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Abstract 

In this study, the Mo isotopic composition (δ98Mo) of molybdenite from 29 hand samples 

from various ore deposit types was analyzed. This data was compiled with data from the 

literature and all data (n = 420) was reported relative to international standard NIST SRM 

3134 = 0.25‰ for comparison. Using this larger dataset, the range of δ98Mo in porphyry 

deposits is greater, and it was determined that the δ98Mo of molybdenite cannot be used to 

fingerprint the age of a deposit or the deposit type. Higher temperature deposit types (granite 

= 0.10‰, n = 25, 2SD = 1.03‰; porphyry = 0.20‰, n = 243, 2SD = 1.01‰; skarn = 0.36‰, 

n = 42, 2SD = 0.70‰) have generally lower δ98Mo than lower temperature deposit types 

(pegmatites = 0.48‰, n = 80, 2SD = 1.05‰; perigranitic = 0.75‰, n = 10, 2SD = 1.12‰; 

greisen = 0.79‰, n = 6, 2SD = 1.93‰), consistent with findings from earlier molybdenite 

δ98Mo compilations. Therefore, temperature can be considered as one control on Mo isotopic 

composition. The average δ98Mo of molybdenite is 0.37‰ (n = 479; 2SD = 1.30‰), which is 

similar to a recently estimated maximum δ98Mo for the upper continental crust of 0.40‰ and 

likely represents a maximum for the average bulk continental crust δ98Mo. 

The δ98Mo of the molybdenite samples from various deposits was compared with Re 

concentrations and S isotope compositions (δ34S). Consistent with earlier compilations based 

on a smaller dataset, an overall negative correlation was found between δ98Mo and Re 

concentration, which implies that the Mo source fluid is another important control on the Mo 

isotopic composition. Samples with a high Re concentration and a low δ98Mo suggest a 

mantle-derived source fluid whereas samples with high δ98Mo (>1.5‰) had uniformly low 

Re concentrations that suggests a crustal-sourced fluid. The relationship between δ98Mo and 

δ34S was also investigated as a positive correlation between these isotope systems in ore-

forming systems with limited S and Mo availability would indicate Rayleigh distillation as a 

main mechanism of Mo isotope fractionation. No such relationship was observed, indicating 

that other fractionation mechanisms such as redox changes are important. 

To test the hypothesis of small scale zoning, molybdenite grains were cut parallel and/or 

across cleavage planes and analyzed. The variation observed at the single-crystal scale was 

within the long-term reproducibility of Mo isotope analyses (~0.1‰; 2SD = 0.2‰). Several 

hand samples were collected from the Berg epithermal-porphyry deposit (British Columbia) 

and the Hemlo disseminated Au deposit (Ontario) to quantify Mo isotopic variation at the 

deposit scale. At the Berg deposit, modest variation in δ98Mo was observed (~1‰). At the 
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Hemlo deposit, Mo isotope fractionation exceeded 5‰, which is greater than the range 

previously reported for any other deposit type and indicates significant Mo remobilization. 

The mineral assemblages, trace element composition, and the abundance of pyrite in the 

Hemlo hand samples do not correlate with the Mo isotopic composition of bulk samples. The 

observed Mo isotope fractionation is likely due to alteration of the host rocks by S-rich 

reducing fluids.   
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Chapter 1: Introduction 

1.1 Main Research Goal 

Metal isotope systems are rapidly emerging as useful tools for constraining processes 

during ore mineralization and for ore exploration. Determining the metal isotope composition 

is a unique geochemical tool because it allows for direct study of the ore metal of interest. 

Early successes in the study of some metal isotope systems, most notably Cu isotopes in 

porphyry deposits and Zn isotopes in various hydrothermal deposits have provided 

motivation to explore the usefulness of other metal isotope systems. The Mo isotope system 

is one of the newer systems of interest. Molybdenite (MoS2) is an ideal mineral for Mo 

isotope studies because it is roughly 60% molybdenum by weight and in most cases, it is the 

main Mo ore mineral of interest in porphyry Mo and Cu-Mo deposits and an accessory 

mineral in many Au deposits. The Mo isotope composition of molybdenite may yield direct 

information about ore mineralization processes and the internal workings of the ore-forming 

system. We can also gain new insights into the processes that contribute to Mo cycling within 

the Earth’s surface by taking a closer look at the mechanisms behind Mo isotope 

fractionation. Studying fractionation mechanisms can also uncover how Mo interacts with 

different fluids, partitions between melt versus fluid and brine versus vapor, and fractionates 

at different temperatures and between different chemical species. Ultimately, Mo isotopes 

have the potential to be refined into a useful geochemical tool, but as yet there are relatively 

few detailed studies exploring Mo isotope fractionation in ore-forming systems (Hannah et 

al., 2007; Mathur et al., 2010a; Greber et al., 2011, 2014; Breillat et al., 2016; Shafiei et al., 

2015; Wang et al., 2016; Yao et al., 2016). The main goal of this thesis is to further our 

understanding of Mo isotope cycling in ore deposits and assess the possibility of utilizing Mo 

isotopes as a geochemical exploration tool. 

1.2 Background on Mo Isotopes in Mineralizing Systems 

The invention of the multi-collector inductively coupled plasma mass spectrometer 

(MC-ICP-MS) in the early 1990s (Halliday et al., 1995) provided geochemists with a tool to 

study isotope fractionation of metals. Before that time, it was mostly the isotope variations of 

“traditional” light elements (such as hydrogen, carbon, nitrogen, oxygen, and sulfur) that 

were studied. The low mass of these elements results in a large mass difference between their 

isotopes. Heavier “non-traditional” elements (such as iron, copper, zinc, molybdenum, 
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mercury, nickel, and uranium) have a smaller mass difference between their isotopes, and 

hence isotopic variations of these metals were historically very difficult to measure precisely. 

Despite the advent of MC-ICP-MS technology more than 20 years ago, the study of Mo 

isotope fractionation in ore-forming systems is still in its infancy. To date, only a handful of 

studies pertaining to Mo isotope fractionation in ore deposits have been conducted, including 

for porphyry systems (Wieser and De Laeter, 2003; Hannah et al., 2007; Klemm et al., 2008; 

Mathur et al., 2010a; Greber et al., 2011; Song et al., 2011; Greber et al., 2014; Shafiei et al., 

2015; Brellait et al., 2016; Wang et al., 2016; Yao et al., 2016).  

Molybdenum has seven stable isotopes (each with an abundance of 10-25%) that span 

a mass range of approximately 8%: 92Mo, 94Mo, 95Mo, 96Mo, 97Mo, 98Mo, and 100Mo (Mayer 

and Wieser, 2014). The fractionation of Mo isotopes is mass dependent and is known to be 

highly responsive to changes in redox conditions (Anbar 2004; Kendall et al., 2017). These 

factors make Mo an ideal candidate for studying geological systems characterized by redox 

reactions. In most ore deposit studies, Mo isotope data is collected from molybdenite. The 

Mo isotopic composition of molybdenite (and other geological materials) is reported as per 

mil (‰) deviations relative to the NIST SRM 3134 standard (set to 0.25‰) using the 

following delta notation (Nägler et al., 2014): 

δ98Mo sample (‰) = 1000 × [(98Mo/95Mo) sample /(
98Mo/95Mo) NIST SRM 3134) – 1] + 0.25 

The total range of Mo isotope variation in molybdenites is ~4‰, and ranges between –1.37‰ 

to +2.52‰ relative to NIST SRM 3134 = 0.25‰ (Breillat et al., 2016). Molybdenites from 

porphyry deposits have the greatest potential for studying the mechanisms behind Mo isotope 

fractionation because these deposits are the most important source of molybdenum. A 

variation of 2‰ has been observed in molybdenites from porphyry deposits (Breillat et al., 

2016). By comparison, the largest degree of variation (2.6‰) is found in granite and greisen 

deposits (Breillat et al. 2016). 

Preliminary studies have shown that there are several mechanisms that can influence 

Mo isotope fractionation, but their relative importance in ore-forming systems is still not well 

understood. The temperature of the deposit can influence Mo isotope partitioning between the 

melt-fluid and vapour-brine phases (Shafiei et al., 2015). In high temperature deposits (400-

600°C), Rayleigh distillation can cause fractionation of Mo isotopes (Hannah et al., 2007). 

Redox conditions play an important role in fractionation of Mo isotopes, although the 
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magnitude of isotope fractionation decreases at higher temperature (Greber et al., 2011, 2014; 

Shafiei et al., 2015). Fluid boiling may cause Mo isotope fractionation between vapour and 

brine phases (Shafiei et al., 2015). Greber et al. (2014) suggest that during molybdenite 

crystallization, hydrothermal fluids prefer to retain the heavy Mo isotopes and the light Mo 

isotopes will be preferentially incorporated in the molybdenite crystals. In addition, Greber et 

al. (2014) noted that Mo isotope fractionation occurs during fractional crystallization of a 

magma and during exsolution of a magmatic-hydrothermal fluid, with both processes 

resulting in an isotopically heavier fluid compared to the source magma. The isotopic 

composition of the Mo source (i.e., crustal- versus mantle-derived magmas) can also 

influence the molybdenite δ98Mo signature (Wang et al., 2016). 

1.3 Thesis Objectives 

Preliminary studies of Mo isotopes in ore deposits have shown great potential and 

motivate further research to increase the effectiveness of Mo isotopes as a process tracer for 

mineralizing systems. One goal of this thesis is to build upon the work of Breillat et al. 

(2016) and infer the major differences in Mo isotope composition between different types of 

ore deposits using a global suite of molybdenites. This study reports Mo isotope data for 29 

hand samples from 14 unique ore deposits. The deposits vary in size, age, climate region, 

grade, tonnage, temperature of ore deposition, deposit type, late stage alteration, and number 

of mineralization events. The deposits analyzed in this study include nine porphyry deposits 

(1 - Moly Hill, Quebec; 2 and 3 - Lake George and Trout Lake, New Brunswick; 4 and 5 - 

Santo Nino Mine and Childs-Adwinkle Mine, Arizona; 6 - Sach’s Mine, NSW, Australia; 7 - 

Wolfram, Queensland, Australia; 8 - Altenberg, Saxony, Germany; 9 - Strzegom, Poland), 

two epithermal deposits (Berg and Logan Lake, British Columbia), two greisen deposits 

(Beura, Ossa Valley, Italy; New Ross, Nova Scotia), and one disseminated gold deposit 

(Hemlo C Zone, Ontario). The molybdenites were handpicked and have a wide distribution of 

grain sizes and molybdenite concentrations. The new data produced by this thesis combined 

with new data measured by Wang et al. (2016) and Yao et al. (2016) will be used to expand 

on the Mo isotope compilation of Breillat et al. (2016). The compilation includes Mo isotope 

data from skarn deposits, porphyry-type deposits, iron oxide copper-gold deposits, large 

epithermal deposits, gold deposits, and carbonate deposits. By re-normalizing the δ98Mo data 

to the newly defined international standard NIST SRM 3134 = 0.25‰, the compilation can 

be used to make large scale comparisons, define an overall range of Mo isotope values for 
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molybdenite, and further constrain the average isotopic composition for crustal Mo. The 

current suggested maximum Mo isotopic composition for the upper crustal average is 0.40‰ 

relative to NIST SRM 3134 = 0.25‰ (Willbold and Elliot, 2017). The larger dataset of 

molybdenites also yielded a similar average (0.29‰ relative to NIST SRM 3134 = 0.25‰) 

but with 2σ variability exceeding 1‰ (Breillat et al., 2016).  

Several studies have shown that significant variability in the Mo isotope composition 

of molybdenites can occur for specific categories of ore deposits (> 2‰) and even within 

single deposits (> 1‰), including at the cm-scale (Hannah et al., 2007; Mathur et al., 2010a; 

Greber et al., 2011, 2014; Shafiei et al., 2015; Breillat et al., 2016). Isotopic variability within 

single molybdenite crystal grains has not been previously assessed. 

Previous studies indicated that Rayleigh distillation may be a mechanism for Mo 

isotope fractionation (Hannah et al., 2007; Greber et al., 2011; Greber et al., 2014) but further 

work is still needed. Measuring the degree of covariation between Mo and S isotope 

compositions in molybdenites from a single deposit represents one test of this hypothesis 

since molybdenite is roughly 40% S by weight. In an ore-forming system with limited Mo 

and S availability, the isotopic signatures of both elements should be positively correlated if 

Rayleigh distillation is the main mechanism of isotope fractionation (Hannah et al., 2007). 

By studying trace elements, the depositional environment and mineralization events 

can be categorized, and geochemical patterns can be identified. The trace element 

concentration of Re has received the most attention in molybdenites (Mathur et al., 2010a; 

Wang et al., 2016) because Re4+ can substitute for Mo4+ in the molybdenite structure (Stein et 

al., 2001). Mathur et al. (2010a) suggests that there may be a negative correlation between 

Mo isotopic signature and Re concentration. This negative correlation may be directly related 

to the source of the mineralizing fluid (Mathur et al., 2010a; Wang et al. 2016). Samples with 

a crustal source will generally have a higher δ98Mo signature (Wang et al., 2016), but a lower 

Re concentration (Mao et al., 1999). Samples with a mantle source have a generally lower 

δ98Mo signature, but a higher Re concentration (Wang et al., 2016). This study will add to the 

above work and determine how other fractionation processes (e.g., fluid boiling, redox 

conditions) may affect this relationship. 

This project also looks closely at two cases of Mo isotope fractionation within a single 

deposit. Six samples from different regions of the Eocene epithermal-porphyry deposit in 
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Berg, British Columbia, have been analyzed in this study. Nine hand samples from the Late 

Archean disseminated gold deposit in Hemlo, Ontario, were also studied. This type of deposit 

has not previously been studied using the Mo isotope system.  

Looking closely at a single deposit has its advantages. At the epithermal Berg deposit 

in British Columbia and disseminated gold Hemlo deposit in Ontario, we explore the 

possibility of identifying distinct isotopic reservoirs like those outlined for Cu isotopes in 

porphyry deposits by Mathur et al. (2009). We also determine if the Mo isotopic signature 

increases or decreases moving further away from the source area. If this is the case, Mo 

isotopes may be used as a vector to find the source region. This is comparable to Zn isotopes 

in sphalerite, which can be used to trace the origin of hydrothermal deposits by following a 

trail of progressively lighter Zn isotope compositions back to the source area (Kelley et al., 

2009). Song et al. (2011) have shown the potential of Mo isotopes as a tracer of fluid 

migration. By looking at multiple samples from within a deposit, we can isolate the dominant 

fractionation mechanisms and determine how the late-stage alteration affects Mo isotopes. 

Study of other isotope systems such as Cu and Zn indicate low temperature alteration has a 

more significant impact on the degree of isotope fractionation when compared to high 

temperature alteration (Rouxel et al., 2004, Braxton and Mathur 2011). Undoubtedly there is 

still much to be uncovered through the study of Mo isotopes and heavy metal isotopes in 

general. Future work in this promising field is still needed to further decipher geochemical 

processes and refine metal isotopes into a useful geochemical exploration tool. 

In summary, the specific thesis objectives are: 

1. Generate a literature review of existing knowledge on heavy metal stable isotope 

systems in ore deposits to create a foundation for our study and aid in our 

understanding of the Mo isotope system. A comprehensive literature review on this 

topic has not been published.   

2. Produce an updated compilation of Mo isotope data from molybdenites that can be 

used to test the hypothesis by Mathur et al. (2010a) and Breillat et al. (2016) that 

some types of ore deposits have a Mo isotope signature distinctive from other types of 

ore deposits and assess temperature as a control on Mo isotope fractionation. 

3. Determine if Mo isotopic variability occurs at the single grain scale in molybdenite. 

4. Test the hypotheses that positive correlations occur between Mo and S isotope 

compositions (expected in the case of Rayleigh distillation), and that negative 
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correlations occur between Mo isotope compositions and Re concentrations in 

molybdenites (expected if the Mo source is an important controlling factor). 

5. Examine within-deposit Mo isotopic variations in the Berg epithermal-porphyry 

deposit and the Hemlo disseminated gold deposit, with the goal of determining the 

effect of alteration, inferring causes of Mo isotope variation, and evaluating spatial 

trends.  

1.4 Organization of the Thesis 

This thesis began with this introductory chapter outlining the motivation for this study 

and the research objectives. Chapter 2 is a literature review of heavy metal stable isotopes in 

ore deposits. This chapter fulfills objective 1 and provides a strong foundational framework 

for causes of metal isotope fractionation in mineralizing systems, which will help guide 

interpretation of the Mo isotope data reported in chapter 3. Chapter 3 will feature new data 

collected during this study and addresses objectives 2-5. Chapter 4 concludes the thesis and 

will summarize the findings of this study and outline directions for future work.  
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Chapter 2: Heavy Metal Stable Isotope Geochemistry Literature Review 

2.1 Introduction 

As early as the 1940s, studies of ore deposit geology utilized stable isotope 

geochemistry as an important research tool. Until recently, stable isotope geochemistry in ore 

deposits focused on the "traditional" light elements, namely hydrogen, carbon, nitrogen, 

oxygen, and sulfur (Thode, 1991). Study of heavy metals such as copper, zinc, and iron 

historically posed a challenge due to their high mass, which resulted in a small mass 

difference between isotopes. The low mass of “traditional” elements and the large mass 

difference between isotopes, made it relatively easier to measure their isotopic composition 

and explore isotope fractionation and cycling in nature. Thanks to improvements in analytical 

methods, especially the introduction of multi-collector inductively coupled plasma mass 

spectrometers (MC-ICP-MS) in the 1990s, we now have the necessary tools to study "non-

traditional" heavy element isotope fractionation (Halliday et al., 2000).  

Because the field of heavy metal isotope geochemistry is relatively young, its 

application to ore geology is still actively being explored. In recent years, ore deposit 

geochemists expanded their study of isotopes to include heavy metals and metalloids such as 

zinc, iron, uranium, molybdenum, selenium, and copper. These and other non-traditional 

elements are depicted in Figure 1. Studying heavy metal isotope fractionation has clear 

advantages with respect to understanding the processes contributing to ore formation. 

Compared with light stable isotopes, heavy metal isotopes can provide more direct 

information about ore genesis because isotope data is collected for the metal(s) of economic 

importance. Insight can also be gained on the processes contributing to metal cycling within 

the Earth’s surface by taking a closer look at the mechanisms behind isotope fractionation 

(Mason et al., 2005; Hannah et al., 2007; Mathur et al., 2009). Key mechanisms include 

oxidation and reduction of metals, precipitation of ore minerals, fluid boiling, magmatic 

evolution and fluid exsolution, and Rayleigh distillation (Hannah et al., 2007; Kelly et al., 

2009; Mathur et al., 2009; Greber et al., 2011; 2014; Uvarova et al., 2014). Spatiotemporal 

variations in metal isotopic compositions can be used to identify trends and patterns within 

the deposit that may be useful for ore exploration (Kelly et al., 2009; Braxton and Mathur, 

2011). This literature review will examine data presently available regarding heavy metal 

isotope fractionation in ore deposits, and aims to further the understanding of ore deposit 

formation, isotope fractionation mechanisms, and applications to exploration.  
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Figure 1: Periodic Table of Elements. The green elements are considered traditional elements studied in 

stable isotope geochemistry, whereas non-traditional elements are in orange. Ionization energy increases 

towards the top right of the table. The number associated with each element is the number of isotopes.  

Of the heavy metals, Cu isotopes have received the most attention. Studies of Cu 

isotope fractionation have included volcanic massive sulfide deposits (Mason et al., 2005; 

Housh and Ciftci, 2008), modern “black smoker” chimneys (Berkenbosch et al., 2015), 

sediment-hosted deposits (Asael et al., 2009), porphyry deposits (Li et al., 2009; Mathur et 

al., 2009; Mathur et al., 2010b; Mirnejad et al., 2010; Braxton and Mathur, 2011; Palacios et 

al., 2011; Asadi et al., 2015), Ni-Cu-PGE sulfide mineralization (Ripley et al., 2015), and 

hydrothermal deposits (Larson et al., 2003; Maher et al., 2007). Molybdenum isotopes have 

been measured in skarn deposits, polymetallic epithermal veins, porphyry deposits, alpine-

type fissure veins, greisens, perigranitic veins, pegmatites, and granites (Barling et al., 2001; 

Siebert et al., 2001; Wieser and de Laeter, 2003; Malinovsky et al., 2005; 2007; Hannah et 

al., 2007; Mathur et al., 2010a; Greber et al., 2011; 2014; Shafiei et al., 2015; Breillat et al., 

2016; Wang et al., 2016; Yao et al., 2016). Zinc isotopes have also received attention for 

sphalerites from shale-hosted massive sulfides and hydrothermal deposits (Mason et al., 

2005; Wilkinson et al., 2005; John et al., 2008; Kelley et al., 2009; Chen et al., 2014; Zhuo et 

al., 2014; Duan et al., 2016) as well as carbonate-hosted deposits (Pasava et al., 2014). Zinc 

isotope fractionation coupled with Fe isotope fractionation has been studied in large 

hydrothermal deposits by Gagnevin et al. (2012). Fe isotopes are also of relevance in skarn 
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deposits (Wang et al., 2011) and banded iron formations (Johnson et al., 2008; Hou et al., 

2014; Debret et al., 2016). U isotope fractionation in uranium ore deposits has also been 

studied in detail (Brennecka et al., 2010; Murphy et al., 2014; Uvarova et al., 2014; Placzek 

et al., 2016). Other heavy metal isotopes that have potential for investigation include Se (Wen 

and Carignan, 2011; Layton-Matthews et al., 2013), Hg (Sherman et al., 2009), Ni (Gueguen 

et al., 2014; Hofmann et al., 2014), Ge (Escoube et al., 2011), Cd (Zhu et al., 2016), and V 

(Prytulak et al., 2013).  

2.2 Analytical Techniques 

Heavy element isotope fractionation is commonly measured by a multi-collector 

inductively coupled plasma mass spectrometer (MC-ICP-MS) and/or a thermal ionization 

mass spectrometer (TIMS). Both systems utilize an ionization source to ionize and focus ions 

into a beam. Ions are then precisely separated based on their mass to charge ratio by the 

magnet, and the intensity of the ion beam is measured by a detector. The difference between 

the two instruments comes down to the ionization source. The TIMS utilizes a hot filament to 

ionize the sample. Since the filament can only reach a maximum ionization temperature of 

2200⁰C (Smith, 2000), TIMS is less effective for samples with high ionization energies. The 

MC-ICP-MS can analyze nearly all elements on the periodic table due to the high ionization 

efficiency of the plasma source, which reaches temperatures of 6000-10000K (Wieser et al., 

2012). The MC-ICP-MS can achieve higher accuracy and precision for elements with high 

ionization compared to TIMS (Huemann et al., 1998; Albarede et al., 2004; Wieser and 

Schwieters 2005; Yang 2009; Wieser et al., 2012). To ensure precision for MC-ICP-MS 

measurements, solutions must be purified and careful corrections must be applied to the data 

to correct for mass biases and interferences such as isobaric and polyatomic species, doubly-

charged oxides, and argides created in the Ar plasma (Yang, 2009; Wieser et al., 2012).   

For many metal isotope systems, international standards exist to allow for cross lab 

comparison. Using the measured metal isotope ratios in samples and standards, the difference 

in abundance between the heavy and light isotopes in a sample, expressed as per mil 

deviations relative to a standard, can be calculated using the following equation: 

δ (‰) = [
  
– 1] x1000 
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The isotopic signature (δ) can be used to indicate the degree of enrichment or depletion of the 

heavy isotope in the sample. Samples with a positive isotope composition indicate 

enrichment in the heavy isotope relative to the standard, whereas samples with a negative 

isotope composition indicate heavy isotope depletion. 

If the sample contains significant concentrations of other elements besides the metal 

of interest, then it is typically necessary to dissolve the sample and perform ion-exchange 

column chromatography to isolate and purify the metal for isotopic analysis (Albarede et al., 

2004). This step will avoid matrix effects (i.e., isobaric interferences) during mass 

spectrometry. In rare cases, it is possible to analyze minerals without ion exchange 

chromatography if the metal is the most abundant constituent of the mineral and the other 

elements are not expected to cause significant isobaric or polyatomic interferences (e.g., 

molybdenite; Barling et al., 2001).    

The most precise method commonly used for MC-ICP-MS and TIMS measurements 

is the double spike method, which can be used to correct for instrumental and column 

chromatography mass fractionation when the metal has four or more isotopes (Rudge et al., 

2009). The double spike comprises a solution artificially enriched in two different isotopes 

and has a known isotopic composition. The most important step is determining the optimal 

double spike composition and mixing proportions of sample and double spike in such a way 

as to maximize the precision of isotope analyses. Tables are available in Rudge et al. (2009) 

to assist in determining the optimal measurements for the element of interest. If calibrated 

correctly, the double spike method can be a more precise tool than sample-standard 

bracketing and the element spike method for correcting instrumental mass fractionation and 

measuring isotopic compositions (e.g., Mo; Kendall et al., 2017).  

2.3 Cu Isotopes 

With regards to metal isotope geochemistry, Cu is the most widely studied metal for 

ore deposits. Copper has only two isotopes, heavy 65Cu and light 63Cu. The Cu isotopic 

composition is reported relative to standard NIST SRM 976 and signatures range from -

16.49‰ to 20.04‰ in ore deposits (Wang et al., 2017). Cu samples are primarily collected 

from the minerals chalcopyrite, chalcocite, and bornite. Cu isotope fractionation is mass-

dependent and has been studied in porphyries, skarn deposits, volcanogenic massive sulfide 

deposits, magmatic sulfide deposits, and sediment-hosted Cu deposits. Cu isotopes have been 
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used to define Cu reservoirs, determine the processes of Cu transport, shed light on the 

mechanisms that govern Cu isotope fractionation in ore-forming systems, and provide a 

vectoring tool for ore exploration. 

2.3.1 Cu Reservoirs  

Porphyry deposits are the largest source of Cu worldwide. The isotopic signature, 

δ65Cu, of Cu minerals in porphyry systems has been used to define three Cu reservoirs that 

each have a characteristic Cu signature: 1) the hypogene zone, 2) the enriched (supergene) 

zone, and 3) the leach cap. In the hypogene zone, minerals are precipitated by high 

temperature (400-600°C) magmatic fluids, whereas in the supergene zone and leach cap, the 

minerals are altered and precipitated by low temperature (T < 300°C) hydrothermal fluids 

(Sinclair, 2007). Primary hypogene Cu sulfide minerals generally show minimal Cu isotope 

fractionation ranging from -1.1‰ to +1.0‰ (Haest et al., 2009; Mathur et al., 2009; Palacios 

et al., 2010; Mirnejad et al., 2010; Braxton and Mathur 2011; Asadi et al., 2015). The 

minimal isotope fractionation relative to average crust in the hypogene zone is attributed to 

precipitation from high temperature magmatic fluids (Mathur et al., 2009). This explains why 

hypogene minerals exposed to high temperature primary alteration experience little isotope 

fractionation compared to the enriched zone and leach cap, both of which reflect alteration by 

secondary low temperature fluids. 

Unlike the hypogene zone, the leach cap and enriched zones show evidence of 

significant Cu isotope fractionation. The enriched zone shows preferential enrichment in the 

heavier 65Cu isotope and the δ65Cu is commonly higher than 3‰ (Mathur et al., 2009; 2010b; 

Palacios et al., 2010; Mirnejad et al., 2010; Braxton and Mathur 2011; Asadi et al., 2015). 

Since the enriched zone is where the highest grade of Cu is found, identifying heavy Cu 

isotope enrichment is potentially an important pathfinder for ore exploration. The leach cap 

has the greatest extent of Cu isotope fractionation with a range of -13.5‰ to +2.7‰ (Haest et 

al., 2009; Mathur et al., 2009; Li et al., 2009; Palacios et al., 2010; Mirnejad et al., 2010; 

Braxton and Mathur 2011; Asadi et al., 2015). In most cases, δ65Cu values are negative and 

depict an environment that is depleted in the heavy 65Cu isotope. This would indicate that 

65Cu has been preferentially removed from the leach cap compared to 63Cu during the process 

of low temperature supergene alteration. Evidence from most studies (Haest et al., 2009; 

Mathur et al., 2009, 2010b; Palacios et al., 2010; Asadi et al., 2015) suggests that the heavy 

Cu isotope has leached downwards and precipitated in the enriched zone (Figure 2). 
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Therefore, the isotopic signature of Cu can be used to trace paleo-fluid pathways and Cu 

movement during supergene alteration. 

 

Figure 2: Cross section of Cu porphyry deposit experiencing single stage leaching and supergene alteration 

(modified from Mathur et al., 2009). 

Compared to most porphyry deposits, a very wide range of δ65Cu values was observed 

by Duan et al. (2016) at the Tiegelongnan high sulfidation Cu deposit in Tibet (-4.76‰ to 

2.84‰). This wide range and a trend towards increasing δ65Cu with depth is related to 

supergene alteration and then further leaching and transport of heavy Cu downwards (Duan et 

al., 2016). In magmatic sulfide deposits and volcanogenic massive sulfide deposits, very little 

fractionation of Cu isotopes is observed and δ65Cu is near 0‰ (Larson et al., 2003; Rouxel et 

al., 2004; Mason et al., 2005). The same is true for modern volcanic arc chimneys where 

δ65Cu is ~0‰ to 0.5‰, which is equivalent to the δ65Cu of mantle rocks (Berkenbosch et al., 

2015). Skarn deposits originate from high temperature fluids and have a range of Cu isotope 

compositions (-1.29‰ < δ65Cu < 2.98‰) (Maher and Larson, 2007). Although less Cu 

isotope fractionation occurs in skarn deposits compared to porphyry deposits, Cu reservoirs 

can be observed. The heavy Cu isotope tends to be concentrated farther from the skarn 

intrusion, whereas the lighter Cu isotope is more concentrated near the intrusive body. 

Copper isotope fractionation in high temperature deposits is most likely related to late-stage, 

low temperature secondary processes causing Cu to mobilize and precipitate elsewhere in the 

deposit (Rouxel et al., 2004). Other processes contributing to Cu isotope fractionation include 
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significant Cu leaching, precipitation of Cu sulfides, and hydrothermal reworking of the 

deposit. The potential mechanisms for Cu transport are discussed in Section 2.3.3. 

2.3.2 Cu Minerals 

Exploring Cu isotope fractionation between different minerals can provide insight into 

geochemical processes in ore-forming systems. In porphyry deposits, specific Cu-bearing 

sulfide minerals are abundant in each zone. In the hypogene zone, the primary Cu sulfide 

mineral chalcopyrite exhibits little to no isotope fractionation relative to the crust. In the 

enriched zone of the porphyry deposit where the highest grades of Cu are observed, the 

mineral of interest is chalcocite. Chalcocite commonly is enriched in heavy 65Cu. 

Chalcopyrite and bornite are also found in the enriched zone. In the leach cap, minerals such 

as goethite, jarosite, bornite, and hematite are commonly found. These minerals are often 

depleted in the heavy Cu isotope (Figure 2). To understand the variations in δ65Cu signatures 

between the minerals and between different porphyry deposits, the fluid-mineral Cu isotope 

fractionation factor must be considered. The fluid-solid fractionation factor depends on the 

minerals present, the physicochemical conditions, and the fluid compositions.   

The two most abundant Cu sulfides in skarn deposits are chalcopyrite and bornite. 

These two sulfides are cogenetic and commonly found spatially close together within a skarn 

deposit (Maher and Larson, 2007). Although these two minerals are cogenetic, they each 

have a different isotopic signature. Chalcopyrite contains more of the heavy isotope 65Cu 

compared to bornite. Their isotopic signature typically differs by 0.30‰ to 0.48‰ (Maher 

and Larson, 2007). Since the two minerals were determined to be cogenetic, the isotopic 

difference between them likely occurred under equilibrium conditions (Maher and Larson, 

2007). The cause of isotope fractionation between minerals is attributed to bond length and 

strength (Maher and Larson, 2007). Because bornite has a much longer and weaker Cu-S 

bond than chalcopyrite, a mass fractionation effect will take place, causing the lighter isotope 

63Cu to be preferentially included to a greater extent in bornite. This trend is also evident in 

bornite and chalcopyrite from volcanogenic massive sulfide deposits (Housh and Ciftci, 

2008).  

In magmatic sulfide deposits, there are two important mineral groups to consider, 

primary and secondary Cu sulfide minerals. Primary Cu sulfides, mainly chalcopyrite, exhibit 

little to no isotope fractionation. The δ65Cu of chalcopyrite from modern high temperature 
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hydrothermal ‘black smoker’ chimneys that have not experienced metamorphism also have 

little isotope fractionation relative to mantle rocks, which is comparable to what is observed 

in the hypogene zone in a porphyry deposit (Berkenbosch et al., 2015). In VMS deposits, 

secondary Cu sulfide minerals such as bornite, covellite, and digenite, are highly enriched in 

the heavy isotope 65Cu (Larson et al., 2003). Possible mechanisms of Cu isotope fractionation 

associated with secondary Cu sulfide minerals were explored, including the effects of boiling 

or salinity on the system. These factors were determined to have no effect on Cu isotope 

fractionation (Rouxel et al., 2004). In modern intraoceanic arc/backarc volcanoes, the minor 

amount of Cu isotope fractionation observed was attributed to partitioning of Cu isotopes 

between vapour and fluid phases in the vent fluids (Berkenbosch et al., 2015).   

2.3.3 Fractionation of Cu Isotopes During Transport 

2.3.3.1 Redox Reactions 

There are many mechanisms that can cause fractionation of Cu isotopes during 

transport. As seen in section 2.3.1, low temperature secondary processes can introduce 

significant Cu isotope fractionation in high temperature deposits. Redox reactions are an 

important mechanism for fractionation during low temperature alteration such as 

serpentinization (Ehrlich et al., 2004; Ikehata and Hirata, 2012). In porphyry systems, the 

preferential mobilization of heavy 65Cu during supergene alteration is directly related to 

oxidation of Cu minerals in the leach cap and subsequent reduction of Cu(II) in the enriched 

zone (Mathur et al., 2009; Haest et al., 2009; Palacios et al., 2011; Asadi et al., 2015). Above 

the water table exists an oxidizing environment and below the water table is a reducing 

environment. The oxidizing shallow surface waters interacting with the reducing supergene 

zone also have a heavy δ65Cu signature compared to more distal waters, which have a lighter 

isotopic signature (Mathur et al., 2013). When uplift occurs, the water table is lowered and 

oxidative weathering of rocks now situated above the water table will occur and create a new 

leached zone. In hypogene zones of high temperature alteration (e.g., potassic, sodic-

potassic), little isotope fractionation is observed or slightly negative δ65Cu signatures are 

observed, indicating alteration is controlled by variations in pH and/or temperature rather 

than redox reactions (Mathur et al., 2013).  

The extent of Cu isotope fractionation during redox reactions will vary depending on 

whether it is an open or closed system. Study of these reactions was performed using isotope 

analysis of Cu(I) and Cu(II) minerals within the same hand sample and is outlined below 
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(Asael et al., 2007). In a closed system, hand samples will show evidence of reduced Cu(I) 

minerals (in most cases chalcopyrite) and precipitated Cu(II) oxides. The observed difference 

in δ65Cu between Cu(II) and Cu(I) minerals is 1.7‰, which means Cu(II) minerals are 

enriched in the heavy isotope. As the water table was lowered due to regional uplift, primary 

Cu(I) minerals were oxidized and then quickly reduced due to fluctuations in the water table. 

During the brief oxidation of Cu(I) minerals, aqueous Cu(II) is produced, which is then 

precipitated nearby as Cu(II) oxides. Overall, the hand sample will show little to no evidence 

of isotope fractionation since there has been minimal transport of the Cu isotopes. In an open 

system, however, there will be no mass balance at the hand sample scale. Study of the Cu 

isotopic compositions will yield different results. In open system samples, the difference in 

δ65Cu between Cu(II) and Cu(I) minerals is -1.2‰, which means Cu(II) minerals are depleted 

in 65Cu (Asael et al., 2007). Similar to the closed system, as the water table is lowered, Cu(I) 

is oxidized producing aqueous Cu(II). Since this is an open system, the water table will 

remain lowered, thus enabling some of the isotopically heavy aqueous Cu(II) to escape and 

travel downwards. The remaining Cu will have lighter δ65Cu, and hence precipitation of 

isotopically light Cu oxides can occur in the leach cap. The isotopically heavy Cu(II) will 

precipitate in the supergene enriched zone (Asael et al., 2007). 

This information can be used to indicate the degree of Cu mobility in any low 

temperature system and has been applied to porphyry systems (Mathur et al., 2009; Asadi et 

al., 2015), sediment hosted Cu (Asael et al., 2007), magmatic sulfides (Rouxel et al., 2004), 

and volcanogenic massive sulfide deposits (Housh and Ciftci, 2008). If the oxidized Cu(II) 

mineral has a higher δ65Cu signature than the Cu(I) mineral, then there has been little to no 

transport of heavy Cu(II) ions, and therefore little to no net Cu isotope fractionation has 

occurred in the system. If the oxidized Cu(II) mineral has a lower δ65Cu than the Cu(I) 

mineral, then there has been significant transport of heavy Cu(II) ions downwards, followed 

by reduction and Cu(I) precipitation in a deeper zone of enrichment (Asael et al., 2007). This 

is useful for exploration geology because if there has been significant Cu transport, it is likely 

that there exists an enriched zone at depth.  

In the oceanic crust, native Cu has been measured in both basaltic basement rock and 

overlying sedimentary layers (Dekov et al., 2013). The observed Cu is suggested to be 

derived from hydrothermal sources as well as seawater. The CuO found along veins in the 

basaltic basement rock exhibit minimal isotope fractionation and is thought to have 
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precipitated under low temperature conditions following the dissolution of igneous and 

hydrothermal Cu-sulfides under anoxic conditions, thus preventing redox-related isotope 

fractionation from occurring (Dekov et al., 2013). Conversely, the overlying sedimentary 

layers have positive δ65Cu, indicating redox fractionation during CuO precipitation from 

seawater.  

2.3.3.2 Rayleigh Distillation 

Rayleigh distillation has been used to explain the transport of Cu laterally down the 

hydraulic gradient to produce “exotic” Cu deposits, as seen in porphyry deposits (Braxton 

and Mathur, 2011). When redox reactions occur, such as those described in section 2.3.3.1, 

the resulting groundwater will be very acidic and Cu-rich (Mathur et al., 2009). This 

groundwater could result in heavy aqueous Cu depositing directly below in the enrichment 

zone or Cu may move laterally down-gradient and precipitate as an exotic deposit. An “exotic 

deposit” is defined as a portion of the supergene Cu mineralization in an area that does not 

show evidence of previous hypogene Cu mineralization (Braxton and Mathur, 2011). The 

δ65Cu in the exotic zone has a very wide range (-2.0‰ to +6.3‰), with higher values found 

closer to the main part of the deposit and lower values at more distal locations (Braxton and 

Mathur, 2011).  

To explain this phenomenon, simplified models for Rayleigh fractionation have been 

developed that consider equilibrium distillation and redox reactions involved in Cu transport. 

Rayleigh equations can be used to describe isotope fractionation between the leaching fluid 

and the residual solid phase (Figure 3A) as well as between the Cu-rich fluid and the 

precipitated Cu mineral using a fluid-solid isotope fractionation factor (Figure 3B). Leaching 

causes the δ65Cu in the leach cap chalcopyrite to become lower with further leaching (Figure 

3A). Subsequently, as Cu(II) minerals are precipitated, the δ65Cu of the leach solution also 

decreases. Since the δ65Cu of the fluid is becoming progressively lower, the precipitated 

chalcocite will also progressively exhibit a spatiotemporal trend towards lighter δ65Cu (Figure 

3B). This basic model can also be modified to incorporate multi-cycle processes and explain 

the isotopic response of successive leach cycles or regional uplift events as seen in Braxton 

and Mathur (2011).  
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Figure 3: A. Rayleigh fractionation model showing decreasing δ65Cu over time in leach fluid and residual solid 

chalcopyrite with a fluid-solid fractionation factor of +1.5‰. B. Rayleigh fractionation model showing 

decreasing δ65Cu over time in leach fluid and precipitated chalcocite with a fluid-solid fractionation factor of 

+2.5‰ (modified from Braxton and Mathur, 2011).  
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Rayleigh distillation has also been proposed as the mechanism behind Cu isotope 

fractionation in skarn deposits. In most systems, Cu isotope fractionation is attributed to low 

temperature redox reactions. However, in skarn deposits, there is no evidence of oxidation or 

reduction of Cu due to low temperature alteration (Maher and Larson, 2007). Maher et al. 

(2011) suggest that Cu will be partitioned between vapour and brine phases, causing the 

vapour to have an isotopically light signature and the residual brine to have a heavier isotopic 

signature. The importance of phase separation between the vapour and liquid has been 

highlighted in experiments by Maher et al. (2011) and quantum mechanics calculations by 

Seo et al. (2007). However, studies by Seo et al. (2007) indicate that phase separation will 

cause the vapour to become enriched in the heavy isotope, not the light isotope. It has also 

been proposed that vapour transport of Cu may occur in modern volcanic chimney systems 

due to the periodic release of magmatic volatiles causing fractionation between aqueous and 

vapourous species (Berkenbosch et al., 2015). Copper isotope fractionation during magmatic 

activity may also be a possibility due to partial melting and/or fractional crystallization from 

a sulfide liquid (Ripley et al., 2015). 

2.4 Mo Isotopes 

The application of Mo isotopes from ore deposits as a process tracer is rapidly 

emerging. Major goals of the initial Mo isotope studies were to look for systematic variations 

between different deposit types, infer the fractionation mechanisms, and more recently to 

decipher the connection between observed Mo isotope variations and Mo mineralization 

processes within an individual deposit. Predictably, much of this work has focused on 

molybdenite, MoS2, which is approximately 60% Mo by weight and often dominates the Mo 

mass balance in mineralizing systems. Rhenium concentrations in molybdenites may range 

from a few ppm to several weight percent due to the tendency for Re4+ to substitute for Mo4+ 

(Stein et al., 2001; Golden et al., 2013), which raises the possibility of paired Mo and Re 

isotope analyses of molybdenites, now that the analytical methodology for measurement of 

non-radioactive Re isotope variations in geological samples is rapidly improving (Miller et 

al., 2009; 2015). Molybdenites are commonly associated with Sn, Cu, W, As, Au, Fe, and Bi 

mineralization, and can be found as a trace mineral phase in many different types of ore 

deposit (King, 2004). 

The total range of Mo isotope variation in molybdenites is ~4‰, and ranges between 

–1.37‰ to +2.52‰ relative to NIST SRM 3134 = 0.25‰. Significant variability in the Mo 
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isotope composition of molybdenites can occur for specific categories of ore deposits (> 2‰) 

and even within single deposits (> 1‰), including at the cm-scale (Hannah et al., 2007; 

Mathur et al., 2010a; Greber et al., 2011, 2014; Shafiei et al., 2015; Breillat et al., 2016). The 

average Mo isotope composition of molybdenite is 0.29 ± 1.04‰ (2SD, n =391) relative to 

NIST SRM 3134 = 0.25‰ (Breillat et al., 2016). Since the two standard deviation of this 

dataset is quite large at 1.04‰, the average molybdenite Mo isotopic signature cannot be 

used to precisely define the average crustal Mo isotope composition (Breillat et al., 2016).  

The type and age of deposit do not appear to exert any systematic control on the Mo 

isotopic signature of molybdenites, indicating that Mo isotopes cannot be reliably used to 

fingerprint ore deposit type (Hannah et al., 2007; Breillat et al., 2016). There is a general 

correlation between the temperature of molybdenite deposition and isotopic composition. 

Molybdenite deposited by high temperature fluids, such as those found in porphyry deposits 

(mean of 0.08±0.79‰, 2SD, n =180), have a tendency towards low Mo isotope compositions 

(Breillat et al., 2016). By contrast, molybdenites deposited by low temperature fluids, such as 

in greisen deposits (mean of 1.25±2.62‰, 2SD, n=3) have higher overall Mo isotope 

compositions (Breillat et al., 2016). However, temperature is not the only control on the Mo 

isotope composition of molybdenite. Preliminary studies indicate that the isotopic 

fractionation of Mo is also influenced by Rayleigh distillation, fluid boiling, variations in 

redox conditions, source isotopic composition, and molybdenite crystal structure (Hannah et 

al., 2007; Mathur et al., 2010a; Greber et al., 2011, 2014; Shafiei et al., 2015; Wang et al., 

2016).  

2.4.1 Fractionation Mechanisms and Transport 

Preliminary studies indicate that the isotopic fractionation of Mo is influenced by 

Rayleigh distillation, melt-fluid and brine-vapor partitioning, variations in redox conditions, 

molybdenite crystal structure, and the isotopic composition of the original Mo source (i.e., 

crustal- versus mantle-derived magmas) (Hannah et al., 2007; Mathur et al., 2010a; Greber et 

al., 2011, 2014; Shafiei et al., 2015; Wang et al., 2016; Yao et al., 2016). Based on 

experimental, petrographic, and geochemical evidence, Mo may be transported by species 

such as MoO3, MoO3∙nH2O, MoO4
2–, HMoO4

–, H2MoO4, MoO(OH)Cl2, MoO2Cl2, K2MoO4, 

KHMoO4, Na2MoO4, NaHMoO4, and NaHMoO2S2 (e.g., Candella and Holland, 1984; Stein, 

1985; Cao, 1989; Farges et al., 2006; Rempel et al., 2006, 2009; Zhang et al., 2012, Shafiei et 

al., 2015).  
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To date, little work has been done to experimentally determine fractionation factors 

between the different Mo species in ore forming systems (Tossell, 2005). The dominant 

species involved and their associated isotope fractionations are poorly understood, although 

Zhang et al. (2012) recently suggested transport as NaHMoO2S2 in reducing S-containing 

fluids. Molybdenum may be transported in the vapor state as MoO3∙nH2O (Rempel et al., 

2006, 2009; Shafiei et al., 2015) and precipitate from the vapor upon reaction with H2S. It is 

possible that a small amount of fractionation occurs between molybdate and the hydrated 

MoO3∙nH2O. If Mo crystallizes from vapor upon reaction with H2S, this means Mo isotope 

fractionation is possible at high temperatures and that the amount of Mo isotope fractionation 

by Rayleigh distillation may be proportional to the sulfur content of the fluid. The theoretical 

isotope fractionation factor between dithiomolybdate and trithiomolybdate is about 3‰ at 

25⁰C which would be smaller at higher temperature (Tossell, 2005). At 25⁰C, the amount of 

fractionation between molybdate and tetrathiomolybdate is approximately 5.4‰ which again 

would be less in high temperature systems (Tossell, 2005). If Mo is transported in a vapor 

state, then Rayleigh fractionation could account for Mo isotope fractionation of 

approximately 1‰ per amu (Hannah et al., 2007). By comparison, natural observations of 

Mo isotope fractionation during fractional crystallization from a magma are about 0.4‰ to 

0.6‰ (see review by Kendall et al., 2017). Zajacz et al. (2017) also found Mo to partition 

strongly into the fluid phase, however, in the presence of HCl, they experimentally observed 

increased Mo partitioning into the vapor phase.  

Fluid boiling may explain Mo isotopic variability in high-temperature vein deposits in 

porphyry systems. At high temperatures (400-600°C), the mineralizing fluid can boil, leading 

to separation of the fluid phase into brine and vapor. Lighter Mo isotopes will preferentially 

partition into the vapor phase (as MoO3∙nH2O) whereas heavier Mo isotopes will remain in 

the brine (as NaHMoO2S2) because of mass dependent isotope fractionation (Rempel et al., 

2006, 2009; Zhang et al., 2012; Shafiei et al., 2015). The chemical species existing in the 

vapor and brine phases also support Mo movement into the brine phase (Zhang et al., 2012; 

Greber et al., 2014). In the Cu porphyry system from the Kerman area (Iran), the brine phase 

transported and deposited Mo in the early stages of mineralization, whereas the vapor phase 

rose and ultimately deposited molybdenite in "transitional" veins in the hydrothermal system 

(Shafiei et al., 2015). Specifically, an early brine phase produced oxidizing, saline, and high 

temperature (400-600°C) conditions for precipitation of isotopically heavier molybdenite. By 

contrast, a transitional H2O-rich vapor phase was associated with crystallization of 
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isotopically lighter molybdenite at lower pressure, salinity, pH, and temperature (300-400°C) 

(Shafiei et al., 2015). In addition to the brine and vapour phases described by Shafiei et al. 

(2015), a late stage fluid was also observed at the Kerman Cu porphyry system. The late-

stage, H2S-rich, acidic, and low-temperature (T < 300°C) liquid phase also crystallized 

isotopically light molybdenite under more reducing conditions. 

As Mo is precipitated out of these three fluid phases, the Mo isotopic composition of 

the fluid can evolve by Rayleigh fractionation (Hannah et al., 2007; Mathur et al., 2010a; 

Greber et al., 2014; Shafiei et al., 2015) and add to the Mo isotopic variability observed at 

individual mineralization stages (Shafiei et al., 2015). These three fluid phases thus represent 

different physicochemical environments for molybdenite precipitation and thus may lead to 

distinctive isotopic compositions. The Mo isotope signature of molybdenite precipitated from 

the brine phase was the highest (0.94±0.54‰), followed by the vapour phase (0.37±0.55‰) 

and late-stage low temperature fluids (0.27±0.41‰) (Shafiei et al., 2015). This observation 

suggests the Mo isotopic composition of molybdenites in a porphyry system will evolve to 

lower values over time and with distance from the mineralizing source. The crystal structure 

of the molybdenite may exert some control on the Mo isotope composition, with heavier Mo 

isotopes preferentially taken up by the denser 2H polytype (earlier, high-temperature fluid) 

compared with the less dense 3R polytype (later, low-temperature fluid) (Shafiei et al., 2015).  

Greber et al. (2014) observed the opposite trend at the porphyry-type Questa deposit 

in New Mexico. As the fluid source gradually evolved over time, the Mo isotope signature of 

the molybdenite precipitates gradually increased. The first and lightest molybdenites were 

precipitated from magmatic fluids (median = -0.29‰). As the system was infiltrated by 

hydrothermal fluids, the molybdenite signature progressively increased (median = -0.05‰). 

The heaviest Mo isotope signature was observed in molybdenites precipitated by late-stage 

stockwork veins (median = 0.22‰). Greber et al. (2014) suggest progressive fractional 

crystallization of a magma will preferentially remove the lighter Mo isotopes first, leaving 

behind a residual melt that is enriched in the heavy Mo isotopes. Melt-fluid interactions may 

also explain this trend as isotopically heavy aqueous fluid is exsolved from the magma 

leaving behind an isotopically light melt (Greber et al., 2014). Greber et al. (2014) also 

suggested that precipitation of the molybdenite itself is associated with preferential 

incorporation of lighter Mo isotopes into the molybdenite, causing heavier Mo isotopes to 

become progressively more concentrated into the remaining hydrothermal fluid.  
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Alternatively, variations in the redox conditions of mineralizing fluids may exert a 

major control on Mo isotope fractionation in ore-forming systems. Greber et al. (2011) 

examined molybdenites from high temperature (300-600°C) Late Paleozoic mineralization 

events in Switzerland and found a bimodal distribution in Mo isotope compositions, centering 

on 0.2‰ and 1.1‰. Hence, single-stage Rayleigh distillation is probably not the main 

mechanism responsible for Mo isotope fractionation. Greber et al. (2011) observed isotopic 

variability in the molybdenites at both small (cm apart) and large (different hand samples) 

scales. To explain these observations, Greber et al. (2011) suggested that Mo isotope 

fractionation was influenced by redox conditions during precipitation of molybdenite during 

two major episodes of fluid expulsion from an evolving magma or from molybdenite 

precipitation from vapor and brine phases. 

The low-temperature systems studied thus far for Mo isotopes point to the importance 

of redox reactions on the Mo isotope signature of Mo-bearing mineral phases. In a low-

temperature mineralizing system (100-160°C) in Switzerland, molybdate transport by 

oxidizing surface waters into brecciated rocks, followed by Mo reduction and precipitation, 

resulted in large variations in the Mo isotope composition of Mo-bearing sulfide phases 

(Greber et al., 2011; the mineralogy could not be identified by the authors). Subsequent 

dissolution and re-precipitation of Mo may also have contributed to the observed Mo isotope 

variation of ~3‰ in the brecciated rocks.  

Song et al. (2011) demonstrate the effective use of Mo isotopes to indicate the type of 

metallogenic environment at the Dajiangping pyrite deposit, China. Two orebodies in the 

Song et al. (2011) study region (Orebody III and Orebody IV) exhibit very different Mo 

isotopic signatures. Orebody III was deposited in an open system, reducing marine 

environment by submarine exhalative hydrothermal fluids and has a higher average Mo 

isotope signature but less isotopic variability (0.22‰ to 0.69‰, mean δ98Mo=0.52‰, relative 

to NIST SRM 3134 = 0.25‰). Orebody IV was deposited in an oxic-suboxic semi-closed 

marine depositional environment and has a very wide range of observed Mo isotopic 

compositions (-0.80‰ to 1.18‰, mean δ98Mo=0.07‰). In Orebody IV, the main ore bed was 

observed to have a negative Mo isotope signature that gradually increased upward through 

the ore beds, thus indicating significant Mo isotope fractionation is possible in an oxic-

suboxic restricted setting (Song et al., 2011).   
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Finally, the Mo source may also influence the Mo isotopic composition of 

molybdenite (Mathur et al., 2010a; Wang et al., 2016). Study of the trace element 

concentration of Re in molybdenites has supported this hypothesis. Comparison of Re 

concentrations in molybdenite with the Mo isotopic composition revealed a negative 

correlation (Mathur et al., 2010a; Wang et al., 2016). Since molybdenites precipitated from 

mantle-derived magmas have generally higher Re concentrations when compared to crustal-

derived magmas and mixing of crustal- and mantle-derived magmas (Mao et al., 1999), the 

observed negative correlation may be directly related to the source of the mineralizing fluid 

(Mathur et al., 2010a; Wang et al., 2016). The study by Wang et al. (2016) compared Mo 

isotopic signature to Re concentration in molybdenites from five porphyry Mo deposits from 

the Gangdese metallogenic belt, Tibetan plateau. Molybdenites from mantle-derived magmas 

exhibit a generally low Mo isotope signature (<0.00‰) and a high Re concentration (>1000 

ppm). Molybdenites precipitated by mixing of crustal- and mantle-derived magmas have a 

more positive Mo isotope signature than mantle-derived magmas and a lower Re 

concentration. Molybdenites precipitated from crustal-magmas were observed to have the 

most positive Mo isotope signatures and lowest Re concentration. The trend observed in these 

molybdenites indicates that the source fluid can be identified using Mo isotopic composition 

and that the effects of other Mo isotope fractionation processes in ore-forming systems do not 

fully eradicate this relationship.  

2.5 Zn Isotopes 

Zinc is another heavy metal whose isotopes have been studied to gain further insight 

into the mechanisms leading to ore deposition. Zinc has 5 stable isotopes: 64Zn, 66Zn, 67Zn, 

68Zn, and 70Zn. Zinc isotope data is commonly collected from the sulfide mineral sphalerite 

(ZnS). The isotopic composition of Zn is commonly reported as δ66/64Zn relative to the 

international standard BCR-1 (Chen et al., 2014). Zinc sulfides have been found to 

experience a smaller magnitude of isotope fractionation during precipitation from 

hydrothermal fluids compared to Cu sulfides (Fujii et al., 2011). The total range of Zn 

isotopic signatures in ore deposits spans from -0.40‰ to 1.33‰ (Duan et al., 2016). It has 

been proposed that Zn isotopes may be a useful tool for determining the mineralizing fluid 

pathways and interpreting how metals are transported and deposited within hydrothermal 

systems (Mason et al., 2005; Kelley et al., 2009; Chen et al., 2014; Duan et al., 2016).   
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Most Zn isotope studies in ore geology have focused on massive sulfide and 

hydrothermal deposits (Mason et al., 2005; Wilkinson et al., 2005; John et al., 2008; Kelley et 

al., 2009; Chen et al., 2014; Zhuo et al., 2014, Duan et al., 2016). At the Alexandrinka 

volcanic-hosted massive sulfide deposit, Mason et al. (2005) found that although the extent of 

isotope fractionation was small, trends can still be observed in the Zn isotopic composition. 

They found that close to the rim of the vent chimney, a heavier Zn isotope signature was 

observed compared to the core of the chimney (Figure 4). Zhou et al. (2014) had similar 

findings from their study of Pb-Zn hydrothermal sulfide deposits in southwest China. They 

observed an increase in the Zn isotope composition moving from the center or bottom of the 

deposit towards the periphery or top of the deposit. Zhou et al. (2014) also observed that Zn 

sulfides precipitated earlier have a lower isotope composition than Zn sulfides precipitated by 

more evolved fluids. Studies of the Irish ore field hydrothermal system by Wilkinson et al. 

(2005) concluded that the main ore bodies had a much heavier Zn isotopic signature than the 

deeper veins. A study of active fumaroles and thermal springs by Chen et al. (2014) showed 

that the fluids are enriched in the heavy Zn isotope relative to the host rock. These findings 

are summarized in Figure 4.  

 

Figure 4: Cross section of an active Zn “black smoker” chimney. In zone A, Zn first begins to precipitate. Due 

to kinetic isotope fractionation, the lighter Zn isotopes will become incorporated into the mineral 

precipitate. As precipitation continues towards zone B, mineral precipitates will gradually have an 

increasingly higher Zn isotopic signature. Zn sulfides precipitated furthest away from the deposit in zone C 

lenses will have the heaviest Zn isotope signature and create a heavy isotope halo around the deposit 

(modified from Mason et al., 2005). 
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The above studies identify similar Zn isotopic trends and the data can be used to infer 

possible mechanisms of isotope fractionation. Chen et al. (2014) attributes isotope 

fractionation directly to water-mineral interactions. As sphalerite is precipitated out of 

solution, Zn isotopes are partitioned between liquid and mineral phases. Wilkinson et al. 

(2005) identify kinetic isotope fractionation as the mechanism causing the light Zn isotopes 

to be preferentially included in the first Zn sulfide precipitates. As the fluids diffuse outward 

through the hydrothermal system precipitating sulfides, the fluids will continue to evolve 

through Rayleigh fractionation to a heavy Zn isotopic composition and will precipitate 

progressively heavier Zn sulfides (Mason et al., 2005; Wilkinson et al., 2005; Kelley et al., 

2009). Therefore, it may be possible to use Zn isotopes as a vector to trace the fluid pathways 

back to the source (Kelley et al., 2014; Chen et al., 2014). However, a study by Gagnevin et 

al. (2012) of the Navan Zn-Pb orebody suggests that Zn isotopes may not be a good tracer to 

use when looking at a single deposit. If a deposit has experienced multiple pulses of 

hydrothermal fluid flow, rapid precipitation of sphalerite could induce significant kinetic 

isotope fractionation at short spatiotemporal scales, thus limiting the use of Zn isotopes as a 

vector within a deposit (Gagnevin et al., 2012). Zn isotopes may still be a useful vector for 

new deposits, which could be found by identifying isotopically heavy Zn haloes (Gagnevin et 

al., 2012).  

Duan et al. (2016) studied Zn isotope fractionation at the Zhaxikang Pb-Zn deposit in 

south Tibet and found the heaviest isotopic signature in the more evolved porphyritic 

monzogranite (0.49‰), compared to the metamorphosed basement rocks (0.36‰, 2SD = 

0.03‰), and the lighter Fe-Mn carbonatites precipitated in veins (0.27‰, 2SD = 0.05‰). 

Primary sphalerite and galena also have isotopically lighter Zn than the basement rock. From 

these observations, Duan et al. (2016) suggested Zn isotopes may be used to trace the source 

of the ore forming metals. Using the Zn isotope fractionation factor between sphalerite and 

fluid, Duan et al. (2016) inferred that magmatic-hydrothermal fluids likely lead to 

precipitation of Zn in basement rock and Fe-Mn carbonatites. 

To shed light on isotope fractionation between primary and secondary Zn 

mineralization, Ducher et al. (2016) defined a set of mass dependent equilibrium fractionation 

factors for Zn using first-principles calculations. In general, secondary minerals formed by 

supergene alteration (adamite, gahnite, gunnigite, hemimorphite, hydrozincite, zincite) were 

found to have an isotopically heavier signature than primary Zn sulfide minerals (sphalerite, 
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wurtzite). This agrees with natural observations where heavy isotope enrichment has been 

observed in minerals with the largest bond strength. Ducher et al. (2016) indicate a linear 

relationship between Zn interatomic forces and Zn reduced partition functional ratios (β-

factors) and showed an increase in β-factors with increased bond strength.  

John et al. (2008) and Mason et al. (2005) suggest that changing temperature may 

play an important role on Zn isotope fractionation because temperature can influence the 

sphalerite-fluid fractionation factor. If high temperature fluids are cooled within the 

subsurface, fluids may precipitate Zn sulfides that are enriched in the lighter Zn isotopes due 

to kinetic isotope fractionation (John et al., 2008). This would explain why low temperature 

hydrothermal fluids have a distinctly heavy Zn isotopic composition. Studies of thermal 

springs by Chen et al. (2014) found that high temperature hydrothermal alteration resulted in 

more Zn isotope fractionation than low temperature chemical weathering. John et al. (2008) 

estimated high temperature hydrothermal alteration could cause Zn isotope fractionation of 

up to 1‰. These enriched waters can be a major source for heavy Zn to the oceans (Pons et 

al., 2013). Alternatively, an experimental study of Zn metal-silicate partitioning indicated 

temperature had no influence on Zn isotope fractionation (Mahan et al., 2017). Other possible 

opportunities for Zn isotope fractionation noted by Chen et al. (2014) are the formation of 

hydrothermal clays and the removal of organic bound Zn by chemical weathering. Chen et al. 

(2014) also postulated that if Zn is scavenged due to secondary co-precipitation of Zn into Fe 

oxides-hydroxides, the heavier Zn isotopes could become enriched in the solids.  

Jamieson-Hanes et al. (2017) assessed the effects of redox conditions on Zn isotope 

fractionation. Experimentally under sulfate-reducing conditions, ZnS was precipitated from 

aqueous fluids. The amount of Zn precipitation was directly related to the extent of sulfate 

reduction. As ZnS was precipitated, the remaining fluid evolved to higher δ66Zn as the lighter 

Zn isotopes were preferentially incorporated into the mineral phase (Jamieson-Hanes et al., 

2017). This experimental data is consistent with observations from natural systems (Mason et 

al., 2005; Wilkinson et al., 2005; John et al., 2008; Kelley et al., 2009; Chen et al., 2014; 

Zhuo et al., 2014). Experimentally it was also observed that Zn isotope fractionation may 

occur at fluid-solid interfaces during adsorption as well as through precipitation (Veeramani 

et al., 2015; Dong et al., 2016). The Zn adsorbed to calcite was measured to have an 

isotopically heavy signature compared to the surrounding fluid (Dong et al., 2016). This 

observation is explained by an equilibrium isotope effect between the aqueous species 
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(Zn(H2O)6
2+) and the adsorbed Zn (Dong et al., 2016). This can also be attributed to direct 

adsorption of ZnCO3(aq), which is isotopically heavy. The type of aqueous Zn species is an 

important control on Zn precipitation from aqueous fluids (Veeramani et al., 2015). When 

sphalerite is precipitated, the fluid will evolve to a heavier Zn isotope composition. The 

opposite trend was observed during the precipitation of hydrozincite and hopeite. Therefore, 

the extent of Zn isotope fractionation by adsorption and precipitation from aqueous fluids is 

directly related to the aqueous Zn species present in the fluid and can be used for determining 

reaction pathways in aqueous environments (Veeramani et al., 2015; Dong et al., 2016). 

Zn isotopes are also being used as an indicator of pH in ancient hydrothermal 

environments (Fujii et al., 2011). Through computational methods, Fujii et al. (2011) 

determined that there was little Zn isotope fractionation between aqueous sulfide species (-

Zn(HS)2, Zn(HS)3-, Zn(HS)4
2-). They determined that solutions with pH>9 will precipitate 

sulfides with a negative Zn isotope signature (δ66Zn < -0.6‰). Conversely, Zn sulfides 

precipitated by more acidic solutions will be influenced by the aqueous sulfide species 

present in the parent fluid and appear nearly unfractionated for hydrothermal systems with 

high pCO2.  

2.6 Other Non-Traditional Metal Isotope Systems 

2.6.1 Fe Isotopes 

Iron isotopes can be used to indicate the fluid history (Debret et al., 2016) and in some 

cases, the source of iron in an ore deposit (Markl et al., 2006). Iron has 4 stable isotopes: 

54Fe, 56Fe, 57Fe, and 58Fe and the isotopic composition is recorded as δ56/54Fe relative to 

standard IRMM-014 (Beard et al., 2003; Faure and Mensing, 2005). Redox variations as well 

as the presence of chlorine and sulfur ions can contribute to further Fe isotope fractionation 

and Fe mobility within the ore-forming system (Debret et al., 2016).  

Fe isotope data is collected from primary Fe sulfides such as pyrite and secondary Fe 

oxides such as hematite and goethite from skarn deposits (Wang et al., 2011) and banded iron 

formations (Johnson et al., 2008; Hou et al., 2014; Debret et al., 2016). Little Fe isotopic 

variation is observed in primary hematite of magmatic or metamorphic origin (Johnson et al., 

2004; Rouxel et al., 2004). For hydrothermal Fe mineralization, the typical range of Fe 

isotopic compositions is 2.5‰ (Markl et al., 2006). The Fe isotopic signature can be affected 

by late stage alteration. In some Fe ore deposits, the Fe isotopic composition has been found 
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to vary within a single vein or hand sample (Markl et al., 2006). In these cases, Fe isotopes 

can be used to trace the fluid history and do not provide a good indication of Fe source 

(Beard et al., 2002; Graham et al., 2004). Debret et al. (2016) demonstrated the potential use 

of Fe isotope compositions in subduction-related serpentinites as a tracer for Fe mobility. 

Fe isotope fractionation during hydrothermal mineralization occurs when Fe is 

leached from the basement rock (Rouxel et al., 2004). The composition of the precipitating 

fluid can be identified using Fe isotopes. Fluids rich in chlorine will form bonds with Fe(II) 

and precipitate isotopically light Fe (Welch et al., 2003; Markl et al., 2006). Reducing fluids 

rich in CO2 will also precipitate isotopically light Fe in the form of siderite (Wiesli et al., 

2004; Markl et al., 2006). Conversely, oxidizing fluids will precipitate hematite with an 

isotopically heavy Fe signature (Skulan et al., 2002; Markl et al., 2006). Therefore, Fe 

isotopes can be used to trace fluid history and determine depositional mechanisms. Residual 

fluids can be further oxidized or may experience recharge by Fe-rich fluids, thus causing the 

small-scale variations in isotopic composition that are observed.  

Late stage alteration of primary siderite to form the secondary minerals goethite and 

hematite can also lead to Fe isotope fractionation. In low temperature systems, the secondary 

replacement minerals will inherit the isotopic composition of the primary mineral (Markl et 

al., 2006). Therefore, Fe isotopes can be used to identify precursor minerals. In minerals that 

experience high temperature alteration, the precipitated replacement minerals are at 

thermodynamic equilibrium and the isotopic composition differs from the parent mineral by a 

fractionation factor (Markl et al., 2006). Consequently, in hydrothermal systems, by 

considering thermodynamics and the Fe isotope fractionation factor, it is possible to trace the 

fluid history of an Fe deposit.  

Fe isotopes can also be used to determine the redox conditions at the time of Fe 

precipitation in banded iron formations (Johnson et al., 2008; Hou et al., 2014; Debret et al., 

2016). When oxidation of Fe2+ to Fe3+ occurs, isotope fractionation will take place. The Fe2+ 

ions will become enriched in the lighter isotopes, and Fe3+ will become enriched in the 

heavier isotopes (Anbar et al., 2005; Hou et al., 2014). The degree of Fe isotope fractionation 

will depend on the extent of Fe2+ oxidation to Fe3+. If Fe2+ is totally oxidized to Fe3+, then the 

BIF will have the same isotopic signature as seawater. If incomplete oxidation occurs, 

Rayleigh fractionation will cause the heavy Fe isotopes to be preferentially included in Fe 

oxides and hydroxides, thus giving the BIF a positive Fe isotope signature (Hou et al., 2014).  
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2.6.2 Se Isotopes 

The study of selenium can be complicated because Se is found in very low 

concentrations in the Earth’s crust (0.05 ppm) compared to other non-traditional elements 

discussed in this review (Lakin, 1973; Faure and Mensing, 2005). The distribution of Se and 

its isotopes is also very complex and can be difficult to interpret. Selenium has 6 naturally 

occurring stable isotopes: 74Se, 76Se, 77Se, 78Se, 80Se, and 82Se (Faure and Mensing, 2005). 

The isotopic composition is commonly recorded as δ82/76Se relative to proposed international 

standard NIST SRM 3149 (Layton-Matthews et al., 2013). Se deposition is usually associated 

with volcanism (Layton-Matthews et al., 2013) and studies also show that Se can be found in 

high concentrations in some black shale deposits (Wen and Carignan, 2011). The total range 

of Se isotope fractionation observed in ore deposits is -12.77‰ to 4.93‰ (Wen et al., 2007). 

This entire range of fractionation was observed at the Yutangba sedimentary-type Se deposit 

(Wen et al., 2007). Significant Se isotope fractionation was also observed in VHMS deposits 

-10.2‰ to 1.3‰ (Layton-Matthews et al., 2013). The Se isotopic composition may provide a 

useful tool for identifying the mechanisms leading to Se isotope fractionation, accumulation, 

and redistribution. 

Similar to the previous metal isotope systems, Se experiences mass dependent kinetic 

isotope fractionation (Layton-Matthews et al., 2013). Se precipitated directly from 

hydrothermal fluids was found to have experienced little to no isotopic fractionation (Wen et 

al., 2007). Fractionation of Se isotopes has been attributed to redox processes caused by 

secondary hydrothermal alteration or low temperature supergene alteration (Wen and 

Carignan, 2011). Reducing fluids will break Se-O bonds and cause the product mineral to 

become enriched in the light Se isotopes (Wen and Carignan, 2011). Depending on the 

reducing agent and concentration of Se, the breaking of Se-O bonds may be responsible for a 

Se isotope fractionation of ~7-11‰ (Johnson and Bullen, 2004). Under oxidizing conditions, 

Se6+ ions bond with O2- ions to form SeO4
2-. The formation of new Se-O bonds did not lead 

to any significant Se isotope fractionation (Wen and Carignan, 2011). Therefore, secondary 

hydrothermal alteration and supergene alteration are thought to have a greater influence on Se 

enrichment than initial Se precipitation from seawater or hydrothermal fluids.  

It is possible that Se isotopes may also have applications as a tracer for finding the 

deposit source (Rouxel et al., 2004). During oxidation, Se can be mobilized and transported 

in the form of H2Se along with sulfides, then reduction occurs and Se is precipitated directly 
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in the form of selenides or as a replacement of sulfur in sulfide minerals (Wen and Carignan, 

2011). The heavier isotopes of Se are commonly concentrated in these distal Se-sulfides due 

to mass dependent fractionation causing fluids to evolve to a heavier isotopic composition 

(Wen and Carignan, 2011). Therefore, Se isotopes can also be used to identify whether 

significant alteration, remobilization or precipitation has occurred within the deposit (Layton-

Matthews et al., 2013).  

2.6.3 Hg Isotopes 

The Hg isotopic composition is commonly reported as δ202/198Hg (Sherman et al., 

2009). No international standard exists for Hg although it is recommended that NIMS-1 be 

used over NIST SRM 3133, which was intended for quantitative analysis not isotopic 

measurements (Mejia et al., 2010; Brand et al., 2014). The element Hg has been observed to 

have an uncharacteristically wide range of isotopic compositions (>5‰) that cannot be 

explained using only mass dependent fractionation (Smith et al., 2005; Xie et al., 2005; Smith 

et al., 2008; Sherman et al., 2009). Mercury differs from the previously studied isotope 

systems because it has a higher atomic number. For heavier metals in general, the large mass 

of the element will lead to volume dependent fractionation due to the “nuclear volume effect” 

(Schauble, 2007; Brennecka et al., 2010). This effect will cause variations in the nuclei’s 

ability to attract electrons. In ore deposits, volume dependent isotope fractionation may be 

responsible for up to 3‰ of Hg isotope fractionation compared to the 0.5-1‰ fractionation 

that is mass dependent (Schauble, 2007). Mercury has 7 stable isotopes and an abundance of 

oxidation states (Smith et al., 2005). For most other metals previously reviewed in this 

chapter, an important mechanism for isotope fractionation is redox reactions. Since metals 

with more oxidation states tend to experience greater isotope fractionation, the many 

oxidation states of Hg could be causing the large isotopic variations (Smith et al., 2005).  

In hydrothermal systems, little to no isotope fractionation occurs during the initial 

release of Hg from the source area, but instead Hg isotope fractionation occurs during 

transportation of Hg (Smith et al., 2008). As the hydrothermal fluids boil, Hg will begin to 

vaporize (Smith et al., 2005). This will cause Hg isotopes to fractionate between the brine and 

vapor phases, with the lighter Hg isotopes preferentially partitioning into the vapor phase. 

The preferential loss of the lighter Hg isotopes to the vapor phase can be modelled using 

Rayleigh distillation (Sherman et al., 2009). The heavier Hg isotopes will remain in the liquid 

phase and precipitate deep in the hydrothermal system in sulfide minerals (Smith et al., 
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2008). This combination of boiling, vaporization of Hg during low temperature hydrothermal 

activity, and redox reactions all lead to fractionation of Hg in hydrothermal systems.  

The Hg isotope fractionation discussed above is mass dependent. In hydrothermal 

black smokers, there is also the possibility that volume dependent isotope fractionation can 

influence Hg isotopic compositions, but is poorly understood (Sherman et al., 2009). It is 

speculated that photochemical reduction of Hg2+ near the Earth’s surface could cause volume 

dependent isotope fractionation during secondary leaching of sediments in vents (Sherman et 

al., 2009). Further study is required to determine Hg isotope applications in locating the 

source area and deciphering the migration patterns of this transition metal.  

2.6.4 U Isotopes 

Uranium is a radioactive element and has no stable isotopes. Isotopes 238U and 235U 

have a very long half-life and are commonly used for determining the U isotopic composition 

(Faure and Mensing, 2005). The isotopic composition is recorded as δ238/235U relative to 

standard CRM 145 (Kendall et al., 2013). Uranium is the heaviest element discussed in this 

literature review and its isotopes experience volume dependent fractionation (Brennecka et 

al., 2010). U isotope fractionation of nearly 5‰ has been observed in mineralized sediment 

samples (Murphy et al., 2014). In ore-forming systems, the primary mechanism for U isotope 

fractionation is believed to be redox variation (Schauble, 2007; Stirling et al., 2007; Weyer et 

al., 2008; Murphy et al., 2014; Uvarova et al., 2014; Placzek et al., 2016).  

Using the isotopic composition of U, it is possible to determine the paleo-redox 

conditions of the deposit (Murphy et al., 2014). If the deposit experienced a lack of redox 

variation, such as leaching causing aqueous alteration, little to no isotope fractionation will 

occur (Stirling et al., 2007). If the deposit experienced a change from oxidizing to reducing 

conditions, U will fractionate causing the heavy isotope to preferentially move into the 

reduced phase (Brennecka et al., 2010; Murphy et al., 2014; Uvarova et al., 2014). This 

observation differs from mass dependent fractionation whereby the reduced phase is enriched 

in the light U isotope. For redox-related U isotopic fractionation, volume dependent 

fractionation is dominant because of the small relative mass difference between 238U and 

235U. As the heavy U isotope is preferentially reduced from U(VI) to U(IV) and precipitated, 

the remaining fluid will have a gradually lighter U isotope signature as it moves through the 

hydrothermal system, following a Rayleigh distillation model that results in solid-liquid 
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fractionation of nearly 1‰ (Murphy et al., 2014). Therefore, U isotopes can also provide a 

tool to trace U flow paths. Utilizing the U isotopic signature can also have applications in 

sandstone-hosted U deposit exploration and environmental remediation (Placzek et al., 2016).  

In high temperature systems where there are redox changes, the same processes can 

be observed, however, the degree of U isotope fractionation is much less (Brennecka et al., 

2010). Uvarova et al. (2014) observed little U isotope fractionation for U mineralization 

associated with igneous sources when compared to sedimentary basin-hosted deposits, which 

generally had higher and more variable U isotope compositions. Therefore, in coherence with 

the study by Abe et al. (2008), the magnitude of nuclear volume isotope effects will vary 

inversely with temperature.   

2.7 Future Directions 

Other isotope systems that are emerging as having significance for ore systems 

include Ni, Ge, Cd, Tl, and V. Initial work on the Ni isotope system has focused on 

cosmochemistry, meteorites and sedimentary systems, however, there are also trends 

observed in ore deposits (Gueguen et al., 2013; Hofmann et al., 2014; Elliot and Steele, 

2017). Ni has 5 stable isotopes and fractionation is typically recorded as δ60/58Ni using 

international standard NIST SRM 986 (Hofmann et al., 2014; Elliott and Steele, 2017). 

Positive Ni isotope compositions are observed in shales, coal and soil (Gueguen et al., 2013). 

Conversely, komatiite-hosted Ni deposits have a distinctly negative Ni isotope composition 

due to high temperature fractionation between metal and silicate phases (Huh et al., 2009; 

Hofmann et al., 2014). In igneous rocks, little to no isotope fractionation occurs, and the bulk 

silicate Earth is estimated at +0.05‰ (Gueguen et al., 2013). However, Hofmann et al. (2014) 

found that some enrichment in the light Ni isotopes is possible in magmatic Ni sulfides up to 

-0.47‰. The high temperature fractionation mechanisms causing light isotope enrichment of 

Ni sulfides relative to the silicate melt are still poorly understood (Hofmann et al., 2014).   

The Ge isotope system and its application to ore deposits is gaining momentum. Ge 

has 4 stable isotopes and its isotope composition is typically recorded as δ74/72Ge relative to 

proposed international standard NIST SRM 3120a (Siebert et al., 2006, Escoube et al., 2011). 

Due to chemical similarities with Si, Ge isotope fractionation has been used as an ocean 

tracer for biogenic silica cycling (Rouxel and Luais, 2017). Marine sediments generally 

displayed a positive Ge isotope signature and likely fractionated due to redox variations 
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(Escoube et al., 2011). Applications of Ge isotopes also extends to interpreting geothermal 

springs that were enriched in Ge compared to Si due to Ge exclusion during earlier silicate 

precipitation (Siebert et al., 2006). These high temperature fluids were found to have a 

negative Ge isotopic signature, indicating the heavier Ge isotopes were removed during 

cooling and precipitation (Siebert et al., 2006). In ore deposits, Ge isotope fractionation has 

potential for use as a geochemical tracer (Escoube et al., 2011). Mantle-derived rocks were 

found to have little Ge isotope fractionation, with bulk silicate Earth near 0.59±0.18‰ 

(Escoube et al., 2011). Fractionation during hydrothermal sulfide precipitation caused Ge 

sulfide minerals and ore deposits in general to have a negative Ge isotope composition (-

3.53±0.51‰) (Li et al., 2009; Escoube et al., 2011).   

In recent years, application of Cd isotopes in geochemistry has focused on 

understanding micronutrient cycling in marine environments as well as the potential for Cd 

isotopes as an anthropogenic tracer (Ripperger et al., 2007; Rekhamper et al., 2011). Cd has 6 

stable isotopes and experiences mass dependent fractionation that is typically recorded as 

δ114/110Cd relative to NIST SRM 3108 although no international standard currently exists 

(Abouchami et al., 2011; Brand et al., 2014). A recent study by Zhu et al. (2016) 

demonstrated the potential for Cd isotopes to help classify Pb-Zn deposits by determining the 

Cd concentration and isotopic signature in the mineral sphalerite. Zhu et al. (2016) found that 

high temperature systems, such as porphyry deposits, displayed little to no isotope 

fractionation. Low temperature deposits, such as MVT deposits, were found to have the 

highest Cd concentration as well as a positive Cd isotopic signature. Exhalative systems, such 

as SEDEX deposits, overall contained very little Cd and did not exhibit nearly as much 

isotope fractionation as the MVT deposits (Zhu et al., 2016).  

Applications of Tl isotopes to ore deposits is also being explored and significant 

fractionation has been observed particularly in marine settings (Nielsen et al., 2013; 2017). 

There are two stable isotopes of Tl, 205Tl and 203Tl, which experience mass dependent 

fractionation. Isotopic measurements are recorded as ε205Tl relative to standard NIST 997 

using the following equation (Nielsen et al., 2017):  

ε205Tlsample = 104 x (205Tl/203Tlsample - 
205Tl/203TlNIST997) / (

205Tl/203TlNIST997) 

The total isotopic variability for Tl is 35 ε205Tl-units ranging from +15 units for 

ferromanganese sediments to -20 units for low temperature altered oceanic crust (Nielsen et 
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al., 2017). Prytulak et al. (2017) found that the Tl isotopic signature can be used to identify 

the addition of low temperature altered sediments to the source of mantle-derived melt for 

oceanic basalts and arc lavas. This is possible because minimal Tl isotope fractionation was 

found to occur during magmatic processes and Tl isotopes are an excellent tracer of pelagic 

sediments (Prytulak et al., 2017). Future work should focus on identifying Tl isotope 

fractionation mechanisms and assess the degree of fractionation by igneous processes. 

The V isotope system may also have applications in ore geochemistry due to the 

precision with which measurements can be achieved using MC-ICP-MS. Isotopic 

measurements of V can be analytically challenging because V has 1 stable isotope which 

accounts for >99% of all V and one radioactive isotope with a long half-life (1017 years). 

Isotopic compositions are denoted as δ51/50V and no international standard currently exists 

(Wu et al., 2016). V is redox sensitive and has been used to assess biogeochemical cycling 

and anthropogenic impacts (Huang et al., 2015). The cycling of V in the Earth’s crust has 

been assessed though V-rich minerals to determine the effects of magmatism, late-stage 

weathering, and the V species present (Huang et al., 2015). Prytulak et al. (2013) found 

minimal isotope fractionation in high temperature samples but seafloor weathering did result 

in evolution of oceanic crust towards a heavier V isotope signature. Basalts were found to 

have a negative V isotope signature relative to bulk silicate Earth (Prytulak et al., 2013). 

Further work is still needed to determine V isotope fractionation factors for interactions 

between melt and precipitated minerals.  

2.8 Conclusions 

The scope of heavy metal stable isotope geochemistry applications to ore geology is 

broad and expanding. These isotope systems have also gained attention for their applications 

to understanding biogeochemical cycling, marine systems, oxidation events, cosmochemistry, 

as well as solving anthropogenic and environmental issues. Studying heavy metal isotopes 

has helped gain insights into the mechanisms that govern isotope fractionation. Temperature, 

redox conditions, metal speciation, Rayleigh distillation and interactions between fluid-vapor 

or vapor-brine can all have some effect on the degree of isotope fractionation observed in an 

ore-forming system. In most ore-forming systems, low temperature alteration by 

hydrothermal or meteoric fluids was linked to a greater magnitude of metal isotopic 

fractionation than high temperature magmatic or metamorphic fluids. In this way, heavy 

metal isotope fractionation could also be used to uncover the geological history of the area by 
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providing clues about the type of mineralization and alteration that occurred. The nature of 

the isotope fractionation (mass-dependent or volume-dependent) also plays an important role 

in the resulting isotopic signature. Applications can also relate directly to exploration 

geology, where information about the deposit size, grade, and extent can be collected directly 

from the metal of interest. For example, Cu isotopes in porphyry systems link directly to 

transport of Cu within the system and were used as a tracer/vector to high grade enriched 

zones and exotic deposits.   

Undoubtedly there is still much to be uncovered through the study of heavy metal 

isotopes in ore-forming systems. To date, Cu, Zn and Mo isotope systems have received the 

most attention, and further work is still needed to explore additional isotope systems. In the 

years to come, this promising field will only continue to grow as geochemical processes are 

deciphered and metal isotopes are refined into a useful geochemical exploration tool.  
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Chapter 3: Mo isotope variations in molybdenites at single-crystal, ore deposit, and 

global scales: Implications for Mo source fluid, transport, fractionation mechanisms, 

and molybdenite mineralization 

3.1 Introduction 

The study of heavy metal isotope geochemistry and its application to ore geology has 

greatly expanded in recent years because of technological advances in Multi-Collector 

Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) as a tool for measuring 

isotopic composition. The Mo isotope composition of molybdenite is a potentially useful tool 

for understanding ore-forming processes, but has not been studied as extensively as some 

other metal isotope systems (e.g., Cu). Many different types of ore deposits have been 

analyzed for Mo isotope compositions and associated fractionation mechanisms; the most 

common deposit types include skarn deposits, epithermal veins, and porphyry deposits 

(Wieser and De Laeter, 2003; Hannah et al., 2007; Klemm et al., 2008; Mathur et al., 2010a; 

Greber et al., 2011; Song et al., 2011; Greber et al., 2014; Shafiei et al., 2015; Breillat et al., 

2016; Wang et al., 2016; Yao et al., 2016).  

Molybdenum has seven naturally occurring stable isotopes, 92Mo, 94Mo, 95Mo, 96Mo, 

97Mo, 98Mo, and 100Mo. Molybdenite, MoS2, is a Mo-rich sulfide mineral that is 

approximately 60% molybdenum and 40% sulfur by weight. Rhenium concentrations in 

molybdenite may range from a few ppm to several weight percent due to the tendency for 

Re4+ to substitute for Mo4+ (Stein et al., 2001). Molybdenites are also commonly associated 

with Sn, Cu, W, As, Au, Fe, and Bi mineralization and can be found as a trace mineral phase 

in many different types of ore deposit (King, 2004). 

Observing the extent of isotope fractionation and spatiotemporal variations in 

molybdenite isotope composition could aid in defining the mechanism(s) of fractionation for 

Mo isotopes in ore deposits. Previous studies have shown that isotopic fractionation of Mo in 

ore-forming systems could be caused by Rayleigh distillation, redox conditions, magmatic 

evolution, and/or fluid boiling at the time of formation (Hannah et al. 2007; Mathur et al., 

2010a; Greber et al., 2011; 2014; Shafiei et al., 2015). For example, a combination of 

magmatic evolution (fractional crystallization and fluid exsolution) and redox reactions 

associated with molybdenite crystallization may cause the Mo isotope composition of 

hydrothermal fluids to evolve to higher values over time in porphyry systems, resulting in 
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systematic spatiotemporal variations in molybdenite compositions (Greber et al., 2014). On 

the other hand, significant fluid boiling in porphyry systems may result in formation of 

isotopically heavy brine and isotopically light vapor/liquid phases that crystallized at higher 

(earlier stage) and lower (later stage) temperatures, respectively (Shafiei et al., 2015). The 

mechanisms or combination of mechanisms that contribute to Mo isotope fractionation at the 

Berg epithermal-porphyry deposit and the Hemlo disseminated Au deposit will also be 

explored by analyzing multiple hand samples from each deposit. Finally, the study of Mo 

isotope fractionation in ore deposits could provide us with insight into the relative importance 

of different processes contributing to ore genesis and may also have mineral exploration 

implications if predictive of hydrothermal-magmatic processes favoring high metal tenors. 

This study reports the Mo isotopic composition of molybdenite from 14 different 

deposits varying in deposit type, size, grade, paleoclimate, alteration style, complexity and 

number of mineralization events. By combining this new data with existing δ98Mo values for 

molybdenites, it is possible to make large scale comparisons using the newly established 

international standard NIST SRM 3134 set to 0.25‰ to standardize Mo isotope 

measurements between different laboratories (Nagler et al., 2014). Merging our new data 

with the recent molybdenite compilation by Breillat et al. (2016) will enable further testing of 

a recent hypothesis that suggested Mo isotopes may be used to fingerprint specific ore deposit 

types (Mathur et al., 2010a). The average isotopic composition for molybdenite derived from 

this large dataset is useful for inferring the isotopic composition of Mo runoff to the oceans, 

because molybdenite is an important host of crustal Mo that is easily weathered. The average 

molybdenite isotope composition may also provide a maximum upper limit for the upper 

crust Mo isotope composition because mineralizing hydrothermal fluids have higher δ98Mo 

than the evolved (SiO2-rich) magmas from which the fluids exsolved (Greber et al., 2014).  

Another goal of this study is to explore changes in isotopic composition within a 

single deposit as well as within a single molybdenite grain. Few studies have interpreted 

variation within a single deposit. Multiple samples from the Eocene Berg porphyry-

epithermal deposit in British Columbia and the Late Archean Hemlo disseminated gold 

deposit in Ontario were measured in this study. Using samples from different regions of the 

same deposit can help evaluate the effectiveness of Mo isotopes as a tracer for mineralization 

or fluid pathways. Study of the Hemlo deposit is particularly interesting because 

disseminated Au deposits have never been analyzed for Mo isotopic composition. In addition, 
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analysis of Mo isotopic composition from multiple hand samples from within the same 

deposit will reveal if Mo deposition was related to fluid boiling or redox reactions.  

Unique to this study, both the S and Mo isotopic composition of molybdenite was 

measured for different ore deposits and for multiple samples from the Berg deposit.  Hannah 

et al. (2007) suggested that analyzing the covariance between S and Mo isotopic composition 

of molybdenite in an ore-forming system could shed light on fractionation mechanisms for 

Mo. Since S is roughly 40% of molybdenite by weight, a positive correlation between the two 

isotopic compositions could indicate that Rayleigh distillation is the main mechanism of Mo 

isotope fractionation in a system with low S and Mo availability (Hannah et al., 2007).  

In addition to S isotope compositions, the Re concentration of the molybdenites was 

also measured. Re is a common trace element found in molybdenite and can sometimes be 

found to have concentrations up to several weight percent (Stein et al., 2001). The 

relationship between Mo isotopic composition and Re concentration could shed light on the 

molybdenite source (Mathur et al., 2010a; Wang et al., 2016). The Re concentration of 

molybdenite tends to be higher if the mineralizing fluid has a mantle source (Wang et al., 

2016). If the mineralizing fluid has a crustal source, the Re concentration tends to be much 

lower. Mathur et al. (2010a) and Wang et al. (2016) have observed a negative correlation 

between Re concentration and Mo isotopic composition. This implies molybdenites 

precipitated from a mantle fluid will have a more negative isotopic signature than 

molybdenites precipitated from a crustal fluid. The data from this study will expand on these 

findings and determine the extent to which additional Mo isotope fractionation mechanisms 

affect this relationship. 

3.2 Geological Setting and Sample Descriptions 

Molybdenite samples for this study were collected from a diverse selection of Mo-

bearing ore deposits worldwide. Deposit types include nine porphyry deposits, two 

epithermal-porphyry deposits, one greisen deposit, one pipe-like Mo-W-Bi deposit, and one 

disseminated Au deposit. A single hand sample was collected from 12 of these deposits 

(Table 1). For many of these deposits, multiple molybdenite grains and/or fragments of grains 

were selected from the single hand sample for analysis. A total of 29 analyses were made for 

these deposits. In addition, two deposits, the Eocene Berg porphyry epithermal deposit (11 

analyses from seven hand samples) and the Late Archean Hemlo disseminated gold deposit 
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(19 analyses from 10 hand samples), were selected for closer investigation through multiple 

hand samples (Table 2; Table 3). Samples were taken from different alteration zones and 

depths within the deposits. By observing a single deposit in detail, information about the 

magnitude and cause(s) of Mo isotope fractionation can be inferred at the scales of individual 

ore-forming systems, hand samples, and individual molybdenite crystals.  

3.2.1 Single Molybdenite Hand Samples from Various Deposits 

The Sachs Molybdenite Mine and the Wolfram Mine are both part of a large system 

of granitic intrusions along eastern Australia (Hess, 1924). These leucogranitic plutons are 

part of a volcanic arc system ranging in age from Permian to Triassic (Weber et al., 1978). At 

the Sachs Mine in New South Wales, dissolved Mo was transported in the hydrothermal 

fluids and then crystallized in quartz veins or pipes extending from mineralized granitic 

plutons along with bismuth and smaller quantities of arsenopyrite, wolframite, gold and silver 

(Weber et al., 1978). Molybdenite in this area is found as flakes and as large clumps with one 

mass of pure molybdenite at the Sach’s Mine found to weigh more than 1 ton (Weber et al., 

1978). The Wolfram Mine in Queensland is the largest molybdenite producer in Australia 

(Weber et al., 1978). Like the Sachs mine, the Wolfram deposit is a quartz pipe system 

stemming from a large granodiorite or leucoadamellite pluton (Plimer, 1974). The 

granodiorite in this area is highly greisenized and experienced low temperature alteration, 

therefore, the mineralogy has changed to have more quartz and mica and major element 

zoning is present around the pipes (Plimer, 1974). The primary minerals yielded from this site 

are wolframite, molybdenite, and bismuth (Hess, 1924; Plimer, 1974).  

The Santo Nino Mine and Childs-Adwinkle Mine in Arizona are both part of a large 

Cu porphyry system formed by the Laramide orogeny during the Late Cretaceous (Wilt and 

Keith, 1980). A large granodiorite pluton intruded into the quartz monzonite country rock, 

resulting in mineral-rich veins. Molybdenite in this area can be found as disseminated grains 

in the quartz monzonite and as crystals in quartz veins with pyrite (Muntyan, 2012). 

Chalcopyrite and pyrite can also be found disseminated through the highly feldspathized 

rock. Both deposits have been described as highly brecciated pipes where molybdenite was 

the last sulfide mineral to precipitate and is concentrated at the outer edges of the pipe (Wilt 

and Keith, 1980). The primary minerals mined in this area were copper, silver and 

molybdenite with grades of 7 wt. %, 1oz/T, and 1 wt. %, respectively (Muntyan, 2012).  
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The Beura, Altenberg and Strzegom deposits in Europe all experienced some degree 

of metasomatic activity and alteration leading to the precipitation of molybdenite (Cavallo et 

al., 2004; Mikulski and Stein, 2005; Hoffmann et al., 2013). Molybdenite from the Beura 

Deposit in Ossola Valley, Italy, is attributed to a lower Permian system of greisenized veins 

(Cavallo et al., 2004). These veins formed in alpine fissures intersecting the leucogranitic 

gneiss in the Southern Alps and were affected by metasomatic and hydrothermal activity. The 

Altenberg mine in Germany has experienced similar alteration leading to the formation of 

greisens. This deposit is found in a large intercontinental volcanic porphyry complex where 

local ignimbrite was intruded by microgranitic dykes (Hoffmann et al., 2013). During the 

emplacement of the dykes, hypogene alteration led to the formation of metasomatic-

hydrothermal greisens similar to the Beura deposit (Rakovan, 2007). The greisenization by 

fluorine-rich fluids exsolved from evolved magma led to the deposition of tin and accessory 

molybdenite in this area (Rakovan, 2007). The age of molybdenite was determined to be 318 

± 2 Ma and 324 ± 2 Ma by Re-Os age dating of molybdenite (Romer et al., 2007). Similar to 

the Altenberg deposit, the Strzegom deposit in Poland is also part of the large volcanic 

porphyry complex. Molybdenite was deposited along with chalcopyrite and pyrite in quartz 

veins after an uplift event (Mikulski and Stein, 2005). These veins and veinlets intersect the 

leucogranite porphyry and are 0.34 wt. % molybdenite on average. Mikulski and Stein (2005) 

found significant alteration in this area including feldspathization, albitization, silicification, 

sericitization, and chloritization. 

The porphyry Moly Hill Mo-Bi deposit in Quebec is one of many Mo deposits 

centralized around the large Archean Preissac-Lacorne batholith in the Abitibi greenstone 

belt. The Moly Hill pluton is a felsic monzogranite with molybdenite-bearing quartz veins 

(Mulja et al., 1995). The deposition at the Moly Hill deposit can be attributed to exsolution of 

Mo-bearing brines from the monzogranite magma and fluid-boiling which led to Mo 

saturation in the vapour phase (Taner et al., 1998). The vapour and brine phases interacted 

with metavolcanics and metasedimentary rocks, leading to precipitation of deep stockwork 

veins with economical quantities of molybdenite in fractures (Taner et al., 1998). Other 

molybdenite occurrences in this area are associated with rare-metal bearing pegmatites, but 

these are not found at the Moly Hill deposit (Mulja et al., 1995). 

Two hand samples have been collected from deposits on the Canadian east coast. The 

Lake George Sb-Au-W-Mo deposit in New Brunswick is hosted by a quartz-feldspar 
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porphyry dyke intruding granodiorite (Leonard et al., 2006). The ore mineralizing fluids are 

determined to be of magmatic-hydrothermal origin and directly related to the intrusion 

(Yang, 2012). As the fluid cooled, it reacted at depth with earlier magmatic sulfide minerals, 

enhancing the ore fluid, which then further cooled and precipitated in fractures leading to 

concentrations of Au as well as molybdenite and W sulfide minerals (Yang, 2012). The New 

Ross deposits in Nova Scotia are in the South Mountain batholith in a monzogranite and 

leucogranite pluton (Carruzzo et al., 2004). This late Devonian pluton is peraluminous, and 

hosts polymetallic pegmatites, greisens, and veins. From fluid inclusions, the genesis of the 

deposit was determined to begin with early magmatic activity leading to aplites and 

pegmatites, followed by hydrothermal activity with mixing of metamorphic and meteoric 

fluids leading to the development of greisens and veins (Carruzzo et al., 2004). Molybdenites 

at the New Ross deposit exhibit significant greisenization and are found with quartz and 

muscovite along with trace W sulfides and fluorite (Carruzzo et al., 2004). 

Table 1: Deposit name, sample ID, and deposit type for each sample. 

Sample ID Sample Description Location 

Porphyry Deposit 

1A Half large grain (11 mm) cut perpendicular to layering  

Sach’s Mine, NSW, 

Australia 

1B Other half of 1A 

1C Medium grained (4 mm) 

1D Half large grain (9 mm) cut parallel to layering 

1E Other half of 1D 

2A Fine grained (2 mm) Santo Nino Mine, 

Arizona 2B Fine grained (2 mm) 

4A Medium grained (4 mm) Altenberg, Germany 

4B Fine grained (2 mm) 

5A Medium grained (4 mm) Childs-Adwinkle, 

Arizona 5B Fine grained (2 mm) 

6A One large grain (9 mm) with visible cleavage planes  

Moly Hill, Quebec 6B Half of large grain (13 mm) cut parallel to cleavage 

6C Other half of 6B 

6D Medium grained (4 mm) 

8A Fine grained (2 mm) Strzegom, Poland 

8B Fine grained (2 mm) 

11A Medium grained (3 mm) New Ross, Nova 

Scotia 

12A Medium grained (4 mm) Lake George, New 
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Brunswick 

13A Fine grained (2 mm) Trout Lake, New 

Brunswick 

Greisen 

3A Fine grained (2 mm) Beura, Ossola Valley, 

Italy 3B Fine grained (2 mm) 

3C Fine grained (2 mm) 

Pipe-like Mo-W-Bi 

7A Half large grain (14 mm) cut perpendicular to cleavage  

Wolfram, 

Queensland, Australia 

7B Other half of 7A, cut again parallel to cleavage 

7C Other half of 7B 

7D One large grain (10 mm) with visible cleavage planes 

Epithermal Porphyry 

10A Fine grained (2 mm) Logan Lake, British 

Columbia 10B Fine grained (2 mm) 

 

3.2.2 Berg, Eocene Epithermal Porphyry, British Columbia 

 The Eocene epithermal porphyry deposit in Berg, British Columbia, is considered a 

“classic” porphyry deposit (Panteleyev, 1995). This deposit has multiple shallow porphyritic 

intrusions that have been intruded by late stage dykes. The main ore minerals are chalcopyrite 

and molybdenite precipitated in fractures and quartz veins and are found in zones 

experiencing potassic and phyllic alteration and localized around a composite quartz 

monzonite porphyry stock (Panteleyev, 1995). Brecciation by late-stage hydrothermal fluids 

followed the deposition of molybdenite in quartz veins and these veins are observed to be 

transported as brecciated fragments. A second molybdenite mineralization is also evident as 

molybdenite-rich quartz veinlets and can be found cross-cutting the breccias (Panteleyev, 

1995). Significant leaching by low temperature acidic groundwater led to the formation of a 

well-developed supergene enrichment blanket and sulfide-rich zones with high grade Cu and 

Mo (Heberlein et al., 1983). For this study, seven hand samples were collected from different 

zones within the deposit and analyzed for Mo isotopic composition. The samples are 

summarized in Table 2. 

Table 2: Description of samples from the Berg epithermal-porphyry deposit. 

Sample ID Description 

9 (A, B) Molybdenite mineral separate previously extracted from a quartz-rich sample 
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15A Quartz veins in feldspar rich sample with trace molybdenite and pyrite 

16 (A, B) Quartz and feldspar rich sample with trace molybdenite and pyrite 

17A Quartz rich sample with trace molybdenite 

18 (A, B) Quartz and feldspar rich sample with some small darker bands of biotite, trace 

molybdenite 

19A Quartz veins with trace molybdenite cross cutting fine grained feldspar and 

quartz rich sample 

20 (A, B) Trace molybdenite and pyrite in quartz rich sample 

For some hand samples, subsamples A and B were collected from different parts of the hand 

sample (or represents, in the case of sample 9, two analyses of the molybdenite mineral 

separate); molybdenite collected from all samples was fine grained (<2 mm). 

3.2.3 Hemlo, Archean Disseminated Au Deposit, Ontario 

The late Archean disseminated Au deposit in Hemlo, Ontario, is located within a 

shear zone at the contact between quartz ± feldspar volcanic porphyry and metasedimentary 

rocks or barite. At the contact there exist two ore zones, a main ore zone and a lower ore 

zone. Molybdenite was precipitated along with gold during a single mineralization event 

during prograde (greenschist facies) metamorphism. Precipitation of molybdenite and gold 

from a magmatic-metamorphic fluid may have been associated with a combination of 

potassic alteration, pyrite precipitation, and barite dissolution. Hence, a decrease in pH and 

change in redox conditions from oxidizing to reducing for the hydrothermal fluid have been 

attributed to mineralization (Heiligmann et al., 2008; Phillips and Powell, 2010). Subsequent 

gold remobilization events at peak metamorphic conditions (amphibolite facies) produced 

late-stage quartz veins, but these contain volumetrically minor amounts of gold and minimal 

molybdenite (Lin, 2001; Tomkins et al., 2004; Heigilmann et al., 2008), and hence are not a 

focus of this study. Gold and molybdenite are resistant to modification during amphibolite 

facies metamorphism (Stein et al., 2001). Both ore zones contain feldspathic ore and 

muscovitic ore. The higher-grade feldspathic ore (associated with potassic alteration) 

contains microcline + quartz + muscovite + biotite + barite + plagioclase + pyrite + 

molybdenite. The lower-grade muscovitic ore (associated with muscovitic alteration) often 

surrounds the first formed feldspathic ore and contains quartz + muscovite + pyrite + 

microcline + biotite + barite + trace molybdenite. The molybdenite is either disseminated or 

occurs as deformed, foliated seams (Lin, 2001; Muir, 2002; Heiligmann et al., 2008).  
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All 10 Hemlo hand samples from this study were silicate-rich schists with very fine 

grained molybdenite disseminated with pyrite. These samples were collected from the B and 

C zones of the David Bell mine and are summarized in Table 3. 

Table 3: Sample description for samples from the Hemlo disseminated Au deposit in Ontario. 

Sample ID Zone Description 

14 (A, B, C) n/a Molybdenite mineral separate previously extracted from a mica-rich 

schist 

21-1 C Mica-rich schist, very fine grained, some quartz and feldspar, trace 

molybdenite and pyrite 

22 (-1, -F) C Highly foliated muscovite rich sample with quartz and trace 

molybdenite 

23 (-1, -S) C Very fine grained and foliated sample with mica and quartz, trace 

molybdenite 

24 (-1, -F, -S) C Feldspar rich sample with weak foliation and some mica, trace 

molybdenite 

25-S B Foliated sample with feldspar and mica, trace pyrite and molybdenite 

26-S-1 C Feldspar, muscovite and quartz with some pyrite, clear foliation, 

trace molybdenite 

27 (-S-1, -S-2) C Feldspar and quartz dominant, poor foliation, trace pyrite and 

molybdenite 

28 (-S-1, -S-2) B Quartz veins running through gently foliated feldspar and mica rich 

sample with trace pyrite 

29 (-S-1, -S-2) B Poorly foliated feldspar and quartz rich sample with some muscovite 

and trace pyrite 

Samples with -S notation were separated initially using SELFRAG pulsation, -F indicates Frantz magnetic 

separation, the remaining samples were separated by hand; molybdenite for all samples was very fine grained 

(<2mm). Relatively pure molybdenite mineral separates could not achieved for Hemlo samples, except for 

sample 14.  

3.3 Analytical Methods 

3.3.1 Sample Preparation and Mineralogical Analysis 

In most cases, molybdenite separation was done manually by breaking specimens and 

isolating molybdenite grains by hand. Molybdenite grains were then crushed using an agate 

mortar and pestle. Larger molybdenite grains were examined with a table-top Hitachi 

scanning electron microscope (SEM) TM-3000 using a Brucker QUANTAX 70 Energy 

Dispersive X-ray Spectrometer (EDS) at the University of Waterloo. The molybdenite grains 

were observed to be homogeneous with no obvious crystal zoning.  
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The above approach could not be followed for most Hemlo samples (21-29), except 

for sample 14. Initially, disaggregation of rock samples was performed using SELFRAG high 

voltage pulse power fragmentation. However, the molybdenite was too fine-grained to 

achieve a pure mineral separation by hand. Subsequently, samples were powdered in a ball 

mill using agate jars. Mineral separation using heavy liquids, Frantz magnetic separation, and 

flotation in ultrapure water also did not result in a pure mineral separate.  

To obtain a semi-quantitative estimate of sample mineralogy, X-ray diffraction 

(XRD) analysis was performed on bulk powdered samples from the Berg and Hemlo deposits 

at the University of Waterloo (Environmental Particle Analysis Laboratory of the 

Ecohydrology Research Group) using a PANanalytical Empyrean II with a Cu-x-ray tube 

(operated at 45 kV and 40 mA) and a PIXcel3D detector. The detection limit for this method is 

1% and samples were scanned for 1 hour with a 2θ angle in Bragg-Bretano geometry from 

10° and 70°. Various phases were identified by Search-Mach candidates’ spectra using 

HighScore Plus within both a Crystallography Open Database and PAN-ICSD reference 

database based on a “whole pattern” approach as described by Smith et al. (1987).  

3.3.2 Sample dissolution and Mo purification 

For all samples except those from the Hemlo deposit, the Mo isotope and trace 

element concentration data were collected from 0.1 g of separated and crushed molybdenite. 

Molybdenite samples were dissolved in reverse aqua regia (4 mL HNO3 and 2 mL HCl) on a 

hot plate overnight in the W.M. Keck Foundation Laboratory for Environmental 

Biogeochemistry at Arizona State University. Subsequently, digested sample solutions were 

further diluted with 2% HNO3 to make an 8 mL stock solution.  

Molybdenite from the Hemlo deposit samples could not be separated by hand because 

of the trace molybdenite abundance and fine grain size of the molybdenite. Heavy liquid and 

Frantz magnetic separation techniques were also unsuccessful. Ultimately, a reverse aqua 

regia leach of the Hemlo material was performed at the Metal Isotope Geochemistry 

Laboratory at the University of Waterloo. The Mo was isolated and purified from the 

digested solution using a two-step column chemistry method (Duan et al., 2010) at the Metal 

Isotope Geochemistry Laboratory. First anion exchange chromatography using BioRad AG1-

X8 resin was conducted to remove all matrix elements except Fe and Mo. Subsequently, 
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cation exchange chromatography was performed using BioRad AG50W-X8 resin to remove 

Fe and leave behind purified Mo.  

3.3.3. Elemental Analyses 

The Re concentration of the molybdenites was measured on a Thermo i-CAP 

quadrupole inductively coupled plasma mass spectrometer (Q-ICP-MS) at Arizona State 

University for all samples. Samples were diluted with 2% HNO3 to a Mo concentration of 

about 300-400 ppb Mo to avoid excessive Mo contamination in the instruments. Instrumental 

drift was corrected using an internal standard solution (Sc, Ge, In, Bi) introduced into the Q-

ICP-MS along with sample solutions. Instrumental accuracy was verified using secondary 

standards. For Hemlo samples, elemental analysis was also performed for Na, Mg, Al, K, Ca, 

Fe, Zn and Mo concentrations by Q-ICP-MS.   

3.3.4. Mo Isotope Analyses 

Mo isotope compositions and Mo concentrations were measured by MC-ICP-MS at 

Arizona State University using a Thermo Scientific Neptune instrument and a 97Mo-100Mo 

double spike to correct for mass fractionation during ion-exchange chromatography and Mo 

isotope analysis. Molybdenum isotope compositions were measured relative to an in-house 

standard (RochMo2) and then re-calculated relative to the Mo international standard NIST 

SRM 3134 (also measured alongside samples) using the following equation (Nägler et al., 

2014):  

δ98Mo sample (‰) = 1000 × [(98/95Mo sample / 
98/95Mo NIST SRM 3134) – 1] + 0.25 

Previously, Goldberg et al. (2013) determined the international standard NIST SRM 

3134 has a heavier isotopic composition (0.33 ± 0.05‰; 2SD, n = 99) than the in-house 

standard used at ASU (RochMo2). For this study, the measured value for standard NIST 

SRM 3134 was 0.33 ± 0.04‰; 2SD, n = 5 relative to RochMo2. Therefore, to report data 

relative to NIST SRM 3134 = 0.25‰, 0.08‰ was subtracted from each sample Mo isotope 

composition measured relative to RochMo2. The United States Geological Survey reference 

material (SDO-1) was measured during this study to verify instrumental accuracy. The 

average δ98Mo was 1.07 ± 0.02‰ (2SD, n = 5) when normalized to NIST SRM 3134 = 

0.25‰. This data is in good agreement with the average δ98Mo reported for SDO-1 at ASU 

by Goldberg et al. (2013), which is 1.07 ± 0.11‰; 2SD, n = 145 (relative to NIST SRM 3134 
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= 0.25‰). The 2SD uncertainty of a sample is reported as the 2SD uncertainty of sample 

replicate measurements or 0.11‰ (the long-term uncertainty of SDO-1), whichever is greater.  

3.3.5. S Isotope Analyses 

To determine the isotopic composition of sulfur, approximately 0.01-0.05 g of 

separated and crushed molybdenite for each sample was measured using a Costech Element 

Analyzer coupled to an Isochrom Continuous Flow Stable Isotope Ratio Mass Spectrometer 

(EA-IRMS) at the Environmental Isotope Laboratory, University of Waterloo. The S isotopic 

composition is denoted as δ34S relative to the standard V-CDT as seen in the following 

equation:  

δ34S sample (‰) = 1000 × [(34/32S sample / 
34/32S V-CDT) – 1] 

Very finely ground molybdenite separates were placed into tin capsules in a 1000⁰C 

combustion furnace and combusted in the presence of oxygen, which raises the temperature 

and produces pure SO2. Gas chromatography creates a SO2 peak that is then ionized by the 

IRMS allowing the mass of unique S isotopes to be measured. Data for sulfide samples are 

corrected using standards such as IAEA-S1, IAEA-S2 and IAEA-S3 (AgS), EIL-40 (CuS), 

EIL-43 (ZnS), and NBS-123 (ZnS). The uncertainty for these clean sulfide standard materials 

is ± 0.3‰ (Rees, 1984; Morrison et al., 1996). 

3.4 Results 

The Mo isotopic composition for this study ranges from -0.60‰ to 5.34‰ (Table 4). 

The lowest Mo isotope signature came from the Logan Lake epithermal porphyry deposit. 

The Hemlo disseminated Au deposit was found to have the highest Mo isotope signature. The 

porphyry deposits in this study were found to have Mo isotopic compositions ranging from -

0.29‰ at the Lake George deposit to 2.05‰ at the Trout Lake deposit. Multiple hand 

samples were collected for the Berg epithermal porphyry deposit and the Hemlo disseminated 

Au deposit. At the Berg deposit, the overall range for Mo isotopic compositions was nearly 

1‰. The Hemlo deposit had a range of >5‰, greatly exceeding the range for any deposit or 

deposit type in this study.  

The weight percent Mo was also determined by MC-ICP-MS double-spike method 

and the range observed for molybdenite separates (excluding Hemlo samples 21-29) span 
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from 31% to 73% with most samples close to 60% Mo by weight indicating a relatively pure 

mineral separate. As expected, Hemlo samples 21-29 had a low Mo concentration (0.36 to 13 

weight %), which is why additional purification to isolate Mo was performed by column 

chemistry before Mo isotopic measurements were made.   

The S isotope composition was determined for all samples except samples from the 

Hemlo deposit. Since pure molybdenite mineral separates were not obtained for Hemlo 

samples 21-29, S isotopic composition was not determined as it could represent other sulfide 

minerals (e.g., pyrite) and not just the molybdenite of interest. For several pure molybdenite 

separates, multiple measurements of S isotopic composition were taken from separate 

aliquots of the finely ground molybdenite separate (2SD <1‰). The range of S isotopic 

compositions spanned from -4.30‰ at the Childs-Adwinkle deposit to 7.12‰ at the Trout 

Lake deposit, both of which are porphyry deposits. The S and Mo isotope analyses were 

measured on different molybdenite crystals from the same hand sample and show no 

correlation.  

The range of Re concentrations was determined for all samples and ranged from ppb 

levels to several hundred ppm for numerous porphyry (Santo Nino, Childs-Adwinkle, and 

Lake George) and epithermal porphyry deposits (Logan Lake and Berg). Molybdenite from 

the porphyry deposit at Childs-Adwinkle Mine in Arizona was found to have the highest 

concentrations of Re (>500 ppm). A weak negative correlation was observed between Re 

concentration and Mo isotopic composition for global porphyry deposit samples (r2 = 0.388), 

multiple samples from the Berg deposit (r2 = 0.0346), and multiple samples from the Hemlo 

deposit (r2 = 0.233).  

In addition to Re concentration, other elemental data was also collected for Hemlo 

samples. Elements include Na, Mg, K, Al, Ca, Fe, and Zn and are summarized in Table 5. 

Major element data could help in identification of possible Mo host phases at the Hemlo 

deposit. The range of elemental concentrations for the Hemlo deposit are as follows in ppm: 

Na = 20000 – 30000, Mg = 200 – 10000, Al = 4000 – 30000, K = 4000 – 60000, Ca = 3000 – 

60000, Fe = 500 – 60000, and Zn = 500 – 30000. Analysis of mineral assemblages was also 

performed by XRD on bulk sample powders for the Hemlo and Berg deposits. Results are 

summarized in Table 6. A handful of samples from both deposits were found by XRD to have 

1-2% molybdenite with 2H polytype; other samples had molybdenite abundances below the 

detection limit. Additional minerals identified by XRD include feldspathic minerals (albite, 
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anorthite, microcline, orthoclase, sanidine), muscovitic minerals (clinochlore, 

montmorillonite, muscovite) and other minerals (barite, calcite, clinoclase, dolomite, pyrite, 

quartz, sylvite). Most samples from the Hemlo deposit (7 out of 9 hand samples) had a 

greater percentage of feldspathic minerals compared to muscovitic mineral assemblages. At 

the Hemlo deposit, up to 9% pyrite was observed. 

Table 4: Summary of new data from this study including Mo isotope compositions, Mo and Re 

concentrations, and S isotope compositions. 

Deposit 

Type 
Location 

Sample 

ID 

Re 

(ppm) 

Mo 

(wt%) 

δ98Mo 

(‰) 
N 2σ δ34S n 2σ 

G
re

is
en

 Beura, 

Ossa 

Valley, 

Italy 

3A 7.3 60 0.33 1 n/a 

0.52 3 0.36 3B 6.6 57 0.32 1 n/a 

3C 6.9 55 0.34 1 n/a 

P
o

rp
h

y
ry

  

Sach's 

Mine, 

NSW, 

Australia 

1A 0.25 65 0.99 1 n/a 

0.68 4 0.37 

1B 0.26 55 0.93 1 n/a 

1C 0.25 57 0.95 1 n/a 

1D 0.19 58 0.85 2 0.03 

1E 0.12 61 0.97 1 n/a 

Santo Nino 

Mine, 

Arizona 

2A 205.4 65 0.25 2 0.04 

0.81   1.00 
2B  112.5 61 0.24 1 n/a 

Altenberg, 

Saxony 

Germany 

4A 0.4 56 1.76 2 0.00 

0.47 1 n/a 
4B 0.2 55 1.77 1 n/a 

Childs-

Adwinkle 

Mine, 

Arizona 

5A 523.1 60 0.33 2 0.01 

-4.30 1 n/a 
5B 430.8 53 0.43 2 0.02 

Moly Hill, 

Quebec 

6A 42.9 58 -0.15 2 0.01 

-0.50 4 0.82 
6B 12.5 58 -0.02 1 n/a 

6C 30.5 63 -0.08 1 n/a 

6D 12.0 56 -0.03 1 n/a 

Strzegom, 

Poland 

8A 3.9 67 0.08 1 n/a 
0.27 1 n/a 

8B 4.4 66 0.12 1 n/a 

New Ross, 

Nova 

Scotia 

11A 1.5 57 0.76 2 0.04 5.56 2 0.06 

Lake 

George, 

New 

Brunswick 

12A 207.5 73 -0.19 2 0.00 

-3.34 2 0.81 
12B 266.6 41 -0.29 2 0.09 

Trout 

Lake, New 

Brunswick 

13A 29.0 50 2.05 2 0.04 7.12 2 0.12 

P i p e - l i k e  M o - W - B i 
 

Wolfram, 7A 7.3 46 0.10 1 n/a 2.27 3 0.57 
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Queenslan

d, Australia 

7B 7.4 65 0.04 1 n/a 

7C 7.7 59 0.07 1 n/a 

7D 8.0 60 -0.11 2 0.03 
E

p
it

h
er

m
al

 P
o

rp
h

y
ry

 

Logan 

Lake, 

British 

Columbia 

10A 428.2 51 -0.59 1 n/a 

2.35 1 n/a 
10B 425.9 54 -0.60 1 n/a 

Berg, 

British 

Columbia 

9A 147.2 59 -0.13 1 n/a 
1.01 2 0.43 

9B 144.6 58 -0.13 1 n/a 

15A 72.3 32 -0.05 3 0.12 -1.10 2 0.08 

16A 129.2 70 0.77 3 0.01 
1.48 4 0.28 

16B 125.1 54 0.77 3 0.07 

17A 146.8 50 -0.17 3 0.01 -0.32 1 n/a 

18A 242.6 47 -0.03 3 0.03 
-0.10 3 0.10 

18B 253.2 49 -0.06 3 0.10 

19A 119.0 40 0.10 3 0.09 -0.80 2 0.04 

20A 108.4 43 -0.01 3 0.05 
-1.28 2 0.03 

20B 103.4 45 0.00 3 0.04 

D
is

se
m

in
at

ed
 A

u
  

Hemlo, 

Ontario 

14A 23.1 49 2.05 2 0.03 

-3.34 1 n/a 14B 25.7 31 2.04 1 n/a 

14C 241.0 64 -0.25 3 0.02 

21-1 0.08  0.36 2.10 3 0.03 

n/a 

22-1 0.52 0.36 1.47 3 0.03 

22F n/a 1.4 1.42 3 0.01 

23-1 0.95 3.8 1.84 3 0.02 

23-S 0.45 1.4 1.96 3 0.02 

24-1 3.7 11 0.51 3 0.04 

24F n/a 2.4 0.54 3 0.03 

24-S 4.1 13 1.38 3 0.04 

25-S 0.12 n/a n/a   

26-S-1 0.12 3.3 1.72 3 0.08 

27-S-1 0.24 0.61 1.54 3 0.01 

27-S-2 0.36 0.62 1.42 3 0.02 

28-S-1 0.05 n/a n/a   

28-S-2 0.16 n/a n/a   

29-S-1 0.15 0.44 5.32 3 0.05 

29-S-2 0.24 0.49 5.34 3 0.01 

 

Table 5: Q-ICP-MS elemental data for all molybdenite mineral separates and reverse aqua regia leaches of 

Hemlo samples. 

Sample ID Na Mg Al K Ca Fe Zn Mo  

Unit ppm ppm ppm ppm ppm ppm ppm ppm  

DL 1.7 0.068 0.47 1.3 1.5 0.3 0.069 0.0046  
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1A 

n/a 

<DL <DL 682229  

1B <DL <DL 589851  

1C 470 <DL 631444  

1D <DL <DL 650183  

1E <DL <DL 709087  

2A <DL <DL 690172  

2B 801 <DL 615238  

3A <DL <DL 602964  

3B <DL <DL 596734  

3C <DL <DL 595360  

4A 852 <DL 574325  

4B 4093 <DL 572663  

5A 1696 <DL 602292  

5B 20982 <DL 538316  

6A 968 <DL 582443  

6B <DL <DL 575817  

6C <DL <DL 659563  

6D <DL <DL 579340  

7A <DL <DL 463161  

7B <DL <DL 646898  

7C <DL <DL 589509  

7D 589 <DL 604084  

8A 2219 <DL 669494  

8B <DL <DL 659295  

10A 17945 <DL 510531  

10B 13600 <DL 536359  

11A 1806 <DL 574297  

12A 2823 <DL 746010  

13A 6908 <DL 509939  

9A 1299 <DL 587256 

                           B
erg

, B
C

 

9B 1620 <DL 577557 

15A 15952 <DL 301020 

16A 13371 11009 115888 

16B 7176 1080 75160 

17A <DL <DL 462237 

18A 4924 8250 472447 

18B 2061 25923 449087 

19A 6122 4454 371191 

20A 11531 4453 408041 

20B 5422 5643 432875 

14A 53140 890 494331 

                                        

H
e

m
l

o
, 

ON
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14B 24772 <DL 309062 

14C 1491 7705 404651 

21-1 26362 590 12469 6576 13094 104996 1038 2882 

22-1 30000 175 6075 5332 7550 334107 1322 2600 

23 30445 6839 21700 8771 20443 45887 840 17875 

23-S 26259 11418 29051 7270 20695 105141 4658 10730 

24 24677 1536 7398 5892 8741 76361 808 66402 

24-S 25036 344 3987 5323 2579 34835 487 36836 

25-S 29325 5587 13124 13431 57991 142622 3166 304 

26-S-1 23357 295 6919 5355 6523 1219 1253 17464 

27-S-1 17763 2172 12072 5520 15156 32154 627 4290 

27-S-2 20535 721 8333 3650 12226 32349 1383 3945 

28-S-1 19125 2118 7958 3870 11682 99541 795 44 

29-S-1 20254 1734 20637 62542 18367 13059 802 2956 

Abbreviations: DL = detection limit 

Table 6: XRD results (as weight percent minerals) for the Berg and Hemlo samples. 

S
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M
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C
a

lc
it

e 

C
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D
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M
o
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d
en
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2
H

 

P
y

ri
te

 

Q
u

a
rt

z 

S
y

lv
it

e 

T
o

ta
l 

15 

B
er

g
, 

B
C

 

  8   21 10   10     10 3   2 1 42 1 108 

16 41 9   15     5               19   89 

17 8 4         30     5   9     43   99 

18 37 10   23 17   5               6   98 

19 11 33   8 7   12     1   1     28   101 

20   3         8     2 2 3 1   77   96 

21 

H
em

lo
, 

O
N

 

    22 15   2   29   2     1 3 27   101 

22 8 10           42   6     1 5 29   101 

23           4   37           1 58   100 

24 3 10 25 17 22     13 1 1         6   98 

25 5 11 14 16 22 1   20 1 1       1 7   99 

26     29 19       20           2 29   99 

27   12 12 17 15 4   9 5 10     2 8 4 2 100 

28 4 10 10 20 16 2   28   2       1 6   99 

29 18 17 4 6 20 2   18 1 1         13   100 

  Feldspar Minerals Muscovitic Minerals          
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3.5 Discussion 

3.5.1 Fingerprinting deposit type using Mo isotopes 

Mathur et al. (2010a) suggested that the Mo isotopic signature of molybdenite may be 

useful for fingerprinting the deposit type. Their study included a total 33 samples from skarn, 

porphyry-type, epithermal polymetallic veins and Fe oxide Cu-Au deposits. Based on the new 

data from this study and the δ98Mo molybdenite compilation from Breillat et al. (2016), 

representing 420 samples in total, there is no significant relationship between δ98Mo and 

deposit type (Figure 5). Substantial overlap in δ98Mo is observed across all deposit types. 

This expanded compilation also indicates that porphyry deposits can have higher δ98Mo 

compositions than previously reported. The Hemlo disseminated Au deposit is unusual, 

however, in having the highest known δ98Mo values compared to other deposits as well as 

other geological materials (Kendall et al., 2017).   
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Figure 5: Compilation of Mo isotopic signatures for different deposit types (Breillat et al., 2016; Wang et al., 

2016; Yao et al., 2016; this study). All data are reported relative to NIST SRM 3134 = 0.25‰. 

3.5.2 Mo isotopes as an indicator for fluid temperature 

Fluid temperature plays an important role in the fractionation of Mo isotopes in ore 

deposits (Greber et al., 2014; Shafiei et al., 2015; Breillat et al., 2016). However, there are 

two conflicting hypotheses for how temperature will influence Mo isotope fractionation. 

Greber et al. (2014) observed Mo partitioning between the fluid and crystal phases and 

suggested that high temperature fluids will precipitate the light Mo isotopes first. The 

mineralizing fluid will evolve towards a heavy Mo isotope signature as the system cools, 

leading to the precipitation of molybdenite with a heavier isotopic composition. The opposite 

trend was observed by Shafiei et al. (2015) where the Mo isotope signature of molybdenite 

gradually decreased with fluid evolution and decreasing temperatures. Shafiei et al. (2015) 

attribute the observed fractionation to fluid boiling which caused partitioning between vapour 

and brine phases. The data from this study and compilation correlates best with the proposal 

by Greber et al. (2014). In general, higher temperature systems were found to have lower 

average Mo isotope compositions (granite = 0.10‰, n = 25, 2SD = 1.03‰; porphyry = 

0.20‰, n = 243, 2SD = 1.01‰; skarn = 0.36‰, n = 42, 2SD = 0.70‰) compared to lower 

temperature systems (pegmatites = 0.48‰, n = 80, 2SD = 1.05‰; perigranitic = 0.75‰, n = 

10, 2SD = 1.12‰; greisen = 0.79‰, n = 6, 2SD = 1.93‰), which is consistent with 

conclusions from Breillat et al. (2016). Temperature is not the only control on the Mo isotope 

composition of molybdenite, however, and other fractionation mechanisms must also be 

considered.  

3.5.3 Defining the average Mo isotopic signature for molybdenites 

Based on the Mo isotope compilation in this study, there is no significant correlation 

between the Mo isotopic signature and the age of the deposit (Figure 6). Consistent with 

studies by Hannah et al. (2007) and Breillat et al. (2016), this observation implies that there 

are no major first-order temporal changes in the isotopic composition of the sources to the 

fluids that crystallize molybdenite as well as the isotopic composition of molybdenite sources 

of Mo to rivers and the oceans from oxidative weathering of the upper continental crust. The 

large suite of data can be used to define an average δ98Mo signature for molybdenites, which 

is calculated to be 0.37‰ (n = 479; 2SD = 1.3‰). It is worth noting that the highest recorded 
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Mo isotopic composition is from the oldest (late Archean) sample. The average molybdenite 

δ98Mo is slightly higher than the average Mo isotopic signature of approximately 0.3‰ for 

granites and basalts (Voegelin et al., 2014) and similar to the estimated maximum upper 

crustal value of 0.4‰ (Willbold and Elliott, 2017), which is consistent with predictions by 

Greber et al. (2014). The Mo isotopic composition of molybdenite likely represents the 

maximum average for both the upper continental crust and bulk continental crust because 

hydrothermal fluids have on average an isotopically heavier signature than their source 

magmas (Greber et al., 2014; Voegelin et al., 2014; Willbold and Elliott, 2017). The average 

crustal Mo isotope composition is useful to help constrain the Mo isotope composition of Mo 

inputs to rivers and oceans, which will enhance the use of Mo isotopes as a tool for 

estimating ocean paleoredox conditions.   

 

Figure 6: Relationship between deposit age and Mo isotopic composition. 
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3.5.4 Mo isotopes vs elemental concentrations 

Previous studies have shown that the δ98Mo of molybdenites generally inversely 

correlates with the Re concentration of molybdenites on ore-deposit and regional scales 

(Mathur et al., 2010a; Wang et al., 2016). This relationship may be useful for indicating the 

Mo isotopic composition of different fluid sources (Wang et al., 2016). Figure 7 shows the 

new Mo isotope data from molybdenite mineral separates in this study (excluding the Hemlo 

deposit) combined with the previous work of Mathur et al. (2010a) and Wang et al. (2016). 

From this figure, a weak inverse relationship between Re concentration and Mo isotopic 

composition is observed for porphyry deposits (r2 = 0.388). The correlation is weak compared 

to previous studies because these samples are from multiple deposits and represent a global 

scale. The Re concentrations from the Berg epithermal porphyry deposit have little 

correlation with Mo isotopic composition, although it is noted that the range of Re 

concentrations and Mo isotope compositions is small (Figure 8; r2 = 0.0346). Most impure 

molybdenite separates from the Hemlo disseminated Au deposit have Re concentrations very 

close to the detection limit but they also maintain a weak inverse relationship with Mo 

isotopic composition (r2 = 0.2333).  

At a regional scale, Wang et al. (2016) found that samples with a high Re 

concentration and a low Mo isotope signature indicate a mantle-derived source fluid, whereas 

samples with a low Re concentration close to zero and a high Mo isotope signature indicate a 

source with more crustal influence. Hybrid magmas with a mix of both crustal and mantle 

source fluids have a Mo isotopic signature near 0.25‰ relative to NIST SRM 3134 = 0.25‰ 

(Wang et al., 2016). For samples with Mo isotopic signature greater than 1.5‰, the Re 

concentrations are uniformly low. The variability in Figure 7 indicates mixing of the crustal 

and mantle-derived fluids along with further Mo isotope fractionation by mechanisms such as 

fluid boiling or redox conditions. The Mo isotope fractionations associated with ore-forming 

processes can muddle the relationship between Mo isotope composition, Re concentration, 

and metal source.  
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Figure 7: Re concentration vs Mo isotopic composition of pure molybdenite separates from all deposits 

(excluding Hemlo) from this study and compiled literature data (Mathur et al., 2010a; Wang et al., 2016). 
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Figure 8:  The Re concentration vs Mo isotopic composition of relatively pure molybdenite separates from 

the Berg deposit and impure mineral separates from the Hemlo deposit. 

The element Fe can also be found as a trace element in molybdenite and Mo is a 

common trace element in pyrite that is roughly 46% Fe by weight. Although pyrite has a 

much lower Mo concentration than molybdenite, it is likely the primary crustal source for Mo 

due to the much greater abundance of pyrite in the crust compared to molybdenite (Miller et 

al., 2011). Molybdenite mineral separates were analyzed for their Fe concentration. Fe 

concentration data compared to the molybdenite isotopic composition for all deposits, 

excluding Hemlo, is summarized in Figure 9 and no trend was observed. Although no trend 

was observed, a relationship may exist for the Hemlo deposit because whole rock analysis 

revealed that several Hemlo samples are rich in pyrite, often exceeding the abundance of 

molybdenite in the whole rock. Also, initial attempts to separate molybdenite by hand were 

ineffective, and elemental data by Q-ICP-MS revealed that many of these samples have high 

concentrations of Fe. One of the Hemlo samples was observed to have approximately 33% Fe 

by weight, which may indicate the mineral separate contained more pyrite than molybdenite 

(Figure 10). Since some of the mineral separates for the Hemlo deposit likely represent pyrite 

and not molybdenite, the Fe concentration was compared to the Mo isotopic composition to 
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determine if any correlation exists. This data is summarized in Figure 10; again, no 

correlation was found.   

 

Figure 9: Fe concentration of molybdenite mineral separate for all samples (excluding Hemlo) plotted 

against the Mo isotopic composition. 
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Figure 10:  Fe concentration of mineral separate plotted against the Mo isotopic composition for Hemlo 

deposit samples. 

The Mo isotopic composition can also be compared to the Mo concentration of the 

samples to see if a relationship exists. Many samples in this study were digested from 

relatively pure molybdenite separates therefore the expected Mo composition is 60% by 

weight. However, some samples were distinctly less than 60% by weight and hence these 

samples were not pure mineral separates. The Hemlo samples have Mo concentrations 

substantially less than 60% (from <1% to 13%) and hence required additional chemical 

purification to isolate the Mo for isotope analysis. The concentration of Mo does not appear 

to be a control on the Mo isotopic composition when comparing the entire molybdenite 

separates dataset (Figure 11) as well as individual deposits (Figure 12). As seen in Figure 11, 

the concentration of Mo for these samples is very low (<20%) and it is likely that for samples 

with a high Fe % by weight, the Mo isotope signature represents pyrite rather than 

molybdenite. 
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Figure 11: Mo concentration determined by MC-ICP-MS sample-double spike method compared to Mo 

isotopic composition for all pure molybdenite separates (all samples, excluding Hemlo). 
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Figure 12: Mo concentration determined by the MC-ICP-MS sample-double spike method compared to Mo 

isotopic composition for pure molybdenite separates from the Berg deposit and impure mineral separates 

from the Hemlo deposit. 

3.5.5 Mo isotopes vs S isotopes 

Rayleigh distillation is a possible mechanism of Mo isotope fractionation in ore 

deposits (Hannah et al., 2007; Greber et al., 2011; Greber et al., 2014). Molybdenite is 

approximately 40% S by weight and S is known to experience Rayleigh distillation as a main 

fractionation mechanism (Hannah et al., 2007). Therefore, measuring the degree of 

covariation between Mo and S isotope compositions in molybdenites from a single deposit 

can shed light on whether Rayleigh distillation also plays an important role in Mo isotope 

fractionation. If a positive relationship between the two isotope systems is observed in an ore-

forming system with limited Mo and S availability, then Rayleigh distillation is the main 

mechanism of isotope fractionation (Hannah et al., 2007). In Figure 13, the S isotopic 

composition is plotted against Mo isotopic composition for samples collected in this study 

(excluding the Hemlo deposit) and no correlation is observed. Focusing on just the Berg 

deposit or only porphyry-type deposits also does not yield a good correlation. It is possible 

that Rayleigh distillation still plays an important role in the fractionation of Mo isotopes for 
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some deposits, but this would be more clearly depicted on a local scale. Using a global 

sample suite, the variability in ore-forming conditions including the effects of multiple 

mineralization events, source fluid, fluid boiling, fluid mixing, water-rock interaction and late 

low temperature alteration may cause poor correlations with S isotope compositions. 

 

 

Figure 13: No clear correlation was observed between Mo and S isotopic compositions for molybdenites. 

3.5.6 Mo isotope variation in a single deposit 

Greber et al. (2014) found variation within a single deposit can extend to greater than 

1.0‰. In this study, several hand samples were collected from the Eocene Berg epithermal-

porphyry deposit and the Archean Hemlo disseminated Au deposit. The Mo isotope data from 

these two deposits are summarized in Figure 14. Mo isotopic variation from the Berg deposit 

is approximately 0.3‰ with one isotopically heavier sample expanding this range to 1‰. The 

range of Mo isotope variation is similar to that observed in previous studies of Mo isotope 

fractionation in a single porphyry deposit (Hannah et al., 2007; Mathur et al., 2010a; Greber 

et al., 2011, 2014; Shafiei et al., 2015; Breillat et al., 2016). By comparison, the Hemlo 
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deposit has a much wider range of Mo isotope variation of >5‰, ranging from -0.25‰ to 

5.34‰. This range is much greater than the range of Mo isotope compositions previously 

recorded for any deposit type and indicates significant Mo mobility and isotope fractionation 

occurred at the Hemlo deposit.  

 

Figure 14: Range of Mo isotopic compositions observed at a single deposit. 

The range of Mo isotopic compositions observed at the Hemlo disseminated Au 

deposit suggest that the processes responsible for Mo isotope fractionation will lead to a 

higher Mo isotopic composition. The Shafiei et al. (2015) model of decreasing Mo isotopic 

signature over time through liquid-vapour partitioning will not fit the Hemlo data because a 

starting isotope composition of the Mo source fluid would need to exceed 5‰. At the Hemlo 

disseminated Au deposit, redox conditions were likely a major control on molybdenite 

mineralization (Heiligmann et al., 2008; Phillips and Powell, 2010). Under reducing 

conditions, the first molybdenites precipitated with a lighter Mo isotope signature. As 

molybdenites precipitated, the residual fluid evolved to a heavier isotopic composition. 

Therefore, redox fractionation stemming from molybdenite crystallization in the presence of 

S-rich reducing fluids is a possible mechanism responsible for the high Mo isotopic 

signatures observed at this deposit. 

At the Hemlo deposit, the feldspathic and muscovitic mineral assemblages represent 

two separate Mo mineralization events (Lin, 2001; Muir, 2002; Heiligmann et al., 2008). 

Samples with a higher percentage of muscovitic minerals had a smaller range of Mo isotopic 

compositions (1.42‰ to 1.96‰) compared to samples with more than 50% feldspathic 

minerals which span the entire range of observed Mo isotopic compositions at the Hemlo 

deposit. The high-grade Mo associated with the feldspar mineral assemblage was precipitated 

first, which may indicate secondary alteration led to further Mo isotopic fractionation up to 

5‰. The amount of feldspar minerals, muscovitic minerals and/or quartz was found to have 

little influence on the Mo isotopic composition for samples from the Berg deposit (Figure 
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15B). Elemental data for the impure mineral separates from the Hemlo deposit revealed that 

the sample with the highest known Mo isotope signature had over 6% potassium by weight 

prior to Mo purification (Figure 16). Based on whole rock XRD analysis, this sample had 

significant amounts of K-rich feldspars and muscovite which would comprise nearly 6% K 

by weight. Therefore, the high K concentration observed in the mineral separate is likely 

another indication that initial separation of molybdenite was ineffective.  

 

A 

B 
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Figure 15: A: Mineral composition of the whole rock samples from the Hemlo deposit compared to the Mo 

isotopic composition of the isolated and purified molybdenum; B: Mineral composition of the whole rock 

samples from the Berg deposit compared to the Mo isotopic composition of the molybdenite separates. 

 

Figure 16: Hemlo sample elemental data from reverse aqua regia leaches of the impure molybdenite mineral 

separates compared to Mo isotopic composition after Mo purification. 

3.5.7 Mo isotope variation in hand samples and single grains 

Significant variability in the Mo isotope composition of molybdenites can occur for 

specific categories of ore deposits (> 2‰) and even within single deposits (> 1‰), including 

at the cm-scale (Hannah et al., 2007; Mathur et al., 2010a; Greber et al., 2011, 2014; Shafiei 

et al., 2015; Breillat et al., 2016). To test this hypothesis, several measurements were made 

for different molybdenite grains from the same hand sample for 20 hand samples from 

various deposit types. For most hand samples, variation did not exceed ~0.2‰. The average 

observed variation for δ98Mo in a single hand sample is 0.06‰ (n=18), which is within the 

long-term analytical reproducibility of the Neptune MC-ICP-MS instrument at ASU. By 

contrast, significant Mo isotope fractionation at the hand sample scale was observed in 2 

samples from the Hemlo disseminated Au deposit. Sample 24 (Mo = 2.4-13 weight %) 

yielded a range in δ98Mo of 0.87‰ (n=3, 2SD = 0.99‰) and sample 14 (the best pure 
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molybdenite mineral separate from this deposit; Mo = 31-64 weight %) had an even wider 

range of 2.30‰ (n=3, 2SD = 5.3‰). These exceptions are consistent with the cm-scale 

variability observed by Greber et al. (2011) although the range of fractionation observed is 

much greater. The variation observed in the two samples could be attributed to lithological 

variation at the hand sample scale compared to the other samples. Remobilization of Mo at 

the hand-sample scale for the Hemlo deposit is another possibility but is considered less 

likely given that Mo isotope variability was not observed for other Hemlo samples.  

Using coarse grained molybdenite, the Mo isotope variability within a single grain of 

molybdenite was also tested. Four large (>1 cm) molybdenite grains were selected; 2 grains 

from the Sach’s Mine porphyry deposit in Australia, 1 grain from the Moly Hill porphyry 

deposit in Quebec, and one 1 large grain from the pipe-like Mo-Bi-W Wolfram deposit. 

These grains were cut parallel to cleavage and/or across cleavage planes. Variation in a single 

grain was observed to be no more than ~0.1‰ (2SD = 0.2‰), which is not readily 

distinguishable from the long-term analytical reproducibility. These findings agree with the 

SEM results of homogeneous molybdenite crystals with no zoning, and suggest limited 

isotopic zoning occurs in single molybdenite grains. 

3.6 Conclusions 

By expanding on previous data compilations of the Mo isotopic composition of 

molybdenites, this study has furthered understanding on Mo cycling during ore deposit 

formation. The range of Mo isotopic compositions was greatly expanded from -1.37‰ to 

5.34‰ and the average molybdenite composition is now calculated to be 0.37‰ (n=479, 2SD 

= 1.3‰), which can be used to define the upper limit for the average upper crust Mo isotope 

composition, in agreement with the upper limit of 0.40‰ suggested recently by Willbold and 

Elliott (2017). It is unlikely that Mo isotopic signatures from molybdenites or reverse aqua 

regia digests of molybdenite-bearing rocks can be used as a tool to fingerprint deposit type or 

the age of the deposit (Breillat et al., 2016). There does, however, appear to be a relationship 

between Mo isotopic composition and temperature as well as Mo source fluid. High 

temperature deposits such as granites, skarns and porphyries tend to have a lower signature 

than relatively low temperature pegmatite or greisen deposits (Breillat et al., 2016). The slight 

negative correlation between Mo isotope signature and Re concentration suggests mantle 

fluids produce lower Mo isotopic signatures than fluids with more crustal influence (Mathur 
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et al, 2010a; Wang et al., 2016). However, these trends can be hidden if the deposit has 

experienced additional Mo isotope fractionation after the initial mineralization event. 

This study also confirmed the work of Greber et al. (2014) and found some Mo 

isotopic variability can occur at the hand sample scale. However, little isotopic variation was 

observed when looking at individual molybdenite grains and no zoning was observed using 

SEM. The range of Mo isotopic variability in a single deposit was greatly expanded, with the 

Archean Hemlo disseminated Au deposit shown to exceed 5‰. The Hemlo deposit also has 

the highest recorded Mo isotope signature to date of 5.34‰. This high Mo isotope signature 

best fits the model proposed by Greber et al. (2014) where the Mo isotope signature of 

hydrothermal fluids gradually increases over time through removal of lighter Mo isotopes 

during relatively low temperature alteration.  

There are many possible fractionation mechanisms for Mo isotopes in ore deposits. 

These include fluid-boiling, redox conditions, and Rayleigh distillation. The lack of 

correlation between Mo and S isotopic composition means Rayleigh distillation cannot be 

identified as the primary mechanism for Mo isotope fractionation. It is likely that a 

combination of fractionation mechanisms affect Mo cycling in the ore system. At the Hemlo 

deposit, redox conditions were identified as possible fractionation mechanism. The 

fractionation mechanism, temperature of fluids and fluid source must all be considered when 

interpreting the Mo isotopic signature of an ore deposit. 

 

Chapter 4: Conclusion 

4.1 Summary of Findings 

This thesis began with 5 distinct objectives. In chapter 2, a detailed review of heavy 

metal isotope systems in ore deposits was conducted. This review focused on isotope systems 

that have been studied in detail, namely Cu and Zn. Other less-studied isotope systems were 

also reviewed including Mo, Fe, Pb and U, as well as systems still in their infancy, such as 

Hg, Se, Ni and Ge. By reviewing these isotope systems, patterns emerged that guided 

interpretation of new Mo isotope data in Chapter 3. The difference between mass dependent 

(eg. Cu, Zn) and volume dependent isotope fractionation (e.g., U) was explored. A variety of 

mass-dependent isotope fractionation mechanisms were examined including redox 
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conditions, Rayleigh distillation, fluid boiling, and fluid-vapor partitioning. Some systems 

such as Cu were observed to gradually evolve to a higher isotope signature in the mineral, 

whereas other isotope systems such as Zn had the opposite trend. This review provided a 

solid foundation for Chapter 3 and helped to build and expand on comprehension of Mo 

cycling in ore deposits thus satisfying objective 1. 

 The second objective of this study was to generate a Mo isotope data compilation for 

molybdenites and use this data to infer the maximum average upper crustal Mo isotope 

signature. A total of 479 molybdenite samples were used in this compilation by combining 

previous work with new data from this study. The average crustal molybdenite composition 

was calculated to be 0.37‰ relative to NIST SRM 3134 = 0.25‰. This average is similar to a 

previous estimate of the maximum Mo isotope composition for the upper continental crust 

(0.40‰; Willbold and Elliott, 2017). The range of Mo isotopic signatures for molybdenites 

has been expanded to >5‰ with several measurements exceeding 2‰ relative to NIST SRM 

3134 = 0.25‰. This data was then used to disprove the hypothesis by Mathur et al. (2010a) 

as it was determined that the Mo isotopic composition could not be used to fingerprint the 

deposit type. However, data from this study did support the hypothesis by Breillat et al. 

(2016) that high temperature deposits have a generally lower Mo isotopic composition 

compared to low temperature deposits.  

Using the new dataset from this study of 14 different deposits, objective 3 was 

accomplished by determining Mo isotopic variability at a small scale. This study found that 

average variation observed in most hand samples (0.06‰) was within the MC-ICP-MS 

instrument reproducibly. Two hand samples greatly exceeded this variation (0.87‰ and 

2.30‰) which agrees with previous findings of small scale variation by Greber et al. (2014). 

When examining a single molybdenite grain parallel and/or perpendicular to cleavage, very 

little variation was observed (~0.1‰).  

The fourth objective of this project involved comparing Mo isotopic composition to 

Re concentrations and S isotope compositions to determine if a correlation exists. First, the 

Mo isotopic composition was compared to the Re concentration since Re is known to 

substitute for Mo into the molybdenite crystal lattice. A negative correlation was observed, 

which agrees with studies by Mathur et al. (2010a) and Wang et al. (2016), suggesting that 

the Mo source fluid (mantle vs. crustal) has some influence on the resulting Mo isotope 

signature. Second, the Mo isotopic composition was compared to the S isotopic composition 
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since molybdenite is roughly 40% S by weight. If a positive correlation was observed, this 

would indicate that Rayleigh distillation is the main mechanism for fractionation of Mo 

isotopes. However, this trend was not observed at any scale. This does not mean Rayleigh 

distillation is not a Mo isotope fractionation mechanism, just that it is not the sole mechanism 

responsible for fractionation and that further low temperature fractionation mechanisms may 

cause decoupling of Mo and S isotope signatures.  

The final objective of this project was to take a detailed look at Mo isotopic behavior 

in a single deposit. To achieve this, multiple hand samples were collected from the Eocene 

epithermal-porphyry deposit in Berg, BC as well as the Archean disseminated Au deposit in 

Hemlo, ON. Hand samples from the Hemlo deposit had some very unexpected results. The 

highest recorded Mo isotopic composition for molybdenite of 5.34‰, as well as the widest 

range of Mo isotopic variation in a single deposit, were measured at this late Archean deposit. 

This is further evidence that supports the model for increasing Mo isotope signatures in 

mineralizing systems with further low temperature alteration as proposed by Greber et al. 

(2014). 

4.2 Future Work 

The completion of this project has offered valuable insights into Mo cycling in ore 

systems. The presence of very high Mo isotope signatures, particularly at the Archean Hemlo 

deposit, show that further low temperature alteration is likely to result in the light Mo 

isotopes being preferentially incorporated into minerals, resulting in an isotopically heavy 

residual fluid that can impart heavy Mo isotope compositions to minerals during later-stage 

alteration. The dominant fractionation mechanisms for ore deposits in general are still 

unclear. Based on these findings, it is likely that a combination of fluid-boiling, Rayleigh 

distillation, fluid-vapor partitioning, and redox conditions (either through S-rich fluids or 

meteoric fluids) play a role in Mo isotope fractionation in ore deposits. Further work is still 

needed to experimentally determine Mo fractionation factors and clarify how various 

fractionation mechanisms influence partitioning of Mo isotopes in ore systems. 

There is still a lot of work to be done before Mo isotopes can be refined into a useful 

exploration tool, however, the potential is there. The wide range of observed Mo isotopic 

compositions as well as the scope of deposit types that molybdenite is found in make 

continued study of this system a valuable and interesting avenue for continued geochemical 
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and economic geology research. The success of isotope systems such as Cu and Zn have 

motivated research in this field and it is clear that less studied systems such as Mo and other 

isotope systems mentioned in Chapter 2 also have great potential to be refined for improving 

ore genetic models and exploration applications. 
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