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Abstract 

A delivery system is essential to protect the DNA from degradation because of the 

extracellular and intracellular barriers. Two main types of delivery systems have been used to 

deliver genes into the body: viral and non-viral vectors. Although viral vectors are still 

superior over non-viral vectors, non-viral types are a better and safer alternative due to the 

safety concern of viral vectors. The low transfection efficiency of non-viral vectors remains a 

challenge due to the barriers that must be tackled. An effective non-viral vector must fulfill 

many conditions in order to be able to handle these barriers. The vector should be 

biocompatible, biodegradable, able to interact with DNA and cell membrane, able to 

successfully escape the endosome, and finally, capable of entering the nucleus to express the 

required protein. Cationic polymers are one of the most effective non-viral delivery systems. 

Cationic polymer/DNA (also called polyplexes) are able to interact with the DNA through 

electrostatic interaction, which results in DNA complexation and condensation. Gelatin is a 

natural polymer that can be easily modified by increasing the positive charge to effectively 

interact with the DNA and the cell membrane. In this project, gelatin nanoparticles were 

prepared using the two-step desolvation method, and were modified with cholamine as a 

cationic agent. Pluronic block copolymers were subsequently added to protect the cationic 

gelatin/DNA from degradation, and to increase the circulation time. The interactions of 

gelatin/Pluronic/DNA with the model membranes DPPC-CHOL and POPC-CHOL were 

studied using Langmuir’s monolayer study, as well as Brewster’s angle microscopy at the 

air/water interface. Transfection efficiency and cell viability were then evaluated at COS-7 

cells. The results revealed that gelatin nanoparticles were successfully modified, at which 
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point the positive charge increased from +11 to +32. Additionally, cationic gelatin (CG) was 

able to interact with and neutralize the negative charge of the DNA. CG/Pluronic/DNA 

complexes was characterized by size and zeta potential, showing a small particle size and a 

positive charge. The interaction of CG/Pluronic/DNA complex with the model membranes 

demonstrated a fluidization effect, especially with CG and Pluronics, whereas DNA showed 

an ineffective and negligible condensation effect. With respect to transfection efficiency, CG 

results were poor compared to positive control jetPEI®, with no improvement after adding 

Pluronics. Gemini surfactant (GS) was also used in the transfection experiments in hope that 

it might improve the transfection efficiency of cationic gelatin. However, CG/GS showed 

some aggregation, and the positive charge decreased by increasing the CG, which resulted in 

lower transfection efficiency. Cell viability of the cells containing cationic gelatin was very 

high (similar to non-treated cells), which was confirmed by the safety of the gelatin, even 

after modification. More investigational studies and optimizations are required to understand 

the low transfection efficiency of cationic gelatin. These studies will help design more 

effective delivery vectors, either with gelatin or with any other non-viral system.  
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Chapter 1 Introduction and Literature Review 

1.1 History and General Introduction to Gene Therapy 

Gene therapy (GT) has received much attention due to its great potential for the treatment of 

both acquired and inherited diseases such as cancer, cystic fibrosis (CF), acquired 

immunodeficiency syndrome (AIDS), X-linked combined immune deficiency (X-linked 

SCID), emphysema, retinitis pigmentosa, sickle cell anemia, hemophilia, Duchenne 

Muscular Dystrophy (DMD), certain some autosomal dominant disorders, vascular disease, 

neurodegenerative disorders, polygenic disorders, inflammatory conditions, and other 

infectious diseases (Stone 2010, Nayerossadat, Maedeh et al. 2012, Keeler, Elmallah et al. 

2017).  According to the US Food and Drug Administration (FDA), gene therapy is defined 

as products “that mediate their effects by transcription and/or translation of transferred 

genetic material and/or by integrating into the host genome and that are administered as 

nucleic acids, viruses, or genetically engineered microorganisms. The products may be used 

to modify cells in vivo or transferred to cells ex vivo prior to administration to the recipient” 

(Wirth, Parker et al. 2013). A gene therapeutic should fulfil two characteristics: (a) it should 

contain an active substance containing or consisting of a recombinant nucleic acid that is 

administered into the nucleus in order to regulate, repair, replace, add, or delete a defective 

gene; (b) its therapeutic, diagnostic, or prophylactic effect should relate to the recombinant 

nucleic acid it contains (Wirth, Parker et al. 2013). When gene therapy is used in the 

treatment of genetic diseases, it restricts these diseases by introducing genes coding for 

functional proteins to cells; thus, it normalizes the cells and even organs in question (Jin, 

Zeng et al. 2014). Gene therapy is also used to produce large quantities of secreted proteins 
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that can be utlized for direct therapeutic applications or vaccine production (Jin, Zeng et al. 

2014).  

Since the first attempt of gene therapy made by Fredrick Griffith in 1928 (Griffith 1928), 

there have been enormous and significant changes have occurred in the development and 

improvement of gene therapy (Figure 1.1-1). The most important change has been the 

development of delivery systems. Deoxyribonucleic acid (DNA) requires a delivery vehicle 

in order to efficiently travel through extra- and intra-cellular barriers, finally entering the 

nucleus to express the required protein to correct or moderate specific diseases. Two main 

types of delivery systems have been developed for the purpose of transferring plasmid DNA 

into the nucleus: viral and non-viral vectors. GendicineTM, developed by SiBiono Gen Tech 

Co. in Shenzhen, is a non-replicative adenovirus used for the treatment of head and neck cell 

squamous carcinoma (HNSCC) that was approved by China's State Food and Drug 

Administration (SFDA) in 2003 as the first gene therapy based product for clinical use (Peng 

2005, Wilson 2005). Two years later, SFDA approved OncorineTM, another gene therapy-

based product. In contrast to GendicineTM , OncorineTM is a replicative adenovirus developed 

by Sunway Biotech Co. Ltd for the treatment of late-stage refractory nasopharyngeal cancer 

in combination with chemotherapy (Liang 2012). To date, the US FDA has not approved any 

gene therapy product. However, Cerepro®, developed by Ark Therapeutics Group plc in 

2009, was the first adenoviral vector gene therapy-based product to complete a phase III 

clinical trial in the European Union (EU)  (Wirth, Samaranayake et al. 2009). Cerepro® is 

intended for use in the treatment of malignant brain tumor. Then, in 2012, the European 

Medicines Agency (EMA) recommended a gene therapy product (Glybera) for approval in 
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the EU for the first time (Wirth, Parker et al. 2013). Glybera, developed by Amsterdam 

Molecular Therapeutics, is an adeno-associated viral vector engineered to express 

lipoprotein lipase to treat severe lipoprotein lipase deficiency. Lastly, Strimvelis, another 

gene therapy product, was approved in Europe for the treatment of ADA-SCID (severe 

combined immunodeficiency due to adenosine deaminase deficiency) in May 2016 

(Keeler, Elmallah et al. 2017, Touchot and Flume 2017). Strimvelis, which is the first ex 

vivo stem cell gene therapy developed by GlaxoSmithKline in collaboration with a 

charitable organization (Italian’s Fondazione Telethon) and an academic center in Milan  

(Ospedale San Raffaele). These new approvals and recommendations along with a high 

number of ongoing clinical trials (Figure 1.1-2) have effectively demonstrated the enormous 

potential effectiveness of gene therapy; thus, it is very likely that gene therapy will find its 

place among clinical therapeutics.  
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   Reproduced with permission from (Wirth, Parker et al. 2013) 

* Reproduced from (Keeler, Elmallah et al. 2017, Touchot and Flume 2017) 
 

1.2 Classifications of Gene Therapy Delivery Systems 

1.2.1 Viral vectors 

Viral vectors involve the packaging of DNA into a virus particle. Gene transfer occurs by 

normal viral infection (mechanisms) and is both efficient and cell selective. There are 

currently more than 1700 approved gene therapy clinical trials that utilize viruses as vectors 

for either gene therapy or vaccines applications (Figure 1.2-1) 
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Figure 1.1-1: Timeline highlighting some significant milestones of gene therapy 
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Figure 1.2-1: Vectors used in gene therapy clinical trials (wiley.co.uk) 

 

With their distinct biological keys (e.g., glycoprotein in a viral envelope (Grandi, Spear et al. 

2004)), viruses are able to infect cells and cross both the cell membrane and nuclear barrier 

via a rapid cytosolic passage along dynein-based active linear translocation microtubules (De 

Laporte, Rea et al. 2006). This feature enables viruses to achieve high transfection efficiency 

in most of the transfected cells in vitro. However, several concerns with respect to viral 

vectors have been raised. These include: a strong immune response in host cells due to viral 

protein(s), which causes induction of inflammatory system resulting in degenerating of 

transduced tissues and toxic production; insertional mutagenesis; limitation to the size of 

loaded DNA; and the high cost of production. With respect to insertional mutagenesis, an 

ectopic chromosomal integration of viral DNA may cause malignant transformation due to 

the disruption of the expression of tumor suppression or due to the oncogene activation 
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(Ramamoorth and Narvekar 2015). In 1999, the tragic death of Jessie Gelsinger, an 18-year-

old patient who was being treating for ornithine transcarbamylase (OTC) (Stolberg 1999) 

with an adenovirus vector, as well as the two out of eleven children who were developing a 

blood disorder similar to leukemia following adenoviral treatment against SCID, placed viral 

vectors under severe inspection and led researchers to explore alternative, safer vectors that 

can replace viruses (Teichler Zallen 2000). Adenovirus (Ad), retrovirus, adeno-associated 

virus (AAV), lentivirus, herpes simplex virus, and poxvirus are the most common viruses 

used in clinical trials as delivery systems for gene therapy. Table 1.2-1 summarizes the 

advantages and disadvantages of some of these viruses.  
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Table 1.2-1: The main viruses used as gene delivery systems, with their advantages and 

disadvantages 

Reproduced with permission from (Ratko, Cummings et al. 2003) 
Vector Advantages Disadvantages 

Adenovirus (Ad) Very high titers (1012 pfu/ml) * 

High transduction efficiency in 

vitro and in vivo 

Transduction many cell types 

Transduces proliferation and 

nonproliferating cells 

Production easy at high titers 

 

Remain episomal 

Transient expression 

Requires packaging cell line 

Immune-related toxicity with 

repeated administration 

Potential replication complex 

No targeting 

Limited insert size: 4-5 kb 

Adeno-associated Virus (AAV) Integration on human chromosome 

19 to establish latent infection 

Transduction does not require cell 

division 

Small genome, no viral genes 

 

No well characterized 

No targeting 

Requires packaging cell line 

Potential insertional mutagenesis 

High titers (1010 pfu/ml) but 

Production difficult 

Limited insert size: 5 kb 

Herpes Simplex Virus Large insert size 

Neuronal tropism 

Latency expression  

Efficient transduction in vivo 

Replicative vectors available 

Cytotoxic 

No targeting 

Requires packaging cell line 

Transient expression does not 

integrate into genome  

Moderate titers (104-108 pfu/ml)  

Lentivirus Transduction proliferating and 

nonproliferating cells Transduces 

hematopoietic stem cells 

Prolonged expression  

Relatively high titers (106-107 

pfu/ml) 

Safety concern: from human 

immunodeficiency virus origin 

Difficult to manufacture and store  

Limited insert size: 8 kb 

Clinical experience limited 

Retrovirus Integration into cellular genome  

Broad cell tropism 

Prolonged stable expression 

Require cell division for 

transduction 

Relatively high titers (106-107 

pfu/ml) 

Large insert size: 9-12 kb 

 

Inefficient transduction 

Insertional mutagenesis 

Requires packaging cell line 

Requires cell division for 

transduction  

No targeting 

Potential replication competence   

*Plaque-forming unit (PFU): a measure of the number of particles capable of forming plaques per 

unit volume, such as virus particles. 

1.2.2 Non-viral vectors 

Due to the large number of clinical trials using viral vectors that have failed for safety 

reasons (or for failure to meet clinical endpoints), non-viral vectors are viewed as an 
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appropriate alternative method. Non-viral vectors are divided into three methods: naked 

DNA, physical based and chemical based. Examples of physical methods includes 

electroporation, gene gun, sonoporation, photoporation, and magnetofection while chemical 

methods include cationic lipids and cationic polymers. Non-viral vectors are safe (generally 

non-toxic, and non-immunogenic), easy to produce in large scale, cheap, and able to deliver 

large pieces of DNA in contrast to viral vectors (Li and Huang 2007) (Table 1.2-2). However, 

non-viral vectors demonstrate low transfection efficiency compared to viral vectors because 

of the numerous extra- and intra-cellular obstacles required to be crossed before reaching the 

nucleus to express the necessary protein (Pathak, Patnaik et al. 2009).  

Table 1.2-2: Comparison between viral and non-viral vectors (Li and Huang 2007) 

Viral vectors Non-viral vectors 

High production cost Low production cost 

Immunogenic Low immunogenicity 

Limitation in size loaded of DNA Easily produced in large scale 

Potential for oncogenesis Very low toxicity  

High transfection efficiency Low transfection efficiency  

 

1.3 Barriers Facing Non-viral Gene Delivery  

Nucleic acids (DNA or RNA) must cross several barriers before they are reaching the 

nucleus and expressing the required protein. These barriers can be divided into extracellular 

and intracellular barriers. Extracellular barriers include skin, blood cells, plasma components, 
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the reticuloendothelial system (RES), and the immune system response. Intracellular barriers 

include the plasma membrane, endosomes, trafficking with the cytosol, nuclear localization, 

and nuclear membrane (Figure 1.3-1). As a result, several researchers who have studied these 

barriers and have attempted to overcome them by using various techniques. Regardless of the 

method by which non-viral vectors are administered into the body (e.g., inhalation, IV, IM, 

gavage, etc.), they should come to the extracellular environment (Gottfried and Dean 2013). 

There, the vector (either cationic lipid or cationic polymer) may either be degraded or cleared 

rapidly from circulation due to multiple factors existing within the extracellular milieu, such 

as the presence of serum proteins, blood cells, and enzymatic degradation (Gottfried and 

Dean 2013). An effective strategy to overcome these barriers and to protect the DNA from 

degradation is the use of PEGylated polymer. Polyethylene glycol (PEG) has been 

demonstrated to enhance the stability of the complexes in serum and to substantially increase 

the vector’s half-life in the systemic circulation (Crawford 2002, Kaul and Amiji 2002, 

Otsuka, Nagasaki et al. 2003, Kaul and Amiji 2005, Kou, Wang et al. 2014, Ran, Liu et al. 

2014, Jones, Chen et al. 2015).   

The presence of a positive charge is significant, both to interact with the negatively charged 

phosphate group on in the DNA, and also with the negatively charged proteoglycan 

contained in the cell membrane (Halama, Kuliński et al. 2009). The electrostatic interactions 

between plasmid DNA and cationic polymer help by condensing the DNA, and protecting the 

complex from degradation by nucleases (Ogris and Wagner 2002, Halama, Kuliński et al. 

2009). 
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Figure 1.3-1: Schematic presentation of barriers required to be overcome by nucleic acid 

using non-viral vectors 

Reproduced with permission from (Yin, Kanasty et al. 2014) 
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Once the polyplex is taken up by endocytosis, it has to escape from the endosome and travel 

toward the nucleus before it is degraded at the lysosomal level. Cationic polymers achieve 

endosomal escape mainly through a “proton sponge” mechanism. The proton sponge 

hypothesis is that release of the DNA occurs when low pH in the endosomal environment 

results in protonation of the entrapped agents with a high buffering capacity. Protonation 

induces an extensive inflow of ions and water into the endosome. This leads to osmotic 

swelling and rupturing of the endosomal membrane; therefore, releasing of the entrapped 

components (Varkouhi, Scholte et al. 2011). Cationic lipids can escape the endosome by 

destabilizing the endosomal membrane, resulting in a flip-flop reorganization of 

phospholipids, which then dissociate the DNA into the cytoplasm (Xu and Szoka 1996).  

Afterwards, the free nucleic acid must cross the nuclear membrane for transcription and 

expression of the encoded protein.  

The nuclear membrane is considered a major barrier for DNA delivery. Depending on 

the cell type, only 1 to 10% of the transfected DNA can enter the nucleus (Cohen, van der Aa 

et al. 2009, Glover, Leyton et al. 2010). Pollard et al. (Pollard, Remy et al. 1998) stated that 

PEI-DNA polyplexes showed higher transfection efficiency when microinjected in cytoplasm 

compared to naked DNA or DOTAP/DNA lipoplexes. This means that PEI has the ability to 

facilitate DNA translocation into the nucleus (Tros de Ilarduya, Sun et al. 2010). Designing 

non-viral delivery vehicles that overcome these barriers is the primary goal in obtaining 

effective transfection efficiency. Numerous non-viral vectors can be used to deliver DNA, 

mRNA and short double-stranded RNA, including small interfering RNA (siRNA) and 

microRNA (miRNA) mimics. These vectors require to prevent degradation by serum 
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endonucleases and evade immune detection. These objectives can be achieved through 

chemical modifications of the nucleic acids and the encapsulation of vectors. These vectors 

also require avoiding renal clearance from the blood and prevent nonspecific interactions by 

using polyethylene glycol (PEG) or through specific characteristics of particles. In addition, 

these vectors need to extravasate from the bloodstream to reach target tissues, which requires 

certain characteristics of particles and specific ligands. Finally, these vectors require to 

mediate cell entry and endosomal escape by specific ligands and key components of carriers. 

siRNA and miRNA mimics must be loaded into the RNA-induced silencing complex (RISC), 

whereas mRNA must bind to the translational machinery. DNA must be further traveled to 

the nucleus to express the required protein (Yin, Kanasty et al. 2014) (Figure 1.3-1). 

1.4 Naked DNA  

Administration of naked DNA is considered the least difficult strategy for non-viral 

transfection. Although clinical trials completed of intramuscular injection of a naked DNA 

plasmid have had some success, expression has been very low in contrast with different 

strategies for transfection. In addition to trials with plasmids, there have been trials with 

naked polymerase chain reaction (PCR) product, which have had relative or more prominent 

success. This achievement, nonetheless, does not measure up to that of alternate techniques, 

prompting research into more proficient strategies for the conveyance of the naked DNA, for 

example, electroporation and the utilization of a "gene gun", which shoots DNA coated gold 

particles into the cell utilizing high pressure gas. 
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1.5 Physical Methods of Non-viral Systems 

These methods depend on using physical force in order to destabilize the cellular membrane, 

therefore facilitating the entry of gene therapeutic materials into the cells. These methods are 

simple and straightforward.  

1.5.1 Electroporation  

Electroporation is known as gene electro injection, gene electro transfer, electrically 

mediated gene therapy, or electro gene transfer (Ramamoorth and Narvekar 2015). It works 

by applying an electric field greater than the membrane capacitance into the targeted tissue 

cell membrane, resulting in a pore that allows the molecules to pass through it (Figure 1.5-1). 

As a result, the previously injected DNA can enter into the cytoplasm and nucleoplasm of the 

cell (Nayerossadat, Maedeh et al. 2012). This method is very effective and safe when it 

applied in vivo in comparison to other non-viral methods. However, the complexity of 

surgical procedures, and high voltage [>700V/cm] applied to the tissues, as well as the 

difficulty of reaching some internal tissues makes this method inappropriate for delivering 

DNA (Young and Dean 2015).   
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Figure 1.5-1: Basic concept of electroporation. Reproduced from (https://igtrcn.org/ 

injectoporation-for- gene-delivery/) 

 

1.5.2 Gene gun  

The gene gun (also known as particle bombardment, micro projectile gene transfer or 

ballistic DNA - Figure 1.5-2) delivers DNA coated heavy metal particles into the target tissue 

at a particular speed using high voltage electronic discharge, spark discharge, or high 

pressure inert gas, usually helium (Mali 2013). The most common metal particles used in this 

method are gold, tungsten, and silver, which all typically measure 1 µm in diameter. Gene 

transfer is affected by several parameters such as gas pressure, particle size, and dose 

frequency. Precise delivery of DNA is the most important advantage using the gene gun 

method, and it most commonly used in gene therapy that targets ovarian cancer (OC) cells in 

vitro (Ramamoorth and Narvekar 2015).  
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1.5.3 Sonoporation 

Sonoporation is a noninvasive technique using ultrasound wave to permeabilize the cell 

membrane; thus, allowing the uptake of DNA. Genetic materials of interest are first 

administered into the circulation using microbubbles, followed by the application of the 

ultrasound waves. The ultrasound waves cavitate and break up the microbubbles within the 

microcirculation of target tissue, leading to the disruption of the nearby cell membrane that 

results in targeted transfection of the therapeutic gene (Omata, Negishi et al. 2015). The 

major advantages of sonoporation include safety, noninvasiveness, and the ability to reach 

internal organs without the necessity of surgery; consequently, it is used in the brain, cornea, 

kidney, and peritoneal cavity, as well as in muscle and heart tissues (Ter Haar 2007, 

Ramamoorth and Narvekar 2015).  

Reproduced with permission from (Mellott, Forrest et al. 2013) 

Figure 1.5-2: Ballistic Gene Delivery 
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1.5.4 Photoporation  

This technique works by using a single laser pulse in order to generate a pore in the cell 

membrane allowing the DNA to enter into the cells. The effectiveness of this method 

depends on the focal point and pulse frequency of the laser. The major advantage of this 

approach is its safety, in which the pore that is formed by the laser can be healed in less than 

a second. However, the lack of documented evidence limits the use of this technique (Li and 

Huang 2007). 

1.5.5 Magnetofection 

The magnetofection technique is based on coupling therapeutic gene to magnetic 

nanoparticles, which are then introduced into the cell culture (Jones, Chen et al. 2013). The 

field gradient is produced by adding rare, earth electromagnets under the cell culture, which 

then result in increasing transfection speed that arises from increasing the complex 

sedimentation. The therapeutic gene-magnetic particle complex is administered intravenously 

when it used in vivo. With the help of enzymatic cleavage of cross linking molecules, charge 

interaction, or charge degradation, the genetic material is released (Plank, Schillinger et al. 

2003). This method is considered to be an alternative for certain primary cells, as those 

transfections are difficult when using other techniques.  

1.6 Chemical based Non-viral Systems  

Chemical methods of transfection are divided into two categories: inorganic particles (such 

as calcium phosphate, silica, and gold particles); and organic synthetic/natural materials 

(such as cationic lipid and cationic polymers). 
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1.6.1 Inorganic particles  

The most common examples of these particles include calcium phosphate, gold, and silica. 

They have small nanoparticles that are capable of protecting the DNA from degradation and 

avoiding most of the physiological barriers (RES in particular).  

1.6.1.1 Calcium phosphate 

Calcium phosphate particles are biodegradable, biocompatible, non-toxic, and non-

immunogenic (Choi, Cui et al. 2015). Calcium phosphate, as a delivery system, works by co-

precipitating the calcium phosphate and DNA in the aqueous core of the reverse micellar 

droplets (Roy, Mitra et al. 2003). They play a vital role in endocytosis, and they are readily 

absorbed due to their high nucleic acid binding affinity (Ramamoorth and Narvekar 2015, 

Bakan, Kara et al. 2017). About 85% of the added DNA was found in the matrices of calcium 

phosphate nanoparticles (Roy, Mitra et al. 2003). Due to the problem of calcium phosphate 

crystal growth, the presence of magnesium is occasionally required (Ramamoorth and 

Narvekar 2015).  

1.6.1.2 Silica 

These nanoparticles are commonly made of amino silicane especially for gene delivery due 

to its low toxicity (Kneuer, Sameti et al. 2000). They can also be produced from sand and 

glass (Ramamoorth and Narvekar 2015). Silica nanoparticles can be easily modified with 

aminosilanes at lower pH to produce a net positive charge, and are able to electrostatically 

interact with the DNA (Kneuer, Sameti et al. 2000). The interaction with serum protein is the 

major disadvantage of silica particles because it leads to a decrease in the delivery efficiency 

(Dizaj, Jafari et al. 2014). 



 

 18 

1.6.1.3 Gold 

Gold nanoparticles are a promising area of research for gene therapy due to their low 

toxicity, ease of preparation, inert nature, and multiple surface characterizations (Ding, Jiang 

et al. 2014, Ramamoorth and Narvekar 2015). Gold nanoparticles work by interacting with 

the nucleic acid through electrostatic interaction due to the presence of cationic quaternary 

ammonium groups (McIntosh, Esposito et al. 2001), which in turn protect the DNA from 

enzymatic degradation. Gold nanoparticles have the ability to absorb near the infra-red light, 

which can penetrate deeply into the cells to deliver the DNA. The main problem of gold 

nanoparticles is its chemical stability that results from the accumulation of nanoparticles 

rather than being dissolved, which could lead to cell death (Ramamoorth and Narvekar 2015, 

Riley and Vermerris 2017).   

1.6.2 Organic synthetic/natural materials 

Transfection vectors are based on cationic lipid, cationic polymer, lipid nano emulsion (Nam, 

Park et al. 2009, Fraga, de Carvalho et al. 2015), solid lipid-based nanoparticles (Ezzati 

Nazhad Dolatabadi and Omidi 2016), and peptide-based (Riley and Vermerris 2017) 

materials are widely being investigated and all well described in the literature. In this section, 

given that this thesis emphasizes gelatin-based nanoparticles, we will focus only on cationic 

lipids and cationic polymers only.  

1.7 Cationic Lipids as Non-viral Systems for Gene Delivery  

Cationic lipids complexed with DNA (also called lipoplexes - Figure 1.7-1) are considered 

one of the most efficient non-viral vectors for DNA transfection. Cationic lipids consist of a 
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hydrophilic head group, typically linked to two hydrophobic hydrocarbon chains that which 

allow them to assemble into various aggregated structures, including vesicles and bilayers, 

among many others. The hydrophilic head group of cationic liposomes consists of positively 

charged functional groups (most commonly primary, secondary, tertiary amines, quaternary 

ammonium salts, guanidine, imidazole, pyridinium, phosphorus, and arsenic groups) that 

have the ability to complex with negatively charged naked DNA through electrostatic 

interaction resulting in complexes called lipoplexes. Cationic liposomes have been examined 

in safety studies through different routes of administration such as intratumoral, 

intrapulmonary, intracerebral and intravenous with little or no toxicity reported in any of 

these studies (Clark and Hersh 1999). Liposomes also have other advantages such as 

simplicity of preparation, low toxicity, low immunogenicity, ability to produce in large 

amounts, biocompatibility, and their versatility for use with any size or type of DNA/RNA 

(Hung, Huang et al. 1999, Pezzoli, Kajaste-Rudnitski et al. 2013, Fisher, Mattern-Schain et 

al. 2017).  

Dioleylpropyltrimethylammonium chloride (DOTMA) and dioleoyltrimethyl-

ammonium propane (DOTAP) (Stamatatos, Leventis et al. 1988, Mintzer and Simanek 2008, 

Yin, Kanasty et al. 2014) are the most commonly used cationic lipids used for gene delivery. 

In 1987, DOTMA was used by Felgner and colleagues as the first application of cationic 

liposomes to gene therapy (Felgner, Gadek et al. 1987). 
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Reproduced with permission from (Malam, Loizidou et al. 2009)  

The hydrophobic region traps drugs or DNA in the central core when the liposomes are 

prepared. The outer surface can be functionalized with ligands for active targeting or 

PEGylated.  

 

1.7.1 Helper lipids  

Most lipoplex formulations contain “helper” lipids, such as dioleoylphosphatidyl- 

ethanolamine (DOPE) or cholesterol (Chol), which provides extra stability to the 

lipoplexes (Kaur, Slavcev et al. 2009). DOPE has exhibited promising transfection 

efficiencies in both in vitro and in vivo gene delivery investigations (Farhood, Serbina 

et al. 1995, Hui, Langner et al. 1996). DOPE is generally thought to improve 

transfection efficiencies by assisting with the escape of the DNA from the endosome 

after cellular uptake (Mochizuki, Kanegae et al. 2013). Combination of cationic lipids 

and DNA in a micellar or liposomal form generally leads to a lamellar organization 

with DNA molecules sandwiched between lipid bilayers. Some systems, for example, 

those that contain the neutral lipid DOPE, result in the formation of an inverted 

Figure 1.7-1: Schematic illustration representing the structure of liposome 
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hexagonal structure containing DNA in the center of the inverted hexagonal bilayers 

(Mochizuki, Kanegae et al. 2013). According to Zhou and Huang (Wang and Huang 

1989), under physiological conditions, DOPE is a hexagonal phase-forming lipid 

(lipoplexes) thought to contribute to its ability to increase the transfection efficiency 

of DNA-liposome complexes by destabilizing the lamellar structure of the endosomal 

membrane lipids. Also, DOPE can also help the lipoplexes to escape the endosome 

through membrane charge density mechanism. In this mechanism, DOPE can trigger 

lamellar (LCα) to inverted hexagonal phase (HCII) transitions when the pH drops to 

acidic condition at late endosome. At the hexagonal phase (HCII), the curvature of 

DOPE has a negative charge, which results in an elastically frustrated state with the 

outer positive lipid monolayer of the cationic lipid. This state establishes a driving 

force for rapid fusion with the cell and endosomal membrane (Lin, Slack et al. 2003, 

Ewert, Ahmad et al. 2005).  

1.7.2 Stealth liposomes 

Stealth liposomes are poly-ethylene glycol (PEG)-coated liposomes, which have been 

recognized to be important for liposomal drug delivery (Immordino, Dosio et al. 2006). PEG 

is a linear polyether diol that possesses several useful properties, such as biocompatibility, 

solubility in aqueous and organic media (Davidson 1980), a lack of toxicity, very low 

immunogenicity (Dreborg and Akerblom 1989), and with good excretion kinetics (Yamaoka, 

Tabata et al. 1994). The molecular weight and structure of the PEG can be easily modulated 

for specific purposes, and it is easy and inexpensive to conjugate the polymer to a lipid. It has 

been demonstrated that grafting of PEG onto liposomes has many biological and 
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technological advantages. According to Maria et al., the most important properties of 

PEGylated vesicles are their strongly-reduced mononuclear phagocytic system (MPS) 

uptake, and their prolonged blood circulation; consequently, they improve distribution in 

perfused tissues (Immordino, Dosio et al. 2006). In addition, PEG chains on the liposome 

surface prevent aggregation both with other vesicles and with serum proteins, and thus 

improving the stability of formulations. Moreover, PEGylation can provide a scaffold on the 

surface of liposomes for conjugation of different ligands, and have the ability to enhance 

intracellular delivery, cell-type specific delivery, triggered release, imaging capabilities, 

tissue localization, and so on (Torchilin 2012). PEGylated liposomal doxorubicin (PLD) was 

the first, and is still the only, stealth liposome formulation to be approved in the USA and 

Europe for the treatment of Kaposi’s sarcoma (Krown, Northfelt et al. 2004), and recurrent 

ovarian cancer (Rose 2005).   

 Lipoplexes also have some drawbacks which include low transfection efficiency and lack 

of target specificity (Xu, Kumar et al. 1997). In addition, the formation of the lipoplex 

complex involves interaction among lipid molecules, in addition to that with DNA itself. A 

major driving force for the complex formation is the release of low-molecular weight 

counter-ions that makes a large entropic contribution to the free energy of binding (Matulis, 

Rouzina et al. 2002). The lipids’ hydrophobic segments are determinant in the macroscopic 

characteristics of the ensuing liposomes, particularly their size, shape, and stability in the 

dispersed state, as well as in their interactions with other lipids, cell membranes, and DNA. 

This, in turn, affects the transfection efficiency of the resulting lipoplexes. Furthermore, 

liposomal formulations often require an adjuvant, such as DOPE, for efficient delivery (Hui, 
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Langner et al. 1996). Liposomes also suffer from the lack of structural integrity, which leads 

to content leaking and instability during storage (Maurer, Fenske et al. 2001).  

Table 1.7-1: Chemical structures of most common cationic and helper lipids used for gene 

delivery 

Name of Lipid  Chemical Structure  

DOPE  

 

DOTAP 

 

DOTMA                    

 

Cholesterol-DC 
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1.7.3 Gemini surfactants  

Gemini surfactants have generated a great deal of research interest, and are considered a 

suitable replacement for cationic lipids (Ahmed, Kamel et al. 2016, Islam, Shortall et al. 

2017). The term “gemini surfactant” was first introduced by Menger in 1991 (Menger and 

Littau 1991) to mainly describe dimeric bis-surfactants having a rigid spacer linking two 

surfactant moieties. Gemini surfactants are molecules consisting of two head groups (polar or 

charged) and two aliphatic chains linked by a rigid or flexible spacer (Menger and Littau 

1991) (Figure 1.7-2). They are easily synthesized at a low cost, which is a significant 

advantage for industrial drug manufacturing. Gemini surfactants exhibit numerous 

advantageous properties including low critical micelle concentrations (CMC) and high 

surface activities. A low value of CMC is significant when considering surfactants as 

transfection vectors.        

 

 

 

 

 

 

 

 

 

A 

B 

Figure 1.7-2: General structure of gemini surfactant (A), structure of the m-s-m 

gemini surfactants (B). Adapted from (Wettig, Verrall et al. 2008) 
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The effect of variations in both the length of alkyl tails and the size of nature of spacer group 

of gemini surfactants has been demonstrated in many studies. Changes in the length of alkyl 

tail affect the properties of the surfactant solution in the same way as in traditional 

monomeric surfactants (Zana and Xia 2003). For example, an increase in the length of alkyl 

tail of gemini surfactant with a fixed spacer group increases the kraft temperature and 

decreases the natural logarithm of the CMC linearly (Zana and Xia 2003, Wettig, Verrall et 

al. 2008). Variations of spacer group of gemini surfactants are more complex because they 

result from steric, electrostatic, and hydrophobic interactions that serve to give rise to a rather 

rich array of aggregate structure in the solution (Zana 2002, Wettig, Verrall et al. 2008, Zhi, 

Zhang et al. 2013, Ahmed, Kamel et al. 2016) . 

 The cationic m-s-m gemini surfactant series is the most commonly studied family of 

gemini surfactants, where m and s refer to the alkyl tail length and the number of carbon 

atoms in the polymethylene spacer respectively. The first appearance of m-s-m type of 

gemini surfactant used for transfection, was in 2001 in a study by Rosenzwing and 

colleagues, who determined that surfactants having C6 spacer and oleyl (cis-9-octadecene) 

tails resulted in the highest overall transfection and, in particular, that the addition of the 

neutral helper lipid DOPE (1,2-dioleyl-sn-glycerin-ophosphatidlyethanolamine) diminished 

transfection efficiency (Rosenzweig, Rakhmanova et al. 2001). Helper lipids work as a 

stabilizing agent for the DNA-gemini surfactant complexes with C10, C12, and C14 tails 

(Fisicaro, Compari et al. 2005). Badea has determined that transfection efficiencies are best 

for spacer group of size s≤4 or s≥12. The short spacing (where s=2, 3 and 4, as well as their 

increased transfection efficiency can be explained in terms of optimizing interaction with 



 

 26 

DNA phosphate groups (Badea 2006). The same group also reported that the transfection 

efficiencies with 16-3-16 increased when the alkyl tail length increased, either in the 

presence or absence of DOPE. Our group has been focusing on gemini surfactants as gene 

delivery systems for several years: thus, different modifications were applied to improve the 

transfection efficiency such as phytanyl substituted gemini surfactant (Wang, Kaur et al. 

2013), and pyrenyl gemin surfactant (Al Muslim, Ayyash et al. 2017). Also, we studied the 

effect of counterions on gemini surfactant 16-2-16 (Islam, Shortall et al. 2017), as well as the 

effect of the combination of Pluronic block copolymers with gemini surfactant 16-3-16 

(Madkhali 2014).  

1.8 Polymers as Non-viral Systems for Gene Delivery 

Cationic polymers/DNA complexes (also called polyplexes) possess excellent 

biodegradability, low cytotoxicity, triggered nucleic acid release, and higher transfection 

efficiency over many other lipoplexed systems (Wang, Su et al. 2012, Zhou, Liu et al. 2012, 

Li, Yuan et al. 2013). These polymers have the ability to condense, encapsulate, or complex 

DNA to be used for gene transfection (Wong, Pelet et al. 2007) (Figure 1.8-1). Also, cationic 

polymer formulations are easier to prepare as aqueous solutions than lipid formulations due 

to the enhanced solubility of the cationic polymer relative to lipids (due primarily to the long 

chain, hydrophobic alkyl tails present in the lipid structure). In addition, they are more stable 

during storage, and they are easy to manipulate through chemical modification to achieve 

high efficiency or cell targeting without the loss of activity (Tros de Ilarduya, Sun et al. 

2010). Consequently, cationic polymers appear to be the most widely investigated group of 

non-viral vectors, and they are promising to be one of the most successful delivery systems. 
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Figure 1.8-1: Packaging of DNA using polymer. The three main strategies employed to 

package DNA using polymers are via (1) electrostatic interaction, (2) encapsulation within or 

(3) adsorption onto biodegradable nano- or microspheres. Reproduced with permission from 

(Wong, Pelet et al. 2007) 
 

Several references in the literature have shown the transfection efficacy of these polymers 

both in vitro and in vivo (De Smedt, Demeester et al. 2000, Shi, Dan et al. 2010, Sun and 

Zhang 2010, Liang, Liu et al. 2012, Bose, Arai et al. 2015, Huang, Zhao et al. 2016, 

Vaidyanathan, Chen et al. 2016). The most common polymers used for gene delivery are 

discussed below.  
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1.8.1 Polyethyleneimine (PEI) 

Polyethyleneimine, which is being recognized as a gold standard gene carrier (Boussif, 

Lezoualc'h et al. 1995, Wang, Niu et al. 2015), has a positive charge and can interact through 

electrostatic interaction with the negative charge of DNA to form nanocomplexs. PEI, as a 

delivery system, is very efficient for transfection due to its large buffering capacity, which 

facilitates endosomal escape using the "proton sponge" mechanism (Varkouhi, Scholte et al. 

2011) and thus enhancing the gene delivery to the nucleus. Transfection efficiency of PEI 

basically depends on molecular weight. PEI with MW higher than 25 kDa demonstrated 

higher transfection efficiency, whereas PEI with MW lower than (800-2000 Da) revealed low 

transfection efficiency (Goula, Benoist et al. 1998, Fischer, Bieber et al. 1999, Godbey, Wu 

et al. 1999, Lee, Cho et al. 2008). The main drawback of PEI is its high toxicity (Lee, Cho et 

al. 2008).  

1.8.2 Poly-L-lysine (PLL) 

Poly-L-lysine (PLL) was one of the first cationic polymers used for gene delivery. PLL has a 

strong positive charge on the lysine amino acids. Although PLL has good biodegradability in 

the biological system, its use in vivo is very limited due to its poor circulatory half-life (~ 3 

min). PLL rapidly attaches to the plasma protein once it enters the circulatory system, which 

is rapidly removed from the circulation, and consequently results in low transfection 

efficiency (Nishikawa, Takemura et al. 1998, Dash, Read et al. 1999). The combination of 

DNA and PLL complexes achieves a size less than 100 nm in diameter. These complexes can 

be covalently attached to the target ligands of PLL, which can be used in different cell lines 

(Zauner, Ogris et al. 1998, Farrell, Pepin et al. 2007).  
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1.8.3 Chitosan 

Chitosan is a natural, biodegradable, biocompatible, and cationic polysaccharide used for 

gene delivery. Since chitosan is a polysaccharide, it is water soluble, and its degradation 

products are non-toxic, non-immunogenic, and non-carcinogenic (Alves and Mano 2008). 

Chitosans are linear polysaccharide containing β-(1-4)-linked D-glucosamine and N-acetyl-D-

glucosamine, primary amino groups, and primary and secondary free hydroxyl groups which 

make it easy to modify chemically (Köping‐Höggård, Mel'nikova et al. 2003, Alves and 

Mano 2008, Mourya and Inamdar 2008). The main problem of chitosan is its limitation in 

biomedicine because it only dissolves in a mildly acidic solution. However, due to its 

versatile property, several derivatives have been developed in terms of solubility such as 

amphiphilic chitosan. Amphiphilic chitosan achieved small particles size (~200 nm), and has 

been effectively used in gene delivery (Kean, Roth et al. 2005, Dong, Mao et al. 2006).  

1.8.4 Dextran 

Dextran is also a natural and biocompatible polysaccharide made of several glucose 

molecules. The straight chains of dextran consist of α-1,6-glycosidic linkage between glucose 

molecules, while the branches begin from α-1,3-glycosidic linkage (Purama, Goswami et al. 

2009). Dextran can be easily modified by conjugating primary amine groups such as 

spermine to produce cationic dextran (D-SPM) (Hosseinkhani, Hosseinkhani et al. 2011). D-

SPM is water soluble and possesses a positive charge of +42, which is responsible for the 

nonspecific binding of polyplexes or polymer to plasma protein (Hosseinkhani, Abedini et al. 

2015). D-SPM complexes can also be modified by adding PEG in order to increase the 

circulation time the in the circulatory system. Polyplexes of PEGylated D-SPM revealed an 
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increase in transgene expression, and are distributed in more organs including liver, lungs, 

spleen, and kidneys, compared to non-PEGylated polyplexes (Hosseinkhani, Azzam et al. 

2004). 

Table 1.8-1: Chemical structure of the common polymers used in gene therapy 

Generic Name Chemical Name Chemical Structure 

PEI     Polyethyleneimine      
NH2

NH

NH2

n
 

PLL Poly(L-lysine)                         

 

Chitosan  
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Dextran  
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1.9 Gelatin Nanoparticles for Gene Therapy Applications  

1.9.1 Introduction to gelatin 

Gelatin is a natural polymer that is extracted from animal collagen through either partial acid 

or alkaline hydrolysis (Figure 1.9-1). There are two types of gelatin: cationic (gelatin type 

A), and anionic (gelatin type B) (Table 1.9-1) (Wang, Boerman et al. 2012, Elzoghby 2013). 
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Figure 1.9-1: Extraction of gelatin from collagen. The production of type A (cationic) 

gelatin is shown on the right of the figure; the production of type B (anionic) gelatin is shown 

on the left of the figure. Reproduced with permission from (Hosseinkhani, Abedini et al. 

2015) 
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Table 1.9-1: Typical specification for commercial gelatin 

*Bloom number: as determined by the Bloom gelometer, it is an indication of the strength of a gel 

formed from a solution of known concentration. The Bloom unit is a measure of the force (weight) 

required to depress a given sample area of gel (a distance of 4 mm); the higher the Bloom number, the 

stronger the gel (GMIA 2013). 

 

Gelatin is distinguished from other synthetic polymers by having amino acid sequences such 

as Arg-Gly-Asp (RGD) in its structure. These amino acid sequences modulate cell adhesion; 

consequently, they play a significant role in gelatin’s final biological performance in 

comparison to other synthetic polymers that lack these cell-recognition sites (Wang, 

Boerman et al. 2012). Gelatin consists of eighteen non-uniformly distributed amino acids 

with both positive and negative charges (Samal, Dash et al. 2012). Since gelatin is derived 

from collagen and is found in large amounts in animals, gelatin does not produce harmful 

byproducts after enzymatic degradation (Elzoghby 2013). As a result, gelatin is considered as 

GRAS (generally regarded as safe) according to the United States Food and Drug 

Administration (FDA); and thus, it has been used in pharmaceutical, cosmetics, and food 

products for decades (Lemieux, Vinogradov et al. 2000, Kommareddy, Shenoy et al. 2005, 

Elzoghby, Samy et al. 2012). The FDA has also approved gelatin for extravascular 

Characteristics  Type A Type B 

Gel strength (bloom)* 50-300 50-250 

Isoelectric point (IEP) 7-9 4.8-5 

pH 3.8-5.5 5-7.5 

Extraction  from pig skin type 1 collagen from bovine collagen 
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administration, and it is widely used as a stabilizer in vaccines (Zwiorek 2006, Lee, Khan et 

al. 2011). 

Its biodegradability, compatibility, availability and low production cost have attracted 

many researchers to use gelatin experimentally. Due to its animal origin, gelatin has low 

antigenicity compared to collagen because gelatin is denatured from collagen during 

extraction processes, which causes a change in the molecular composition of gelatin’s many 

amino acids (Kommareddy, Shenoy et al. 2005, Elzoghby, Samy et al. 2012). Furthermore, 

gelatin has a flexible structure that can be easily modified by changing its functional groups 

with different cross linkers and targeting-ligands. This ability to be easily modified could be 

very beneficial in improving and developing potential gene and drug delivery systems, with 

minimal toxic effects on the host cells (Busch, Schwarz et al. 2003, Zhou and Regenstein 

2006, Wang, Boerman et al. 2012). Generally, gelatin is a promising gene and drug delivery 

system due to its multiple advantages and safety features, as noted above.  

1.9.2 Chemical structure of gelatin  

Gelatin is an amphiphilic polymer having both cationic and anionic charges along with 

hydrophobic groups present in the approximate ratio 1:1:1, which makes this polypeptide 

special (Elzoghby 2013). Gelatin has a triple helical structure (Gly-X-Pro), composed mainly 

of glycine and proline amino acids, with X representing the third amino acids. These amino 

acids mostly include alanine, lysine, arginine, methionine and valine (Flory and Weaver 

1960, Sahoo, Sahoo et al. 2015) (Table 1.9-1). Lysine and arginine represent 13% of gelatin, 

and both possess a positive charge; 12% of the polymer is negatively charged glutamic and 

aspartic acid groups. The hydrophobic group consists of leucine, isoleucine, methionine, and 
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valine representing 11% of gelatin’s structure. The remaining chain includes glycine, proline, 

and hydroxyproline (Elzoghby 2013).  

 

Figure 1.9-2: General chemical structure of gelatin 

 

Table 1.9-2: Amino acid composition of pigskin gelatin  

Reproduced with permission from (Farris, Song et al. 2009) 

Amino acids  Pig skin gelatin (mole %) Amino acids  Pig skin gelatin (mole %) 

alanine 11.05 leucine 2.35 

arginine 4.96 lysine 2.65 

asparagine 0.60 methionine 0.32 

Aspartic acid  4.42 Phenylalanine 1.38 

proline 13.10 serine 3.40 

glutamic acid  7.10 histidine 0.45 

glycine 32.20 threonine 1.80 

hydroxyproline 9.80 tyrosine  0.35 

hydroxyleucine  0.75 valine  1.90 

isoleucine 1.02   
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1.9.3 Gelatin nanoparticles for gene therapy  

1.9.3.1 Systemic gene delivery  

Several advantages make gelatin an effective vector for gene delivery. First, as an intrinsic 

protein structure, gelatin nanoparticles (GNPs) have the ability to conjugate to different 

moieties that stimulate receptor-mediated endocytosis due to the presence of amino and 

carboxylic functional groups. They can also encapsulate multiple plasmids, and the 

transfection efficiency can be improved by protecting the encapsulated plasmids from 

digestion using long-circulating PEGylated nanoparticles or nucleases (Kaul and Amiji 2005, 

Kommareddy, Shenoy et al. 2005). The first GNPs as non-viral vectors for gene delivery 

were developed by Kaul and Amiji in 2002 (Kaul and Amiji 2002), using gelatin type B. 

They studied the way the GNPs could encapsulate nucleic acid. The first study revealed that 

the negative charge of gelatin type B could physically encapsulate nucleic acid at neutral pH 

7.0; however, the nucleic acid could be condensed electrostatically when it interacted with 

the positive charge of lipids or polymers. When plasmid DNA exists in a hydrogel-type 

matrix, it is protected in the systemic circulation and upon cellular transport. Also, the 

released plasmid DNA forms a supercoiled structure at the nuclear membrane, which is very 

significant in obtaining an effective transfection because of its minimal size, which improves 

gene transfer and potential bioavailability (Darquet, Cameron et al. 1997, Magadala and 

Amiji 2008). Modifying the surface of gelatin with a quaternary amine such as cholamine 

enables the negative charge of the nucleic acid to be adsorbed on the surface of GNPs, thus 

increases ionic interactions (Zwiorek, Bourquin et al. 2008). The Amiji group has studied the 

effectiveness of non-condensing type B gelatin for systemic and oral gene therapy. GNPs 
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loaded with TMR-dextran as a model hydrophilic drug in BT-20 cells used to study cell 

trafficking showed that the particles were mainly taken up by endocytosis, and subsequently 

escaped the endosome through the proton sponge effect (Zhang, Ma et al. 2013); and were 

also found to be contained in the perinuclear area in the cytoplasm (Kaul and Amiji 2002, 

Kaul, Lee-Parsons et al. 2003). Another study indicated that most of the GNPs were 

internalized in NIH-3T3 fibroblast cells within the first six hours of incubation. After 12 

hours of incubation, green fluorescent protein expression was observed, which remained 

stable for approximately 96 hours with 43% transfection efficiency (Kaul and Amiji 2005). 

GNPs containing LacZ plasmid in the tibialis anterior muscle of 6-week old BALB/c mice 

showed powerful and sustained gene expression compared to naked DNA and Lipofectamine 

complexes in vivo (Leong, Mao et al. 1998). A successful encapsulation and an effective 

intracellular delivery of GNPs containing siRNA have also been demonstrated in the 

literature (Xu, Ganesh et al. 2012). For example, siRNA encapsulated in GNPs revealed high 

stability, even in an RNAse rich environment. HIF-1α siRNA loaded GNPs showed 

important downregulation in SKOV3 cells (Leong, Mao et al. 1998, Shah 2010, Xu, Ganesh 

et al. 2012).  

1.9.3.2 Oral gene delivery  

Gelatin nanoparticles have also been used to deliver nucleic acid through oral administration. 

A unique multi-compartmental oral delivery system was developed by Bhavser and Amiji 

(Bhavsar, Tiwari et al. 2006, Bhavsar and Amiji 2007, Bhavsar and Amiji 2008). This system 

is based on encapsulation of DNA-GNPs in poly (epsilon-caprolactone) (PCL) microsphere 

using a technique termed “double-emulsion-like”. This delivery system was called 
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‘’nanoparticles-in-microsphere oral system’’ or (NiMOS). The role of NiMOS is to protect 

the DNA during its travel to the stomach. When lipases-enzymes in the intestinal tract 

degrade the PCL matrix, DNA-GNPs are then internalized by enterocyte, or any other cell in 

the GI lumen to express the required protein (Bhavsar, Tiwari et al. 2006, Bhavsar and Amiji 

2007, Bhavsar and Amiji 2008, Kriegel, Attarwala et al. 2013).  

Significant EGFP and Beta-galactoside expression were observed in the small and 

large intestines after oral administration of NiMOS in fasted Sprague-Dawley rats (Bhavsar 

and Amiji 2008). In addition, interleukin-10 plasmid DNA and GNPs were encapsulated in 

PCL for the treatment of inflammatory bowel disease (IBD). The complex was then 

administered orally in an acute colitis model. IL-10, placed in the large intestine, was able to 

increase the level of mRNA and proteins, and reduce the levels of proinflammatory cytokines 

such as IFN-γ, IFN-α, IL-1α, IL-1β, and IL-12, in addition to certain chemokines (Bhavsar 

and Amiji 2008). These studies demonstrated that GNPs are potential and promising delivery 

vehicles for both systemic and oral gene delivery.   

1.9.4 PEGylated gelatin nanoparticles  

GNPs are mainly engulfed by the cells of the reticuloendothelial system (RES) upon 

systemic administration, which leads to weak transfection and gene expression. However, 

coating the GNPs with poly (ethylene glycol) (PEG) generates a dense hydrophilic shell of 

long chains that conserve the core of GNPs from non-specific hydrophobic interaction with 

serum protein; thus, it significantly reduces the effect of RES (Otsuka, Nagasaki et al. 2003). 

Another advantage of PEGylation is that it may increase the hydrodynamic size of the 

particles, which leads to a decrease in their clearance from the kidney, as the renal filtration 
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is dependent on the molecular mass and volume. These advantages result in an increase in 

circulation half-life of the particles in vivo (Crawford 2002, Kommareddy, Tiwari et al. 

2005). In addition, the existence of PEGylation on the surface of the GNPs helps in 

protecting the particles from digestion by proteolytic enzymes (Xu, Ganesh et al. 2012). 

Adding PEG to non-condensing type B GNPs has been shown to result in an excellent 

system to distribute effectively in solid tumor because of the hyperpermeability angiogenic 

blood vessels in tumors and the enhanced permeability and retention (EPR) effect (Kaul and 

Amiji 2004, Kaul and Amiji 2005). According to Amiji and Kaul, PEGylated GNPs 

favorably targeted tumor mass in Lewis lung carcinoma (LLC) bearing female mice, where 

about 4-5 % of the injected dose remained in the tumor for approximately twelve hours after 

administration (Kaul and Amiji 2004). Amiji and Kaul also stated that reporter pDNA 

encoding for β-galactosidase (pCMV-β) was effectively encapsulated in PEGylated GNPs 

and showed significant expression in LLC tumors with 61% transfection efficiency (Kaul and 

Amiji 2005). Kushibiki and colleagues (Kushibiki, Matsuoka et al. 2004) studied the long-

circulation property of PEGylated gelatin using 125I-labeled gelatin. They compared between 

unmodified GNPs and PEGylated 125I-labeled GNPs after I.V. administration through the tail 

vein in LLC-bearing mice. They found that PEGylated GNPs have longer circulating 

properties in the blood and remained in the tumor for up to 24 hours post-administration. In 

another study thiolated PEGylated GNPs exhibited prolonged circulation and enhanced 

tumor extravasation in vivo in an orthotopic human breast adenocarcinoma xenograft model 

(Kommareddy and Amiji 2007). Comparing with the non-PEGylated GNPs, the PEGylated 

nanoparticles showed longer circulation with plasma and tumor half-lives of 15.3 and 37.8 
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hours respectively. Generally, the advantages of the combination of PEG with GNPs are 

summarized as follows: increasing the circulation time in the plasma and tumor mass; 

stabilizing the therapeutic cargo during transportation; preventing RES elimination; and 

providing a potential for conjugation of targeting moieties.  

1.9.5 Thiolated gelatin nanoparticles  

The thiol group (SH) has been considered as a potential addition to GNPs due to its ability to 

respond to the environment changes either inside or outside the cells. The thiol group is 

similar to alcohol in chemical structure but differs in its chemical properties. Thiols are more 

nucleophilic, more acidic, and more readily oxidized (Senning 1997). Adding thiol groups to 

gelatin leads to the formation of disulfide bonds (S-S) in an oxidation reaction within the 

polymer, which can be beneficial in strengthening the tertiary and quaternary protein 

structure in the case of gelatin (Bacalocostantis, Mane et al. 2013). Also, disulfide bonds can 

stabilize the nanoparticles during systemic circulation, and release the encapsulated payload 

when they are broken inside the cell (Kommareddy and Amiji 2005). Groups of thiols are 

easily and rapidly crosslinked; therefore, they can be used for the synthesis of polymeric 

delivery vectors (Bacalocostantis, Mane et al. 2013). Conjugating thiols with PEG has been 

shown to improve stability and circulation time of the polyplexes in vivo (Bacalocostantis, 

Mane et al. 2013). Glutathione (GSH) is a dipeptide, used as an antioxidant to prevent 

damage caused by an oxygen species. GSH and peroxide exist in high concentration inside 

the cells more so than outside (100-fold higher), and their concentration is much higher in the 

cytoplasm of tumor cells. As a result, Kommareddy and Amiji (Kommareddy and Amiji 

2005) introduced a thiol (SH) group into gelatin using 2-iminothilane reagent and prepared 
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the nanoparticles by desolvation using ethanol under adjusted and controlled condition of pH 

and temperature. The plasmid DNA was then incorporated into the thiolated gelatin 

nanoparticles. The thiolated GNP encapsulated DNA showed high transfection efficiency in 

NIH-3T3 murine fibroblast cells in contrast with unmodified gelatin and lipofectin®-

complexed DNA (Kommareddy and Amiji 2005). Six hours after transfection, the expression 

of green fluorescent protein was observed. These results could be interpreted such that it was 

the disulfide bonds that increased the stability of the nanoparticles and indicated that 

thiolated GNPs have a rapid release of their contents into a highly reducing environment 

inside the cell where the high concentration of GSH (Kommareddy and Amiji 2005, 

Kommareddy and Amiji 2007). Furthermore, the same group evaluated three modifications 

of gelatin: PEG-GNPs, thiolated-GNPs, and PEG-modified thiolated GNPs in NIH-3T3 to 

deliver plasmid DNA. Among all three formulations tested, PEG-thiolated GNPs showed the 

highest GFP expression even more than the positive control lipofectin-complexed DNA 

(Kommareddy and Amiji 2007). Generally, both PEG-GNPs and PEG-modified thiolated 

GNPs demonstrated longer circulation in the blood and higher accumulation in the tumor 

cells in contrast with unmodified GNPs (Xu, Ganesh et al. 2012). A new tumor-targeted 

siRNA delivery system using polymerized siRNA (poly-siRNA) and thiol-modified gelatin 

nanoparticles was developed by Lee et al. (Lee, Yhee et al. 2013). The poly-siRNA was 

prepared by self-polymerization of thiol group and was encapsulated in the self-assembled 

thiolated-GNPs using chemical cross-linking. The results revealed that the siRNA was 

protected from enzymatic degradation, and the siRNA molecules were released effectively in 

reductive condition. Also, poly-siRNA-thiolated –GNPs demonstrated excellent 
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accumulation in the tumor cells, induced effective target gene silencing in tumors after 

intravenous injection, and showed high cell viability (closer to 100%) compared to 

lipofectamine and non-thiolated siRNA-GNPs (Lee, Yhee et al. 2013). Clearly, the disulfide 

bonds formed by (thiol) group could play a significant role in the stability of nanoparticles, 

thereby resulting in effective gene expression and high cell viability.  

1.9.6 EGFR-targeted gelatin nanoparticles  

One of the greatest challenges for gene delivery is targeting. A delivery vector is required to 

distinguish the host cells, evade nonspecific binding, and resist degradation in the systemic 

circulation. After reaching the target cells, the delivery vector should cross the cell 

membrane, facilitating the escape of the vector from the endosome, and release the nucleic 

acid from the complex, which can then enter the nucleus to express the required protein (Xu, 

Gattacceca et al. 2013). Although tumor targeting using PEG surface modified nanoparticles 

accomplishes some preferential accumulation in the tumor cells and allow for intracellular 

delivery, there are certain types of cancer that do not have adequate vasculature or the 

nanoparticles may not be able to penetrate deep into the tumor mass (Xu, Ganesh et al. 

2012). Mutation of epidermal growth factor receptor (EGFR) has been shown to be 

associated with poor prognosis in several types of cancers including ovarian cancer 

(Ciardiello and Tortora 2001). Between 33 and 75% of EGFR has reported to be 

overexpressed in ovarian cancer, and has been found in both the growth and progression of 

this disease (Sewell, Macleod et al. 2002). OVCAR-3 (cell line used in this project) showed a 

high level of EGFR protein expression (Noske, Schwabe et al. 2011); consequently, targeting 
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of EGFR using the OVCAR-3 cell line is possible and could improve the transfection 

efficiency.   

EGFR is a member of the ErbB/her family of ligand activated receptor tyrosine 

kinases (RTKs) that has been recognized as a molecular target. EGFR consists of an 

extracellular ligand-binding domain similar to any other receptor of tyrosine kinases that is 

involved in interactions between receptors within the membrane, and a cytoplasmic domain 

with tyrosine kinase activity (Schlessinger 2002). Consequently, conjugation gelatin with 

EGFR- targeted peptide has been shown to improve the transfection efficiency in several 

types of cancer cells. EGFR-targeted GNPs carrying plasmid DNA encoding for EGFp-N1 

obtained the highest transfection efficiency in Panc-1 pancreatic adenocarcinoma cells in 

compared to other controls, particularly 48 hours after transfection (Magadala and Amiji 

2008). As another example, transfection of EGFR-targeted GNPs with p53 induced a rapid 

apoptosis process in Panc-1 cells (Xu and Amiji 2012). Intravenous injection of EGFR-

targeted GNPs to a mice bearing Panc-1 pancreatic adenocarcinoma showed nearly double 

efficiency of targeting in comparison to PEG-GNPs and unmodified GNPs. In addition, it 

accumulated and was sustained longer in the tumor mass (Xu, Gattacceca et al. 2013). 

Another study conducted by Xu and Amiji used EGFR-targeted thiolated gelatin 

nanoparticles to deliver plasmid DNA into Panc-1 pancreatic adenocarcinoma cells (Xu and 

Amiji 2012). The EGFR improved the targeting, and the thiol group enhanced the stability of 

GNPs. The results showed that EGFR-targeted thiolated GNPs had nanoparticles that were 

small in size (150-200 nm) with high GFP expression, even higher than the positive control 

lipofectin-complexed DNA; they also obtained high cell viability (Xu and Amiji 2012). 
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Using targeting-ligands with GNPs facilitated the delivery system’s recognition of the host 

cell. As a result, the transfection was improved, and the cytotoxicity was reduced, which is 

the optimal goal for gene therapy delivery systems. 

1.9.7 Cationic gelatin and its importance for gene delivery 

As is the case for any polymeric system used as a gene delivery vector, it is necessary for 

gelatin to carry a positive charge (i.e. be cationic) in order to interact with the negatively 

charged DNA and cell membrane. According to the literature, positively charged particles are 

favorable phagocytosed by dendritic cells and macrophage more than the negative or neutral 

charged particles (Coester, Nayyar et al. 2006). Gelatin is a polyelectrolyte with low charge 

density; however, the charge density is appreciably changed according to the solution pH. As 

a result, cationization of gelatin is a significant factor in obtaining an effective gene delivery 

vector (Zwiorek, Kloeckner et al. 2005). Cationic gelatin is prepared mainly by introducing 

amine residues to the carboxyl groups of gelatin using polyethyleneimine (Mimi, Ho et al. 

2012), cholamine (Fuchs, Klier et al. 2012),  ethylenediamine (Xu, Capito et al. 2008, 

Ishikawa, Nakamura et al. 2012, Xu, Singh et al. 2014), or spermine (Zorzi, Párraga et al. 

2011).  

Cationized gelatin containing plasmid DNA expressing insulin-like growth factor 

(IGF)-1 has shown a five-fold elevation in the amount of IGF in adult articular chondrocyte 

compared to non-cationized gelatin. Also, chondrocytes treated with pIGF using cationized 

gelatin were able to maintain stable IGF-1 overexpression when later grown in collagen (type 

II)-glycosaminoglycan (CG) scaffold for up two weeks and exhibited enhanced biosynthesis 

(Xu, Capito et al. 2008).  Another example is polyethyleneimine (PEI), which has a high 
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positive charge, was conjugated onto the surface of GNPs to deliver pCMV-Luc and gene 

presented optimal transfection efficiency with high cell viability (Kuo, Huang et al. 2011). 

Basically, the existence of positive charge with GNPs will play a major role in improving the 

transfection efficiency and decreasing the cell toxicity, which is the optimal goal to obtain an 

effective delivery system for gene therapy.  

1.10 Pluronic Block Copolymers for Gene Therapy Applications 

1.10.1 Pluronic block copolymers 

Pluronic block copolymers, also called poloxamers, are nonionic polymers consisting of 

hydrophilic poly (ethylene oxide) (PEO) and hydrophobic poly (propylene oxide) (PPO) 

blocks arranged in triblock structure: EOx-POy-EOx (Kabanov, Lemieux et al. 2002) (Figure 

1.10-1).  

OH CH2CH2O CH2CHO CH2CH2O H

CH3

Polyethylene Oxide(PEO)

Polypropylene Oxide(PPO)

hydrophilic hydrophilic

hydrophobic

 

Figure 1.10-1: General chemical structure of Pluronic block copolymers 

This arrangement engenders an amphiphilic copolymer in which hydrophobic PO and 

hydrophilic EO segments can be modified to change the size, hydrophobicity, and 

hydrophilicity of the Pluronic (Kabanov, Lemieux et al. 2002). Copolymers with various PO 
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and EO values are characterized by a distinct hydrophilic lipophilic balance (HLB) 

(Kabanov, Lemieux et al. 2002), which relates to the suitability of a particular polymer for a 

specific application. Sriadibhatla’s studies claim using that copolymers of intermediate 

hydrophobicity (HLB 9-16) with relatively large hydrophobic blocks (30-69 PO units) were 

the most effective in gene expression (Sriadibhatla, Yang et al. 2006).  

      Lack of solubility and stability in the biological fluid was the primary limiting factor of 

the first generation of polyplexes. The particle size of the polyplexes is very sensitive to the 

nature of salts that are present in the buffer and serum components (Ogris, Steinlein et al. 

1998, Nguyen, Lemieux et al. 2000).  As a result, Pluronic block copolymers overcame this 

barrier by forming micelles that reduce unwanted interactions between cells and/or proteins 

with a Pluronic-solubilized compound, and increases its circulation time due to the existence 

of PEO blocks (Kabanov, Lemieux et al. 2002, Kabanov, Zhu et al. 2005) 

     Due to their amphiphilic character, Pluronic copolymers display surfactant properties, 

which have the ability in aqueous solution to self-assemble into micelles above the critical 

micelle concentration (CMC) at fixed temperature, or above the critical micelle temperature 

(CMT) at a fixed concentration - a process called micellization (Kabanov, Lemieux et al. 

2002, Xiong, Binkhathlan et al. 2012). The number of block copolymer unimers forming one 

micelle is known as the aggregation number. The hydrophobic PO core of the micelle can 

serve as a “cargo hold” for incorporating various therapeutic and hydrophobic components 

(Kabanov, Zhu et al. 2005, Batrakova and Kabanov 2008). In addition, the existence of 

hydrophobic PO block enables the pluronic unimers to interact with the lipid membrane and 

translocate inside the cells (Kabanov, Zhu et al. 2005). On the other hand, the hydrophilic EO 



 

 47 

shell keeps the micelle in a dispersed state, prevents undesirable interactions with other cells 

and proteins, and increases its circulation time (Kabanov, Lemieux et al. 2002, Kabanov, Zhu 

et al. 2005). Polymeric structures often tend to precipitate in water due to a localized 

hydrophobicity caused by the drug and the hydrophobic portion of the polymeric chain. 

However, with a core/shell structure, the polymer may remain in water-soluble if the number 

of monomers in the shell-forming block exceeds the core-forming block (Lavasanifar, 

Samuel et al. 2002).  

     Copolymers enhance gene expression using a mechanism that does not condense the 

DNA. It is possibly because copolymers act as biological adjuvants which enhance transgene 

expression by changing the response of the cells to the delivered DNA (Kabanov, 

Sriadibhatla et al. 2010), as discussed in detail in the next section.  

1.10.2 Pluronic block copolymer for gene therapy applications  

Several studies in the literature review have demonstrated that Pluronic block copolymers 

significantly increase expression of plasmid DNA in skeletal muscle, spleen, and lymph 

nodes as well as they stimulate plasmid DNA uptake and expression in antigen presenting 

cells in mice (Lemieux, Guerin et al. 2000, Alakhov, Lemieux et al. 2001, Yang, Zhu et al. 

2005, Sriadibhatla, Yang et al. 2006). Pitard and colleagues have discovered that a 

formulation containing single pluronic copolymers with plasmid DNA also enhanced the 

gene transfer in the muscle. In particular, Pluronic L64 improved the level of transfection 

efficiency more than naked DNA in the skeletal and cardiac muscle (Pitard, Pollard et al. 

2002). 
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     Copolymers also increase expression of genes delivered using polycation-DNA 

complexes, improve transfection with adenovirus and lentivirus vectors both in vivo and in 

vitro, and improve gene expression with different delivery routes and different vectors 

including naked DNA (Kabanov, Zhu et al. 2005). A recent study combined F127 with 

cationic copolymers including poly(dimethylaminoethyl methacrylate), poly(dimethylamino-

ethyl methacrylate-tert butyl acrylate), and poly(dimethylaminoethyl methacrylate-acrylic 

acid). Pluronic F127 was used as a means of reducing the cytotoxicity of the cationic 

copolymers and for self-assembly. The results demonstrated high gene expression and low 

cytotoxicity in 293T cells particularly with poly (dimethylaminoethyl methacrylate-acrylic 

acid) (Huang, Wang et al. 2013). In addition, Chen and colleagues (Chen, Zhang et al. 2014) 

successfully synthesized a series of F127-PEI-SS/pDNA complex formed by crosslinking 

disulfide –containing PEI (800 Da). The results demonstrated that in the presence of 

Pluronics, the complex showed high stability against DNase I or serum and higher 

transfection efficiency and viability than PEI-25 KDa, both in Bcap and Hela cell line. 

Among all tested Pluronics (P123, F127, L61, L35, and L64), which were added to the F127-

PEI-SS/pDNA complex, L35 with HLB of 19 showed the highest transfection efficiency and 

noticeable longer blood circulation time than other Pluronics and PEI-25 KDa. Moreover, 

Pluronics F87 and F108, in combination with cationic gemini surfactant 16-3-16, were able 

to deliver pDNA in OVCAR-3 cell line with a transfection efficiency (~ 15%) compared to 

lipofectamine 2000 (33 %) (Madkhali 2014).  

     Despite the above results, the mechanism of action of gene expression of Pluronics is not 

completely understood (Kabanov, Batrakova et al. 2002). However, Kabanove et al. 
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(Kabanov, Batrakova et al. 2002) have speculated some mechanism(s) of action for 

Pluronics. Also, when Pluronics interact with the cellular membrane, they facilitate cellular 

uptake of polyplexes (Astafieva, Maksimova et al. 1996) and naked DNA (Lemieux, Guerin 

et al. 2000). In addition, Pluronics enhanced DNA distribution through the muscle (Lemieux, 

Guerin et al. 2000), and they increased transport of DNA from the cytoplasm in the nucleus 

of the muscle cells (Pitard, Pollard et al. 2002). Generally, the mechanisms of action in which 

Pluronics enhance gene expression are different from those of cationic lipids or polycations 

(Flotte, Afione et al. 1993).  

 Given the above, Pluronic block copolymers are promising agents as nonviral vectors for 

gene therapy applications. Pluronic can modify the biological response during gene therapy 

which leading to enhancement of gene expression and therapeutic effect of the transgene. 

Also, Pluronics are able to form novel self-assembling gene delivery vectors that have 

superior efficacy to currently known systems. In addition, Pluronics block copolymers have 

shown some promise as formulation agents (Kabanov, Lemieux et al. 2002). 

1.11 Gelatin-Pluronic-based Nanoparticles as Non-viral Vectors for Gene Therapy 

In addition to its ability to complex DNA, gelatin is capable of forming nano-complexes with 

different polymers through various mechanisms. These mechanisms include ionic 

complexation, graft copolymerization, or self-assembly (i.e., micelle-like nanospheres) when 

combined with hydrophobic polymers (Elzoghby 2013). Gelatin-polyacrylic acid (GEL-PPA) 

nanoparticles were prepared using a polymerization mechanism without the addition of either 

organic solvents or additional surfactants (Wang, Zhang et al. 2009, Ding, Zhu et al. 2011). 

GEL-PPA nanoparticles were formed due to the electrostatic interaction between ionized 
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carboxyl groups of PPA and protonated amino groups of gelatin, and due to hydrogen 

bonding between the unionized carboxyl group of PPA and carbonyl groups of gelatin. 

Subsequently, cisplatin was loaded into this complex using a ligand exchange reaction of 

platinum (II) from the chloride to the carboxyl group of the nanoparticles. These 

nanoparticles (GEL-PPA-Cisplatin) exhibited significantly superior anticancer efficacy in 

hepatic H22 tumor-bearing mice as opposed to cisplatin alone (Ding, Zhu et al. 2011). In 

another study, different molecular weights of PEI (600, 1.8k, and 10kDA) were added to 

gelatin nanoparticles prepared using two-step desolvation and loaded with plasmid DNA 

(Kuo, Huang et al. 2011). Transfection efficacy and cell viability were investigated. The 

findings demonstrated that low molecular weight of PEI (1.8 kDa) showed high transfection 

efficiency with low cell toxicity. Gelatin-PEI nanoparticles showed a stable particle size of 

200 nm and obtained a positive charge during all ranges of pH, remaining stable in both 

acidic and basic condition (Kuo, Huang et al. 2011). These studies showed that the 

combination of gelatin and polymer as non-viral vectors nanoparticles is possible and 

effective.  

1.12 Scope of Thesis 

This thesis focuses on gelatin-based non-viral vectors for gene therapy. Gelatin nanoparticles 

were prepared and modified with a cationic agent to increase the positive charge in order to 

interact with the DNA and plasma membrane. Pluronic block copolymers were added to 

gelatin nanoparticles and characterized to study the effectiveness of this complex. This 

complex was then investigated using the Langmuir monolayer study and tested at cell culture 
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to evaluate its transfection efficiency and cell viability of delivering plasmid DNA. The 

thesis is comprised of six chapters: 

Chapter 1: 

Literature and Introduction to Gene Therapy: This chapter provides a brief introduction 

to gene therapy and the methods of delivering DNA using viral and non-viral vectors.  

Chapter 2: 

Hypothesis and Objectives: This chapter discusses the hypothesis of this work, as well as 

the objectives we used to investigate our hypothesis.  

Chapter 3: 

Characterization of Gelatin Nanoparticles and Cationic Gelatin Nanoparticles: This 

chapter describes the methods used throughout the thesis, including the preparation methods 

for gelatin and modified gelatin nanoparticles, and the characterizations used to test our 

particles at different conditions.  

Chapter 4: 

Understanding the Interaction of Gelatin/Pluronic/DNA System with Model membrane: 

Langmuir Monolayer Study: This chapter reports on the results of the Langmuir 

monolayer/BAM studies, and provides new understanding of the interaction of 

gelatin/Pluronic/DNA complexes with model membranes at the air/water interface. 

 

Chapter 5:  

Transfection Efficiency and Cell Viability of Gelatin/Pluronic/DNA System with COS-

7: This chapter reports the ability of gelatin/Pluronic/DNA complexes to transfect DNA in 

vitro using COS-7 cells.  
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Chapter 6:  

Conclusion and Future Studies: The chapter summaries this thesis, and a recommends 

future studies that might be conducted using gelatin/Pluronic/DNA systems to both optimize 

their transfection efficiency, and to provide further insight into the transfection 

mechanism(s). 
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 Hypothesis and Objectives 

2.1 Aim of the Thesis  

The aim of this thesis is to design an effective non-viral delivery system that is capable of 

delivering DNA in vitro. Gelatin was selected as a cationic agent, which was combined with 

Pluronic block copolymers in order to protect the DNA from degradation during its journey 

into the cell.  

2.2 Hypothesis 

Nanoparticles prepared from cationic gelatin and pluronic block copolymer can effectively 

complex DNA and interact electrostatically with the cell membrane, therefore improving the 

transfection efficiency of DNA.  

2.3 Objectives 

1. Preparation of gelatin nanoparticles: gelatin nanoparticles were prepared from type A 

gelatin using the two-step desolvation method.  

2. Preparation of cationic gelatin: cationic gelatin nanoparticles were prepared by 

introducing a cationic agent (cholamine) to the native gelatin nanoparticles.    

3. Preparation, optimization, and characterization of cationic gelatin-Pluronic-DNA 

transfection complexes: cationic gelatin and Pluronics were prepared, optimized, and 

characterized in the presence of plasmid DNA by studying the physiochemical 

properties as follows:  

a) Measuring of particles size using dynamic light scattering: for all systems 

including native gelatin, cationic gelatin, cationic gelatin-Pluronic-DNA complex.  
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b) Measuring of zeta potential of the particles using Laser Doppler Electrophoresis: 

for all systems including native gelatin, cationic gelatin, cationic gelatin-Pluronic-

DNA complex, as well as the effect of pH on both native and cationic gelatin.  

c) Imaging of nanoparticles using scanning electron microscopy (SEM), and 

transmission electron microscopy (TEM) were conducted for both native and 

cationic gelatin.  

4. Characterization the interaction (s) of cationic gelatin-Pluronic-DNA on the model 

membrane using Langmuir monolayer study at the air-water interface: the cationic 

gelatin-Pluronic-DNA system was investigated at air-water interface in combination 

with model biological membranes DPPC-CHOL and POPC-CHOL.   

5. In vitro transfection efficiency of cationic gelatin-Pluronic nanoparticles containing 

plasmid DNA: EGFP plasmid DNA was tested in cell line COS-7 to evaluate the 

transfection efficiency of cationic gelatin, and the cationic gelatin/Pluronic systems.  

6. Cell viability studies of transfected cells to assess the toxicity levels of this complex: 

the cell toxicity of the transfection system was also tested in COS-7, correspondingly 

with the transfection experiment, by adding the propidium iodide (PI).  
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 Characterization of Gelatin Nanoparticles and Cationic Gelatin 

Nanoparticles  

3.1 Introduction 

Nanoparticles for drug and gene delivery applications should not produce toxic by-products 

when biodegradability occurs inside the biological system. As a result, a potential and safe 

matrix molecule should be achieved for these nanoparticles. Several methods described in the 

literature in the last few decades used synthetic or natural polymers to prepare biodegradable 

nanoparticles for gene delivery. Examples of natural polymers include proteins such as 

albumin, gelatin, and collagen, polysaccharides such as chitosan and cyclodextrin, among 

many others; while synthetic polymers include cationic dendrimers, polyesters, 

polymethacrylates and polyethyleneimine (Nezhadi, Choong et al. 2009) (recall Chapter 1). 

Among these polymers, nanoparticles of proteinaceous origin such as albumin, collagen, and 

gelatin generate more interest. Gelatin, as mentioned in Chapter 1, is a natural polymer 

extracted from collagen. Gelatin has several accessible moieties that enable multiple 

modification opportunities for coupling such as targeting-ligands, crosslinkers, and shielding 

substances. Preparing gelatin as nanoparticles for gene delivery is important for several 

reasons. Firstly, nanoparticles are taken easily and efficiently by cells more so than large 

particles (Panyam and Labhasetwar 2003). Secondly, nanoparticles have the ability to escape 

rapidly from the endosome and therefore, are protected from degradation (Labhasetwar 

2005). In addition, nanoparticles have been demonstrated to improve the transfection 

efficiency of plasmid DNA into the nucleus (Prabha, Arya et al. 2016). Several methods have 

been employed to prepare gelatin nanoparticles since the 1970s. Two major methods are:   
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1. Preparing gelatin nanoparticles using desolvation of the protein by adding non-

solvent, salting-out, or focus on isoelectric point (IEP) by adjusting pH level. 

Examples of this kind of preparations include two-step desolvation, one-step-

desolvation, and nanoprecipitation.  

2. Preparing gelatin nanoparticles using a biphasic system. This method depends on 

emulsifying an aqueous solution of gelatin within an oily phase such as 

microemulsion and solvent evaporation techniques.    

Most of the preparation methods using emulsion are not appropriate for gene delivery due to 

some specific disadvantages. Firstly, the yield obtained from these methods is low comparing 

to other methods. Secondly, the broad size distribution of nanoparticles may result in 

aggregation of biological systems. Thirdly, the purification of nanoparticles using these 

methods are very complicated but are critically important in order to remove some organic 

phase(s) as well as to maintain the emulsification state of the nanoparticles. The last 

drawback of these methods includes the energetic methods that are necessary to generate 

nanoparticles, such as high-speed or high-pressure homogenization, or the use of ultrasound 

to disperse particles in order to obtain appropriate particle sizes (Zwiorek 2006). 

In this project, the two-step desolvation method was selected to prepare gelatin nanoparticles. 

Small particles size (~ 150 nm) with a low polydispersity index (0.06) can be achieved using 

this method. Also, a higher yield can be obtained compared to emulsification techniques. In 

addition, the high stability of nanoparticles (up to 3 months) was obtained using this method 

(Coester, Kreuter et al. 2000).  Finally, the method itself is simple and straightforward 
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(Coester, Kreuter et al. 2000). One-step desolvation and nanoprecipitation methods were also 

attempted in this project, and then compared to the two-step desolvation.  

In this chapter, we also describe the characterization of modified gelatin. Gelatin 

nanoparticles were modified by adding a cationic agent (cholamine) in order to increase the 

positive charge of gelatin. As mentioned earlier in Chapter 1, a positive charge is necessary 

to interact with the negative charge of DNA and cell membrane.   

3.2 Materials  

Gelatin type A (Protein content 81% Bloom ~300), (2-aminoethyl) trimethylammonium 

chloride hydrochloride (cholaminchloride hydrochloride), glutaraldehyde grade I 25%, 1-

ethyl-(3dimethylaminopropyl) carbodiimide (EDC), Sucrose (HPLC) 99.5%, and HCL were 

purchased from Sigma-Aldrich (Oakville, Ontario, Canada).  E.Z.N.A. Plasmid Maxi-Prep 

Kit was purchased from OMEGA Bio-Tek, (Georgia, USA). Acetone (99%) and Ethanol 

(99%) were purchased from Chem store, University of Waterloo.    

3.3 Methods 

3.3.1 Preparation of gelatin nanoparticles  

3.3.1.1 Two-step desolvation  

Gelatin nanoparticles were prepared using a two-step desolvation method previously 

described by Coester et al (Coester, Kreuter et al. 2000). In brief, 300 mg of gelatin type A 

was dissolved in 10 mL of distilled water under constant heating (45-50 ºC). 10 mL of 

acetone was added as a desolvating agent to precipitate the high molecular weight (HMW) 

fraction of gelatin. After the supernatant was discarded, the HMW gelatin was re-dissolved in 
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10 mL of distilled water and stirred at 600 rpm under constant heating. Subsequently, the pH 

was adjusted to 2.5 using HCL. After that, 25 mL of acetone was added dropwise to form 

nanoparticles. 48 µL glutaraldehyde (GA) 25% (v/v) was added as a cross-linking agent and 

stirred at 600 rpm at room temperature overnight. The next day, the nanoparticles were 

purified using dialysis membrane before freeze drying. Various concentrations of gelatin 

were optimized to determine the best nanoparticles in terms of the size and the homogeneity.  

3.3.1.2 One-step desolvation 

One-step desolvation was prepared as a modification to the standard two-step desolvation 

method (Ahlers, Coester et al. 2007). In this approach, the first step described above, which 

precipitates the high molecular weight, was omitted, while the remaining steps were carried 

exactly out as in the two-step method. This method was shown to be a robust in the 

preparation of gelatin nanoparticles (Geh, Hubert et al. 2016).   

3.3.1.3 Nanoprecipitation 

50 mg of gelatin type A was dissolved in 10 mL of distilled water under constant heating 

(40-45 ºC). This was then added drop-wise to 100 mL of ethanol containing 1600 mg 

Pluronic F127, used as an emulsifying agent to give 1:32 ratio of gelatin to Pluronic. 

Subsequently, 8 µL glutaraldehyde (GA) 25% (v/v) was added as a cross-linking agent and 

stirred at 600 rpm at room temperature overnight. The next day, the nanoparticles were 

purified using dialysis membrane before freeze drying.   



 

 59 

3.3.2 Preparation of cationic gelatin 

After preparing GNPs using the two-step desolvation method (section 3.3.1), the 

nanoparticles were cationized by introducing amino residues (cholamine) to the carboxyl 

group of gelatin nanoparticles, as follows: The gelatin nanoparticles were dissolved in highly 

purified water, and then the pH was then adjusted between pH 4.5 and pH 5. 50 mg of 

cholamine was added and incubated for five minutes. Next, the same amount of EDC (50 

mg) was added to the solution and the reaction was left for 1 hour in the dark. Cationic 

gelatin nanoparticles were then purified using centrifugation or dialysis for two days before 

lyophilization. 

 

Figure 3.3-1: Schematic illustration of the preparation of cationic gelatin nanoparticles using 

one-step desolvation method. 
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3.3.3 Particle size measurement 

The particle size was measured using the Dynamic Light Scattering method (DLS) at 25 °C. 

This technique relies on the effect of time-dependent light scattering of the random motion of 

suspended particles (Brownian motion) that depends on particle size. The particles in a liquid 

move randomly, and their speed of movement was used to determine the size of the particle 

(Malvern 2013). The distribution of particle size in water was obtained from the light 

scattered by particles illuminated at a scattering angle of θ = 173°. Particle size 

measurements of gelatin nanoparticles, as well as Pluronic-based transfection mixtures 

(Chapter 5) were done using a disposable Solvent Resistant Micro Cuvette (ZEN0040) in a 

Malvern Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK) which is a part of 

the School of Pharmacy’s core facility, while particle size distributions were calculated using 

the Malvern DTS software. The size measurements were carried out in triplicate, with the 

average size is reported as ± the standard deviation. The Malvern Zetasizer reports both an 

average size for the particle population (z-average) as well as sizes corresponding to peak 

intensity for the case of multiple particle populations. In all cases, the z-average size was 

used throughout this thesis. The polydispersity index (PDI) was measured along with the 

particle size measurements with an average PDI expressed as ± standard deviation. PDI 

measures the broadness of the size distribution, which was calculated from the cumulants 

analysis. PDI less than 0.3 is desired in pharmaceutical nanoparticles according to Malvern 

standard for Zetasizer instrument.  
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3.3.4 Zeta potential measurement 

Zeta potential (ζ) is the electrostatic potential that exists at the boundary between two layers 

of ions, namely, the compact and the diffuse layers, which surround a particle in solution. 

This is an important property for understanding colloidal and interfacial behaviors. Zeta 

potential was measured using a combination of the measurement techniques, namely, 

Electrophoresis and Laser Doppler Velocimetry (sometimes called Laser Doppler 

Electrophoresis - LDE). This method measures the speed at which a particle moves in a 

liquid when an electrical field is applied (i.e., its velocity). If all particles of the suspension 

mixture have a large positive or negative charge, they will repel each other, and there will be 

no tendency to fluctuate. On the other hand, low zeta potential values of the particles mean 

there is no force to prevent the particles from coming together, therefore resulting in 

fluctuation. Practically, particles with zeta potential more positive than +30 mV or more 

negative than -30 mV are considered to be stable (Wissing, Kayser et al. 2004).  

Similar to particle size measurements, zeta potential measurements of the gelatin 

nanoparticles as well as Pluronic-based transfection mixtures (Chapter 5) were done using a 

disposable capillary cell (DTS1070) and the Malvern Zetasizer Nano ZS (Malvern 

Instruments, Worcestershire, UK); zeta potential distributions were calculated using the 

Malvern DTS software. Similar to particle size, zeta potentials were automatically measured 

three times per sample, and are reported as the mean ± standard deviation. Also, the zeta 

potential of both native and cationic gelatin was measured at different pH values from acidic 

to basic. A pH meter was used to adjust the pH values, and the Zetasizer was used to measure 

the charge.  
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3.3.5 Scanning electron microscopy (SEM)  

Scanning electron microscopy (SEM) was used to visualize the gelatin nanoparticles and 

cationic gelatin to investigate their size and morphology. SEM images were taken using a 

Zeiss MERLIN FESEM 1530 microscope (part of the WATLAB facility at the University of 

Waterloo) equipped with a field-emission source and an acceleration voltage up to 25 kV, as 

well as Energy Dispersive X-ray Spectroscopy or (EDS) detector for surface elemental 

analysis. For sample preparation, gelatin nanoparticle suspensions were diluted ten times 

with their dispersion medium, after which a drop of the diluted nanoparticle suspension was 

directly deposited on a polished aluminum sample holder. Samples were dried under vacuum. 

Samples were then coated in gold using EMITECH K450X sputter coater prior to 

microscopical analysis. 

3.3.6 Transmission electron microscopy (TEM)  

Transmission electron microscopy was used to visualize the cationic gelatin in order to 

investigate the details of crystal structure and the morphology of the modified nanoparticles. 

TEM images were taken on Philips CM10 located in the Department of Biology, University 

of Waterloo. For the sample preparation, the gelatin nanoparticle suspensions were diluted 

twenty times with their dispersion medium, after which a drop was directly deposited on a 

400-mesh copper grid, and allowed to dry inside a desiccator for 24 hours prior to 

measurement.  
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3.3.7 Fourier transform infrared spectroscopy (FT-IR)  

Fourier Transform Infrared Spectroscopy (FT-IR) spectra were recorded on a Bruker 

TENSOR 27 FTIR spectrometer (Bruker, Germany). The attenuated total reflection (ATR) 

technique was used in this experiment. Samples of 3–5 mg of both native and cationic gelatin 

were ground and pressed into a Pike Miracle single-bounce attenuated total reflectance cell 

equipped with a Zn-Se single crystal. The scanning range was 500 - 4000 wavenumber (cm-1) 

with a scan speed of 10 kHz. 

3.3.8 Extraction and purification of plasmid DNA (pTGIFN-GFP) 

The plasmid encoding for interferon (IFN) protein and enhanced green fluorescent protein 

(pEGFP) was amplified in K-12 strains of Escherichia coli (a gram negative, anaerobic, rod-

shaped bacterium) (provided from Dr. Roderick Slavcev`s lab at the School of Pharmacy, 

University of Waterloo) in the generation of the recombinant cell constructs, extracted using 

centrifugation protocol of the E.Z.N.A.® Endo-Free Plasmid DNA Maxi Kit (OMEGA Bio-

Tek, Georgia, USA).  Before the extraction process of plasmids, a single colony of bacterial 

strain JM109 [pTGIFN] of Escherichia coli was grown overnight (18 – 20 hours) in 5 mL of 

growth media Luria-Bertani (LB) broth + Kanamycin (kan) antibiotic in a temperature-

controlled bench-top shaker (New Brunswick Scientific Excella™ E24, Fisher Scientific, 

US) at 250 rpm and 37 °C with circulating air supply. A new batch of cells were grown 

overnight from that last day culture at 1:100 dilution in 500 mL of growth media (within a 2 

L Erlenmeyer flask), at the same temperature and rpm. After the overnight treatment, the 

final culture was removed from the shaker when the A600 was ≈ 1.5, at which point 

indicated the exponential bacterial growth of the mid logarithmic phase. The extraction was 
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then completed, followed by the E.Z.N.A.® Endo-Free Plasmid DNA Maxi Kit protocols. 

Two batches of 1.5 mL aliquot of the extracted plasmid in Milli Q water were prepared. The 

purity, yield, and integrity of the plasmid were measured and analyzed using UV 

spectrophotometry (NanoDrop 2000, Fisher Scientific, USA), and by gel electrophoresis 

(AGE) (Alpha-Imager HP, Alpha Innotech, Cell Biosciences, USA). The size of the pEGFP 

was 4.7 kb. The extracted plasmid stock was then immediately stored in a freezer at -20 Cº, 

as recommended in the protocol for further use.  

3.4 Results and Discussion 

3.4.1 Preparation of nanoparticles 

In order to understand our eventual observations of transfection utilizing the gelatin 

nanoparticles prepared in this work, it is important to understand how the parameters 

described in section 3.3.1 for the preparation of gelatin nanoparticles that impact the resulting 

properties of the nanoparticles. Here, we will discuss the effects of choosing the desolvation 

(or nanoprecipitation) method, and the choice of desolvation agent, temperature, pH, and the 

choice of crosslinking agent.  

3.4.1.1 Desolvation (or nanoprecipitation) method 

3.4.1.1.1 Two-step desolvation method  

As mentioned in the introduction, preparing gelatin nanoparticles using two-step desolvation 

can achieve homogeneous and stable nanoparticles. The values of the resulting nanoparticles 

(with respect to particle size and homogeneity) were tested using DLS. Based on the 

Zetasizer standard, size distribution of nanoparticles achieves a PDI below 0.1 are considered 
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typical, and DLS gives a monomodal distribution within this range. Four concentrations of 

gelatin (mg/mL) in water were prepared, and each concentration was measured before and  

after adding glutaraldehyde (GA) in order to obtain the best size and PDI (Figure 3.4-1). The 

average mean size and PDI for each concentration are reported, which were calculated using  

Zetasizer software.   

        

From the examination of Figure 3.4-1, it is clear that a nanoparticle concentration of 30 

mg/mL gave rise to the “best” nanoparticles in terms of a having both a small average 

particle size (115±0.5 nm) and low PDI (0.06±0.02) after crosslinking. The results results are 

also consistent with a recently published paper using the same type and bloom of gelatin 

Figure 3.4-1: Size (bars) and PDI (dots) of gelatin nanoparticles and reported as mean. A) 

before adding GA; and B) after adding GA. Samples were measured in triplicate and the 

average reported - errors are equal to standard deviation. PDI represents polydispersity index. 

GA represents glutaraldehyde.  
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(type A, 300) (Geh, Hubert et al. 2016). A concentration of 30 mg/mL was used to prepare 

gelatin nanoparticles for all subsequent experiments in this thesis. 

3.4.1.1.2 One-step desolvation method 

In order to obtain an adequate particle size and PDI, the one-step desolvation method was 

also applied. One-step desolvation was prepared as described in section (3.3.1) and in Figure 

3.3-1 using the same weight 30 mg/mL, and following the same standard conditions used for 

the two-step desolvation method. The one-step desolvation method gave particles with an 

average size of 104±0.08 nm, with a PDI of 0.08±0.05. These results were acceptable 

compared to the two-step method, although aggregation was very high, particularly after 

purification. Farrugia & Groves suggested that an increase of HMW and a reduction of low 

molecular weight (LMW) is significant in order to produce homogeneous and stable 

nanoparticles (Farrugia and Groves 1999), as achieved above using the two-step desolvation 

method. Also, Coester et al. (Coester, Kreuter et al. 2000) stated that the reduction of LMW 

is necessary to prevent aggregation during crosslinking, as well as to prevent secondary 

aggregation and fluctuation during storage. Zwiorek tried different batches of gelatin and 

found that gelatin batches containing less than 20% (w/w) of < 65 kDa molecular weight 

peptide resulted in the successful preparation of homogeneous and stable nanoparticles using 

the one-step desolvation method. In contrast, the gelatin batches containing molecular 

weights > 104 kDa failed to achieve homogenous and stable nanoparticles by one-step 

desolvation. Based on this data, Zwiorek then concluded that it is not important to have 

HMW in order to prepare homogenous and stable nanoparticles (as stated previously by 
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Farrugia & Groves), but it is crucial to have a strong reduction of LMW components (< 65 

kDa) for the stability and homogeneity of nanoparticles (Zwiorek 2006, Zillies 2007).  

3.4.1.1.3 Nanoprecipitation method  

For the preparation of GNP using the nanoprecipitation method, ethanol was used as a non-

solvent agent, and Pluronic F127 was used as a surfactant. Gelatin nanoparticles tend to 

aggregate during the preparation processes, and as a result, the formulation was optimized to 

obtain stable and homogenous nanoparticles. A range of different concentrations of gelatin 

and Pluronic F127 were used, giving rise to final conditions of: 

1. The amount of gelatin should be 1:32 to the amount of surfactant 

2. The amount of water should be 1:10 to the amount of ethanol.  

An average size of ~ 300 nm and a PDI of 0.05±0.03 were obtained, and the solution was 

cloudy with no visible agglomeration.  

All nanoparticles were analyzed using SEM for both two-step and nanoprecipitation 

methods in order to visualize and investigate the morphology of these nanoparticles (Figure 

3.4.2). SEM revealed the particles to be smooth, spheres, and were smaller than DLS. This 

reduction in size was due to dehydration of the nanoparticles (required for SEM 

measurements under vacuum conditions). The same observations were also noted in the 

literature for different polymer-based nanoparticles (Finsy, De Jaeger et al. 1992, Bootz, 

Vogel et al. 2004).     

By examining the three methods of preparing gelatin nanoparticles, we concluded that the 

two-step desolvation method is the best choice for this project for several reasons.  
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First, two-step desolvation has a smaller size than nanoprecipitation. Also, since our project 

focuses on using Pluronic block copolymers with gelatin, it is not beneficial to use the 

nanoprecipitation method, since different Pluronics will be compared in our experiments. As 

a result, the study of the Pluronics effect will not be accurate. In addition, due to the 

aggregation that might result from using one-step desolvation and the pH range, which has a 

narrow range, the two-step method was selected.  

3.4.1.2 Desolvating agent 

Gelatin nanoparticles are prepared using desolvating agents such as acetone or ethanol. 

Gelatin can dissolve in water due to the formation of hydrogen bonds between the water 

molecules and the hydrophilic amino acids of the gelatin. Adding desolvating agents into 

gelatin solutions leads to a reduction in water molecules surrounding the gelatin chains; 

therefore, it results in breakage of the hydrogen bonds and a decrease in hydration. When the 

hydration becomes very low, the loosely packed gelatin chains precipitate and form 

Figure 3.4-2: Scanning-electron-microscopy (SEM) images of the gelatin nanoparticles A) 

Tow-step desolvation, B) Nanoprecipitation. The particle size was determined about 60-100 

nm. 

 

A B 
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nanoparticles (Arroyo-Maya, Rodiles-López et al. 2012). Both acetone and ethanol have been 

shown to be effective in the preparation of gelatin nanoparticles (Von Storp, Engel et al. 

2012); however, Azarmi et al. found that gelatin nanoparticles prepared using acetone as a 

desolvating agent are smaller and have lower PDI compared to those prepared using ethanol 

(Azarmi, Huang et al. 2006). In the nanoprecipitation method, ethanol as a non-solvent agent 

was found to creat smaller particles than acetone; however, the difference was not 

statistically significant (Khan 2014).  

3.4.1.3 Temperature  

The temperature of the first and second desolvation in the two-step desolvation method 

should be between 45 °C and 50 °C. It is well-known from the literature, that gelatin can be 

easily affected by the temperature due to the occurrence of denaturation or renaturation 

processes (Farrugia and Groves 1999). Preparing gelatin nanoparticles at room temperature is 

impossible because gelatin is renatured and forms a viscous gel at this temperature (Sahoo, 

Sahoo et al. 2015). Temperatures above 56 °C results in reversible denaturation of the higher 

molecular fractions due to the disruption of hydrogen bonds, which lead to particles 

clumping (Sahoo, Sahoo et al. 2015). Temperatures between 35 °C and 40 °C are considered 

the sol-gel transition temperature (Peyrelasse, Lamarque et al. 1996). This means that the 

range between 40 °C and 55 °C is the ideal temperature to prepare gelatin nanoparticles. In 

this project, different ranges of temperatures were tested, and we determined that temperature 

between 45 °C and 50 °C is ideal.  
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3.4.1.4 Effect of pH on gelatin nanoparticles 

Since gelatin is an amphoteric polymer, it has both positive and negative charge. The size of 

gelatin nanoparticles is affected by the pH of the medium, which ultimately determines the 

net charge and charge density of gelatin molecules (Sahoo, Sahoo et al. 2015). Type A 

gelatin has an IEP in the range of 6.9 to 9.0. Within this pH range, nanoparticle formation is 

not stable and formed agglomeration due to the electrostatic attraction of the positive charge 

of NH3
+. At pH ranges between pH 2.3 and pH 3.8, it was possible to produce homogenous 

and stable nanoparticles with PDI less than 0.1 because of the increase in the ionic strength 

of the electrostatic repulsion of NH3
+ (Zwiorek, Kloeckner et al. 2005, Sahoo, Sahoo et al. 

2015). Above pH 4.0, the nanoparticles tend to agglomerate and precipitate because they 

become closer to IEP of gelatin type A (Azarmi, Huang et al. 2006). In our project, we 

determined that pH at 2.5 was the optimal value to prepare stable and homogenous 

nanoparticles.  

3.4.1.5 Cross-linking agent 

The addition of crosslinking to gelatin nanoparticles is important to provide stability, to form 

a spherical shape, and to enhance circulation times in vivo (compared to uncrossed-linked 

particles (Kommareddy, Shenoy et al. 2005, Elzoghby, Samy et al. 2012)). Gelatin 

nanoparticles tend to aggregate and become unstable when they are prepared without 

crosslinking (Sahoo, Sahoo et al. 2015). There are several crosslinking agents that were used 

in the preparation of gelatin nanoparticles, such as glutaraldehyde (Leo, Vandelli et al. 1997, 

Ofokansi, Winter et al. 2010), genipine (Song, Zhang et al. 2009), and glyceraldehyde 

(Vandelli, Rivasi et al. 2001). Glutaraldehyde (GA) is used as a non-toxic and effective 
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cross-linker in the preparation of gelatin nanoparticles as it does not induce aggregation and 

has been shown to maintain particles stable in solution for more than ten months at 

temperature between 2 °C and 10 °C (Leo, Vandelli et al. 1997, Azarmi, Huang et al. 2006). 

Lower amounts of GA are not sufficient to cross-link all particles; however higher amounts 

are not suitable as this could give rise to a significant size reduction due to the crosslinking of 

the free amino groups on the surface of gelatin nanoparticles (Azarmi, Huang et al. 2006).  

3.4.2 Stability of nanoparticles after freeze-drying 

Most nanoparticles tend to aggregate after freeze-drying and become difficult to redisperse 

due to the lyophilization process, which changes the properties and robustness of the 

nanoparticles (Fonte, Soares et al. 2014). In order to prevent the aggregation of gelatin 

nanoparticles, nanoparticles are required to remain spatially separated in the dried cake 

(Allison, dC Molina et al. 2000). During storage, moisture also plays a major role in the 

stability of gelatin nanoparticles. As a result, different excipients (cryoprotectants) were used 

to keep nanoparticles stable for an extended period of time. Examples of freeze-drying 

excipients used include trehalose, sucrose, and mannitol. Mannitol and mannitol-sucrose 

formulations have previously been confirmed to have the greatest stability for gelatin 

nanoparticles, with the nanoparticles staying stable for up to ten weeks (Zillies, Zwiorek et 

al. 2008). In our experiments, sucrose was chosen to be added to the gelatin nanoparticles as 

a cryoprotectant (Shilpi, Kushwah et al. 2017). Sucrose was dissolved in 2 mL of highly 

purified water (HPW) and added directly to gelatin nanoparticles before freeze-drying. Four 

ratios of sucrose to gelatin were used before freeze-drying (Table 3.4-1). It is apparent from 

the table that a sucrose concentration of 2.5% resulted in freeze-dried particles having the 
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smallest size of 116 nm, which is similar to the original size of the gelatin nanoparticles. 

Nanoparticles remained stable in our lab for approximately three months. This stability was 

confirmed by dissolving the gelatin in water and measuring the size and PDI after three 

months. The particles showed stability with no noticeable aggregation as they demonstrated a 

single peak in DLS data with no significant change in diameter.   

Table 3.4-1: Optimization of the amount of sucrose added to gelatin nanoparticles before 

freeze-drying. Samples were measured in triplicate, errors are equal to standard deviation. 

PDI represents polydispersity index. 

Size before 

sucrose (nm) 

PDI Concentration 

(w/w%) 
Size after 

sucrose (nm) 

PDI 

  1% 127±0.5 0.17±0.01 

115±0.5 0.06±0.02 2.5% 116±0.3 0.13±0.02 

  3.5% 119±0.1 0.13±0.008 

  5% 129±2 0.13±0.01 

 

3.4.3 Cationic gelatin  

As mentioned previously in the introduction, a positive charge is important for gene delivery 

in order to interact with the negative charge of DNA and the cell membrane. Gelatin 

nanoparticles are cationized by introducing a quaternary amino group onto the surface of the 

nanoparticles, as previously described in section (3.3.2). Although there are several amino 

agents that were used to cationoize gelatin, cholamine chloride was chosen in this project 

based on the previous study conducted by Zwiorek et al., (Zwiorek, Kloeckner et al. 2005). 

They tried different amino agents and discovered that cholamine was the best choice based 

on the particle size, PDI, and zeta potential. During cationization, cholamine can interact 
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with possible functional groups as shown in Figure 3.4-3. The first interaction is with 

residual aldehyde group derived from mono-functionally bound cross linking glutaraldehyde. 

The second interaction occurs between the amino groups of cholamine and the activated 

carboxyl groups of nanoparticles. Unlike other cationic agents, cholamine results in pH-

independent positive charges through the quaternary ammonium groups, which remain 

positive at all pH conditions as will be shown in pH data later in this chapter.  

3.4.4 Size and zeta potential of cationic gelatin  

The size of gelatin nanoparticles remains relatively homogenous and stable after 

modification. It is clear from Table 3.4-2 that the size and PDI of the gelatin nanoparticles 

increased after cationization from 115 nm to 173 nm, and from 0.06 to 0.2, respectively, and 

that the zeta potential increased from 11 mV to 32 mV. This increase in size may be the 

result of interparticulate covalent cross-linking (induced by the presence of EDC) between an 

activated carboxylic acid group on one particle, and a primary amino group on an adjacent 

particle. It could also result from a simply increase in the molecular weight of gelatin due to 

the addition of the cholamine groups. 

While the PDI increase is indicative of a decrease in the homogeneity of the cationic gelatin 

nanoparticles (i.e., a broader distribution of particle sizes), a PDI of 0.2 is still very consistent 

with examples from other non-viral vector systems (both liposomal or polymeric in nature).  
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Table 3.4-2: Particle size and zeta potential of native and cationized gelatin. Samples were 

measured in triplicate, errors are equal to standard deviation. PDI represents polydispersity 

index. 

Gelatin Type A Particle Size (nm) PDI ζ-Potential (mV) 

Native gelatin 115±0.3       0.06±0.02 11±0.4  

Cationic gelatin using 

cholamine as a cationic 

agent 

173±0.5  0.2±0.008 32±0.2 
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Figure 3.4-3: Schematic illustration of surface cationization of gelatin nanoparticles using 

cholamine. Reproduced from (Zwiorek 2006) 

 

EDC 

Cholamine 
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As for native gelatin nanoparticles, the cationic gelatin particles were also visualized using  

SEM. Figure 3.4-4 reveals that the cationic gelatin nanoparticles is very similar in size and 

morphology to those obtained with native gelatin. They are spherical in shape and they are 

attached to each other. The crystalline structure and the size were also investigated and 

analyzed using TEM through GMS3 software. Similar to what is observed from SEM, the 

cationic gelatin nanoparticles are approximately 95 nm in diameter and are crystalline with a 

plane separation of 30 Å (Figure 3.4-4). The decrease in size in TEM images is attributed to 

the method of preparation. In TEM, the sample is diluted more than in SEM. Also, the grid in 

TEM is much thinner than the SEM grid due the requirement to view the particles in high 

resolution. In addition, the drop of particles diffuses through the holes placed in the 

perforated grid. Then, the small particles are able to cross the streamline of the grid and stay 

on the carbon film. These results are in a bias to small particles (Baalousha, Ju‐Nam et al. 

2012, Tuoriniemi, Johnsson et al. 2014). Therefore, the results of TEM are determined to be 

unreliable because of the relic of sample preparation (Tuoriniemi, Johnsson et al. 2014). 
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As we mentioned previously, the addition of cholamine induced a pH-independent positive 

charge using the quaternary amino groups, which remained positive at all pH conditions. 

This is obvious from the Figure 3.4-5; where we tested both native and cationic gelatin at 

different pH conditions. It is clear from the figure that native gelatin has IEP ~ 9, while the 

cationic gelatin remained positively charged over the measured pH range. This means that 

the pH of the physiological environment should not affect the delivery system. 

Figure 3.4-4: SEM (top) and TEM (bottom) images of cationic gelatin nanoparticles 

A) at magnification 19000X, B) at magnification 92000X 

~ 95 nm 

A B 
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3.4.5 FT-IR 

In order to confirm the modification of gelatin, FT-IR was carried out for both native and 

cationic gelatin. The infrared spectrum of both native and cationic gelatin is shown in detail 

in Figure 3.4-6, with important peak positions listed in Table 3.4-3. Both native and cationic 

gelatin exhibit an amide I peak (C=O stretch) at 1655 cm-1 and 1654 cm-1, respectively, but 

the intensity is stronger in cationic gelatin. An amide A peak (N-H stretching vibrations) at 

3313 cm-1 was observed for both types of native and cationic gelatin which, combined with 

the amide I peak, is characteristic for gelatin. Cationic gelatin also has an amide II peak (N-H 

Figure 3.4-5: Zeta potential values at different pH conditions for both native and cationic 

gelatin. Samples were measured in triplicate. 
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bend and C-H stretch) at 1545 cm-1, and an amide III peak (C-N stretch plus N-H in phase 

bending) at 1247 cm-1 due to the presence of cholamine. The FTIR spectrum of cationic 

gelatin also shows an additional peak at 2991 cm-1, which might be associated with the C–H 

stretching from the cholamine groups (Jalaja, Naskar et al. 2015). Finally, a small peak at 1450 

cm-1 was also observed for the cationic gelatin, which might be attributed to aldimine 

absorption between the residual groups of glutaraldehyde and the amino groups of cholamine 

(Akin and Hasirci 1995). Glutaraldehyde has an aldehyde group (-CHO) that reacts with the 

free amino group to establish an aldimine linkage (CH = N) (Bigi, Cojazzi et al. 2001).  
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Figure 3.4-6: ATR-FTIR spectra of native and cationic gelatin 

 

Table 3.4-3: IR absorption frequencies of amides groups 

Bond Functional group Wavenumber (cm-1) 

N-H- (Stretching) Amides A 3100 - 3500 

C=O (Stretching) Amides I 1640-1690 

N-H- (Bending) Amides II 1550-1640 

C-N stretch plus N-H in 

phase bending 

Amides III 1247 
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3.4.6 Optimization of cationic gelatin and DNA  

Since our project focuses on gene delivery, plasmid DNA is used with cationic gelatin to 

form polyplexes between the negative charge of DNA and the positive charge of cationic 

gelatin. Cationic gelatin was dissolved in water and simply mixed with the DNA using w/w 

ratios listed in Table 3.4-4. It is clear from Table 3.4-4 below that particle size decreases 

upon increasing the amount of cationic gelatin. This decrease in size due to the increase of 

positive charge provided by cationic gelatin, which interacts electrostatically with the 

negative charge of DNA. As increasing amounts of gelatin is added, the DNA is more 

completely neutralized, resulting in a greater degree of compaction and smaller particle size. 

As expected, the zeta potential increases with an increase in the amount of cationic gelatin, 

and switches from negative to positive between w/w ratios of 10:1 and 15:1 CG:DNA). A 

ratio of 20:1 CG:DNA yielded particles that had the smallest diameter (163 nm with a 

polydispersity of 0.09) while still having a strong positive zeta potential (+21 mV). Particles 

containing less gelatin carried less positive charge, while particles containing more gelatin, 

increased in size. As such, a ratio of 20:1 CG:DNA was selected as the optimal formulation 

for the nanoparticles. While ideally a zeta potential more positive than 30 mV or more 

negative than -30 mV is desired, as they are considered stable (Wissing, Kayser et al. 2004), 

in the case of our system, it appears that cationic gelatin does not have a large enough total 

positive charge to continue to increase the zeta potential while avoiding aggregation. 
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Table 3.4-4: Particle size and zeta potential of different ratios of plasmid DNA and cationic 

gelatin (W/W ratios). Samples were measured in triplicate, errors are equal to standard 

deviation. PDI represents polydispersity index.  

Ratio (CG: DNA) Size (nm) Zeta (mV) PDI 

DNA alone  469±15 -50±2 0.5±0.03 

2.5: 1 193±5 -25±0.5 0.05±0.05 

5: 1 186±2 -18±0.2 0.2±0.02 

10: 1 182±2 -12±0.3 0.07±0.02 

15: 1 172±1 16±0.4 0.1±0.03 

20: 1 163±0.4 21±2 0.09±0.02 

50: 1 170±0.8 23±0.5 0.2±0.01 

3.5 Summary 

Gelatin nanoparticles were successfully prepared using a two-step desolvation method. In 

comparison to nanoprecipitation and one-step desolvation methods, the two-step desolvation 

provided the most homogeneous and stable nanoparticles. Parameters of pH equal to 2.5, 

acetone as the desolvating agent, temperature between 45 °C and 50 °C, and glutaraldehyde 

as the crosslinking agent were followed in order to obtain stable and homogenous 

nanoparticles. The removal of high molecular weight (HMW) fractions in the two-step 

desolvation method is considered to be an essential step in obtaining homogeneous and stable 

nanoparticles. Gelatin nanoparticles were then modified with cholamine as a cationic agent in 

order to increase the positive charge of nanoparticles, which is essential to interact with the 

negatively charged DNA and the cellular membrane. Nanoparticles became less 

homogeneous after they were modified with cationic agent (cholamine). The size increased 

from 116 nm to 173 nm, and the zeta potential also increased from 11 mV to 32 mV. 

Cationization of the nanoparticles was confirmed by conducting the FT-IR. Cationic gelation 
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nanoparticles showed a good tolerance and remained positive in all pH values, which is 

essential when they enter the biological system. Cationic gelatin was then mixed with DNA 

and it was determined that a ratio 20:1 CG:DNA gave particles having the smallest size (163 

nm) while still maintaining a moderately high, positive zeta potential of 21 mV.  
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: Understanding the Interaction of Gelatin/Pluronic/DNA System with 

Model Membranes: A Langmuir Monolayer Study 

The main goal of this chapter is to describe the interaction of our complete gene delivery 

system (gelatin -Pluronic-DNA) with model membranes comprised of DPPC-CHOL and 

POPC-CHOL. Four Pluronics were used (L44, F87, P103, and F108), covering a range of 

molecular weights and hydrophobic-lipophilic balances. The interactions of the nanoparticles 

with the model membranes were characterized using Langmuir monolayers, and measured 

using Langmuir isotherms; monolayers were also imaged using Brewster’s Angle 

Microscopy (BAM) as a means of visualizing any lipid domain changes that may have 

occurred.  Understanding these interactions can provide important insight into the interaction 

of these types of nanoparticles with cellular membranes and might provide information that 

could be used in the optimization of transfection formulations and help in improving 

transfection efficiency in vitro. 

4.1 Introduction to Langmuir Monolayer Studies  

The Langmuir-Blodgett (LB) monolayer technique, along with Brewster’s Angle Microscopy 

(BAM), provides an understanding of both the interactions between polymers and DNA, as 

well as how they interact with the biological membrane at the air/water interface. A 

Langmuir monolayer can be used as a model interface to allow for the study of film 

chemistry and film structure with changes in film compression, changes in sub-phase 

composition, and other changes such as pH and temperature (Ulman 2013). This technique 
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explains the homogeneity of the monolayer and formation of domains, phase transitions and 

adsorption of  

 

 

 

 

 

 

 

 

 

 

materials from the aqueous phase. The LB trough is coupled with Brewster angle microscopy 

(BAM) to view the domains of the floating monolayers (Figure 4.1-1).                                                                                                                                    

In a typical LB monolayer, compressing the barriers provides an isotherm of surface pressure 

as a function of mean molecular area (𝜋 –A) of the compounds spread on the surface of the 

sub-phase (Figure 4.1-2). Surface pressure is the difference between the surface tension of 

pure sub-phase (γo) and the monolayer covered phase (γ). At 20˚C pure water possesses a 

surface pressure of approximately -72 mN/m. A schematic of a Langmuir isotherm is shown 

in Figure 4.1-2 where the surface pressure of the two-dimensional monolayer increases as the 

Figure 4.1-1: A schematic of the Langmuir trough used to determine Langmuir isotherms; a) 

frame, b) barriers, c) the trough, d) surface pressure sensor, e) Dipping mechanism (LB option), 

and f) Interface unit. Reproduced from (http://www.ksvnima.com) 
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molecules in the monolayer are forced closer together (i.e. smaller molecular areas) and the 

monolayer shows different phase transitions. The phases which may be observed in 

Langmuir monolayers include: gaseous (G); liquid expanded state (LE); a coexistence region 

of LE and liquid condensed (LC) states; liquid condensed (LC) state; and a solid/like (S) 

state. In the G-phase, surfactant molecules remain far apart; as a result, no interaction is 

observed, and the surface pressure remains at or near Zero. Increasing the surface pressure 

(by compressing the barriers) decreases the area per unit molecule, forcing the molecules to 

begin interacting with one another; this initial interaction is termed the liquid expanded (LE) 

phase. In this phase, molecular interactions similar to those that would be expected if the 

material comprising the monolayer were in a true liquid state; although in this case, the 

interactions would be weaker than those seen in the pure liquid. Additional compression of 

the monolayer results in a steeper rise in surface pressure at slightly smaller areas, which 

results in the liquid condensed (LC) phase, where the molecules in the monolayer are now 

are closely packed (as compared to the LE phase); however, there is still anticipated to be 

some level of molecular motion. Finally, the monolayer reaches the solid (S) phase, as does 

the compressibility of the molecules, and therefore further compression of the monolayer 

causes monolayer collapse. In this region, surface pressure is observed to increase linearly 

with decreasing molecular area, and the minimum cross-sectional area (A0) for the molecules 

in the monolayer can be obtained by extrapolating from this region. In practical experimental 

conditions, monolayers may not show all these phases due to the narrow ranges of 

temperature and surface pressure that may be available.   
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Figure 4.1-2: Theoretical π -A isotherm obtained by compressing an insoluble lipid 

monolayer formed at an air-water interface. Reproduced from (Eeman and Deleu 2010) 

 

4.2 Cell Membranes 

The typical cell membrane is a bilayer membrane consisting of phospholipid molecules with 

embedded sterols and proteins (Figure 4.2.1). The lipids that make up the membrane can be 

divided into: glycerol-based lipids (phospholipids), ceramide-based sphingolipids, and 

cholesterol. According to the nature of their hydrophilic head groups, phospholipids are also 

divided into phosphatidylcholine (PC), phosphatidylethanolamine (PE), and 

phosphatidylserine (PS), among many others (Peetla, Stine et al. 2009). PC, also called 
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lecithin, is the major component of the cell membrane and pulmonary surfactant. It is more 

commonly used in the exoplasmic and the outer leaflet of the cell membrane (Wirtz 2006). It 

also plays a role in membrane mediated cell signaling and phosphatidylcholine transfer 

protein (PCTP) activation of other enzymes (Kanno, Wu et al. 2007). PE, also called 

cephalin, is the second most abundant phospholipid after PC, and is present in all eukaryotic 

and prokaryotic cells. The major role of PE is to assist in membrane fusion and in 

disassembly of the contractile ring during cytokinesis in cell division (Emoto, Kobayashi et 

al. 1996). PS is also found in all living cells, but in less amounts than in PC and PE. PS plays 

an important role in cell cycling signaling, particularly in relation to the early stage of 

apoptosis (Vance and Tasseva 2013).  

 

Figure 4.2-1: Structure of the human cell membrane.  Reproduced from 

(http://ruleof6ix.fieldofscience.com/2013/01/hiv-finds-cellular-door-knob-siglec1.html) 
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To provide a simplistic model for a cellular membrane, mixtures of the above lipids can be 

used to prepare Langmuir monolayers. It is recognized that this is a highly simplified model 

and completely negates the effects of membrane proteins; however, interactions that serve to 

disrupt lipid packing can be identified in this approach. 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC), dioleoyl phosphatidylcholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-

glycero-3- phosphocholine (POPC), in combination with cholesterol, are the most common 

mixtures used for model membrane studies (see Figure 4.2-2 for structures) (Escribá, 

González‐Ros et al. 2008). It is well known that a healthy membrane has a larger amount of 

cholesterol and saturated phospholipids, while tumor cell membranes contain higher amounts 

of unsaturated lipids such as POPC (Klock and Pieprzyk 1979). As a result, a cancer cell 

membrane is more fluid than a normal membrane (Inbar, Goldman et al. 1977). In this 

project, a mixture of 80% POPC and 20% cholesterol was used as a model membrane to 

mimic the cancer cell membrane (Wnętrzak, Łątka et al. 2013). Based upon literature data, it 

has been shown that endosome membranes (early or late) contain cholesterol in the range of 

25% to 30% (Guha, Rajani et al. 2007). As such, a mixture of 75% DPPC and 25% 

cholesterol was used as a model membrane to mimic the endosomal membrane.  
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Figure 4.2-2: Chemical Structures of A) 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 

(DPPC), B) 1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine (POPC), C) Cholesterol 

 

4.3 Materials 

Cationic gelatin was prepared as described in Chapter 3. Chloroform and double-stranded 

salmon sperm DNA (used without further purification) were purchased from Sigma-Aldrich 

(Oakville, Ontario, Canada). Pluronic block copolymers L44, F87, P103, and F108 were a 

gift from BASF Corporation (Florham Park, NJ) (Table 4.3-1). 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC), 1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine (POPC), and 

cholesterol were purchased from Avanti Polar Lipids (Alabaster, USA).     
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Table 4.3-1: Physiochemical Characteristics of Pluronics Block Copolymers (Kabanov, Zhu 

et al. 2005) 

aThe average molecular weight provided by the manufacturer (BASF Co., Parsippany, NJ).                                            
bThe average numbers of EO and PO units were calculated using the average molecular weights.                                   
cHLB values of the copolymers the cloud points were determined by the manufacturer.                                                                
dCMC values were determined previously using Pyrene probe                                                                                                                                                                                                                                                                                                                                                                          

 

4.4 Methods 

4.4.1 Monolayer formation and surface pressure measurements  

CG was dissolved in Millipore-Q water to prepare a stock solution at a concentration of 1 

mg/mL. Salmon DNA was also dissolved in Millipore-Q water to prepare a stock solution of 

1 mg/6 mL. DPPC-CHOL was prepared at a ratio of 75%-25% (1.875 mM- 0.625 mM) while 

POPC-CHOL was prepared at a ratio of 80%-20% (2 mM-0.5 mM); both solutions were 

prepared so that the total lipid concentration was 2.5 mM. All Pluronics were dissolved in 

chloroform at a concentration equal to 1× their critical micelle concentration (CMC). 

Monolayers were prepared on a large (14.5 cm by 53 cm) Langmuir-Blodgett trough (KSV 

Instruments, Helsinki, Finland), using Milli-Q water as the subphase, as follows:   

Copolymer MWa Average no. of 

EO units 

(Npo)b 

Average no. of 

PO units 

(Npo)b 

HLBc CMC, Md 

L44 2200 20.00 22.67 16 3.6×10-3 

F87 7700 122.50 39.83 24 9.1×10-5 

P103 4950 33.75 59.74 9 6.1×10-6 

F108 14600 265.45 50.34 27 2.2×10-5 
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1. The trough was filled with Milli-Q water, to which DNA was added to obtain 0.2 

µg/mL as the final concentration (where required). 

2. 160 µL of cationic gelatin stock solution was then added into the subphase. A w/w 

ratio of 1:40 of DNA to CG was used in this study.  

3. A volume of 20 µL of Pluronic was next added to subphase (where required). A glass 

rod was used to mix CG with DNA or CG/DNA mixture with Pluronics prior to 

adding the monolayer as a final step.  

4. A volume of 20 µL of DPPC-CHOL or POPC-CHOL stock solution was placed onto 

the surface of the subphase using a micro-syringe (GASTIGHT®, Hamilton-Bonaduz, 

Schweiz, Switzerland). 

5. For experiments involving DNA, the monolayer was allowed to equilibrate for 30 

minutes. For experiments that did not involve DNA, the sub-phase was given 15 

minutes to equilibrate before adding monolayer. The monolayer was then allowed to 

equilibrate for another 30 minutes on the DNA and the subphase before the isotherms 

were collected. 

Surface pressure was monitored using the Wilhelmy plate method and the monolayers were 

compressed using barriers at a rate of 15 mm/min to obtain the surface pressure vs. molecular 

area. Isotherms and BAM images of the following samples with or without DNA were 

collected: CG and L44, CG and F87, CG and P103, CG and F108 with DPPC-CHOL and 

POPC-CHOL monolayers.   
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4.4.2 Imaging the monolayer                                                                                                                                                                                                                                                                        

Briefly, the Brewster angle microscope (BAM) (KSV Instruments, Helsinki, Finland) uses 

polarized light that shines incident to the surface of the water at the Brewster angle 

(approximately 53º). When a monolayer is applied onto the sub-phase, this changes the local 

refractive index (RI); as a result, a small amount of laser (He-Ne laser, with a power of 50 

mW, wave length of 658 nm) is reflected on the surface, and the monolayer image is then 

observed using a CCD camera, and analyzed using KSV NIMA Image software (Version 

1.1.2, KSV-NIMA, Finland).   

4.4.3 Analysis of the  - A isotherms 

A variety of parameters can be obtained from the isotherm. For example, limiting area or 

minimum cross-sectional area (A∞) is determined by regression of the linear region of the 

isotherm corresponding to the stiffest phase of the monolayer, prior to collapse. From the 

linear equation we can calculate the limiting area at which the surface pressure (i.e. y in the 

regression) is equal to zero. The monolayer is more closely packed when the value of 

limiting area is small (Chen, Zhang et al. 2008). Also, the collapse pressure (πC) can be 

determined from the isotherm, which corresponds to the maximum surface pressure on the y-

axis and before the collapse. The monolayer is stable when the surface pressure at collapse is 

high (Barnes and Gentle 2011). The molecular area at collapse (Ac), corresponds to the 

molecular area for the lipids in the monolayer, just at the point of collapse.  Both πC and AC 

are read directly from the isotherm.   
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4.4.4  Compressibility modulus 

Interfacial elasticity describes the changes in surface tension regarding the area of the surface 

associated with a liquid film, which is actually related to the compressibility of the 

monolayer (Vollhardt and Fainerman 2006). As a result, based on the following equation:  

Cs
-1 = −A(∂π/∂A)T, 

the compressibility modulus (Cs
-1) was determined, where, A is the molecular area at a 

given surface pressure, π. The molecular area at collapse (Ac) and collapse pressure 

(πc) were directly determined from the compression isotherms. Davis and Rideal 

(Rideal and Davies 1963) stated that the phases of the monolayer are determined by 

the compressibility modulus, as follows:  

• Gaseous phase(G) Cs
-1 < 12.5 mN/m 

• Liquid-expanded phase (LE) Cs
-1 = 12.5–50 mN/m,  

• Liquid-expanded liquid condensed (LE-LC) Cs
-1 = 50–100 mN/m,  

• Liquid-condensed (LC) Cs
-1 = 100–250 mN/m, 

• Solid (S) for Cs
-1 > 250 mN/m.  

The monolayer is less elastic when the Cs
-1 is high and vice versa. Since the surface 

pressure of the real biological membrane ranges between 30 mN/m and 35 mN/m 

(Seoane, Minones et al. 2000), we will focus on this surface pressure in this study. 

Strong or weak interactions were interpreted through the change that occurs to the 

parameters of model membranes, particularly limiting area and compressibility 

modulus, after the model membranes interact with the delivery system. A large change 
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in these parameters indicates strong interaction, while a slight change indicates weak 

interaction.       

4.5 Results and Discussion 

Since our monolayers were prepared using 75% DPPC or 80% POPC in addition to 

cholesterol, it is important to study the individual components of DPPC, POPC, and 

cholesterol to gain a better understanding of the behaviour of monolayers containing only 

these single components. Our group previously reported the analysis of isotherms for 

monolayers of pure DPPC, POPC, and cholesterol (Ahmed 2015). The results demonstrated 

that cholesterol formed a condensed monolayer in which the molecules were vertically 

arranged, or they slightly shifted towards the surface. These findings were in agreement with 

the results found in the literature (Seoane, Minones et al. 2000). DPPC shows a 

characteristics transition from LE to LC phase starting at surface pressure (5-7 mN/m) 

(Barnes and Gentle 2011), and the isotherm continues at LC until collapse while POPC 

shows a liquid-expanded phase with no noticeable transition until collapse.  

4.5.1 DPPC-CHOL and POPC-CHOL 

The isotherms for the DPPC-CHOL and POPC-CHOL systems are shown in Figure 4.5-1; 

parameters derived from the isotherms are listed in Table 4.5-1. Our results show that the 

DPPC-CHOL monolayer is more rigid than the POPC-CHOL monolayer. From the isotherm, 

the minimal cross sectional areas (A∞) were determined to be 41 Å2 and 63 Å2 for both 

DPPC-CHOL and POPC-CHOL respectively, which indicates that DPPC-CHOL is more 

closely packed than POPC-CHOL (Chen, Zhang et al. 2008).  
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Figure 4.5-1: Isotherms (A and B) and compressibility modulus plots (C and D) for DPPC-

CHOL (A, C) and POPC-CHOL (B, D) in the presence and absence of DNA. 
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Table 4.5-1: Monolayer properties derived from isotherm and compressibility modulus plots, 

for untreated DOPC-CHOL or POPC-CHOL monolayers, and for monolayers treated with 

DNA. 

 

Molecular area at collapse (Ac), collapse pressure (πc), limiting (or minimum cross-sectional) 

area (A∞), compressibility modulus (Cs
-1), determined from the value of Cs

-1 at surface 

pressure 30 and 35 mN/m, LE = liquid expanded, LC = liquid condensed. a Phase of the 

monolayer based upon the value of Cs
-1 as a surface pressure of 35 mN/m 

 

A compressibility modulus (Cs
-1) value of ~225 mN/m also suggests that DPPC-CHOL is in 

the liquid condensed (LC) phase (see section 4.4.4, above) while POPC-CHOL is in the 

liquid expanded phase (LE-LC) as indicated by the Cs
-1 75 mN/m. These results correspond 

with the previous data that demonstrated a similar rigidity for the DPPC-CHOL monolayer 

(Melik-Nubarov, Pomaz et al. 1999, Zhao and Feng 2006, Guzmán, Liggieri et al. 2013). 

Introducing cholesterol to DPPC or POPC substantially influences molecular packing within 

the monolayers, resulting in a very different molecular organization as compared to pure 

DPPC or POPC (Kim, Choi et al. 2013). The interaction of cholesterol with POPC is weaker 

and less attractive than with DPPC (Silvius 2003). The interpretation of this weak interaction 

is that the cholesterol’s higher affinity of DPPC over that for POPC depends on its alignment 

with the normal bilayer, with lower tilt angles promoted by cholesterol-cholesterol steric 

exclusion (De Joannis, Coppock et al. 2011). Also, the presence of double bonds in a cis 

conformation in POPC molecules results in induction “kink” or bend in the hydrocarbon 

System Ac 

(Å2) 

πc 

(mN/m) 

A∞ 

(Å2) 

Cs
-1(mN/m) Phasea  

30 mN/m 35 mN/m 

DPPC-CHOL 29 52 41 221 229 LC 

DPPC-CHOL 

+ DNA 

41 50 53 225 325 S 

POPC-CHOL 34 41 63 74 78 LE-LC 

POPC-CHOL 

+ DNA 

35 42 67 76 86 LE-LC 
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chains, rendering some of the POPC molecules less suited to packing among aligned 

cholesterols, as compared to DPPC (Rog, Murzyn et al. 2004, Wydro, Knapczyk et al. 2011, 

Jurak 2013). This results in a less condensed monolayer for the POPC-CHOL system.  

4.5.2 DPPC-CHOL and POPC-CHOL with DNA  

Isotherms obtained upon mixing DNA with the DPPC-CHOL or POPC-CHOL monolayer 

are also shown in Figure 4.5-1; the monolayer properties for the DNA/monolayer systems are 

again listed in Table 4.5-1. The addition of DNA had an impact on the DPPC-CHOL 

monolayer, where the cross-sectional area (A∞) increased from 41 Å2 to 53 Å2. In contrast, 

the addition of DNA to the POPC–CHOL monolayer resulted in a slight increase from 63 Å2 

to 67 Å2. The compressibility modulus for both monolayers remained essentially unchanged 

with the addition of DNA. 

It has been demonstrated in the literature that DNA can interact with the model membrane 

and has some effect on cellular processes (Michanek, Kristen et al. 2010). For example, DNA 

is able to either fluidize or condense the model membrane when it interacts with a positively 

charge lipid monolayer (Antipina, Schulze et al. 2007, Chen, Kang et al. 2012, Dabkowska, 

Barlow et al. 2012, Dabkowska, Barlow et al. 2014). In our results, DNA shows a 

condensation effect on DPPC-CHOL, which is then transforms to a fluidization effect as the 

surface pressure increases (Figure 4.5-1 C).                                                                                        

DNA can potentially interact with cellular membranes, or in our case with the model 

membranes, through different types of interactions. Firstly, as a negatively charged 

polyelectrolyte, DNA can interact through electrostatic interactions with cationic lipids such 

as DOTAP or DOTMA (Langecker, Arnaut et al. 2014). In the case of DPPC-CHOL or 
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POPC-CHOL (which are zwitterionic), this interaction is expected to be negligible 

(McLoughlin, Dias et al. 2005, Michanek, Yanez et al. 2012). Secondly, solvation effects 

(i.e. hydrophobic hydration and/or hydrophobic interaction) may play a role in modulating 

the interaction(s) between DNA and the lipid monolayer. However, as a charged 

polyelectrolyte, DNA is highly hydrophilic, and these interactions are also expected to be 

negligible. Finally, DNA-based nanostructure can be attached to the lipid membrane using 

DNA conjugates with lipid, such as cholesterol, or other hydrophobic molecules (Langecker, 

Arnaut et al. 2014). DNA-lipid conjugates can be used for gene transfection to induce vesicle 

fusion or to cross-link vesicle or even cells (Chan, van Lengerich et al. 2009, Beales, Nam et 

al. 2011).  Even with the addition of multiple cholesterol modification that can be added to 

DNA, the interaction with the lipid membrane is weak and irreversible (Pfeiffer and Höök 

2004). As a result, the interactions of DNA with the model membrane are not perceived to be 

realistic because there is more of an interaction occurring with the membrane rather than 

penetration (Cárdenas, Nylander et al. 2005, Castano, Delord et al. 2009, Ahmed 2015). 

These results confirmed that the DNA is not able to penetrate in the absence of the delivery 

system. 

Interesting BAM images were obtained upon the addition of DPPC-CHOL alone at low 

surface pressure (1-3 mN/m), where the monolayer was in the G-LE phase transition (Figure 

4.5-2). The resulting domains appears to have circular or ovoid shapes. Upon compressing 

the monolayers, these domains disappear, and a uniform grey background is shown until the 

monolayer collapsed. The domains of DPPC-CHOL were then disappeared after adding CG 

to the model membrane. The reason for this disappearance is probably because the CG gets 
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adsorbed into or it is penetrated into the monolayer, which explains the fluidity of the model 

membrane (Nasir and Besson 2012).  

The addition of DNA to DPPC-CHOL resulted in small circular domains at low surface 

pressure (1-5 mN/m), which were then changed to a grey background at a high surface 

pressure (Figure 4.5-2). These domains could be attributed to the interaction between DNA 

and DPPC-CHOL through either hydrophobic interaction or local polarization (Raudino and 

Mauzerall 1986, Michanek, Kristen et al. 2010). Upon increasing the surface pressure, the 

DNA could be excluded from the monolayer and could enter into the subphase, thereby 

resulting in featureless domains similar to DPPC-CHOL alone, at high surface pressure 

(Lopes-Costa, Gámez et al. 2011). Similar to POPC-CHOL alone, the addition of DNA to 

POPC-CHOL did not show any characteristic domain formation (Figure 4.5-2). In terms of 

POPC-CHOL, the addition of DNA resulted in only small white dots as opposed to larger 

domains. These small dots likely correspond to 2-dimensional aggregates and were also 

observed at low surface pressure. This further suggests only weak interactions between the 

POPC-CHOL monolayer and DNA, possibly due to the unsaturated oleyl tail in the POPC 

lipid. The presence of the double bond results in a POPC-CHOL more fluidized monolayer, 

and therefore, the impact of the addition of DNA becomes negligible.  



 

 101 

 

DNA+DPPC-CHOL 

B 

A 

D 

C 

DNA+POPC-CHOL DPPC-CHOL POPC-CHOL 

Figure 4.5-2: BAM Images of DPPC-CHOL (left) and POPC-CHOL (right) in the presence and absence of 

DNA at different surface pressure 

A) <1 mN/m, B) 5 mN/m, C) 30 mN/m, D) 50 mN/m for DPPC-CHOL and 40 mN/m for POPC-CHOL 
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4.5.3 Interaction of cationic gelatin with model membrane 

The addition of CG to the DPPC-CHOL membrane results in fluidization of the membrane, 

with the compressibility modulus decreasing from 221 mN/m to 182 mN/m at a surface 

pressure 30 mN/m (Figure 4.5-3 and Table 4.5-2). Upon mixing with CG, the A∞ for the 

DPPC-CHOL membrane increased from 41 Å2 up to 63 Å2, providing additional evidence for 

the fluidization of the membrane after adding CG. Recall, a small limiting area value 

corresponds to a highly packed monolayer formation (Castano, Delord et al. 2008).  

Table 4.5-2: Monolayer properties derived from isotherm and compressibility modulus plots, 

for untreated DOPC-CHOL or POPC-CHOL monolayers, and for monolayers treated with 

CG in the presence and absence of DNA 

a phase of the monolayer as determined from the value of CS
-1 at  = 35 mN.m 

The interaction of gelatin with DPPC-CHOL could arise from several potential sources 

including hydrophobic interactions, electrostatic interactions (either attractive or repulsive), 

and hydrogen bonding, among others (Fresta, Ricci et al. 2000). The presence of additional 

amino groups on the gelatin peptide backbone  from the cationization reaction will contribute 

to an increased electrostatic interaction, specifically a repulsive interaction between the 

positively charged quaternary ammonium choline head group of the phospholipids, and the 

positively charged cholamine added to gelatin (Pasenkiewicz-Gierula, Takaoka et al. 1999, 

System 

Ac (Å2) πc (mN/m) A∞ (Å2) Cs
-1(mN/m) 

 

Phasea 

30 mN/m 35 mN/m 

DPPC-CHOL 29 52 41 221 229 LC 

CG+DPPC-CHOL 29 50 63 182 195 LC 

CG+DNA+DPPC-CHOL 24 54 47 92 90 LE-LC 

POPC-CHOL 34 41 63 74 78 LE-LC 

CG+POPC-CHOL 36 42 56 84 87 LE-LC 

CG+DNA+POPC-CHOL 36 42 59 85 95 LE-LC 
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Fresta, Ricci et al. 2000, Fang, Chan et al. 2001). A similar effect on DPPC monolayers was 

obtained with chitosan (Fang, Chan et al. 2001) or the nonapeptide Leucinostatin A (Fresta, 

Ricci et al. 2000). The addition of DNA to the CG/DPPC-CHOL complex also induce the 

fluidization by decreasing the compressibility modulus from 182 mN/m to 92 mN/m, 

observing a transition from LC to LE-LC phase (Figure 4.5-3 and Table 4.5-2). The 

electrostatic interaction of DNA with CG might be the reason of this fluidization. H-bonding 

between cationic polymer and DNA induces the stabilization of polyplexes (Prevette, Lynch 

et al. 2008), resulted in more effective interaction with the model membrane. These 

interactions are important to allow the CG to condense the large size of DNA and also to 

induce the permeability of the cellular membrane. 

The POPC-CHOL membrane is less rigid than DPPC-CHOL, which appears to result in 

weaker interactions with CG or CG and DNA as compared to DPPC-CHOL. It is clear from 

Table 4.5-2 and Figure 4.5-3 that the addition of CG to POPC-CHOL condensed the 

monolayer by increasing the compressibility modulus from 74 mN/m to 84 mN/m and 

decreasing the limiting sectional area from 63 Å2 to 56 Å2. This reveals that the molecules 

are more closely packed and condensed. This condensation effect might be attributed to the 

hydrophobic interaction between CG and the unsaturated lipid POPC. Since the interaction 

between POPC and cholesterol is weaker than with the DPPC, it allows the CG to directly 

interact with POPC through the hydrophobic chains of POPC, which they bend from the 

cholesterol due to the presence of the double bond, resulting in more condensed molecules. 

The addition of DNA did not cause much change in the system with the POPC-CHOL  
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Figure 4.5-3: Isotherms (A, B) and compressibility modulus plots (C, D) of the monolayer 

alone, monolayer and CG, and monolayer, CG, and DNA. DPPC-CHOL (A, C) and POPC-

CHOL (B, D). 

 

Mean Molecular Area (Å
2
)

0 20 40 60 80 100 120 140

S
u
r
fa

c
e
 p

r
e
s
s
u
r
e
 (

m
N

/m
)

0

10

20

30

40

50

60

DPPC-CHOL

CG+DPPC-CHOL

CG+DNA+DPPC-CHOL

Surface Pressure (mN/m)

-10 0 10 20 30 40 50 60

C
s
-1

 (
m

N
/m

)

0

50

100

150

200

250

DPPC-CHOL

CG+DPPC-CHOL

CG+DNA+DPPC-CHOL

Mean Molecular Area (Å
2
 )

0 20 40 60 80 100 120 140 160 180 200 220

S
u
r
fa

c
e
 P

r
e
s
s
u
r
e
 (

m
N

/m
)

0

10

20

30

40

50

POPC-CHOL

CG+POPC-CHOL

CG+DNA+POPC-CHOL

Surface Pressure (mN/m)

0 10 20 30 40 50

C
s
-1

 (
m

N
/m

)

0

20

40

60

80

100

120

POPC-CHOL

CG+POPC-CHOL

CG+DNA+POPC-CHOL

A B 

C D 



 

 105 

monolayer. It is apparent that the compressibility modulus and limiting area remained almost 

the same for both CG/POPC-CHOL system in the presence or absence of DNA.  

BAM images of CG combined with either both DPPC-CHOL or POPC-CHOL show a grey 

background with no distinctive domains at all surface pressures. This means that CG has an 

impact on the monolayers, resulting in changing the shapes of domains for both DPPC-

CHOL and POPC-CHOL (Figure 4.5-4). This impact can be explained through the 

compressibility moduli and limiting areas (Table 4.5-2), which showed that CG has a 

fluidization and condensation effect on both DPPC-CHOL and POPC-CHOL respectively. 

Bead-like domains were observed in the DPPC-CHOL monolayer after the addition of DNA 

to CG at low surface pressure. These bead-like domains likely resulted from a reorganization 

of DPPC and CHOL in the lipid monolayer, possibly as means to reduce the solvation energy 

for the DNA:CG complexes, which due to charge neutralization, are expected to be quite 

hydrophobic. This reorganization is consistent with the fluidization of the monolayer 

observed from the isotherm, as described above. The addition of DNA to CG/POPC-CHOL 

complex did not result in any reorganization similar to what was observed with CG/POPC-

CHOL alone. This demonstrates weaker interaction of DNA with POPC-CHOL either in the 

presence or absence of CG. Upon further compression, a featureless homogeneous grey film 

with no domains was observed in the whole system in both DPPC-CHOL and POPC-CHOL. 

From the above, we conclude that CG has a fluidizing effect on DPPC-CHOL, but not on 

POPC-CHOL. Furthermore, DNA influences the interaction with the membrane through its 



 

 106 

strong interaction with CG, which enhances the stability of the delivery system, resulting in 

more fluidized effect, particularly with DPPC-CHOL. 

 

Figure 4.5-4: BAM Images of CG with DPPC-CHOL (left), and POPC-CHOL (right) in the 

presence and absence of DNA at different surface pressure.  A) <1 mN/m, B) 5 mN/m, C) 30 

mN/m, D) 50 mN/m for DPPC-CHOL and 40 mN/m POPC- CHOL. CG: cationic gelatin. 

 

4.5.4 DPPC-CHOL and POPC-CHOL with Pluronics, CG, and DNA 

Different Pluronics in combination with DPPC-CHOL monolayers have been studied by 

others, in an attempt to understand the effect of basic surface characteristics based on the 

number of EO and PO, as well as the molecular weight (Chang, Chang et al. 2008). A 

CG+DPPC-CHOL CG+DNA+DPPC-CHOL 
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previous study conducted by Change et al. (Chang, Chang et al. 2008) studied different 

Pluronics with varying EO and PO units. The results indicated that while the number of EO 

monomers of the Pluronic increased, the area per molecule also increased especially when 

the surface pressure increased with significant differences between Pluronics. The same 

study explained that the area per molecule was larger when the number of PO monomers of 

Pluronic was also large at fixed EO monomers. Lastly, the study compared Pluronics with 

different molecular weights (MW), at a constant weight percentage of PEO chains. The 

authors found that there was a linear relationship between MW and the area per molecules. A 

larger molecular weight obtained higher area per molecules (Chang, Chang et al. 2008).  

Pluronics are amphiphilic structures that contain both hydrophilic (PEO) and 

hydrophobic (PPO) blocks. It is believed that the interaction of Pluronics with DPPC is 

influenced by PEO chains. When the compression begins, most of the PEO enters the 

subphase while the PPO remains on the interface (Chang, Chang et al. 2008). This is due to 

the "squeezed-out" phenomenon (Weingarten, Magalhaes et al. 1991, Maskarinec, Hannig et 

al. 2002, Wu, Majewski et al. 2004, Chang, Lin et al. 2005), which was noted earlier by 

Weingarten et al. in 1991(Weingarten, Magalhaes et al. 1991). The authors revealed that 

when Pluronic F68 mixed with the model membrane (DPPC), the Pluronic squeezed out of 

the lipid monolayer at a high surface pressure (≥ 35 mN/m) (Maskarinec and Lee 2003).  

Cholesterol is known to change the behaviour of the membrane by reducing passive 

permeability, increasing the mechanical strength, and manipulating the function of the 

membrane enzymes (Yeagle 1985, Ohvo-Rekilä, Ramstedt et al. 2002). The addition of 

cholesterol to DPPC monolayers changed the interaction behaviour of Pluronics with the 
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membrane (Chang, Chang et al. 2008). The addition of cholesterol to DPPC did not affect the 

penetration kinetics for the copolymers. Although PPO may have some hydrophobic 

interaction with cholesterol, this interaction was not strong enough to affect the penetration 

(Chang, Chang et al. 2008).  

At low surface pressure, when the monolayer is not packed, the interaction between 

cholesterol and DPPC is expected to be weak. Therefore, the penetration of Pluronics into the 

monolayer is enhanced through hydrogen bonding between cholesterol and the PEO moieties 

of the Pluronics (Mpofu, Addai-Mensah et al. 2003, Anselmo, Sassonia et al. 2006) . This is 

obvious from our results, where the addition of Pluronic results in fluidization of the 

monolayer at low surface pressure, seen from the decrease in the compressibility modulus of 

DPPC-CHOL from 221 mN/m to less than 200 Nm/m for all Pluronics and increasing the 

limiting cross-sectional area from 41 Å2 to ~ 54 Å2 (Table 4.5-3), which indicates another 

parameter of fluidization. Conversely at high surface pressure, when the monolayer is closely 

packed and the interaction between cholesterol and DPPC is very strong, the penetration of 

Pluronics is inhibited. In pure cholesterol monolayers, the hydrogen bond that exists between 

3β- hydroxyl group of cholesterol and ether oxygens (Lewis base) of PEO chains result in 

deep penetration of Pluronics especially those with long PEO segments (Chang, Chang et al. 

2008). 
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Table 4.5-3: Monolayer properties derived from isotherm and compressibility modulus plots, 

for untreated DOPC-CHOL or POPC-CHOL monolayers, and for monolayers treated with 

CG and Pluronics in the presence and absence of DNA. 

a phase of the monolayer determined from the value of CS-1 at  = 35 mN/m.  

 

In our results, hydrophilic Pluronics F87 and F108 (which have PEO blocks of 122 and 156 

EO groups, respectively), resulted in a compressibility modulus at 30 mN/m equal to179 and 

174 mN/m and limiting cross-sectional areas 32 Å2 and 50 Å2 respectively. On the other 

hand, hydrophobic Pluronics L44 and P103 (with PEO blocks of 20 and 33 EO groups, 

respectively) resulted in a compressibility modulus of 198 and 195 mN/m and a limiting 

System Ac 

(Å2) 

πc 

(mN/m) 

A∞ 

(Å2) 

Cs
-1(mN/m) Phasea 

30 mN/m 35 mN/m 

DPPC-CHOL Monolayer 

DPPC-CHOL 29 52 41 221 229 LC 

L44+DPPC-CHOL 36 52 51 198 264 S 

L44+CG+DPPC-CHOL 34 51 65 156 198 LC 

L44+CG+DNA+DPPC-CHOL 33 51 55 163 273 S 

F87+DPPC-CHOL 20 55 32 179 263 S 

F87+CG+DPPC-CHOL 20 54 43 116 109 LC 

F87+CG+DNA+DPPC-CHOL 22 53 37 149 227 LC 

P103+DPPC-CHOL 39 51 54 195 221 LC 

P103+CG+DPPC-CHOL 34 50 69 135 117 LC 

P103+CG+DNA+DPPC-CHOL 29 53 62 159 192 LC 

F108+DPPC-CHOL 30 52 50 174 250 S 

F108+CG+DPPC-CHOL 40 51 66 110 104 LC 

F108+CG+DNA+DPPC-CHOL 33 51 63 160 117 LC 

POPC-CHOL Monolayer 

POPC-CHOL 34 41 63 74 78 LE-LC 

L44+POPC-CHOL 27 45 57 83 76 LE-LC 

L44+CG+POPC-CHOL 26 45 60 78 84 LE-LC 

L44+CG+DNA+POPC-CHOL 27 44 59 81 87 LE-LC 

F87+POPC-CHOL 29 46 50 102 107 LC 

F87+CG+POPC-CHOL 30 45 63 82 81 LE-LC 

F87+CG+DNA+POPC-CHOL 31 45 55 94 94 LE-LC 

P103+POPC-CHOL 30 42 62 76 84 LE-LC 

P103+CG+POPC-CHOL 27 42 72 68 50 LE-LC 

P103+CG+DNA+POPC-CHOL 25 42 66 74 78 LE-LC 

F108+POPC-CHOL 26 41 64 76 77 LE-LC 

F108+CG+POPC-CHOL 27 40 76 61 50 LE-LC 

F108+CG+DNA+POPC-CHOL 30 42 65 76 78 LE-LC 
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cross-sectional area 51 Å2 and 54 Å2 respectively. It is noticed that the limiting cross-

sectional areas are very similar for all Pluronics except for Pluronic F87 (likely due to its 

greater solubility in water). Due to the squeeze out phenomenon, at high surface pressure, 

there are very few PEO units that remain associated with the monolayer and thus, the DPPC 

and cholesterol molecules become more closely packed, which leads to penetration inhibition 

for the Pluronic (Maskarinec and Lee 2003). Our results indicate that there is a deep 

penetration for Pluronics at low surface pressure, but this penetration is inhibited when the 

surface pressure has increased.   

Based upon both the isotherms (see Table 4.5-3 for the area parameters) and the 

compressibility modulus values, there is no apparent interaction between the POPC-CHOL 

monolayer on either P103 or F108. On the other hand, L44 and F87 increased the 

compressibility modulus from 74 mN/m to 83 and 102 mN/m respectively, while the minimal 

sectional area decreased from 63 Å2 to 57 and 50 Å2 for both Pluronics respectively. This 

suggests that the membrane became more condensed; an effect which mirrors that 

seen for the addition of CG to the POPC-CHOL monolayer (see section 4.5.3). 

Nevertheless, the changes in membrane fluidity are not remarkable and in particular 

do not result in a change in the molecular phase. 
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Figure 4.5-5: Isotherms (A, B) and compressibility modulus plots (C, D) of the monolayer alone, 

and monolayer and Pluronics. DPPC-CHOL (A, C) and POPC-CHOL (B, D). 
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BAM images of the DPPC-CHOL monolayer upon the addition of Pluronics shows 

distinctive domains (Figure 4.5-6). These domains are circular or ovoid in shapes, and they 

are observed at low surface pressure (1-5 mN/m), where greater interaction between the 

molecules within the monolayer and the Pluronics appear to occur. Pluronics P103 and F108 

(which have the same unit of PPO (~ 50)) do show domains at low surface pressure. 

However, these domains tend to disappear earlier than in L44 and F87. This might be 

attributed to PPO blocks, which they can interact with cholesterol through either hydrophobic 

or hydrogen bonding, or both (Anselmo, Sassonia et al. 2006). Consistent with the isotherm, 

it is clear from the BAM images that most of the interactions between Pluronics and the 

model membrane take place at low surface pressure when both PEO and PPO units coexist. 

Once the surface pressure increases, most of the PEO units enter into the subpahse and leaves 

the PPO units on the surface, resulting in lower interaction and thus, fewer domains.  

Images of POPC-CHOL with Pluronics show some domains that were formed at low surface 

pressure, particularly for Pluronics L44 and F87; although the generally featureless images 

obtained at most surface pressures regardless of polymer are consistent with a relatively 

homogeneous LE or LE-LC phase. The fact that the domains are observed for L44 and F87, 

but not for P103 and F108, is consistent with the discussion above, where L44 and F87 were 

observed to induce the condensation of the monolayer seen from the increase in the 

compressibility modulus and decrease in the limiting area (Table 4.5-3 and Figure 4.5-5).  
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DPPC-CHOL 

POPC-CHOL 

DPPC-CHOL 

POPC-CHOL 
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Figure 4.5-6: BAM images of all Pluronics with DPPC-CHOL and POPC-CHOL at different surface 

pressures.  A) <1 mN/m; B) 5 mN/m; C) 30 mN/m; D) 50 mN/m for DPPC-CHOL and 40 mN/m for 

POPC-CHOL. 
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When CG was added to the Pluronics, and both were added to the model membrane systems, 

the fluidization of the model membrane was induced, larger than the CG alone, as observed 

by a decrease in the compressibility modulus at 30 mN/m, independent of which Pluronic is 

used (Table 4.5-3). Correspondingly, the limiting areas obtained for all CG/Pluronic mixtures 

increased after adding CG for all Pluronics except for F87 (due to the greater solubility as 

mentioned previously), a further indication of fluidization. This increase in fluidization is 

attributed to different interactions occurring between CG and Pluronic with DPPC-CHOL. 

The interaction between CG and Pluronics is noticeable when the fluidization of the 

membrane increased after adding CG compared to the Pluronics alone. This interaction 

between CG and Pluronics is referred to hydrophobic interaction (Schuetze and Mueller-

Goymann 1993), which is suggested to be a very strong interaction. The addition of 

CG/Pluronic complex to the model membrane may have resulted in a greater size, which 

somehow makes the Pluronic to exclude the PPO block that was inserted into the membrane, 

resulting in minimizing the water contact. Another interaction which occurs between CG and 

Pluronics is through the formation of hydrogen bonding. This interaction affects the 

hydrophilic part of Pluronics, which results in a more fluidized membrane with hydrophilic 

Pluronics (F87 and F108) compared to hydrophobic Pluronics (L44 and P103).   

When the DNA was added to Pluronic/CG complex, the compressibility modulus increased 

with subsequent decreases in limiting areas for all Pluronic subsequently (Table 4.5-3 and 

Figure 4.5-7). It is apparent that DNA reduces the fluidization of membrane and results in the 

molecules becoming more closely packed. As mentioned previously, DNA can have either a 

fluidization or condensation effect, depending upon the nature of the monolayer (Antipina, 
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Schulze et al. 2007, Chen, Kang et al. 2012, Dabkowska, Barlow et al. 2012, Dabkowska, 

Barlow et al. 2014). In our project, the DNA has a condensation effect when is added to 

Pluronic/CG complex.  

In terms of POPC-CHOL, CG induces the fluidization of the model membrane by decreasing 

the compressibility moduli and increasing the limiting areas for all Pluronics. It is clear from 

Table 4.5-3 that CG induced the fluidity of Pluronics that have longer hydrophobic units 

(P103 and F108) than Pluronics, which have shorter hydrophobics units (L44 and F87). This 

explains that hydrophobicity plays an essential role in the fluidity of model membrane 

POPC-CHOL.  

The addition of DNA to the CG/Pluronic complex reduces the fluidization of the monolayers 

by increasing the compressibility moduli and decreasing the limiting areas (Table 4.5-3, 

Figure 4.5-7), which makes the molecules closely packed either with POPC-CHOL or DPPC-

CHOL.  These results confirm the condensation effect of DNA in our system.       
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Figure 4.5-7: Isotherms (A, B) and compressibility modulus plots (C, D) of the monolayer alone, 

and monolayer with Pluronics, CG, and DNA. DPPC-CHOL (A, C) and POPC-CHOL (B, D). CG: 

Cationic gelatin.  
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Distinctive domains were observed when DPPC-CHOL was mixed with the Pluronic and CG 

either in the presence or absence of DNA (Figure 4.5-8). These domains are usually seen 

between the surface pressure 1-5 mN/m and they are different from CG/DNA domains alone, 

indicating the interaction between CG and Pluronics. The large domains that are observed 

might be referred to the model membrane or Pluronics, while the small white dots might be 

referred to CG. This confirms that when the surface pressure increases to 5 mN/m, the large 

domains disappeared, and what is left are only the white dots (with some lines), particularly 

in hydrophobic Pluronics L44 and P103. These shapes at surface pressure 5 mN/m might 

correspond to the hydrophobic interactions between Pluronic and CG, which are previously 

explained in the isotherm results. As already mentioned above, the domains of DPPC-CHOL 

are observed in surface pressure between 1-3 mN/m, which confirm that the white dots with 

lines are related to CG and Pluronics at surface pressure 5 mN/m. DNA did not show 

distinctive domains when interacting with DPPC-CHOL, indicating that the DNA may have 

a condensation effect only on the model membrane rather than with any other interaction. 

Upon the compression of the barriers, the domains gradually vanished until completely 

disappearing at a surface pressure of around 30 mN/m. These results are in agreement with 

the results including only Pluronic and model membrane alone, or CG and model membrane 

alone, indicating that there is a weak interaction between the Pluronics and the model 

membrane at high surface pressure. These outcomes were also mentioned in the isotherm 

results above.  
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Regarding the POPC-CHOL monolayer, featureless images were observed when the 

monolayer interacted with either Pluronic, CG, or DNA, at low or high surface pressure 

(Figure 4.5-8). This is due to the fluidization of the POPC-CHOL, which makes the 

interaction weaker than that of DPPC-CHOL. All systems demonstrated exactly the same 

domains. The systems showed small domains at low surface pressure, and then, when the 

surface pressure increased, the small domains disappeared, and were replaced by a grey 

background, indicating that all systems get fluidized when they interact with POPC-CHOL. 

L44 was the only Pluronic that showed a slightly greater domain formation. These domains 

may be formed due to the hydrophobicity, and the short number of EO units, which makes 

the PO units interact directly with POPC-CHOL at low surface pressure. These results are in 

agreement with the isotherms of the POPC-CHOL with the delivery system. The change in 

compressibility modulus, cross-sectional area, and molecular area at collapse is small and not 

remarkable. 
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Figure 4.5-8: BAM images of all Pluronics with CG and DNA with DPPC-CHOL and POPC-CHOL at 

different surface pressure. A) <1 mN/m, B) 5 mN/m, C) 30 mN/m, D) 50 mN/m for DPPC-CHOL and 40 

mN/m for POPC-CHOL.  CG: cationic gelatin  
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4.6 Summary 

The Langmuir monolayer study, combined with Brewster’s angle microscopy at the air/water 

interface, were conducted to in order to gain a better understanding of the interaction of our 

transfection complexes with simple models of a biological membrane. The DPPC-CHOL 

monolayers were found to be more rigid compared to the POPC-CHOL monolayers, 

consistent with literature results, as well as expectations based upon molecular structure. The 

addition of CG, the key component in our proposed transfection formulations, resulted in an 

increase in the fluidity of the monolayer for the DPPC-CHOL monolayers, and a decrease in 

fluidity for the POPC-CHOL.  This is attributed to the electrostatic and the hydrophobic 

interaction of CG with the monolayers. The addition of DNA, alone (i.e., in the absence of 

CG or Pluronic) induced rigidity in both monolayers, likely due to the electrostatic and 

hydrophobic interactions with the lipid monolayer, however these interactions are expected 

to be negligible. The combination of CG and DNA again imparted a small degree of fluidity 

in both monolayers, due to the electrostatic interaction of DNA with CG and model 

membrane.  

Ultimately, the addition of the complete CG/DNA/Pluronic formulation was observed to 

weakly induce the fluidization of the DPPC-CHOL and POPC-CHOL monolayers compared 

to CG/DNA alone. The extent to which fluidization was observed was dependent upon the 

Pluronics’ structures, which have different hydrophilic and hydrophobic units. The strong 

hydrophobic interaction between Pluronic and CG allowed the DNA to induce the 

condensation of DPPC-CHOL, however this condensation effect was minimal, and did not 

affect the interaction with the model membrane. The results highlighted the fact that our 
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formulations interacted effectively and enhanced the permeability of the model membrane 

DPPC-CHOL, therefore and demonstrating a minimal effect on POPC-CHOL. 
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 Transfection Efficiencies and Cell Viability of Gelatin/Pluronic/DNA 

System in COS-7 Cells  

5.1 Introduction  

A positive charge was introduced onto the surface of gelatin nanoparticles to produce 

cationic gelatin (CG). Positive charge is very significant to interact with the negative charge 

of DNA and the cell membrane. Gelatin was selected because it has several advantages, as 

mentioned in Chapter 1. In addition, the positive results obtained by using gelatin as a 

delivery system encouraged us to use it in this project. In order to improve the transfection 

efficiency of CG/DNA complex, Pluronic block copolymers were added to protect the 

CG/DNA complex from degradation and to prolong the circulation time of the delivery 

system. Gemini surfactant (GS) 16-3-16 was also used in order to improve the transfection 

efficiency of CG/DNA complex. CG/DNA complex, along with GS and four different 

Pluronics (L44, F87, P103, and F108), were tested in vitro to evaluate the transfection 

efficiency and cell viability in COS-7 cells. COS-7 cells (ATCC® CRL165™) are fibroblast-

like cells derived from African monkey kidney tissue. COS are adherent cells carrying SV40 

genetic material and obtained by immortalizing CV-1 cells (Jensen, Girardi et al. 1964, 

Gluzman 1981). The combination of fibroblast-like growth and SV40 make COS-7 a great 

choice for transfection experiments using plasmid DNA and mutation to the SV-40 virus. 

COS-7 also possesses easily-transfected cells,  which is the reason it was selected for our 

experiments.  
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5.2  Materials  

Gelatin type A Protein content 81% Bloom ~300 (Refer to chapter 3 for the gelatin and 

cationic gelatin). Gemini surfactant 16-3-16 was synthesized and purified in our lab 

according to published methods (Wettig and Verrall 2001, Wang and Wettig 2011). Gibco 

DMEM high glucose, pyruvate, L-glutamine Phenol Red Sodium Pyruvate, and Fetal Bovine 

Serum (FBS) were purchased from Thermo Fisher Scientific (Waltham, MA, USA). 

Dulbecco’s Phosphate Buffered Saline (DPBS), and 0.25% Trypsin- EDTA (1X) were 

purchased from Gibco by Life Technologies. COS-7 (ATCC® CRL-1651TM) African green 

monkey kidney fibroblast-like was purchased from the American Type Culture Collection 

(ATCC) in Manassas, VA, USA. JetPEITM cationic polymer transfection reagent was 

purchased from PolyPlus. Tryple Express reagent (no phenol red) (1X) was purchased from 

Life-Technology Inc. Nunc Cell Culture Treated multi-dishes, 6-well, BD 5 mL polystyrene 

round bottom test tube (FACS tube), Propidium iodide (PI) 95%, and Gibco Opti-MEM™ I 

Reduced Serum Medium (no phenol red) were purchased from Fisher Scientific. Highly-

purified Millipore-Q water (18 mΩ cm and 72.6 mN/m at 20°C) was obtained from a Milli-Q 

filtration system in the School of Pharmacy, University of Waterloo.  

5.3 Method 

5.3.1 Transfection efficiency and cell viability studies  

COS-7 cells (ATCC) were grown to 70-80% confluency in 75-cm2 tissue culture flasks in 

DMEM-high glucose medium, supplemented with 10% FBS. Cells from passage number 5 to 

15 (0.5 x 106 COS-7 cells) per well, in DMEM high glucose media with FBS, were seeded in 

a 6-well plate, one day before the transfection, in order to allow the cells to adhere to the 
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bottom of the wells. The DMEM (+FBS) medium was changed to DMEM medium (without 

FBS) one hour prior to transfection. The cells were then transfected with pTGINF-GFP 

plasmid using jetPEI® (Polyplus-transfectionTM) as a positive control. For each well, 2 μg of 

plasmid was used for all formulations, except for the one with positive control. The 

transfection method of jetPEI® followed the manufacturer’s protocol and was optimized for 

the COS-7 cells. 3 μg plasmid was briefly mixed with 6 μL jetPEI® reagent in 100 µL 150 

mM NaCL and was incubated at room temperature for 15 to 30 minutes. After incubation, 

the jetPEI®/DNA mixture was added dropwise to the treated cells covered with 2 mL of 

serum-free medium.  

GS and CG were mixed with the plasmid DNA separately in Opti-Mem, and were incubated 

at room temperature for 15 minutes. The required amount of the Pluronic solution was then 

added, and the mixture was incubated for a further 30 minutes. The mixture was then added 

dropwise to the treated cells. After five hours, the transfection mixture in each well was 

replaced with 2 mL of DMEM (+FBS) medium, and the cells were then incubated for 48 

hours in a tissue culture incubator at 37°C with 5% CO2. Transfections experiments were 

conducted using the following conditions (Table 5.3-1). 
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Table 5.3-1: Conditions used for transfection experiments 

Condition name  Condition used  

Preparation medium  Opti-Mem 

Serum  Serum-free 

Concentration of DNA  2 µg for cationic gelatin-Pluronic & 3 µg 

for the positive control 

Incubation time after transfection 5 hours  

Incubation time after changing the medium 

to perform FACS  

48 hours  

Ratios of prepared nanoparticles From 1: 20-300 of DNA to CG 
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5.3.2 Fluorescence-activated cell sorting (FACS) 

Two days post-transfection, 2 mL of DMEM (+FBS) medium in each well was aspirated, and 

1 mL of Tryple Express®/Trypsin was added to detach the cells. Then, 3 mL of DMEM 

(+FBS) medium was added to neutralize the Tryple Express/ Trypsin. Afterward, the cells 

were collected in 5 mL fluorescence-activated cell sorting (FACS) tubes and centrifuged at 4 

°C at 125 ×g for 10 minutes. The GFP expressing cells were then washed twice with a 

phosphate buffered saline (PBS) after centrifugation and were suspended in 350 µL of PBS 

for FACS analysis. FACS measurements were carried out using a BD FACSAria Fusion 3-

laser instrument in the Department of Biology at the University of Waterloo. Just prior to 

analysis, the samples were stained using propidium iodide (PI) in order to determine the cell 

viability, along with the transfection efficiency. Transfection efficiency was presented 

corresponding to the percentage (%) of cells displaying the EGFP expression out of 10,000 

cells. Cell viability was expressed as the percentage (%) of dead cells, determined by PI 

staining. The transfection formulations were prepared according to Table 5.3-2. 
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Table 5.3-2: Transfection formulations template for each well 

Formulation Vplasmid VGS VCG VPluronic Vmedia VJetPEI Vwell 

Jet+DNA 16.6 (3 µg)    400 12 µL 200 

Plasmid Only 6.6(2.4 µg)    300  250 

GS only  24    300  250 

Gelatin only   40   300  250 

Gelatin+DNA 6.6  40  300  289 

GS+DNA (2 µg) 1:10 6.6 24    300  276 

GS+L44+DNA (2 µg) 6.6 24  47.4 300  315 

GS+F87+DNA (2 µg) 6.6 24  42 300  310.5 

GS+F108+DNA (2 

µg) 

6.6 24  18 300  290.5 

GS+P103+DNA (2 

µg) 

6.6 24  9 300  283 

CG+L44+DNA 6.6 24 40 47.4 300  328 

CG+F87+DNA 6.6 24 40 42 300  324 

CG+F108+DNA 6.6 24 40 18 300  304 

CG+P103+DNA 6.6 24 40 9 300  296 

GS+CG+L44+DNA 6.6 24 26.88 47.4 300  337.4 

GS+CG+F87+DNA 6.6 24 26.88 42 300  333 

GS+CG+F108+DNA 6.6 24 26.88 18 300  313  

GS+CG+P103+DNA 6.6 24 26.88 9 300  305  
NOTE: ALL volumes are in µL; VPlasmid corresponds to the volume of plasmid stock solution; VGS corresponds 

to the volume of gemini surfactant stock solution; VCG corresponds to the volume of cationic gelatin stock 

solution; VPluronic corresponds to the volume of pluronic stock solution; Vmedia corresponds to the volume of 

media; and VJetPEI corresponds to the volume of JetPEI transfection mixture. All components were combined, 

and wells were then treated with a volume of solution corresponding to Vwell. 

5.4 Statistical Analysis  

All the presented data in the in vitro transfection studies section correspond to the mean of 

three determinations; the results were compared using One-Way Analysis of Variance 

(ANOVA); test significance was accepted at P <0.05. 
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5.5 Results and Discussion 

5.5.1 Particle size and zeta potential  

In this project, we were able to design a nanoparticle gene delivery system comprised of CG, 

DNA, and Pluronic block copolymers. The particle size and zeta potential of these systems 

were measured and demonstrated small particle size and positive zeta potential values for all 

formulations (Figure 5.5-1). Nanoparticles were prepared at a ratio of 1:20 (w/w) of DNA to 

CG and demonstrated the lowest diameter with the greatest positive charge. Adding more CG 

to the DNA did not change the positive value of the complex and led to larger-sized particles 

(Chapter 3). The particle size and zeta potential for nanoparticles containing the four 

Pluronics (L44, F87, P103, and F108) at concentrations corresponding to 0.1×CMC, 

1×CMC, and 2×CMC were also measured (Figure 5.5-1).  It is clear from the data that all 

formulations containing Pluronic demonstrated small particle sizes (~ 140-170 nm) and 

positive zeta potentials. Not surprisingly, the zeta potential decreased with an increased 

concentration of the Pluronics due to shielding provided by the neutral Pluronic copolymer 

adsorbed to the surface of the CG/DNA complex. P103 was a clear exception to this 

behavior, where the zeta potential increased with the increased P103 concentration. While 

both L44 and P103 are similarly hydrophobic in nature, P103 is much larger with a very low 

CMC. It is possible that the interactions between the CG/DNA complex and P103 are not 

sufficiently strong to provide sufficient protection of the hydrophobic PPO segment from 

water, and that as concentration of P103 increases, there is a preference for it to dissociate 

from the CG/DNA complex and form its own micellar aggregates that contain only P103.  

This would have a net result of increasing the zeta potential, as observed in our data.  
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Figure 5.5-1: Particle size and zeta potential of nanoparticles containing cationic gelatin, 

DNA, and the indicated Pluronic at concentrations corresponding to 0.1×CMC, 1×CMC, and 

2×CMC. Bars represent particle size, dots represent zeta potential. Samples were measured in 

triplicate, errors are equal to standard deviation.  
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contrast to the results obtained by Kaul and Amiji (Kaul and Amiji 2005), who found that 

gelatin nanoparticles were observed around the nucleus six hours after incubation. Our initial 

incubation time was five hours; upon increasing it to the six hours used by Kaul and Amiji, 

the same lack of transfection was observed. The experiment was subsequently run using 

different ratios of DNA to CG in order to determine if a 1:20 ratio was sufficient. Ratios of 

1:20, 1:50, 1:100, 1:150, 1:200, 1:250, and 1:300 were all examined; unfortunately, all these 

concentrations failed to show any significant gene expression (Figure 5.5-2). 

At this point, it was decided to re-examine the particle size and zeta potential of the 

nanoparticles, this time in buffer so as to determine if buffer had an impact on the 

formulations. The particle size of the formulations prepared in buffer were both larger and 

exhibited multiple peaks (corresponding to multiple populations of particle sizes) compared 

to those prepared in water, indicating aggregation of the nanoparticles in the presence of 

Figure 5.5-2: Transfection efficiency in % (expressed in terms of EGFP expression of live 

cells) (A), and cell viability in % (expressed in terms of dead cells stained by PI) (B) of 

cationic gelatin and DNA using different w/w ratios in COS-7 cells. 



 

 131 

buffer (Figure 5.5-3). As a polypeptide, gelatin is very sensitive to pH, due in part to its 

amino acid composition; this might be the reason for the observed aggregation in the 

presence of buffer (Misra, Meher et al. 2016). Even though the CG/DNA nanoparticles 

possessed substantial positive charge in water, this was largely neutralized in buffer, even for 

nanoparticles containing the highest amount of CG (1:300). It is likely that the lack of 

transfection can be attributed to aggregation in the presence of buffer; confocal microscopy 

studies would be useful to confirm this. The one positive result in these initial transfection 

studies is that even at the high DNA:CG ratios (i.e., 1:300), low cell toxicity was observed; 

however, with the lack of transfection, this observation is not particularly useful. 
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Figure 5.5-3: Particle size (A) and zeta potential for nanoparticles containing different ratios 

of DNA to cationic gelatin in water (black) and buffer (grey). Samples were measured in 

triplicate, errors are equal to standard deviation.  
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While the above results clearly suggest that aggregation of the DNA/CG complexes was the 

reason for the lack of transfection, it is also possible that cholamine may not have been the 

proper agent to cationize gelatin, as it may interact poorly with the DNA, thus resulting in 

weak complexation. Similar results for gelatin nanoparticles modified with polyamines, such 

as spermidine and spermine, also failed to efficiently complex pDNA in buffer (Zwiorek 

2006). Cationic agents with a stronger positive charge, such as PEI, might be required to 

complex the DNA and to facilitate the passage of the negatively-charged cellular membrane 

(Kuo, Huang et al. 2011). The batch of gelatin nanoparticles itself is probably another factor 

that could affect the transfection efficiency. Zwiorek (Zwiorek 2006) tried different batches 

of gelatin with different size and zeta that failed to adsorb the DNA, even when the batches 

were modified with cholamine. Consequently, loading nucleic acids on the surface of CG 

nanoparticles could not be generalized. What successfully worked with a certain nucleic acid 

was not necessarily successful with another. Based on these outcomes, we decided to add 

gemini surfactant (GS) to our formulations. 

5.5.3 Gemini surfactant and cationic gelatin 

As mentioned in Chapter 1, GSs can form micelles at low critical micelle concentrations 

(CMC). GS also possesses two positive charges, giving rise to strong electrostatic 

interactions with plasmid DNA as well as with the cellular membrane, which contributes to 

their effectiveness as transfection vectors.  In this project, it was thought that adding GS 

would improve the transfection efficiency of CG. GS 16-3-16 was chosen due to the previous 

results of transfection efficiency obtained in previous studies, both in our group and among 
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other teams (Foldvari, Badea et al. 2006, Badea, Wettig et al. 2007, Wang, Kaur et al. 2013, 

Madkhali 2014).  

The first detectable gene expression was seen with GS at the ratio of 1:10 DNA to GS. CG 

was then added to determine if it would increase the transfection efficiency of the 16-3-16 

surfactant. Four different w/w ratios of GS to CG were tested (1:1, 1:2, 1:3, and 1:4). The 

results revealed that as more CG was added, the lower the transfection became, while cell 

viability increased (Figure 5.5-4). In order to understand these results, examination of 

particle size and zeta potential were conducted for GS/CG complex in buffer.  
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The results showed that adding CG to GS enhanced the aggregation of the complexes. 

Particle size increased after adding CG from 110 nm to ~ 1800 nm (Figure 5.5-5), while a 

corresponding decrease in zeta potential (i.e., a decrease in the positive charge of the 

complexes) was seen when increasing the amount of CG, which probably led to antagonistic 

interaction between GS and CG. It would seem that the addition of the CG results in a 

shielding or partial neutralization of the positive that exists on the surface of the GS micelles, 

suggesting that the CG is localized at or near the surface of the surfactant aggregates. Once 

the surface charge is reduced, increased aggregation of the complexes can occur (Figure 5.5-

6).  It is this aggregation that is the likely source of the low transfection efficiencies observed 

for the GS/CG/DNA complexes.  
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Figure 5.5-4: Transfection efficiency in % (expressed in terms of EGFP expression of live 

cells) (A), and cell viability in % (expressed in terms of dead cells stained by PI) (B) of 

different w/w ratios of gemini surfactant and cationic gelatin (1:1, 1:2, 1:3, and 1:4) in 

COS-7 cells. GS is significantly different to CG at all ratios (***P<0.0001). 
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Figure 5.5-5: Size (A) and Zeta potential (B) of gemini surfactant and cationig gelatin at 

different w/w ratios (1:1, 1:2, 1:3, and 1:4). Samples were measured in triplicate, errors are 

equal to standard deviation.  

 

Figure 5.5-6: Schematic illustration of the interaction between gemini surfactant and cationic 

glelatin.  Gelatin forms a shield around the gemini surfactant, which results in aggregation and 

decreases the positive charge of gemini surfactant. 
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The last step of the transfection studies was to add Pluronics to the transfection complexes. It 

was believed that Pluronics could protect the DNA from degradation and increase the 

circulation time in vivo; that was, however, assuming that the CG was able to transfect DNA, 

which as discussed above – however, it was not. Figure 5.5-7 shows the combined results of 

transfection experiments using GS/DNA, CG/DNA, CG/GS/DNA, CG/Pluronic/DNA, and 

CG/GS/Pluronic/DNA complexes. Not surprisingly, the addition of Pluronics to CG did not 

result in transfection. Given that Pluronics are neutral polymers, it would not be expected that 

their addition would improve the transfection of the weak CG. 

 

Figure 5.5-7: Transfection efficiency in % (expressed in terms of EGFP expression of live cells) 

(A), and cell viability in % (expressed in terms of dead cells stained by PI) (B) of different 

combinations of delivery system in COS-7 cells. NG represents native gelatin, CG represents 

cationic gelatin, and GS represents gemini surfactant. GS alone with DNA is significantly different 

to all other nanocomplexes containing Pluronics, CG, or both (***P<0.0001). 
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When added to the GS/DNA complexes, the Pluronics decreased the transfection efficiency 

of the GS, similar to what was observed by the addition of CG to the GS/DNA complexes 

(see discussion above). The Pluronic is expected to adsorb at the surface of the GS/CG/DNA 

complexes (in particular the EO segments), further shielding the positive charge of the 

complexes, again likely resulting in increased aggregation that then decreases the ability of 

the complexes to transfect the DNA.  

One positive result seen in the transfection studies relates to cell viability. CG showed 

excellent cell viability in all systems; although this is most likely due to the weak cationic 

charge that seems to be imparted to the gelatin using our method. As it is known that 

cytotoxicity increases with increased positive charge (i.e., an increasing number of 

quaternary ammonium groups) (Vieira, Hartmann et al. 2008, Garcia, Kaczerewska et al. 

2016), it is likely that this may not be the case where a more strongly CG is prepared.  

Finally, our results were compared to the positive control jetPEI®, which showed 

approximately 32% gene expression compared to the highest transfection obtained by the GS 

alone (~ 8%) (Figure 5.5-8). We are still far away from the positive control and therefore, 

further studies are required to improve the transfection efficiency of CG/GS systems prior to 

introducing the Pluronics.  
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Figure 5.5-8: Transfection efficiency in % (expressed in terms of EGFP expression of live cells) (A), and 

cell viability in % (expressed in terms of dead cells stained by PI) (B) of the positive control (JetPEI) and 

GS/DNA complex in COS-7 cells . Positive control is significantly different than the highest transfection 

obtained with GS and DNA alone (***P<0.0001).  
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5.6 Summary 

Transfection efficiency and cell viability of cationic gelatin/Pluronic/DNA were tested in 

COS-7 cells. The results showed that cationic gelatin is unable to transfect the DNA, either in 

the presence or absence of Pluronics, in water, or in buffer. From the results, it appears that 

cholamine-modified gelatin nanoparticles are not able to transfect DNA, most likely due to 

aggregation of the complexes upon addition of DNA. It is clear that a different method of 

introducing cationic groups into the structure of gelatin is required in order to optimize the 

potential for gelatin as a transfection agent. Alternatively, small peptide sequences could be 

coupled to the amino acid side-chains to improve the targeting, to enhance the cellular 

uptake, or to induce the permeability of the cells, and combine such a gelatin polymer with 

the GS, which was able to transfect DNA. For such a strategy to be successful, a means of 

blocking the aggregation of the GS/gelatin/DNA complexes would be required, possibly 

utilizing a layer-by-layer formulation strategy, where the GS/gelatin/DNA complexes are 

stabilized by an additional component. Ultimately, further studies are required to understand 

the interaction of the gemini surfactant and the gelatin, which seems to be an antagonistic 

interaction, based on our results.  
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  Summary and Future Studies 

6.1 Summary 

Gelatin, as a natural polymer, is a promising agent for gene delivery due to several 

advantages that include biodegradability, biocompatibility, low cost, and the relative ease 

with which it can be functionalized. In this project, we hypothesized that gelatin-modified 

nanoparticles, in combination with the Pluronic block copolymers, could improve the 

transfection efficiency of DNA in COS-7 cells in vitro. The project started with the 

preparation of gelatin nanoparticles in Chapter 3 using the two-step desolvation method. The 

gelatin was then modified by adding a cationic agent (cholamine) in order to increase the 

positive charge, which is essential to interact with the DNA and the cellular membrane. 

Gelatin nanoparticles were successfully modified and characterized to confirm to the 

cationization. Cationic gelatin nanoparticles carry increased positive charge, with an average 

zeta potential of approximately 30 mV whereas unmodified gelatin nanoparticles have an 

average zeta potential of approximately 10 mV. SEM and TEM showed that the 

nanoparticles are spherical in nature, with an average diameter of ~100 nm. We also studied 

the characterizations of cationic gelatin and DNA in the presence and absence of Pluronics in 

terms of size and zeta potential in water. The results showed that cationic gelatin is able to 

complex the DNA by changing the negative charge of DNA to a positive charge at a ratio of 

1:20. At the same ratio, the size of DNA (~ 450 nm) decreased to 160 nm after adding CG 

indicating a successful complexation. Adding Pluronic to CG/DNA complex resulted in a 

small size (140-170 nm) with a positive charge for all formulations. The size and the charge 

of CG/DNA/Pluronic varied depending on the type and the concentration of each Pluronic. A 
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study on the effect of transfection complex CG/Pluronic/DNA on the model membranes was 

outlined in Chapter 4. The objective of that chapter was to understand the interaction of the 

transfection complexes, and their components, with the biological membranes. Two types of 

the model membrane were used: 1) DPPC-CHOL at the ratio of 3:1 (which mimics a healthy 

biological membrane); and 2) POPC-CHOL at the ratio of 4:1 (which mimics a cancerous 

cell membrane). DPPC-CHOL formed a more condensed monolayer compared to POPC-

CHOL. Interactions between DNA and the model membranes resulted in more condensed 

monolayers for both the DPPC-CHOL and POPC-CHOL systems, which were attributed to 

the electrostatic or the hydrophobic interactions. The addition of CG alone was then added to 

DPPC-CHOL. Due to both the electrostatic and the hydrophobic interactions, CG induced the 

fluidization of the membrane, which is important to enhance the permeability of a cellular 

membrane. The same effect was noted with Pluronic, either alone or in combination with 

CG, but to a lesser degree than CG. In terms of POPC-CHOL, not much change was noticed, 

neither with CG nor with Pluronics due to the fluidization of POPC-CHOL. Adding DNA 

induced the condensation of CG/DNA/Pluronic in both DPPC-CHOL and POPC-CHOL. 

These results indicate that CG/Pluronic/DNA complex was able to interact with the cellular 

membranes and enhanced their permeability. Further studies are required to fully understand 

the interaction between the CG, DNA, and the Pluronic.  

The transfection efficiency and cell viability of the CG/Pluronic/DNA complexes were 

evaluated in vitro in the COS-7 cell line. Despite the observations from Chapter 4, which 

suggested successful disruption of biological membranes, the use of CG as a transfection 

agent failed to show any gene expression, despite being attempted under several conditions 
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and after several optimizations. The most likely reason is that the cholamine, used to provide 

the additional cationic character to the gelatin polymer, was not able to provide a sufficient 

degree of cationic character to be able to both bind and condense DNA, and to passively 

target the cell membrane. Other possible reasons could include the size of the DNA; 

however, this can be discounted as the size of the CG/DNA complexes (Chapter 3) are in fact 

comparable in size to the gemini surfactant/DOPE/DNA complexes previously studied by 

our group and others (Foldvari, Badea et al. 2006, Wang, Kaur et al. 2013). Other factors 

could include batch effects in the gelatin (i.e., variation in amino acid sequences that can 

occur between batches), as well as the method of introducing cationic groups into the 

structure of gelatin. Transfection with the cationic gelatin based nanoparticles was only 

achieved upon addition of the 16-3-16 gemini surfactant to our formulation. Transfection 

levels achieved with gemini surfactant in combination with the cationic gelatin system was at 

significantly lower levels than observed for the GS/DOPE systems reported elsewhere in the 

literature, indicating that not only was cationic gelatin insufficient in being able to transfect 

DNA on its own, but also that its presence in fact likely shielded the overall positive charge 

of the nanoparticles, ultimately decreasing transfection efficiency. The addition of Pluronics 

appeared to have no effect, and it may be that in vivo studies are required to determine 

whether or not any benefit was obtained from the inclusion of Pluronics in our nanoparticle 

formulation.   
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6.2  Future Studies 

The first and most important step required before applying the following suggestion is to 

conduct a cellular trafficking study for the cholamine-modified gelatin nanoparticles. This 

research will help to understand if cholamine-modified gelatin nanoparticles are able to enter 

into the nucleus and whether or not DNA is able to dissociate from the nanoparticles, and 

whether or not it gets degraded; these are all possible alternative reasons for the observed low 

transfection. Following this study, many other experiments can be conducted in the future in 

order to design more effective vectors that are capable of delivering DNA into the cells. 

Firstly, there are many other cationic agents other than cholamine that can be used for gelatin 

modification. These include, but are not limited to spermine, spermidine, putrescine, and 

ethylenediamine. Spermine showed favourable results as a transfection agent in several 

studies in the literature (Hosseinkhani, Aoyama et al. 2002, Konat Zorzi, Contreras-Ruiz et 

al. 2011, Zorzi, Parraga et al. 2011, Zorzi, Parraga et al. 2015). Since cholamine was chosen 

based on previous studies, it is worth trying other cationic agents, as gelatin batches differ 

from one to another. Short, cationic amino acid sequences, such as polylysine, can also be 

readily coupled to gelatin to provide an alternative strategy for cationization. 

Secondly, gelatin nanoparticles were prepared using a two-step desolvation method. This 

method is simple and resulted in stable and homogenous nanoparticles. However, mixing 

DNA with gelatin nanoparticles might not form an effective and robust complex, as the DNA 

may readily detach from the surface of the nanoparticles, which could then result in the 

degradation of DNA through enzymatic degradation. Different methods can be used other 

than desolvation. For example, Zorzi et al. (Zorzi, Párraga et al. 2011) prepared cationic 
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gelatin nanoparticles using the ionic gelation technique for an ocular surface. In this 

technique, Zorzi and his colleagues used chondroitin sulfate (CS) and dextran sulfate (DS) to 

produce cationic gelatin. The cationized gelatin was then added to triphosphate (TPP) 

containing the plasmid and CS or DS.  One advantage of this method is the fact that no 

organic solvents such as acetone were used, in comparison to two-step desolvation (Zorzi, 

Parraga et al. 2011).  

Thirdly, the addition of PEG is important to protect the DNA from the reticuloendothelial 

system (RES) upon systemic administration. While Pluronics were used in our project to 

replace the function of PEG, it appears that the hydrophobic-hydrophobic interaction 

between Pluronic and gelatin decreased the effectiveness of the gelatin, which resulted in 

lower transfection efficiency. Since the interaction between gelatin and Pluronics is not 

completely understood, more studies are needed to understand this interaction before 

applying them to gelatin.   

Fourthly, gelatin is a weak transfection agent when used on its own. Since gelatin is easily 

modified, many targeting ligands can be applied in order to target specific cell types through 

the receptor-ligand interaction. The most common example of these ligands is the epidermal 

growth factor receptor (EGFR), which has been used with gelatin nanoparticles and showed 

higher transfection efficiency in several types of cancer. Another example of ligands includes 

folate receptor, which can be used alone, with gelatin, or in combination with PEG-gelatin 

nanoparticles.  
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Finally, gemini surfactant was used in the transfection experiments, and the results showed 

that the interaction of cationic gelatin and gemini surfactant resulted in aggregation. As a 

result, we are interested in further studying this interaction to understand the reasons for this 

aggregation. Although the results of monolayer study showed that there is no correlation with 

the transfection results of the cationic gelatin and the Pluronic, it might be helpful to use the 

monolayer study to understand the interaction between gemini surfactant and cationic gelatin. 

This understanding will help in developing and improving the effectiveness of either gelatin 

or gemini surfactant, or both, as the science is about a building of information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 146 

Letter of Copyright Permission 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

  

  

 

 

 

 

 

 



 

 147 

 

 

 



 

 148 

  



 

 149 

 

 

 



 

 150 

 

 

 

 



 

 151 

 

 

 



 

 152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 153 

 

 

 

 



 

 154 

References 

Ahlers, M., C. Coester, K. Zwiorek and J. Zillies (2007). Nanoparticles and method for the 

production thereof, U.S. Patent Application No. 11/675,643. 

Ahmed, T. (2015). "Langmuir-Blodgett Monolayer Studies of Mixed Gemini Surfactant-

Phospholipid Monolayers system for Gene Therapy Applications." Master's thesis, 

University of Waterloo. 

Ahmed, T., A. O. Kamel and S. D. Wettig (2016). "Interactions between DNA and Gemini 

surfactant: impact on gene therapy: part I." Nanomedicine (Lond) 11(3): 289-306. 

Akin, H. and N. Hasirci (1995). "Preparation and characterization of crosslinked gelatin 

microspheres." Journal of Applied Polymer Science 58(1): 95-100. 

Al Muslim, A., D. Ayyash, S. S. Gujral, G. M. Mekhail, P. P. Rao and S. D. Wettig (2017). 

"Synthesis and characterization of asymmetrical gemini surfactants." Physical Chemistry 

Chemical Physics 19(3): 1953-1962. 

Alakhov, V., P. Lemieux, E. Klinski, A. Kabanov and G. Pietrzynski (2001). "Block 

copolymeric biotransport carriers as versatile vehicles for drug delivery." Expert opinion on 

biological therapy 1(4): 583-602. 

Allison, S. D., M. dC Molina and T. J. Anchordoquy (2000). "Stabilization of lipid/DNA 

complexes during the freezing step of the lyophilization process: the particle isolation 

hypothesis." Biochimica et Biophysica Acta (BBA)-Biomembranes 1468(1): 127-138. 

Alves, N. and J. Mano (2008). "Chitosan derivatives obtained by chemical modifications for 

biomedical and environmental applications." International journal of biological 

macromolecules 43(5): 401-414. 

Anselmo, A. G., R. C. Sassonia and W. Loh (2006). "Thermodynamics of the partitioning of 

poly (propylene oxide) between aqueous and chlorinated organic phases compared to poly 

(ethylene oxide) and other hydrophilic polymers." Journal of physical organic chemistry 

19(11): 780-785. 

Antipina, M. N., I. Schulze, B. Dobner, A. Langner and G. Brezesinski (2007). 

"Physicochemical investigation of a lipid with a new core structure for gene transfection: 2-

amino-3-hexadecyloxy-2-(hexadecyloxymethyl) propan-1-ol." Langmuir 23(7): 3919-3926. 



 

 155 

Arroyo-Maya, I., J. Rodiles-López, M. Cornejo-Mazon, G. F. Gutierrez-Lopez, A. 

Hernández-Arana, C. Toledo-Núñez, G. Barbosa-Cánovas, J. Flores-Flores and H. 

Hernandez-Sanchez (2012). "Effect of different treatments on the ability of α-lactalbumin to 

form nanoparticles." Journal of dairy science 95(11): 6204-6214. 

Astafieva, I., I. Maksimova, E. Lukanidin, V. Alakhov and A. Kabanov (1996). 

"Enhancement of the polycation-mediated DNA uptake and cell transfection with Pluronic 

P85 block copolymer." FEBS letters 389(3): 278-280. 

Azarmi, S., Y. Huang, H. Chen, S. McQuarrie, D. Abrams, W. Roa, W. H. Finlay, G. G. 

Miller and R. Löbenberg (2006). "Optimization of a two-step desolvation method for 

preparing gelatin nanoparticles and cell uptake studies in 143B osteosarcoma cancer cells." 

Journal of pharmacy & pharmaceutical sciences  9(1):124-132, 2006. 

Baalousha, M., Y. Ju‐Nam, P. A. Cole, B. Gaiser, T. F. Fernandes, J. A. Hriljac, M. A. 

Jepson, V. Stone, C. R. Tyler and J. R. Lead (2012). "Characterization of cerium oxide 

nanoparticles—part 1: size measurements." Environmental toxicology and chemistry 31(5): 

983-993. 

Bacalocostantis, I., V. P. Mane, A. S. Goodley, W. E. Bentley, S. Muro and P. Kofinas 

(2013). "Investigating polymer thiolation in gene delivery." Journal of Biomaterials Science, 

Polymer Edition 24(8): 912-926. 

Badea, I. (2006). Gemini cationic surfactant-based delivery systems for non-invasive 

cutaneous gene therapy, Doctoral dissertation, University of Saskatchewan. 

Badea, I., S. Wettig, R. Verrall and M. Foldvari (2007). "Topical non-invasive gene delivery 

using gemini nanoparticles in interferon-γ-deficient mice." European journal of 

pharmaceutics and biopharmaceutics 65(3): 414-422. 

Bakan, F., G. Kara, M. Cokol Cakmak, M. Cokol and E. B. Denkbas (2017). "Synthesis and 

characterization of amino acid-functionalized calcium phosphate nanoparticles for siRNA 

delivery." Colloids and Surfaces B: Biointerfaces 158: 175-181. 

Barnes, G. and I. Gentle (2011). Interfacial Science: An Introduction, Oxford University 

Press. 

Batrakova, E. V. and A. V. Kabanov (2008). "Pluronic block copolymers: evolution of drug 

delivery concept from inert nanocarriers to biological response modifiers." Journal of 

Controlled Release 130(2): 98-106. 



 

 156 

Beales, P. A., J. Nam and T. K. Vanderlick (2011). "Specific adhesion between DNA-

functionalized “Janus” vesicles: size-limited clusters." Soft Matter 7(5): 1747-1755. 

Bhavsar, M. and M. Amiji (2008). "Oral IL-10 gene delivery in a microsphere-based 

formulation for local transfection and therapeutic efficacy in inflammatory bowel disease." 

Gene therapy 15(17): 1200-1209. 

Bhavsar, M. D. and M. M. Amiji (2007). "Gastrointestinal distribution and in vivo gene 

transfection studies with nanoparticles-in-microsphere oral system (NiMOS)." Journal of 

controlled release 119(3): 339-348. 

Bhavsar, M. D. and M. M. Amiji (2008). "Development of novel biodegradable polymeric 

nanoparticles-in-microsphere formulation for local plasmid DNA delivery in the 

gastrointestinal tract." Aaps Pharmscitech 9(1): 288-294. 

Bhavsar, M. D., S. B. Tiwari and M. M. Amiji (2006). "Formulation optimization for the 

nanoparticles-in-microsphere hybrid oral delivery system using factorial design." Journal of 

controlled release 110(2): 422-430. 

Bigi, A., G. Cojazzi, S. Panzavolta, K. Rubini and N. Roveri (2001). "Mechanical and 

thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking." 

Biomaterials 22(8): 763-768. 

Bootz, A., V. Vogel, D. Schubert and J. Kreuter (2004). "Comparison of scanning electron 

microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly 

(butyl cyanoacrylate) nanoparticles." European journal of pharmaceutics and 

biopharmaceutics 57(2): 369-375. 

Bose, R. J., Y. Arai, J. C. Ahn, H. Park and S.-H. Lee (2015). "Influence of cationic lipid 

concentration on properties of lipid–polymer hybrid nanospheres for gene delivery." 

International journal of nanomedicine 10: 5367. 

Boussif, O., F. Lezoualc'h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix and J.-P. 

Behr (1995). "A versatile vector for gene and oligonucleotide transfer into cells in culture 

and in vivo: polyethylenimine." Proceedings of the National Academy of Sciences 92(16): 

7297-7301. 

Busch, S., U. Schwarz and R. Kniep (2003). "Chemical and structural investigations of 

biomimetically grown fluorapatite–gelatin composite aggregates." Advanced Functional 

Materials 13(3): 189-198. 



 

 157 

Cárdenas, M., T. Nylander, B. Jönsson and B. Lindman (2005). "The interaction between 

DNA and cationic lipid films at the air–water interface." Journal of Colloid and Interface 

Science 286(1): 166-175. 

Castano, S., B. Delord, A. Février, J.-M. Lehn, P. Lehn and B. Desbat (2009). "Asymmetric 

lipid bilayer formation stabilized by DNA at the air/water interface." Biochimie 91(6): 765-

773. 

Castano, S., B. Delord, A. Fevrier, J. M. Lehn, P. Lehn and B. Desbat (2008). "Brewster 

angle microscopy and PMIRRAS study of DNA interactions with BGTC, a cationic lipid 

used for gene transfer." Langmuir 24(17): 9598-9606. 

Chan, Y.-H. M., B. van Lengerich and S. G. Boxer (2009). "Effects of linker sequences on 

vesicle fusion mediated by lipid-anchored DNA oligonucleotides." Proceedings of the 

National Academy of Sciences 106(4): 979-984. 

Chang, L.-C., Y.-Y. Chang and C.-S. Gau (2008). "Interfacial properties of Pluronics and the 

interactions between Pluronics and cholesterol/DPPC mixed monolayers." Journal of colloid 

and interface science 322(1): 263-273. 

Chang, L.-C., C.-Y. Lin, M.-W. Kuo and C.-S. Gau (2005). "Interactions of Pluronics with 

phospholipid monolayers at the air–water interface." Journal of colloid and interface science 

285(2): 640-652. 

Chen, Q., X. Kang, R. Li, X. Du, Y. Shang, H. Liu and Y. Hu (2012). "Structure of the 

complex monolayer of gemini surfactant and DNA at the air/water interface." Langmuir 

28(7): 3429-3438. 

Chen, Q., D. Zhang, R. Li, H. Liu and Y. Hu (2008). "Effect of the spacer group on the 

behavior of the cationic gemini surfactant monolayer at the air/water interface." Thin Solid 

Films 516(23): 8782-8787. 

Chen, Z., L. Zhang and Y. Li (2014). "Addition of pluronics® to reducible disulfide‐bond‐

containing Pluronic®–PEI–SS specifically enhances circulation time in vivo and transfection 

efficiency in vitro." Journal of Biomedical Materials Research Part B: Applied Biomaterials 

102(6): 1268-1276. 

Choi, B., Z.-K. Cui, S. Kim, J. Fan, B. M. Wu and M. Lee (2015). "Glutamine-chitosan 

modified calcium phosphate nanoparticles for efficient siRNA delivery and osteogenic 

differentiation." Journal of Materials Chemistry B 3(31): 6448-6455. 



 

 158 

Ciardiello, F. and G. Tortora (2001). "A novel approach in the treatment of cancer: targeting 

the epidermal growth factor receptor." Clinical Cancer Research 7(10): 2958-2970. 

Clark, P. R. and E. M. Hersh (1999). "Cationic lipid-mediated gene transfer: current 

concepts." Current opinion in molecular therapeutics 1(2): 158-176. 

Coester, C., J. Kreuter, H. Von Briesen and K. Langer (2000). "Preparation of avidin-labelled 

gelatin nanoparticles as carriers for biotinylated peptide nucleic acid (PNA)." International 

journal of pharmaceutics 196(2): 147-149. 

Coester, C., P. Nayyar and J. Samuel (2006). "In vitro uptake of gelatin nanoparticles by 

murine dendritic cells and their intracellular localisation." European journal of pharmaceutics 

and biopharmaceutics 62(3): 306-314. 

Cohen, R. N., M. A. van der Aa, N. Macaraeg, A. P. Lee and F. C. Szoka Jr (2009). 

"Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex 

transfection." Journal of Controlled Release 135(2): 166-174. 

Crawford, J. (2002). "Clinical uses of pegylated pharmaceuticals in oncology." Cancer 

treatment reviews 28: 7-11. 

Dabkowska, A., D. Barlow, R. Campbell, A. Hughes, P. Quinn and M. Lawrence (2012). 

"Effect of helper lipids on the interaction of DNA with cationic lipid monolayers studied by 

specular neutron reflection." Biomacromolecules 13(8): 2391-2401. 

Dabkowska, A. P., D. J. Barlow, L. A. Clifton, A. V. Hughes, J. R. Webster, R. J. Green, P. 

J. Quinn and M. J. Lawrence (2014). "Calcium-mediated binding of DNA to 1, 2-distearoyl-

sn-glycero-3-phosphocholine-containing mixed lipid monolayers." Soft matter 10(11): 1685-

1695. 

Darquet, A., B. Cameron, P. Wils, D. Scherman and J. Crouzet (1997). "A new DNA vehicle 

for nonviral gene delivery: supercoiled minicircle." Gene therapy 4(12): 1341-1349. 

Dash, P., M. Read, L. Barrett, M. Wolfert and L. Seymour (1999). "Factors affecting blood 

clearance and in vivo distribution of polyelectrolyte complexes for gene delivery." Gene 

therapy 6(4): 643-650. 

Davidson, R. L. (1980). Handbook of water-soluble gums and resins, McGraw-Hill. 



 

 159 

De Joannis, J., P. S. Coppock, F. Yin, M. Mori, A. Zamorano and J. T. Kindt (2011). 

"Atomistic simulation of cholesterol effects on miscibility of saturated and unsaturated 

phospholipids: implications for liquid-ordered/liquid-disordered phase coexistence." Journal 

of the American Chemical Society 133(10): 3625-3634. 

De Laporte, L., J. C. Rea and L. D. Shea (2006). "Design of modular non-viral gene therapy 

vectors." Biomaterials 27(7): 947-954. 

De Smedt, S. C., J. Demeester and W. E. Hennink (2000). "Cationic polymer based gene 

delivery systems." Pharmaceutical research 17(2): 113-126. 

Ding, D., Z. Zhu, Q. Liu, J. Wang, Y. Hu, X. Jiang and B. Liu (2011). "Cisplatin-loaded 

gelatin-poly (acrylic acid) nanoparticles: Synthesis, antitumor efficiency in vivo and 

penetration in tumors." European Journal of Pharmaceutics and Biopharmaceutics 79(1): 

142-149. 

Ding, Y., Z. Jiang, K. Saha, C. S. Kim, S. T. Kim, R. F. Landis and V. M. Rotello (2014). 

"Gold nanoparticles for nucleic acid delivery." Molecular Therapy 22(6): 1075-1083. 

Dizaj, S. M., S. Jafari and A. Y. Khosroushahi (2014). "A sight on the current nanoparticle-

based gene delivery vectors." Nanoscale research letters 9(1): 252. 

Dong, Y. m., W. Mao, H. w. Wang, Y. q. Zhao, X. j. Li, D. x. Bi, L. l. Yang, Q. Ge and X. 

Fang (2006). "Measurement of critical concentration for mesophase formation of chitosan 

derivatives in both aqueous and organic solutions." Polymer international 55(12): 1444-1449. 

Dreborg, S. and E. Akerblom (1989). "Immunotherapy with monomethoxypolyethylene 

glycol modified allergens." Critical reviews in therapeutic drug carrier systems 6(4): 315-

365. 

Eeman, M. and M. Deleu (2010). "From biological membranes to biomimetic model 

membranes." Base. 

Elzoghby, A. O. (2013). "Gelatin-based nanoparticles as drug and gene delivery systems: 

reviewing three decades of research." Journal of Control Release 172(3): 1075-1091. 

Elzoghby, A. O., W. M. Samy and N. A. Elgindy (2012). "Protein-based nanocarriers as 

promising drug and gene delivery systems." Journal of Control Release 161(1): 38-49. 



 

 160 

Emoto, K., T. Kobayashi, A. Yamaji, H. Aizawa, I. Yahara, K. Inoue and M. Umeda (1996). 

"Redistribution of phosphatidylethanolamine at the cleavage furrow of dividing cells during 

cytokinesis." Proceedings of the National Academy of Sciences 93(23): 12867-12872. 

Escribá, P. V., J. M. González‐Ros, F. M. Goñi, P. K. Kinnunen, L. Vigh, L. Sánchez‐

Magraner, A. M. Fernández, X. Busquets, I. Horváth and G. Barceló‐Coblijn (2008). 

"Membranes: a meeting point for lipids, proteins and therapies." Journal of cellular and 

molecular medicine 12(3): 829-875. 

Ewert, K., A. Ahmad, H. M. Evans and C. R. Safinya (2005). "Cationic lipid–DNA 

complexes for non-viral gene therapy: relating supramolecular structures to cellular 

pathways." Expert opinion on biological therapy 5(1): 33-53. 

Ezzati Nazhad Dolatabadi, J. and Y. Omidi (2016). "Solid lipid-based nanocarriers as 

efficient targeted drug and gene delivery systems." TrAC - Trends in Analytical Chemistry 

77: 100-108. 

Fang, N., V. Chan, H.-Q. Mao and K. W. Leong (2001). "Interactions of Phospholipid 

Bilayer with Chitosan:  Effect of Molecular Weight and pH." Biomacromolecules 2(4): 1161-

1168. 

Farhood, H., N. Serbina and L. Huang (1995). "The role of dioleoyl 

phosphatidylethanolamine in cationic liposome mediated gene transfer." Biochimica et 

Biophysica Acta (BBA)-Biomembranes 1235(2): 289-295. 

Farrell, L.-L., J. Pepin, C. Kucharski, X. Lin, Z. Xu and H. Uludag (2007). "A comparison of 

the effectiveness of cationic polymers poly-L-lysine (PLL) and polyethylenimine (PEI) for 

non-viral delivery of plasmid DNA to bone marrow stromal cells (BMSC)." European 

journal of pharmaceutics and biopharmaceutics 65(3): 388-397. 

Farris, S., J. Song and Q. Huang (2009). "Alternative reaction mechanism for the cross-

linking of gelatin with glutaraldehyde." Journal of agricultural and food chemistry 58(2): 

998-1003. 

Farrugia, C. A. and M. J. Groves (1999). "Gelatin behaviour in dilute aqueous solution: 

designing a nanoparticulate formulation." Journal of pharmacy and pharmacology 51(6): 

643-649. 

Felgner, P. L., T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. 

M. Ringold and M. Danielsen (1987). "Lipofection: a highly efficient, lipid-mediated DNA-



 

 161 

transfection procedure." Proceedings of the National Academy of Sciences 84(21): 7413-

7417. 

Finsy, R., N. De Jaeger, R. Sneyers and E. Geladé (1992). "Particle sizing by photon 

correlation spectroscopy. Part III: mono and bimodal distributions and data analysis." Particle 

& particle systems characterization 9(1‐4): 125-137. 

Fischer, D., T. Bieber, Y. Li, H.-P. Elsässer and T. Kissel (1999). "A novel non-viral vector 

for DNA delivery based on low molecular weight, branched polyethylenimine: effect of 

molecular weight on transfection efficiency and cytotoxicity." Pharmaceutical research 

16(8): 1273-1279. 

Fisher, R. K., S. I. Mattern-Schain, M. D. Best, S. S. Kirkpatrick, M. B. Freeman, O. H. 

Grandas and D. J. Mountain (2017). "Improving the efficacy of liposome-mediated vascular 

gene therapy via lipid surface modifications." Journal of Surgical Research 219: 136-144. 

Fisicaro, E., C. Compari, E. Duce, G. Donofrio, B. Różycka-Roszak and E. Woźniak (2005). 

"Biologically active bisquaternary ammonium chlorides: physico–chemical properties of 

long chain amphiphiles and their evaluation as non-viral vectors for gene delivery." 

Biochimica et Biophysica Acta (BBA)-General Subjects 1722(2): 224-233. 

Flory, P. J. and E. S. Weaver (1960). "Helix [unk] coil transitions in dilute aqueous collagen 

solutions1." Journal of the American Chemical Society 82(17): 4518-4525. 

Flotte, T. R., S. A. Afione, C. Conrad, S. McGrath, R. Solow, H. Oka, P. L. Zeitlin, W. B. 

Guggino and B. J. Carter (1993). "Stable in vivo expression of the cystic fibrosis 

transmembrane conductance regulator with an adeno-associated virus vector." Proceedings of 

the National Academy of Sciences 90(22): 10613-10617. 

Foldvari, M., I. Badea, S. Wettig, R. Verrall and M. Bagonluri (2006). "Structural 

characterization of novel gemini non-viral DNA delivery systems for cutaneous gene 

therapy." Journal of Experimental Nanoscience 1(2): 165-176. 

Fonte, P., S. Soares, F. v. Sousa, A. Costa, V. Seabra, S. Reis and B. Sarmento (2014). 

"Stability study perspective of the effect of freeze-drying using cryoprotectants on the 

structure of insulin loaded into PLGA nanoparticles." Biomacromolecules 15(10): 3753-

3765. 

Fraga, M., T. G. de Carvalho, D. da Silva Diel, F. Bruxel, A. K. NéLson Filho, H. F. Teixeira 

and U. Matte (2015). "Cationic nanoemulsions as a gene delivery system: proof of concept in 



 

 162 

the mucopolysaccharidosis I murine model." Journal of nanoscience and nanotechnology 

15(1): 810-816. 

Fresta, M., M. Ricci, C. Rossi, P. M. Furneri and G. Puglisi (2000). "Antimicrobial 

Nonapeptide Leucinostatin A-Dependent Effects on the Physical Properties of Phospholipid 

Model Membranes." Journal of Colloid and Interface Science 226(2): 222-230. 

Fuchs, S., J. Klier, A. May, G. Winter, C. Coester and H. Gehlen (2012). "Towards an 

inhalative in vivo application of immunomodulating gelatin nanoparticles in horse-related 

preformulation studies." Journal of microencapsulation 29(7): 615-625. 

Garcia, M. T., O. Kaczerewska, I. Ribosa, B. Brycki, P. Materna and M. Drgas (2016). 

"Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: 

Effect of the spacer on their ecological properties." Chemosphere 154: 155-160. 

Geh, K. J., M. Hubert and G. Winter (2016). "Optimisation of one-step desolvation and 

scale-up of gelatine nanoparticle production." Journal of microencapsulation 33(7): 595-604. 

Glover, D. J., D. L. Leyton, G. W. Moseley and D. A. Jans (2010). "The efficiency of nuclear 

plasmid DNA delivery is a critical determinant of transgene expression at the single cell 

level." The journal of gene medicine 12(1): 77-85. 

Gluzman, Y. (1981). "SV40-transformed simian cells support the replication of early SV40 

mutants." Cell 23(1): 175-182. 

GMIA (2013). Standard Methods for the Sampling and Testing of Gelatin, Gelatin 

Manufacturers Institute of America. 

Godbey, W., K. K. Wu and A. G. Mikos (1999). "Size matters: molecular weight affects the 

efficiency of poly (ethyleneimine) as a gene delivery vehicle." Journal of biomedical 

materials research 45(3): 268-275. 

Gottfried, L. F. and D. A. Dean (2013). "Extracellular and Intracellular Barriers to Non-Viral 

Gene Transfer." In Novel gene therapy approaches. InTech 

Goula, D., C. Benoist, S. Mantero, G. Merlo, G. Levi and B. Demeneix (1998). 

"Polyethylenimine-based intravenous delivery of transgenes to mouse lung." Gene therapy 

5(9): 1291-1295. 



 

 163 

Grandi, P., M. Spear, X. O. Breakefield and S. Wang (2004). "Targeting HSV amplicon 

vectors." Methods 33(2): 179-186. 

Griffith, F. (1928). "The significance of pneumococcal types." Epidemiology & Infection 

27(2): 113-159. 

Guha, S., M. Rajani and H. Padh (2007). "Identification and characterization of lipids from 

endosomes purified by electromagnetic chromatography." Indian J Biochem Biophys 44(6): 

443-449. 

Guzmán, E., L. Liggieri, E. Santini, M. Ferrari and F. Ravera (2013). "Mixed DPPC–

cholesterol Langmuir monolayers in presence of hydrophilic silica nanoparticles." Colloids 

and Surfaces B: Biointerfaces 105: 284-293. 

Halama, A., M. Kuliński, T. Librowski and S. Lochyński (2009). "Polymer-based non-viral 

gene delivery as a concept for the treatment of cancer." Pharmacological Reports 61(6): 993-

999. 

Honary, S. and F. Zahir (2013). "Effect of zeta potential on the properties of nano-drug 

delivery systems-a review (Part 2)." Tropical Journal of Pharmaceutical Research 12(2): 265-

273. 

Hosseinkhani, H., F. Abedini, K. L. Ou and A. J. Domb (2015). "Polymers in gene therapy 

technology." Polymers for Advanced Technologies 26(2): 198-211. 

Hosseinkhani, H., T. Aoyama, O. Ogawa and Y. Tabata (2002). "Ultrasound enhancement of 

in vitro transfection of plasmid DNA by a cationized gelatin." Journal of Drug Target 10(3): 

193-204. 

Hosseinkhani, H., T. Azzam, Y. Tabata and A. Domb (2004). "Dextran–spermine polycation: 

an efficient nonviral vector for in vitro and in vivo gene transfection." Gene therapy 11(2): 

194-203. 

Hosseinkhani, M., H. Hosseinkhani, Y.-R. Chen and K. Subramani (2011). "In vitro 

physicochemical evaluation of DNA nanoparticles." International Journal of Nanotechnology 

8(8-9): 736-748. 

Huang, P., J. Zhao, C. Wei, X. Hou, P. Chen, Y. Tan, C. Y. He, Z. Wang and Z. Y. Chen 

(2016). "Erythrocyte membrane based cationic polymer-mcDNA complexes as an efficient 

gene delivery system." Biomaterials Science 5(1): 120-127. 



 

 164 

Huang, S.-J., T.-P. Wang, S.-I. Lue and L.-F. Wang (2013). "Pentablock copolymers of 

pluronic F127 and modified poly (2-dimethyl amino) ethyl methacrylate for internalization 

mechanism and gene transfection studies." International journal of nanomedicine 8: 2011. 

Hui, S. W., M. Langner, Y.-L. Zhao, P. Ross, E. Hurley and K. Chan (1996). "The role of 

helper lipids in cationic liposome-mediated gene transfer." Biophysical journal 71(2): 590. 

Hung, M.-C., L. Huang and E. Wagner (1999). Nonviral vectors for gene therapy, Academic 

Press. 

Immordino, M. L., F. Dosio and L. Cattel (2006). "Stealth liposomes: review of the basic 

science, rationale, and clinical applications, existing and potential." International journal of 

nanomedicine 1(3): 297. 

Inbar, M., R. Goldman, L. Inbar, I. Bursuker, B. Goldman, E. Akstein, P. Segal, E. Ipp and I. 

Ben-Bassat (1977). "Fluidity difference of membrane lipids in human normal and leukemic 

lymphocytes as controlled by serum components." Cancer research 37(9): 3037-3041. 

Ishikawa, H., Y. Nakamura, J.-i. Jo and Y. Tabata (2012). "Gelatin nanospheres 

incorporating siRNA for controlled intracellular release." Biomaterials 33(35): 9097-9104. 

Islam, M., S. Shortall, G. Mekhail, S. Callender, O. Madkhali, Z. Bharwani, D. Ayyash, K. 

Kobernyk and S. Wettig (2017). "Effect of counterions on the micellization and monolayer 

behaviour of cationic gemini surfactants." Physical Chemistry Chemical Physics 19(17): 

10825-10834. 

Jalaja, K., D. Naskar, S. C. Kundu and N. R. James (2015). "Fabrication of cationized gelatin 

nanofibers by electrospinning for tissue regeneration." Rsc Advances 5(109): 89521-89530. 

Jensen, F. C., A. J. Girardi, R. V. Gilden and H. Koprowski (1964). "Infection of human and 

simian tissue cultures with Rous sarcoma virus." Proceedings of the National Academy of 

Sciences 52(1): 53-59. 

Jin, L., X. Zeng, M. Liu, Y. Deng and N. He (2014). "Current progress in gene delivery 

technology based on chemical methods and nano-carriers." Theranostics 4(3): 240. 

Jones, C. H., C.-K. Chen, A. Ravikrishnan, S. Rane and B. A. Pfeifer (2013). "Overcoming 

nonviral gene delivery barriers: perspective and future." Molecular pharmaceutics 10(11): 

4082-4098. 



 

 165 

Jones, C. H., C. K. Chen, M. Chen, A. Ravikrishnan, H. Zhang, A. Gollakota, T. Chung, C. 

Cheng and B. A. Pfeifer (2015). "PEGylated Cationic Polylactides for Hybrid Biosynthetic 

Gene Delivery." Molecular pharmaceutics 12(3): 846-856. 

Jurak, M. (2013). "Thermodynamic Aspects of Cholesterol Effect on Properties of 

Phospholipid Monolayers: Langmuir and Langmuir–Blodgett Monolayer Study." The Journal 

of Physical Chemistry B 117(13): 3496-3502. 

Kabanov, A., J. Zhu and V. Alakhov (2005). "Pluronic block copolymers for gene delivery." 

Advances in genetics 53: 231-261. 

Kabanov, A. V., E. V. Batrakova and V. Y. Alakhov (2002). "Pluronic® block copolymers 

for overcoming drug resistance in cancer." Advanced drug delivery reviews 54(5): 759-779. 

Kabanov, A. V., P. Lemieux, S. Vinogradov and V. Alakhov (2002). "Pluronic® block 

copolymers: novel functional molecules for gene therapy." Advanced drug delivery reviews 

54(2): 223-233. 

Kanno, K., M. K. Wu, D. S. Agate, B. J. Fanelli, N. Wagle, E. F. Scapa, C. Ukomadu and D. 

E. Cohen (2007). "Interacting proteins dictate function of the minimal START domain 

phosphatidylcholine transfer protein/StarD2." Journal of Biological Chemistry 282(42): 

30728-30736. 

Kaul, G. and M. Amiji (2002). "Long-circulating poly(ethylene glycol)-modified gelatin 

nanoparticles for intracellular delivery." Pharmaceutical research, 19(7): 1061-1067. 

Kaul, G. and M. Amiji (2004). "Biodistribution and targeting potential of poly(ethylene 

glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model." Journal of 

Drug Target 12(9-10): 585-591. 

Kaul, G. and M. Amiji (2005). "Cellular interactions and in vitro DNA transfection studies 

with poly(ethylene glycol)-modified gelatin nanoparticles." Journal of Pharmcutical Sciences 

94(1): 184-198. 

Kaul, G. and M. Amiji (2005). "Protein nanoparticles for gene delivery." Polymeric Gene 

Delivery: Principles and Applications, Ed. Amiji, M., CRC Press LLC, Boca Raton, FL: 429-

447. 

Kaul, G. and M. Amiji (2005). "Tumor-targeted gene delivery using poly(ethylene glycol)-

modified gelatin nanoparticles: in vitro and in vivo studies." Pharmaceutical research 22(6): 

951-961. 



 

 166 

Kaul, G., C. Lee-Parsons and M. Amiji (2003). "Poly (ethylene glycol)-modified gelatin 

nanoparticles for intracellular delivery." Pharmaceutical Engineering 23(5): 108-117. 

Kaur, T., R. A. Slavcev and S. D. Wettig (2009). "Addressing the challenge: current and 

future directions in ovarian cancer therapy." Current gene therapy 9(6): 434-458. 

Kean, T., S. Roth and M. Thanou (2005). "Trimethylated chitosans as non-viral gene delivery 

vectors: cytotoxicity and transfection efficiency." Journal of Controlled Release 103(3): 643-

653. 

Keeler, A. M., M. K. Elmallah and T. R. Flotte (2017). "Gene therapy 2017: progress and 

future directions." Clinical and translational science 10(4): 242-248. 

Khan, S. A. (2014). "Gelatin Nanoparticles as Potential Nanocarriers for Macromolecular 

Drugs." PhD Dissertation. 

Kim, K., S. Q. Choi, Z. A. Zell, T. M. Squires and J. A. Zasadzinski (2013). "Effect of 

cholesterol nanodomains on monolayer morphology and dynamics." Proceedings of the 

National Academy of Sciences 110(33): E3054-E3060. 

Klock, J. C. and J. K. Pieprzyk (1979). "Cholesterol, phospholipids, and fatty acids of normal 

immature neutrophils: comparison with acute myeloblastic leukemia cells and normal 

neutrophils." Journal of lipid research 20(7): 908-911. 

Kneuer, C., M. Sameti, U. Bakowsky, T. Schiestel, H. Schirra, H. Schmidt and C.-M. Lehr 

(2000). "A nonviral DNA delivery system based on surface modified silica-nanoparticles can 

efficiently transfect cells in vitro." Bioconjugate Chemistry 11(6): 926-932. 

Kneuer, C., M. Sameti, E. G. Haltner, T. Schiestel, H. Schirra, H. Schmidt and C.-M. Lehr 

(2000). "Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA." 

International journal of pharmaceutics 196(2): 257-261. 

Kommareddy, S. and M. Amiji (2005). "Preparation and evaluation of thiol-modified gelatin 

nanoparticles for intracellular DNA delivery in response to glutathione." Bioconjugate 

chemistry 16(6): 1423-1432. 

Kommareddy, S. and M. Amiji (2007). "Biodistribution and pharmacokinetic analysis of 

long-circulating thiolated gelatin nanoparticles following systemic administration in breast 

cancer-bearing mice." Journal of Pharmaceutical Sciences 96(2): 397-407. 



 

 167 

Kommareddy, S. and M. Amiji (2007). "Poly(ethylene glycol)-modified thiolated gelatin 

nanoparticles for glutathione-responsive intracellular DNA delivery." Nanomedicine 3(1): 

32-42. 

Kommareddy, S., D. B. Shenoy and M. M. Amiji (2005). "Gelatin nanoparticles and their 

biofunctionalization." Nanotechnologies for the Life Sciences:Online. 

Kommareddy, S., S. B. Tiwari and M. M. Amiji (2005). "Long-circulating polymeric 

nanovectors for tumor-selective gene delivery." Technology in cancer research & treatment 

4(6): 615-625. 

Konat Zorzi, G., L. Contreras-Ruiz, J. E. Parraga, A. Lopez-Garcia, R. Romero Bello, Y. 

Diebold, B. Seijo and A. Sanchez (2011). "Expression of MUC5AC in ocular surface 

epithelial cells using cationized gelatin nanoparticles." Molecular pharmaceutics 8(5): 1783-

1788. 

Köping‐Höggård, M., Y. S. Mel'nikova, K. M. Vårum, B. Lindman and P. Artursson (2003). 

"Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene 

delivery system in vitro and in vivo." The journal of gene medicine 5(2): 130-141. 

Kou, Z., X. Wang, R. Yuan, H. Chen, Q. Zhi, L. Gao, B. Wang, Z. Guo, X. Xue, W. Cao and 

L. Guo (2014). "A promising gene delivery system developed from PEGylated MoS2 

nanosheets for gene therapy." Nanoscale research letters 9(1): 587. 

Kriegel, C., H. Attarwala and M. Amiji (2013). "Multi-compartmental oral delivery systems 

for nucleic acid therapy in the gastrointestinal tract." Advanced drug delivery reviews 65(6): 

891-901. 

Krown, S. E., D. W. Northfelt, D. Osoba and J. S. Stewart (2004). Use of liposomal 

anthracyclines in Kaposi’s sarcoma. Seminars in oncology, Elsevier. 

Kuo, W.-T., H.-Y. Huang, M.-J. Chou, M.-C. Wu and Y.-Y. Huang (2011). "Surface 

modification of gelatin nanoparticles with polyethylenimine as gene vector." Journal of 

Nanomaterials 2011: 28. 

Kushibiki, T., H. Matsuoka and Y. Tabata (2004). "Synthesis and physical characterization 

of poly (ethylene glycol)-gelatin conjugates." Biomacromolecules 5(1): 202-208. 

Labhasetwar, V. (2005). "Nanotechnology for drug and gene therapy: the importance of 

understanding molecular mechanisms of delivery." Current opinion in biotechnology 16(6): 

674-680. 



 

 168 

Langecker, M., V. Arnaut, J. List and F. C. Simmel (2014). "DNA nanostructures interacting 

with lipid bilayer membranes." Accounts of chemical research 47(6): 1807-1815. 

Lavasanifar, A., J. Samuel and G. S. Kwon (2002). "Poly (ethylene oxide)-block-poly (L-

amino acid) micelles for drug delivery." Advanced drug delivery reviews 54(2): 169-190. 

Lee, E., S. Khan and K.-H. Lim (2011). "Gelatin nanoparticle preparation by 

nanoprecipitation." Journal of Biomaterials Science, Polymer Edition 22(4-6): 753-771. 

Lee, S. J., J. Y. Yhee, S. H. Kim, I. C. Kwon and K. Kim (2013). "Biocompatible gelatin 

nanoparticles for tumor-targeted delivery of polymerized siRNA in tumor-bearing mice." 

Journal of Controlled Release 172(1): 358-366. 

Lee, Y., M. Y. Cho, H. Mo, K. Nam, H. Koo, G.-w. Jin and J. S. Park (2008). "Enhancement 

of the transfection efficiency of poly (ethylenimine) by guanidylation." Bulletin of the 

Korean Chemical Society 29(3): 666. 

Lemieux, P., N. Guerin, G. Paradis, R. Proulx, L. Chistyakova, A. Kabanov and V. Alakhov 

(2000). "A combination of poloxamers increases gene expression of plasmid DNA in skeletal 

muscle." Gene therapy 7(11): 986. 

Lemieux, P., S. Vinogradov, C. Gebhart, N. Guerin, G. Paradis, H.-K. Nguyen, B. Ochietti, 

Y. Suzdaltseva, E. Bartakova and T. Bronich (2000). "Block and graft copolymers and 

Nanogel™ copolymer networks for DNA delivery into cell." Journal of drug targeting 8(2): 

91-105. 

Leo, E., M. A. Vandelli, R. Cameroni and F. Forni (1997). "Doxorubicin-loaded gelatin 

nanoparticles stabilized by glutaraldehyde: involvement of the drug in the cross-linking 

process." International journal of Pharmaceutics 155(1): 75-82. 

Leong, K., H.-Q. Mao, V. Truong-Le, K. Roy, S. Walsh and J. August (1998). "DNA-

polycation nanospheres as non-viral gene delivery vehicles." Journal of Controlled Release 

53(1): 183-193. 

Li, S.-D. and L. Huang (2007). "Non-viral is superior to viral gene delivery." Journal of 

controlled release 123(3): 181. 

Li, W.-B., W. Yuan, F.-J. Xu, C. Zhao, J. Ma and Q.-M. Zhan (2013). "Functional study of 

dextran-graft-poly ((2-dimethyl amino) ethyl methacrylate) gene delivery vector for tumor 

therapy." Journal of biomaterials applications 28(1): 125-135. 



 

 169 

Liang, M. (2012). "Clinical development of oncolytic viruses in China." Current 

pharmaceutical biotechnology 13(9): 1852-1857. 

Liang, Y., Z. Liu, X. Shuai, W. Wang, J. Liu, W. Bi, C. Wang, X. Jing, Y. Liu and E. Tao 

(2012). "Delivery of cationic polymer-siRNA nanoparticles for gene therapies in neural 

regeneration." Biochem Biophys Res Commun 421(4): 690-695. 

Lin, A. J., N. L. Slack, A. Ahmad, C. X. George, C. E. Samuel and C. R. Safinya (2003). 

"Three-dimensional imaging of lipid gene-carriers: membrane charge density controls 

universal transfection behavior in lamellar cationic liposome-DNA complexes." Biophysical 

journal 84(5): 3307-3316. 

Lopes-Costa, T., F. Gámez, S. Lago and J. M. Pedrosa (2011). "Adsorption of DNA to 

octadecylamine monolayers at the air–water interface." Journal of colloid and interface 

science 354(2): 733-738. 

Madkhali, O. (2014). Pluronic-Based Nanoparticles for Gene Therapy Applications. Master's 

thesis. University of Waterloo. 

Magadala, P. and M. Amiji (2008). "Epidermal growth factor receptor-targeted gelatin-based 

engineered nanocarriers for DNA delivery and transfection in human pancreatic cancer 

cells." American Association of Pharmaceutical Scientists Journal 10(4): 565-576. 

Malam, Y., M. Loizidou and A. M. Seifalian (2009). "Liposomes and nanoparticles: 

nanosized vehicles for drug delivery in cancer." Trends in pharmacological sciences 30(11): 

592-599. 

Mali, S. (2013). "Delivery systems for gene therapy." Indian journal of human genetics 

19(1): 3. 

Malvern (2013). "Dynamic Light Scattering: An Introduction in 30 Minutes." 

https://warwick.ac.uk/fac/cross_fac/sciencecity/programmes/internal/themes/am2/booking/pa

rticlesize/intro_to_dls.pdf. 

Maskarinec, S. A., J. Hannig, R. C. Lee and K. Y. C. Lee (2002). "Direct observation of 

poloxamer 188 insertion into lipid monolayers." Biophysical journal 82(3): 1453-1459. 

Maskarinec, S. A. and K. Y. C. Lee (2003). "Comparative study of poloxamer insertion into 

lipid monolayers." Langmuir 19(5): 1809-1815. 

https://warwick.ac.uk/fac/cross_fac/sciencecity/programmes/internal/themes/am2/booking/particlesize/intro_to_dls.pdf
https://warwick.ac.uk/fac/cross_fac/sciencecity/programmes/internal/themes/am2/booking/particlesize/intro_to_dls.pdf


 

 170 

Matulis, D., I. Rouzina and V. A. Bloomfield (2002). "Thermodynamics of cationic lipid 

binding to DNA and DNA condensation: roles of electrostatics and hydrophobicity." Journal 

of the American Chemical Society 124(25): 7331-7342. 

Maurer, N., D. B. Fenske and P. R. Cullis (2001). "Developments in liposomal drug delivery 

systems." Expert opinion on biological therapy 1(6): 923-947. 

McIntosh, C. M., E. A. Esposito, A. K. Boal, J. M. Simard, C. T. Martin and V. M. Rotello 

(2001). "Inhibition of DNA transcription using cationic mixed monolayer protected gold 

clusters." Journal of the American Chemical Society 123(31): 7626-7629. 

McLoughlin, D., R. Dias, B. Lindman, M. Cardenas, T. Nylander, K. Dawson, M. Miguel 

and D. Langevin (2005). "Surface complexation of DNA with insoluble monolayers. 

Influence of divalent counterions." Langmuir 21(5): 1900-1907. 

Melik-Nubarov, N., O. Pomaz, T. Y. Dorodnych, G. Badun, A. Ksenofontov, O. 

Schemchukova and S. Arzhakov (1999). "Interaction of tumor and normal blood cells with 

ethylene oxide and propylene oxide block copolymers." FEBS letters 446(1): 194-198. 

Mellott, A. J., M. L. Forrest and M. S. Detamore (2013). "Physical non-viral gene delivery 

methods for tissue engineering." Annals of biomedical engineering 41(3): 446-468. 

Menger, F. M. and C. Littau (1991). "Gemini-surfactants: synthesis and properties." Journal 

of the American chemical society 113(4): 1451-1452. 

Michanek, A., N. Kristen, F. Höök, T. Nylander and E. Sparr (2010). "RNA and DNA 

interactions with zwitterionic and charged lipid membranes—A DSC and QCM-D study." 

Biochimica et Biophysica Acta (BBA)-Biomembranes 1798(4): 829-838. 

Michanek, A., M. Yanez, H. Wacklin, A. Hughes, T. Nylander and E. Sparr (2012). "RNA 

and DNA association to zwitterionic and charged monolayers at the air–liquid interface." 

Langmuir 28(25): 9621-9633. 

Mimi, H., K. M. Ho, Y. S. Siu, A. Wu and P. Li (2012). "Polyethyleneimine-based core-shell 

nanogels: a promising siRNA carrier for argininosuccinate synthetase mRNA knockdown in 

HeLa cells." Journal of Controlled Release 158(1): 123-130. 

Mintzer, M. A. and E. E. Simanek (2008). "Nonviral vectors for gene delivery." Chemical 

reviews 109(2): 259-302. 



 

 171 

Misra, P. K., J. Meher and S. Maharana (2016). "Investigation on the gelatin-surfactant 

interaction and physiochemical characteristics of the mixture." Journal of Molecular 

Liquids(224): 900-908. 

Mochizuki, S., N. Kanegae, K. Nishina, Y. Kamikawa, K. Koiwai, H. Masunaga and K. 

Sakurai (2013). "The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for 

DNA transfection cooperating with a cationic lipid bearing ethylenediamine." Biochimica et 

Biophysica Acta (BBA)-Biomembranes 1828(2): 412-418. 

Mourya, V. and N. N. Inamdar (2008). "Chitosan-modifications and applications: 

opportunities galore." Reactive and Functional polymers 68(6): 1013-1051. 

Mpofu, P., J. Addai-Mensah and J. Ralston (2003). "Investigation of the effect of polymer 

structure type on flocculation, rheology and dewatering behaviour of kaolinite dispersions." 

International Journal of Mineral Processing 71(1-4): 247-268. 

Nam, H. Y., J. H. Park, K. Kim, I. C. Kwon and S. Y. Jeong (2009). "Lipid-based emulsion 

system as non-viral gene carriers." Archives of Pharmacal Research 32(5): 639-646. 

Nasir, M. N. and F. Besson (2012). "Interactions of the antifungal mycosubtilin with 

ergosterol-containing interfacial monolayers." Biochimica et Biophysica Acta (BBA) - 

Biomembranes 1818(5): 1302-1308. 

Nayerossadat, N., T. Maedeh and P. A. Ali (2012). "Viral and nonviral delivery systems for 

gene delivery." Advanced biomedical research 1. 

Nezhadi, S. H., P. F. Choong, F. Lotfipour and C. R. Dass (2009). "Gelatin-based delivery 

systems for cancer gene therapy." Journal of drug targeting 17(10): 731-738. 

Nguyen, H., P. Lemieux, S. Vinogradov, C. Gebhart, N. Guerin, G. Paradis, T. Bronich, V. 

Alakhov and A. Kabanov (2000). "Evaluation of polyether-polyethyleneimine graft 

copolymers as gene transfer agents." Gene Therapy 7(2): 126. 

Nishikawa, M., S. Takemura, Y. Takakura and M. Hashida (1998). "Targeted delivery of 

plasmid DNA to hepatocytes in vivo: optimization of the pharmacokinetics of plasmid 

DNA/galactosylated poly (L-lysine) complexes by controlling their physicochemical 

properties." Journal of Pharmacology and Experimental Therapeutics 287(1): 408-415. 

Noske, A., M. Schwabe, W. Weichert, S. Darb-Esfahani, A.-C. Buckendahl, J. Sehouli, E. I. 

Braicu, J. Budczies, M. Dietel and C. Denkert (2011). "An intracellular targeted antibody 



 

 172 

detects EGFR as an independent prognostic factor in ovarian carcinomas." BMC cancer 

11(1): 294. 

Ofokansi, K., G. Winter, G. Fricker and C. Coester (2010). "Matrix-loaded biodegradable 

gelatin nanoparticles as new approach to improve drug loading and delivery." European 

Journal of Pharmaceutics and Biopharmaceutics 76(1): 1-9. 

Ogris, M., P. Steinlein, M. Kursa, K. Mechtler, R. Kircheis and E. Wagner (1998). "The size 

of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured 

cells." Gene therapy 5(10): 1425. 

Ogris, M. and E. Wagner (2002). "Targeting tumors with non-viral gene delivery systems." 

Drug discovery today 7(8): 479-485. 

Ohvo-Rekilä, H., B. Ramstedt, P. Leppimäki and J. P. Slotte (2002). "Cholesterol 

interactions with phospholipids in membranes." Progress in lipid research 41(1): 66-97. 

Omata, D., Y. Negishi, R. Suzuki, Y. Oda, Y. Endo-Takahashi and K. Maruyama (2015). 

"Nonviral Gene Delivery Systems by the Combination of Bubble Liposomes and 

Ultrasound." Advances in Genetics 89: 25-48. 

Otsuka, H., Y. Nagasaki and K. Kataoka (2003). "PEGylated nanoparticles for biological and 

pharmaceutical applications." Advanced drug delivery reviews 55(3): 403-419. 

Panyam, J. and V. Labhasetwar (2003). "Biodegradable nanoparticles for drug and gene 

delivery to cells and tissue." Advanced drug delivery reviews 55(3): 329-347. 

Pasenkiewicz-Gierula, M., Y. Takaoka, H. Miyagawa, K. Kitamura and A. Kusumi (1999). 

"Charge pairing of headgroups in phosphatidylcholine membranes: A molecular dynamics 

simulation study." Biophysical Journal 76(3): 1228-1240. 

Pathak, A., S. Patnaik and K. C. Gupta (2009). "Recent trends in non‐viral vector‐mediated 

gene delivery." Biotechnology journal 4(11): 1559-1572. 

Peetla, C., A. Stine and V. Labhasetwar (2009). "Biophysical interactions with model lipid 

membranes: applications in drug discovery and drug delivery." Molecular pharmaceutics 

6(5): 1264-1276. 

Peng, Z. (2005). "Current status of gendicine in China: recombinant human Ad-p53 agent for 

treatment of cancers." Human gene therapy 16(9): 1016-1027. 



 

 173 

Peyrelasse, J., M. Lamarque, J. Habas and N. El Bounia (1996). "Rheology of gelatin 

solutions at the sol-gel transition." Physical Review E 53(6): 6126. 

Pezzoli, D., A. Kajaste-Rudnitski, R. Chiesa and G. Candiani (2013). "Lipid-based 

nanoparticles as nonviral gene delivery vectors." Nanomaterial Interfaces in Biology: 

Methods and Protocols: 269-279. 

Pfeiffer, I. and F. Höök (2004). "Bivalent cholesterol-based coupling of oligonucletides to 

lipid membrane assemblies." Journal of the American Chemical Society 126(33): 10224-

10225. 

Pitard, B., H. Pollard, O. Agbulut, O. Lambert, J.-T. Vilquin, Y. Cherel, J. Abadie, J.-L. 

Samuel, J.-L. Rigaud and S. Menoret (2002). "A nonionic amphiphile agent promotes gene 

delivery in vivo to skeletal and cardiac muscles." Human gene therapy 13(14): 1767-1775. 

Plank, C., U. Schillinger, F. Scherer, C. Bergemann, J.-S. Rémy, F. Krötz, M. Anton, J. 

Lausier and J. Rosenecker (2003). "The magnetofection method: using magnetic force to 

enhance gene delivery." Biological chemistry 384(5): 737-747. 

Pollard, H., J.-S. Remy, G. Loussouarn, S. Demolombe, J.-P. Behr and D. Escande (1998). 

"Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in 

mammalian cells." Journal of Biological Chemistry 273(13): 7507-7511. 

Prabha, S., G. Arya, R. Chandra, B. Ahmed and S. Nimesh (2016). "Effect of size on 

biological properties of nanoparticles employed in gene delivery." Artificial cells, 

nanomedicine, and biotechnology 44(1): 83-91. 

Prevette, L. E., M. L. Lynch, K. Kizjakina and T. M. Reineke (2008). "Correlation of amine 

number and pDNA binding mechanism for trehalose-based polycations." Langmuir 24(15): 

8090-8101. 

Purama, R. K., P. Goswami, A. T. Khan and A. Goyal (2009). "Structural analysis and 

properties of dextran produced by Leuconostoc mesenteroides NRRL B-640." Carbohydrate 

Polymers 76(1): 30-35. 

Ramamoorth, M. and A. Narvekar (2015). "Non viral vectors in gene therapy-an overview." 

Journal of clinical and diagnostic research: JCDR 9(1): GE01. 

Ran, R., Y. Liu, H. Gao, Q. Kuang, Q. Zhang, J. Tang, K. Huang, X. Chen, Z. Zhang and Q. 

He (2014). "Enhanced gene delivery efficiency of cationic liposomes coated with PEGylated 



 

 174 

hyaluronic acid for anti P-glycoprotein siRNA: a potential candidate for overcoming multi-

drug resistance." International journal of pharmaceutics 477(1-2), 590-600. 

Ratko, T. A., J. P. Cummings, J. Blebea and K. A. Matuszewski (2003). "Clinical gene 

therapy for nonmalignant disease." The American journal of medicine 115(7): 560-569. 

Raudino, A. and D. Mauzerall (1986). "Dielectric properties of the polar head group region 

of zwitterionic lipid bilayers." Biophysical journal 50(3): 441-449. 

Rideal, E. and J. Davies (1963). Interfacial phenomena, Academic Press, New York. 

Riley, M. K. and W. Vermerris (2017). "Recent advances in nanomaterials for gene 

delivery—a review." Nanomaterials 7(5): 94. 

Rog, T., K. Murzyn, R. Gurbiel, Y. Takaoka, A. Kusumi and M. Pasenkiewicz-Gierula 

(2004). "Effects of phospholipid unsaturation on the bilayer nonpolar region: a molecular 

simulation study." Journal of lipid research 45(2), 326-336. 

Rose, P. G. (2005). "Pegylated liposomal doxorubicin: optimizing the dosing schedule in 

ovarian cancer." The Oncologist 10(3): 205-214. 

Rosenzweig, H. S., V. A. Rakhmanova and R. C. MacDonald (2001). "Diquaternary 

ammonium compounds as transfection agents." Bioconjugate chemistry 12(2): 258-263. 

Roy, I., S. Mitra, A. Maitra and S. Mozumdar (2003). "Calcium phosphate nanoparticles as 

novel non-viral vectors for targeted gene delivery." International Journal of Pharmaceutics 

250(1): 25-33. 

Sahoo, N., R. K. Sahoo, N. Biswas, A. Guha and K. Kuotsu (2015). "Recent advancement of 

gelatin nanoparticles in drug and vaccine delivery." International journal of biological 

macromolecules 81: 317-331. 

Samal, S. K., M. Dash, S. Van Vlierberghe, D. L. Kaplan, E. Chiellini, C. Van Blitterswijk, 

L. Moroni and P. Dubruel (2012). "Cationic polymers and their therapeutic potential." 

Chemical Society Reviews 41(21): 7147-7194. 

Schlessinger, J. (2002). "Ligand-induced, receptor-mediated dimerization and activation of 

EGF receptor." Cell 110(6): 669-672. 



 

 175 

Schuetze, W. and C. Mueller-Goymann (1993). "Interactions between nonionic surfactant 

aggregates and gelatin-rheological measurements." Colloid & Polymer Science 271(10): 992-

996. 

Senning, A. (1997). A review of:“An Introduction to Organosulfur Chemistry”, Taylor & 

Francis. 

Seoane, R., J. Minones, O. Conde, J. Minones, M. Casas and E. Iribarnegaray (2000). 

"Thermodynamic and Brewster angle microscopy studies of fatty acid/cholesterol mixtures at 

the air/water interface." The Journal of Physical Chemistry B 104(32): 7735-7744. 

Sewell, J., K. Macleod, A. Ritchie, J. Smyth and S. Langdon (2002). "Targeting the EGF 

receptor in ovarian cancer with the tyrosine kinase inhibitor ZD 1839 (‘Iressa’)." British 

journal of cancer 86(3): 456-462. 

Shah, S. (2010). "Hypoxia in tumor angiogenesis and metastasis: evaluation of VEGF and 

MMP over-expression and down-regulation of HIF-1a with RNAi in hypoxic tumor cells." 

Master's thesis, Northeastern University. 

Shi, S. L., B. Dan, F. Liu, L. R. Lin, Z. G. Fu, G. J. Jing, T. C. Yang and Z. Y. Zhang (2010). 

"Synthesis and characterization of a novel cationic polymer gene delivery vector." 

International journal of molecular medicine 26(4), 491-500. 

Shilpi, D., V. Kushwah, A. K. Agrawal and S. Jain (2017). "Improved Stability and 

Enhanced Oral Bioavailability of Atorvastatin Loaded Stearic Acid Modified Gelatin 

Nanoparticles." Pharmaceutical Research 34(7): 1505-1516. 

Silvius, J. R. (2003). "Role of cholesterol in lipid raft formation: lessons from lipid model 

systems." Biochimica et Biophysica Acta (BBA)-Biomembranes 1610(2): 174-183. 

Song, F., L.-M. Zhang, C. Yang and L. Yan (2009). "Genipin-crosslinked casein hydrogels 

for controlled drug delivery." International journal of pharmaceutics 373(1): 41-47. 

Sriadibhatla, S., Z. Yang, C. Gebhart, V. Y. Alakhov and A. Kabanov (2006). 

"Transcriptional activation of gene expression by pluronic block copolymers in stably and 

transiently transfected cells." Molecular Therapy 13(4): 804-813. 

Stamatatos, L., R. Leventis, M. J. Zuckermann and J. R. Silvius (1988). "Interactions of 

cationic lipid vesicles with negatively charged phospholipid vesicles and biological 

membranes." Biochemistry 27(11): 3917-3925. 



 

 176 

Stolberg, S. G. (1999). "The biotech death of Jesse Gelsinger." New York Times Magazine 

28: 136-140. 

Stone, D. (2010). "Novel viral vector systems for gene therapy." Molecular Diversity 

Preservation International. 1002-1007. 

Sun, X. and N. Zhang (2010). "Cationic polymer optimization for efficient gene delivery." 

Mini Rev Med Chem 10(2): 108-125. 

Teichler Zallen, D. (2000). "US gene therapy in crisis." Trends in Genetics 16(6): 272-275. 

Ter Haar, G. (2007). "Therapeutic applications of ultrasound." Progress in biophysics and 

molecular biology 93(1): 111-129. 

Torchilin, V. P. (2012). "Multifunctional nanocarriers." Advanced drug delivery reviews 64: 

302-315. 

Touchot, N. and M. Flume (2017). "Early Insights from Commercialization of Gene 

Therapies in Europe." Genes 8(2): 78. 

Tros de Ilarduya, C., Y. Sun and N. Düzgüneş (2010). "Gene delivery by lipoplexes and 

polyplexes." European journal of pharmaceutical sciences 40(3): 159-170. 

Tuoriniemi, J., A.-C. J. Johnsson, J. P. Holmberg, S. Gustafsson, J. A. Gallego-Urrea, E. 

Olsson, J. B. Pettersson and M. Hassellöv (2014). "Intermethod comparison of the particle 

size distributions of colloidal silica nanoparticles." Science and technology of advanced 

materials 15(3): 035009. 

Ulman, A. (2013). An Introduction to Ultrathin Organic Films: From Langmuir--Blodgett to 

Self--Assembly, Academic press. 

Vaidyanathan, S., J. Chen, B. G. Orr and M. M. Banaszak Holl (2016). "Cationic Polymer 

Intercalation into the Lipid Membrane Enables Intact Polyplex DNA Escape from 

Endosomes for Gene Delivery." Molecular pharmaceutics 13(6): 1967-1978. 

Vance, J. E. and G. Tasseva (2013). "Formation and function of phosphatidylserine and 

phosphatidylethanolamine in mammalian cells." Biochimica et Biophysica Acta (BBA)-

Molecular and Cell Biology of Lipids 1831(3): 543-554. 



 

 177 

Vandelli, M., F. Rivasi, P. Guerra, F. Forni and R. Arletti (2001). "Gelatin microspheres 

crosslinked with D, L-glyceraldehyde as a potential drug delivery system: preparation, 

characterisation, in vitro and in vivo studies." International journal of pharmaceutics 215(1): 

175-184. 

Varkouhi, A. K., M. Scholte, G. Storm and H. J. Haisma (2011). "Endosomal escape 

pathways for delivery of biologicals." Journal of Controlled Release 151(3): 220-228. 

Vieira, O. V., D. O. Hartmann, C. M. Cardoso, D. Oberdoerfer, M. Baptista, M. A. Santos, L. 

Almeida, J. Ramalho-Santos and W. L. Vaz (2008). "Surfactants as microbicides and 

contraceptive agents: a systematic in vitro study." PLoS One 3(8): e2913. 

Vollhardt, D. and V. Fainerman (2006). "Progress in characterization of Langmuir 

monolayers by consideration of compressibility." Advances in colloid and interface science 

127(2): 83-97. 

Von Storp, B., A. Engel, A. Boeker, M. Ploeger and K. Langer (2012). "Albumin 

nanoparticles with predictable size by desolvation procedure." Journal of microencapsulation 

29(2): 138-146. 

Wang, C. Y. and L. Huang (1989). "Highly efficient DNA delivery mediated by pH-sensitive 

immunoliposomes." Biochemistry 28(24): 9508-9514. 

Wang, H., O. C. Boerman, K. Sariibrahimoglu, Y. Li, J. A. Jansen and S. C. Leeuwenburgh 

(2012). "Comparison of micro-vs. nanostructured colloidal gelatin gels for sustained delivery 

of osteogenic proteins: Bone morphogenetic protein-2 and alkaline phosphatase." 

Biomaterials 33(33): 8695-8703. 

Wang, H., T. Kaur, N. Tavakoli, J. Joseph and S. Wettig (2013). "Transfection and structural 

properties of phytanyl substituted gemini surfactant-based vectors for gene delivery." 

Physical Chemistry Chemical Physics 15(47): 20510-20516. 

Wang, H. and S. D. Wettig (2011). "Synthesis and aggregation properties of dissymmetric 

phytanyl-gemini surfactants for use as improved DNA transfection vectors." Physical 

Chemistry Chemical Physics 13(2): 637-642. 

Wang, X., D. Niu, C. Hu and P. Li (2015). "Polyethyleneimine-Based nanocarriers for gene 

delivery." Current Pharmaceutical Design 21(42): 6140-6156. 

Wang, Y.-Q., J. Su, F. Wu, P. Lu, L.-F. Yuan, W.-E. Yuan, J. Sheng and T. Jin (2012). 

"Biscarbamate cross-linked polyethylenimine derivative with low molecular weight, low 



 

 178 

cytotoxicity, and high efficiency for gene delivery." International journal of nanomedicine 7: 

693. 

Wang, Y., Y. Zhang, W. Du, C. Wu and J. Zhao (2009). "Intelligent core-shell nanoparticles 

and hollow spheres based on gelatin and PAA via template polymerization." Journal of 

colloid and interface science 334(2): 153-160. 

Weingarten, C., N. S. S. Magalhaes, A. Baszkin, S. Benita and M. Seiller (1991). 

"Interactions of a non-ionic ABA copolymer surfactant with phospholipid monolayers: 

possible relevance to emulsion stabilization." International journal of pharmaceutics 75(2-3): 

171-179. 

Wettig, S. and R. Verrall (2001). "Thermodynamic studies of aqueous m–s–m gemini 

surfactant systems." Journal of colloid and interface science 235(2): 310-316. 

Wettig, S. D., R. E. Verrall and M. Foldvari (2008). "Gemini surfactants: a new family of 

building blocks for non-viral gene delivery systems." Current gene therapy 8(1): 9-23. 

Wilson, J. M. (2005). "Gendicine: The first commercial gene therapy product; Chinese 

translation of editorial." Human gene therapy 16(9): 1014-1015. 

Wirth, T., N. Parker and S. Ylä-Herttuala (2013). "History of gene therapy." Gene 525(2): 

162-169. 

Wirth, T., H. Samaranayake, J. Pikkarainen, A. Määttä and S. Ylä-Herttuala (2009). "Clinical 

trials for glioblastoma multiforme using adenoviral vectors." Current opinion in molecular 

therapeutics 11(5): 485-492. 

Wirtz, K. W. A. (2006). "Phospholipid transfer proteins in perspective." FEBS Letters 

580(23): 5436-5441. 

Wissing, S., O. Kayser and R. Müller (2004). "Solid lipid nanoparticles for parenteral drug 

delivery." Advanced drug delivery reviews 56(9): 1257-1272. 

Wnętrzak, A., K. Łątka and P. Dynarowicz-Łątka (2013). "Interactions of 

alkylphosphocholines with model membranes—the langmuir monolayer study." The Journal 

of membrane biology 246(6): 453-466. 

Wong, S. Y., J. M. Pelet and D. Putnam (2007). "Polymer systems for gene delivery—Past, 

present, and future." Progress in Polymer Science 32(8): 799-837. 



 

 179 

Wu, G., J. Majewski, C. Ege, K. Kjaer, M. J. Weygand and K. Y. C. Lee (2004). "Lipid 

corralling and poloxamer squeeze-out in membranes." Physical review letters 93(2): 028101. 

Wydro, P., S. Knapczyk and M. Łapczyńska (2011). "Variations in the condensing effect of 

cholesterol on saturated versus unsaturated phosphatidylcholines at low and high sterol 

concentration." Langmuir 27(9): 5433-5444. 

Xiong, X.-B., Z. Binkhathlan, O. Molavi and A. Lavasanifar (2012). "Amphiphilic block co-

polymers: Preparation and application in nanodrug and gene delivery." Acta biomaterialia 

8(6): 2017-2033. 

Xu, J. and M. Amiji (2012). "Therapeutic gene delivery and transfection in human pancreatic 

cancer cells using epidermal growth factor receptor-targeted gelatin nanoparticles." Journal 

of visualized experiments: JoVE(59). 

Xu, J., S. Ganesh and M. Amiji (2012). "Non-condensing polymeric nanoparticles for 

targeted gene and siRNA delivery." International journal of pharmaceutics 427(1): 21-34. 

Xu, J., F. Gattacceca and M. Amiji (2013). "Biodistribution and pharmacokinetics of EGFR-

targeted thiolated gelatin nanoparticles following systemic administration in pancreatic 

tumor-bearing mice." Molecular pharmaceutics 10(5): 2031-2044. 

Xu, J., A. Singh and M. M. Amiji (2014). "Redox-responsive targeted gelatin nanoparticles 

for delivery of combination wt-p53 expressing plasmid DNA and gemcitabine in the 

treatment of pancreatic cancer." BMC Cancer 14: 75. 

Xu, M., D. Kumar, S. Srinivas, L. Detolla, S. Yu, S. Stass and A. Mixson (1997). "Parenteral 

gene therapy with p53 inhibits human breast tumors in vivo through a bystander mechanism 

without evidence of toxicity." Human gene therapy 8(2): 177-185. 

Xu, X., R. M. Capito and M. Spector (2008). "Delivery of plasmid IGF‐1 to chondrocytes via 

cationized gelatin nanoparticles." Journal of Biomedical Materials Research Part A 84(1): 

73-83. 

Xu, Y. and F. C. Szoka (1996). "Mechanism of DNA release from cationic liposome/DNA 

complexes used in cell transfection." Biochemistry 35(18): 5616-5623. 

Yamaoka, T., Y. Tabata and Y. Ikada (1994). "Distribution and tissue uptake of poly 

(ethylene glycol) with different molecular weights after intravenous administration to mice." 

Journal of pharmaceutical sciences 83(4): 601-606. 



 

 180 

Yang, Z., J. Zhu, S. Sriadibhatla, C. Gebhart, V. Alakhov and A. Kabanov (2005). 

"Promoter-and strain-selective enhancement of gene expression in a mouse skeletal muscle 

by a polymer excipient Pluronic P85." Journal of controlled release 108(2): 496-512. 

Yeagle, P. L. (1985). "Cholesterol and the cell membrane." Biochimica et Biophysica Acta 

(BBA)-Reviews on Biomembranes 822(3-4): 267-287. 

Yin, H., R. L. Kanasty, A. A. Eltoukhy, A. J. Vegas, J. R. Dorkin and D. G. Anderson 

(2014). "Non-viral vectors for gene-based therapy." Nature Reviews Genetics 15(8): 541-

555. 

Young, J. L. and D. A. Dean (2015). "Chapter Three-Electroporation-Mediated Gene 

Delivery." Advances in genetics 89: 49-88. 

Zana, R. (2002). "Dimeric (gemini) surfactants: effect of the spacer group on the association 

behavior in aqueous solution." Journal of colloid and interface science 248(2): 203-220. 

Zana, R. and J. Xia (2003). Gemini surfactants: synthesis, interfacial and solution-phase 

behavior, and applications, Crc Press. 

Zauner, W., M. Ogris and E. Wagner (1998). "Polylysine-based transfection systems utilizing 

receptor-mediated delivery." Advanced drug delivery reviews 30(1): 97-113. 

Zhang, B., X. Ma, W. Murdoch, M. Radosz and Y. Shen (2013). "Bioreducible poly (amido 

amine) s with different branching degrees as gene delivery vectors." Biotechnology and 

bioengineering 110(3): 990-998. 

Zhao, L. and S.-S. Feng (2006). "Effects of cholesterol component on molecular interactions 

between paclitaxel and phospholipid within the lipid monolayer at the air–water interface." 

Journal of colloid and interface science 300(1): 314-326. 

Zhi, D., S. Zhang, S. Cui, Y. Zhao, Y. Wang and D. Zhao (2013). "The headgroup evolution 

of cationic lipids for gene delivery." Bioconjugate chemistry 24(4): 487-519. 

Zhou, J., J. Liu, C. J. Cheng, T. R. Patel, C. E. Weller, J. M. Piepmeier, Z. Jiang and W. M. 

Saltzman (2012). "Biodegradable poly (amine-co-ester) terpolymers for targeted gene 

delivery." Nature materials 11(1): 82-90. 

Zhou, P. and J. Regenstein (2006). "Determination of total protein content in gelatin 

solutions with the Lowry or Biuret assay." Journal of food science 71(8): C474-C479. 



 

 181 

Zillies, J. (2007). Gelatin Nanoparticles for Targeted Oligonucleotide Delivery to Kupffer 

Cells-Analytics, Formulation Development, Practical Application, Doctoral dissertation, lmu. 

Zillies, J. C., K. Zwiorek, F. Hoffmann, A. Vollmar, T. J. Anchordoquy, G. Winter and C. 

Coester (2008). "Formulation development of freeze-dried oligonucleotide-loaded gelatin 

nanoparticles." European Journal of Pharmaceutics and Biopharmaceutics 70(2): 514-521. 

Zorzi, G. K., J. E. Parraga, B. Seijo and A. Sanchez (2011). "Hybrid nanoparticle design 

based on cationized gelatin and the polyanions dextran sulfate and chondroitin sulfate for 

ocular gene therapy." Macromolecular bioscience 11(7): 905-913. 

Zorzi, G. K., J. E. Parraga, B. Seijo and A. Sanchez (2015). "Comparison of different 

cationized proteins as biomaterials for nanoparticle-based ocular gene delivery." Colloids and 

Surfaces B: Biointerfaces 135: 533-541. 

Zorzi, G. K., J. E. Párraga, B. Seijo and A. Sánchez (2011). "Hybrid nanoparticle design 

based on cationized gelatin and the polyanions dextran sulfate and chondroitin sulfate for 

ocular gene therapy." Macromolecular bioscience 11(7): 905-913. 

Zwiorek, K. (2006). Gelatin nanoparticles as delivery system for nucleotide-based drugs, 

Doctoral dissertation, lmu. 

Zwiorek, K., C. Bourquin, J. Battiany, G. Winter, S. Endres, G. Hartmann and C. Coester 

(2008). "Delivery by cationic gelatin nanoparticles strongly increases the immunostimulatory 

effects of CpG oligonucleotides." Pharmaceutical research 25(3): 551-562. 

Zwiorek, K., J. Kloeckner, E. Wagner and C. Coester (2005). "Gelatin nanoparticles as a new 

and simple gene delivery system." Journal of Pharmacy & Pharmaceutical Sciences 7(4): 22-

28. 
 

 


