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Abstract

International airfreight forwarders are faced with the problem of consolidating ship-

ments for efficient transportation by airline carriers. The use of standard unit loading

devices (ULDs) is a solution adopted by the airfreight industry to speed up cargo loading,

increase safety, and protect cargo. We study the airfreight consolidation problem from the

forwarders perspective where a decision on the number of ULDs used and the assignment

of shipments to ULDs is optimized. The cost of using a ULD consists of a fixed charge and

depends on the weight of the cargo it contains. A ULD is charged at an under-pivot rate

if the total weight is below a threshold limit, called the pivot-weight. Additional weight is

charged at the over-pivot rate. We propose a solution methodology based on Lagrangian

relaxation that is capable of providing high quality solutions in reasonable computational

times. Besides, a high-quality lower bound, we propose three heuristics to generate feasible

solutions, all based on the solution of the subproblems. The first, takes the solution of one

of the subproblems and solves a restricted version of the original problem (LagHeur). The

other two heuristics are a heuristic based on solving two knapsack problems (2knap) and a

best-fit greedy heuristic (bestfit). Problems with up to 100 ULDs and 1000 shipments are

solved to within an average of 1%, 2%, 2% of optimality in less than 51.05s, 50.57s and

589.16s by bestfit, 2knap and LagHeur, respectively.
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Chapter 1

Introduction

Although airfreight transportation accounts for less than 1% of world traded goods, it

represents more than 36% of world trade value, since most of the goods transported by air

are high in value and require fast and secure transportation (Shepherd et al., 2016). The

revenue generated by air cargo transportation has outpaced passenger transportation by

1 to 2 % every year between 1991 and 2001 (Reynolds-Feighan, 2008). Furthermore, it is

expected that global revenue generated by air cargo will increase from 223 billion Revenue

Tonne-Kilometres (RTKs) in 2015 to 509 billion RTKs in 2035 (Boeing, 2016).

The demand for international air-cargo transportation is increasing due to multiple

factors such as increasing global trading, suppliers seeking to lower their inventory, and

customers increasing demand for timely delivery of items. An annual growth of 4.3% is

expected in the international airfreight transportation industry that will eventually triple

in its revenue by 2035 (Boeing, 2016).

International airfreight consolidation involves many players and complex operations

(Huang and Chi, 2007). Airfreight forwarders play an important coordination role between
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shippers and airlines. Figure 1.1 depicts the airfreight transportation process. Shippers

look for carriers that provide the cheapest and fastest service for shipment. Forwarders

receive cargo and consolidate it into space previously reserved from airlines. Airlines pro-

vide space in two stages, the first stage is couple months before the flight date. Any space

acquired by forwarders during this stage is called the allotted space. In the second stage,

airlines offer space few days before the departure of the flight. Airfreight forwarders try

to skillfully consolidate the received cargo into the reserved containers in order to satisfy

shippers requirements, and at the same time minimize the total cost incurred by reserving

or returning the containers.

Airfreight is shipped in Unit Load Devices (ULD) to standardize and speed-up the

process of air cargo transportation. ULDs take two forms: containers and pallets, and are

specified by the International Air Transport Association (IATA) depending on the type

of aircraft. A ULD is a essentially an aluminum container while pallets are typically an

aluminum base, on which cargo is placed and covered with a net to secure it in place

(IATA, 2010). (IATA, 2010).

Air cargo forwarders rent different ULDs from cargo airlines. Instead of paying for the

chargeable weight that small forwarders do, a large forwarder pays a fixed cost for the

ULD and a per unit rate up to the pivot-weight, and a higher per unit charge above the

pivot weight. Based on this pricing structure, forwarders are interested in finding the best

consolidation plan in order to minimize their total cost.

An overview of the airfreight consolidation problem under the pivot weight scheme was

studied in Li et al. (2009) where the authors propose a heuristic to find the best cargo

consolidation plan that minimizes an airfreight forwarder’s total cost. Bookbinder et al.

(2015) propose four solution methodologies for the air cargo consolidation problem under

pivot weight based on branch-and-price, best-fit decreasing, and local branching.
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In this thesis, we provide an efficient solution approach for the problem based on an

enhanced formulation and Lagrangian Relaxation. On top of the lower bound, three heuris-

tics are provided. Problems with up to 100 ULDs and 1000 shipments are solved to within

an average of 1% to 2% of optimality in less than 51s.

The remainder of this thesis is organized as follow. In Chapter 2, we review the relevant

literature. In Chapter 3, we present the formal definition and mathematical formulations

for the airfreight consolidation under pivot-weight problem. Computational analysis results

are presented in Chapter 4. Finally, we conclude our work and highlight future works in

Chapter 5.

Figure 1.1: Airfreight transportation process.
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Chapter 2

Literature Review

In this chapter, we review the literature on the airfreight consolidation problem under

the pivot weight scheme. In Section 2.1 and Section 2.2, we address the importance of

air cargo transportation in general, and discuss the cargo shipment process. Airfreight

container loading is studied in Section 2.3. The most relevant literature to air cargo

container loading under pivot-weight is presented in Section 2.4. In Section 2.5 we review

the available types of unit load device (ULD) that are used in airfreight consolidation

industry. General literature related to airfreight consolidation will be discussed in Section

2.6. Finally, solution methodologies used in this work are reviewed in Section 2.7.

2.1 Importance of Air-cargo Transportation

Airfreight transportation is crucial for many sectors. For instance, airfreight allows speed

delivery for perishable goods and pharmaceutical products. The air-cargo transportation

industry has played an important role in world trade, and since the 1970’s it has doubled
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volume every 10 years (Chang et al., 2007). The estimated revenue of air cargo was US$3.25

trillion in 2005, and represented 36% of the value of all traded goods globally, estimated

at US$9.14 trillion (IATA, 2006).

From 1995 to 2004, there was a significant growth of airfreight transportation compared

to passenger transportation which was 50% faster by volume. As a consequence, many

airlines transformed from passenger-only carriers to passenger-cargo carriers (Wong et al.,

2009). A forecast by Boeing expects a growth of 4.3% annually and that will triple by 2035

(Boeing, 2016). Figure 2.1 shows an increase of 282 billion revenue ton kilometers (RTKs)

by the year 2035.

Figure 2.1: World airfreight growth.
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2.2 Air-cargo Transportation

Air-cargo transportation includes multiple stages to move cargo from source to destination

and involves shippers, forwarders, and airline carriers (Huang and Chi, 2007). There

are three main players involved in air cargo transportation, shipper, forwarder, and airline

carrier (Derigs et al., 2009). The shipper sends cargo to forwarders to be shipped anywhere

in the world, expecting the lowest price and the shortest time of delivery. The latter is the

most important criteria for shippers (Matear and Gray, 1993). The forwarder acts as the

middle-man between shippers and airlines.

Forwards need to skillfully consolidate the cargo from shippers to satisfy their demands,

at the same time minimizing the cost incurred by the airlines (Huang and Chi, 2007).

The airline offers available cargo space in two stages. The first is few months before the

shipment date, and the second is few days before the departure of the flight. The main role

of the airlines consists of receiving the cargo from the forwarders, loading it into containers,

storing the cargo, transporting it and unloading it.

2.3 The Container Loading Problem

Cargo loading into (ULDs) is exactly a container loading problem, i.e. putting shipped

items into ULDs subject to weight and volume limits and in a predefined time frame. The

container loading problem, however, accounts explicitly for geometric constraints whereas

consolidation problems do not explicitly do so. Xue and Lai (1997) introduce a mixed

integer programming model for container selection and cargo loading in order to minimize

the total cost. Pisinger (2002) proposes a new heuristic based on wall building approach to

maximize the volume of the loaded rectangular boxes in limited capacity rectangular con-
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tainer in ocean cargo transportation. Huang and Chi (2007) develop a recursive heuristic

based on Lagrangian relaxation to minimize the total cost of consolidating shipper’s items

into airline containers and utilizing the quantity discount provided by the airlines, from

the airfreight forwarder’s perspective.

A practical problem faced by a logistic company in Hong Kong was used in the work

of Wu (2008) to introduce a framework to help air-freight forwarders allocate the required

number and type of cargo containers, and simultaneously finding the optimal way to load

the shipments into the previously rented containers in order to minimize the total cost and

satisfy customers demand. A two-stage approach for air cargo forwarders was introduced in

Wu (2010) where in the first stage the types and numbers of cargo containers is determined

based on a deterministic information usually one week before shipping. The second stage

is for any actions taken on the day of shipping which contains defining the required types

and numbers of containers, and loading the cargo into the rented containers.

Mostaghimi Ghomi et al. (2017) proposed a three dimensional bin-packing model for

the container loading problem. A mixed integer linear programming model is developed for

consolidating rectangular-shape boxes into a container where the volume of consolidated

boxes is maximized, while satisfying other constraints like vertical stability and handling

pre-placed boxes inside containers. A heuristic algorithm based on simulated annealing is

used to solve the problem and get a good quality solution in a reasonable time.

Paquay et al. (2012) developed a mixed integer linear program for the three dimensions

bin packing problem (3D-BPP) for air cargo loading into ULDs, and CPLEX was used

for small version of the problem. The proposed model takes into account many realistic

constraints such as stability or the fragility of the cargo, and distribution of cargo weight

carried by aircraft.
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Hai (2016) discuss the consolidation problem faced by international airfreight for-

warders, where they need to pack different size, weight, and release date shipments into

ULDs. A three dimensional bin-packing model is developed which considers cargo posi-

tion, weight, and priority. Also, a relaxed version of the original model is presented to

solve some unsolved cases that original model failed to solve. CPLEX is used to solve both

models using random generated dataset.

2.4 Airfreight Consolidation with Pivot Weight

For safety reasons, airlines utilize the concept of pivot weight when forwarders load ULDs

with cargo. The cost consists of a fixed cost for using the ULD, and two unit costs known

as under-pivot rate and over-pivot rate. The cost of loading depend on a weight threshold

where any weight that is below the threshold is charged at the under-pivot rate, while any

weight that exceeds the threshold is charged at the over-pivot rate.

Based on this pricing scheme, forwarders are interested in minimizing their consolidation

cost. Li et al. (2009) propose a large-scale neighborhood search heuristic to minimize

total cost of airfreight forwarders, by finding the best plan for loading cargo into rented

containers (ULDs). Another related work is the work of Bookbinder et al. (2015) in which

four solution methodologies were proposed to solve the air cargo consolidation problem

under pivot-weight scheme that are branch-and-price, best-fit decreasing heuristic, and two

extensions of the local branching heuristic. The relaxation-induced neighborhood search in

Bookbinder et al. (2015) was found to be the best among all proposed solution approaches.

Solutions within 3.4% of optimality were obtained in under 20 minutes with up to 400

shipments and 80 containers.
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2.5 Unit Load Device Types

ULDs were introduced to standardize and increase the efficiency off air cargo transporta-

tion. ULDs provides forwarders and shippers with many advantages for example:

• Faster loading/unloading process

• Protect cargo and aircraft from damage

• Require less experienced personnel to fill

Pallets provide the advantages of allowing the shipper to load some cargo that does not fit

into regular containers, and the feasibility in stocking the cargo because of the openness.

ULD containers and pallets are designed in different shapes and sizes by IATA to fit on

different aircrafts. Also, airfreight forwarders need to choose the required containers and

pallets in order to be compatible with the carrier aircraft. Figures 2.2, and 2.3, show some

standard ULD types, codes, dimensions, and aircraft’s compatibility. In this thesis, the

pivot weight scheme focuses on ULD containers rather than ULD pallets.
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Figure 2.2: ULD Container Rohlig (2018)

Figure 2.3: ULD Pallet Rohlig (2018)
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2.6 Air Cargo Loading Problems

Roesener and Barnes (2016) investigate the dynamic airlift loading problem from a military

perspective. The problem combines four interdependent sub-problems: 1-packing cargo

into pallets, 2-partitioning pallets, 3-selecting aircraft, and 4-placing pallets in the allowable

locations in order to minimize the total cost of moving all pallets and meeting all temporal

constraints. They propose a Tabu Search that they call the dynamic airlift loading problem-

tabu search (DALP-TS) algorithm to aid in the decision-making process. The DALP-TS

algorithm utilizes three search neighborhoods that each is called under different scenarios

to traverse both the feasible and infeasible solution space. The military airlift problem is

different from it commercial counterpart in that the military airlift problem tries to satisfy

the effectiveness first (i.e. on time delivery) and efficiency second (i.e. minimizing cost),

while commercial airlift problem mainly aims to minimize cost and maximize revenue.

There is no consideration of pivot-weight scheme, as in ACPW, when loading pallets into

allowable locations in aircraft.

Limbourg et al. (2012) developed a mixed integer linear programming model for the

aircraft cargo loading planning problem. The proposed model tries to find the optimal

placement plan for ULDs in predefined positions and maintain aircraft stability by posi-

tioning the center of gravity as close as possible to the required center of gravity by the

loadmaster. The model also considers the moment of inertia of the loaded cargo in order to

reduce stress on the structure of the aircraft and to increase fuel economy. They designed a

software that utilizes CPLEX for solving the proposed model to obtain an optimal loading

plan for a set of ULDs into aircraft. Tests were conducted on a real-world data provided

by an industrial partner CHAMP Cargosystems. The proposed problem is different from

the ACPW problem because it does not consider optimizing the loading of freight inside
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ULDs, instead it tries to find the optimal placement of ULDs inside an aircraft. Another

difference from ACPW is the pivot-weight scheme that is enforced for safety reasons.

Feng et al. (2015b) present a detailed review of air cargo operations and show how

air cargo is an operation-intensive industry that involve many important players. Also,

they highlighted the gap between previous research efforts and real-world practice. One

of the gaps related to container loading problem is the capacity allocation between long-

term contract and the spot market for freight forwarders. Another commonly found gap

in different air cargo problems is the model assumption deviation from reality.

Vancroonenburg et al. (2014) study the air cargo loading problem to maximize profit,

by introducing a model that select the most profitable subset of available ULDs to load

into aircraft while minimizing the deviation between the aircraft’s center of gravity and

the required center of gravity. The main objective of proposed mixed integer programming

model is maximizing profit and minimize deviation of aircraft’s center of gravity. The model

is solved using Gurobi solver and tested using real-world data obtained from a commercial

cargo carrier. The problem is different from ACPW problem since ACPW is concerned

with airfreight loading in ULDs while Vancroonenburg et al. (2014) work addresses the air

cargo loading into aircraft.

Lurkin and Schyns (2015) considered the air cargo loading problem in multiple airport

context and aircraft with several doors to use in loading and unloading cargo. They

proposed a mixed integer programming model to solve the problem of loading and unloading

containers into and from cargo aircraft. The main objective of the proposed model is to

minimize fuel consumption and handling operation cost of unloading and reloading task

at stop-over airports. The proposed model is tested on a real-world data provided by

(TNT Airways) using CPLEX solver that provided a near optimal solution in a short

computational time. The problem has a different objective than ACPW as it minimize the
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cost of loaded cargo into ULDs.

Feng et al. (2015a) investigate the imbalance between demand and capacity on different

flight routes. They suggested a bundling mechanism to balance the allocation of air cargo

capacity between popular and underutilized flight routes to maximize profit. A nonlinear

integer programming model was proposed, and a dynamic programming algorithm was

developed to solve the problem using data from real-word forwarders and airlines.

Chao and Li (2017) discus the important aspects influencing air cargo revenue, and

how the cargo charges and density affect revenues. They developed a set of mathematical

models and used an actual flight data to show the effect of Density Ratio of Heavy cargo

to Light cargo (DRHL) on the chargeable weight, and how the percentage of small cargo

affect the revenue of air cargo.

2.7 Lagrangian Relaxation Techniques

Lagrangian relaxation was developed in the early 1970’s by Held and Karp (1970). They

applied it to the travelling salesman problem. Since then, it has been one of the most

used method in optimization. Many view Lagrangian relaxation as a technique to convert

hard problems into relatively easy problems by dualizing complicating constraints to get

an easy-to-solve problems and a lower bound (in case of minimization) (Fisher, 2004).

Also, the intuitive concept behind Lagrangian relaxation made it very easy to adopt and

implement. The goal of applying Lagrangian relaxation to an optimization problem is

to find a lower bound (in case of minimization problem) by eliminating a set of hard

constraints and placing them in the objective function using Lagrangian multipliers. The

Lagrangian multipliers are found using algorithms such as subgradient optimization and

cutting plane methods.
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Lagrangian Relaxation provides a lower bound for a minimization problem. To generate

a feasible solution, Lagrangian heuristics use the solution of the subproblem and try to make

it feasible for the original problem. The quality of the solution is measured by its relative

proximity to the lower bound.

To illustrate the Lagrangian Relaxation methodology, consider the optimization prob-

lem:

min cTx

s.t. Ax = b

Bx = d

xj integer, j ∈ J

Relaxing the first set of constraints with Lagrangian multipliers λ, leads to the sub-

problem:

min (c− ATλ)Tx+ bTλ

Bx = d

xj integer, j ∈ J

The Lagrangian lower bound is given by:

max {bTλ+ min {x : Bx = d, xj integer, j ∈ J}(c− ATλ)Tx}

Which is equivalent to the master problem:

max bTλ+ θ

θ + (Axh)Tλ ≤ cTxh h ∈ H

14



Where H is the set of integer feasible points to

{x : Bx = d, xj integer, j ∈ J}

which is assumed to be bounded. The Lagrangian multipliers can be alternatively updated

using subgradient optimization (Fisher, 2004).
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Chapter 3

Mathematical Formulation

Using indices j ∈ J for ULDs and i ∈ I for shipments, we model the ACPW using three

decision variables xij, zj, y
E
j where xij is binary variable that takes value 1 if shipment i

is consolidated in ULD j, and 0 otherwise. zj is also a binary variable that takes value 1

if ULD j is used, and 0 otherwise. yEj is a continuous variable to denote the additional

capacity over the pivot weight. We also define the following parameters:

fj: the fixed cost for using ULD j, j = 1, ..., J.

cj: the under-pivot shipment cost for ULD j, j = 1, ..., J.

cEj : the over-pivot shipment cost for ULD j, j = 1, ..., J.

gi: the weight of shipment i, i = 1, ..., I.

Uj: the under-pivot capacity for ULD j, j = 1, ..., J.

UE
j : the over-pivot capacity for ULD j, j = 1, ..., J.

The ACPW is modeled as follows:
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min
∑
j

fjzj +
∑
i

∑
j

gicjxij +
∑
j

cEj y
E
j (3.1)

s.t.
∑
j

xij = 1 ∀i ∈ I (3.2)∑
i

gixij ≤ Ujzj + yEj ∀j ∈ J (3.3)

yEj ≤ UE
j zj ∀j ∈ J (3.4)

xij, zj ∈ {0, 1}, yEj ≥ 0 ∀i ∈ I, j ∈ J. (3.5)

The objective function (3.1) minimizes the fixed cost plus the under-pivot cost plus

the over-pivot cost. Constraints (3.2) require that each shipment is consolidated exactly

once over all available ULDs. Constraints (3.3) and (3.4) model the capacity for ULD j

including the under-pivot and the over-pivot capacities. By defining yj to be the fraction

of over-pivot capacity UE
j used, the ACPW can modeled as:

[ACPW ] : min
∑
j

fjzj +
∑
i

∑
j

gicjxij +
∑
j

cEj U
E
j yj (3.6)

s.t.
∑
j

xij = 1 ∀i ∈ I (3.7)∑
i

gixij ≤ Ujzj + UE
j yj ∀j ∈ J (3.8)

yj ≤ zj ∀j ∈ J (3.9)

0 ≤ yj ≤ 1; xij, zj ∈ {0, 1} ∀i ∈ I, j ∈ J. (3.10)
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3.1 Lagrangian Relaxation

By relaxing constraints (3.1) with Lagrangian multipliers λj, j ∈ J , we get the following

subproblem:

[SP ] : min
∑
j

(fj − λjUj)zj +
∑
i

∑
j

(cj + λj)gixij +
∑
j

(cEj − λj)UE
j yj

s.t.
∑
j

xij = 1 ∀i ∈ I

yj ≤ zj ∀j ∈ J∑
j

Ujzj +
∑
j

UE
j yj ≥

∑
i

gi (3.11)

0 ≤ yi ≤ 1; xij, zj ∈ {0, 1}, ∀i ∈ I, j ∈ J.

Note that we added the redundant constraint (3.11) to strengthen the subproblem. The

constraint is redundant in [ACPW] but not in [SP]. It is obtained by summing (3.1) over

all j ∈ J .

[SP ] is decomposed into two subproblems [SP1] and [SP2]. The first subproblem [SP1]

is:

[SP1] : v1 = min
∑
j

(fj − λjUj)zj +
∑
j

(cEj − λj)UE
j yj

s.t. yj ≤ zj ∀j ∈ J∑
j

Ujzj +
∑
j

UE
j yj ≥

∑
i

gi

zj ∈ {0, 1}, 0 ≤ yj ≤ 1 ∀j ∈ J.

The second subproblem [SP2] is decomposable into |I| subproblems, one for each ship-

ment i:
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[SP2i] : v2i = min
∑
j

(cj + λj)gixij

s.t.
∑
j

xij = 1

xij ∈ {0, 1}.

The Lagrangian bound is (v1+
∑

i v2i). The best bound is the solution of the Lagrangian

master problem:

[MP ] : vMP = max θ0 +
∑
i

θi

s.t. θ0 ≤
∑
j

(fj − λjUj)z
h
j +

∑
j

(cEj − λj)UE
j y

h
j h ∈ H0

θi ≤
∑
j

(cj + λj)gix
h
ij h ∈ Hi, i ∈ I

θi, θ0 unrestricted, λj ≥ 0 i ∈ I, j ∈ J

Where (xhij, z
h
j , y

Eh
j ) are the feasible solutions to [SP1] and [SP2i], i ∈ I.

The Lagrangian algorithm is summarized below:

Initialize H̄ ⊆ H, LRLB = −∞, LRUB = +∞.

While LRLB 6= LRUB

Step 1: solve [MP ] corresponding to H̄ to obtain λj. LRUB = vMP

Step 2: solve subproblem [SP2i] and [SP1] at λj to obtain x̄hij, ȳ
h
j , z̄

h
j , respectively.

LRLB = max(LRLB, (v1 +
∑
i

v2i)).

Step 3: Update H̄ and add corresponding constraints to [MP ].
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3.2 Finding Feasible Solutions

In this section, we propose three heuristics to find feasible solutions for ACPW based

on the solutions of the subproblems. For all proposed heuristics, we run each heuristic

when the Lagrangian lower and upper bounds are within 10% of optimal bound , i.e.

(LRUB − LRLB)/LRLB > .1 .

3.2.1 Lagrangian Heuristic (LagHeur)

Lagrangian heuristics use the solution of the subproblem and try to convert it into a feasible

solution for the original problem by some adjustment. This feasible solution constitute

an upper bound on the optimal solution to the problem. The key idea is that just as

the solution value for relaxed version of the original problem gives us useful information

(a lower-bound on the optimal integer solution value) also the solution structure of the

relaxed version of the original problem (i.e. the value of the decision variables) may also

provide useful information about the solution structure of the optimal integer solution.

Solving [SP1] will return z̄j that represent the ULDs to be used, and ȳj that determine

the percentage of over-pivot capacity used in each used ULD. Using these values, we fix z

and y in [ACPW] and solve for the assignments variable xij as shown in Figure 3.1.

[HP ] : min
∑
i

∑
j

gicjxij +
∑
j

fj z̄j +
∑
j

cEj U
E
j ȳj

s.t.
∑
j

xij = 1 ∀i ∈ I

∑
i

gixij ≤ Uj z̄j + UE
j ȳj ∀j ∈ J

xi,j ∈ {0, 1} ∀i ∈ I, j ∈ J.
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If a solution is found, it is feasible to ACPW. The procedure can be executed every

time [SP1] is solved or when the Lagrangian lower bound is close to the optimal one. The

solution of [HP] could be stopped after a predetermined time limit or number of nodes.

Figure 3.1: LagHeur Heuristic Flow

3.2.2 Greedy Heuristics

Greedy heuristics try to trade the solution optimality for speed. In many optimization

problems greedy strategy does not produce an optimal solution, but it may find good

quality solutions in a very short computational time. In this work, we try two different

greedy heuristics: the two knapsacks approach and the bestfit approach.
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3.2.3 The Two-knapsack Heuristic (2knap)

Given a set of items with different values and weights, the knapsack problem tries to select

a combination of items with the maximum value where the total weight of items does not

exceed a certain limit. Heuristics for the knapsack loading problem have been presented in

Gehring et al. (1990). In this work, each ULD is treated as two knapsacks where the first

is the under-pivot knapsack, and the second is the over-pivot knapsack. The problem is to

choose a subset of shipments that fits into a single ULD so that total cost of using ULDs

is minimized.

In this heuristic, the activated ULD based on subproblem SP1 solution will be treated

as two knapsacks the first is the under-pivot knapsack, and the second is the over-pivot

knapsack. The heuristic starts with ordering the selected ULDs in an ascending order of

their total cost density, and the shipments in descending order of their chargeable weight.

After ordering both ULDs and shipments, the heuristic starts by assigning shipments to

the under-pivot knapsack of ULDs if it’s possible. Next, if any shipments is left unassigned,

the heuristic will assign shipments to the over-pivot knapsack if the capacity permits as

shown in Figure 3.2. The heuristic steps are:

At every Lagrangian iteration, the solution of subproblem [SP1] yields the identity of

the ULDs to be used as z̄j, and the percentage of the used over-pivot weight capacity as

ȳj. Let z̄j, ȳj be the solution of [SP1].

Step 1: Identify the ULDs to be used (z̄j) from [SP1] solution, and sort them in

ascending order based on their under-pivot cost density (
fj
Uj

+ cj).

Step 2: sort the shipments (gi) based on their chargeable weight in a descending order.

Step 3: For each unassigned shipment (gi). Let uj be the available under-pivot capacity

in ULD with zj = 1.
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Figure 3.2: 2knap Heuristic Flow

If (gi ≤ uj) set xij = 1

Step 4: For all unassigned shipments (gi). Let oj be the available total capacity in

ULD with zj = 1 which include all over-pivot capacity and all unused under-pivot capacity.

If (gi ≤ oj) set xij = 1 and yj =

∑
i

gjxij − Uj

UEj

Step 5: The solution is infeasible if any shipments are left unassigned after Step 4, so

by activating an empty ULD that has (zj = 0) and the least cost density (
fj
Uj

+ cj) and

make it zj = 1 we then go back to Step 3.
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3.2.4 The Bestfi Heuristic (bestfit)

Each ULD has two types of capacities, the under-pivot and over-pivot capacities. In the

Best fit approach, both capacities are merged into one. In this heuristic, the activated ULD

based on [SP1] solution will be treated as one knapsack. After assigning all shipments to

the available ULD, the heuristic calculates the value of the over-pivot usage yj in each

activated ULD as shown in Figure 3.3. The heuristic steps are as follow:

Figure 3.3: Bestfit Heuristic Flow

Let z̄j, ȳj be the solution of [SP1].

Step 1: identify the ULDs to be used (z̄j) from [SP1] solution, and sort them in
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ascending order based on their total cost density (
(fj + cjUj + cEj U

E
j )

Uj + UEj

).

Step 2: sort the shipments (gi) based on their chargeable weight in a descending order.

Step 3: For each unassigned shipment (gi). Let tj be the available total capacity

(under-pivot capacity + over-pivot capacity) in ULD with zj = 1.

If (gi ≤ tj) set xij = 1

Step 4: Find the over-pivot usage for each used ULD.

yj =

∑
i

gjxij − Uj

UEj

Step 5: The solution is infeasible if some shipments are left unassigned after Step 4, so

by activating an empty ULD that has (zj = 0) and the least cost density (
(fj + cjUj + cEj U

E
j )

Uj + UEj

)

and make it zj = 1 we then go back to Step 3.
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Chapter 4

Computational Analysis

In this section, we evaluate the computational performance of the proposed solution method-

ologies. The methods is coded in Matlab with CPLEX and Gurobi solvers on a laptop with

2.6 GHz Inter Core i7 and 8GB of memory. As real data from airfreight forwarders is hard

to obtain since it is confidential, we generate our own test cases in order to compare the

performance of the proposed methods. Each case is described by the number of ULDs |J |,

the number of shipments |I|, the ratio by which the over-pivot capacity exceeds the pivot-

weight, and the ratio of the over-pivot cost to the under-pivot cost. Similar to Bookbinder

et al. (2015), the shipment weight gi is uniformly distributed in the range [100, 300]. The

percentage by which UE
j exceeds Uj takes one of two values 10% or 30%. The over-pivot

cEj is tested for 1.2 and 3.
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4.1 Numerical Testing

We generate 80 instances with different combinations of parameter values as shown in

Table 4.1. As in Bookbinder et al. (2015), the size of Uj is uniformly distributed between

[300, 7500]. Both the fixed costs fj and variable costs cj are related to the size of ULD Uj.

The fixed cost fj is related to the size of ULD Uj as follow: fj = 4000 + 0.5(Uj − 1000).

The variable cost cj is related to the size of ULD Uj as follows:

if Uj < 3000 then cj is uniformly distributed between [7, 8]

if Uj ≥ 3000 then cj is uniformly distributed between [6.5, 7.5]
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Parameter Description Value

J Set of ULDs 8, 16, 40, 80, 100

I Set of shipments Small instances 20, 40, 100, 150,

and large instances 100, 150, 200,

300, 400, 600, 1000

Uj Under-pivot capacity

of ULD j

Uj is uniformly distributed be-

tween [300, 7500]

UE
j Over-pivot capacity of

ULD j

Ratio of UE
j /Uj = 0.1 or 0.3

cj Under-pivot cost for

ULD j

Depends on the value of Uj if

Uj < 3000 then cj ∼U[7, 8]; if

Uj ≥ 3000 then cj ∼U[6.5, 7.5]

cEj Over-pivot cost for

ULD j

Ratio of cEj /cj = 1.2 or 3, In the

airfreight industry, the cEj /cj ra-

tio is usually set between 1.2 and

2.

gi Weight of shipment i gi ∼U[100, 300]

fj Fixed cost for using

ULD j

fj value depend on the ULD ca-

pacity Uj where fj = 4000 +

0.5(Uj − 1000).

Table 4.1: Parameters used for numerical testing

The generated dataset could be divided into small and large based on the number of

selected ULDs and shipments. In the small instances, the number of ULDs is 8 or 16, while

in the large instance, the number of ULDs is 40, 80, or 100. Also, in the small instances,
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the number of shipments is set to 100, or 150, while in the large instances, the number of

shipments is set to 200, 300, 400, 600, or 1000.

4.2 Numerical Results

4.2.1 Lagrangian Heuristic (LagHeur)

The 80 instances are solved using the Lagrangian approach and the three heuristics. A

time limit of 600 seconds is set. We report the heuristic gap as 100 UB−LB
LB

(HeurGap).

SP1Time, SP2Time, MPTime, HeurTime, TotalTime denote the time taken by Subprob-

lem 1, Subproblem 2, Master problem, heuristic, and the entire approach, respectively.

The number of iterations are displayed in the last column.

Tables 4.2, 4.3, 4.4, and 4.5 show results of Lagrangian heuristic. The first column of

these tables indicates the number of ULD available, while the second column shows the

number of shipments to be consolidated. The third and fourth columns show the value of

cE the cost for using under-pivot weight and UE the over-pivot weight capacity respectively.

Tables 4.2, 4.3, 4.4, and 4.5 display statistics and computational performance for

cEj /cj = 1.2, UE
j /Uj = 0.1, cEj /cj = 1.2, UE

j /Uj = 0.3, cEj /cj = 3, UE
j /Uj = 0.1, cEj /cj = 3,

and UE
j /Uj = 0.3, respectively.
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ULDs Shipments cEj /cj UE
j /Uj HeurGap SP1Time SP2Time MPTime HeurTime TotalTime Iterations

8 20 1.2 0.1 0.01 0.04 0.2 0.02 70.11 70.39 9

40 1.2 0.1 0.01 0.08 0.39 0.02 15.54 16.1 9

100 1.2 0.1 0.01 0.02 1.05 0.05 1.54 2.73 9

150 1.2 0.1 0.01 0 1.5 0.07 0.87 2.58 9

16 20 1.2 0.1 0.23 0.2 0.45 0.07 69.49 70.26 18

40 1.2 0.1 0.01 0.07 0.75 0.1 1352.8 1353.8 17

100 1.2 0.1 0.01 0.12 1.93 0.1 1755.4 1757.7 17

150 1.2 0.1 0.01 0.19 2.93 0.15 2987.7 2991.2 18

Min 0.01 0.00 0.20 0.02 0.87 2.58 9.00

Max 0.23 0.20 2.93 0.15 2987.70 2991.20 18.00

Avg 0.03 0.09 1.15 0.07 781.68 783.10 13.25

Table 4.2: Performance of LagHeur for cEj /cj = 1.2 and UE
j /Uj = 0.1

ULDs Shipments cEj /cj UE
j /Uj HeurGap SP1Time SP2Time MPTime HeurTime TotalTime Iterations

8 20 1.2 0.3 0.00 0.05 0.22 0 79.59 79.9 10

40 1.2 0.3 0.65 0.03 0.43 0.03 33.27 33.81 9

100 1.2 0.3 0.01 0.05 1.08 0.03 117.88 119.05 9

150 1.2 0.3 0.01 0.04 1.48 0.06 4 5.66 9

16 20 1.2 0.3 0.04 0.21 0.44 0.07 318.56 319.28 17

40 1.2 0.3 0.00 0.08 0.83 0.02 1191 1192 17

100 1.2 0.3 0.01 0.09 2.11 0.13 3374.9 3377.4 18

150 1.2 0.3 0.01 0.11 3 0.21 2669 2672.6 18

Min 0.00 0.03 0.22 0.00 4.00 5.66 9.00

Max 0.65 0.21 3.00 0.21 3374.90 3377.40 18.00

Avg 0.09 0.08 1.20 0.07 973.53 974.96 13.38

Table 4.3: Performance of LagHeur for cEj /cj = 1.2 and UE
j /Uj = 0.3

Tables 4.2 and 4.3 show that when the ratio of UE
j /Uj increases to 0.3, the Lagrangian

heuristic solution average gap increases relative to when UE
j /Uj = 0.1. The maximum gap

achieved when UE
j /Uj = 0.3 is 0.65 in 33.81s compared to a maximum gap of 0.23 in 70.26s

when UE
j /Uj = 0.1.
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ULDs Shipments cEj /cj UE
j /Uj HeurGap SP1Time SP2Time MPTime HeurTime TotalTime Iterations

8 20 3 0.1 0.00 0.06 0.21 0.04 194.51 194.85 9

40 3 0.1 0.01 0.06 0.45 0.02 667.22 667.79 9

100 3 0.1 0.01 0.03 1.03 0.05 39.03 40.2 9

150 3 0.1 0.01 0.01 1.44 0.08 2.59 4.21 9

16 20 3 0.1 0.56 0.09 0.45 0.09 49.77 50.43 18

40 3 0.1 0.01 0.08 0.79 0.04 175.38 176.35 16

100 3 0.1 0.00 0.09 1.94 0.11 1228.3 1230.5 16

150 3 0.1 0.01 0.12 3.04 0.22 854.01 857.58 18

Min 0.00 0.01 0.21 0.02 2.59 4.21 9.00

Max 0.56 0.12 3.04 0.22 1228.30 1230.50 18.00

Avg 0.08 0.07 1.17 0.08 401.35 402.74 13.00

Table 4.4: Performance of LagHeur for cEj /cj = 3 and UE
j /Uj = 0.1

ULDs Shipments cEj /cj UE
j /Uj HeurGap SP1Time SP2Time MPTime HeurTime TotalTime Iterations

8 20 3 0.3 0.00 0.03 0.27 0.01 42.76 43.11 9

40 3 0.3 0.00 0.04 0.47 0.03 136.02 136.59 9

100 3 0.3 0.01 0.02 1.02 0.06 41.94 43.13 9

150 3 0.3 0.01 0.01 1.53 0.06 2.58 4.23 9

16 20 3 0.3 0.55 0.19 0.53 0.02 64.39 65.15 18

40 3 0.3 0.01 0.06 0.79 0.06 1848.9 1849.9 16

100 3 0.3 0.01 0.05 1.83 0.14 439.46 441.6 16

150 3 0.3 0.01 0.11 3.01 0.16 2129.6 2133.1 18

Min 0.00 0.01 0.27 0.01 2.58 4.23 9.00

Max 0.55 0.19 3.01 0.16 2129.60 2133.10 18.00

Avg 0.07 0.06 1.18 0.07 588.21 589.60 13.00

Table 4.5: Performance of LagHeur for cEj /cj = 3 and UE
j /Uj = 0.3

The results in tables 4.2, 4.3, 4.4, and 4.5 show that the proposed Lagrangian heuristic

achieves small gaps when the number of ULDs is small (8-16). However, when the number

of ULDs increases the same is most probably true if the running time for the heuristic is

increased. This clearly indicates that the Lagrangian bound is very tight. Also the results
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reveal that the performance of the Lagrangian heuristic does not differ considerably when

the ratio of the over-pivot cost to the under-pivot cost cEj /cj varies.

Give that Lagheur takes long to solve, we restrict its solution to just the first node and

recuperate the feasible solution that Cplex generates in node 0. We refer to the heuristic

as LagHeur0. The results are displayed in Tables 4.6 and 4.7. Table 4.6 displays statistics

for cEj /cj = 1.2, UE
j /Uj = 0.1, and cEj /cj = 1.2, UE

j /Uj = 0.3. Table 4.7 displays statistics

and computational performance for cEj /cj = 3, UE
j /Uj = 0.1, and cEj /cj = 3, UE

j /Uj = 0.3.

Compared to results in Section 4.2.1, the LagHeur0 is capable of solving the large

instances and has a maximum gap of 6.36 in 37.61s. With respect to computational time,

LagHeur0 takes more time compared to the 2knap and the bestfit heuristics.
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cEj /cj = 1.2, UE
j /Uj = 0.1 cEj /cj = 1.2, UE

j /Uj = 0.3

ULDs Shipments HeurGap HeurTime TotalTime HeurGap HeurTime TotalTime

8 20 0.05 0.54 0.82 0.12 0.42 0.71

40 0.24 0.07 0.58 0.09 0.24 0.73

100 0.01 1.46 2.47 0.12 1.2 2.21

150 0.02 1.15 2.8 0.02 1.22 2.93

16 20 0.08 0.64 1.38 0.22 1.84 2.56

40 0.13 2.55 3.96 1.44 2.55 3.56

100 0.97 5.61 8.27 0.53 9.73 12.53

150 0.42 8 11.94 0.32 9.85 13.79

40 100 0.72 92.05 100.69 0.81 80.5 88.57

200 0.62 97.39 118.6 0.66 214.88 238.62

300 0.63 22.83 42.55 0.81 37.02 56.94

400 0.40 44.8 70.59 0.35 43.33 69.29

80 100 3.33 37.84 262.91 2.26 42.46 255.67

200 0.93 429.85 462.12 0.85 448.52 482.53

300 0.53 3835.9 4059.4 0.69 3197.2 3358.8

400 0.48 1510.9 1606.5 0.56 1455.3 1544.2

100 150 2.76 43.02 483.93 0.18 265.62 487.92

300 0.77 4702.3 4838.7 0.82 5091.8 5230.5

600 0.52 475.63 638.01 0.82 467.52 632.16

1000 0.63 637.31 937.49 0.68 568.13 886.11

Min 0.01 0.07 0.58 0.02 0.24 0.71

Max 3.33 4702.30 4838.70 2.26 5091.80 5230.50

Avg 0.71 597.49 682.69 0.62 596.97 668.52

Table 4.6: Performance of LagHeur0 for cEj /cj = 1.2, UE
j /Uj = 0.1 and cEj /cj =

1.2, UE
j /Uj = 0.3

Table 4.6 shows that when UE
j /Uj increases to 0.3, LagHeur0 finds a better solution
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than when UE
j /Uj = 0.1 in 7 cases, while the maximum gap achieved when UE

j /Uj = 0.3

is 2.26 in 255.67s compared to a maximum gap of 3.33 in 262.91s when UE
j /Uj = 0.1.
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cEj /cj = 3, UE
j /Uj = 0.1 cEj /cj = 3, UE

j /Uj = 0.3

ULDs Shipments HeurGap HeurTime TotalTime HeurGap HeurTime TotalTime

8 20 0.38 0.53 0.83 1.08 0.63 0.97

40 1.48 0.08 0.58 0.46 0.67 1.26

100 0.09 0.96 2.07 0.06 1.15 2.27

150 0.03 1.15 2.78 0.02 1.32 3.01

16 20 2.14 0.87 1.53 1.80 0.8 1.41

40 1.37 1.86 2.81 2.21 1.33 2.22

100 1.61 4.23 6.77 1.34 4.69 6.96

150 0.61 9.74 13.68 0.66 5.45 8.81

40 100 2.12 61.66 69.85 6.36 31.2 37.61

200 1.82 82.54 102.54 1.56 94.46 113.87

300 1.58 22.14 41.97 1.84 9.91 28.6

400 1.40 39.53 65.5 1.07 41.88 67.3

80 100 3.09 223.5 246.66 4.39 166.15 187.44

200 2.13 983.74 1033.8 2.41 1234 1292.6

300 2.02 1032.3 1093.8 2.04 1060.6 1128.9

400 1.41 946.34 1023.8 1.49 1000.4 1086.5

100 150 2.99 351.27 376.54 2.59 376.88 402.56

300 1.81 4119.6 4234.8 2.18 4182.4 4299.9

600 2.03 244.35 391.39 1.90 350.12 507.13

1000 1.65 779.53 1109 1.47 788.65 1108.9

Min 0.03 0.08 0.58 0.02 0.63 0.97

Max 3.09 4119.60 4234.80 6.36 4182.40 4299.90

Avg 1.59 445.30 491.04 1.85 467.63 514.41

Table 4.7: Performance of LagHeur0 for cEj /cj = 3, UE
j /Uj = 0.1 and cEj /cj = 3, UE

j /Uj =

0.3

Table 4.7 shows that when UE
j /Uj increases to 0.3, the LagHeur0 solution maximum
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gap increases more than when UE
j /Uj = 0.1 in 8 cases, and the maximum gap achieved

when UE
j /Uj = 0.3 is 6.36 in 37.61s compared to a maximum gap of 3.09 in 246.66s when

UE
j /Uj = 0.1. Comparing Tables 4.6 and 4.7 when cEj /cj increases to 3, an increase of the

average heuristic gap and maximum gap is noticed. In Table 4.6, the average gap is 0.71

and when cEj /cj increases to 3, the average gap is 1.59 in Table 4.7. Also, the average gap

in Table 4.6 is 0.62 while the average gap decreases to 1.85 in Table 4.7.

4.2.2 The Two-knapsack Heuristic (2knap)

Tables 4.8 and 4.9 display statistics for cEj /cj = 1.2, UE
j /Uj = 0.1, and cEj /cj = 1.2,

UE
j /Uj = 0.3, and for cEj /cj = 3, UE

j /Uj = 0.1, and cEj /cj = 3, UE
j /Uj = 0.3, respectively.

Tables 4.8 and 4.9 reveal that 2knaps achieves better quality solutions than LagHeur.

For instances with more than 16 ULDs and 150 shipments, the 2knap heuristic achieves a

maximum gap of 5.73 in less than 78.05s. With respect to solution time the 2knap heuristic

can finish all computations within 200.95s.
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cEj /cj = 1.2, UE
j /Uj = 0.1 cEj /cj = 1.2, UE

j /Uj = 0.3

ULDs Shipments HeurGap HeurTime TotalTime HeurGap HeurTime TotalTime

8 20 3.61 0 0.32 1.23 0 0.29

40 0.50 0 0.48 0.73 0.01 0.54

100 0.30 0.01 1 0.73 0 1.07

150 0.12 0.02 1.67 0.12 0.01 1.69

16 20 3.66 0.01 0.63 2.77 0.04 0.61

40 0.41 0.01 1.01 0.57 0 1.01

100 1.32 0.02 2.74 1.30 0.03 2.87

150 0.67 0.03 3.97 0.65 0.03 4.02

40 100 1.06 0.4 8.93 1.25 0.22 8.18

200 1.40 0.4 20.05 1.38 0.62 24.79

300 1.03 0.12 19.8 1.11 0.12 19.89

400 0.93 0.15 26 0.92 0.14 26.04

80 100 2.49 2.89 22.94 1.88 2.75 22.3

200 0.46 1.08 33.36 0.52 0.84 35.13

300 1.28 4.9 200.95 1.32 4.77 171.18

400 1.35 1.99 88.82 0.88 2.49 93.05

100 150 2.41 2.83 29.8 0.65 1.05 27.97

300 1.03 4.1 139.07 1.59 4.1 142.35

600 1.35 1.68 164.4 1.70 1.74 169.4

1000 0.87 2.94 303.02 0.86 2.94 328.56

Min 0.12 0.00 0.32 0.12 0.00 0.29

Max 3.66 4.90 303.02 2.77 4.77 328.56

Avg 1.31 1.18 53.45 1.11 1.10 54.05

Table 4.8: Performance of 2knap for cEj /cj = 1.2, UE
j /Uj = 0.1 and cEj /cj = 1.2, UE

j /Uj =

0.3

Tables 4.8 shows that when the ratio of UE
j /Uj increases to 0.3, the 2knap heuristic finds
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better solutions than when the ratio of UE
j /Uj = 0.1 in seven cases, while the maximum

gap achieved when ratio of UE
j /Uj = 0.3 is 2.77 in 0.61s compared to a maximum gap of

3.66 in 0.63s when ratio UE
j /Uj = 0.1.
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cEj /cj = 3, UE
j /Uj = 0.1 cEj /cj = 3, UE

j /Uj = 0.3

ULDs Shipments HeurGap HeurTime TotalTime HeurGap HeurTime TotalTime

8 20 0.22 0 0.3 0.22 0.01 0.32

40 1.51 0 0.55 0.99 0 0.56

100 0.07 0.02 1.15 0.07 0 1.15

150 0.12 0.02 1.64 0.12 0.01 1.71

16 20 5.73 0 0.67 2.66 0 0.56

40 0.19 0.01 1 2.05 0 0.91

100 3.32 0.01 2.55 1.38 0.01 2.22

150 0.73 0.04 4.01 0.74 0.01 3.34

40 100 1.26 0.21 8.33 1.50 0.09 6.44

200 2.20 0.39 20.45 3.35 0.24 18.39

300 2.28 0.14 19.75 3.47 0.04 18.62

400 2.64 0.15 26 2.37 0.16 25.51

80 100 2.31 1.21 22.69 3.77 0.4 21.23

200 0.35 1.95 52.45 0.71 2.06 60.57

300 4.03 1.38 62.45 3.57 1.63 68.8

400 2.33 1.53 78.05 2.80 1.94 87.75

100 150 2.92 0.72 26.12 4.14 0.32 25.95

300 2.02 3.48 122.86 2.03 3.53 125.97

600 2.68 1.01 148.29 3.31 1.36 158.31

1000 2.11 3.98 347 2.10 3.3 320.96

Min 0.07 0.00 0.30 0.07 0.00 0.32

Max 5.73 3.98 347.00 4.14 3.53 320.96

Avg 1.95 0.81 47.32 2.07 0.76 47.46

Table 4.9: Performance of 2knap for cEj /cj = 3, UE
j /Uj = 0.1 and cEj /cj = 3, UE

j /Uj = 0.3

Similarly, Table 4.9 shows that when the ratio of UE
j /Uj increases to 0.3, the 2knap

heuristic finds better solutions than when UE
j /Uj = 0.1 in six cases, while the maximum

39



gap achieved when UE
j /Uj = 0.3 is 4.14 in 25.95s compared to a maximum gap of 5.73 in

0.67en UE
j /Uj = 0.1. We notice that when cEj /cj increases to 3, the average heuristic gap

and the maximum gap is noticed. In Table 4.8, the average gap is 1.31 and when cEj /cj

increases to 3, the average gap is 1.95 in Table 4.9. Also, the average gap in Table 4.8 is

1.11, while the average gap increases to 2.07 in Table 4.9.

4.2.3 The Bestfit Heuristic (bestfit)

Tables 4.10 and 4.11 show results of the bestfit heuristic. Table 4.10 displays statistics for

cEj /cj = 1.2, UE
j /Uj = 0.1, and cEj /cj = 1.2, UE

j /Uj = 0.3. Table 4.11 displays statistics

and computational performance for cEj /cj = 3, UE
j /Uj = 0.1, and cEj /cj = 3, UE

j /Uj = 0.3.

Compared to the results in Section 4.2.1, the bestfit heuristic achieves better solution

quality than the LagHeur, also for cases with more than 16 ULDs and 150 shipments, the

bestfit heuristic has a maximum gap of 5.73 in very fast time at 0.66s. With respect to

computational time, the bestfit heuristic terminates within 348.46s.

When comparing the 2knap heuristic and the bestfit heuristic both have a maximum

gap of 5.73 in 0.67 and 0.66, respectively, but the 2knap heuristic is better in 45 out of 80

cases compared with the 35 cases where bestfit heuristic achieves better gaps.
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cEj /cj = 1.2, UE
j /Uj = 0.1 cEj /cj = 1.2, UE

j /Uj = 0.3

ULDs Shipments HeurGap HeurTime TotalTime HeurGap HeurTime TotalTime

8 20 0.13 0 0.32 1.21 0 0.3

40 4.60 0.01 0.49 4.60 0 0.52

100 2.35 0.02 1.15 2.38 0.01 1.02

150 0.12 0.01 1.7 0.12 0.01 1.66

16 20 5.40 0 0.56 0.84 0.02 0.6

40 2.71 0.04 1.05 3.31 0.01 1.03

100 1.93 0.03 2.8 1.93 0.03 2.86

150 1.30 0.05 3.99 1.30 0.03 4.01

40 100 1.30 0.31 8.78 1.33 0.31 8.22

200 0.84 0.57 22.11 0.82 0.74 24.93

300 0.75 0.14 19.98 0.75 0.15 19.96

400 0.63 0.18 26.05 0.63 0.17 26.13

80 100 2.61 1.12 20.01 1.65 1.89 20.81

200 1.07 0.89 33.22 1.19 1.19 35.24

300 1.00 10.67 202.93 1.19 9.33 161.63

400 0.93 3.8 95.98 0.88 4.01 93.04

100 150 3.34 2.23 28.87 0.36 1.96 29.04

300 1.59 10.4 145.42 1.59 10.54 147.97

600 0.88 3.18 165.8 0.96 3.3 170.64

1000 0.35 3.82 304.35 0.35 3.05 320.95

Min 0.12 0.00 0.32 0.12 0.00 0.30

Max 5.40 10.67 304.35 4.60 10.54 320.95

Avg 1.69 1.87 54.28 1.37 1.84 53.53

Table 4.10: Performance of bestfit for cEj /cj = 1.2, UE
j /Uj = 0.1 and cEj /cj = 1.2, UE

j /Uj =

0.3

Table 4.10 shows that when the ratio of UE
j /Uj increases to 0.3 while cEj /cj is fixed
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at 1.2, the bestfit heuristic finds better solutions when the ratio of UE
j /Uj = 0.1, and the

maximum gap achieved is 4.6 in 0.52s.

cEj /cj = 3, UE
j /Uj = 0.1 cEj /cj = 3, UE

j /Uj = 0.3

ULDs Shipments HeurGap HeurTime TotalTime HeurGap HeurTime TotalTime

8 20 2.51 0 0.29 0.22 0 0.33

40 2.87 0 0.52 0.99 0 0.58

100 0.07 0.02 1.13 0.07 0 1.13

150 0.12 0.02 1.67 0.12 0.01 1.66

16 20 5.73 0 0.66 5.71 0 0.57

40 0.19 0.02 1.04 3.43 0 0.95

100 1.98 0.02 2.58 1.38 0.01 2.28

150 0.73 0.03 3.96 0.74 0.02 3.33

40 100 1.35 0.26 8.29 1.43 0.11 6.43

200 0.86 0.47 20.34 0.78 0.34 18.94

300 0.75 0.17 19.8 0.75 0.05 18.74

400 0.63 0.17 26.05 0.63 0.2 25.52

80 100 4.45 2.19 23.79 4.43 1.96 21.93

200 0.74 2.53 53 0.71 3.14 61.92

300 1.12 2.72 63.33 1.57 3.63 70.26

400 0.87 2.53 79.01 0.87 3.35 85.56

100 150 2.93 0.65 25.9 3.06 0.64 26.08

300 1.90 8.54 127.65 1.88 9.05 131.1

600 1.00 1.82 148.88 0.97 2.54 160.58

1000 0.36 5.39 348.46 0.35 4.32 333.59

Min 0.07 0.00 0.29 0.07 0.00 0.33

Max 5.73 8.54 348.46 5.71 9.05 333.59

Avg 1.56 1.38 47.82 1.50 1.47 48.57

Table 4.11: Performance of bestfit for cEj /cj = 3, UE
j /Uj = 0.1 and cEj /cj = 3, UE

j /Uj = 0.3
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Table 4.11 shows that when the ratio of UE
j /Uj increases to 0.3, the bestfit heuristic

finds a better solution than when the ratio of UE
j /Uj = 0.1 in 10 cases, while the maximum

gap achieved when ratio of UE
j /Uj = 0.3 is 5.71 in 0.57s compared to a maximum gap of

5.73 in 0.66s when UE
j /Uj = 0.1. Comparing Tables 4.10 and 4.11 when the ratio cEj /cj

increases to 3, a decrease of the average heuristic gap and an increase of the maximum gap

is noticed. In Table 4.10 the average gap is 1.69 and when the ratio cEj /cj increases to 3,

the average gap is 1.56 in Table 4.11. Also, the average gap in Table 4.10 is 1.37 while the

average gap increases to 1.50 in Table 4.11.

In comparison to the 2knap heuristic, we notice that LagHeur0 achieves better maxi-

mum gap in almost every data set except in one when cEj /cj = 3 and UE
j /Uj = 0.3. Also,

when comparing with the bestfit heuristic we observe that LagHeur0 dominates since it

gives better maximum gap for every instance.

4.3 Comparison of Heuristics Performance

In this section, we compare the total computational time for each proposed heuristic by

fixing the number of ULD and the four combinations of cEj /cj and UE
j /Uj ratios.

Figures 4.1, 4.2, 4.3 and 4.4 compare computational time achieved by the three heuris-

tics, 2knap, bestift, and LagHeur0 for cEj /cj = 1.2, UE
j /Uj = 0.1, cEj /cj = 1.2, UE

j /Uj = 0.3,

cEj /cj = 3, UE
j /Uj = 0.1, cEj /cj = 3, and UE

j /Uj = 0.3, respectively.

Figure 4.1 displays the total computational time for the three heuristics at cEj /cj = 1.2

and UE
j /Uj = 0.1. We observe that the 2knap and the bestfit heuristics have a better time

performance than LagHeur0, especially when the number of shipments increases above 40,

and 100 instances. In some cases, the 2knap heuristic achieves better performance than
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the bestfit heuristic. For example in Figure 4.1, and for 8 ULD and 100 shipments, we

notice a slight time improvement in the performance of 2knap heuristic over the bestfit

heuristic.
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Figure 4.1: Heuristics Total Time Comparison for cEj /cj = 1.2, UE
j /Uj = 0.1.

Similar results can be realized in Figure 4.2 that shows the time performance comparison
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for all three heuristics for cEj /cj = 1.2 and UE
j /Uj = 0.3. Both the 2knap heuristic and

the bestfit heuristic have better time performance than LagHeur0. Also, both the 2knap

heuristic and the bestfit heuristic have nearly identical time performance.
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Figure 4.2: Heuristics Total Time Comparison for cEj /cj = 1.2, UE
j /Uj = 0.3.

Figure 4.3 displays the total computational time for the three heuristics and cEj /cj = 3
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and UE
j /Uj = 0.1.

Figure 4.3: Heuristics Total Time Comparison for cEj /cj = 3, UE
j /Uj = 0.1.
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Figure 4.4 displays the total computational time for the three heuristics and cEj /cj = 3

and UE
j /Uj = 0.3.
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Figure 4.4: Heuristics Total Time Comparison for cEj /cj = 3, UE
j /Uj = 0.3.

Figures 4.1, 4.2, 4.3, and 4.4 show that both the 2knap heuristic and the bestfit heuristic
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have better time performance regardless of the change in over-pivot cost ratio cEj /cj and

over-pivot capacity ratio UE
j /Uj than LagHeur0. However, the LagHeur0 produces a better

gap in almost every test-case.

4.4 Comparison of Heuristics Gaps

In this section, we compare the optimality gaps for each proposed heuristic for for specific

number of ULD and the four combinations of cEj /cj and UE
j /Uj ratios.

Figures 4.5, 4.6, 4.7 and 4.8 compare the average gaps achieved by the three heuristics,

2knap, bestift, and LagHeur0 for cEj /cj = 1.2, UE
j /Uj = 0.1, cEj /cj = 1.2, UE

j /Uj = 0.3,

cEj /cj = 3, UE
j /Uj = 0.1, cEj /cj = 3, and UE

j /Uj = 0.3, respectively.

Figure 4.5 displays the gaps for the three heuristics at cEj /cj = 1.2 and UE
j /Uj = 0.1.

We can observe a smaller gaps for LagHeur0 compared to both the 2knap heuristic and

the bestfit heuristic, especially when the number of shipments increases above 40, and 100

instances. In some cases, the 2knap heuristic achieves better gap than the bestfit heuristic

and the LagHeur0. For example in Figure 4.5, and for 80 ULD and 100 or 200 shipments,

we notice a better gap achieved by the 2knap heuristic compared to bestfit and LagHeur0.
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Figure 4.5: Heuristics Gaps Comparison for cEj /cj = 1.2, UE
j /Uj = 0.1.

Similar results can be observed in Figure 4.6. It shows the gaps for all three heuristics
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when using the ratios cEj /cj = 1.2 and UE
j /Uj = 0.3. LagHeur0 has better gaps compared

to both the 2knap heuristic and the bestfit heuristic. Also, for most instances the 2knap

heuristic achieves better gaps than the bestfit heuristic.
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Figure 4.6: Heuristics Gaps Comparison for cEj /cj = 1.2, UE
j /Uj = 0.3.
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Figure 4.7: Heuristics Total Time Comparison for cEj /cj = 3, UE
j /Uj = 0.1.

Figures 4.5, 4.6, 4.7, and 4.8 show that the LagHeur0 produces a better gaps in almost
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every test-case.
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Figure 4.8: Heuristics Gaps Comparison for cEj /cj = 3, UE
j /Uj = 0.3.
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Chapter 5

Conclusion

A standard practice in airfreight transportation is based on Unit Loading Devices (ULDs).

Airlines provide a set of ULDs with different sizes, cost structure, and requirements for

forwarders to rent. For reasons related to aircraft safety and logistics efficiency, the weight

of ULDs is limited to a certain threshold, called the pivot-weight. The limit is not hard

as forwarders are allowed to exceed it by paying a premium. Essentially, the cost of using

a ULD consists of a fixed rental charge and a variable under-pivot rate if the total weight

is below the pivot-weight. Weight beyond the pivot weight is charged at the higher over-

pivot rate. Airfreight forwarders are interested in finding the optimal consolidation plan

to minimize total cost.

Although the problem can be easily modelled as an integer program, the solution of

realistic size instances is time consuming. In this work, we propose a Lagrangian approach

that is capable of finding high quality lower bounds, often very close to the optimal, in very

short times. We use Lagrangian relaxation approach and propose three heuristics based

on the partial subproblem solutions. The first takes the solution of one of the subproblems
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and solves a restricted version of the original problem (LagHeur). The other two are

two knapsack based heuristic (2knap) and a best-fit greedy heuristic (bestfit). Problems

with up to 100 ULDs and 1000 shipments are solved to within an average of 1%, 2%,

2% of optimality in less than 51.05s, 50.57s and 589.16s by bestfit, 2knap and LagHeur,

respectively.

Future research can focus on devising other heuristic approaches based on the partial

subproblem solutions or add additional practical constraints. For example, it is assumed

that cargo will fit in ULDs as long as the ULD volume is sufficient to cover the total volume

of cargo. In practice, the shape of cargo will not allow this, necessitating the inclusion of

three-dimensional packing constraints in the formulation.
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