΞ in (3.19), identifying ψ ∼ ψ+ µ once the limit is taken. The Hartle-Hawking

vacuum density matrix becomes

ρ = e
− J
TL
− Q
Te
− µ
Tµ (3.59)

with the temperatures identical to those in (3.57). Likewise, the Cardy formula (3.46) yields (3.58) for

the CFT entropy using central charge and the left temperature obtained in (3.33) and (3.57)respec-

tively, thereby establishing the commutativity of the Kerr-CFT and super-entropic limits.
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3.5 Super-entropic black holes of gauged supergravity

The second set of black holes are black holes of minimal gauged 5d supergravity whose metric is [65]

ds2 = dγ2 − 2qνω

Σ
+
fω2

Σ2
+

Σ

∆
dr̄2 +

Σ

S
dθ̄2

A =

√
3qω

Σ
(3.60)

where

dγ2 = −Sρ
2dt̄2

ΞaΞbl2
+
r̄2 + a2

Ξa
sin2 θ̄dφ̄2 +

r̄2 + b2

Ξb
cos2 θ̄d

¯̃
ψ2,

ν = b sin2 θ̄dφ̄+ a cos2 θ̄d
¯̃
ψ,

ω =
Sdt̄

ΞaΞb
− a sin2 θ̄

dφ̄

Ξa
− b cos2 θ̄

d
¯̃
ψ

Ξb
,

S = Ξa cos2 θ̄ + Ξb sin2 θ̄,

∆ =
(r̄2 + a2)(r̄2 + b2)ρ2/l2 + q2 + 2abq

r̄2
− 2m,

Σ = r̄2 + a2 cos2 θ̄ + b2 sin2 θ̄,

ρ2 = r̄2 + l2,

Ξa = 1− a2

l2
,

Ξb = 1− b2

l2
,

f = (2m+
2abq

l2
)Σ− q2. (3.61)

Considering coordinates that rotate at infinity

φ̄ = φ̄R +
a

l2
t,

¯̃
ψ = ψ̄R +

b

l2
t (3.62)

we rewrite the metric in the more suitable form [78]

ds2 = −e0e0 +

4∑
i=1

eiei (3.63)
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with

e0 =

√
∆

r̄2 + y2
ω,

e1 =

√
r̄2 + y2

∆
dr̄, (3.64)

e2 =

√
Y

r̄2 + y2
(dt
′
− r̄2dψ1),

e3 =

√
r̄2 + y2

Y
dy,

e4 =
ab

r̄y

(
dt
′
+ (y2 − r̄2)dψ1 − r̄2y2dψ2 +

qy2

ab(r̄2 + y2)
$

)
and

Y = − (1 + y2/l2)(a2 − y2)(b2 − y2)

y2
,

$ = dt
′
+ y2dψ1,

t
′

= t̄− (a2 + b2)ψ1 − a2b2ψ2,

ψ1 =
a

a2 − b2
φ̄R
Ξa

+
b

b2 − a2

ψ̄R
Ξb

,

ψ2 =
1

a(b2 − a2)

φ̄R
Ξa

+
1

b(a2 − b2)

ψ̄R
Ξb

,

y2 = a2 cos2 θ̄ + b2 sin2 θ̄. (3.65)

Let us introduce new notations ϕ̄ = φ̄R/Ξa and ψ̄ = ψ̄R/Ξb. The thermodynamics quantities for these

black holes are

ωϕ =
a(r2

+ + b2) + bq

(r2
+ + a2)(r2

+ + b2) + abq
,

ωψ =
b(r2

+ + a2) + bq

(r2
+ + b2)(r2

+ + b2) + abq
,

TH =
r4
+[1 + (2r2

+ + a2 + b2)/l2]− (q + ab)2

2πr+[(r2
+ + a2)(r2

+ + b2) + abq]
,

S =
π2[(r2

+ + a2)(r2
+ + b2) + abq]

2ΞaΞbr+
(3.66)

and are the angular velocity in the direction ϕ̄ at the horizon, the angular velocity in the direction ψ̄

at the horizon, the Hawking temperature and the entropy of the black hole respectively. In the case

of an extremal black hole r+ solves

r4
+[1 + (2r2

+ + a2 + b2)/l2]− (q + ab)2 = 0. (3.67)

This equation admits a positive root that grows as long as the charge q gets larger.
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Let us consider first the upper path as in figure 3.1. Assuming extremality via (3.67), upon taking

the NH limit

t̄ = tr0/ε,

θ̄ = θ,

r̄ = r+ + r0rε,

ϕ̄ = ϕ+ ωϕtr0/ε,

ψ̄ = ψ + ωψtr0/ε (3.68)

the vielbeins (3.64) take the form

e0 =
√

Γ(θ)rdt,

e1 =
√

Γ(θ)
dr

r
,

e2 = α1e1 + α2e2,

e3 =
√

Γ(θ)α(θ)dθ,

e4 = β1e1 + β2e2 (3.69)

where

Γ(θ) =
l2

4

Σ+

3r2
+ + l2 + a2 + b2

, (3.70)

α(θ) =
Σ+

(Ξa cos2 θ + Ξb sin2 θ)Γ(θ)
,

e1 = dϕ+ k1rdt,

e2 = dψ + k2rdt,

r2
0 =

l2[(r2
+ + a2)(r2

+ + b2) + abq]

4r2
+(3r2

+ + l2 + a2 + b2)
,

k1 =
l2[[a(r2

+ + b2) + bq](r2
+ + b2) + bqr2

+]

2r+[(r2
+ + a2)(r2

+ + b2) + abq][3r2
+ + l2 + a2 + b2]

,

k2 =
l2[[b(r2

+ + a2) + aq](r2
+ + a2) + aqr2

+]

2r+[(r2
+ + a2)(r2

+ + b2) + abq][3r2
+ + l2 + a2 + b2]

and

α1 = a

√
Y

r2
+ + y2

r2
+ + a2

a2 − b2
,

α2 = b

√
Y

r2
+ + y2

r2
+ + b2

b2 − a2
,

β1 =
(a2 − y2)[aqy2 + b(r2

+ + a2)(r2
+ + y2)]

r+y(a2 − b2)(r2
+ + y2)

,

β2 =
(b2 − y2)[bqy2 + a(r2

+ + b2)(r2
+ + y2)]

r+y(b2 − a2)(r2
+ + y2)

. (3.71)
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The computation of the central charge requires the choice of boundary conditions

hµν ∼



O(r2) O(1) O(r2) O(1/r) O(1/r2)

O(1) O(1) O(1/r) O(1/r)

O(1) O(1/r) O(1/r)

O(1/r) O(1/r2)

O(1/r3)


(3.72)

in the basis (t, ϕ, ψ, θ, r). The diffeomorphism that preserves these boundary conditions is

ξ = [C +O(1/r3)]∂t + [−r(ε′(ϕ) + ε′(ψ)) +O(1)]∂r (3.73)

+ O(1/r)∂θ + [ε(ϕ) +O(1/r2)]∂ϕ + [ε(ψ) +O(1/r2)]∂ψ.

It clearly contains the diffeomorphisms

ζϕ = ε(ϕ)∂ϕ − rε′(ϕ)∂r,

ζψ = ε(ψ)∂ψ − rε′(ψ)∂r. (3.74)

When following the same steps than the previous cases the diffeormorphism ζϕ gives rise to central

charge

cϕ =
3k1

8π

∫ √
Γ(θ)α(θ)(α2β1 − α1β2)2dθdϕdψ

=
3πk1[(r2

+ + a2)(r2
+ + b2) + abq]

2r+ΞaΞb
. (3.75)

Similarly for the diffeomorphism ζψ

cψ =
3k2

8π

∫ √
Γ(θ)α(θ)(α2β1 − α1β2)2dθdϕdψ

=
3πk2[(r2

+ + a2)(r2
+ + b2) + abq]

2r+ΞaΞb
. (3.76)

The first law of thermodynamics and the extremality constraint (3.67) give

TdS = −[(ωϕ − ωexϕ )dJϕ + (ωψ − ωexψ )dJψ + (Φ− Φex)dQ] (3.77)

and can be rewritten as

dS =
dJϕ
Tϕ

+
dJψ
Tψ

+
dQ

Te
. (3.78)

The Boltzmann factor for black holes of gauged supergravity reads as 6

e−(E−ωϕJϕ−ωψJψ−ΦQ)/TH = e−nR/TR−nϕ/Tϕ−nψ/Tψ−Q/Te (3.79)

6In order to get a correspondence with a 2d CFT, the ratio nL/TL is regarded as nL/TL = nϕ/Tϕ + nψ/Tψ .

38



where

nR = (E − ωexϕ Jϕ − ωexψ Jψ − ΦexQ)r0/ε,

nϕ,ψ = Jϕ,ψ. (3.80)

We then get the temperatures of the left and right-moving CFT’s as well as the quantity Te associated

to the electric charge

Tϕ ≡ −∂TH/∂r+

∂ωϕ/∂r+

∣∣∣∣
ex

=
1

2kϕ
,

Tψ ≡ −∂TH/∂r+

∂ωψ/∂r+

∣∣∣∣
ex

=
1

2kψ
,

TR ≡ THr0

ε

∣∣∣∣
ex

= 0,

Te ≡ −∂TH/∂r+

∂Φ/∂r+

∣∣∣∣
ex

. (3.81)

The applicability of the Cardy formula (3.46) again requires large q and small rotation parameter

compared to the AdS raduis a� l. Thus, the CFT entropy is 7

SCFT =
π2

3
cϕTϕ +

π2

3
cψTψ

=
[(r2

+ + a2)(r2
+ + b2) + abq]

2r+ΞaΞb
(3.82)

for the extremal black hole (3.63).

The super-entropic limit of (3.63) can only be taken in one azimuthal direction [64]. Without loss

of generality, we choose this be the φ-direction, setting a→ l and requiring the new coordinate ϕ to be

periodic with period µ. Replacing φ̄R/Ξa with ϕ, the vielbeins and associated parameters are obtained

by a = l in (3.64) and (3.65) respectively. The thermodynamic quantities of this super-entropic black

7In the corresponding 2d CFT the product of the left central charge and temperature is interpreted in term of the

coordinates ϕ and ψ as cLTL = cϕTϕ + cψTψ .
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hole are [64]

M =
µ

8

(m+ bq/l)(2 + Ξb)

Ξb
,

Jϕ =
µ

4

lm+ bq

Ξb
,

Jψ =
µ

8

2bm+ q(b2 + l2)/l

Ξb
,

ωϕ =
l(r2

+ + b2) + bq

(r2
+ + l2)(r2

+ + b2) + lbq
,

ωψ =
b(r2

+ + l2) + lq

(r2
+ + l2)(r2

+ + b2) + lbq
,

TH =
r4
+[2 + (2r2

+ + b2)/l2]− (q + bl)2

2πr+[(r2
+ + l2)(r2

+ + b2) + lbq]
,

S =
µπ[(r2

+ + l2)(r2
+ + b2) + lbq]

4r+Ξb
=
A

4
,

Φ =

√
3qr2

+

(r2
+ + l2)(r2

+ + b2) + lbq
,

Q =
µ
√

3q

8Ξb
(3.83)

and are the mass, the angular momentum in the direction ϕ, the angular momentum in the direction

ψ, the angular velocity in the direction ϕ at the horizon, the angular velocity in the direction ψ at the

horizon, the Hawking temperature, the Bekeinstein-Hawking entropy, the electric potential and the

electric charge of the black holes respectively.

Upon taking the NH limit (3.68) for the extremal case

r4
+[1 + (2r2

+ + l2 + b2)/l2]− (q + lb)2 = 0 (3.84)

we obtain (3.69,3.70,3.71) with a = l. This is the same result as that would be obtained if the

super-entropic limit of (3.69) were taken.

After fixing the same boundary conditions (3.72) we find

cϕ =
3k1µ[(r2

+ + l2)(r2
+ + b2) + lbq]

4r+Ξb
(3.85)

and

cψ =
3k2µ[(r2

+ + l2)(r2
+ + b2) + lbq]

4r+Ξb
(3.86)

the central charges, this result is valid for both the upper and lower paths of figure 3.1.

For either path the first law of thermodynamics and its extremality constraint are

TdS = −[(ωϕ − ωexϕ )dJϕ + (ωψ − ωexψ )dJψ + (Φ− Φex)dQ+ (K −Kex)dµ] (3.87)
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which we write as

dS =
dJϕ
Tϕ

+
dJψ
Tψ

+
dQ

Te
+
dµ

Tµ
(3.88)

and the Boltzmann factor is

e
− 1
TH

(E−ωϕJϕ−ωψJψ−ΦQ−Kµ)
= e
−nRTR−

nϕ
Tϕ
−
nψ
Tψ
− Q
Te
− µ
Tµ (3.89)

where

nR = (E − ωexϕ Jϕ − ωexψ Jψ − ΦexQ−Kexµ)
r0

ε
,

nϕ,ψ = Jϕ,ψ. (3.90)

The temperatures of the two left and one right-moving CFT’s and the quantities Te and Tµ respectively

associated with the electric charge and the chemical potential are

Tϕ ≡ −∂TH/∂r+

∂ωϕ/∂r+

∣∣∣∣
ex

=
1

2kϕ
,

Tψ ≡ − ∂TH/∂r+

∂ωψ′/∂r+

∣∣∣∣
ex

=
1

2kψ
,

TR ≡ THr0

ε

∣∣∣∣
ex

= 0,

Te ≡ −∂TH/∂r+

∂Φ/∂r+

∣∣∣∣
ex

,

Tµ ≡ −∂TH/∂r+

∂K/∂r+

∣∣∣∣
ex

(3.91)

upon comparing the two equations in (3.90).

Finally, we find that the CFT entropy is

SCFT =
µπ[(r2

+ + l2)(r2
+ + b2) + lbq]

4r+Ξb
(3.92)

for both paths. As before, a sufficient condition for the Cardy formula (3.46) is that the electric charge

q is sufficiently large, thereby ensuring that Tϕ � c and Tψ � c.

3.6 Conclusion

We have demonstrated that the super-entropic black holes, despite the non-compactness of their hori-

zons, have well-defined Kerr-CFT correspondence limits. These limits are robust: the CFT limit of a

super-entropic black hole yields the same results as the super-entropic limit of an extremal near-horizon

Kerr-AdS metric. Indeed, we verified that we always end up with the same outcome depending on

whether we follow either the upper or lower path in figure 3.1. Our work enlarges the class of metrics
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respecting the Kerr-CFT correspondence in novel directions (black holes with non-compact horizons

of finite area) whose implications remain to be explored.

A remarkable feature of super-entropic black holes is that the new variable µ, interpreted as the

chemical potential and obtained from compactification of the azimuthal direction, not only enters into

the Cardy formula to yield an entropy for the CFT, but also yields a new quantity Tµ that appears in

the Hartle-Hawking density matrix. The latter scales as the inverse of the square of a length (∼ l−2)

in 4d or more generally as (∼ l2−d) in all dimensions d.

We note that the Kerr-CFT correspondence only applies for singly-spinning super-entropic black

holes in d = 4, since the extremality condition does not hold for d > 4. The d = 5 gauged supergravity

super-entropic black holes, however, do exhibit the correspondence. In both cases, a sufficient condition

for the applicability of the Cardy formula (3.46) is that the electric charge of such black holes is taken

to be large. This is in contrast to both Kerr-Newman-AdS and gauged supergravity black holes in

which both large electric charges and small rotation parameters compared to the AdS radii (a � l),

are required.

We expect that the Kerr-CFT correspondence for the recently obtained multiply spinning super-

entropic black holes [64] can be established using arguments similar to the ones that we have presented.
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Chapter 4

Higher order corrections to

holographic black hole chemistry

Unlike the previous chapter, we focus here on the AdS/CFT correspondence and try to extend it to

gravitation theories beyond Einstein’s theories that are referred to as Lovelock theories. Our study is

made possible by the definition of a holographic dictionary, which connects thermodynamic quantities

and laws in the bulk to those in the dual CFT. The validity of these holographic laws for Lovelock

theories endorses the AdS/CFT correspondence. As in the previous chapter, some background on black

hole chemistry (see section 2.5) is required to a better understanding of the content of this chapter.

4.1 Introduction

For nearly two decades the AdS/CFT correspondence [6] has been the subject of intense research,

motivated by the fact that it posits a connection between an anti de Sitter (AdS) black hole and a

conformal field theory (CFT) defined on its boundary. In the context of black hole thermodynamics,

an understanding of the physics of the AdS black hole can be reinterpreted in terms of a thermal

system on the boundary field theory and vice-versa.

The general assumption underlying nearly all investigations of the AdS/CFT correspondence is

that the cosmological constant is a fixed parameter. However increasing interest has been focused on

regarding the cosmological constant as a thermodynamic variable via the relation

P = − Λ

8πGd
=

(d− 1)(d− 2)

16πl2Gd
(4.1)
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where P is the pressure of the black hole system [57]. With this comes the associated concept of

volume V for a black hole, which is the thermodynamic conjugate of pressure. The extension of

thermodynamic phase space to include these two variables has led to the realization that black holes

can exhibit enormously rich and diverse phase behaviour, including Van der Waals phase transitions

for charged black holes [16, 17], triple points analogous to water [18], re-entrant phase transitions

analogous to those seen in gels and polymers [19], and even superfluid phase transitions analogous to

those in superfluid helium [20]. This burgeoning subfield is now referred to as black hole chemistry

[21]

It is therefore of interest to ask what black hole chemistry implies for the variables in the boundary

field theory. What do the first law of thermodynamics, the Smarr relation, and so on look like on the

CFT side? The quantity l in (4.1) is the AdS radius and is related to the number of colours N in the

dual gauge theory via a holographic relation of the form [24]

ld−2

Gd
∼ N2 (4.2)

where the d-dimensional gravitational constant Gd has a length dimension of d−2. This kind of relation

was first introduced in the AdS/CFT correspondence from string theory [6], in which an AdS5 × S5

spacetime appears to be the near horizon geometry of N coincident D3 branes in type IIB supergravity.

The correspondence between an AdS5 × S5 spacetime and a N = 4 SU(N) Yang-Mills theory on its

boundary was expressed as follows

l4 =

√
2`4Pl
π2

N , (4.3)

where `Pl is the 10-dimensional Planck length. From the two preceding relations we can remark that

the variation of the AdS radius l amounts to the variation of the color number N in the boundary

Yang-Mills theory.

An interesting subject to think about is on the nature of the connection between the bulk and the

CFT on its boundary as well as its implications when we are in presence of another theory of gravity.

The suggestion that varying the pressure, or Λ, is equivalent to varying the number of colors, N ,

in the boundary Yang–Mills theory has been proposed by a few authors [79, 80, 81], with V being

interpreted in the boundary field theory as an associated chemical potential µ for colour. This has

the consequence that the variation of Λ in the bulk moves on around the space of field theories in the

boundary. Alternatively, one could keep N fixed, so that field theory remains the same, in which case

varying Λ in the bulk corresponds to varying the curvature radius governing the space on which the

field theory is defined [24].

From this latter perspective, a generalized Smarr relation can be derived by considering the ther-
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modynamics of the dual field theory [24]. Noting that the free energy of the field theory scales simply

as N2, we have

Ω(N,µ, T, l) = N2Ω0(µ, T, l) (4.4)

in the limit of large N . For a conformal field theory the equation of state reads

E = (d− 2)pV (4.5)

and together with (4.4) can be used to obtain the standard Smarr relation (d−3)M = (d−2)TS−2PV

for an uncharged AdS black hole. In this sense equation (4.4) can be regarded as a ‘holographic Smarr

relation’. Since N2 ∼ ld−2

Gd
, varying Λ is equivalent to varying the AdS length l, and since N is fixed,

Gd must also be varied.

The purpose of this chapter is to investigate the holographic Smarr relation (4.4) beyond the

large N limit, including sub-leading corrections to this relation. We will see that relation (4.4) can

be generalized to a form that includes subleading 1/N corrections whose bulk correlates are related

to the couplings in Lovelock gravity theories. Lovelock theories are higher curvature or derivative

generalizations of Einstein’s theory, and in the context of string theory are understood as quantum

corrections to Einstein gravity. We shall show that the Lovelock couplings are related to a function of

N , with variations of the Lovelock couplings in the bulk dictating the behaviour of the corresponding

CFT via the variation of these functions.

Inquiries on how far this generalization extends (or what are the limits thereof) for a given black

hole are also be of considerable interest. The bulk Smarr relation and the corresponding CFT equation

of state are both expected to be satisfied at the lowest order (Einstein-Hilbert action). We shall look

at what happens at higher order, considering especially the CFT equation of state to see whether or

not it breaks down.

In section 2, we review some important notions and relations for Lovelock black holes, particularly

the first law of thermodynamics and the Smarr relation. In section 3 we investigate how these important

relations in the bulk theory are viewed in the CFT, particularly with regards to the derivation of the

equation of state in the boundary field theory. Section 4 is devoted to the holographic derivation of

the Smarr relation where we mostly make use of the equation (4.36) of the holographic dictionary and

by regarding the grand canonical function Ω as a homogeneous function of functions of N . In section 5

we check the validity of the equation of state, introduced earlier in section 3, for some particular cases

of black holes, including spherically symmetric AdS lovelock black holes, rotating planar black holes

in Gauss-Bonnet-Born-Infeld gravity, and non-extremal rotating black holes in minimal 5d gauged

supergravity. An explanation of the dependence of the function of N is in section 6, and in the last

section we make some concluding remarks.
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4.2 A Review of Lovelock black holes

In this current section we review the derivation of thermodynamic quantities associated with Lovelock

black holes and some relations implied by these quantities.

Lovelock gravity is a generalization of Einstein’s theory whose action and field equations are non-

linear in the curvature whilst always maintaining second-order differential equations for the metric.

Its Lagrangian has the form [13]

L =
1

16πGd

d−1
2∑

k=0

α̂(k)L
(k) (4.6)

with d the spacetime dimension, α̂(k) the Lovelock coupling constants for the k-th power of curvature,

and L(k) the Euler density of dimension 2k. These Euler densities are expressed as

L(k) =
1

2k
δa1b1...akbk
c1d1...ckdk

Rc1d1

a1b1
...Rckdkakbk

(4.7)

where the δa1b1...akbk
c1d1...ckdk

are the totally antisymmetric in both set of indices of the Kronecker delta

functions and Rckdkakbk
the Riemann tensors.

From the Lagrangian (4.6, 4.7), the variational principle yields the vacuum equations of motion for

Lovelock gravity, which are

Gab =

d−1
2∑

k=0

α̂(k)G
(k)a

b = 0 (4.8)

with G(k)a

b the Einstein-like tensors, which read as

G(k)a

b = − 1

2k+1
δaa1b1...akbk
bc1d1...ckdk

Rc1d1

a1b1
...Rckdkakbk

(4.9)

and each of them satisfy independently the conservation law ∇aG(k)a

b = 0.

If we minimally couple the theory to a Maxwell field Fab the action is

S =
1

16πGd

∫
ddx
√
−g
[ d−1

2∑
k=0

α̂(k)L
(k) − 4πGdFabF

ab
]
. (4.10)

and yields
d−1

2∑
k=0

α̂(k)G
(k)a

b = 8πGd
[
FacF

c
b −

1

4
gabFcdF

cd
]

(4.11)

for the equations of motion. Without solving these equations, it can be shown for solutions of asymp-

totic constant curvature that the first law of thermodynamics and the Smarr relation respectively
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are

δM = TδS + µδQ− 1

16πGd

d−1
2∑

k=0

Ψ(k)δα̂(k)

(d− 3)M = (d− 2)TS + (d− 3)µQ+

d−1
2∑

k=0

2(k − 1)

16πGd
Ψ(k)α̂(k) (4.12)

where the solution is characterized by a mass M , a charge Q, Lovelock coupling constants α̂(k) each

having thermodynamic conjugate Ψ(k), and (if it is a black hole) a temperature T , and an entropy S.

Restricting attention to spherically symmetric metrics

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
(κ)d−2

F =
Q

rd−2
dt ∧ dr (4.13)

where dΩ2
(κ)d−2 is the line element of a compact space of dimension (d − 2) with constant curvature

(d− 2)(d− 3)κ (κ = −1, 0, 1), the equations of motion (4.11) for charged spherically symmetric black

holes of mass M read [82, 83, 84, 85, 86, 87, 88]

d−1
2∑

k=0

αk

(
κ− f
r2

)k
=

16πGdM

(d− 2)ωκd−2r
d−1
− 8πGdQ

2

(d− 2)(d− 3)r2(d−2)

(4.14)

where the charge is given by

Q =
1

2ω
(κ)
d−2

∫
∗F (4.15)

and where ω
(1)
d−2 = 2π(d−1)/2

Γ((d−1)/2) and

α0 =
α̂(0)

(d− 1)(d− 2)
, α1 = α̂(1)

αk = α̂(k)

2k∏
n=3

(d− n) for k ≥ 2 (4.16)

is a simple and useful rescaling of the Lovelock couplings.

Computing the temperature T = f ′(r+)
4π via standard Wick rotation arguments, we need not explic-

itly to know f(r) in order to determine the mass M , temperature T , entropy S and electric potential
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µ of the black holes. These thermodynamic quantities are [85, 89]

M =
ω

(κ)
d−2(d− 2)

16πGd

∑
k=0

αkκ
kr+

d−1−2k +
ω

(κ)
d−2Q

2

2(d− 3)r+
d−3

,

T =
1

4πr+D(r+)

[∑
k=0

καk(d− 2k − 1)(
κ

r2
+

)k−1 − 8πGdQ
2

(d− 2)r
2(d−3)
+

]
, (4.17)

S =
ω

(κ)
d−2(d− 2)

4Gd

∑
k=0

kκk−1αkr
d−2k
+

d− 2k
,

µ =
ω

(κ)
d−2Q

(d− 3)rd−3
+

with D(r+) =
∑
k=1 kαk(κr−2

+ )k−1 and r+ the horizon radius. From the extended first law (4.12) and

Smarr relation (4.12) we can obtain the thermodynamic conjugate quantities Ψ(k) [90, 91]

Ψ(k) =
ω

(κ)
d−2(d− 2)

16πGd
rd−2k
+

[
κ

r+
− 4πkT

d− 2k

]
, k ≥ 0 (4.18)

in terms of the rescaled coupling constants. The above quantities satisfy the Smarr relation (4.12).

From these quantities it follows that the thermodynamic pressure and volume are given by

P = − Λ

8πGd
=

(d− 1)(d− 2)

16πGd
α0,

V = ω(κ)
n

rn+1
+

n+ 1
(4.19)

where n = d− 2.

Before proceeding we pause to comment on the relationship between these quantities and the more

standard notions of thermodynamics bulk pressure and volume in black hole thermodynamics, which

are [92]

Pb = − Λ

8π
and Vb =

∂M

∂Pb

∣∣
S,Qb,αk≥1

. (4.20)

The first relation is the standard identification of α0 with the cosmological constant [90]. Hence

PbVb = α0Ψ(0). (4.21)

The CFT pressure and volume can be defined as p and v = ω
(κ)
n Rn. The pressure p has a length

dimension of −(n+ 1) and R is the radius of the sphere on which the CFT is defined.

4.3 Equation of state

In this section we derive the equation of state by looking at how transformations of parameters on

the field theory lead to transformations in the bulk or vice versa. An example of this is the proposed
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correspondence between varying the cosmological constant Λ ∼ (α0) in the bulk and variations in the

number of colors N in the field theory [81, 79, 93, 94, 95].

The Smarr relation (4.12) has been posited [24] to be derivable from the scaling properties of

the free energy of the dual field theory in the limit of a large number of colors N . The free energy

Ω(N,µ, T, l) of the field theory dual to Einstein-AdS gravity scales as (4.4)

Ω(N,µ, T, l) = N2Ω0(µ, T, l) . (4.22)

where N2 is the central charge. Extending Ω(N,µ, T, l) to Lovelock gravity theory we posit

Ω(N,µ, T, αj , R) =
∑
k=0

gk(N)Ωk(µ, T, αj , R) (4.23)

where the gk(N) are assumed to be polynomial functions (as suggested in [24]) of N . We will see in

the next section that this form is of great interest in the derivation of the holographic Smarr relation

for Lovelock gravity.

Noting that the thermal properties of AdS black holes can be reinterpreted as those of a CFT at

the same finite temperature [23], the grand canonical free energy and its density are expressible in

terms of the on-shell action the (Euclidean) bulk solution as [24]

Ω = M − TS − µQ,

Ω̃ = M̃ − T S̃ − µQ̃ (4.24)

where the quantities M̃, S̃ and Q̃ are the respective mass, entropy and charge per unit volume of the

CFT. Note that these thermodynamic quantities are defined on the boundary and have the following

form: Q ∼ Qbl, µ ∼ µb/l, αFk = αkl
2(1−k) and Ψ

(k)
F = Ψ(k)l2(k−1), while others are kept unchanged.

Let us consider conformal field theories, whose equations of state is obtained by taking into account

the behaviour of the thermodynamic quantities under an infinitesimal scale transformation

dS = 0,

dQ = 0,

dαFk = 0 (k ≥ 1),

dM = Mdλ,

dp = (n+ 1)pdλ,

dv = −nvdλ. (4.25)

λ is the parameter associated to the scale transformation. From these relations and the extended first

law of thermodynamics

dM = TdS + µdQ+
∑
k

Ψ
(k)
F dαFk (4.26)
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we are led to the equation of state

M̃ = (n+ 1)p. (4.27)

Also the extended first law is reduced to

dM = vdp (4.28)

and (under the constraints of (4.25)) knowing that

v =
∂Ω

∂p

= (Ω̃∂Rv + v∂RΩ̃)
∂R

∂p
(4.29)

we get

∂Rp =
n

R
Ω̃ + ∂RΩ̃

→ nΩ̃ +R∂RΩ̃

= −(n+ 1)p (4.30)

where R∂Rp = −(n+ 1)p because of the length dimension of p. Inserting the equation of state (4.27)

into (4.30) yields

M̃ = −(nΩ̃ +R∂RΩ̃) (4.31)

or alternatively, using (4.24),

(n+ 1)M̃ = n(T S̃ + µQ̃)−R∂RΩ̃ (4.32)

which is the holographic equation of state.

For rotating black holes (4.32) has to be slightly modified; we have to add one more condition to

(4.25)

dJi = Jidλ (4.33)

with Ji the angular momentum associated to the i-th angular variable. The additional condition takes

(4.32) to the new expression

(n+ 1)M̃ = n(T S̃ + µQ̃) + (n+ 1)
∑
i

ωiJ̃i −RdRΩ̃ (4.34)

where Ω̃i is the angular velocity associated with the i-th angular variable and Ω̃ = M̃ − T S̃ − µQ̃ −∑
i ωiJ̃i .

4.4 Holographic Smarr relation

The grand canonical free energy (4.23) introduced in the previous section is a polynomial on the

variable N2. In Einstein gravity [24] only the first term of Ω is taken into account. This can be
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justified by the fact that the dual field theories to the black holes are considered to be in the large N

limit.

For a Lovelock black hole nonzero additional terms appear due to contributions from the higher

curvature terms. Without knowing explicitly their form, the dimensionality

[αk] = 2(k − 1) or αk ∼ l2(k−1) (4.35)

of the Lovelock couplings implies that

βk(αk)
d−2

2(k−1) = gk(N) (4.36)

for which the k = 0 term is

β0l
d−2 = N2 (4.37)

recovering the relationship (4.2) obtained previously [24]. Here β0 = δ
16πGd

, with δ an arbitrary

dimensionless constant.

Equation (4.36) implies

αk
∂X

∂αk
=

d− 2

2(k − 1)
gk
∂X

∂gk
(4.38)

for any arbitrary function X of the parameters αk. Setting X = Ω, equation (4.38) then becomes

αk
∂Ω

∂αk
=

d− 2

2(k − 1)
gk
∂Ω

∂gk
(4.39)

After multiplying both sides by 2(k − 1) and summing over k we have∑
k=0

2(k − 1)αkΨ(k) = (d− 2)
∑
k=0

gk
∂Ω

∂gk
(4.40)

where Ψ(k) = ∂Ω
∂αk

. We thus have the general relation

l
∂

∂l
+
∑
k=1

2(k − 1)αk
∂

∂αk
= (d− 2)

∑
k=0

gk
∂

∂gk
(4.41)

noting that −2α0∂α0
= l∂l. Recalling that the Euler scaling relation f(tx1, . . . , txm) = tnf(x1, . . . , xm)

implies

nf(x1, . . . , xm) =
∑
j

xj
∂f

∂xj
(4.42)

for a homogeneous function of order n, it is straightforward to see that equation (4.40) can be written

as ∑
k=0

2(k − 1)αkΨk = (d− 2)Ω (4.43)

using

Ω =
∑
k=0

gk
∂Ω

∂gk
(4.44)
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which holds since Ω is an homogeneous function of the gk of degree 1.

More generally Ω is a function of (gk, R,Q) and not just the gk. For any function f(l, Z), its

derivative with respect to l will be

∂lf(l, Z)|Zb = ∂lf |Z + p
Z

l
∂Zf |l. (4.45)

if the quantity Z has scaling behaviour Z = Z0l
p for some constant Z0. For charged black holes,

Ab = lA, µb = lµ, Qb = Q/l (4.46)

after converting to a canonical normalized field strength of dimension 2, and the radius R = R0l for

the boundary CFT since

ds2
boundary = −dt2 + l2dΩ2

d−2 (4.47)

is the boundary metric [24]. Hence we obtain

l
∂

∂l
+
∑
k=1

2(k − 1)αk
∂

∂αk
= (d− 2)

∑
k=0

gk
∂

∂gk
+R

∂

∂R
+Q

∂

∂Q
(4.48)

and so (4.40) now reads as

∑
k=0

2(k − 1)αkΨk

= (d− 2)
∑
k=0

gk∂gkΩ
∣∣
µ,T

+R∂RΩ
∣∣
µ,T,αk≥1

+Q∂QΩ
∣∣
µ,T,αk

= (d− 2)Ω−M − µQ

= (d− 3)M − (d− 2)TS − (d− 3)µQ (4.49)

upon using (4.24), which implies

dΩ = −SdT −Qdµ+ vdp+
∑
k≥1

Ψkdαk (4.50)

so that ∂QΩ = −µ and ∂RΩ = v∂Rp = −M from (4.27) and (4.30). We see that (4.49) is the Smarr

relation (4.12).

4.5 Some cases

The main purpose of this section is to check the validity of the holographic equation of state (4.34) for

a variety of special cases.
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We shall consider spherically symmetric AdS Lovelolock black holes whose metrics are given in

(4.13) and (4.14). The thermodynamic quantities for these black holes are given by

M̃ =
d− 2

16πGd

1

Rd−2

d−1
2∑

k=0

αkκ
krd−1−2k

+ +
Q2

2(d− 3)rd−3
+ Rd−2

T S̃ =
d− 2

4Gd

T

Rd−2

d−1
2∑

k=1

kκk−1αkr
d−2k
+

d− 2k

µQ̃ =
Q2

(d− 3)rd−3
+ Rd−2

(4.51)

and

Ψ̃(k) =
d− 2

16πGd
κk−1 r

d−2k
+

Rd−2

[ κ
r+
− 4πkT

d− 2k

]
V = ω

(κ)
d−2R

d−2, R = l. (4.52)

From these equations the free energy density looks like

Ω̃ =
d− 2

16πGdld−2

∑
k=0

αkκ
k−1rd−2k−1

+

[
κ− 4πkr+T

d− 2k

]
− Q2

2(d− 3)rd−3
+ ld−2

(4.53)

To compute R∂RΩ̃
∣∣
N,µ,T,αFk

we have determine how the other quantities scale in term of l. It is easy

to notice that ld−2/Gd ∼ l0, r+ ∼ l2T, Q ∼ l3d/2−4T d−2, αk = αFk l
2(k−1), Q = lQb and so

R∂RΩ̃
∣∣
N,µ,T,αFk

= l∂lΩ̃
∣∣
ld−2/Gd,µ,T,αFk

= − d− 2

16πGdld−2

∑
k=0

kκk−1αkr
d−2k−1
+

(
2κ− 8π(k − 1)r+T

d− 2k

)
(4.54)

and using (4.17) and (4.51) it is also easy to check that

(d− 1)M̃ +R∂RΩ̃ = (d− 2)

[
(d− 2)T

4Gdld−2

∑
k=0

kκk−1αkr
d−2k
+

d− 2k
+

Q2

(d− 3)rd−3
+ ld−2

]
= (d− 2)(T S̃ + µQ̃) (4.55)

recovering the equation of state (4.32) with n = d− 2.

We next consider rotating planar Lovelock black holes in Gauss-Bonnet-Born-Infeld Gravity. The

action in d dimensions is given by [96]

IG = − 1

16πGd

∫
M
ddx
√
−g
[
R− 2Λ + α(RµνγδR

µνγδ − 4RµνR
µν +R2) + L(F )

]
− 1

8πGd

∫
∂M

√
−γ
[
Θ + 2α(J − 2ĜabΘ

ab)
]

(4.56)

where Λ = −(d− 2)(d− 1)/2l2 is the cosmological constant, α the Gauss-Bonnet coefficient and L(F )

the Born-Infeld Lagrangian

L(F ) = 4β2

(
1−

√
1 +

F 2

2β2

)
(4.57)
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where β is the Born-Infeld parameter which has a dimension of mass, F 2 = FµνFµν with Fµν =

∂µAν−∂νAµ. Regarding the boundary term, Θ is the trace of extrinsic curvature Θab of the boundary,

Ĝab(γ) is the Einstein tensor on the boundary and J the trace of

Jab =
1

3
(ΘcdΘ

cdΘab + 2ΘΘacΘ
c
b − 2ΘacΘ

cdΘdb −Θ2Θab) (4.58)

In order to solve the equations of motion derived from the action (4.56) we consider a d dimensional

asymptotically AdS spacetime with k rotation parameters, whose metric reads [97, 98]

ds2 = −f(r)

(
Ξdt−

k∑
i=1

aidφi

)2

+
r2

l2

k∑
i=1

(aidt− Ξl2dφi)
2

+
dr2

f(r)
− r2

l2

k∑
i<j

(aidφj − ajdφi)2 + r2dX2 (4.59)

where Ξ =
√

1 +
∑k
i a

2
i /l

2 and dX2 a (d− 2− k) dimensional Euclidean metric. Using the ansatz

Aµ = h(r)(Ξδ0
µ − δiµai) (4.60)

the equations of motion for the vector potential yield

h(r) = −

√
d− 2

2(d− 3)

q

rd−3 2F1

(
1

2
,
d− 3

2(d− 2)
;

3d− 7

2(d− 2)
;−η

)
(4.61)

where 2F1(a, b; c; z) is a hypergeometric function and

η =
(d− 3)(d− 2)q2

2β2r2(d−2)
. (4.62)

Inserting (4.59) into the gravitational field equations gives

f(r) =
r2

2(d− 4)(d− 3)α
(1−

√
g(r)) (4.63)

where

g(r) = 1− 16
(d− 4)αβ2η

d− 1
2F1

(
1

2
,
d− 3

2(d− 2)
;

3d− 7

2(d− 2)
;−η

)
(4.64)

+ 4
(d− 4)(d− 3)α

(d− 2)(d− 1)rd−1

(
2Λrd−1 + (d− 2)(d− 1)m− 4β2rd−1(1−

√
1 + η)

)
.

Setting f(r+) = 0, from the above expression it follows that m is given by

m = −
2Λrd−1

+

(d− 2)(d− 1)
+

4β2rd−1
+

(d− 2)(d− 1)
(1−

√
1 + η+) + 2(d− 2)2 q2

rd−3
+

2F1

(
1

2
,
d− 3

2(d− 2)
;

3d− 7

2(d− 2)
;−η+

)
with r+ the horizon radius.

The thermodynamic quantities associated with these black holes are
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M =
1

16πGd
m((d− 1)Ξ2 − 1),

T =
r+

2(d− 2)πΞ
[2β2(1−

√
1 + η+)− Λ],

S =
Ξ

4Gd
rd−2
+ ,

Ji =
1

16πGd
(d− 1)Ξmai,

ωi =
ai

Ξl2
,

Q =

√
2(d− 3)(d− 2)Ξ

8πGd
q,

µ =

√
d− 2

2(d− 3)

q

Ξrd−3
+

2F1

(
1

2
,
d− 3

2(d− 2)
;

3d− 7

2(d− 2)
;−η+

)
. (4.65)

For the d dimensional black holes whose thermodynamic quantities given above we can see that

(d− 1)M̃ =
1

16πGdld−2
(d− 2)(d− 1)m+

(d− 1)2

16πGdld−2
m
∑
i

a2
i

l2

= (d− 2)(T S̃ + µQ̃) + (d− 1)
∑
i

ωiJ̃i (4.66)

which is (4.34) upon setting n = d− 2, provided R∂RΩ̃ vanishes.

To compute R∂RΩ̃, we have to keep in mind that the bulk quantities Qb, µb, J
b
i , ω

b
i are redefined in

the CFT as Q = Qbl, µ = µb/l, Ji = Jbi /l, ωi = lωbi ; we also have ld−2/Gd ∼ l0, r+ ∼ l2T, q ∼ µlrd−3
+

and ai ∼ lωi and R = l. Hence a direct computation of (4.24) yields

Ω̃ = 0 (4.67)

and so

R∂RΩ̃
∣∣
N,µ,T,ωi

= l∂lΩ̃
∣∣
ln−1/Gn+1,µ,T,ωi

= 0 (4.68)

as expected.

Finally we consider non-extremal rotating black holes in minimal 5d gauged supergravity. This

provides an interesting non-trivial example with both charge and angular momentum. The metric in
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the Boyer- Lindquist coordinates xµ = (t, r, φ, ψ) reads [65]

ds2 = − ∆θ

ΞaΞbρ2
[(1 + g2r2)ρ2dt+ 2qν]dt+

2q

ρ2
νζ +

f

ρ4

(
∆θ

ΞaΞb
dt− ζ

)2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2

+
r2 + a2

Ξa
sin2 θdφ2 +

r2 + b2

Ξb
cos2 θdψ2

A =

√
3q

ρ2

(
∆θ

ΞaΞb
dt− ζ

)
(4.69)

where

ν = b sin2 θdφ+ a cos2 θdψ,

ζ = a sin2 θ
dφ

Ξa
+ b cos2 θ

dψ

Ξb
,

∆θ = 1− a2g2 cos2 θ − b2g2 sin2 θ,

∆r =
(r2 + a2)(r2 + b2)(1 + g2r2) + q2 + 2abq

r
− 2m,

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ,

Ξa = 1− a2g2,

Ξb = 1− b2g2,

f = 2mρ2 − q2 + 2abqg2ρ2 (4.70)

with a, b the rotation parameters associated to the coordinates φ, ψ respectively and g is a constant

with dimension of length.

The associated thermodynamic quantities are

M =
mπ(2Ξa + 2Ξb − ΞaΞb) + 2πqabg2(Ξa + Ξb)

4Ξ2
aΞ2

bG5
,

ωa =
a(r2

+ + b2)(1 + g2r2
+) + bq

(r2
+ + a2)(r2

+ + b2) + abq
,

ωb =
b(r2

+ + a2)(1 + g2r2
+) + aq

(r2
+ + a2)(r2

+ + b2) + abq
,

T =
r4
+[1 + g2(2r2

+ + a2 + b2)]− (q + ab)2

2πr+[(r2
+ + a2)(r2

+ + b2) + abq]
,

S =
π2[(r2

+ + a2)(r2
+ + b2) + abq]

2ΞaΞbr+G5
,

Ja =
π[2am+ qb(1 + a2g2)]

4Ξ2
aΞbG5

,

Jb =
π[2bm+ qa(1 + b2g2)]

4ΞaΞ2
bG5

,

Q =

√
3π

4ΞaΞbG5
,

µ =

√
3qr2

+

(r2
+ + a2)(r2

+ + b2) + abq
(4.71)
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where r+ is the horizon radius and

m =
(r2

+ + a2)(r2
+ + b2)(1 + g2r2

+) + q2 + 2abq

2r2
+

.

In five dimensions 5d equation (4.34) takes the form

4M̃ = 3(T S̃ + µQ̃) + 4ωaJ̃a + 4ωbJ̃b −R∂RΩ̃. (4.72)

To check the validity of this equation, we need to underline how the CFT quantities are defined in

term of the bulk ones as in the previous example. Q = Qbl, µ = µb/l, Ji = Jbi /l, ωi = lωbi . Also

l3/G5 ∼ l0, r+ ∼ l2T, q ∼ µlr2
+ and ai ∼ l (a1 = a, a2 = b) and R = l. We compute Ω̃ in the

appendix and find from (B-4) that

R∂RΩ̃
∣∣
N,T,µ,ωi

= l∂lΩ̃
∣∣
l3/G5,T,µ,ωi

= −4M̃ + 3(T S̃ + µQ̃) + 4ωaJ̃a + 4ωbJ̃b

(4.73)

showing that (4.34) is satisfied.

4.6 On the gk(N) dependence on N

In the present section we investigate how the functions gk(N) can be approximated. To do so we

employ the ansatz that the gk(N) appear as functions of powers of N2 [24]. More explicitly, we

assume

gk(N) ≡ O(N2(1−k)) (4.74)

which means that for higher order curvature theories (k ≥ 2) the functions gk(N) are highly sup-

pressed in the large N field limit. We shall here restrict our attention to the leading terms of each

higher curvature contribution. When we look at a higher curvature theory of gravity, the additional

contributions are seen as correction terms to the Einstein-Hilbert action.

To better illustrate what is meant, we can consider a pure Yang-Mills theory, or a field theory

coupled to a Yang-Mills gauge theory, whose Lagrangian L(1) gives rise to planar and non planar

diagrams. We can also consider a Kaluza-Klein-like model which couples gravity to a Yang-Mills gauge

theory so that the general Lagrangian is similar to that of a pure gravity theory . In such theories

gauge field self-interaction terms are part of the Lagrangian L(1), whereas higher order diagrams come

explicitly from higher curvature terms (Rd+1 = Rd + gF 2 + ...).

Considering only non-planar diagrams with 4 vertices, as shown in figure 4.1, we know that these

kinds of diagrams bring a contribution to the scattering amplitude proportional to N2g4
YM = λ2,
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(a) (b)

Figure 4.1: (a) This planar diagram contributes to the scattering amplitude with an amount pro-

portional to N2(gYM )0 = N2λ0 and corresponds to L(0) in the Lovelock theory. As we know that

every closed loop comes with a factor N . (b) The non planar diagram, which is of great interest here,

contributes to the scattering amplitude with a term proportional to N2(gYM )4 = N0λ2 and is linked

to L(1). The Yang-Mills coupling gYM appears at each vertex of the diagram.

Figure 4.2: The following diagram can be thought of as two similar copies of the four vertices non

planar diagram piled together one on top of the other. It gives rise to a contribution to the scattering

amplitude proportional to N2(gYM )8 = N−2λ4 and corresponds to L(2) in the Lovelock theory. For the

term in L(k) in the Lovelock theory the corresponding diagram will consist in a stack of k copies of the

four vertices non planar diagram, whose the contribution to the scattering amplitude is proportional

to N2(gYM )2k = N2(1−k)λ2k
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where gYM and λ are the Yang-Mills and ’t Hooft couplings respectively. It clearly appears that these

diagrams lead to contributions of the order of N0 in the computation of the scattering amplitude. This

reasoning generalizes to higher curvature terms (k ≥ 2) in the following way:

L(0) ∼ R0 → N2

L(1) ∼ R1 → N0

L(2) ∼ R2 → N−2

L(k) ∼ Rk → N2(1−k) (4.75)

with R some scalar measure of the curvature. Following the above construction we can infer that there

should be a correspondence between the dependence of the functions gk(N) on N2 and the contribution

of non-planar diagrams to the scattering amplitude (see figure 4.2), where we infer N2(gYM )2k =

N2(1−k)λ2k. This suggests the correspondence (4.74). These results are applicable to any higher-

curvature theory of gravity.

4.7 Conclusion

By considering the grand canonical free energy Ω in both the bulk and the field theory on its boundary,

we have derived a holographic Smarr relation valid beyond the large N limit, with subleading terms

of the from gk(N) arising from higher-curvature corrections of the type found in k-th order Lovelock

gravity. By assuming that Ω in the CFT is a homogeneous function of degree one of the gk(N) functions

we were able to obtain the holographic equation of state (4.34). We illustrated its validity for several

non-trivial cases in Lovelock gravity and in minimal gauged supergravity in 5 dimensions.

We expect that asymptotically AdS black holes will in general satisfy the relations we have derived,

testifying to the robustness of the correspondence between the bulk relations such as the Smarr relation

and the equation of state in the CFT. It was shown [24] that Einstein-gravity black holes whose dual

field theories are the large N gauge theories with hyperscaling violation satisfy a modified equation

of state in the large N limit. We therefore expect that many other non trivial examples of black

holes exist where the equation of state beyond this limit has a slightly modified 1 form from the

one we obtained. Some of these black holes are the black Dn branes, which are dual to maximally

supersymmetric gauge theories in n+ 1 dimensions. Higher-curvature theories that are dual to gauge

theories with hyperscaling violation should be good examples of such theories. An interesting project

1Field theories that are maximally supersymmetric gauge theories in n+ 1 dimensions dual to Dn-branes [24] verify

an equation of state of the form (n+ 1− θ)M̃ = (n− θ)(T S̃ + µQ̃) with θ = − (n−3)2

5−n .
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for future work would be to investigate for these black holes the form of the equation of state at higher

order.
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Chapter 5

Geons and the quantum

information metric

We now turn our study of the AdS/CFT correspondence toward another aspect of holographic dualities

known as holographic complexities. The complexity we explore here is the volume-complexity which

consists in a conjectured relation between a computational complexity in the CFT introduced as the

information metric 1 and a codimension-one volume in the dual bulk space. The point of this chapter

is to investigate on the volume-complexity conjecture for (d+2)-dimensional AdS black holes and their

quotient spaces called geons. Geon spacetimes, because of their topology, have a qualitatively distinct

relationship between bulk and boundary as compared to their black hole counterparts. By studying

them, we can see if the proposal in [39] is sensitive (or not) to this feature.

5.1 Introduction

Research in holography has been of interest since the advent of the AdS/CFT correspondence con-

jecture [6], and has since been extended to more general notions of gauge/gravity duality. A recent

new example is the proposal that there exists a dual connection between the geometric length of

an Einstein-Rosen bridge and the computational complexity of the dual Conformal Field Theory’s

1The information metric is also known as the fidelity susceptiblity. By definition, the fidelity of a state in quantum

information theory is a measure of the closeness of two quantum states. It can be thought of as the probability that a

state will pass a test to identify as another. Considering a one parameter state |Ψ(λ)〉 and its deformation |Ψ(λ+δλ)〉, the

fidelity of the state |Ψ(λ+ δλ)〉 is defined by the scalar product F ≡ |〈Ψ(λ)|Ψ(λ+ δλ)〉| = 1−Gλλ δλ2 +O(δλ3) where

Gλλ is the fidelity susceptibility.
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(CFT’s) quantum states [34, 99, 36]. This in turn has led to a broad number of investigations on

the topic, many concerned with its quantum informational aspects and whether there exists a CFT

quantity that is dual to a volume of a codimension one time slice in anti-de Sitter(AdS), analogous to

the relationship between holographic entanglement entropy and the area of codimension two extremal

surfaces [100].

A recent proposal to this end has been that of a correspondence between a quantum information

quantity referred to as the information metric (or the fidelity susceptibility) and the volume of a

maximum time slice of an AdS-like black hole [39]. The notion of a quantum information metric Gλλ

has been around for quite some time and consists of the comparison between a quantum state of the

CFT and its counterpart in a marginal deformation 2 thereof, giving rise to a term proportional to the

fidelity susceptibility. The proposed corresponding bulk quantity is the maximal volume of a time slice

connecting the two boundaries (CFTs) of the dual AdS black hole. After comparing the computations

of each, the following relation

Gλλ = nd
Vol(Σmax)

Rd+1
(5.1)

was proposed [39], where nd is the O(1) constant, Σ a time slice, d the dimension of the spacetime,

and R the radius of the AdS spacetime.

Our intention here is to explore the proposal (5.1) for topologically nontrivial spacetimes. We

specifically shall consider geons. Introduced by Wheeler in 1955 as bound gravitational and electro-

magnetic entities, geons were found to be unstable due to the tendency of a massless field to either

disperse to infinity or collapse into a black hole. Topological geons were introduced somewhat later

[101], generalizing the original construction by allowing nontrivial spatial topology with a black hole

horizon. These objects provide an arena for advancing our understanding of black holes in both clas-

sical and quantum contexts and so are of considerable interest. Specific examples include topological

censorship theorems [102], Hawking radiation [104, 103], and the behavior of Unruh de Witt detectors

as probes of hidden topology [105]. The topological identification inherent in the construction of geons

affects both the bulk interior and its posited relationship to the dual CFT, making these interesting

objects of study insofar as understanding the proposal (5.1) is concerned.

We consider the corresponding geon space of two distinct black holes: the Banados-Teitelboim-

Zannelli (BTZ) black hole in d = 3 and the AdS-Schwarzchild black brane in (d+ 2) dimensions. We

compute the information metric and the maximal volume of a time slice in the bulk for each case and

compare them. Our results suggest that the coefficient nd is a function of spacetime topology: we find

in both cases that the proportionality in (5.1) is preserved, but the coefficient is increased by a factor

2By marginal deformation, it is meant a deformation for which the scaling dimension ∆ of the scalar field is equal to

d+ 1, i.e. ∆ = d+ 1.
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of 4. The information metric is indeed sensitive to spacetime topology.

The current chapter is organized as follows. In Sec. 2 we briefly review the notion and construction

of geons. In Sec. 3, we describe the information metric and compute it for the black holes as well as for

their geon counterparts. Section 4 consists of a computation of the maximal volume of a spatial slice

for each case, and then extends these considerations to the planar Schwarzschild metric and its geon

counterpart. In the concluding section we summarize our results and their implications. Appendix A

contains some computational details of our work.

5.2 Review of geons

The construction of a geon generally makes use of a freely acting involutive isometry that acts on

a (black hole) spacetime. A necessary condition for the construction is that the spacetime must be

time orientable and foliated by spacelike hypersurfaces with a single asymptotic region [106]. The

asymptotic region is generally also required to be stationary and allow conserved charges to be defined

by appropriate integrals.

Let us illustrate this for the BTZ black hole, which is a quotient of AdS3, and its geon counterpart

(the RP2 geon) is obtained via further quotienting as follows. The metric for the nonrotating BTZ

black hole is [105]

ds2 = −f(r)dt2 + dr2/f(r) + r2dφ2

f(r) = −M + r2/l2 with r+ = l
√
M. (5.2)

with l the AdS radius and r+ the horizon radius. Writing Eq. (5.2) in Kruskal coordinates, in region

(I) (figure 5.1a) where

U = −e−ur+/l
2

, V = evr+/l
2

v = t+ r∗, u = t− r∗ with r∗ =

∫
dr

f(r)
(5.3)

it takes the form

ds2 = − l2

1 + UV

[
− 4dUdV +M(1− UV )2dφ2

]
(5.4)

and we remark that the metric in the new coordinates is invariant under the interchange of U and V

as well as under the translations of φ. The geon is the resulting space obtained via the identification

(see figure 5.1a)

J : (U, V, φ)→ (V,U, P (φ)) (5.5)
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P is the antipodal transformation and

Γ = {Id, J} ' Z2 (5.6)

is the group generated by the freely acting involutive isometry J . Equation (5.5) corresponds to

(t, φ)→ (−t, φ+ π) (5.7)

in the original coordinates (5.2).

5.3 2+1 Geon information metric

The proposed quantum information metric Gλλ [39] is defined by considering the fidelity susceptibility

between neighboring states

|〈ψ(λ)|ψ(λ+ δλ)〉| = 1−Gλλ(δλ)2 +O((δλ)3) (5.8)

in the dual CFT, where the parameter λ generates a one parameter family of states |ψ(λ)〉. In this

section we shall compute this quantity for the states associated with the geon dual, considering only

the time-dependent states. These states in the thermofield double (TFD) description of the finite

temperature state in a 2d CFT dual to the AdS3 read

|ΨTFD〉 ≡ e−i(H1+H2)t
∑
n

e−
β
4 (H1+H2)|n〉1|n〉2 (5.9)

where H1,2 are the Hamiltonians of the CFT1,2 respectively, and |n〉1,2 are the unit norm eigenstates

of the CFT1,2 respectively. It is important to emphasize that these Hamiltonians are identical.

We shall work with the Euclidean path-integral formalism of the 2d CFT, in which case we must

compute 〈Ψ′TFD(τ)|ΨTFD(τ)〉, where

|ΨTFD(τ)〉 ≡
∑
n

e−( β4 +τ)(H1+H2)|n〉1|n〉2

|Ψ
′

TFD(τ)〉 =
1

N

∑
n

e−( β4 +τ+ε)(H
′
1+H

′
2)|n〉1|n〉2 (5.10)

in terms of the Euclidean time. Here N is a normalization factor and the state |Ψ′TFD(t)〉 is an

eigenstate of the Hamiltonian H
′

1 +H
′

2, which is an infinitesimal marginal deformation of the original

Hamiltonians. Following the construction in [39], the scalar product (5.8) takes the form

〈Ψ
′
|Ψ〉 =

〈exp[−
∫ 3β

4 −τ−ε
β
4 +τ+ε

dτ1
∫
ddxδL]〉[

〈exp[−(
∫ 3β

4 −τ−ε
β
4 +τ+ε

+
∫ β

4 +τ−ε
− β4−τ+ε

)dτ1
∫
ddxδL]〉

] 1
2

(5.11)
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with δL = L
′ − L ≡ δλO(τ, x). L and L

′
are Lagrangian densities associated with the Hamiltonian

H and H
′

respectively, and we shall henceforth assume the perturbation δλ · O(τ, x) is marginal (of

dimension ∆ = d+ 1 = 2 for the present case). O(τ, x) is an operator defined in the field theory. ε is

a very small parameter that we regard as a cutoff.

In the Euclidean path-integral formalism the two point function for the BTZ black hole is defined

on S1 × S1 (where one S1 is the thermal circle with period β) and takes the form [107, 108]

〈O(φ1, τ1)O(φ2, τ2)〉BTZ =
∑
n

(πβ )2∆[
sinh2

(
π(φ2−φ1+2πn)

β

)
+ sin2

(
π(τ2−τ1)

β

)]∆
(5.12)

where ∆ is the total conformal dimension of the primary field O. Upon expanding (5.11) and com-

paring to (5.8) we find

GBTZλλ =
1

2

∫ 2π

0

dφ1dφ2

∫ 3β
4 −τ−ε

β
4 +τ+ε

dτ2

∫ β
4 +τ−ε

− β4−τ+ε

dτ1〈O(φ1, τ1)O(φ2, τ2)〉BTZ . (5.13)

Noting the identity ∑
n

∫ 2π

0

dφ2f(φ2 + 2πn) =
∑
n

∫ 2π(n+1)

2πn

dxnf(xn)

=

∫ ∞
−∞

dxf(x) (5.14)

with xn = φ2 + 2πn, n integer, we can rewrite (5.13) as

GBTZλλ =
1

2

∫ 2π

0

dx1

∫ ∞
−∞

dx2

∫ 3β
4 −τ−ε

β
4 +τ+ε

dτ2

∫ β
4 +τ−ε

− β4−τ+ε

dτ1〈O(x1, τ1)O(x2, τ2)〉 (5.15)

where x1 ∈ [0, 2π), x2 ∈ R and the new two point function reads

〈O(x1, τ1)O(x2, τ2)〉 =
(πβ )2∆[

sinh2

(
π(x2−x1)

β

)
+ sin2

(
π(τ2−τ1)

β

)]∆
. (5.16)

Now that we have assembled all the ingredients to compute the information metric (5.16) , we

define u = π(τ1−τ2)
β and likewise x̃ = π(x2−x1)

β , noting the restriction (0 ≤ u ≤ π). We obtain for the

integration over x2 of the integrand in (5.15) an integral of the form [39]∫ ∞
−∞

dx̃
(

sinh2 x̃+ sin2 u
)−2

=
1

sin2 u cos2 u
+ (u− π/2)

2 sin2 u− 1

sin3 u cos3 u
. (5.17)

To find the information metric we have to integrate over all the variables in (5.15). Upon integration

of (5.17) with respect to τ1, we find

GBTZλλ = −1

2

∫ 2π

0

dx1

∫ 3β
4 −τ−ε

β
4 +τ+ε

dτ2

(
cot 2u+ 2

(u− π/2)

sin2 2u

) ∣∣∣∣πβ (β/4+τ−ε−τ2)

−π
β

(β/4+τ−ε+τ2)

=
πV1

8ε
− πV1

2β
+

2π2V1

β2
τ cot

(4πτ

β

)
(5.18)

65



where V1 = 2π is the finite volume obtained upon integration over x1 from 0 to 2π.

For the geon the corresponding calculation is similar. The two point function is [108, 109] 3

〈O(x)O(x
′
)〉geon = 〈O(x)O(x

′
)〉BTZ + 〈O(x)O(Jx

′
)〉BTZ (5.19)

where the first term is the contribution (5.12) that appears in the BTZ case and the second term is

the geon contribution to the two point function. Using (5.7) it reads

〈O(φ1, τ1)O(Jφ2, Jτ2)〉BTZ =
∑
n

(πβ )2∆[
sinh2

(
π(φ2−φ1+π+2πn)

β

)
+ sin2

(
π(τ2+τ1)

β

)]∆
. (5.20)

The information metric for the geon will be Ggeon

λλ = GBTZ

λλ + G̃BTZ

λλ , the latter contribution coming from

(5.20). Making use of the identity (5.14), we obtain from this term an integral of the form (5.15) but

where

〈O(x1, τ1)O(x2, τ2)〉 =
(πβ )2∆[

sinh2

(
π(x2−x1)

β

)
+ sin2

(
π(τ2+τ1)

β

)]∆
. (5.21)

The integration over the second term in (5.20) proceeds as before, the only distinction being the sign

of τ1. We obtain

G̃BTZλλ =
πV1

8ε
− πV1

2β
+

2π2V1

β2
τ cot

(4πτ

β

)
(5.22)

which is the same result as in (5.18).

We see that the quantum information metric for the geon is the sum of these two contributions

and so is double of that of the original black hole

Ggeonλλ =
πV1

4ε
− πV1

β
+

4π2V1

β2
τ cot

(4πτ

β

)
. (5.23)

Returning to the original (non-Euclidean) coordinates via τ = it, the quantum information metric

becomes

Ggeonλλ =
πV1

4ε
− πV1

β
+

4π2V1

β2
t coth

(4πt

β

)
. (5.24)

In the late time limit t� β, it reduces to

Ggeonλλ ' πV1

4ε
+

4π2V1

β2
t. (5.25)

In the early time limit t→ 0, we obtain

Ggeonλλ ' πV1

4ε
+

16π3

3β3
V1t

2. (5.26)

3Since a point in the geon space has two images (due to a mirror reflection) in the corresponding BTZ black hole.
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We now consider the bulk side of this calculation. As prescribed in [110, 111, 112, 113, 114] a

perturbation of the parameter at the time slice τ = 0 in the CFT is equivalent to adding a defect

brane action

S = T

∫
Σ

√
g (5.27)

to the Einstein-Hilbert action. The above statement can also be generalized to time-dependent states.

In the case of an infinitesimally small deformation, the quantity T can be approximated to [39]

T ' nd
(δλ)2

Rd+1
(5.28)

with d = 1 for a 3d bulk and nd an O(1) constant fixed when normalizing the two point function.

Turning to the case of the BTZ black hole with the coordinates given in [32] as

ds2 = R2
(
− sinh2 ρdt2 + dρ2 + cosh2 ρdx2

)
(5.29)

which can be obtained from (5.2) by setting r = l
√
M cosh ρ and appropriately rescaling t and x. Here

we identify x→ x+ 2π and we do not have to unwrap the metric as in [39, 32].

In the region (II) of the Penrose diagram of the black hole figure 5.1a, we use the analytic continua-

tion through the parametrization κ = −iρ and t̃ = t+ iπ/2 and define Σ to be the space characterized

by κ = κ(t̃) and such that

VolBTZ(Σ) = R2V1

∫
dt̃ cosκ

√
sin2 κ− (∂κ/∂t̃)2. (5.30)

Denoting by κ∗ the value of κ for which ∂κ/∂t̃ = 0 [defined within the interval (0 ≤ κ∗ < π/4)], and

noting that κ̇∂L∂κ̇ −L is a constant of the motion, we can repeat the steps in [32] to obtain a maximum

volume Vol(Σmax). This result can be extended to the region (I) in figure 5.1a and we find

VolBTZ(Σ)

R2V1
= 2

∫ κ∗

0

cosκdκ√
sin2(2κ∗)/ sin2(2κ)− 1

+ 2

∫ ρ∞

0

cosh ρdρ√
1 + sin2(2κ∗)/ sinh2(2ρ)

(5.31)

and for the t coordinate in region (I)

t =

∫ κ∗

0

dκ

sinκ
√

1− sin2(2κ)/ sin2(2κ∗)
−
∫ ρ∞

0

dρ

sinh ρ
√

1 + sinh2(2ρ)/ sin2(2κ∗)
(5.32)

with the integration contour shown in figure 5.2a, and where the factor of 2 comes from the symmetry

in figure 5.1a.

If we define the UV cutoff ρ∞ such that eρ∞ ∝ π/4ε, we find for β = 2π (computation details are

given in the Appendix A)

VolBTZ(Σ)

R2
' πV1

4ε
+ V1t and

2GBTZ

λλ ' πV1

4ε
+ V1t (5.33)
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for the late time limit (t� β or κ∗ → π/4) as well as

VolBTZ(Σ)

R2
' πV1

4ε
+

2

π
V1t

2 and

2GBTZ

λλ ' πV1

4ε
+

2

3
V1t

2 (5.34)

for the early time limit (t → 0 or κ∗ → 0), recovering the dual results for the BTZ black hole and

(in both cases) the holography relation

2GBTZ

λλ ' nBTZ

1

VolBTZ(Σ)

R2
(5.35)

claimed in [39]. The above results have been obtained through computations expressed in details in

the Appendix (C-2, C-4).

For the geon space the computation is similar, except that the symmetry of figure 5.1a is absent

in figure 5.1b and so the volume Vol(Σ) 4 is reduced to half the value for the BTZ case (Volgeon(Σ) =

VolBTZ(Σ)/2) and the quantum information metric (5.24) is twice the BTZ value. We therefore obtain

2Ggeon
λλ = ngeon1

Volgeon(Σ)

R2

= 4nBTZ
1

Volgeon(Σ)

R2
(5.36)

which is consistent with the holographic relation (5.35) but with a different factor. This suggests that

the coefficient nd is sensitive to the topology of spacetime.

5.4 Information metric for planar black holes and their geon

counterparts

We next consider (d + 2)-dimensional 5 Schwarzchild-AdS planar black holes, with the metric of the

general form

ds2 = −f(r)dt2 + dr2/f(r) + r2dΣ2
d

f(r) = −M/rd−1 + r2/l2 (5.37)

which in turn becomes

ds2 =
1

z2

[
− h(z)dt2 +

dz2

h(z)
+ dΣ2

d

]
h(z) = 1− (z/z0)

d+1
(5.38)

4From the geon standpoint the volume VolGeon(Σ) at time t = t1 + t2 is interpreted as the sum of the corresponding

BTZ volume VolBTZ(Σ) at t = t1− t2 and t = t1 + t2 evaluated on half of the BTZ diagram, i.e. VolGeon(Σ)(t1 + t2) =

VolBTZ(Σ)(t1 − t2) + VolBTZ(Σ)(t1 + t2). It is clear to see that for a symmetric time evolution (t1 = t2 = t/2), the

first term of the right-hand side is time independent.
5Here we use the index d instead of d+ 2 on the AdS, i.e. AdSd for AdSd+2, to simplify the notation.

68



I

II

III

IV

CFT2CFT1

(a)

CFT1 ≡ CFT2

(b)

Figure 5.1: (a) Penrose diagram of the AdS (BTZ) black hole. The diagram shows two 2d CFTs each

at one boundary of the AdS (BTZ) black hole as the AdS/CFT correspondence requires. (b) Penrose

diagram of the AdS (BTZ) geon. This diagram appears to be the half of the AdS (BTZ) black hole one.

In fact, the geon space is obtained via the identification (5.5) and consequently ”splits” the original

space into two pieces which are equivalent by a mirror symmetry. As the resulting space happens to

be a one-sided black hole, an important and remarkable feature of this diagram is that the two CFTs

are now identified and lie on the only remaining boundary.

via the change of variable r = l/z and by setting l = M = 1.

The quantum information metric for CFTd+1 associated to the d+ 2 dimension AdS-Schwarzschild

planar black holes is given by

GSAdSdλλ =
1

2

∫ 3β
4 −τ−ε

β
4 +τ+ε

dτ2

∫ β
4 +τ−ε

− β4−τ+ε

dτ1

∫
ddx1

∫
ddx2〈O(x1, τ1)O(x2, τ2)〉SAdSd (5.39)

with

〈O(x1, τ1)O(x2, τ2)〉SAdSd =
C12

|(τ1 − τ2)2 +
∑d

1(x1 − x2)2|∆
(5.40)

where the coordinates x are unwrapped (i.e. x ∈ R) and C12 is a constant whose value will be

subsequently fixed. Upon carrying out the integration over x2 the information metric takes the form

GSAdSdλλ =
1

2

∫ 3β
4 −τ−ε

β
4 +τ+ε

dτ2

∫ β
4 +τ−ε

− β4−τ+ε

dτ1

∫
ddx1

∫
dx

×
Γ(∆− d−1

2 )

Γ(∆)

C12π
d−1

2 (π/β)2(∆− d−1
2 ))

[sinh2(πxβ ) + sin2(π(τ1−τ2)
β )]∆−

d−1
2

. (5.41)

Choosing C12 = Γ(∆)

π
d−1

2 Γ(∆− d−1
2 )

, for an exactly marginal deformation ∆ = d + 1 [39] the information

metric can be put into the form

GSAdSdλλ =
1

2

∫ 3β
4 −τ−ε

β
4 +τ+ε

dτ2

∫ β
4 +τ−ε

− β4−τ+ε

dτ1

∫
ddx1

∫
dx

×
(πβ )d+3

[sinh2(πxβ ) + sin2(π(τ1−τ2)
β )](d+3)/2

(5.42)
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which is quite similar to the CFT2 case, the only difference is that the integral over x1 is taken over a

d-dimensional spacetime. Using the expression∫ ∞
−∞

dx

[sinh2 x+ sin2 t]n
= 22n−1 sinn(2t) β(n, n) F1(n, n, n, 2n, 1 + 1/a, 1 + 1/b) (5.43)

with a = cot 2t+ i and b = cot 2t− i , we are led finally for the late time limit (τ � β and d odd)

to

GSAdSdλλ ' Vd
εd

+

(
2π

β

)d+1

Vdτ (5.44)

and the early time limit (τ → 0 and d odd) to

GSAdSdλλ ' Vd
εd

+

(
2π

β

)d+2

Vdτ
2. (5.45)

Here Vd is an infinite d-dimensional volume.

Proceeding as before, we define a hypersurface z = z(t). Its volume is

VolSAdSd+2(Σ)

Rd+1
= Vd

∫
dt

zd+1
√
h(z)

√
ż2 − h(z)

2
. (5.46)

Following the same steps as in the previous section, we are led to a maximum volume (with z∗ the

value of z such that ∂z/∂t = 0)

VolSAdSd+2(Σ)

Rd+1
= 2Vd

∫
dz

zd+1
√
h
√

1− (z/z∗)2(d+1)(h∗/h)
and

t =

∫
dz

h
√

1− (z∗/z)2(d+1)(h/h∗)
. (5.47)

In the late time limit (t� β or z∗ → 2
1
d+1 z0), we obtain for d = 1 + 4n (with n integer)

VolSAdSd+2(Σ)

Rd+1
= 2Vd

[
− i
∫ 2

1
d+1 z0

0

dz

zd+1
[
1 + 1

2 ( zz0 )d+1
] +

∫ z0

0

dz

zd+1
[
1− 1

2 ( zz0 )d+1
]]

t =
1

2zd+1
0

[
− i
∫ 2

1
d+1 z0

0

zd+1dz

(1 + zd+1

zd+1
0

)
[
1 + 1

2 ( zz0 )d+1
] +

∫ z0

0

zd+1dz

(1− zd+1

zd+1
0

)
[
1− 1

2 ( zz0 )d+1
]] (5.48)

with the integration contour given in figure 5.2b. Integrating out these expressions, we find the same

behavior as in the previous case (with z0 = β/2π)

VolSAdSd+2(Σ)

Rd+1
' Vd
dεd

+

(
2π

β

)d+1

Vdt and

2G
SAdSd+2

λλ ' Vd
εd

+

(
2π

β

)d+1

Vdt (5.49)

When looking at the early time limit (t→ 0 or z∗ → z0), we have

VolSAdSd+2(Σ)

Rd+1
= 2Vd

[ ∫ z0

0

1

zd+1
√
h
dz +

1

2

h∗

z
2(d+1)
∗

∫ z0

0

zd+1

√
h3
dz
]

t = −i
√
h∗

zd+1
∗

[ ∫ z0

0

zd+1

√
h3
dz +

1

2

h∗

z
2(d+1)
∗

∫ z0

0

z3(d+1)

√
h5

dz
]

(5.50)
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Re(ρ)

Im(ρ)

(a)

Re(z)

Im(z)

(b)

Figure 5.2: (a) The contour chosen on the complex plane ρ to compute Vol(Σmax) for the BTZ black

hole. κ∗ is the point on the imaginary axis. (b) Represents the contour chosen on the complex plane

z for the computation of Vol(Σmax) for the AdS Schwarzschild planar black hole. z∗ on the imaginary

axis is at
√

2z0 and at z0 on the real axis.

after integrating

VolSAdSd+2(Σ)

Rd+1
' Vd
dεd

+
(d+ 1)2

2β( 1
2 ,

1
d+1 )

(
2π

β

)d+2

Vdt
2

2G
SAdSd+2

λλ ' Vd
εd

+

(
2π

β

)d+2

Vdt
2 (5.51)

which is similar to the previous case with (d = 1). Hence we obtain

2GSAdSdλλ = nSAdSd

VolSAdS(Σmax)

Rd+1
(5.52)

which is an extension of (5.35) to d dimensions.

Turning now to the geon, the identification (5.7) acts on the same pair of coordinates with the

other coordinates remaining invariant. For the holographic computations in (d + 2)-dim the volume

V1 in (1 + 2)-dimensions is replaced by the (infinite) volume Vd associated with (5.38). Likewise, we

find that the generalization of the two-point function (5.40) for the geon consists of two contributions

of equal value, and so we obtain

GSAdSgeond

λλ = 2GSAdSdλλ . (5.53)

Putting all these aforementioned results together, we find

2GSAdSgeond

λλ = nSAdSgeon

d

Volgeon(Σmax)

Rd+1

= 4nSAdSd

Volgeon(Σmax)

Rd+1
(5.54)

for the planar Schwarzschild AdS black hole.
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5.5 Conclusion

By investigating both bulk and boundary contributions for the BTZ black hole and the d-dimensional

planar Schwarzschild AdS black hole, we have found that the relation (5.1) holds for their geon counter-

parts apart from a factor of 4. For each case, compared to its black hole counterpart the information

metric of the corresponding geon is twice as large and on the bulk side the maximum volume of a

time slice for the geon is half as large. We conclude that the relation (5.1) (and thus the coefficient

nd) is sensitive to the topological structure of the spacetime, with ngeon

d = 4nd for the cases we have

considered. In this sense the information metric in the CFT is a ”probe” of spacetime topology.

It would be interesting to explore this relationship further, extending the proposed relation (5.1) to

spacetimes of more interesting topology, including rotation, solitons, and more generalized geometries.
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Chapter 6

Topological and time dependence of

the action-complexity relation

The focus of the present chapter is similar to the previous one, but here we deal with an action-

complexity conjecture instead. It has been conjectured that there exists a computation complexity in

the CFT (seen as a measure of the minimum number of gates necessary to approximate an unitary

operator between two states known as the reference and target states) which is connected to an action

evaluated on a particular region of the dual bulk space. We study the action-complexity conjecture on

both the (d+ 1)-dimensional AdS black holes and their geons. We attempt to derive a time-dependent

CFT action-complexity as it is expected to grow at late time similarly to the bulk action-complexity in

order to have a consistent conjecture. Because geons have a qualitatively distinct relationship between

bulk and boundary as compared to their black hole counterparts, we can test the sensitivity of the

proposal in [115, 116] to this feature.

6.1 Introduction

The importance of dualities between quantum field and gravity theories is difficult to underestimate.

The AdS/CFT correspondence [6], the first and most successful, posits the existence of a d-dimensional

conformal field theory (CFT) on the boundary of a (d + 1)-dimensional asymptotically anti-de-Sitter

(AdS) spacetime, and has therefore led to several dualities between quantities observed in AdS (for

example black holes in the bulk) and those in the CFTs defined on their boundaries.

We explored in chapter 5 the proposal of Watanabe et.al. [39], who introduced a duality between
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a quantum information metric defined in the CFT on the boundary of an AdS black hole, and the

volume of a time slice in the AdS. Their work was motivated by Susskind’s idea [34] that it would be

interesting to find a quantity in a CFT that might be dual to a volume of a co-dimension-1 time slice

of an AdS black hole spacetime.

More recently a similar idea was proposed suggesting a correspondence between computational

complexity in a CFT and the action evaluated on a Wheeler-De Witt (WDW) patch in the bulk [38].

In specific terms the conjecture is

C = IWDW/π (6.1)

where the WDW patch refers to the region enclosed by past and future light sheets that are sent into

the bulk spacetime from a time slice on the boundary. Subsequent work [117, 115] was devoted to a

better understanding of how one evaluates the right-hand side of this relation.

Complexity is concerned with quantifying the degree of difficulty of carrying out a computational

task. However a sufficiently clear definition of its meaning in the CFT remains to be fully formulated.

One attempt to this end [116] proposes a function providing a measure of the minimum number of

gates necessary to reach a target state from a reference state in the CFT. This proposal is motivated

by an earlier attempt [118] to provide a geometric interpretation of quantum circuits, which consisted

of the definition of two states – a reference and a target state – along with a unitary operator mapping

the former to the latter. The minimum number of gates required to synthesize the unitary operator

has been interpreted as a minimum length between the identity operator and that unitary operator in

the manifold of unitaries. This manifold is endowed with a local metric known as the Finsler metric.

The aforementioned proposal [116] chose instead the Fubini-Study metric, and the computational

complexity obtained from some fixed reference and target states (related by unitaries involving a

squeezing operator) appeared to be somewhat similar to the action on a WDW patch in the bulk.

Furthermore, a time dependent expression of the complexity derived from the CFT computations

remains to be derived, despite previous work computing the rate of change of the conjectured com-

plexity in terms of the rate of change of the action on a Wheeler deWitt (WDW) patch at late time

[38, 117, 115, 119]. It is of particular interest to determine how computational complexity grows in the

late boundary-time limit. An attempt to build a time-dependent complexity from CFTs [120] yielded

an expression for complexity that did not grow linearly at late time as conjectured. To this end, one

goal of the current chapter is to compute from the CFT perspective the dependence of complexity on

boundary time in the late time limit.

The other goal of is to understand if and how equation (6.1) is sensitive to topological effects. The

simplest spacetimes that allow the most straightforward exploration of such effects is the AdS black
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hole in (d + 1) dimensions with an identification that renders it an RPd geon [106]. The complexity

of the AdS black hole spacetimes has been studied recently [115], but their geon counterparts have

not (though there has been recent work incorporating a different form of topological identification

in the BTZ case (d = 2) [121]). In the particular case d = 2, the BTZ-geon is obtained by placing

further identifications on the BTZ black hole; the boundary of the Euclidean continuation of the BTZ

spacetime is an RP2 space, whereas that of its geon counterpart is a Klein bottle [106, 122]. Previous

work [123] demonstrated that the quantum information metric [39] was sensitive to spacetime topology

in this case, and so it is reasonable to expect complexity to have a similar dual dependence on bulk

topology.

This chapter is organized as follows. In section 2, the notion of complexity will be revisited and

written in term of control functions, introduced as the Hamiltonian components in a basis of generalized

Pauli matrices. The same steps will be followed in section 3, but here the manifold of unitaries will

be taken to be SU(1, 1), which is non compact. A useful expression of the complexity will then be

derived. Section 4 will specify our considerations to Gaussian states as they are very central in the

understanding of quantum information processing with continuous variables. The reference and target

states will both be taken to be Gaussian states. The complexity of a d dimensional CFT will be

expressed in section 5, as well as its rate of change in the late time limit. To attain this, a time-

dependent target state will be chosen, and thus the unitary map between the reference and target

state will have time dependence. Section 6 will be devoted to the complexity of the Schwarzschild-

AdSd+1 spacetime and its geon counterpart as a quotient space, along with its equivalent quantum

system, and in section 7 the rate of change of the action in the bulk evaluated on a WDW patch for

both the AdSd+1 black hole and the AdSd+1-geon will be computed. The result will be two similar

correspondence relations that illustrate the sensitivity of (6.1) to the topology of the bulk. The last

section will be a conclusion and discussion, in which our results will be summarized in the context of

previous work.

6.2 Complexity and cost function

Here we intend to define computational complexity in a quantum theory and study its evolution in

terms of a single parameter. We revise the notion of complexity introduced in [118] as a quantity

obtained from two fixed (in time) states and a unitary operator mapping one state to the other. We

follow the same steps in the case where at least one of the states (from which the complexity is con-

structed) is time-dependent. This complexity can be understood as the minimum number of resources

required to reach a given configuration of a quantum system starting from an initial configuration
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thereof.

We will be working with quantum systems (more specifically CFTs) whose set of unitary operators

corresponds to SU(2n). To this end, let us consider a quantum system whose Hamiltonian in an

SU(2n) basis takes the form [118]

H(t) =
∑
i

γi(t)σi (6.2)

where σi are the 4n− 1 basis matrices of SU(2n) and γi(t) are the components of the Hamiltonian in

that basis. These are functions of the variable t defined in the interval [si, sf ], and are referred to as

control functions.

The evolution of an arbitrary operator V in the manifold SU(2n), whose Hamiltonian is of the

form (6.2), satisfies the equation [118]

dV

dt
= −iH(t)V with V (0) = I and V (1) = U (6.3)

where I is the identity operator. We have also defined t in the interval [si = 0, sf = 1].

We now introduce two states, an initial reference state |R〉 and a final target state |T 〉, whose

relationship is given by

|T 〉 = U |R〉 (6.4)

with U the unitary operator introduced in (6.3). It can be reached or approximated by a combination

of unitary gates of SU(2n). In this context, computational complexity is defined as an expression

quantifying the minimum number of gates or operators required to synthesize U .

To make this concrete we introduce a cost function as a functional of the control function via the

relation [118]

Cf (γ) =

∫ 1

0

f(γ(t))dt (6.5)

where the function f is a given distance function. We define complexity by minimizing the cost

function via

Cf (U) ≡ inf
γ
Cf (γ). (6.6)

In order to be more specific on the nature of the function f(γ), let us define the tangent space to

the unitary manifold SU(2n) at the point U as TUSU(2n) (or T to be short). Thus, we identify f(γ)

with a metric function mapping elements of the tangent bundle TM (M = SU(2n)) at a point U to

elements of the set of scalars R. That is, f : TM → R. We can reformulate f(γ) in terms of a new

metric function via [118]

F (U, y) ≡ f(γ) with y ∈ TUSU(2n) (6.7)
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and

y =
∑
i

yi(∂/∂xi)U ,

yi = iTr(σidU/dt U
†)/2n or y.σi = idU/dt U†. (6.8)

The coordinates yi are determined for a given unitary operator in equation (D-2) in the appendix.

The cost function (6.5) is proportional to the length associated with the metric function F (U, y),

and will have the form [118]

lF (s) =

∫
I

dtF (s(t), [s]t) (6.9)

where s : I →M maps elements of an interval I to those of the manifold M = SU(2n), s(t) is a point

on the manifold and [s]t the tangent space to the manifold at that point. The complexity measure

(6.6) is obtained by minimizing lF (s) over the interval from reference to target state.

There are various different types of functions F (U, y) that one can employ to compute (6.9). We

will only enumerate those that involve an L(1)-norm and an L(2)-norm along the path, namely [118]

F1(U, y) ≡
∑
i

|yi|,

F2(U, y) ≡
√∑

i

(yi)2,

Fp(U, y) ≡
∑
σ

p(wt(σi))|yi|,

Fq(U, y) ≡
√∑

i

q(wt(σi))(yi)2 (6.10)

where p(wt(σi)) and q(wt(σi)) are weight functions.

Suppose that the target state is a state that depends on a parameter σ (not to be confused with

the basis functions σi) defined in the interval [si, sf ]. The expression (6.4) in this case takes the form

|Ψ(σ)〉 = U(σ)|R〉. (6.11)

Introducing the Fubini-Study metric [116]

dsFS(σ) = dσ
√
|∂σ|Ψ(σ)〉|2 − |〈Ψ(σ)|∂σ|Ψ(σ)〉|2 (6.12)

we find

l(|Ψ(si)〉, |Ψ(sf )〉) =

∫ sf

si

dsFS(σ) (6.13)

yielding the length as function of σ associated with the FS metric. The above expression tells us about

the evolution of the computational complexity as a function of σ. We shall postpone the question as

to whether the current metric is an L(1)-or L(2)-norm in the coming sections.
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6.3 SU(1, 1) manifold and metric generation

We now review the steps required for the derivation of the unitary operator mapping the reference to

the target state and thus the Fubini-Study metric that the unitary yields [116], but with complexity

reformulated to be time-dependent. For simplicity we shall deal with quantum systems whose manifolds

of unitaries are non compact and isomorphic to SU(2). We shall specifically work with the group

SU(1, 1) which admits the Poincare disk as the manifold associated with its coset SU(1, 1)/U(1).

Coherent states, which are either characterized by complex eigenvalues of a non compact generator

of the group SU(1, 1) [124] or by points of a coset space of the same group [125], can be defined for a

unitary irreducible representation of SU(1, 1). SU(1, 1) coherent states are the result of a two mode

squeezing operator

S2(ξ) = exp[ξ∗K− − ξK+] (6.14)

acting on a Fock state. ξ is a complex parameter and K± are generators of the SU(1, 1) group that

we will define explicitly in the next few steps.

We start with a target state |Ψ(σ)〉 (where σ is a parameter in the time interval [si, sf ]) in a d

dimensional CFT, which obeys the equation (6.11) with a reference state being a two-mode state of

some momentum spaces. This two-mode state consists of a product state |
−→
k ,−
−→
k 〉 of two basis states,

one mode representing a state of positive momentum
−→
k and the other of negative momentum −

−→
k .

This can also be expressed in terms of the quantum numbers associated with the momenta |nk, n−k〉.

We also consider the unitary operator U(σ) to be of the form

U(σ) = e
∫
Λ
dd−1k g(

−→
k ,σ) (6.15)

with

g(
−→
k , σ) = α+(

−→
k , σ)K+(

−→
k ) + α−(

−→
k , σ)K−(

−→
k ) + ω(

−→
k , σ)K0(

−→
k ) (6.16)

and Λ a momentum cut-off parameter. Note that the direction that only gives an overall phase to the

state is modded out .

The quantities α+(
−→
k , σ), α−(

−→
k , σ), ω(

−→
k , σ) are arbitrary functions whereas K+(

−→
k ), K−(

−→
k )

and K0(
−→
k ) are the generators of the SU(1, 1) algebra. These latter quantities can be written in term

of annihilation operators (b−→
k
, b−−→k ) and creation operators (b†−→

k
, b†
−
−→
k

) associated with the respective
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modes (
−→
k ,−
−→
k ) as [116]

K+ =
1

2
b†−→
k
b†
−
−→
k

K− =
1

2
b−→
k
b−−→k

K0 =
1

4
(b†−→
k
b−→
k

+ b−−→k b
†
−
−→
k

) (6.17)

and satisfy the commutation relations

[K+,K−] = −K0 and [K0,K±] = ±1

2
K± (6.18)

It is straightforward to show that (6.15) can be put into the form [126]

U(σ) = e
∫
Λ
dd−1k γ+(

−→
k ,σ)K+(

−→
k )e

∫
Λ
dd−1k log(γ0(

−→
k ,σ))K0(

−→
k )e

∫
Λ
dd−1 kγ−(

−→
k ,σ)K−(

−→
k ) (6.19)

where the new functions γ+(
−→
k , σ), γ−(

−→
k , σ) and γ0(

−→
k , σ) read as

γ± =
2α± sinh Ξ

2Ξ cosh Ξ− ω sinh Ξ

γ0 = (cosh Ξ− ω

2Ξ
sinh Ξ)−2

Ξ2 =
ω2

4
− α+α−. (6.20)

It is desirable to obtain the simplest possible form of (6.19). This can be done by imposing the

conditions [116]

K−|R〉 = 0 and K0|R〉 =
δd−1(0)

4
|R〉 (6.21)

on the reference state, yielding

|Ψ(σ)〉 = N e
∫
Λ
dd−1k γ+(

−→
k ,σ)K+(

−→
k )|R〉

N = e
1
4 δ
d−1(0)

∫
Λ
dd−1k log(γ0(

−→
k ,σ)) (6.22)

and so only the factor involving γ+ needs to be taken into account. The quantity δd−1(0) comes from

the commutation rules [b−−→k , b
†
−
−→
k ′

] = δd−1(
−→
k −
−→
k
′
) obeyed by the operators b−−→k that appear in the

generator K0.

Now that we have managed to find a reduced form of the unitary operator U(σ), we will chose a

reference state and attempt to derive the complexity using the Fubini-Study metric (6.12). By choosing

a reference state annihilated by the b−→
k

1

|R〉 = |0, 0〉 (6.23)

1In another momentum sector the reference state is identified with a vacuum state, i.e. a state with no particle

excitation for the modes
−→
k and −

−→
k according to the operator b−→

k
and b−

−→
k

.

79



we obtain, when omitting the variables and the integrals

|Ψ〉 = Neγ+K+ |0, 0〉. (6.24)

We find that (6.24) becomes

|Ψ〉 =
√

1− |γ+|2
∑
n

(γ+)n|n, n〉 (6.25)

upon choosing N so that the target state is normalized. Inserting (6.25) in the Fubini-Study metric,

ds2
FS = 〈δΨ|δΨ〉 − 〈δΨ|Ψ〉〈Ψ|δΨ〉 (6.26)

we get (see also appendix (D-4))

ds2
FS =

|δγ+|2

(1− |γ+|2)2
. (6.27)

Restoring the variables and the integrals, we obtain a more general form of the complexity (6.13) with

the expression

C(n) = min
γ+

∫ sf

si

dσ n

√
Vd−1

2

∫
dd−1k |dsFS(σ)/dσ|n

(6.28)

with γ
′

+ = ∂γ+/∂σ and Vd−1 the (d− 1)-dimensional volume of a time slice. Upon comparison with

(6.10) we see that (6.28) is an L(n)-norm.

We will mostly use the case where n = 1

C(1) = min
γ+

∫ sf

si

dσ
Vd−1

2

∫
dd−1k

∣∣∣∣ γ
′

+

1− |γ+|2

∣∣∣∣
(6.29)

as it leads to a function easier to integrate as well as to a complexity whose rate of change corresponds

to that of the action evaluated in the bulk. Note that the gates for different k’s are not allowed to act

in parallel in order to obtain the C(1) norm.

6.4 Gaussian states

Here we briefly review the Gaussian states of a quantum system [116]. Such states play a central

role in quantum information processing with continuous variables as well as in quantum field theory

where the vacuum states of some field theories (for example, quantum electrodynamics) appear to be

Gaussian states. We shall choose the reference and target states to be Gaussian states.

Consider a scalar field theory in a d dimensional spacetime with the Hamiltonian density

Hm =
1

2

∫
dd−1x [π2 + (∂xΦ)2 +m2Φ2] (6.30)
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wherem is the mass of the field Φ(x) and π(x) is its conjugate momentum. These obey the commutation

rules

[Φ(−→x ), π(−→x
′
)] = iδd−1(−→x −−→x

′
). (6.31)

The field and its conjugate momentum in terms of the annihilation ak and creation operators a†k are

explicitly given by

Φ(x) =

∫
dd−1k

1√
2ωk

(ak e
−ikx + a†k e

ikx)

π(x) =

∫
dd−1k

√
ωk√
2i

(ak e
−ikx − a†k e

ikx) (6.32)

with ωk =
√
k2 +m2. Substituting (6.32) into (6.31) we find

[a−→
k
, a†−→

k ′
] = δd−1(

−→
k −
−→
k
′
) (6.33)

with all other commutators zero.

It is helpful to write things in momentum space where the Hamiltonian can be expressed in a more

elegant form as

Hm =

∫
dd−1k ωk

[
a†−→
k
a−→
k

+
1

2

]
(6.34)

and the field and its associated momentum become

Φ(
−→
k ) =

1√
2ωk

(a−→
k

+ a†
−
−→
k

)

π(
−→
k ) =

√
ωk√
2i

(a−→
k
− a†
−
−→
k

). (6.35)

In the sequel we consider a CFT for which the field is massless (m = 0).

A pure Gaussian state |S〉 is a state for which [116]

[√αk
2

Φ(
−→
k ) +

i√
2αk

π(
−→
k )
]
|S〉 = 0 (6.36)

where αk = ωk corresponds to the ground state |m〉 of the theory. The ground state of the theory

can be a good choice of the target state.

To construct the reference state |R(M)〉 we write the Bogoliubov transformation [116]

b−→
k

= β+
k a−→k + β−k a

†
−
−→
k

(6.37)

and require

b−→
k
|R(M)〉 = 0. (6.38)

where β+
k = cosh 2rk , β

−
k = sinh 2rk and rk = log( 4

√
M/ωk). This corresponds to a state with αk = M

in (6.36).
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CFT2CFT1

(a)

U

(b)

Figure 6.1: (a) Conformal diagram of a BTZ (d = 2) black hole. As we can see, a CFT is defined at

each boundary thereof. (b) Quantum circuit which consists in an unitary U acting on n qubits. In

the context of the current work its associated complexity can be regarded as equivalent to the action

integral evaluated on a WDW patch in BTZ black hole.

6.5 Conformal field theory in d dimensions

Employing the formalism of the previous sections, we now compute the complexity defined in the

CFT dual of an AdS gravitational theory. The spacetimes we have in mind for the latter are AdS

black holes which, according to the AdS/CFT correspondence, admit CFTs on their boundaries. The

Penrose diagram for the AdSd+1 black hole is illustrated in figure 6.1. The BTZ case can be described

as a quotient space of AdSd+1 with d = 2.

Here we aim to derive the computational complexity associated to quantum theories defined in the

boundary CFTs. States on such CFTs are described by thermofield double (TFD) of finite temperature,

defined in a thermal circle of period β [107]

|TFD(t)〉 ≡ e−i(H1+H2)t|TFD(0)〉

= e−i(H1+H2)t
∑
n

e−βEn/2|n〉1|n〉2 (6.39)

with H1,2 the free Hamiltonians, |n〉1,2 the eigenstates of the free Hamiltonians defined on the CFT1,2

and En their corresponding energies. These states on the CFT1 can be assigned to the positive

momentum modes
−→
k and the ones on the CFT2 to the negative momentum modes −

−→
k of a scalar

field theory.

We see that

|TFD(0)〉 ≡
∑
n

e−βEn/2|n〉1|n〉2

= e
∫
dd−1k e−βωk/2a†−→

k
a†
−
−→
k |0〉 (6.40)

for a free scalar field theory. The state |TFD(0)〉 is annihilated by operators b±−→k defined via a
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Bogoliubov transformation as

b−→
k

= cosh θka−→k − sinh θka
†
−
−→
k

b−−→k = cosh θka−−→k − sinh θka
†
−→
k

(6.41)

with tanh θk = e−βωk/2.

We can regard the states in the boundaries as two-mode states where one side of the diagram

(figure 6.1a) corresponds to states of a conformal scalar field theory with positive momentum
−→
k and

the other side to a scalar field theory with negative momentum states −
−→
k . The total Hamiltonian of

the system according to (6.34) will be

H = H1 +H2

=

∫
dd−1k ωk[a†1a1 + a†2a2 + 1] (6.42)

where ωk = k, a1 = a−→
k

and a2 = a−−→k . Using (6.41), the total Hamiltonian (6.42) in the basis

(6.17) has the form

a†1a1 + a†2a2 + 1 = 4 cosh(2θk)K0 + 2 sinh(2θk)(K+ +K−) (6.43)

and so (6.39) becomes

|TFD〉 ≡ eα+K++α−K−+ωK0 |TFD(0)〉 (6.44)

with

α± = −2i ωk t sinh(2θk)

ω = −4i ωk t cosh(2θk). (6.45)

Equation (6.44) will become 2

|TFD〉 ≡ eγ+K+elog(γ0)K0eγ−K− |TFD(0)〉 (6.46)

using the transformation of the unitary operator (6.19).

We obtain a state equivalent to (6.24) and (6.25), but where

γ± =
−i sinh(2θk) sin Ξ

cos Ξ + i cosh(2θk) sin Ξ
with

Ξ = 2ωk t and ωk = k. (6.47)

2The computational complexity is evaluated for the reference and target states corresponding to the TFD at time

t = 0 and t respectively.
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In term of the parameter σ the control function γ+ can be written as

γ±(k, σ) =
−i sinh(2θk) sin Ξ

cos Ξ + i cosh(2θk) sin Ξ
with

Ξ = 2kt σ. (6.48)

It is easy to check that γ+ = γ+(k, σ) as a function of σ, satisfies the conditions

γ+(k, si) = 0 and

γ+(k, sf ) =
−i sinh(2θk) sin(2kt)

cos(2kt) + i cosh(2θk) sin(2kt)
(6.49)

corresponding to reference and target state respectively. It appears that the control function is time-

dependent and this fact will imply a time-dependent complexity.

In order to compute the complexity in the simplest possible manner we consider situations in which

the control function obeys the condition |γ+| < 1, which is holds if the operator is unitary.

Now that we have assembled all the ingredients, the complexity (6.29) as a function of t is

C(1)(t) = min
γ+

∫ sf

si

dσ
Vd−1

2

∫
dd−1k

|γ′+|
1− |γ+|2

= 2Vd−1Ωκ,d−2β
−d(2d − 1)Γ(d)ζ(d) t (6.50)

as detailed in eq. (D-5) in the appendix. The computational complexity can be understood as the

minimum number of gates needed to synthesize a unitary operator U (figure 6.1b).

Before proceeding further, we define the total energy of the scalar field as (see (D-15) in the

appendix)

E = Vd−1

∫
dd−1k ωke

−βωk

= Vd−1Ωd−2β
−dΓ(d). (6.51)

Hence the complexity (6.50) takes the form

C(1)(t) = 2(2d − 1)ζ(d)E t. (6.52)

Note that the rate of change of the complexity for very large t is

dC(t)

dt

AdSd+1

= ndE (6.53)

with nd = 2(2d − 1)ζ(d) a dimensionless constant. Equation (6.53) means that the variation of the

complexity with respect to time at late time is proportional to the total energy E of the CFT . This

total energy E will later be identified with the mass of the AdS black hole dual to the CFT.
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Figure 6.2: (a) The current diagram shows the thermofield single state on the boundary of the BTZ-

geon. The red and blue points represent the right- and left-modes of the thermofield single (both

modes or CFTs are superposed on the same boundary), respectively. The thick blue line corresponds

to the complexity derived from the entangled state. (b) This diagram corresponds to the first one but

here the situation is seen in the BTZ context. Unfolding the CFTs on the first diagram, the left-modes

appear on both sides of the new diagram (which a BTZ one). It results a sum of two complexities.

6.6 Geon and direct products

In this section we repeat these computations in the context of the AdSd+1-geon.

The AdSd+1 black hole has the metric

ds2 = −f(r)dt2 + dr2/f(r) + r2dΣ2
κ,d−1

f(r) = κ− ωd−2/rd−2 + r2/l2 (6.54)

which, in Kruskal coordinates (Ũ , Ṽ , xi) with i = 1 to d− 1, takes the form

ds2 = −fdŨdṼ + r2dΣ2
κ,d−1(xi) (6.55)

where f and r are smooth functions of (Ũ , Ṽ ).

The AdSd+1-geon is the quotient spacetime resulting from a freely activing involutive isometry

applied to the AdSd+1 black hole [106]. It is obtained via the identification [106, 105]

J : (Ũ , Ṽ , xi)→ (Ṽ , Ũ , P (xi)) (6.56)

which corresponds to the change

(t, xi)→ (−t,−xi) (6.57)

in the spacetime coordinates. P (xi) = −xi is the antipodal map on the (d − 1)-dimensional sphere

Sd−1, which corresponds to κ = 1 in (6.54).

The state associated with the CFT on the geon boundary is the thermofield single [109]

|Ψg〉 = e−(β/4+it)H |C〉 (6.58)

85



where |C〉 is the cross-cap state, consisting of an entangled state between left- and right- moving

modes of a free boson CFT (see figure 6.2a). In terms of the modes jn and j̄n of the holomorphic and

anti-holomorphic conserverd currents J = i∂X and J̄ = i∂̄X, respectively, it is solution to [127]

[jn + (−1)nj̄−n]|C〉 = 0 (6.59)

and thus takes the form

|C〉 = exp

[
−
∞∑
n=1

(−1)n

n
j−nj̄−n

]
|0〉 (6.60)

which clearly shows entanglement between the left- and right-moving modes of the CFT.

In the case of the geon space, we claim that due to the reflection coming from the involution J the

metric function F (U, y), satisfies

F (U, y)Geon ≤ F (U, y)BTZ + F (U
′
, y
′
)BTZ. (6.61)

The right-hand side of (6.61) saturates the geon metric function. This make sense when the complexity

is regarded as the minimum time required to approximate the unitary. The presence of first and second

terms on the right hand side of (6.61) is depicted in figures 6.2a and 6.2b.

Thus the unitary operator U
′

and the tangent space vectors y
′

to the manifold of unitary operators

at U
′

correspond to those where the spacetime coordinates for the left-modes are (−t,−xi) 3. Equation

(6.61) can be understood as the metric function of a quantum system consisting of the direct product

of two other quantum systems (figures 6.3a and 6.3b). Indeed, let us suppose that FA, FB , and FAB

are the metrics given in equation (6.7) on SU(2)nA , SU(2)nB and SU(2)nA+nB , respectively. The

metric FAB of the system composed of a unitary U on the nA qubit and a unitary V on the nB qubits

is [118]

F 2
AB(U ⊗ V,HA +HB) = F 2

A(U,HA) + F 2
B(V,HB) (6.62)

where HA ∈ SU(2)nA and HB ∈ SU(2)nB (omitting the tensor factors IA ⊗ . and . ⊗ IB acting

trivially on V and U , respectively). The Finsler metrics FA, FB and FAB are said to form an additive

triple of Finsler metrics. Equation (6.62) leads to the inequality

FAB(U ⊗ V,HA +HB) ≤ FA(U,HA) + FB(V,HB). (6.63)

.

The quantity we are now going to compute is the complexity corresponding to the metric F (U
′
, y
′
)

in (6.61). We first introduce the notion of an F-Isometry. A map h : s(t) → h(s(t)) is an F-Isometry

3The coordinates on one of the CFTs (left or right) change as (t, xi) → (−t,−xi) while they remain unchanged on

the other CFT.

86



if and only if the length (6.9) associated with the metric F (s[t], [s]t) satisfies the relation

lF (s) = lF (h o s) (6.64)

and

F (s[t], [s]t) = F ((h o s)(t), [h o s]t). (6.65)

In the tangent space to the manifold at s(t), it acts like

[h o s]t = h∗[s]t (6.66)

with h∗ defined as

h∗ : Ts(t)M → Th(s(t))M (6.67)

such that the F-Isometry reads as

F (x, y) = F (h(x), h∗y). (6.68)

Under the identification (6.57), the momentum components transform as

k0 ≡
∂

∂t
→ ∂

∂(−t)
= − ∂

∂t
≡ −k0

ki ≡
∂

∂xi
→ ∂

∂(−xi)
= − ∂

∂xi
≡ −ki. (6.69)

From the above relations we infer that the quantities k =
√∑d−1

i=1 k
2
i , and Ξ = 2ωkt with (ωk →

−ωk, t→ −t) are invariant under these transformations. Hence the control function

γ+ =
−i sinh(2θk) sin(2kt)

cos(2kt) + i cosh(2θk) sin(2kt)
(6.70)

is still invariant under these transformations. Thus, the geon transformation is an F-Isometry, and

still obeys the condition |γ+| < 1.

The complexity is therefore equal to twice that of the AdSd+1 black hole since the two contributions

from the geon metric contribute equally to the complexity

C(1)(t) = min
γ+

∫ sf

si

dσ Vd−1

∫
dd−1k

|γ′+|
1− |γ+|2

= 2ndE t (6.71)

and the rate of change thereof is
dC(t)

dt

Geon

= 2ndE. (6.72)

Equations (6.71) and (6.72) hold for any (d+ 1) dimensional AdS geon with d ≥ 2.

For any limiting value of t, the geon complexity is still twice the amount obtained in (6.52). More

explicitly, we have

CGeon(t) = 2 CAdSd+1(t). (6.73)
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CFT1 ≡ CFT2

(a)

U

V

(b)

Figure 6.3: (a) Conformal diagram of a BTZ geon. The two CFTs, one at each boundary are now

identified in only one boundary. (b) Quantum circuit composed of unitaries U acting on nA qubits

and V acting on nB qubits (when V = I, the nB qubits are ancilla ones). This circuit complexity

corresponds to the action integral evaluated on a WDW patch in the BTZ geon space.

6.7 Rate of variation of the action

In this section we verify the action-complexity conjecture in the context in which we have been working:

between an action evaluated in the bulk (on a particular patch) and the complexity computed in the

CFTs at the boundaries of the Schwarzschild AdS black holes and their geon counterparts.

Consider a Schwarzschild-AdS black hole in d+ 1 dimensions whose metric is given by

ds2 = −fdt2 + dr2/f + r2dΣ2
k,d−1

f =
r2

l2
+ k − ωd−2

rd−2
(6.74)

where k = 0 for planar black holes. We aim to compute the action evaluated on a WDW patch, as

shown in the figure 6.4a, for this black hole. The different contributions to the action from the bulk

and the boundary terms are [115, 117]

I =
1

16πGN

∫
M

dd+1x
√
−g
(
R+

d(d− 1)

l2
)

+
1

8πGN

∫
B

dd
√
hK − 1

8πGN

∫
B′
dλdd−1θ

√
γ κ

+
1

8πGN

∫
Σ

dd−1x
√
ση +

1

8πGN

∫
Σ′
dd−1x

√
σa (6.75)

with the cosmological constant (not to be confused with the cut-off parameter in the CFTs) Λ =

−d(d− 1)/(2l2) and the curvature radius R = −d(d+ 1)/l2 .

The first term in (6.75) accounts for the bulk contribution. The other terms are the boundary

contributions. The second term is the surface or Gibbons-Hawking-York term, in which K represents

the extrinsic curvature. The third term comes from the null hypersurfaces with κ a parameter related

to the tangent vector to these hypersurfaces. The fourth term (Hayward term) is a joint term involving
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the junctions of spacelike/timelike hypersurfaces [128, 129, 130, 131]. The last term is also a joint term

involving the junctions of null hypersurfaces.

Evaluating the bulk contributions, we obtain for the four quadrants of figure 6.4a

IBulk =
1

16πGN

∫
M

dd+1x
√
−g
(
R+

d(d− 1)

l2
)

=
Ωk,d−1 d

8πGN l2

∫ rmax

0

dr rd−1(v∞ − r∗(r)) (6.76)

where v = t+ r∗ and r∗ =
∫
dr/f . The surface contributions lead, for the four quadrants in figure

6.4a, to

IGHY =
1

8πGN

∫
B

ddx
√
|h|K

=
Ωk,d−1 d ω

d−2

16πGN
(v∞ − r∗(0)) (6.77)

with h the induced metric on the surface. The only nonzero contributions are those coming from the

singularities (r = 0).

The null surface contributions are

INull = − 1

8πGN

∫
B′
dλdd−1θ

√
γ κ (6.78)

with xµ = (λ, θA) parametrizing the null hypersurfaces and γ the induced metric on them. κ satisfies

the equation kµ∇µkν = κkν and kµ = ∂xµ

∂λ are the tangent vectors to these surfaces. It is possible to

choose everything to be affinely parametrized such that κ = 0. We thus can infer that the null surfaces

do not contribute to the action. The joint term (Hayward) contributions have the form

IHay =
1

8πGN

∫
Σ

dd−1x
√
ση. (6.79)

In our case there is no contribution coming from this term since there are no spacelike/timelike junctions

for the chosen patch (figure 6.4a). The contribution of the last term for the four quadrants is

Ijnt =
1

8πGN

∫
Σ′
dd−1x

√
σa

=
Ωk,d−1

16πGN
εd−1
0 log(εd−2

0 /ωd−2). (6.80)

It is important to recall that here the only non zero contributions are those of the junctions at the

region near the singularities (r = ε0 with ε0 very small). And we also have to keep in mind that

those contributions only appear when we consider black holes with hyperbolic metrics (k = −1) whose

horizon radii are smaller than the AdS radius (rh < l). We shall not consider these kinds of black

holes any further; they lead to similar conclusions.

89



After summing up all these contributions we find that the rate of change of the action at late time

is

dI

dt

∣∣∣∣
t→∞

=
1

π

d

dt

[
IBulk + IGHY

]∣∣∣∣
t→∞

dI

dt

∣∣∣∣
t→∞

= 2M∗ (6.81)

with M∗ given in appendix (D-11). We shall see in the next few steps that the mass term M∗ can be

identified with the total energy E of the scalar field.

Focusing now on the geon case, since in figure 6.4b only half of the patch (two quadrants) contributes

to the action, it implies that the total action for the geon space will be the half of that of the AdSd+1

black hole.

In fact, the time in the geon conformal diagram (see figure 6.4b) is moving up for both the left and

right CFTs. The geon action can be interpreted in the AdS context as

IGeon(t1 + t2) = IAdS(t1 + t2) + IAdS(t1 − t2). (6.82)

This can be justified by the fact that a given point in the geon diagram has two images in the AdS

diagram. For symmetric time evolution (t1 = t2 = t/2) the second term of the right-hand side of (6.82)

is time independent whereas the first term is time dependent and is only evaluated on half the patch

of the AdS black hole.

The rate of change at late time for the geon action then becomes

dI

dt

∣∣∣∣
t→∞

= M∗ (6.83)

We thus obtain for d ≥ 2 the relation

IGeon =
1

2
IAdSd+1 . (6.84)

Setting the total energy E of the CFTs to be equal to the mass term M∗ of the AdSd+1 black hole,

we infer that the complexity (6.53) defined in the CFTs at the boundaries of the AdSd+1 black holes

can be expressed in term of the AdSd+1 action (6.81) as follows

CAdSd+1 =
nd
2
IAdSd+1 . (6.85)

Equation (6.85) is the conjectured relation.

Making use of the equations (6.73) and (6.84) we find the same relation for the AdSd+1 geon

CGeon = 2ndI
Geon (6.86)
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Figure 6.4: (a) Conformal diagram of a BTZ black hole with its WDW patch. The coloured area

in light blue is the area over which we evaluated the bulk contribution. The green lines are the null

hypersurfaces and the red points are the joints that involve null hypersurfaces with spacelike and

timelike ones. (b) Conformal diagram of the geon space with the WDW patch on it. It is obvious to

notice that only half of the coloured area, the green lines and red points in the BTZ diagram appear

for the geon space.

except for a factor of 4, indicative of the sensitive of complexity to the underlying topology of the

spacetime.

In [121] the action was computed at t = 0 for the BTZ-geon on a WDW patch partitioned into non-

intersecting pieces associated with each boundary and a remaining interior piece. It was found that

the action evaluated on each partition is precisely half the WDW patch-action of the corresponding

two-sided BTZ wormhole (t = 0) and is independent of the black hole mass.

6.8 Conclusion

We have derived the computational complexity of a CFT defined on the boundary of an AdSd+1 black

hole as a function of a temporal variable t, and have explicitly computed the small-t and large-t limits.

The quantity t can be regarded as the boundary time parameter, yielding the rate of change of the

CFT complexity. Up to a factor this equals nd times the rate of change of the bulk action evaluated

on a WDW patch as conjectured [117, 38].

Our results are commensurate with previous work [116], where the target state was defined for a

fixed value of time and where a different control function was employed, resulting in a dimensionless

complexity proportional to Vd−1Λd−1. Similar results have been derived in the context of the cMERA

circuit [132, 133, 134].

In contrast to this, we began with a generic TFD state defined on the boundaries of an AdSd+1 black
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hole as the target state and obtained a more complex control function depending on the parameter

t. This led us to a dimensionless expression (6.50) for the complexity that is a function of t, which is

proportional to Vd−1Λd−1 as well.

We have also established a correspondence between the geon quotient space of the AdSd+1 black

hole and a quantum system consisting of a product of two quantum systems. We found that the

complexity of the CFT on the boundary of the AdSd+1 geon is twice that of the its AdSd+1 black hole

counterpart. Furthermore, we found that the rate of change of the bulk action of the AdSd+1 geon

evaluated on a WDW patch is half of that of the AdSd+1 black hole.

We therefore infer that the complexity/action relationship is sensitive to the topology of the bulk

spacetime: there exists the same kind of correspondence relation between the complexity of a CFT

and the bulk action of a geon evaluated on a WDW patch (6.86), but with the additional (topological)

factor of 4.

It would be interesting to compute in future investigations the computational complexities C(n) (with n >

1) associated with the same control function γ+(
−→
k , σ) and see whether they can lead to desired and

more general forms of the complexity C(1). Likewise an exploration of the computational complexities

C(n) (with n ≥ 1) for charged and/or rotating AdS black holes (and their geon counterparts [106])

should also provide further insight.
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Chapter 7

Conclusion

Here we summarize the main results derived in this dissertation, and provide some important remarks

and directions for future study in the field of holographic dualities.

In chapter 3, we found that some, but not all super-entropic black holes exhibit the Kerr/CFT

correspondence when considering their near extremal horizon limit despite their reputation to have

non-compact horizons. It was also proven that starting with a Kerr-AdS-like black hole the outcome

of the study is independent of limit that is taken first. In other words, the order between the super-

entropic and the Kerr-CFT limits does not matter.

We explored the Kerr/CFT correspondence for singly-spinning super-entropic black holes and found

that the correspondence exists in four dimensional spacetimes. We noticed that beyond that dimension,

i.e. for d ≥ 5, the Kerr-CFT correspondence does not apply to these black holes because they cannot

be extremal. We were also able to show that the five dimensional gauged supergravity super-entropic

black hole presents the Kerr/CFT correspondence near its horizon only when it carries a very large

electric charge (this condition allows the applicability of Cardy’s formula).

From these different cases of super-entropic black holes it appears that the Kerr/CFT correspon-

dence is a robust holographic duality for this type of black hole. Whether the Kerr/CFT correspon-

dence holds for other cases of super-entropic black holes, such as multiply spinning super-entropic

black holes, remains to be tested.

In chapter 4, we managed to obtain the holographic equation of state for Lovelock theories of

gravity by assuming that the grand canonical free energy in the CFT is a homogeneous function of

the functions gk(N) of the number of degree of freedom N or central charge N2 of the field theories.

We checked its validity for many non-trivial cases of Lovelock theories and the 5d minimal gauged
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supergravity (which is a rotating black hole). The validity of the equation of state for many cases of

Lovelock theories provides further supporting evidence for the robustness AdS/CFT correspondence.

An important question left for future investigation concerns Einstein gravity black holes whose

dual field theories are the large N gauge theories with hyperscaling violation. For these theories the

equation of state is slightly modified and it would be interesting to see whether this new equation of

state holds in Lovelock theories.

In chapter 5, we explored the volume-complexity conjecture, which connects computational com-

plexity in a CFT, known as the quantum information metric, to the maximal volume of a time slice in

the bulk. We proved that the volume-complexity conjecture holds for both the planar Schwarzschild-

AdS black holes and their geon counterparts. The fact that the conjecture applies to the geon quotient

spaces gives a glimpse on the robustness of the AdS/CFT duality. The relation between the CFT and

gravitational volume-complexity comes with a factor 4 due to the topology of the geons, showing that

the volume-complexity proposal is sensitive to the topological structure of the spacetime. This sug-

gests that an exploration of this conjecture for more interesting topologies, such as the ones including

rotation, solitons and more generalized geometries, would be of interest.

In chapter 6 we derived an expression for the action-complexity in the CFT (the fields theories

consist in free scalar field theories and quantum states of the field theories are Gaussian ones) as

a function of a temporal variable. As in the volume-complexity conjecture in the previous chapter,

we were to able to demonstrate that the action-complexity holds for both the (d + 1)-dimensional

AdS spacetimes and their geons. The action-complexity conjecture is sensitive to the topology of

the spacetime, with a factor of 4 appearing in the action-complexity relation. Thus provides further

evidence in support of the robustness of AdS/CFT holographic duality. An interesting problem to

tackle concerns the nature of the action-complexity conjecture for charged and/or rotating black holes

as well as for theirs geon counterparts as the computation of the complexity in the CFT for the

aforementioned black holes remains an open question.

To end this concluding section, we recall that in the current dissertation we studied two holographic

dualities namely the Kerr/CFT correspondence and the AdS/CFT correspondence. We found evidence

in favour of the robustness of these holographic dualities by probing them in some new classes of black

holes and theories of gravity. These classes of black holes include super-entropic (ultraspinning Kerr-

AdS-like) black holes and quotient spaces of AdS black holes known as geons. The theories of gravity

involve both Einstein and Lovelock theories. The holographic aspects of black hole chemistry were

further extended and strengthened. Clearly, there is much more to be learned about holographic

duality from the study of these black holes as they have unusual topologies (features).
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Appendices

A Vanishing charge difference between neighbouring metrics

Here we determine explicitly the charge difference between two neighbouring metrics (3.26), which in

turn gives rise to the central charge.

Prior to computing the integrals that contribute to the central charge we have to determine the

non zero components of hµν (at leading order), which are

htt = −2ε
′
r2(k2γ − Γ),

hrφ = −ε
′′

r
Γ,

hφφ = 2ε
′
γ. (A-1)

Upon inserting these expressions into (3.27,3.28), we obtain

Kζ +Kζ,Λ =
ik

2

(
1

Γ
ε
′′

mε
′

n +
γ

Γ2
ε
′

mεn +
f

Γ2
ε
′

m(fεn + Λ)− (m↔ n)

)
dθ × dφ+ · · · (A-2)

where α, γ,Γ and f are functions of θ and k is a constant. The first two terms in the above equation

are the gravitational and gauge contributions to the integrand of (3.26), and respectively yield the two

central charge terms in (3.32); the third term is eliminated via the gauge choice Λ = −f(θ)ε(φ).

The remaining terms in the ellipsis are those that vanish when r → ∞ or are not tangent to the

surface over which the integration (3.26) is taken [8]; hence they do not contribute to the integral. We

have checked that all such terms vanish. Rather than providing an exhaustive list of these terms, we

shall provide only a few examples. The terms that stem from the boundary conditions (3.29) are of

the form

Kζ ⊃ 1

4
εµναβ h

σνDµζσ dx
α × dxβ

⊃ −1

2
g13g22h13Γ1

23ζ
3dθ × dφ

= −k
2

4

γ

Γ
O(

1

r
)ε dθ × dφ (A-3)
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whereas the contributions coming from the gauge field have the form

Kζ,Λ ⊃ 1

8
εµναβF

µνζσaσ dx
α × dxβ

⊃ −1

2
g11g22F12ζ

σaσ dθ × dφ

= − kf

2Γ2
O(

1

r2
)ε dθ × dφ (A-4)

where the coordinates (x1, x2, x3, x4) are (t, r, φ, θ) respectively. It is clear that all these contributions

are finite and vanish for r →∞.

B Equation of state in 5d gauged supergravity

We consider here a computation of the free energy density of rotating black holes in minimal 5d gauged

supergravity. From the thermodynamic quantities given in (4.71) we see that

4M̃ − 3(T S̃ + µQ̃)− 4ωaJ̃a − 4ωbJ̃b =
π

Ξ2
aΞ2

b

m(2Ξa + 2Ξb − ΞaΞb)
1

G5l3

+
2π

Ξ2
aΞ2

b

qabg2(Ξa + Ξb)
1

G5l3
− 3

G5l3
TS − 3

G5l3
µQ

− π

lΞ2
aΞb

[2am+ qb(1 + a2g2)]
ωa
G5l3

− π

lΞaΞ2
b

[2bm+ qa(1 + b2g2)]
ωb
G5l3

. (B-1)

The free energy density reads as

Ω̃ =
πm

4Ξ2
aΞ2

bG5l3
(2Ξa + 2Ξb − ΞaΞb) +

πqabg2(Ξa + Ξb)

2Ξ2
aΞ2

bG5l3
− π2

2ΞaΞbG5l3r+
T (r2

+ + a2)(r2
+ + b2)

− π2

2ΞaΞbG5l3r+
Tabq −

√
3π

4ΞaΞbG5l3r+
µql − πam

2Ξ2
aΞbG5l3r+

ωa
l
− πbm

2ΞaΞ2
bG5l3r+

ωb
l

− πqb(1 + a2g2)

4Ξ2
aΞbG5l3r+

ωa
l
− πqa(1 + b2g2)

4ΞaΞ2
bG5l3r+

ωb
l
. (B-2)

Therefore, we have

l∂lΩ̃
∣∣
l3/G5,T,µ,ωi

=
π

4Ξ2
aΞ2

b

[−4m+
4ΞaΞb
π

TS +
3

r2
+

(q2 + abq)](2Ξa + 2Ξb − ΞaΞb)
1

G5l3

+(
3

2
− 2)

π

Ξ2
aΞ2

b

qabg2(Ξa + Ξb)
1

G5l3
+

3

G5l3
TS

− π2

2ΞaΞbr+
[3r4

+ + (a2 + b2)r2
+ − a2b2 + 2abq]

1

G5l3

+
π

2lΞ2
aΞb

[4am+ 2qb(1 + a2g2)]
ωa
G5l3

+
π

2lΞaΞ2
b

[4bm+ 2qa(1 + b2g2)]
ωb
G5l3

− π

2lΞ2
aΞb

[
4aΞaΞb

π
TS +

3a

r2
+

(q2 + abq) +
3

2
qb(1 + a2g2)]

ωa
G5l3

− π

2lΞaΞ2
b

[
4bΞaΞb
π

TS +
3b

r2
+

(q2 + abq) +
3

2
ab(1 + b2g2)]

ωb
G5l3

. (B-3)
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and which can finally be written as

l∂lΩ̃
∣∣
l3/G5,T,µ,ωi

= −4M̃ + 3T S̃ + 4ωaJ̃a + 4ωbJ̃b +
9π

4ΞaΞb

q2r2
+

[(r2
+ + a2)(r2

+ + b2) + abq]

1

G5l3

= −4M̃ + 3(T S̃ + µQ̃) + 4ωaJ̃a + 4ωbJ̃b. (B-4)

using (4.71).

C Complexity-Volume: computations in the bulk

Here we provide more details on some of the computations in the bulk.

Let us start with the BTZ black hole; in this case we obtain from (5.31) for the late time limit

VolBTZ(Σ)

R2V1
= −

∫ π/4

0

cos 2κ

sinκ
dκ+

∫ ρ∞

0

cosh 2ρ

sinh ρ
dρ+ t

t =

∫ π/4

0

dκ

sinκ cos 2κ
−
∫ ρ∞

0

dρ

sinh ρ cosh 2ρ

(C-1)

or, more explicitly,

VolBTZ(Σ)

R2V1
= 2 cosh ρ∞ −

√
2− log(1−

√
2) + t

t =

∫ π/4

0

dκ

sinκ cos 2κ
−
∫ ρ∞

0

dρ

sinh ρ cosh 2ρ

Setting eρ∞ ' π/4ε, this can be approximated to the asymptotic form

VolBTZ(Σ)

R2
' πV1

4ε
+ V1t+ · · · (C-2)

with t ∼ − log ε, which is congruent with the results we got from the CFT computations. We can also

see that the closer the parameter ε gets to 0 the greater is the time t.

When looking at the early time limit, we find from (5.31) that

VolBTZ(Σ)

R2V1
= 2

∫ ρ∞

0

cosh ρdρ+ sin2 2κ∗

∫ ρ∞

0

dρ

sinh ρ sinh 2ρ

t = − sin 2κ∗

∫ ρ∞

0

dρ

sinh ρ sinh 2ρ
(C-3)

which can also take the form
VolBTZ(Σ)

R2
' πV1

4ε
+

2

π
t2 (C-4)

where now t ' −( 1
ε −

π
2 ) sin(2κ∗). Here we notice that the term in 1/ε can be eliminated by means

of renormalization of the time t in (D-6), rendering the latter finite and converging to 0 when κ∗

approaches 0.
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Concerning the AdS Schwarzschild planar black hole, we obtain in the late time limit

VolSAdSd+2(Σ)

Rd+1
= 2

Vd
zd0

[
− i

2
d
d+1

∫ 1

ε

dx

xd+1
[
1 + xd+1

] +

∫ 1−ε

ε

dx

xd+1
[
1− 1

2x
d+1
]] (C-5)

from (5.47), or explicitly

VolSAdSd+2(Σ)

Rd+1
= 2

Vd
zd0

[
− 2

d
d+1 i

∫ 1

ε

xd+1dx

(1 + xd+1)

[
1 + 2xd+1

] − i
∫ 1

ε

β1dx

1 + xd+1

+

∫ 1−ε

ε

xd+1dx

(1− xd+1)
[
1− 1

2x
d+1
] +

∫ 1−ε

ε

β2dx

1− 1
2x

d+1

]
t = z0

[
− 2

d
d+1 i

∫ 1

ε

xd+1dx

(1 + xd+1)
[
1 + 2xd+1

] +

∫ 1−ε

ε

xd+1dx

(1− xd+1)
[
1− 1

2x
d+1
]]

(C-6)

with

β1 =
2

1
d+1 (1 + 2xd+1)− 2

d
d+1x2d+2

xd+1(1 + 2xd+1)
and

β2 =
2− 2xd+1 − x2d+2

xd+1(1− xd+1)
.

This can finally be put into the asymptotic form

VolSAdSd+2(Σ)

Rd+1
' Vd
dεd

+
Vdt

zd+1
0

(C-7)

with t ∼ ε
1
d+1 2F1

[ −1
d+1 ,

−1
d+1 ,

d
d+1 ,

1
(d+1)ε

]
.

The early time limit reads

VolSAdSd+2(Σ)

Rd+1
= 2

Vd
zd0

[ ∫ 1−ε

ε

dx

xd+1
√

1− xd+1
+

1

2
h∗

∫ 1−ε

ε

xd+1dx√
(1− xd+1)3

]
t = −iz0

√
h∗

∫ 1−ε

ε

xd+1dx√
(1− xd+1)3

. (C-8)

Hence

VolSAdSd+2(Σ)

Rd+1
' 2Vd

[
1

dεdzd0
+

(d+ 1)2

4β( 1
2 ,

1
d+1 )

t2

zd+2
0

]
(C-9)

where now t ' −iz0

√
h∗
[

2√
(d+1)3ε

− 2
(d+1)2 β( 1

2 ,
1
d+1 )

]
. The term in 1/

√
ε can be removed by renor-

malizing this expression so that the time t goes to 0 when z∗ = z0.
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D Supplementary material for the action-complexity relation

D.1 Coordinates on the tangent plane

Consider the manifold of unitaries SU(2n) and the unitary operator [118]

U = exp[−i
∑
j

γjσj ] (D-1)

thereof, the tangent to SU(2n) at this point U , admits the coordinates

yi = iTr(σidU/dt U
†)/2n

= dγi/dt. (D-2)

For the metric function F1(U, y) = f(γ), the complexity or length (Euclidean distance) associated with

it reads

Cf (U) = inf
γ

∫
I

f(γ(t)) dt

= inf
γ

∫
I

∑
i

dγi. (D-3)

In the Poincare disk model (with γi (i = +)), the complexity or length (hyperbolic distance) associated

with the metric F1(U, y) has the form

Cf (U) = inf
γ+

∫
dγ+

1− |γ+|2
. (D-4)

D.2 Complexity

This subsection is devoted to the derivation of the final form of the computational complexity C(1)(t).

As introduced earlier in the previous sections, it has the form

C(1)(t) = min
γ+

∫ sf

si

dσ
Vd−1

2

∫
dd−1k

|γ′+|
1− |γ+|2

=

∫ sf

si

dσ
Vd−1

2

∫
dd−1k |2ωkt sinh(2θk)|

= 2Vd−1 t Ωκ,d−2

∫
kd−1 e−βk/2

1− e−βk
dk

= 2Vd−1Ωκ,d−2(2d − 1)β−dΓ(d)ζ(d) t (D-5)

where we employ the control function

γ+(
−→
k , σ) =

−i sinh(2θk) sin(2ktσ)

cos(2kt) + i cosh(2θk) sin(2ktσ)
(D-6)
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yielding in turn

|γ′+|
1− |γ+|2

= 2ωkt sinh(2θk) (D-7)

with

sinh(2θk) =
2e−βωk/2

1− e−βωk
. (D-8)

D.3 AdS/CFT (Planar black holes)

Here we review some useful notions on the metric of Schwarzschild-AdS black hole, particularly the

planar one, as well as the metric of its boundary CFT.

A planar Schwarzschild-AdS black hole in d+ 1 dimension has the metric

ds2 = −fdt2 + dr2/f + r2dΣ2
κ,d−1

f = −ωd−2/rd−2 + r2/l2. (D-9)

Changing variables to z = l/r, (D-9) becomes

ds2 =
l2

z2
[−hdt̃2 + dz2/h+ dΣ2

κ,d−1]

h = 1− (z/z0)d (D-10)

where t̃ = t/l, R = l, zd0 = ld−2/ωd−2 and ωd−2 = rdh/l
2.

The mass of this black hole is

M∗ =
d− 1

16πGN
Ω0,d−1ω

d−2. (D-11)

The metric of the CFT on the boundary of the black hole is of the form

ds2
boundary = −dt2 + l2dΣ2

κ,d−1 (D-12)

(κ = 0) for planar black holes. It can be rewritten as

ds2
boundary = −l2[dt̃2 + dΣ2

κ,d−1] (D-13)

and we can label t̃ as t.

D.4 Total energy of the scalar field

Here we compute the total energy of the scalar field knowing the probability densities of the Hamilto-

nian eigenstates |n, n〉.
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Starting with the state |TFD(0)〉 in (6.40) we find that the density matrix is obtained from the

expression

ρ = Tr(|TFD(0)〉〈TFD(0)|)

=
∑
nk

e−βωk |nk〉〈nk| (D-14)

after tracing over the states |nk〉2, where e−βωk are clearly the probability densities of the Hamiltonian

eigenstates. From the above expression we infer that the total energy of the scalar field reads as

E = Vd−1

∫
dd−1k ωk e

−βωk

= Vd−1

∫
dd−1k k e−βk

= Vd−1Ωκ,d−2β
−dΓ(d). (D-15)
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