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Abstract .

Semidefinite programming, SDP, is an extension of linear programming, LP, where
the nonnegativity constraints are replaced by positive semidefiniteness constraints
on matrix variables. SDP has proven successful in obtaining tight relaxations for
N P-hard combinatorial optimization problems of simple structure such as the max-
cut and graph bisection problems. In this work, we try to solve more complicated
combinatorial problems such as the quadratic assignment, general graph partition-

ing and set partitioning problems.

A tight SDP relaxation can be obtained by exploiting the geometrical structure
of the convex hull of the feasible points of the original combinatorial problem. The
analysis of the structure enables us to find the so-called “minimal face” and “gang-
ster operator” of the SDP. This plays a significant role in simplifying the problem
and enables us to derive a unified SDP relaxation for the three different problems.
We develop an efficient “partial infeasible” primal-dual interior-point algorithm by
using a conjugate gradient method and by taking advantage of the special data
structure of our relaxation. Numerical tests show that the approximations given

by our approach are of high quality.

Future work for solving a large sparse problem with our approach is also dis-
cussed for each of the applications. In particular, for a large sparse set partitioning
problem, we propose an approach combining a mixed LP-SDP relaxation with ma-

trix decomposition techniques.
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Chapter 1

Introduction and Notation

1.1 Introduction

Semidefinite programming, SDP, is an extension of linear programming, LP, where
the nonnegativity constraints are replaced by positive semidefiniteness constraints
on matrix variables. It possesses almost as simple and almost as nice a structure
as LP does. SDP not only can approximate more problems than LP does but
also can provide better approximations. Moreover, through SDP, a lot of powerful
tools developed in continuous optimization, such as interior-point methods, can be

applied to tackle many hard discrete optimization problems.

SDP has recently been active in many mathematical and engineering research
areas such as control, min-max eigenvalue problems and combinatorial optimization
problems, see e.g. Alizadeh [ALI95, ALI92] and Vandenberghe and Boyd [VB96].
In those research activities, SDP has already shown its potential as a very pow-
erful tool. In particular, SDP has proven successful in obtaining tight relaxations

for NP-hard combinatorial optimization problems of simple structure such as the
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max-cut and graph bisection problems. These relaxations can be obtained from
their corresponding quadratically constrained quadratic programming formulatjon
through their Lagrangian dual, see e.g. [PRW95]. However, for a hard combina-
torial problem with sophisticated structure, how to find a tight SDP relaxation is
still an open question. In this work, we try to present a unified SDP approach for
solving more complicated combinatorial problems such as the quadratic assignment

problem, general graph partitioning problems and set partitioning problems.

The quadratic assignment problem, general graph partitioning problem and set
partitioning problem, denoted QAP, GP and SP, respectively, have all been exten-
sively investigated because of their special structures and their numerous practical
applications. Since they are all well-known as NP-hard problems (see e.g. [GJ79]),
the current popular approaches are focused on finding a “near optimal” solution
by solving a relaxation problem for each of them. Therefore, to find a tight relax-
ation for each of these problems is essential for finding high quality “near optimal”

solutions.

Although the QAP, GP and SP do not look alike, they do have some com-
mon structure. They all can be formulated so that their constraints look like the

following.

auzy+...+ a1z =1

Gn1T1+ ...+ QGmnZn =1,
where each a;; is either 0 or 1 and z = (z,.. .,z,,)‘ is a 0-1 vector. We call the
above constraints the assignment constraints. This common structure turns out to

be essential in developing an SDP framework to solve QAP, GP and SP.

Our work in this thesis serves two purposes:



@ use semidefinite programming relaxations to obtain better lower bounds and

high quality approximate solutions in order to solve QAP, GP and SP.

@ try to develop a unified way of applying SDP to tackle hard combinatorial
optimization problems having similar structure to QAP, GP and SP.

The structure of the thesis is as follows.

In the second part of Chapter 1, we introduce some notation which will be used
throughout this thesis.

In Chapter 2 we introduce semidefinite programming. We will describe briefly
the geometry of the feasible set of SDP and duality theory. We will demonstrate
an SDP relaxation procedure for general quadratically constrained quadratic pro-

gramming problems.

In Chapter 3, we develop an SDP relaxation for the quadratic assignment prob-
lem by exploiting the geometrical structure and using the Gangster operator. To
solve the large SDP relaxation, a truncated conjugate gradient method is tried

when implementing a primal-dual interior-point algorithm.

In Chapter 4, we develop an SDP relaxation for GP by following almost the
same procedure as for QAP. As a byproduct, the SDP relaxation is almost the
same as for the QAP. Therefore, it is solved by the same methods. Numerical tests
are run for both unweighted and weighted graphs.

In Chapter 5, we develop an SDP relaxation for SP. Again we follow almost the
same procedure as for QAP. Numerical tests are run by using the same algorithm
for QAP. For large sparse SP with block structure, a mixed LP-SDP relaxation
approach is proposed. Preliminary numerical tests are run by using an infeasible
primal-dual interior-point algorithm.



In the last chapter, we will give our summary and discussion about future work.

1.2 Notation

In this section, we give some notations and terminologies which will be used through-

out the thesis.

We work with the space of real n x n symmetric matrices, denoted S,., with the
trace inner product (A, B) := trace AB. The dimension of the matrices is assumed

to be n, unless otherwise noted.
Suppose J C {(3,7) : 1 < ¢ < j < n}. The subspace of n x n symmetric
matrices with nonzero index set J is denoted Sy, i.e.,

S;:={X € Sn : X;; =0 if both (¢,5) and (5,7) € J}.

The set of n x n positive semidefinite matrices, denoted P,, forms a closed

convex cone, which is self-polar, i.e., the polar cone.
Pt .={K =K"*:traceKP >0, VP € P,} = P,.

The space S, is endowed with the Lowner partial order, i.e. A > (resp. >) B
denotes A — B is positive definite (resp. positive semidefinite). (Similarly for <
and <)

For a matrix Q € S, @+ is defined as follows

Rt ;= {X € S : trace (XQ) = 0}.

For v € R", Diag(v) denotes the diagonal matrix formed from the vector v.
Conversely, for a matrix M, diag (M), with lower case d, denotes the column vector

formed from the diagonal of M.



For an n x m matrix X, vec(X) denotes the nm x 1 vector formed from the
columns of the matrix X, while Mat (z) denotes the » x m matrix reshaped from

an nm X 1 vector z.

For a vector v = (vy,...,v,)t € R, let v,,, € R¥P+! denote the (g—p+1) x1

vector (vp,...,v)t. v >0 denotes that v; >0 fori=1,...,n.
For a matrix M, M.; denotes its jth column.

The vector e, € R™ denotes the vector of ones, while e is a vector of ones when
there is no ambiguity. The vector u; is the i-th unit vector; and E;; = wyul + ujuf.
E. is a n x n matrix with all its entries being equal to one. I, is a = X n identical

matrix. We use £ and I when there is no ambiguity.

R(M), N(M) denote range space and null space of M, respectively. For a
square matrix M, det(M) denotes the determinant. For two m x n matrices
M, N, the Hadamard product, or entry-wise product, is denoted M o N. For two
m x n matrices M, N, the Kronecker product, or tensor product, is denoted M@ N .

For a linear operator A : R* — R™, the adjoint operator of A, denoted A",
is a linear operator mapping from R™ to R" such that for any z € R™ and any
y ER™,

(A(z),y) = (=, A(y)).

The arrow operator, acting on an n X n matrix Y, is defined by
arrow (Y') := (diag (Y))1:n — Yimyo,

where Yi.n0 is the n x 1 vector formed from the last n components of the first, or
Oth column of Y. The operator Gr : S, = S, with its range R(Gs) = S is called

the Gangster operator. It “shoots™ holes or zeros in a given matrix, i.e., given a set



JC{(i,j)::<je{l,...,n}}) and amatrix Y € S,, as

Yii --- UYin

Yni --- Ynn

the operator G;(Y) satisfies

(Gr(¥))ss = { Zf:- if (i, ) or (G.i) € J

otherwise.
The gangster operator is self-adjoint, i.e.,
Gr=Gj.

(See e.g [FLE95] for its application on large sparse quasi-Newton method. The

name of the gangster operator was introduced in [TOI77].)



Chapter 2

Semidefinite Programming

2.1 Introduction

Semidefinite programming can be a very powerful tool for several different applica-
tions: e.g. min-max eigenvalue problem [RVW95]; trust region problems [RW95b];
control problems [VB93] and hard combinatorial optimization problems [ALI95].

In this chapter, we will first present some state of the art results on the theory
and algorithms for SDP. We will present the duality theory and the primal-dual

interior-point framework for SDP, which resembles that for linear programming.

In order to have a deeper insight into SDP, we will have a look at the geometrical
structure such as faces and dimensions of feasible sets. Again we will see the sim-
ilarity between the SDP feasible sets and polyhedra. Then we will discuss how to
derive an SDP relaxation for the general quadratically constrained quadratic pro-
gramming problem. We will see how an SDP relaxation, generated by Lagrangian

dual relaxation and homogenization, yields a lower bound.



2.2 Duality Theory and Interior Point Methods

A semidefinite programming problem has the following form

max traceCX

P) st. AX)=a
B(X)<b
X >0,

where both A: S, — RP and B : S, — R? are linear operators. The dual problem
of (P) is
min a'y + b't
(D) st. A(y)+B(t)=C
yeRr teR:,
where A° and B* are the adjoint operators of A and B, respectively. The linear
operators A and B acting on X € S, can be expressed explicitly by the following

two vectors, respectively.

trace (A, X)
A(X) = : (2.2.0)
trace (4,X)
and
trace (B1.X)
B(X) = : , (2.2.1)
trace (B, X)

where A; € S, for it = 1,...,p can be constructed using A(E;;), while similarly
for B;€ S, forfort=1,...,q.

Definition 2.1 1. Problem (P) is called strictly feasible if there ezists a feasible
point X such that X >0 and B(X) <0;



2. Problem (D) is called strictly feasible if there ezists a feasible point § and t
such that A*(§) +B~(f) > C and £ > 0.

The following theorem characterizes the duality of SDP. For a general theorem
for cone-LP’s and its proof, see e.g. [WOL81].

Theorem 2.1 Let (P) or (D) be strictly feasible. Then:

(a) Let X and .(y, t) be feasible solutions of (P) and (D), respectively. Then
traceCX < a'y + bt.

(b) If one of the problems is infeastble, then the other is infeasible or unbounded.

(¢c) Let both (P) and (D) be feasible, then their optimal values are equal. Fur-
thermore, the dual (primal) optimal solution is attained if the primal problem
(P) (the dual problem (D)) is strictly feasible.

(d) Let X and (y,t) be feasible solutions of (P) and (D), respectively. Then X
and (y*,t%)! are optimal if and only if

duality gap := t'(b — B(X)) + trace ((A*(y) + B*(t)’~- C)X) =0,
or equivalently, if and only if

t:(B(X) —b); =0,Vi, and (A"(y) +B"(t) — C)X = 0.

The following example shows that if the primal problem is not strictly feasible, then

the dual may not attain its optimal solution.
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Example 2.2.1 Consider the SDP pair

min 2X12
0 max y;
s.t. Diag(X) = 0 01
0 10
X >0, Y2

The Slater condition holds for the dual but not for the primal. The optimal value
for both is zero. The primal is attained, but the dual is not.

Based on the above optimality condition for SDP, we now outline an infeasible
primal-dual interior-point approach for solving the above primal-dual pair (P) and
(D). This approach is introduced in [HRVW96]. Because of examples like Example
2.2.1, we need to make the following assumption:

both the primal problem (P) and the dual problem (D) are strictly feasible.

We introduce a slack variable Z > 0 for the dual constraint such that

A(y)+B*(t)-C—-Z =0.
Then the log-barrier problem for the dual problem (D) can be described as follows:

min aty + b — p(logdet Z + T, log ;)
st. A'(y)+B*(t)-Z=C
t>0, Z>0.

Here p is a positive real number called the barrier parameter. For each p > 0,

there is a corresponding Lagrangian:

L, X,y,t,Z)= a'y+b't—~p(logdetZ + T2, logt;)—
trace ((A*(y) + B*(t) - Z - C)X).
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The stationary point of the Lagrangian yields the following optimality conditions

for the log-barrier problem.

F, =AX)-~a =0
Fy =A(y)+B(t)-C~Z =0
Fig :=to(b-B(X))—pe =0 (2.2.2)
Fzx =2X —ul =0

X>0, Z>»0, t>0,
where the 4th equation is modified from X — pZ~! = 0. The strict concavity
of logdet Z and logt; implies that there exists a unique solution to the optimal-
ity conditions for each g > 0. Denote the unique point corresponding to u as
(X(p),y(g), t(1s), Z(1s)). The set of such points for each > 0

{(X(n), y(p), t(ps), Z(1s)) - 5 > 0}

defines a smooth curve which is called the central path. The central path plays a
vital role in primal-dual interior-point methods. It has been found to be beneficial
that the iterate points stay within a neighborhood of the central path. By doing so,
robustness in convergence can be expected. For each point (X, y,t, Z) on the central
path, it is easy to determine its associated g value using the last two equations of
the optimality conditions:
trace(Z2X) t4(b—B(X)) trace(ZX)+t'(b—B(X))

= n - q = n+q )
(Note: trace (ZX) + t{(b — B(X)) is just the duality gap.) We will use (2.2.3) to
define the associated g value for a point (X,y,t,Z) even when it is not on the

(2.2.3)

central path. The interior-point algorithm is the following. We start with a point
(X,y,t, Z) which satisfies X >0, Z >0, ¢t >0 and b — B(X) > 0. We estimate

its associated p value and divide it by two:
_ trace(ZX) + t*(b - B(X))
- 2(n + q) )
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(Note: this simple heuristic performs very well in practice, even though it does
not guarantee monotonic decrease in p, see [VC93].) We attempt to find steps
(8X,8y,dt,82) such that the new point (X + 06X,y + dy,t+ 6t,Z + §Z) becomes
close to the point (X(u),y(n),t(s), Z(1)) on the central path at this value of p.
We can find such a step with a variant of Newton’s method in the following way.
In order to apply operators A and B to nonsymmetric matrices, we extend their
definition. For any nonsymmetric square matrix M, let

A(M) = %A(M + M)

and

B(M) := B(M + M").
From the definitions of (2.2.0) and (2.2.1) and the fact that for A € S,
trace (AX) = trace (AX"®) = trace-zll (A(X + X‘)) ,

the above definitions are well defined. We linearize the system (2.2.2) by the fol-

lowing system of equations

A(6X) = —F,
A~(8y) + B*(6t) - 62 = —Fy (224
§to(b—B(X)) —toB(6X) =—Fis :
Z(6X)+ (82)X = —Fzx.

This linear system, where §X, §Z are symmetric, may be inconsistent. By solving

for 8 Z using the second equation, we have
8Z = F4+ A*(dy) + B*(dt), (2.2.5)

which is symmetric. Then we solve for dX using the 4th equation in (2.2.4) and
the definition of Fzx from (2.2.2). We get

§X = pZ~! = X — Z'FX — Z7Y(A(dy) + B*(6t)) X. (2.2.6)
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Evidently, §X is not symmetric in general. By substituting the above expression
for X into the first and the third equation of the linear system (2.2.4), we obtain
the following linear system for (dy, dt), called the normal equations.

A(Z- FiX - Z-(A~(8y) + B~(0t)X) = A2~ - X — Z*F3X) +F,
t o B(Z-'F4X — Z-1(A~(y) + B*(8t))X)

+dto(b—B(X)) =toB(uZ™' —X — Z-FyX) — Fzx.
(2.2.7)

We solve the normal equations for (dy,dt). Then, by substituting (dy,dt) into
(2.2.5) and (2.2.6), we have 4Z and X . Finally, we let

dX +4X°

[}
X 5

to symmetrize X. As we have seen, we always symmetrize 4 X in order to update
X. Hence, the symmetrized §X may no longer be a Newton direction. However,
it is still a descent direction for the objective as shown in [HRVW96]. This is
the reason we call this method a varient of Newton’s method. This nonsymmetry
issue has also been dealt with by other people, see e.g. Kojima et al. [KSH94],
Monteiro [MON95|, Zhang [ZHA95], Alizadeh et al. [AHO94] and Nesterov et al.
[NT94, NT95].

The last part of the algorithm is the line search. To measure the progress of the

algorithm, we use the convex merit function
fu(X,9,t,2) = trace(ZX) — ulogdet(ZX)+
t*(b — B(X)) — petlog(t o (b — B(X)))+ (2.2.8)
3l Fll? + I Fall®.
To guarantee global convergence of the algorithm, the key conditions given in
[HRVWY6] state that the step size a should be such that the following Goldstein-
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Armijo conditions are satisfied.

ha %‘E’f& < fu(3) = fu(s + ads) < b %-Js ' (2.2.9)

where 0 < §; < 8; < 1, s := (X, y,t,Z) and ds := (§X,dy,dt,67). Because of this
result, a line search method was developed in [HRVW96]. This line search method
has been used successfully in solving the SDP relaxation for the max-cut problem
and the min-max eigenvalue problems, see [HRVW96]. We demonstrate this line
search method by finding the primal step «, in the following.

step 0: set ap, :=1;
step 1: if b — B(X + a,0X) > 0 and X + a6 X > 0, stop. Otherwise, go to step 2;

step 2: repeat a, < 0.8, until both b — B(X + 0,6 X) > 0 and X + a6 X > 0 are
satisfied. go to step 3;

step 3: ap ¢ 0.95a,. (to make sure the next point is not too close to the boundary.)

Similarly, we can find the dual step size aq.

After we find the constants a, and a4, we step to the new point

X +apéX
y + aqdy
t + agdt

Z+ag0Z.

We repeat the same procedure as above until some stopping criterion is satisfied.

A stopping criterion will be discussed in the next chapter.
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2.3 Geometrical Structure of SDP

Note that in the SDP problem (P) the inequality constraints can always be changed
to equality constraints by adding slack variables. Without loss generality, we rewrite
the SDP problem (P) as the following SDP problem in matrix form.

max traceCX
s.t. traceA; X =a; for 1<i<m (2.3.10)
X >0.
Its dual is
min ay
st. TR pdixC (2:3.11)
y € R™.

The feasible set of the primal SDP (2.3.10) is defined as
Fp:={X € S, : trace(A;:X)=a;, fori=1,...,m, X > 0}. (2.3.12)

The set Fp is called an elliptope, see e.g. Laurent and Poljak [LP95).

The feasible set of the dual SDP (2.3.11) is defined as
Fp:={yeR™:) wA: = C}. (2-3.13)
=1
The set Fp is called spectrahedrain e.g. [RAM93].

In this section we will mainly discuss the geometrical structure of elliptopes Fp,
since the geometrical structure of spectrahedra Fp follows from similar arguments,
see e.g. Ramana [RAM93]. The study of the facial structure of elliptopes is rela-
tively new in the optimization literature. The facial structure of general convex sets
was used by Borwein and Wolkowicz [BW81]. Pataki (in [PAT94a) and [PAT94b])
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discussed the facial structure of cone-LP’s and SDP’s. Similar work can also be
found in Ramana [RAM93] and Laurent and Poljak [LP95]. An introduction to the
general structure of convex sets can be found in Rockafellar [ROC70].

Definition 2.2 Given a convez set G, F is a face of G if
z,y € G and %(z-i-y) €F

itmply that z,y € F.

Now we characterize the faces of the closed convex cone of » xn positive semidefinite

matrices. Recall that the closed convex cone is denoted P, .
Theorem 2.2 The following statements are equivalent.

(i) F is a face of Pn.
(i) There ezists an orthogonal projection matriz Q,
Q=Q =@q?
such that F=P, N Q*.
(iii) There ezists an orthogonal projection matriz Q,
Q=Q" =@
such that F = (I — Q)P.(I - Q).

Moreover,
F={X>0:N(X) D> R(Q)} for some Q = Q",

and the relative interior of F satisfies

nF ={X>0:N(X)=R(Q)} for some Q = Q".
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For proof and other details, see e.g. [BC75].

Now we consider the faces of elliptopes Fp. The following two results are
straightforward. See e.g. Pataki [PAT96].

Theorem 2.3 The set F is a face of Fp if and only if there ezists a face G of

P, such that
F=Gn Fp.

Denote the dimension of a set F' by d.lm}" .

Theorem 2.4 Let G be a face of P.. Then, there ezists a n X m matrizc V with
rank (V) = m such that:
Y € G if and only if there ezists a matriz X € Pp such that Y = VXV?E;

furthermore,
_m(m+1)
2

dim G
Now, we discuss the extreme points and extreme rays of the elliptope Fp, see
e.g. Rockafellar [ROC70].

Definition 2.3 The ray Y is an eztreme ray of Fp if:

for any rays, YiandY, of Fp,

1 1
Y=§Y1+'2'Yz

implies Y1 = AY;, for some A > 0.

The following theorem characterizes the structure of elliptopes Fp using its extreme
points and extreme rays. For a more general result see e.g. Klee [KLES57].

Theorem 2.5 An elliptope Fp is the Minkowski sum of convez hull of its set of

eztreme points and eztreme rays.
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2.4 SDP Relaxation for Quadratically

Constrained Quadratic Programming

Consider the following quadratically constrained quadratic programming problem

p = min ztAgz + 2bfz + o
subject to zfA;iz +2bfz +¢; <0, i=1,...,p (2.4.14)
Az + 2z +;=0,i=p+1,...,m,

where A; € S,., b; € R" and ¢; is a scalar. The matrices A; can be indefinite, there-
fore, problem (2.4.14) is generally a very hard, non-convex optimization problem.
(Note: if matrices A; are all positive semidefinite, problem (2.4.14) can be solved
efficiently by an interior point method. See e.g. [NN93]) A lot of hard combinato-
rial optimization problems can be written in the above form. For example, a 0-1
quadratic programming problem can be written in the form (2.4.14) by expressing
its 0-1 variables as z;(z; — 1) = 0. The feasible set of (2.4.14) can be either a finite

discrete set or a continuous dense set.

Now we describe the Lagrangian dual approach, by which an SDP relaxation
for problem (2.4.14) can be derived.

Problem (2.4.14) can be written as

T min (1,z%) _Co_*_i:l ( . )
| b | Ao

\

/

\

)

Pq bg -
subject to (1,zt) |———| |

<0i=1,..p
b; | A

e TR

g

(1,z%) =0 t=p+1,...,m.

c;
b | Ai

8
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We can homogenize the above problem by adding a new variable z; such that

zZ = 1. As a result, we get the following equivalent problem

X [ co b5 To
- min (20, z%) }—
bo AO] (” )

[ b§ - 1‘0\ .
— SO t=14...,p
bi | A: |

®
]

Y

subject to (zo,z%)

;| b z \
(2013t) iA‘ ( ° =0 i=p+17“'1m

:1 0}‘(30)
(zO’zt) "'1=0.
L0'0 \ T

From the Lagrangian of the above problem, we get the following lower bound.

) co—t bt m . b: 2
p" > pp = max min/(zo,z") —| +X = = S+t
t,r; >0 Z0:T 60 AO i=1 b‘. A‘. z
1<i<p

To prevent the above quadratic form from going to negative infinity, the hidden

Ea

constraint has to be satisfied.

co—t| b ™ e | b
+2.T = 0.

Therefore, we can get a lower bound for problem (2.4.14) by solving the Lagrangian

dual relaxation problem

BR = max t

—t| B ;| B
subject to 2 +Ym b >0 (2.4.15)
bo | Ao b | As

;20 for :=1,...,p.
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The dual of the Lagrangian dual relaxation is then

™~ bc
min trace %] Y
| b | 40
subject to Ygo =1
i h
| gt
trace |—t—— Y<0i=1,...,p (2.4.16)
b: | A: |
i bfw
trace Y=0:i=p+1,....m
8] 4
Y > 0.

To justify that the problem (2.4.16) is an SDP relaxation, we let

Y = ( %o ) (2o, 2'). (2.4.17)

z

Then the above problem (2.4.16) becomes the original quadratic optimization prob-
lem. Therefore, the SDP problem (2.4.16) is really a relaxation for problem (2.4.14).
In other words, the SDP relaxation can be derived by the following approach called
the direct approach.

1. Find a representation for each of the original quadratic constraints for the

z
( ° ) (zo0,2*) with z3 =1;

z

rank-one matrix

2. replace the rank-one matrix by an matrix Y > 0.

Before we apply the Lagrangian dual approach to derive an SDP relaxation for each
of the applications, we would like to point out the following:
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e a redundant constraint for the original problem (2.4.14) may yield a non-
redundant constraint for the SDP relaxation (2.4.16).

This means that finding the “right” constraints of the original problem is essential.
As we will see when we move on, this can be achieved by exploiting the special
structure for each of the applications. For a 0-1 quadratic programming problem, a
recipe for deriving an SDP relaxation was given by Poljak, Rendl and Wolkowicz,
see e.g. [PRWY95]. Also see e.g. [FK95] for some characterization of an SDP

relaxation for nonconvex quadratic programs.



Chapter 3

Quadratic Assignment Problem

3.1 Introduction

The quadratic assignment problem, QAP, can best be described by the following

problem:

We are given n facilities and n locations. There is a given amount of
flow between every pair of facilities and a given cost rate per unit flow
(distance) between every pair of locations; and, there is a setup cost for
a facility in a given location. We want to assign each facility to a unique
location in such a way that the total cost (sum of cost for every pair of

facilities plus the sum of the setup cost) is minimized.

We use a;; for the flow between facility ¢ and facility j, b;; for the cost rate

per unit flow between location ¢ and location j and f;; for the cost for setting up

22
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facility ¢ at location j, for all ¢,57 € {1,...,n}. Let

B=
bnl cec b'nn ]

For convenience let ¢;; = —0.5f;; and define

i1 *** Cin

Cnl °°* c’l‘l’lj

The diagonal elements of A and B are all zero and both A and B are symmetric
matrices. For a given assignment, let X be the permutation matrix defined by

1 if 2 assigned to j
X;j =
0 otherwise.

Thus the jth column X; is the indicator set for the jth location. Such an X can

represent the assignment. For each such assignment X,
trace (AXBX* — 2CX")

gives the total cost. Therefore, the minimal total cost is obtained by solving the

quadratic assignment problem in the trace formulation
(QAP) u=:= xz?ei% trace (AXBX* -2CX"),

where II denotes the set of permutation matrices. As we can see, (QAP) is a 0-
1 quadratic minimization problem. The quadratic term comes from the flow and

distance matrices and the linear term arises from the setup cost.
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The QAP is well known to be NP-hard and the traveling salesman problem
(TSP), a well known NP-hard problem, can be formulated as QAP (see e.g.
[SG76]). In practice, QAP problems larger than order » = 16 are still considered
very hard. The Nugent test problem (see e.g. [CNR68] and [BKR91]) of dimension
n = 20 has only recently been solved (See e.g.[LPR93]). The techniques used so far
are based on branch and bound methods which use bounding techniques, such as
Gilmore-Lawler bound [GIL62, LAW63], eigenvalue bounds [HRW92a, HRW92b]
and bounds based on linear programming relaxation [AJ94] and [RRD94]. Many
heuristic techniques, such as simulated annealing, also need a lower bound to see

how good a solution is.

In both the Gilmore-Lawler bound technique and the eigenvalue bound tech-
nique, the quadratic term and the linear term are relaxed separated to form two
different problems. The sum of the optimal values of the two relaxed problems
gives the lower bound. This is the disadvantage of these two techniques due to the
fact that the sum of the minimal values of two functions is less than or equal to the
minimal value of the sum of the two functions. Therefore, a further improvement
of the lower bound can be expected if the quadratic and linear terms are combined.

In this chapter, we describe and test a new approach based on a semidefinite
programming relaxation. This relaxation prove to be numerically successful. In the
SDP approach, the quadratic term and the linear term are treated together. The
relaxation of the linear equality constraints, corresponding to the doubly stochastic
property of permutation matrices, implies that the primal of our SDP relaxation
does not satisfy the Slater constraint qualification (strict feasibility). Although
there is no duality gap in theory, since the dual does satisfy the Slater constraint
qualification, this leads to an unbounded dual optimal solution set. see Exam-

ple 2.2.1. Numerical difficulties can arise when trying to implement interior-point
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methods. However, the minimal face of the semidefinite cone can be found by
exploiting the structure of the barycenter of the convex hull of the permutation
matrices. Then, the primal problem can be projected onto the minimal face. This,
combined with the so called Gangster operator, yields a regularized SDP of smaller

dimension, which can be solved in a numerically stable way.

Now we would like to present some special notations for this chapter.

We use the Kronecker product, or tensor product, of two matrices, B® A, when
discussing the quadratic assignment problem QAP. Note that the objective function

q(X) = trace (AXBX* ~ 2CX?) = vec(X)*(B ® A)vec(X) — 2vec (C)*vec(X).

The Kronecker product gives rise to generalized notions of trace and diagonal.
For any n x n matrix X, we define the following (n? +1) x (»? + 1) matrix

1 l vec (X)* '
vec (X) l vec (X)vec(X)*

Yy := (3.1.18)
The principal-block-diagonal-operator denoted b%diag : Sp24; — S, is defined
by
bdiag (Y) := Z Y,

=1
where Y is written as X
Yoo | You Yon
Yo | Y3 Yin
y < | Yoo .u 1 ,
Yoo | Yo Yon |

where Yoo is a scalar, Yo and Yy, for i = 1,...,n, are n x 1 and 1 x n vectors,

respectively, and Y;;, for i, =1,...,n, are n x n blocks of Y.
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The adjoint operator of b%diag is denoted B°Diag

BoDiag : Sn - Sn2+1
and for a matrix S € S,

B®Diag () := [3{._0—
o[res

Thus the adjoint equation

trace (Wb°diag (Y')) = trace (B°Diag (W)Y)
holds for all W € Sn and Y € S,ﬂ.{.l.
The off-block-diagonal-operator denoted o’diag (Y) : Sp24; —> Sa, is defined by

trace(Y3;) ... trace(Y:,)
o%diag (Y) := : - : ’
trace (Yn1) ... trace(Yn,)

where Y is written in the same block matrix form as for the b%diag operator.

The adjoint operator of o’diag is denoted O°Diag (S),

OODiag . (Sn - 8n2+1
and for a matrix S € S,

_ ol o
0%Diag (S) :=
0SS!

Thus the adjoint equation

trace (Wo'diag (Y)) = trace (O°Diag (W)Y)
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holds for all W € S, and Y € S,24,-

The adjoint operator of arrow is defined by
Arrow : RV = Sn241,

and for a vector w € R*

Arow (w) = |— | 4w
oW (W) = .
-%wIDiag(w)

(The name arrow comes from the pattern of nonzero elements.) Note that

trace (Arrow (w)Y) = w'arrow ().

The set of matrices with row and column sums one is denoted
E={X:Xe=X'e=e}={X:]||Xe—e|®+|[Xte—e|f* =0}.
The set of 0-1 matrices is denoted
Z:={X:X% =X, 3,j=1,...,n}.

The set of orthogonal matrices is denoted as O, and the set of (entrywise) non-

negative matrices is denoted as A.

The set of matrices for which the Hadamard product of any pair of distinct rows

(and any two distinct columns) is equal to the zero vector is denoted

H:={X:Vp#q,XpXy=0,Vi, and X,;X,; =0 Vj}.

3.2 An SDP Relaxation

It is well known that the set of permutation matrices II can be characterized as

the intersection of Z and £ and also as the intersection of @ and N (see e.g.
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[HRW92a}) ie.
O=£NZ=0nN. (3.2.19)

With the introduction of the matrix set H, we have the following result.
Lemma 3.1 I=ENH.

Proof. It is easy to see that

ODCENH.
We want to show that

ENHCIL
Let

XeENH.

From the definition of £, we know that in each column or row there exists an entry
X:i; # 0. Since X € H, we have X;, = 0 for p # j and X, ; = 0 for ¢ # ;.
Therefore X;; =1 and thus is the only nonzero entry in row 7 and column j, i.e.

X ell m]
The set ‘H will be used later. We rewrite QAP using (3.2.19).

pu” = min trace(AXBX'-2CX")

st. XXt=XX=1 X is orthogonal
(QAPg) ( gonal)
Xe=Xte=e (X is doubly stochastic)
X% —-Xi; =0, Yi,j. (X is 0-1)

We can see that there are a lot of redundant constraints in QAPg. Surprisingly,
however, the SDP relaxation of these constraints are not all redundant. This can
help tighten the SDP relaxation. We will discuss the reason in detail for using the
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redundant constraints XX* = X*X = I below. We will also see the advantage of

using Xe=X*e=ce.

The constraints can now be relaxed to get an SDP relaxation of QAPg. This
can be done either via Lagrangian duality or directly from the QAP. We shall
outline how the Lagrangian relaxation yields an SDP relaxation of QAP. (See also
[PRW95].) In the process, we also introduce several of the linear operators used in
our relaxations. We change the row and column sum constraints into || Xe — || +
| Xte—e||> = 0. Consider the following equivalent formulation of the QAP problem
(QAP).

po := min trace(AXBX®-2CX")
st. XXt=1
(QAR) XX =1
| Xe el +[|Xe~el>=0
X% - Xi;; =0, Vi,j.
As we can see from the Lagrangian dual approach described in Chapter 2.4, we will
homogenize the problem by increasing the dimension of the problem by one. We
first add the (0,1)-constraints and equation [[Xe — e]|?> + || X*e — ef|? = 0 to the
objective function using Lagrange multipliers W;; and ug respectively. We get

_ - t _ t CIW-AXE - X
HO= xxeZxex=1Was trace (AXBX' = 2CX7) + 1o Wii( X5 - Xi5) (3.2.20)

+uo([| Xe - e|® + || X*e — e][?).
Interchanging min-max yields
po > max trace (AXBX*® ~ 2CX*) + T;; Wi (XE - Xi5)

min
Wuo XXt=XtX=I A d (3.221)
+uo(l| Xe —e|* + [| X e — €]|?).
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We now homogenize the objective function by multiplying the linear terms by a

constrained scalar zg.

po 2 pp:=max min trace [AXBX*t+W(X o X)t + uo(]| X el + || X%e][?)
XX'=1r
Xtx=17

2
2, =1

~29(2C + W)Xt — 2zquget(X + X*)e + 2nug.
(3.2.22)

Introducing a Lagrange multiplier wo for the constraint on zo and Lagrange mul-
tipliers S for XX* =1 and S, for X*X = I, we get

= ¢ i t 2 t12
pR= mAX = min trace [AXBX* + uo(|| Xe|? + || X*e[?)

+W (X 0 X)t + wozd + S XXt + S, XX ]
—trace2o(2C + W)X* — 2zqupet(X + X*)e

(3.2.23)

—~wq — trace S — trace S, + 2nuy.
We have grouped the quadratic, linear, and constant terms together. We now
define z := vec(X), ¥t := (zo,2*) and w := vec(W) and get
HR = m"z}xm;n yt [Lq + Arrow (w)wgEg + B°Diag (Ss) + O%Diag (S,) + uoD]y

~wyq — trace Sy — trace S,,

(3.2.24)
where we define the (r? + 1) x (r® + 1) matrix
0 l —vec(C)*
Lg:= (3.2.25)
—vec(C) I B®A
and the linear operators
0 [ —3ut
Arrow (w) := , (3.2.26)
-3w I Diag (w)

. 0} o0
B"Diag (S5) := T Tas | (3.2.27)
3
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and
_ o| o
0%Diag (S) := |— , (3.2.28)
015,01
n l—e‘@e‘ [ n l-—e‘@e’
D= + .
—-e®e| I®F -e@el ElI

Note that we will refer to the additional row and column generated by the
homogenization of the problem as the 0-th row and column. By using the hidden
semidefinite constraint, i.e., the pure quadratic function is bounded below only if

the Hessian
Lg + Arrow (w)wg Eqgo + B°Diag (Ss) + 0°Diag (S,) + ueD
is positive semidefinite, we see that (3.2.24) is equivalent to

(Dy) max -—wg — trace S, — trace S,
1
s.t.  Lg + Arrow (w)wo Ego + B®Diag (S3) + 0°Diag (S,) + ueD > 0.

We introduce the (r?+1) x (n?+1) dual matrix variable Y > 0 and derive the dual
of the SDP problem D,. Then, we obtain our desired SDP relaxation of QAP; as

follows.
min trace LY

st. bdiag(Y)=1I o%diag(Y) =1
arrow (Y) =0 trace DY =0

(P1)

where the arrow operator, b°diag and o°diag are the the adjoint operators to
Arrow (-), B°Diag and Q°Diag , respectively; (They are defined in Chapter 1.2
and Section 1 of this chapter) the arrow operator represents the 0-1 constraints

by guaranteeing that the diagonal and Oth column are identical; the b°diag and
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o’diag represent the orthogonality constraints; and, finally, the norm constraint
is represented by the constraint trace DY = 0. Now we can show that there is
exactly one redundancy among the constraints given by the operator b%diag and

the operator o%diag .

Theorem 3.1 Among the constraints given by the operator b°diag and the oper-

ator o°diag there is ezactly one redundant constraint. More precisely, let
b%dia
B := 8 .
o’diag

dim(N'(B%)) =1,

Then

i.e. the null space of the operator B* is of dimension one.

Proof. Let S,T € S, be the dual variables corresponding to b°diag and odiag ,
respectively. We first choose S = ~T = I. Then B*(S,T) = 0. Hence, the null

space of B™ is not empty.
Now let Ty; = 0. We need only prove the following.

B*(S,T) = B®Diag (S) + 0°Diag (T) =0 implies S=0, T =0.

Since T3; =0 and

o| o
0|Ies

B°Diag (S) + 0°Diag (T) = [

we have

18S=-T;, @I =0,
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thus, § = 0. This implies that T =0 as well. m]

Remark: an alternative proof can be done based on the fact that if the assign-
ment polytope {X : Xe = X?e = e, X > 0} is expressed as

{X:AX =¢,X 20},

then the linear operator A* has the property dim(N(B*)) = 1.

3.3 Geometry of the Feasible Set

In this section we study the geometrical structure of the feasible set of the SDP re-
laxation ( P;). We have expressed the orthogonality constraints with both XX =T
and XtX = I. It is interesting to note that this redundancy adds extra constraints
into the relaxation which are not redundant. These constraints reduce the size of
the feasible set of the relaxation and so tighten the resulting bounds. We denote
the feasible set of the SDP relaxation (P;) by F;. Note that D # 0 is positive
semidefinite, therefore, to satisfy trace DY =0, Y has to be singular, which means
that the feasible set of the primal problem P, is not strictly feasible. From this
we can see that the relaxation of the redundant constraints Xe = Xte = e can
actually help us see the geometric structure of the feasible set. It is not difficult
to find an interior point for the feasible set of the dual (D,), which means that
Slater constraint qualification (strict feasibility) holds for (D,). Therefore (P, ) is
attained and there is no duality gap in theory for this primal-dual pair. However,
since Slater constraint qualification for the primal fails, this is not truly a proper
dual pair. This is because we cannot stay exactly feasible, > 0, in the absence of

Slater condition. (See [RTW95].) Moreover, because the supremum of (D,) may
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never be attained, numerical instability is likely to occur. In order to overcome this

difficulty, we need to explore the geometrical structure of Fj.

It is clear that the matrices
1 t
Yx := (1 vec(X)?) for Xell
vec(X

are feasible points of F,. Moreover, since these points are rank-one matrices, we
see that they are contained in the set of extreme points of F;, see e.g. Pataki
[PAT94a]. We need only to consider faces of P which contain all of these extreme
points Yx for X € II. We want to find the minimal face, which is the intersection
of all these faces. The following theorem characterizes the minimal face by finding
a point in its relative interior, namely the barycenter. This point has a very simple

and elegant structure.

Theorem 3.2 Let z = vec(X). Define the barycenter point
. 1 1] z¢
Yi== 3 [—l—] . (3.3.29)
. t
Xelln | z | zz

1. Y has a 1 in the (1,1) position and n diagonal n x n blocks with diagonal

Then:

elements 1/n. The first row and column equal the diagonal. The rest of the
matriz is made up of n x n blocks with all elements equal to 1/(n(n — 1))



ezcept for the diagonal elements which are zeros:

=(,.

1 *e'
Diag (1¢) =B -1 wR=(E-D
ie .
= E-D = (E=D Diag (4¢)
0] 0

=€

Josor

0
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e TCw T (i_l)(nl,. —E)® (nl, - E) ]

rank (V)= (n—1)2+1;

3. the n? + 1 eigenvalues of Y are given in the vector

1 t
(29 n__.—le(n—l)za 01 A 0) ¥

N(¥)={v:ueR(T},

where the assignment constraint matriz T s

-1} 0 - 0

~1]0 e 0 .- 0
T:= . :

-1 0 ¢

| —e r r -. I ]
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5. the range of ¥ can be ezpressed by the columns of the (n?*+1) x ((n—1)* +1)
matric
) (3.3.30)

A 1] o
~ Lem|vev

where the matriz V

Purthermore, TV = 0.

Proof. Fix X €I, and let

Y=Yx= ( ! ) (1 vec(X)*).
vec (X)

Consider the entries of the Oth row of Y. Since Y, (i-1)n+; = 1 means 2 is assigned

to 7 and there are (n — 1)! such permutations, the components of the Oth row of
Y are given by

- 1 1
},().(i-l}n-{—j = ;I(n -i= ;;-

Now consider the entries of Y in the other rows, Y(p_1yniq,(i-1)n+j-

i) if p=1 and g = j, then Yp_1)n4q (i-1)n+; = 1 means that i is assigned to j
and there are (n —1)! such permutations, therefore the diagonal elements are
- 1 1
Yo t)ntai-t)nei = ;I("' -1)t= n
ii) Now suppose that p # ¢ and ¢ # j, i.e., the element is an off-diagonal element
in an off-diagonal block. then Y(p_1)n+q,-1)n+; = 1 means that ¢ is assigned
to j and p is assigned to ¢ and since there are (n — 2)! such permutations,

therefore
% =l
(P-I)ﬂ-{-q,(i-l)ﬁ-*-j - ;!'(n - )' - n(n — 1) ¢
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iii) Otherwise, suppose that p =1t or ¢ = j but not both, i.e., we consider the
off-diagonal elements of the diagonal block and the diagonal elements of the
off-diagonal blocks. By the property of permutation matrices, these elements
are all 0.

This proves the representation of ¥ in 1.
Let us find the rank and eigenvalues of ¥'. We partition

. 1 | iet
Y = C ,
Lel W

"

thus defining the block W. We have

1 |o s 1|-2] _[1]o (3331
“le|r| o] I o5 |’ -

where § = X — L E. As a result, we have

rank (Y) = 1 + rank (S).

Direct verification shows that

1
S= m(ﬂ[u - E) ® (nl,; - E)

The eigenvalues of »nl, — E are n, with multiplicity n — 1, and 0. Note that
the eigenvalues of a Kronecker product are given by the Kromecker product of
eigenvalues. Therefore, we have that the eigenvalues of S are 1/(n — 1), with
multiplicity (n — 1)?, and 0, with multiplicity 2n — 1. Therefore, we have

rank(Y) =1 +rank (S) = (n — 1)* + 1.

This proves 2.
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By (3.3.31), we can easily see that 1/(n — 1), with multiplicity (n — 1)?, are
also eigenvalues of Y. Also, 2 is an eigenvalue of Y. Therefore, since rank (¥) =
(n — 1)? + 1, we have that the eigenvalues of ¥ are 2, 1/(n — 1) with multiplicity
(n —1)%, and 0 with multiplicity 2n — 1. This proves 3.

Note that rank (T) = 2n — 1 and TY = 0. Therefore, we have
N(?):{u:uéR(T‘)}.

This proves 4.

Since rank (V) = (n — 1)+ 1 and TV = 0, the columns of V span the range

space of Y. m}

Remark: The structure of the assignment polytope has been well studied. An
alternative proof for part 1 and part 2 can be done based on the well known fact
that the dimension of the assignment polytope is (n — 1)3.

The above characterization of the barycenter enables us to find the minimal
face of F) that contains the feasible set of the SDP relaxation. Note that the range
space of the barycenter ¥ spanned by the columns of V is the null space of the
assignment matrix T'. However, we would like to point out that this property of
QAP is not true for a general feasible set with an assignment structure. Here is a
counter example.

Consider the problem
z; =1
Ty +z2 +z3 +z4=1
Ty, T2, T3, z42>0.
As we can see its only solution is (1,0,0,0)t, hence, its barycenter is a rank-one

matrix. However, the null space of the above system is of dimension 3.
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This fact again tells us that a success in finding a barycenter is the key in exploiting
the geometrical structure of a given problem with an assignment structure.

Finally, let t(n) := 232 We have the following corollary.

Corollary 3.1 The dimension of the minimal face is t((n — 1) + 1). Moreover,
the minimal face can be ezpressed as f’S(,‘_l)sz/‘.

From Theorem 3.2 we conclude that Y > 0 is in the minimal face if and only
if Y = VRV* for some R > 0. We can now replace the matrix Y by VRV in the
SDP relaxation (P;). As a result we get the following projected SDP relaxation.

min trace (V‘LqV)R
s.t. bodiag (VRV?) =1
oCdiag (VRV?) =TI
arrow (VRV?) =0
(VRV*)go =1
R > 0.

(Relazl)

By construction, this program satisfies the generalized Slater constraint qualifica-
tion for both the primal and the dual. Therefore there will be no duality gap and
the optimal solutions are attained for both primal and dual. The projected SDP
relaxation (Relazl) has been solved by a primal-dual interior-point method. (See
e.g. [KAR95]).
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3.4 Gangster Operator and
Final SDP Relaxation

It is very interesting to study the structure of Y. Because of the symmetry, we
only consider the upper triangular part. We denote the zero entries of ¥ by the

following set

P . 5) i=(p-1ln+q j=(p—1)n+r forg<r or
=4 (3,7): .
i=(p-1ln+q j=(r—1)n+q forp<r

With the set J we define the gangster operator

(gJ(Y));j = { ;,ij if (i’j) or (jsi) eJ

otherwise.

As a result, we have
Gr(Y) =0. (3.4.32)

For any permutation matrix X € II, Yx has all its entries either 0 or 1, and
Y is just a convex combination of all these matrices Yx for X € II. Hence, from
(3.4.32), we have
Gs(Yx)=0 VX ell.

Therefore, we can even further tighten the feasible set of the projected SDP re-
laxation problem (Relazl) by adding the natural constraints G;(Y) = 0. Note
that the gangster operator constraints G;(Y') =0 can be directly derived from the
expression of the QAP feasible set, £ENH.

The following useful properties can be derived from the fact that TV = 0.
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Lemma 3.2 Let R be arbitrary (n — 1)+ 1 x (n — 1)? + 1 symmetric matriz with

Rw | Bau ... Ry |
Ryo Ru ... Rym-y

| Ba-1jo | R-ty1 -~ Bnotyn-ny |
where Rgo ts a scalar, Ry, fori=1,...,n —1, are (n — 1) x 1 vectors and R;;,
fori,j =1,...,n—1, are (n — 1) x (n — 1) blocks of R. Let Y = VRV* and
partition Y as

.Yoo Yor ... YOn.

Yo Y1 --. Yina
Y= }0 11 T ,

| Yoo |Yar oo Yom |

where Yoo 8 @ scalar, Yo, fori=1,...,n, are n x 1 vectors and Y;;, for 1,5 =

1,...,n, are n X n blocks of Y. Then
@)
Y00=R007

YoiezRon, for i=17"-1n1

and
Z Yo: = Rooe’.
i=1
b)
Yo,' = e‘Y;j, fOT i,] = 1, (S
c)

n
EY‘:,- =eXo,-, for, J = 1,...,n.

=1
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In particular

Zdjag(Kj)zROjv fOT, j‘-'lv"-an'
=1

Proof. We can easily check that Yog = Rge. Since TV = 0, we have
TY = TVRV* = 0.

The remaining results follows from direct verification. a
Now, we add the gangster operator to the projected SDP relaxation problem
(Relazl). From Lemma 3.2, we have

Yoj = e'Y;; for j=1,...,n.

Note that the off-diagonal entries for each Yj; are zeros. Therefore it follows that
the arrow operator is redundant. Furthermore, by part a) of Lemma 3.2, we can see
that the principal-block-diag operator is redundant. Similarly, the off-block-diag

operator is redundant.

We now define a subset J of J ,

it=(p—-1ln+q j=(p—1)n+r for g<r or
j:: (i,]) z=(p—-]_)n+q j=(r——1)n+q for p<r r:,én
)£ (n-2,n—-1)

With the new index set J we have the following lemma.

Lemma 3.3 For any matriz Y € S},

VYV =0 = Y =0.



43

Proof. The matrix Y can be written as

- -

00 ... 0

0]1Y: ... Yin

y=| ("7

_0 Kzl va_

We let
1’11 .- },ln
Z=(VeV)| : . : |[(VeV).
Yul e Yrm

Then from V*YV = 0, we have Z = 0. Note that

(v ... 0
VeV =

0 v

| -V ... -V

Therefore if we write the above matrix Z as

Zu -ee Zln-l

Zn—ll see Zn-ln—-l

then we have, for 1,5 € {1,...,n — 1},
Zi; =V(Yej — Yaj — Yin + Yoo )V = 0. (3.4.33)

Note that Y;; =Y, =0,fori=1,...n — 1, and
Yi-2n-1 = Yooin-2 = 0. We have V*Y,.V = 0 and hence

Zij = V'(Y.:j)V =0,



for 7,7 € {1,...,n —1}.

Since Y;; can be either a diagonal matrix or a matrix with diagonal equal to

zeros, we have the following two cases.

Case 1: Y;; is a diagonal matrix.

Let
ay ... 0
Y=
0 an
Then
ay 0
Zig=| ¢ .. +a,E =0,
0 Gn-1

which implies that ¥;; = 0.

Case 2: Y;; is a matrix with diagonal equal to zeros.

A b
Y:'j = 3
b 0

where A is a n — 1 by n — 1 matrix with diagonal equal to zeros. Thus, we have

Let

Zi;; = A— ebt —bef =0,
which implies that b =0 and A =0, i.e. Y;; =0. Therefore, we have Y, = 0 and
Yij = 0’

fori,5€{1,...,n -1}, ie,
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. (W]

We can get rid of all of the redundant constraints from the gangster operator

Gr based on the following theorem.

Theorem 3.3 Let Y = VRV* with form

Yo |Yor ... Yon
Y= YTO 1,3.1 e Y'Tn
anO Kzl .. vaJ

Then

1. Gi(Y) =0 implies that diag (Y1) =0,...,diag (Yin—1) =0 and
diag (Yn-zn-1) = 0.

2. Let J=JU(0,0), then the mapping G 7(Y) is onto.

Proof. Let G3(Y)=0. Then from Lemma 3.2, we have, foreach i =1,...,n,

Y diag (V) = Yao
j=1
and

diag (Y:) = Yoo,
which implies that diag (Y;,) =0, for ¢ =1,...n — 3, and therefore
diag (Yn—2n-1) + diag (Yn-2,) =0

diag (n—2n~1) + dlag (Yn—ln) =0
dia'g (Kx-zn) + diag (},n—ln) =0,
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which implies that
diag (Yn-2n-1) =0

diag (Y;x—Zn) =0
d.ia.g (Yn—ln) =0.
This completes the proof for 1.

Since Yoo =1 and G 5(Y) = 0, we know that Yy is linearly independent on G;.
The rest of the proof for 2 follows immed.iately from Lemma 3.3. u]

Therefore, by eliminating the redundant constraints we now can get a very
simple final SDP relaxation.

min trace (V‘LQ f/)X
(Relaz2) st. Gy(VXV?) = By
X >0,

where X € P(p-1)2_;. (Note: in the rest of the chapter, X is not for a permutation
matrix but the primal matrix variable for the SDP relaxation.) Its dual problem is

max -—-Wyo
(D2) st V(Lo+W)V =0
W e Sy

Note that the gangster operator is self adjoint and G;(S) = Sy. The following
theorem gives a very interesting property of a feasible solution of the final SDP
relaxation.

Theorem 3.4 Let X be a feasible solution of (Relaz2). Then, the n x n matriz
Mat ((diag (VXV?)),.2) is a doubly stochastic matriz, i.e.

Mat ((diag (VXV?))y2) € E.
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Proof. Let Y = VXV*. Then from Lemma 3.2 and G(Y) = Eq, we have
Yo = diag (Y) and Yoq = 1. The rest of the proof follows immediately from the
part a) of Lemma 3.2. m]

From the above theorem, we can see that the final SDP relaxation can not only
give a lower bound for the QAP, but also yields a doubly stochastic matrix, which
may be used to derive a good feasible solution for the QAP.

Before we solve the final SDP relaxation, we would like to give interior points
for both the primal feasible set and the dual feasible set.

Theorem 3.5 The ((n —1)>+1) x ((n — 1)2 + 1) matriz

1 I 0

%=
0| iy (facs = Encs) ® (nhcy — En-1)

is an strictly interior point of the feasible set for (Relaz2).

Proof. Note that X is positive definite since nl,_; — E,_, is positive definite.

The rest of the proof follows from showing that

VXVt =Y,
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where Y is the barycenter.

L o
—en®en|V®V

ﬁ'}i’f/’:[

X[ll%e,‘,@cf‘]
0| oV

"\ teoe (et 0ct)+

0 0
0 nz(n ~1) V("'Iﬂ-*l - En—-l)w ® V(nIn—1 - E,;-;)V‘ j|

1
|
( 1eﬂ@ﬁﬂ) (Lier®el) +
:
v

I

-

n

0 0
n‘(n—-l) (nI ﬂ) ® (nIn - En) :|

Theorem 3.6 Let

W:M[”l ° ]

0| L. ® (I — En)
Then for a sufficiently large scalar M, W is a strictly interior point of feasible set
(D2)..

Proof. It is obvious that we only need to show the matrix

el o v
0| L. ® (I — E.)
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is positive definite. Notice that !V = 0, we have

~

. A 1} ef/n n l 0 1 I 0
VWYV =
0| vieVt || 0| Le@Uu—E) || c/n|VeV
n+ (ehe)(eUn — En)e)/n? | (V) @ (e(Jn — Ea)V)
(V'e)® (Vi(ln — Ende) | (VV)® (Vi(Ia ~ Ea)V)
0
(V*V) ® (V¥(L, ~ LE.)V)
0
ViVe WtV

A

il Ol O

0
(In-l + En-l) ® (In-l + En-l)

Since the matrix I,_; + E,_; is positive definite, we have that

1] 0
0| (Inw1 + Bn1) ® (In—1 + En1)

is positive definite. a

3.5 A Truncated Primal-infeasible Dual-feasible
Interior-Point Method

Helmberg et al. [HEL94, HRVW96] proposed a primal-dual interior-point method
for solving general semidefinite programming problem. We described the method
in Chapter 2. With this method they successfully solved max-cat problems. Based
on this method, we develop a so called fruncated primal-infeasible dual-feasible
interior-point method to solve the final SDP relaxation (Relaz2). This method
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aims to generate a lower bound efficiently for large scale QAP. We describe this
method in the rest of the section.

3.5.1 Why this Method?

We rewrite the dual problem (D,) by introducing a slack matrix Z.

max —Woo

st. Vi(Lq+W)V-2=0

(3.5.34)
Zx0
Y €8S;.
The Karush-Kuhn-Tucker conditions of the dual log-barrier problem are
Fp = Gy(VXVY)—Ep = 0
Fp = VYLo+W)V-2Z = 0 (3.5.35)
Fzx = ZX —ul = 0,

where X > 0, Z > 0 and W € Sy. The first equation is primal feasibility
conditions, while the second is the dual feasibility conditions and the third takes care
of complementary slackness for X and Z. We solve this system of equations with
the variant of Newton’s method discussed in Chapter 2, i.e. we always symmetrize
60X after we obtain a solution (8X,8W,0Z) by solving the following system of
equations

GAVEXVY) = —Fp

ViswV -62 = —Fp (3.5.36)

0ZX + 26X = -—Fzx.

From the second equation, we have

62 = V'SWV + Fp. (3.5.37)
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Substituting it into the third equation, we have
0X = -Z'WWVX — Z7'FpX ~ Z ™' Fzx. (3.5.38)
Substituting this to the first equation, we obtain the following normal equation
G ,(Vz-lv‘a"wffxv*) = Fp —Gy(V(Z~ FpX + Z ™' Fzx)V?). (3.5.39)

Since in our following algorithm, we can always maintain dual feasibility, we can
let Fp = 0. We denote the linear operator Gy(VZ-1Vt§WVXV?) by A and the
right hand side by b&.

A()) = Gy(VZ V(- )V XV) (3.5.40)
and
b:= Fp — Gi(VZFzx)V?), (3.5.41)

where we use the dot - to represent a variable for the operator. Then the normal

equation becomes
A(dW)=b. (3.5.42)

The size of the above problem is m = n® —2nr2 + 1. For n = 20 and n =
30, m = 7201 and m = 25201, respectively. Therefore, to solve such a huge
(and most likely dense) system of equations, a direct solver such as the direct
Cholesky factorization is not likely to be efficient or most probably can not even be
implemented due to memory limitations. It is worthwhile to note that even if the
above system of equations can be solved directly, it is very time consuming to create
the explicit matrix form for the system. An alternative approach to solving the
normal equations is to use an iterative solver such as the preconditioned conjugate

gradient algorithm. The algorithm is shown below:
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The Preconditioned Conjugate Gradient Algorithm

Given: initial solution y, a left-hand operator A, right-hand-side vector b and
preconditioner Q.

Initialization: r = b — A(y). Repeat until stopping criteria are satisfied:
1. Solve Qu=r—r.
2. B=rtv.

3. If first iteration, ¢ = v;
else g =v+(8/B)q.

4. t= A(q).
5 w=p/qt.
6. y—y+wgq.

7. r 714 wt.
8. Bp.

The conjugate gradient method has been proven to be a very powerful tool in
various interior-point methods to solve the Newton equation for large problems. In
particular, for large sparse problems, the conjugate gradient method performs very
well due to the fact that preconditioners of high quality can be derived efficiently by
exploiting the sparity structure (see e.g. [CHI95]). In the conjugate gradient algo-
rithm, the most expensive part is the evaluation of the vector A(g), the complexity
of which for the normal equation (3.5.42) is O(n®). Therefore, to make the interior

point method efficient, for each interior point update, it is necessary to stop the
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conjugate gradient algorithm as soon as possible. One way to do so is to solve the
normal equation approximately i.e., truncating or stopping the conjugate gradient
algorithm early. As we expect, this may result in primal infeasibility. However,
the strict feasibility of the dual can still be maintained. As a lower bound is given
by the dual objective value, it is not necessary to solve the problem (Relaz2) to
optimality to generate a good lower bound. In other words, by not aiming to solve
the problem (Relaz2) to optimality, we can make this interior-point method more
efficient. The essence of this method is the so called inezact Newton method (see e.g
[DES82]). One successful application of a similar method can be found in Portugal,
Resende et al. [PRVJ94]. See e.g. [VB95] for a similar approach for solving SDP

problems derived from the control applications.

3.5.2 The Preconditioned (Truncated) Conjugate Gradient
Method

Stopping criteria for the Conjugate Gradient Method

For the conjugate gradient algorithm, a limit on the number of iterations is set up
depending on the compromise between accuracy and efficiency. In our numerical

test, the limit is less than the square root of the size of the above system.

The angle 8 between A(6W) and b can be computed by

g lBAGW)]
%0 = T TAGW)T

where r is the residual. We choose a small number & (in our test o = 0.001). The

stopping criterion for the conjugate gradient method is the following:

1 —cosf@ < o, or the number of iteration reaches the limit. (3.5.43)
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When (3.5.43) is satisfied, we terminate the conjugate gradient algorithm. See e.g.
[PRVJ94] for reference for the stopping criterion.

Preconditioner

It is well known that a good and cheap preconditioner is the key factor to the
success of a conjugate gradient method. A preconditioner is usually constructed
from the information contained in the matrix or linear operator. Some popular
preconditioners, constructed by various techniques such as minimum spanning tree
and incomplete Cholesky, can be obtained very efficiently from an explicit matrix
representation of the constraints. Unlike a linear system with explicit matrix form,
it can be very expensive to construct such preconditioners for a general linear oper-
ator system. Fortunately, we will see from the following that the special structure
of the gangster operator makes it cheap to construct a preconditioner.

Let K be the explicit m x m matrix form for the linear operator system (3.5.39)
and let X = VXV* and Z = VZ-'V*. Then the linear operator system (3-5.39)

becomes

G (ZdWX) =b.

For 1 < k,l < m, let us try to calculate Ky, the (k,!) entry of K. Note that we
can always order the index set J. Let (k;,k;) and (I;,!;) be the index pairs from
J corresponding to k and [, respectively. The Ith column of X is

( g 1(2(0-581.-6&. + 0.5e;,.e,‘_.)f( ) ) .
Therefore,

Kt = (Zrat; Xok; + Zias Koy + gt Kujue + Zngt; X ) /2-
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The above formula can be used to construct a preconditioner in an efficient way
that exploits sparsity. In our numerical test, we took the diagonal of X as the

preconditioner.

3.5.3 Implementation

In our truncated primal-infeasible dual-feasible interior-point algorithm for QAP,
we use a stopping criterion that differ from the standard primal-dual interior-point
method for general semidefinite programming problems. We describe the stopping

criterion as follows.

Stopping Criterion for the Interior-Point Method

Because of the primal infeasibility, instead of using the duality gap, we use the
increasing rate of the dual objective value, which is defined as

where W, is the dual objective value at the iteration k. At each iteration the dual
objective value gives a lower bound and the lower bound increases as k increases.

We choose a small number e sach that when
SWE < e, (3.5.44)

we terminate the algorithm. In other words, when the gain for increasing the lower
bound is not worth the computation expense, we stop the algorithm. Since our
goal is to find a lower bound, this stopping criterion is quite reasonable. In our

numerical tests, we took € = 0.001.
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Flow Chart of the Primal-infeasible Primal-dual Interior-Point Algo-

rithm

step 0: initial primal and dual interior-points. They are given by Theorem 3.5 and
Theorem 3.6.
X=X, W:=W,Z=V{(Lo+W)V
u :=trace (ZX)/(2n);

step 1. if stopping criterion (3.5.44) is not satisfied, then compute F,, Fzx (see
(3.5.35)) and b (see (3.5.41)). Solve (3.5.42) by the preconditioned (trun-
cated) conjugate gradient method with the stopping criteria (3.5.43); (see
Subsection 3.5.1)

step 2. compute X, éZ by (3.5.38) and (3.5.37) and by symmetrization. Use the
line search algorithm described in Chapter 2.2 to find a, and a4 such that

X +06X =0, Z+aubZ >0

and both a, and ay are as close to one as possible.

step 3 update X, W and Z by
XeX+taX, WeWi+aidW, Z 7+ ayéZ

p « trace (ZX)/(2nr). Goto step 1.

3.6 Numerical Tests and Comments

We coded the truncated primal-infeasible and dual-feasible interior-point algorithm
in both C and Matlab. We tested our code by using some test problems from



a7

QAPLIB, see e.g. [BKR91]. We present the results of our numerical testing in this

section.

3.6.1 Goal of the Numerical Tests
The numerical tests serve two purposes

e compare the lower bounds given by the SDP relaxation with the existing

bounds,

o understand the performance of the truncated primal-infeasible dual-feasible
interior-point approach to see how truncation affects both the lower bound
and the CPU time.

3.6.2 Measures of Performance

The comparison of the SDP bound with the existing bounds is summarized in Table
3.6.0. The lower bounds given by the existing bounding techniques in the literature
for the testing problems are included for comparison. The table reads as follows.
The first column indicates the problem instance looked at and its size, nugxx refers
to the Nugent example of size xx. For references of the problem instances we refer
to QAPLIB. The second to the seventh columns give the optimal solution OPT, the
Gilmore-Lawler bound GLB [GIL62, LAW63], the projection or elimination bound
ELI of [HRW92a), the bound RRD obtained by [RRD94], EVB3 from [RW92], and
bound GAN given by the SDP relaxation with gangster operator, respectively. The
last column shows the semidefinite bound given by Karisch [KAR95]. An ‘n.a.’
means that the value of the bound is not available.
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OPT GLB ELI RRD EVB3 GAN By
nug05 50 50 47 50 50 50 49
nug06 86 84 69 86 70 86 74
nug07 148 137 125 148 130 144 132
nug08 214 186 167 204 174 204 179
nugl2 578 493 472 523 498 534 487
nugls 1150 963 973 1041 1002 1074 1009
nug20 2570 2057 2196 2182 2286 2385 2281
nug30 6124 4539 5266 4805 5450 5648 5424
Hadl2 | 1652 1536 1573 n.a 1589 1640 1198
Hadl4 | 2724 2492 2609 n.a 2630 2709 2651
Hadl6 | 3720 3358 3560 n.a 3594 3678 3612
Had18 | 5358 4776 5104 n.a 9150 5286 5174
Had20 | 6922 6166 6625 n.a 6678 6847 6713
carlOga | 4954 3586 4079 n.a 4541 4847 4436
carlOgb | 8082 6139 7211 n.a 7617 7941 7603
carlOgc | 8649 7030 7837 n.a 8233 8546 8208
carlOgd | 8843 6840 8006 n.a 8364 8658 8319
carlOge | 9571 7627 8672 n.a 8987 9327 8912

Table 3.6.0: comparison of lower bounds
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OPT FEAS IFEAS CPU(sec) CPU(sec)

FEAS  IFEAS

nug05 50 50 50 1.817 0.416
nug06 8 86 86 11.08 1.733
nugd? | 148 144 144 41.02 8.3
nugd8 | 214 204 204 120.5 15.23
augl? | 578 53¢ 534 4589 343
augls | 1150 1076 1074 29520 2776
carl0ga | 4954 4853 4847 920.4 99.75
carl0gh | 8082 7960 7941 1019 111.7
carl0ge | 8649 8561 8546 1061 106.4
carl0gd | 8843 8666 8658 959.1 93.37
carl0ge | 9571 9349 9327 1030 102.5

Table 3.6.1: Feasible solution vs. infeasible solution

The above numerical results show that both relaxation 2 and relaxation 3 give
very good bounds, especially for problems with linear terms. Therefore, semidefinite
relaxation approach for QAP is very promising. In Table 3.6.1, we study how
truncation affects the quality of lower bound and CPU times. The column under
OPT is for optimal objective value. The columns under FEAS and IFEAS are for
the lower bounds obtained by both feasible interior-point method and infeasible
interior-point method, respectively. The last two columns are for the CPU times

for both feasible and infeasible interior-point methods, respectively.

From Table 3.6.1, we can see that by truncating the conjugate gradient iter-

ations, the infeasible interior-point approach can still give almost as good lower
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bound as the feasible interior-point method but with much less CPU time. Also,
we observed that the truncation happened mostly during the final iterations of the
interior-point algorithm (where the increasing rate for the objective is already quite
small), which indicates that truncation is necessary.

3.7 Future Work

Our future work will be to make our approach more efficient for large scale problems.
In addition to optimizing our code and using some fast matrix computation packages
such as LAPACK, we would like to apply Paulina Chin’s approach (see e.g. {CHI95])
to solve the Newton’s equation, i.e. instead of solving the small but dense normal
equation, we will try to solve a larger but sparse system of equations. In this way, we

can fully take advantage of the sparsity and, possibly, find a better preconditioner.



Chapter 4

Graph Partitioning Problem

4.1 Introduction

The graph partitioning problem, GP, can be described as follows:

Given: an undirected graph G = (V, £) having node V and edge € and
a weight, a;; > 0 for the edge between node ¢ and node j. We consider
the problem of partitioning V into k disjoint subsets V, ..., V¢ of given
sizes m,,...,m; in such a way that the sum of weights of edges that

connect nodes in different subsets is minimal.

We let a;; = 0 if there is no edge between node 7 and node j. Then the
symmetric matrix A = (a;;) is the weighted adjacency matriz of the graph G. The

matrix A can be written in the following.

Gi11 .-. Gin

A:=

Gny ... Gnn

61
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We assume that the graph has no loops, hence the diagonal elements of A are all
zeros. The graph G is an unweighted graph if a;; for each edge is either 0 or 1.
Otherwise, the graph G is weighted graph. For a given partition of the graph into
k subsets, let X = (z;;) be the n x k matrix (n = }_; m; is the cardinality of V)
defined by

R if node ¢ is in the jth subset
= { 0 if node 7 is not in the jth subset.
Thus the jth colamn X; is the indicator set for the jth subset. Such a matrix X
can represent the partition. Let II be the set of such matrices. An edge between
nodes 7 and j is called an uncut edge if both ¢ and j are in the same subset. Then
for each partition X € II,

n

k
-21—traceX'AX = %trace AXXt = % Z Ea.',-za:cﬂ

ij=1i=1
gives the total weight for the uncut edges. As a result, the total weight for the cut
edges is

W(EBeye) := -;—(e‘Ae — trace (X*AX)).
Note that for any partition matrix X € II, we have
trace X*Diag (Ae) X = etAe.
Therefore, the minimal weights w*(E.) is obtained by solving the graph parti-
tioning problem in the trace formulation

w*(Ecye) = min jtrace X*LX

(GPI)
subject to X el,

where the matnx
L :=Diag (Ae) - A
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is called the Leplacian matriz of a graph.

The graph partitioning problem is well known to be NP-hard and therefore find-
ing an optimal solution is likely very difficult. Yet this problem has many applica-
tions in various areas. One important application is VLSI design; see e.g. [LEN90]
for a survey of Integrated Circuit Layout. See also [HMV92] for its application to
netlist partition.

One popular and very successful heuristic for finding “good” partitions was pro-
posed by Kernighan and Lin [KL70] in 1970. In the early 70’s Donath and Hoffman
[DH73] provided an eigenvalue-based bound. Several new eigenvalue-based bound
techniques were presented by Rendl and Wolkowicz in [RW95a] and a computational
study showed these bounds are very good, see e.g [FRW94]. An SDP relaxation
technique for equal-partitioning problem, i.e., the sizes of the subsets are all equal,
has been successfully developed in [KR94]. In this chapter, we are going to develop
an SDP relaxation for the general graph partitioning problem as described above.

4.2 An SDP Relaxation

In order to have an SDP relaxation for (GPI), we will reformulate (GPI) as a
quadratically constrained quadratic programming problem. Since the matrix X is

restricted to 0-1 components, we have Xi; = X7, i.e.,
X=XoX.
Also, since Xex = e,, we have

XioX;=0,
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for any ¢ # j € {1,...,k}. Therefore we can reformulate (GPI) as the following

problem
min jtrace X*LX
subject to XoX =X
Xer =en
Xten, =1
X:0X;=0Vi#j,
where we let . = (m,, ..., mi)t. Several of these constraints are clearly redundant.

Redundant constraints can still be nonredundant in the SDP relaxation as we have
seen in Chapter 3. An equivalent quadratic constrained quadratic programming

problem is
min jtrace X*LX

subjectto XoX =X
| Xex —enl[> =0
| Xte, —m|2 =0
X;0X;=0Vi#j.
By following the same procedure as for the quadratic assignment problem, we have

the following SDP relaxation for GP.

min traceL,Y

s.t. arrow(Y) =0

trace D,Y =0
(RGP) trace DY =0

Gs(Y)=0

Yoo =1

Y >0,
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0 0
Ly:= ; (4-2.45)
0|3/QL

p<r,pre{l,... .k} )
q€ {1’ . 3 ’
the gangster operator constraint represents the (Hadamard) orthogonality of the

where:

J = {(i,j) ti=(p—-1)n+q j=(r—1)n+gq for

columns, X; o X;; = 0,Vi # j; and, finally, the norm constraints are represented

by the constraints with The (kn + 1) x (kn 4+ 1) matrices

-e‘ @ :‘
Dl = n l k e
—er® en l (exet) ® I,

D, = il l —' Qe .
~mQ® en | I ® (eney)

Since both D, and D, are positive semidefinite, the feasible set of the problem
(RGP) is not strictly feasible. Hence we can not apply an interior-point method
right away. However, one find a very simple structured matrix in the relative interior

of the feasible set, which we do in the next section.

4.3 Geometry of the Feasible Set

In this section we study the geometrical structure of the feasible set, denoted F,
and of the convex cone P of the SDP relaxation (RGP). As F is not strictly
feasible, we need to find the minimal face of the feasible set F as in the case of

quadratic assignment problem. It is clear that the matrices

Yx := ( 1 ) (1 vec(X)"), for X €1,
vec (X)
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are in F. Moreover, since these points are rank-one matrices, we see that they are
contained in the set of extreme points of 7. We need only to consider the minimal
face, the intersection of faces of P which contain all of these extreme points Yy,
for X € II. The following theorem characterizes the minimal face by finding a
point in its relative interior, namely the barycenter. This point has a very simple

and elegant structure.

Theorem 4.1 Let z = vec(X). Define the barycenter point

. L. .mg! 1| =t
po= BT Y l = | (4.3.45)
n: Xen| z | zzt
Then:
1.
r 1 'T’:Lef‘ me gt
oo | e | (BI+BEFUE-D) .. (RENE-T)
| een (FEEENE - 1) o (4 mEmL R )
1
= (1,imt@e)
1Mm® e,
Ol 0
+ ;
0 | mray(nDiag () — mm®) @ (nl, — E.)

2. the rank of the barycenter

rank (Y) = (k—1)(n — 1) + 1;
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_ 8. the rows of the matriz

b

-me! 0 --- --- 0 e:

—a | I, I, -+ - I,

form a basis for the null space of Y ;

4. the columns of the matriz

[ 1 | o }
a iﬁu&eank@Vn

form a basis for the range space of Y, where

1 0 0
, 0 1 ...... 0
V.:=[ "‘J-—- 0 0 1 ... 0
8—1
1
-1 ...... 0 -1
. d-x(a—l)

Proof.  There are n! ways to permute the nodes and there are m;! ways to
permute the members of each set. Therefore, there are ;,’"7;7 possible partition

matrices.

Consider the (n(j — 1) + i)th column of Yy is

1
Tn(j-1)+i-
z
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The column is zero unless z,;_;)4; = 1. The element z,(;_1)4+; corresponds to the
i,J element of the partition matrix X, i.e., this element is 1 if node 1 is in set j.
There are {oor b partition matrices, X, to (GPI) with Zn(j_1)s; = 1. Therefore

the components of the Oth row of ¥ are given by

(m,!...m!) Y 1= (my!...m!) (n—1)m;

="y
n! n! (mid...my!) ~ n

Yon(i-1)+9 =
Zn(j-1)+i=1

1
) Tn(i-1)+5- We distinguish four cases:

Now look at the (g—1)n+p element of (
z

1. Assume that J = q and ¢ = p. There are again ((3‘:.% partitions to (GPI)

with Z(,_1)niq =1, Ler, this confirms the fact that the diagonal elements are
equal to the elements of the 0th row.

2. Assume that the node indices ¢ = p while the set indices j # q. Since
the same node cannot be in two different sets, this implies that the diagonal
elements of the off-diagonal blocks of the matrices Yy are all 0.

3. Assume that the node indices 7 # p while the set indices j = q. these are the
off-diagonal elements of the diagonal blocks. Then there are (B=2milmi-l)

(myl..m!)

possible partitions.

4. If both the node indices 7 # p and the set indices j # g, then these are the
off-diagonal elements of the off-diagonal blocks. There are ("—,;12,)'—';1.2,1 possible

partitions.

Dividing these expressions in the four cases by ;‘,—"-'m—., we get the representation

of Vinl.
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Now let us find a basis for the range space of ¥. We partition

-H]

# ® e, thus defining the block W. Then

. ll-ﬁ‘ﬁ'z‘Ge:ft _ 1|0
B o

g
-3
A
@
N
il
Bl

where S = W — Lmm* @ E,. As a result, we have
rank (Y) = 1 + rank (S).
Direct verification shows that

S= ) (nDiag (W) — mmt) ® (nl, — E,).

- n¥(n —
The null space of the matrix (rDiag (/) — mm*) and the null space of the matrix
(rl, — E,) are spanned by e; and e,, respectively. Therefore, their range spaces
are spanned by the columns of V; and V;, respectively. Hence, the range space of
S is spanned by the columns of Vi ® V,,. This implies that rank (S) = (k—1)(r—1)
This proves 2. Moreover, we have that the null space of Y is of dimension k+n~1.
Since
rank(T)=k+n -1,
and
TY =0, TV =0.

This implies that the rows of T' span the null space of ¥ and the columns of V
span the range space of Y. 0

Remark: The structure of the polytope of partitions has been well studied.
The feasible set F is a relaxation of the polytope obtained by lifting the partition
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matrices into the higher dimensional matrix space. Therefore the dimension of the
minimal face and the structure of the null space can be studied from the known
results of the polytope of partitions.

4.4 Final SDP Relaxation

From Theorem 3.2 we conclude that Y > 0 is in the minimal face if and only
Y = VRV?, for some R = 0. We can now substitute VRV* for Y in the SDP
relaxation (RGP). we get the following projected SDP relaxation.

min trace V‘LA‘;'R

s.t. arrow (VRV?) =0
Gs(VRV*) =0
(VRV%)o =1
R>0.

The following useful properties can be derived from the fact that TV = 0.

Lemma 4.1 Let R be an arbitrary (n—1)(k—1)+1x (n—1)(k—1)+1 symmetric
matriz with _

Roo R ... Ropg-
Rio Ry ... Ry

| Rik-1)0 | Rg—1p -+ Re—ne-y) |
where Roo i3 a scalar, Ry, fori=1,...,k—1, are (n — 1) x 1 vectors and R;;,
fori,j=1,...,n—1, are (n ~ 1) x (n — 1) blocks of R. Let Y = VRV* and
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[ Yoo | Yo Yo 1
Y= on Yfl Yfk
| Yo | Yuu Yie |
where Yoo i8 a scalar, Y, for i =1,...,k, are n x 1 vectors and Y;;, for ¢,j =
1,...,k, are n x n blocks of Y. Then
a)
YOO = RODs
Yoien =miReo, for i=1,...
and
k
EYOi = Rooef‘
i=1
b)
mYo; = et¥y, for ij=1,...
c)
k
EY;J' = e,.,Ro,-, f01‘ j = 1,..
=1
In particular

k
Y- diag (Yi;) = Rojs for j=1,...,k.
i=1

Proof. From the equation between Y and R, we see that Yoo = Roo. In addition,

since TV =0, we have

TY = TVRV* = 0.
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The remaining results follow from direct verification. =]

From Lemma 4.1, we conclude that the arrow operator is redundant given the
gangster constraint hold and (VRV‘)OO = 1. Now we will show that there are no
redundant constraints left. We do this by showing that the null space of the adjoint

operator is 0.

Theorem 4.2 Suppose that W € S;y. Then
VGHAW)V =0 = G,(W) =0.

Proof. Let Y =G;(W). Y can be written as

0] 0 ... 0
0|Yu ... Y

| 0 Y ... Y |
where Y;;, for 7,7 € {1,...,k}, are n x n matrices. We let

Yii ... Y
Z=WVe®dWVa)*| ¢ . ¢ [ (Ve® VL)

Yoo --- Y
Then Z = 0. Note that

B’ 0 |

eVu=| ~
0 ... W

Ve e -V

Therefore if we write the above matrix Z as

Zy ... D

Zkary e Zitky
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then we have, for 7,5 € {1,...,n — 1},
= V(Y —Ya+Yu)Va=0. (4.4.46)

Notethat Yie = Y; =0forz:=1,...k—1. Wehave VYV, =0fort=1,... k-1.
Therefore,

Zi = V(¥ig)V =0,
for i,j € {1,...,k—1}. Since Y¥;; can be either a diagonal matrix or a zero matrix,

we can write

|

Then
ar ... 0

Ziy =1 °-. : +a,F, =0.
0 ... any
Thus we have Y;; =0 for i,5 € {1,...,k — 1}. Therefore,
Y =0.

a

Therefore, by eliminating the redundant constraints we can get a very simple
projected SDP relaxation. We let J = J U (0,0).

min trace (V*L, V)R
(RELAXP) st Gy(VRVY) =
R >0,

where R € 'P(k—l)(n_l)-l.
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Its dual problem is

max —Woo
(RELAXD) st VHL,+W)V >0
WeSy. )

Note that the gangster operator is self adjoint and Gy(S) = Sy. The following
theorem gives a very interesting property of a feasible solution of the projected
SDP relaxation.

Theorem 4.3 Let R be a feasible solution of (RELAXP). Then the n xk matriz
Mat ((diag (VRV?®))1me) satisfies

Mat ((diag (VRV*))1ne)er = €n

aend

Mat ((diag (V RV*))1mk)ten = 2.

Proof. Let Y = VRV*®. Then from Lemma 4.1 and G;(Y) = Eg, we have
Y, = diag (Y) and Ygo = 1. The rest of the proof follows immediately from part

a) of Lemma 4.1. a

From the above theorem, we can see that the final SDP relaxation can not only
give a lower bound for the GP, but it also yields a n x k matrix which may be used

to derive a good feasible solution for the GP.

Before we solve the final SDP relaxation, we would like to give interior points
for both the primal feasible set and the dual feasible set.

Theorem 4.4 The ((k—1){rn—1)+1) x ((k—1)(n —1) + 1) matriz
/| ;

R=

0 Wv%——l)(nn iag (Mi-1) — Mi_1Mg_,) ® (nln-y — Eqy)



(6]

i3 a strictly feasible point of the feasible set for (RELAXP), where

Mp_y = (M1, .., Mi—1)-

Proof. Note that R is positive definite since both nDiag (k1) — Mop—1Mb_;
and nl,_; — E,_; are positive definite.
The rest of the proof follows from showing that
VRV* =Y,

where Y is the barycenter. We see that

VRVt - [ 1 I 0 . ll%"®ef,1
| lm@e. |i®Va| |0 ROV
(1
\ 2 ®en
0 I 0
| 0| seph=g; (Vi(nDiag (Me-1) — eyt _,)V2) @ (Va(nlnn1 — Ba1)Vy)
1
= (1, Lt ® e;) +
rm@e,
o] 0
0 | xhsy(nDisg () — ) @ (nl — Ea)
-7

where it is straightforward to check that
Vi(nDiag (Mek—1) — mi—1m;_,)Vi = nDiag () — mm’,

and in particular
‘/u(nIn.-l - En-l)Vn‘ =nl, - E,.
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Theorem 4.5 The matriz

_ [Ml 0 ]
W=
0 I(Ik—Ek)®Iu

i3 a strictly feasible point for the dual problem (RELAXD), if M is a sufficiently

large scalar.
Proof. We can write V(L + W)V as the following summation of two parts.

-.10] 0
v*
0|I®L

M| 0
0 |(-Bel,

-

V.

I‘H—V‘[

Note that
Le = (Diag (Ae) — A)e = Ae — Ae = 0.

We have for the first part

.10 0 N
vt |4
01IQL

i

rllﬁz‘@e‘/n 0' ¢ 1 | 0

o] v ] [olm} [ﬁ»@e/nlmvn

[ 0+ (%) ® (etLe)/n? | (MV) ® (¢LVa)/n
(im) ® (ViLe)/n | (ViVh) @ (VLVa)

0| S0

0| (s + Bec) @ (VELV) |

Since the matrix Ip_; + Ei-; is positive definite and matrix VLV, is positive
semidefinite, their Kronecker product (li—1 + Ex—1) ® (VELV,) is positive semidef-
inite, i.e., matrix V*L,V is positive semidefinite. Now for the second part, note
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that e*V = 0 and we have
(1| mtee/m ][ M| 0 1 | o
_Ol VieVs [0’((Ik—Ek)®In][ﬁt®e/ﬂVk®Vn]
[ M+ (I — Ex)m/n l (M (I — Ex)V2) @ (Vo) /n
| (VB ~ Em) ® (Vie)/n | (Ve — Be)Vi) ® (V2V2)
[ M+ #(l — B)im/n | 0

0 | (Tt + Bxt) ® (facs + Eat) |

VWV =

Since both matrix Ix_; + Ei_; and matrix I,_, + E,._; are positive definite, we can
see that when M is large enough matrix VWV is positive definite. This completes
the proof. a

4.5 Numerical Tests

Since the final SDP relaxation is similar to the QAP, we use the same techniques
as in the chapter for QAP to solve it. After solving the final SDP relaxation, we
obtain not only a lower bound for the graph partitioning problem but a solution R
for the SDP relaxation. By reshaping the diagonal of VRV, we can get anxk
matrix X which satisfies all the feasible constraints except the 0-1 constraint for the
original graph partitioning problem. By solving a network subproblem with X as its
adjacent matrix, we can find a feasible solution for the graph partitioning problem,
which gives an upper bound. With this feasible solution as an initial solution,
we use Adaptive Simulated Annealing technique (or VFSR) (See e.g [ING89]) to
generate a better upper bound. To measure how close our upper bound is to the

optimal objective value, we use the measure

upperbound — lowerbound
lowerbound

relative gap :=
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Our numerical results are based on random unweighted and weighted graphs.
We include two instances for each case. First, eight unweighted graphs were ran-
domly generated. Each edge was generated independent of other edges with prob-
ability 0.5. These graphs have vertices of 36,60,84 and 108, respectively. The
number of subset K are 2,3 and 4. The size for each partition is fandomly gen-
erated. Next, another eight weighted graphs were randomly generated. Each edge
was generated independent of the other edges. The weights are integer numbers
between 0 and 10. Again these graphs have vertices of 36, 60,84 and 108, respec-
tively. The number of subsets k& are 2,3 and 4. The size for each partition is
randomly generated. In the tables, the column under LB is the lower bound, the
column under INIT is the initial upper bound and the column under BEST is the
upper bound generated by the VFSR. The last column under GAP is for the gap.

From the table for weighted graphs, we observe that the gaps are less than 0.05.
However, for unweighted graph the gaps are mostly between 0.05 and 0.10. The
initial upper bounds derived from the SDP solution are very good as we can see
that the upper bound can hardly be improved by VFSR. The results significantly
improve those in [FRW94] and are comparable to the results in [KAR95, KR94]
which are restricted to the equipartition case.

4.6 Conclusion

In this chapter, using the same approach as in the QAP chapter, we derive an SDP
relaxation for the general graph partitioning problem. This relaxation is almost
the same as the one for QAP. Numerical tests show that this relaxation can give a
good lower bound, in particular for weighted graphs. Therefore, this SDP relaxation
approach for the general graph partition problem is very promising. As we can see,



BEST INIT LB | GAP
a36 114 116 106 | 0.076
b36 71 72 66 | 0.076
a60 217 229 203 | 0.069
b60 352 370 336 | 0.048
a84 423 427 406 | 0.042
b84 - 420 428 401 | 0.047
al08 747 767 708 | 0.055
b108 753 769 713 | 0.056

Table 4.5.2: Bisection for Unweighted Graphs

BEST INIT LB | GAP
al6 122 122 111 | 0.099
b36 103 108 97 | 0.062
a60 321 332 297 ]0.081
b60 475 499 431 | 0.102
a84 647 654 609 | 0.062
b84 646 646 606 | 0.066
al0o8 | 1120 1120 1030 | 0.087
b108 | 1113 1113 1038 | 0.072

Table 4.5.3: 3-partition for Unweighted Graphs



BEST INIT LB | GAP
a36 176 192 162 | 0.086
b36 157 162 143 | 0.098
a60 492 522 451 {0.091
b60 480 517 432} 0.111
a84 1017 1032 912 | 0.115
b84 1051 1051 916 | 0.147
al08 1703 1703 1537 | 0.108
b108 | 1680 1680 1548 | 0.085

Table 4.5.4: 4-partition for Unweighted Graphs

BEST INIT LB | GAP
wal6 919 938 897 | 0.025
wb36 815 815 785 | 0.038
wa60 4095 4095 4027 | 0.017
wb60 2250 2254 2196 | 0.025
wa84 4755 4773 4642 | 0.024
wb84 1604 1619 1573 | 0.020
walO8 | 8259 8329 8125 |0.017
wbl08 | 7430 7448 7264 | 0.023

Table 4.5.5: bi-partition for weighted Graphs



BEST INIT LB | GAP
waJd6 1336 1336 1302 | 0.026
wb36 521 521 906 | 0.030
wa60 4243 4246 4178 | 0.016
wb60 4366 4391 4293 | 0.017
wa84 | 11012 11012 10561 | 0.043
wb84 6445 6445 6261 | 0.029
wal08 | 12013 12013 11755 | 0.022
wbl08 | 10786 10786 10511 | 0.026

Table 4.5.6: 3-partition for weighted Graphs

BEST INIT LB | GAP
wad6 1912 1931 1853 | 0.032
wb36 1708 1750 1650 | 0.035
wa60 5423 5427 5200 | 0.043
wb60 4922 4945 4751 | 0.036
wa84 | 10643 10643 10195 | 0.044
wb84 9632 9632 9246 | 0.042
walO8 | 17820 17820 17299 | 0.030
wbl108 | 15946 15946 15461 | 0.031

Table 4.5.7: 4-partition for weighted Graphs
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the dual problem of our SDP relaxation is very sparse. Our future work will be
focused on solving the large sparse problems. We have successfully extended to
GP the theoretical results and algorithm for the QAP as the SDP relaxations for
both QAP and GP are similar. We expect any large scale implementation of our
algorithm to apply equally well to both problems.



Chapter 5

Set Partitioning Problems

5.1 Introduction

The set partitioning problem, SP, can be described as follows.

Suppose we are given a set M with m elements; and let
M={M;:jeN:={1...,n}}

be a given collection of subsets of M such that the union contains M
1e., UjenM; = M. For each Mj, there is an associated cost c;. We
want to find a subset F of the index set N such that:

1. the union still contains M, UjerM; = M;

2. the sets are pairwise disjoint, M, N M; = ¢, for k #j € F;

3. and the sum of the costs Y ;.r ¢; is minimized.

83
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Let A = (a;;) be the m x n matrix with

1 if element i€ M;
aij =
0 otherwise.

The matrix A is called the incidence matriz of the collection M ; each column of A
is the indicator vector for the set M;. Each subset F C N, for which the collection
of sets {M;,j € F} satisfies 1 and 2, is called a set partition of the set M. For a
given set partition, we let z € {0,1}" defined by

1 f jeF
;=
0 otherwise.
Such an z can represent the set partition.

The set partitioning problem can now be formulated as the following 0-1 integer

programming problem

gt o= min 'z
(SPT) subject to Az =e
z € {0,1}".

Without loss generality, we assume that A has full row rank. For each i €
{1,2,...,m}, welet

a; := (@1, @i,y - - -, Bin).
The ith row of the constraints, a;z = 1, guarantees that the ith element is in

exactly one set.

The set partitioning problem has been extensively investigated because of its
special structure and its numerous practical applications. The best known applica-
tion is airline crew scheduling, see e.g. the recent reference [HP93]. Other applica-
tions include: truck scheduling; bus scheduling; facility location; circuit design and
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capital investment. (See e.g Garfinkel and Nemhauser [GN69], Marsten [MART74],
Balas and Padberg [BP76], Balas [BAL77], Nemhauser and Weber [NW79], Fisher
and Kedia [FK90] Chan and Yano [CY92] and Hoffman and Padberg [(HP92].)

Since the set partitioning problem is well-known to be NP-hard, many current
approaches focus on finding a “near optimal” solution using various heuristic tech-
niques. A natural candidate for generating a lower bound is the linear programming
relaxation. The linear programming relaxation is as follows

Bip == min ¢z
(SPLP) subjectto Az =e
z2>0.

To improve the approximate solution for (SPT), one can use cutting planes and/or
branch-and-bound techniques in conjunction with various bound improvement tech-
niques. (See chu and Beasley [CB95] for a literature survey on exact and heuristic
algorithms for SP.) We include the following related papers in the bibliography
[AFST69, BFS1, BH90, GERS9, HT94, RF8S8].

In this chapter, we develop an SDP relaxation for the set partitioning problem.
In our approach, in addition to taking care of all the linear programming relaxation
counstraints, we employ the “gangster operator” to efficiently model the special 0-1
structure of (SPT). By this SDP approach we can generate a better lower bound
for the set partitioning problem. In addition, we combine the SDP relaxation with
the standard LP relaxation and take advantage of block structures in the data.

5.2 An SDP Relaxation

To derive an SDP relaxation for SP, we reformulate the 0-1 integer programming
model (SPT) as a quadratically constrained quadratic programming problem.
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Since the variables z; are restricted to 0-1, we have z; = 22, i.e.
T=zozT.
In addition, since a;z =1 for each © € {1,...,m}, we have
{k#j, ar=1, a;=1}=zz; =0. (5.2.47)
Therefore (SPT) is equivalent to the following.

p = min tzoz)

subject to A(zoz)=e
(SPQP) (asz~1)2=0, for i€ {1,2,...,m}
(zoz)—z=0

zpz; =0, f k#j, ax =1, a;; =1 for some 1.

By adding a scalar zo, we can eliminate the linear terms (homogenize) in the

existing constraints of the above problem.

p"=min c(zoz)
subject to A(zoz)=e
(-1, a:)(z0, 2°)"(z0, 2} (1, a5)* = 0
(SPQPH) for 1 €{1,2,...,m}
(zoz)—zez =0
zre; =0, fk#j, ax=1, a;;=1 for somet

zi=1.

We now replace the quadratic terms with a matrix, i.e., we replace the rank one
matrix (2o, z°)*(z0, z*) by the positive semidefinite matrix Y > 0 with Y € Sy, .
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We get the following SDP relaxation.
min trace CY"

subject to trace(Diag(0,4;)Y) =1, i=1,...,m

(-1,a)Y(-1,a:)* =0, i=1,....m
(PSDP) arrow (Y) =0

Gs(Y)=0
Yo=1
Y =0,

where C = Diag (0,c) and the operator Gy is a gangster operator with
J = {(k,j) : if ag = a;; =1 k < j for some i};

the arrow constraint represents the 0-1 constraints by guaranteeing that the di-
agonal and 0th column (or row) are identical; the gangster operator constraint
represents constraints in (5.2.47); and, finally, the assignment constraints Az = e
are represented by the first two set of constraints in (PSDP).

Define the m x (n + 1) assignment constraint matriz
T :=[—e, 4]
Each feasible Y satisfies Y > 0 and
(-1,8)Y(~1l,a;)! =0, i=1,...,m.
Therefore the range space and null space satisfy
R(T*) CN(Y) or alternatively R(Y) C N(T).

Now let the null space of T' be spanned by the columns of a (r +1) x (n ~m + 1)
matrix V, ie., let

N(T) = R(V).
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This implies that Y = VXV?* for some X = X* > 0, i.e., we are able to express each
feasible Y as VXV*. In order to solve large scale problems, a sparse representation
of the null space of T is useful. We use a simple technique, called Wolfe’s variable-
reduction technique [WOL62]. (For a “sparsest” representation, see e.g. [CP86].)

Without loss generality, we assume that
T= [T37 TN ]:

where Tp is a m x m matrix with full rank and Tx is a m x (r —m + 1) matrix.

Then, the matrix
~T5'T

satisfies N (T) = R(V).

We now take a look at the following interesting properties of the matrix VXV*.

Lemma 5.1 For any arbitrary (n —m + 1) x (R —~ m + 1) symmetric matriz

-

XOO XOl I Xﬂ(n—m)
Xio Xn ... Xl(u-m)

K X(u-m)o X(n—m)l s X(n-m)(n—m) J
let Y =VXV* and write Y as

Yoo |Yor ... Yon |
},10 Y’ll e },ln

Yoo Y ... Yo

- o

Then
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a.'lfl_-n'u = Yoo, f01‘ 1= 1,...,m;
5)

},Oj=aiy'1m,j1 for i=1,...,m, j=1,...,n

Proof. Since
TY =TVXVt =0,

we have, (—1,4;)Y =0, for each 1 <t < m. a

This shows that the first two sets of constraints in (PSDP) are redundant. Before
we write our final SDP relaxation, we present another lemma which helps get rid

of more redundant constraints.

Lemma 5.2 Let Y = VXV*. Then

Gi(Y)=0 = arrow(Y) =0.

Proof. Suppose Y =VXV* and G,(Y) =0. Let j € {1,2,...,n}, then there
exists 7 € {1,2,...,m} such that

a; =1.
By Lemma 5.1, we have
(airy - - -, 8in)Y1mj = Yoj5.

This implies that
it Y Y=,
k

k£7, sa=1
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From the definition of the gangster operator, we have

> Y=0.
k#jv aa=1
Therefore
Y;i = Yo;-

a

Now replacing Y by VXV* in (PSDP) and getting rid of the redundant con-
straints, we have the following final SDP relaxation for SP. Let J = J U (0,0).

Uspp = min trace V*CVX
(PSDPF) subject to  Gy(VXV*) = Ego
X >0,

where X € Pp-ms+1, C = Diag (0, c*). The dual is

max Waa
(DSDPF) subject to VWV <V*CV
W € &j;.

Note that the gangster operator is self adjoint and G5(S) = S;-

From Lemma 5.1 and Lemma 5.2, we can immediately derive the following.

Theorem 5.1 Let X be any feasible solution of (PSDPF). Then (diag (VXV*))1n
(the last n diagonal element of the matriz VXV?* ), is a feasible solution of the linear

programming relazation (SPLP).

Proof. Let X be a feasible solution of (PSDPF) and Y = VXV*. Then
Gi(Y) = Eoo and
Y;; >0, for t€{1,...,n}.
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From Lemma 5.1 and Lemma 5.2, we have Y, = diag (Y) and Yo = 1, and thus
for each t € {1,...,m},

a‘-(YIIa'”aYM)t:ai}’()tj:Yoo =1
g

Based on the theorem above and the fact that the objective value of the SDP
relaxation is (0, c*)diag (VXV?*), the following corollary follows.

Corollary 5.1 The lower bound given by the SDP relazation (PSDPF) is greater

than or equal to the one given by the LP relazation, i.e. uspp 2> pip-

In addition, we now see that there is no duality gap between (PSDPF) and (DS-
DPF).

Theorem 5.2 Problem (DSDPF) is strictly feasible.

Proof. From Lemma 5.2, we have, for any X,
Gs(VXV*)=0 == arrow (VXV*)=0.

Therefore
N(Gs(V-V*) C N(arrow (V - VY)).

(where the dot - represents the variables for the operators.) In other word, their

adjoint operators satisfy
R(V*Arrow (1)V)) C R(V'G;(-)V) = R(V*- V).
Therefore, for y = —e € R", there exists W € S such that

V*Arrow (y)V = V*WV
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and, by using Schur complements, we see that
VH(~MEg + W)V = V*(—=MEqy — Arrow (e,))V < 0,

for M big enough. Therefore (—M Egq + W) is strictly feasible for large enough
B. i

From Theorem 5.2, we know that the dual problem satisfies the Slater condi-
tion. Therefore, there is no duality gap between the primal problem (PSDPF) and
the dual problem (DSDPF) and, moreover, the primal optimal value is attained.
However, the primal problem (PSDPF) may not be strictly feasible. Consider the

same example problem as in Chapter 3.3

Z =
zy +T2 +Z3 +T4 =

Iy, ZI2, I3, Z4 2 0.

Observe that the feasible set is a singleton (1,0,0,0)t. Note that for this problem
n=4and m =2,s0 Visa5 x3 matrix. Thus, for any feasible solution of its
final SDP relaxation X € P;, the diagonal of VXV* is (1,1,0,0,0)t. This means
that rank (VXV*) < 2, which implies that rank (X) < 2. Therefore, the final SDP
relaxation is not strictly feasible.

5.3 Numerical Testing for Small Problems

Since the final SDP relaxation is exactly the same as the one for QAP, we use the
same technique as in the chapter for QAP to solve it, i.e., we use the same infeasible
primal-dual interior-point algorithm as for QAP. As we have seen from the geomet-
rical discussion above, the algorithm may have to deal with those problems whose
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primal SDP relaxation are not strictly feasible and whose dual SDP relaxation can
not attain their optimal value. As the main purpose of our algorithm is to find a
lower bound, we expect that our infeasible primal-dual interior-point algorithm can

handle those problems due to the following reason.

e Because the dual problem is strictly feasible and only has inequality con-
straints, the line search can easily maintain dual feasibility. Therefore, a

lower bound can always be obtained from the dual objective value.

The purpose of our numerical tests is to illustrate that the lower bound given
by our algorithm for the SDP relaxation is better than the one given by LP relax-
ation. In addition, after solving the relaxation, The diagonal of VXV* satisfies the
constraints of the linear programming relaxation.

Our numerical tests for small problems are based on real data for bus scheduling
problems. The results are summarized in Table 5.3.8. The columns under nrow,
ncol and nzero are for the number of rows, columns and nonzero elements, respec-
tively. The last two columns show the lower bounds by LP and SDP relaxations,
respectively. A lower bounds marked with a star means that the lower bound is
equal to the optimal objective value. As we can see, numerical results show that

our SDP approach is very promising.
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nrow ncol nzero LP SDP

small01 14 34 108 1864 1864*
small02 16 46 139 2259  2259*
small03 27 97 234 17327 18324
small04 33 192 584 4503 4503*
small05 44 277 770 21706 21706*
tiny04 6 27 72 1035 1091

3 6 9 175 25.00

T 33 70 1215 1257

tiny01
tiny05

Table 5.3.8: Numerical Results

5.4 SDP Relaxation for Large Sparse Problems
and Future Work

5.4.1 An SDP Relaxation with Block Structure

As we see from the introduction, the set partitioning problems are usually derived
from real world problems such as scheduling problems. These problems can be of
very large size (> 10,000) and very sparse.

Currently, an approximate solution for a large size set partitioning problem can
be obtained by solving a corresponding large sparse linear programming relaxation
and the information from the primal and dual optimal solutions are used to decide
which columus, or sets M;, should be chosen for the partition. Since the diagonal
of an SDP solution is a feasible solution of the LP relaxation, we expect that this
solution can help in making the choices. On the other hand, it is hard to solve
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an SDP problem of size e.g. over 10,000. In order to make SDP relaxation more
competitive with LP to solve the large sparse problem, we have to find a way to
exploit the sparsity of the set partitioning problem. In this section, we relax part
of the variables of the set partitioning problem by SDP while we ireat the others

with an LP relaxation.

Consider a large sparse set partitioning problem

us = min czr
(LSP) subject to Ar =e
z € {0,1}".

By permuting the rows and columns of A, we can rewrite A as in the following

form _ -
FrF 0 ... 010
0 F, ... 0]0
A=| =+ - 1], (5.4.48)
0 0 ... Fe|O
| G1 G2 ... Ge|H ]

where for each ¢ € {1,...,k}, F: is a m; x n; matrix and G; is a mg X n; matrix

and H is a mg X ng matrix, and
my+...+met+mg=m; y+...+ 0 +ng =n.

The sparsity pattern of the matrix A is illustrated in Figure 5.1.

Corresponding to each submatrix F;, for i € {1,...,k}, we define
TB; = (zlén st 3'5})‘

and

TN = (z},,,...,a:';,”)‘



Figure 5.1: Sparsity Pattern of Matrix A

such that
:!:31 \
r =
zB,
TN )
Similarly, we define
es; = (cg;s-- - CH)"
and
cv = (cxs- - -2 63F)*
such that

( ¢B, )
C =
B,
\ o~ )
For each i € {1,...,k}, we write
F} FH Fi™
F.= =

96
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Similarly, for each 7 € {1,...,k}, we can write

G GH ... G
G:i= : = DT : )
are| |oper .. gpem
ot H1 .. H»m
H= _ .
H™a Hmel = Hm™cna

Now for each ¢ € {1,...,k}, we define an index set for a gangster operator.

F‘-jp=F‘ijq=10t
GP=Gt=1 |

J; = {(p,q): p < q for some j

We rewrite (LSP) as

B = min i cbza; + cyzw
subject to Fizp, =em;, 1 €{1,...,k}
Gi1zp, + ...+ Gezp, + Hzy = e
zp,,---,Z8,,zN € {0, 1}".
An equivalent quadratically constrained quadratic programming formulation can
then be expressed as follows

w= min St 5.z 025 + o TN
subject to Fizp; 0 zp; = en;,
(Fizp, ~1)* =0, for j€{1,2,...,ms},
zp,ozp, — zp; =0,
25, =0, for any pair (p,q) € J;,
for 1€{1,...,k}

Glzal ozp, +-~~+szB. ozpg, + Hzyozy =ce.
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By adding, foreach ¢t € {1,...,k}, ascalar :z:%_, , we homogenize the above problem

as follows

subject to

TE ch.ze ozp + zNozy

Fizp, 0 zp; = e,

(=1, Fi)(eh,, 25,23, 25,) (-1, Fi)* = 0,
for j€{1,2,...,m;},

zp; o zg; — z3.zp, = 0,

(28)7 =1,

25,2, =0, for any pair (p,q) € J;,

for i€ {1,...,k}

Gizg,0zp, +...+ Gezp,0zp, + Hzyozy =e.

In the above quadratically constrained quadratic programming, we replace the rank-
one matrix (z;,z5,)!(z3,, z5,) by the matrix Y; for each i € {1,...,k}, and also

XnX} by Yn. Then we obtain an SDP relaxation as follows

BLspp ‘=

min

%1 ch,(diag (Y7))1m; + ciydiag (Yav)

subject to  F(diag (Y.))n;. = €m;,

(=L, F{)Yy(—-1,Ff)* =0, for j€{1,2,...,m},
arrow (Y;) = 0,

(¥:)oo =1,

Gr(Y:) =0,

for 1e€{1,...,k}

Tk Gi(diag (Yi))1m; + Hding (Yn) = e,
Y120,....,Y2 = 0,Yx =0,

where Y; € Pp;yy for ¢ € {1,...,k} and Yy € P, . Since the coefficient matrices

for Yy are all diagonal, we can always write Yy = Diag (z), where z € "%,z > 0.
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For each i € {1,...,k}, we define an operator A; : P,..1 — R™S such that
A(Y:) == Gi(diag (¥:))1n;-
Then we have the following equivalent problem.

BLspp = min Tie1 b, (diag (Yo)im; + cyz
subject to  F;(diag (Y:))1m; = ém,,

(-L F})Yi(~1, Fi)* =0, for je{1,2,...,m},
arrow (¥;) =0,
(Yo)oo =11,
Gr(¥:) =0,
for t€{1,...,k}
TE, A(Y:) + Hz =,
Yp, =0,...,Yg, >0,z >0.

For each € {1,...,k}, we construct a (n; + 1) x (n; — m; + 1) matrix V; such
that the null space of [—en,, F;] is spanned by the columns of V;. We follow the
same procedure as that in the above section, i.e., for i € {1, ...k}, wereplace ¥; by
V:X;V} and get rid of the redundant constraints. We denote C; := Diag (0,c},)-
Note that cp (diag(Y;:))in; = trace(Diag (0,c5)Y:). Then we have the following
final SDP relaxation.

Bispp = min Tk trace VICViX; + chyz
subject to Y, A(ViXiV?) + Hz = e,
Gr(X:)=E, for ie{l,...,k}
X1 20,...,Xe =0, z2>0,

(LPSDPF)

where, for 2 € {1,...,k}, X; € Pn,—m;+1 and the operator Gy is a gangster
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operator with
5o g i p<gforsomes o E =t g
€ o= »q) - p < q Tor some } . . V7
P =Gt =1

Observe that in the final SDP relaxation (LPSDPF') there are semidefinite matrix
variables and nonnegative vector variables as well. Thus, we call the final SDP
relaxation a mized LP-SDP relaxation.

Its dual is
max YR+ T8 (Whoo
subject to  V*(Diag (0, A*'G;) + W)V < VICiV,,
(LDSDPF) W: €Sy,
for i€ {l,...,k}
HtA <L,

where for 7 € {1,...,k}, W; and ); are dual variables.

For each feasible solution (X;,..., Xy,z) of (LPSDPF), we construct an nx1

vector
n \

y= ) , (5.4.49)
1//3

z
where y; = (diag (ViXiV¥))im;, for i =1,..., k. Applying the Theorem 5.1 to each
block, we have Fiy; = e, for i = 1,...,k. Also note that 5, Giy; + Hz = e, .

Therefore, we have the following results.

Theorem 5.3 Let (X,,...,X,z) be any feasible solution of (LPSDPF). Then
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the vector
[ (ding (KX V))im, )

(dia'g (VZXI:VI:))lms
\ z /

is a feasible solution of the linear programming relazation (SPLP).

Based on the above theorem and the fact that C;, for 1 = 1,...,k, are all
diagonal matrices, the following corollary follows.

Corollary 5.2 The lower bound given by the SDP relazation (LPSDPF) is great
that or equal to the one given by the LP relazation (SPLP), t.e., uispp = Bip-
5.4.2 An Infeasible Primal-Dual Interior-Point Method

We rewrite the dual (LDSDPF) by introducing a slack matrix Z; for each i €
{1,...,k} and a slack vector =z.

max  ERE+ Tk, (Woo
subject to  V}(Diag (0, \*G;) + Wo)V; + Z; = V*C.V;,
W; €Sy,
(LDSDPZ) *
for 1€{1,...,k}
HA+z=¢

Z1=0,...,2 =0,z >0.



102

The Karush-Kuhn-Tucker conditions of the dual log-barrier problem are

AV VE) +He—eng = F3 = 0
Gr(ViX:VY) — Ef = Fj, = 0,
for i€ {l,...,k}
HA+z-c = F3 =0
V¥(Diag (0, MG:) + W: - C.)Vi+ 2Z; = Fh = 0,
for i € {1,...,k}
zoz —pu = F3x = 0
Z: X; ~pl = Fiy = 0,

for 1€ {1,...,k}.
The first two equations are primal feasibility conditions, while the third and fourth
are the dual feasibility conditions and the last two takes cares of complimentary
slackness for X; and Z; and z and z, respectively. We solve this system of equa-
tions with a variant of Newton’s method. We apply operators A4; and Gy to

nonsymmetric matrices and then we linearize the above system as follows.

Y5, A(ViX. V) + Héz = —Fp

Gr(Vid XiV}) = -Fj,
for t€{1,...,k}
H') + 6=z = ~F§
V#(Diag (0, 6A*G;) + aWL))V. +62; = —F} (5.4.50)

for t € {1,...,k}
dzoz+ zodz
0Z:;X;: + Z:0 X; = —Fiy

for t€{1,...,k}.

From the third and fourth equations, we have, for i € {1,...,k},

|
|
N

82; = —F} — V*(Diag (0,0)\'G;) + 6W;))V; (5.4.51)
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and
6z = —Fp — H'SA. (5.4.52)

Substituting (5.4.51) and (5.4.52) into the last two equations, respectively, we have
8X; = -2 Fyx + Z7'FL X; + Z7'VF(Diag (0,00°G:) + dWL)) Vi X;  (5.4.53)

and
bz=—zt0F}y+z 0 Floz+ 2z 0 HAoxz. (5.4.54)

Substituting (5.4.53) and (5.4.54) into the first two equations, we have the following
final normal equation.
iy AdViZ7 'V (Diag (0,60X°G:) + 6W)VeXi VYY)
+Hz"'o H'%Aoz = —FR+b
G5.(V:Z7'V}(Diag (0, 0X°G;) + SW;) Vi X V) = —-Fi, +b
for 1 € {1,...,k},

(5.4.55)

where
bo = Xi AVi(Z Fix — Z7' FpXa)VE) + H(z™ 0 Fgy —z ' 0 Fp o z),
b =Gy (Vi(Z Fzx — Z7 FpXaVY),
for 1€ {1,...,k}.
Denote the matrix representation of the left hand side of the normal equation by
K. The matrix K has a very nice sparsity structure shown in Figure 5.2, where the

width of the long narrow bar is mg which is much less than the size of the matrix.

We solve the normal equation by a preconditioned conjugate gradient method.
Let (6W7,...,0W;,6X%) be the solution for the normal equation. By equations
(5-4.51), (5.4.52), (5.4.53) and (5.4.54), we can obtain, for each ¢ € {1,...,k},
827, 6z7,0X; and éz], respectively. Finally, by symmetrizing 6 X7, i.e.,

§X; + (8X7)

0X] « 2
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Figure 5.2: Sparsity Pattern

we obtain a search direction. We then do a line search and update the current
point. Based on the duality gap, we update p by using the following formula

. YF  trace(Z:X;) + 'z
T 2ln-m+mg+k)

5.4.3 Preliminary Numerical Tests and Future Work

In the previous subsections, we have developed an approach for solving problems
with matrix structure (5.4.48). We did some preliminary numerical tests just to
see how this SDP relaxation works for small problems. In our testing, we use
the diagonal of the matrix representation X as the preconditioner. The infeasible
primal-dual interior-point algorithm for the mixed LP-SDP relaxation is coded in
C and Matlab. The results are summarized in Table 5.4.9. In Table 5.4.9, the

columns under nrow, ncol and nzero are for the number of rows, columns and
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tiny04
tiny01
tiny05

small03

nrow ncol nzero LP SDP LP-SDP

27 97 234 17327 18324 18320
6 27 72 1037 1091 1066
6 9 175 25 25

7T 35 70 1215 1257 1248

Table 5.4.9: Numerical Results

nonzero elemeats, respectively. The columns under LP and SDP show the lower

bounds given by LP relaxation and SDP relaxation for a general dense problem,

respectively, while the last column under LP-SDP shows the lower bounds given by

our mixed LP-SDP relaxation.

For our future work, we would like to use the mixed LP-SDP relaxation to derive

an approach to solve general large sparse set partitioning problems. To achieve this,

we propose the following:

@ to have the same matrix sparsity pattern as described for the mixed LP-SDP

relaxation, the matrix for the general problem need to be transformed into
form like (5.4.48). This can be done by treating the 0-1 matrix A as an

incidence matrix of a graph or netlist and applying graph partitioning and

netlist partitioning techniques;

® because of the nice sparsity structure as shown in Figure 5.1, more sophis-

ticated incomplete factorization preconditioners can be used to improve the

performance of primal-dual interior-point solvers, see e.g. [CHI95].

We would like to point out another future work. For a more general block
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structure _ .
F 0 ... 01H

0 F, ... 0| H

0 0 ... F|H,
| G G2 ... Ge| H |
we should be able to develop an SDP relaxation as well. But this might involve a

totally different approach since projection may not be easily applied.



Chapter 6
Summary and Discussion

In this thesis, we have developed a unified semidefinite programming relaxation
approach to solve three different applications: quadratic assignment problém, graph
partitioning problem and set partitioning problem. Numerical tests have shown
that the bounds given by our SDP relaxations are of high quality for these three
applications. This again demonstrates that semidefinite programming is really a

very powerful tool for solving hard combinatorial optimization problems.

We feel that our contﬁbutions are not only in deriving better bounds for the
applications using SDP but more interestingly, the SDP approach itself. Through
the three different applications, we have illustrated our SDP approach for a general
problem with a structure of assignment constraints. We summarize the SDP ap-

proach for a general problem with the special assignment structure in the following.

e derive a gangster operator based on the assignment constraints;

e derive some other operators, such as the arrow operator, based on the other

special structure of the problem;

107
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o generate a relative interior point for the minimal face containing all rank one
feasible matrix solutions and then derive a projection matrix from the range

space of this relative interior point;

e derive the final SDP relaxation by applying the projection matrix and by

getting rid of the redundaat constraints.

Finally we would like to point out that with the gangster operator, we can represent
a combinatorial structure by a matrix sparsity structure and therefore be able to
apply a lot of sparse matrix techniques to solve a large problem.
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