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Graphical Abstract 

 
 

Highlights 

 ·PtCu networks with ultrathin jagged nanowires and controllable composition are 

obtained.  

 ·The sample displays remarkable catalytic activity for the oxygen reduction reaction.  

 ·The sample exhibits outstanding catalytic durability and stability.  

 ·This method can be facilely extended to prepare PtCuAu networks with high 

porosity.  

 

Abstract 

We report a simple and efficient surfactant-free method to prepare 3D porous PtCu networks 

with ultrathin jagged nanowires and controllable composition. The morphological evolution 

and the influential effects of the important experimental parameters on the PtCu networks 

have been systematically studied. Relative to commercial Pt/C and Pt black catalysts, these 

porous PtCu networks exhibit much better activity and remarkably improved durability 

towards the oxygen reduction reaction (ORR). The excellent ORR performance could be 

attributed to their structural features, including the core-shell nanostructures with a Pt-skin, 

the 3D porous networks with high surface area, and the ultrathin (3.6 nm) jagged nanowires 

with plentiful edge/corner atoms. Notably, this method can be facilely extended to obtain 
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PtCuAu trimetallic nanowire networks with high porosity, which exhibits its robustness for 

preparing novel 3D porous nanostructures with great potential in various catalytic 

applications. 

 

Keywords: 3D porous materials; Pt-based alloys; Morphological evolution; Nanostructures; 

Oxygen reduction reaction 

 

1. Introduction  

 Pt-based nanostructures have received considerable attention due to their unique 

properties in various applications, such as catalysis, electrochemistry, and sensors [1-5]. 

Among these applications, proton exchange membrane fuel cells (PEMFCs) represent one of 

the most promising power sources for electric vehicles and portable electronic devices owing 

to their relatively high energy conversion efficiency, low operation temperature, and 

non-polluting emissions [2,6]. However, the promise of their wide commercial application is 

seriously hindered by the high cost, insufficient activity and poor durability of Pt-based 

catalysts for the sluggish oxygen reduction reaction (ORR) at the cathode [7]. Moreover, since 

carbon-supported Pt-based catalysts are the most widely-used ORR catalysts, the corrosion of 

carbon supports during the start-up and shut-down cycling and long-term operational 

conditions is a serious issue which results in a significant loss of ORR activity and PEMFC 

performance [8]. Therefore, the development of advanced Pt-based electrocatalysts with 

reduced Pt mass, enhanced catalytic activity and durability, and corrosion-resistant carbon 

supports is strongly demanded for the efficiency and commercial viability of PEMFCs. 

 One of the effective strategies to improve the performance and utilization efficiency of 

Pt-based catalysts is to prepare porous nanostructures with large surface area and high 

porosity, such as branched/dendritic nanocrystals [9,10], nanotubes [11,12], nanoframes 

[13,14], porous films and networks [15-17]. Among them, 3D porous networks are a unique 

and promising class of nanomaterials, featuring low densities, large open interconnected pores, 

and abundant active sites [16,18]. These 3D porous networks of weaved nanowire units not 

only own the inherent features of 1D nanostructured catalysts (i.e., high stability, fast electron 

transport, and highly-exposed active sites) [19,20], but can also demonstrate improved 

catalytic performance as one on the macroscale relative to their component units due to their 
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enhanced collective properties [21]. Furthermore, the structural rigidity of 3D porous 

networks allows them to serve as support-free electrocatalysts to eliminate the carbon 

corrosion issue in conventional electrocatalysts. Thus, the exploration of novel 3D porous 

networks as electrocatalysts is of great interest. 

 Over the past decades, many synthetic approaches have been successfully exploited for 

preparing noble-metal-based 3D porous networks, such as hard templating, dealloying, and 

galvanic replacement. However, harsh and/or complex procedures or sacrificial materials 

were required, rendering these techniques difficult to perform at commercial scale [22,23]. 

Recently, self-assembly has been developed as a simple and effective method for creating 3D 

porous networks [16-18,24-26]. For example, Eychmüller et al. reported a facile method for 

producing 3D porous Pd networks by directly reducing Pd salts using sodium borohydride as 

the reducing agent in the presence of cyclodextrin [16]. Arachchige et al. reported a 

salt-mediated self-assembly of metal nanoshells into 3D porous bimetallic networks (AuAg, 

PdAg, and PtAg) [24]. Despite the above successful demonstrations, it has to be pointed out 

that the fabrication of noble-metal-based 3D porous networks is still very limited in 

comparison with other traditional materials (such as oxides, carbons, non-noble metals). More 

importantly, two major challenges in the synthesis of noble-metal-based 3D porous networks 

should be addressed prior to their practical application in PEMFCs. The first is the 

development of simple, efficient and environmentally-friendly strategies which can be 

performed at an industrial scale. Reported synthetic procedures have at least one disadvantage 

in this regard, including multistep, long reaction times (several days to months), high reaction 

temperatures, and the use of surfactants as structure-directing agents. The second challenge is 

to allow the introduction of non-noble metals to form bi-/trimetallic alloys. This would lower 

costs by reducing the use of noble metals, while enabling enhanced activity and stability of 

noble-metal-based electrocatalysts by exploiting the synergetic effects between each metal 

[27]. 

 To address these challenges, we report herein a simple and effective approach for the 

preparation of 3D porous PtCu with ultrathin nanowire networks and controllable 

composition. The technique, which involves direct reduction of metal precursors in an 

aqueous solution at room temperature, requires no surfactants and can be performed within 
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hours. The morphological evolution and the influence of the major synthesis parameters on 

the final products have been systematically investigated. The obtained PtCu porous networks, 

as support-free ORR electrocatalysts, exhibit a highly superior activity and significantly 

improved durability in comparison with commercial Pt/C and Pt black catalysts. Furthermore, 

tri-metallic PtCuAu with 3D porous nanowire networks can be readily synthesized by 

addition and co-reduction of Au precursor with Pt and Cu, demonstrating the flexibility and 

feasibility of our method for creating novel 3D porous nanoarchitectures. 

2. Experimental section 

2.1 Synthesis of porous PtCu networks 

 In a typical synthesis of porous Pt76Cu24 networks, aqueous solutions of H2PtCl6 (129 μL, 

30 mM) and CuCl2 (43 μL, 30 mM) were mixed in a vial with deionized water (15 mL). Then, 

freshly prepared NaBH4 (0.35 mL, 50 mM) aqueous solution was added into the vial under 

sonication for 1 min at room temperature. The resulting mixture was kept in the static state for 

about 8 h at room temperature. The products were collected by centrifugation and washed two 

times with deionized water. Pt52Cu48 and Pt28Cu72 networks were synthesized using the same 

synthesis procedure with different molar ratios of Pt and Cu precursors (86 μL of 30 mM 

H2PtCl6 and 86 μL of 30 mM of CuCl2 for Pt52Cu48, 43 μL of 30 mM H2PtCl6 and 129 μL of 

30 mM of CuCl2 for Pt28Cu72). 

2.2 Synthesis of porous PtCuAu networks 

 In a typical synthesis of porous PtCuAu networks, aqueous solutions of H2PtCl6 (43 μL, 

30 mM), CuCl2 (86 μL, 30 mM), and HAuCl4 (43 μL, 30 mM) were mixed in a vial with 

deionized water (15 mL). Then, fresh NaBH4 (0.35 mL, 50 mM) aqueous solution was added 

into the vial under sonication for 1 min at room temperature. The resulting mixture was kept 

in the static state for about 8 h at room temperature. The products were collected by 

centrifugation and washed two times with deionized water.  

2.3 Characterization 
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 XRD measurements were conducted on a XRG 3000 diffractometer equipped with Cu Kα 

radiation. SEM and TEM images were carried out on LEO FESEM 1530 and JEOL2010F 

microscopes, respectively. The nitrogen adsorption and desorption isotherms were collected 

on a Micromeritics ASAP 3020 system. The outgas temperature for all adsorption/desorption 

measurements was 80 oC (maintained overnight). The elemental contents in the catalysts were 

measured by ICP-AES (Perkin Elmer Ltd., USA). The chemical surface characteristics were 

measured with XPS (Thermal Scientific K-Alpha). 

2.5 Electrochemical measurements 

 All electrochemical measurements were conducted in a three-electrode cell at room 

temperature. A platinum wire and reversible hydrogen electrode were used as counter and 

reference electrodes, respectively. A glassy-carbon rotating disk electrode (RDE, diameter: 5 

mm, area: 0.196 cm2) served as the substrate for the working electrode. The Pt loadings of all 

PtCu samples on glassy-carbon were 15.0 μg cm-2. CV measurements were performed in 

N2-saturated 0.1 M HClO4 solution at a sweep rate of 50 mV s-1. ORR measurements were 

conducted in O2-saturated 0.1 M HClO4 solution at a rotation rate of 1600 rpm with a sweep 

rate of 10 mV s-1. The accelerated durability tests were carried out in O2-saturated 0.1 M 

HClO4 solution by applying cyclic potential sweeps between 0.6 and 1.1 V versus RHE at a 

sweep rate of 50 mV s-1 for different cycles. For comparison, commercial Pt/C catalyst (TKK, 

28.2 wt% Pt) and Pt black (Sigma-Aldrich, 99.9% fuel cell grade) were used as the baseline 

catalysts, and the same procedure as described above was used to perform the electrochemical 

measurements, except that the Pt loadings were 20.0 μg cm-2 and 51.0 μg cm-2 for commercial 

Pt/C and Pt black catalysts, respectively. 

3. Results and discussion  

 The morphology and structure of as-synthesized Pt76Cu24 were initially investigated by 

electron microscopy. As shown in Fig. 1a, the representative scanning electron microscopy 

(SEM) image shows that Pt76Cu24 displays a typical three-dimensional porous nanostructure 

with open interconnected pores and ultrathin nanowire networks. These porous networks, 

constructed by ultrathin and jagged nanowires with an average diameter of 3.6 nm, are clearly 
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presented in the high-angle annular dark-field scanning transmission electron microscopy 

(HAADF-STEM) and TEM images (Fig. 1b,c). Selected-area electron diffraction (SAED) of 

Pt76Cu24 reveals a polycrystalline diffraction pattern of concentric rings, which can be 

assigned to (111), (200), (311), and (222) planes of face-centered cubic (fcc) PtCu (Inset of 

Fig. 1c), indicating the highly crystalline degree of these porous networks. To identify the 

crystalline structure of the individual nanowires, some common locations in Pt76Cu24 

networks including one branch-free end, one cross-linked area, and one curved loop are 

characterized by high-resolution TEM (HRTEM) and the fast Fourier transformation (FFT) 

(Fig. 1d-f). All of these images reveal that Pt76Cu24 networks show clear atomic lattices with 

variable orientation. Notably, these nanowires exhibit jagged nanostructures with plentiful 

atomic edges and corners, which would be advantageous for their catalytic applications.[19,27] 

The widely distributed fringes with lattice spacings of 0.22 nm, 0.19 nm and 0.14 nm can be 

assigned respectively to the (111), (200) and (220) planes of fcc PtCu. To investigate the 

elemental distribution, elemental maps of an individual nanowire in Pt76Cu24 networks were 

collected with HAADF-STEM energy-dispersive X-ray spectroscopy (HAADF-STEM-EDX). 

As shown in Fig. 1g, Pt elements are distributed throughout the whole nanowire while Cu 

elements are only located in the center along the nanowire, showing a typical core-shell 

nanostructure. This Pt76Cu24 bimetallic core-shell structure is further confirmed by 

HAADF-STEM-EDX line scanning analyses (Fig. 1h). 

 X-ray photoelectron spectroscopy (XPS) spectra of characteristic Pt and Cu peaks for 

Pt76Cu24 networks are shown in Fig. S1. Analysis of the Pt 4f and Cu 2p spectra indicates that 

~ 90% surface Pt and ~ 100% surface Cu are in the metallic state while ~ 10% surface Pt are 

in the oxidized state. Meanwhile, as measured by inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) (Table S1), the overall Pt and Cu molar ratio in Pt76Cu24 is about 3:1, 

which is consistent with the supplied Pt/Cu atomic ratio in the initial reaction, indicating that 

the Pt and Cu precursors are fully utilized during the synthesis. The crystallinity of Pt76Cu24 

networks was also investigated by powder X-ray diffraction (XRD) (Fig. S2). The three 

distinct peaks correspond to (111), (200), and (220) planes of the fcc PtCu crystal structure, 

which is in good agreement with the SAED results. Compared to the corresponding peaks of 

Pt (JCPDS no. 04-0802), the peaks in Pt76Cu24 networks show an obvious shift to higher 2 
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theta due to the influence of Cu in forming PtCu bimetallic nanostructures by contraction of 

the lattice parameters [28]. The highly porous nature of Pt76Cu24 networks was further 

confirmed by nitrogen adsorption-desorption measurement (Fig. S3a). The surface area of 

Pt76Cu24 networks determined by the Brunauer-Emmett-Teller (BET) method shows a very 

high value of 126 m2 g-1, which is much higher than the reported Pt-based porous 

nanomaterials [17,29-31]. Such a high surface area comes from the 3D porous interconnected 

nanostructure consisting of ultrathin and jagged nanowires. 

 To reveal the structural evolution of Pt76Cu24 networks during self-assembly, the 

intermediate nanostructures synthesized at different reaction durations are investigated by 

TEM. In the initial stage of the reaction (10 s), small nanoparticles are observed, with some of 

them beginning to coalesce (Fig. 2a). After 1 min, well-defined nanowires with jagged 

nanostructures are formed and linked with each other (Fig. 2b). With prolonged reaction time 

(5, 10 and 15 min), the jagged nanowires begin to evolve to porous networks with increasing 

interconnectedness (Fig. 2c-e). The growth step is found to be completed after 20 min since 

there is no obvious change after prolonged reaction time (Fig. 2f). As shown in Fig. S4, the 

growth solution changed from transparent to black within 20 min after adding the reducing 

agent. These black products were completely settled at the bottom of the vial after 8 h, and 

upon removal they were observed to be interlocked. Thus, during settlement after 20 min, 

these nanowire networks are further interweaved to form 3D porous networks on the 

macroscale (as shown in Fig. 1a). These results suggest that the morphological evolution of 

Pt76Cu24 in our case is a spontaneous weaving process including the progression from small 

nanoparticles to jagged nanowires, nanowire knots, nanowire networks, and finally to 

macroscopic porous networks. 

 Additional control experiments were also conducted to further understand the growth 

mechanism of Pt76Cu24 networks. In our synthesis, the choice of using NaBH4 as the reduction 

agent is critical for the formation of Pt76Cu24 nanowire networks. When NaBH4 was replaced 

by hydrazine (N2H4, another commonly used strong reducing agent), large irregular 

nanoparticle aggregates formed instead of nanowire networks (Fig. S5). Additionally, 

controlling the reaction at room temperature was not necessary for the formation of 

nanostructured networks, but was important to obtain Pt76Cu24 networks with high quality and 
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high dispersion. When the reaction temperature increased from room temperature to 50 oC, 

the obtained nanowire networks were partly aggregated, leading to low quality of porous 

nanostructures (Fig. S6a,b). This could be attributed to the faster growth kinetics during the 

synthesis. With increasing the reaction temperature to 80 oC, severe aggregation of the 

nanowire networks occurred (Fig. S6c,d). In addition, when only H2PtCl6 was used as a metal 

precursor, nanowire networks with only slightly increased average diameter of 7.8 nm and 

multangular surfaces were presented (Fig. 3a,b). However, when only CuCl2 was used, 

nanowire networks with even larger diameter (over 10.0 nm), smooth surfaces, and low 

dispersity were formed (Fig 3c,d). This result indicates that the interaction between Pt and Cu 

precursors during the synthesis is integral to the formation of well-defined Pt76Cu24 networks 

with ultrathin nanowires. Moreover, the composition of Pt76Cu24 bimetallic nanowire 

networks can be readily controlled by simply adjusting the ratios of the Pt and Cu precursors. 

Based on ICP-AES measurements, when the molar ratios of Pt/Cu precursors were changed to 

1:1 and 1:3, the Pt/Cu molar ratio in the obtained products are close to 1:1 and 1:3 (denoted as 

Pt52Cu48 and Pt28Cu72), respectively (Table S1). The TEM images of Pt52Cu48 and Pt28Cu72 

reveal their well-defined nanowire networks to be similar in appearance to Pt76Cu24 (Fig. 

3e-h). The XRD analyses (Fig. S2a) confirmed the high crystallinity of Pt52Cu28 and Pt28Cu72. 

Meanwhile, with increasing Pt content, the peaks for the PtCu (111) plane exhibit a clear shift 

to lower 2 theta values (Fig. S2b), which is consistent with a previous report [32]. The 

nitrogen adsorption-desorption measurements (Fig. S3b,c) demonstrate the high porosity of 

Pt52Cu28 and Pt28Cu72, with high surface areas of 118 m2 g-1 and 109 m2 g-1, respectively. 

 In contrast to the previously reported noble-metal-based porous nanostructures, the 

synthesis of Pt76Cu24 networks described here has remarkable advantages in the following 

aspects. First, this method is a highly convenient and efficient synthesis strategy without the 

need for surfactants, organic solvents, as-synthesized seeds, hard templates, high reaction 

temperatures, or long reaction times, all of which are highly desirable for scaling up in 

commercial applications. Second, the high porosity and surface area of the 3D porous 

networks could greatly promote mass transport and surface exposure for catalytic processes. 

Third, the highly interconnected and interwoven structure could provide a strong 

self-supporting capability while minimizing interfacial electronic resistance, thus allowing for 
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avoidance of corrosion-prone carbon supports. Finally, the ultrathin and jagged nanowire 

subunits with abundant edge/corner atoms can further maximize the catalytic activity and 

utilization efficiency of the metal catalysts while exploiting the intrinsic high stability of 1D 

nanowires. Thus, the as-prepared Pt76Cu24 networks are very attractive candidates for 

electrocatalysis, and can be expected to display superior catalytic performance and stability to 

incumbent catalysts for PEMFCs. 

 The electrocatalytic properties of all the PtCu networks (Pt76Cu24, Pt52Cu48 and Pt28Cu72) 

toward the ORR were investigated. Commercial Pt/C and Pt black catalysts were also 

evaluated as references. Fig. 4a shows cyclic voltammetry (CV) curves of all these catalysts 

recorded in N2-satured 0.1 M HClO4 solution at room temperature with a sweep rate of 50 mV 

s-1. The electrochemically active surface area (ECSA) was calculated by measuring the charge 

collected in the hydrogen adsorption/desorption region after double-layer correction and 

assuming that the value for the adsorption of a hydrogen monolayer is 0.21 mC cm-2. Based 

on the Pt mass, the ECSA values for Pt76Cu24, Pt52Cu48, Pt28Cu72, Pt/C, and Pt black catalysts 

are 36.6, 31.4, 29.4, 58.9 and 18.5 m2 g-1, respectively (Fig. S7 and Table S2). With respect to 

the previously reported Pt-based nanostructures constructed by nanowires [8,20,33], these 

PtCu networks exhibit higher ECSAs due to their smaller nanowire diameter and jagged 

surface. The ORR measurements were conducted in O2-satured 0.1 M HClO4 solution at room 

temperature with a sweep rate of 10 mV s-1. Fig. 4b shows the ORR polarization curves for 

these PtCu networks, commercial Pt/C, and Pt black catalysts. The half-wave potential of 

Pt76Cu24, Pt52Cu48, Pt28Cu72, Pt/C, and Pt black catalysts are 0.906, 0.895, 0.886, 0.864, and 

0.869 V, respectively. This indicates that all PtCu networks exhibit higher activity than that of 

the commercial Pt/C and Pt black catalysts, and Pt76Cu24 networks display the highest activity 

among these five catalysts. On the basis of the Levich-Koutecky equation [34,35], the kinetic 

currents from the ORR polarization curves were calculated and then normalized with respect 

to the Pt loading mass and ECSA to obtain the mass activity and specific activity, respectively 

(Table S2). Fig. 4c shows the mass activities of these five catalysts. Pt76Cu24 networks exhibit 

an extraordinary mass activity of 0.466 A mgPt
-1, which is 1.5, 1.8, 4.6, and 11.1 times greater 

than that of Pt52Cu48 networks (0.312 A mgPt
-1), Pt28Cu72 networks (0.258 A mgPt

-1), 

commercial Pt/C (0.102 A mgPt
-1) and Pt black (0.042 A mgPt

-1), respectively. As shown in Fig. 
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4d, the specific activities for these various catalysts exhibit similar trends to that of the mass 

activities. The specific activity of Pt76Cu24 (1.273 mA cm-2) is 1.3, 1.4, 7.4, and 5.6 times 

greater than that of Pt52Cu48 networks (0.994 mA cm-2), Pt28Cu72 networks (0.878 mA cm-2) 

commercial Pt/C (0.173 mA cm-2) and Pt black (0.227 mA cm-2), respectively. 

 Since the electrochemical durability is recognized as one of the most critical issues for 

the widespread adoption of PEMFCs [2,6,7,36,37], accelerated durability tests (ADTs) were 

also evaluated by performing 6000 potential cycles between 0.6 and 1.1 V versus a reversible 

hydrogen electrode (RHE) in O2-satured 0.1 M HClO4 solution at room temperature with a 

sweep rate of 50 mV s-1. Fig. 5a-c show the CV curves of the Pt76Cu24 networks, commercial 

Pt/C and Pt black catalysts before and after ADTs. After increased numbers of CV cycles, 

both commercial Pt/C and Pt black catalysts display dramatic drops for the currents of the 

peaks in the hydrogen adsorption/desorption potential regions between 0-0.37 V vs RHE (Fig. 

5a,b). In contrast, the currents of the peaks in the same potential regions for Pt76Cu24 networks 

exhibit only a slight drop (Fig. 5c). As shown in Fig. 5d, Pt76Cu24 networks display a loss of 

only 14.9% in their ECSA after 6000 potential cycles, while the ECSAs of commercial Pt/C 

and Pt black catalysts show significant losses of 59.3% and 40.1%, respectively. Moreover, 

70.2% of the initial mass activity is retained for Pt76Cu24 networks after ADT (Fig. S8), while 

15.1% and 19.0% are observed for commercial Pt/C and Pt black catalysts, respectively. 

These results definitively reveal that the electrochemical durability of Pt76Cu24 networks is 

also much better than that of the two commercial catalysts of Pt/C and Pt black. To elucidate 

the reasons for their different durabilities, the morphologies of these catalysts after durability 

tests were also investigated with TEM. After ADT, the morphology of Pt76Cu24 networks 

shows no obvious change (Fig. S9), whereas serious aggregation/sintering are presented for 

both commercial Pt/C and Pt black catalysts (Fig. S10), resulting in the significant decreases 

of their ECSAs. In addition, the surface chemical states of Pt76Cu24 networks remain almost 

the same after ADT (Fig. S11), indicating their high stability. Overall, in comparison with 

commercial catalysts of Pt/C and Pt black, Pt76Cu24 networks have demonstrated a greatly 

enhanced activity, stability, and durability toward ORR. 

 Besides bimetallic porous nanowire networks, our strategy can also be facilely extended 

to prepare trimetallic PtCuAu porous networks with well-defined nanowire structures. The 
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synthesis procedure of PtCuAu nanowire networks was similar to that of Pt76Cu24 networks, 

except that HAuCl4 was supplied together with H2PtCl6 and CuCl2. The SEM and TEM 

images reveal that the products, similarly to bimetallic PtCu, have a typical 3D porous 

nanostructure with uniform nanowire networks and high dispersity (Fig. 6a,b). The average 

diameter of the nanowire units is 5.2 nm. The HRTEM image shows that the porous networks 

exhibit high crystallinity and very jagged nanowire surfaces with plentiful exposed atomic 

boundaries and corners (Fig. 6c), which can act as highly active catalytic sites. Fig. 6d shows 

the elemental mapping of an individual nanowire by HAADF-STEM-EDX analyses, which 

clearly indicates that Pt and Cu elements are distributed wholly while Au elements are 

concentrated in the center. Moreover, the high crystallinity and trimetallic composition of 

PtCuAu can be further confirmed by the XRD pattern (Fig. 6e). Notably, PtCuAu networks 

exhibit much superior ORR activity in comparison with commercial Pt/C and Pt black 

catalysts (Fig. 6f,g and Fig. S12). Taken together, the simple and efficient strategy described 

here can be easily extended from bimetals to trimetals, demonstrating its universality for 

preparation of novel 3D porous nanostructures. 

4. Conclusions 

   In conclusion, we have proposed a convenient and efficient synthesis strategy for 3D 

highly porous PtCu networks with ultrathin jagged nanowire nanostructures and tunable 

compositions. The growth mechanism involved in the morphological evolution and roles of 

the reagents have been fully explored and discussed. The as-synthesized Pt76Cu24 networks 

demonstrate much higher activity, stability and durability in ORR compared to commercial 

Pt/C and Pt black catalysts. The outstanding ORR performance can be ascribed to the 

core-shell alloyed structures with a Pt-skin, the 3D networks with high surface area and high 

porosity, and the ultrathin and jagged nanowires with abundant active atoms. Significantly, 

trimetallic PtCuAu with well-defined 3D porous networks could also be easily prepared using 

this synthesis strategy, which demonstrates its flexibility for novel 3D porous 

nanoarchitectures with great potential in various catalytic applications. 
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Fig. 1. (a) SEM, (b) HAADF-STEM, and (c) TEM images of as-synthesized Pt76Cu24 

networks. Inset in c) is the SAED pattern recorded from c). HRTEM images of as-synthesized 

Pt76Cu24 networks with (d) one branch-free end, (e) one cross-linked area, and (f) one curved 

loop. The insets in d-f) are their corresponding FFT patterns. (g) HAADF-STEM image and 

EDX mapping images of an individual nanowire in as-synthesized Pt76Cu24 networks. (h) 

HAADF-STEM image and EDX line profiles of a branch in an individual nanowire in 

as-synthesized Pt76Cu24 networks. 
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Fig. 2. TEM images of the products obtained at different reaction durations: (a) 10 s; (b) 1 

min; (c) 5 min; (d) 10 min; (e) 15 min; and (f) 20 min. 
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Fig. 3. TEM images of the products from the reaction with the same conditions used in the 

synthesis of Pt76Cu24, but with solely (a,b) Pt precursor (H2PtCl6) and (c,d) Cu precursor 

(CuCl2). TEM images of the products from the reaction with the same conditions used in the 

synthesis of Pt76Cu24, but using different Pt/Cu molar ratios: (e,f) 1:1; and (g,h) 1:3.   
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Fig. 4. (a) CV curves recorded at room temperature in N2-satured 0.1 M HClO4 solution with 

a sweep rate of 50 mV s-1, (b) ORR polarization curves recorded at room temperature in 

O2-satured 0.1 M HClO4 solution with a sweep rate of 10 mV s-1 and a rotation rate of 1600 

rpm, (c) mass activity, and (d) specific activity at 0.9 V versus RHE for Pt76Cu24, Pt52Cu48, 

Pt28Cu72, Pt/C, and Pt black catalysts. 
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Fig. 5. CV curves for (a) commercial Pt/C catalyst, (b) commercial Pt black catalyst, and (c) 

Pt76Cu24 networks before and after various numbers of cycles. The durability tests were 

conducted at room temperature in O2-saturated 0.1 M HClO4 at a scan rate of 50 mV s-1 

between 0.6 and 1.1 V versus RHE. (d) Loss of ECSA of Pt/C, Pt black, and Pt76Cu24 

networks after various numbers of CV cycles.  
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Fig. 6. (a) SEM and (b,c) TEM images of as-synthesized PtCuAu networks. Inset in b) is the 

SAED pattern recorded from b). (d) HAADF-STEM image and EDX mapping images of an 

individual nanowire in as-synthesized PtCuAu networks. (e) XRD pattern of PtCuAu 

networks. (f) Mass activity and (g) specific activity at 0.9 V versus RHE for PtCuAu, Pt/C, 

and Pt black catalysts. ACCEPTED M
ANUSCRIP

T


