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Abstract

The need for investigation and characterization of physical, chemical and structural
properties of material surfaces at the micro and nano scales led to the invention of Atomic
Force Microscopy (AFM) in 1986 as a successor to the well-known Scanning Tunneling
Microscopy (STM) to overcome the main shortcoming of STM, which worked only on
conducting or semiconducting materials. In fact, the idea of AFM is predicated on the
measurement of inter-atomic interaction forces between the molecules of a sharp stylus at
the end of a silicon probe and the molecules of a specimen, when the tip comes to close
proximity (less than 100nm) of the sample.

It detects the height of the probe hovering above the specimen surface by measuring
the tip deflection, or the amplitude and frequency of its vibration. In each case (mode), the
interaction forces between the sharp tip and the specimen govern the measured parameter
which is detected optically by a laser beam reflected of the probe back side. A piezo-
electric actuator drives the probe vibrations and Z-axis motions. Optical detection and
piezoelectric actuation contribute significantly to the price and complexity of traditional
AFM systems.

In this research effort, we use electrostatic actuation and capacitive motion detection
of off-shelf AFM probes via electrodes printed on a Printed Circuit Board (PCB), thereby
eliminating the optical and piezoelectric components of traditional AFMs, drastically re-
ducing its cost, size and complexity as well as enabling new AFM operating modes. Two
configurations for the probe-electrode system were modeled, simulated and demonstrated
experimentally. The actuation voltage contains DC and AC components while the ac-
tuation frequency is set close to the probe natural frequency. Model and experimental
results show that the DC component controls the operating point (static gap between the
electrode and the probe) and the AC component controls the sensitivity of the AFM.

The detector output current is first amplified using a low-noise transimpedance am-
plifier. Next, a lock-in amplifier measures the magnitude and phase of the current at the
second harmonic of the actuation frequency which is directly related to the tip-sample
separation. This detection method overcomes the effect of large parasitic capacitance. It
enables us to sketch two-dimensional maps of the current’s magnitude or phase representing
the specimen’s topography.

To improve sensitivity, the static distance between the probe’s tip and the specimen was
set to operate the AFM in intermittent (tapping) mode. A nano-stage was developed for
this purpose. It allows us to raster scan the specimen surface. In future work, automatic
closed-loop feedback control should be deployed to manage the height of the AFM tip over
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the specimen. A resonant drive and detection scheme should also be used to miniaturize
the footprint of the AFM system to a few centimeters.
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Chapter 1

Introduction

Scanning Probe Microscope (SPM) is one of the crucial methods for characterization of

surface physical properties at micro or nano scale. The invention of Scanning Tunneling

Microscope (STM) in the early 80’s and Atomic Force Microscopy Atomic Force Micro-

scope (AFM) in the mid 80’s opened new horizons for detection of physical properties and

structure of specimen. AFM offered the additional ability to manipulate surfaces at the

atomic scale, thereby allowing new technologies in diverse areas of research and industry,

such as insertion of magnetic and electric charges at nano-scale.

AFM and, more generally, SPM rely on the detection of inter-atomic interactions be-

tween the probe and the surface of interest. A vast variety of physical properties underly

this interaction and, hence, there is a wide range of SPM types. But the basic mechanism

is the same: a sense probe, usually a microscale silicon cantilever, and a laser beam. The

free end of the cantilever carries a sharp stylus with a tip radius in the range of several

micrometers to several nanometers. The tip is brought in proximity of a target surface

to take a ‘measurement’. The coating of the microbeam and stylus, the frequency of its
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oscillations, the separation distance between the tip and surface and the mode of operation

are managed to detect different physical properties and spatial information.

1.1 Background

State-of-the-art SPM systems are multipurpose instruments supporting various microscopy

modes. They utilize piezoelectric actuators to manage the separation distance between the

tip and surface and to scan the tip over the surface. Broadly speaking, AFM modes can be

classified into static and dynamic modes. In static modes, the actuator merely controls the

height of the tip over the surface as the laser beam measures the probe deflection under

the tip-surface interaction forces. The deflection can be mapped versus the spatial coor-

dinates as a measure of the physical property underlying the interaction force to produce

an ‘image’of the physical property over the specimen’s surface. In dynamic modes, the

actuator drives the probe to oscillate at a fixed frequency as the laser beam measures the

amplitude, phase or frequency of oscillations. The variation of these properties may be

extremely small, however, thanks to advanced electrical measurement techniques, they can

be detected and mapped in associate with surface coordinates to produce the image.

• In Amplitude modulated-AFM (AM-AFM), the amplitude of oscillation is measured

as it changes as a function of the interaction forces between the tip and surface.

These forces affect the probe’s instantaneous stiffness and/or damping.

• In Frequency modulated-AFM (FM-AFM), the shift in vibration frequency from the

excitation frequency due to the surface forces is measured. A Phase Locked Loop
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(PLL) detects this shift and use it as measurand.

Depending on the distance between the tip and specimen surface, AFM modes can also

be broken into four standard modes:

• Contact Mode: The tip comes into contact with the specimen surface with a

constant force as the laser beam measures its deflection of peak frequency. It then

retracts and moves to the next point in the scan to repeat the process.

• Non-contact Mode: The tip hovers over the surface at a controlled height as

surface forces affect the overall force applied to the probe.

• Intermittent Mode: A combination of the previous modes benefiting from the

advantages of both. The tip touches the surface temporarily while oscillating. This

method, also called tapping mode, is specifically useful for soft specimens, such as

living cells and soft polymers.

• Lateral Force Microscopy: The probe, in this mode, does not oscillate transver-

sally, but in torsional motion.

1.2 Motivation

Atomic Force Microscopy was invented by Binnig, Quate and Gerber in 1985 [10] as a

successor to STM to overcome its limitation to conducting and semi-conducting surfaces.

AFM measures the interaction forces between the atoms (molecules) of a sharp stylus and
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molecules of the specimen, when the tip is in close proximity (less than 100nm) of the

sample. STM measures the tunneling current between the molecules of the sharp tip and

specimen.

The AFM cantilever scans the surface in a raster fashion. For each point of the surface

(depending on the resolution of measurement), the system measures the interatomic forces

and eventually generate a spatial map of those forces. For instance, in non-contact AFM,

van der Waal force is dominant and because of the relationship between van der Waal

forces with the separation distance [28, 30], the output of AFM is the topography of the

specimen’s surface. This is the reason for using the more prevalent term SPM.

The main advantage of AFM is that it can work almost on any type of material, in

nearly any type of environment (liquid, air, vacuum), and in a wide range of temperatures.

However, one of the most spectacular advantages of AFM is the ability to measure other

interaction forces. For example, by selecting probe geometry, size, material and/or coat-

ing as well as tip-sample distance and scanning speed, we can measure electric, magnetic,

and chemical properties. These features extend the abilities of AFM to microscopy, spec-

troscopy, metrology, surface manipulation, living cell observation and other applications

[32].

As a result, state-of-the-art AFM systems are comprehensive, large, bulky and expen-

sive systems. On the other hand, proliferation of these advanced equipments can popu-

larize their application and accelerate related research. Miniaturization and integration

represents an appealing alternative to shrink down the size and price of AFM systems.

Specifically, advances in micreoelectromechanical systems (MEMS) and microfabrication
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methods and materials facilitate the integration of new transduction technologies into scan-

ning probes and an XY scanner in order to convert the probe deflection directly to electrical

signal for further processing. The final goal for many research groups is a single-chip AFM

[50, 49, 5, 46].

The traditional way of detecting probe deflection is based on converting the displace-

ment of a laser beam reflected from the backside of the probe to an electrical signal using

a four quadrant photodiode. This part of conventional AFM systems is not only one of the

most expensive and massive components, but also needs a lot of workmanship. Modern

systems, have seen incremental improvements to automate this process. But it remains a

hurdle stimulating research to find other detection methods.

The most popular transduction methods include electrostatic, electro-thermal, piezo-

electric, electromagnetic and piezoresistive. Electrostatic transduction was the primary

concern in this research because it facilitates the integration of actuation and detection

in one device compatible with microfabrication and exploits advances achievable on both

fronts to greatly simplify the whole system. The idea is to create an AFM system which

exploits commercially available AFM probes. Very few researchers have addressed the in-

tegration of electrostatic actuation and detection in one device and those who did were

limited to the use of proprietary micromachined devices.
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1.3 Objectives and Significance

Previous attempts at miniaturization of SPM systems relied on proprietary MEMS de-

signed for special purposes, such as high-speed microscopy. These systems called for

complicated microfabrication processes. In this research, the flexibility of electrostatic

actuation and detection is exploited to integrate the sensor, the actuator and off-shelf

AFM probes on a single inexpensive board. The ultimate goal is the development of in-

expensive multipurpose SPM. As an initial step, the integrated system is implemented for

non-contact AFM.

The challenge of the high drive voltages typically needed for electrostatic actuation, will

be addressed via a technique dubbed resonant drive that employs a modulated signal where

the carrier frequency is tuned to match the resonance frequency of an RLC circuit and the

base frequency is tuned to match the natural frequency of the probe. The interaction

between the electrical and mechanical resonances also provides a tool for observation of

the amplitude, phase and frequency of the base signal driving the probe oscillations, via

measurements of the current induced by its motions.

Finally, this research will exploit a closed loop control scheme to manage the excitation

voltage applied to the capacitive actuator. This will control the steady-state height of the

stylus over the scanned surface and limit the potential for onset of instabilities in the probe

oscillations. In fact, the output of the control block constitutes the topography information

obtained from the AFM.

6



1.4 Challenges

The first challenge is the design and construction of an AFM system that can attain

microscale accuracy with the least use of microfabrication facilities. The least expensive

technology available for this purpose is Printed Circuit Board (PCB) technology limited

by high manufacturing tolerances.

The second challenge is accurate measurement of currents on the order of pico-to-

nano Ampere which has direct bearing on the quality of oscillation measurement and

image resolution. The mathematical model deployed to interpret current measurements

as capacitance and probe oscillations is another substantial challenge addressed in this

research.

Electrical noise in circuits and mechanical noise in the probe oscillations are significant

sources of disturbance in the final product of the system: topography measurements. The

impact of these disturbances were compensated via measurement circuits configuration,

post-processing tools and use of vibration isolators. The goal of microscopy is to produce

images or spatial maps of the surface physical property by converting the analog output

of the AFM to well processed digital images. We used MATLAB tools to accomplish this

step and obtain the scanned data in two-dimensional representation.

1.5 Outline of the Thesis

This thesis is composed of six chapters. The first chapter introduced the main ideas of this

research, its context, motivations and objectives as well as the challenges addressed in this
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project.

The second chapter reviews relevant literature including fundamentals of electrostatic

actuation and previous attempts at miniaturization of AFM. This review also covers dif-

ferent integrated actuation and detection methods while stressing those employing electro-

static actuation and sensing.

The third chapter is dedicated to the electrostatic AFM devices and fixtures developed

for experimental demonstration. This is the stepping stone to chapter four which describes

the analytical models of the AFM subsystems. It covers static analysis of the first genera-

tion AFM and dynamic analysis of the second generation AFM in tapping mode. Towards

that end, the model incorporates van der Waal force to examine its effect of the probe tip

displacement and velocity.

For the numerical simulations, we used COMSOL to investigate the multiphysics gov-

erning the function of the second AFM device. In this chapter we will also propose the

underlying theory of the project’s main contribution, namely the relation between the

cantilever’s mechanical displacement and the measured current. The commercial partial

differential equation solver, COMSOL, is deployed for the numerical simulations of the

multiphysics governing the second generation AFM. This chapter also addresses the the-

ory underlying the project’s main contribution, namely the relation between the probe tip

displacement and the measured motion induced current.

The fifth chapter presents the electrostatic AFM experimental results in three sections.

First, the results of tapping mode AFM is introduced covering the probe’s behavior as it

touches the sample’s surface and comparing the measured current output with the analyt-
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ical and numerical results. A goal of this step is finding the optimal distance between the

probe and the sample by deriving the AFM calibration curve. This curve is crucial for the

start of scanning.

The second section reveals the results of line scans in tapping mode using unknown

samples. This experiment aimed to check whether the output current resembled the surface

pattern while scanning a single line. Repeated line scans were undertaken with varying

lengths to investigate the repeatability of the measured current for the same line scans.

In third section, we performed raster scans of a calibration grating sample with a fixture

exploiting an XY-stage. First, the results of a manual raster scan are presented before and

after post-processing. Then results of a semi-automatic raster scan, utilizing a closed-loop

motorized XY-stage, are presented.

The last chapter contains conclusions about the methods and equipment used in this

research and how they can be improved to achieve a multipurpose SPM.
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Chapter 2

Literature Review

This chapter reviews attempts to integrate actuation and sensing mechanisms with AFM

probes. Since the early days of SPM, there has been a persistent endeavor to unify disparate

parts of the system as mentioned in section 1.2 utilizing MEMS ability to incorporate

piezoresistive, piezoelectric, electrothermal and electrostatic sense and actuation. Hence,

researchers have been using these properties to design proprietary MEMS to integrate the

AFM subsystems in a single-chip.

2.1 Integrated Actuation Schemes

Integrated actuators have been used in AFM for two purposes: to actuate the AFM probe

in a normal direction to the sample surface and to provide planar (XY) motion of the probe

tip or the sample. In the following, the most significant examples of these efforts will be

investigated.
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2.1.1 Electrostatic Actuation

Among all types of electrical actuators, electrostatic actuators have a vast diversity of ap-

plications because of their native compatibility with MEMS technology and configurations.

These actuators are easily implemented in microstructures, such as beams and membranes,

within three broad classes:

1. Parallel-Plate Actuators: Two parallel ‘plates’make a capacitor. One or both

plates are suspended by appropriately designed tethers to enable motion. Figure 2.1

shows an example of a parallel-plate actuator. where l, b, h are the plate's length,

Figure 2.1: Schematic of a parallel-plate electrostatic actuator. [1] (reproduced by confirmation

number 11716336 dated 07/May/2018 from Copyright Clearance Center).

width, and thickness, respectively, and d is the gap between the two plates at rest.

By applying a voltage drop V between the plates, the resultant electrostatic field

causes an attraction force between the plates

Fes = − εAeffV
2

2(d− x)2
(2.1)

where ε is the permittivity of the medium filling the gap, Aeff is the effective overlap-
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ping area between the plates and x is the relative displacement caused by electrostatic

attraction. This type of electrostatic actuator is used mainly in RF switches [39] and

RF tunable capacitors [16].

2. Comb-Finger Actuators: This actuator is made of a set of parallel-plate actuators

with interdigitated fingers in various comb-like configurations as shown in Figure 2.2.

The fingers may or may not overlap.

Figure 2.2: Three types of overlapping comb-finger actuators. Schematics of (a) laterally mov-

ing and (b) longitudinally moving comb-finger actuators [58], (reproduced by confirmation number

11716339 dated 07/May/2018 from Copyright Clearance Center). (c) SEM micrograph of a staggered
comb-finger [33] (Copyright ©2004, IEEE).

Depending on the relative motion of the combs, they are classified into laterally
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moving, longitudinally moving and staggered [33] comb-fingers. Staggered comb

fingers, Figure 2.2c, facilitate rotary motion around one or two axes and are mainly

used in micromirror applications.

The total force of the moving comb in longitudinal comb-finger actuators, Figure

2.2b, can be calculated by [51, 58]

F =
εntV 2

d
(2.2)

where n is the number of finger units (two facing plates), t is the thickness of the

fingers and d is the gap between the ‘faces’of two adjacent fingers. The interesting

point in this actuator is that the force does not depend on the overlapping area of

fingers. Movements in y direction do not affect it, unlike parallel-plate actuators,

hence, the force is linearly proportional to the voltage squared V 2. Dependence of

the number of fingers n shows that comb-finger actuators can provide high forces.

3. Torsional Actuator: This type of actuator usually is composed of a plate, able

to turn around an axis, a ‘hinge’. There can be one or more electrodes beneath

the swinging plate as shown in Figure 2.3 to provide voltage drop relative to the

plate. This type has a wide usage in micromirrors and reflective light projection

applications. The electrostatic torque can be calculated from [58]:

Me =
εbV 2

2α2

[
d

d− a2α
− d

d− a1α
+ ln

(
d− a2α

d− a1α

)]
(2.3)

where b is the plate length (into the page) and the other parameters appearing in the
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Figure 2.3: Schematic of a torsional electrostatic actuator [58], (reproduced under the confirmation

number 11716339 dated 07/May/2018 from Copyright Clearance Center).

equation are illustrated in Figure 2.3.

The advantages of electrostatic actuation compared to other techniques are worth point-

ing out to understand the reasons this method is of high interest. Electrostatic actuation

is consistent with the nature of Microelectromechanical System (MEMS) and Comple-

mentary Metal-Oxide Semiconductor (CMOS)-MEMS. Unlike piezorelectric actuators and

piezoresistive sensors, it does not require the use of a specific material or deposition of

extra layers. No external fields are required, as is the case for electromagnetic actuation.

As a result, the complexity of the actuator structure, design and fabrication is far less than

that for other actuation techniques. Power consumption is also very low because of low

currents involved in capacitive devices. However, energy density is quite high. Electrostatic

actuators are very flexible and therefore can be well controlled [54]. Further, because of

their dependence on low capacitance values, their response time is shorter than any other

actuation method.

The most significant drawbacks of electrostatic actuator are the high actuation voltage
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requirements and nonlinear behavior. The latter can be quite problematic because it can

lead to instabilities and failure through stiction of capacitor plates.

Next, the integration of electrostatic actuators into AFM will be reviewed in the liter-

ature.

Electrostatic Actuation of AFM Probes

All three types of electrostatic actuators have been used in conjunction with custom-made

MEMS to miniaturize conventional AFM systems. Below, the most relevant efforts have

been reported.

Long et al. [31] installed commercial AFM probes onto a specially designed MEMS

fixture. A fixed electrode, as depicted in Figure 2.4, is placed on top of the probe where a

laser beam is also directed. The electrode actuates the probe via common and differential

mode voltages while the laser beam measures its oscillations. The gap between the electrode

and the probe is adjustable.

Figure 2.4: Electrostatically actuated off-shelf AFM probe [31] (license).

Brugger et al. [13, 12] undertook the first effort to introduce electrostatic actuation and
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sensing to AFM. They developed a probe made of a microbeam and a counter electrode

fabricated by silicon bulk micromachining as the actuation and sensing subsystems as

shown in Figure 2.5. They produced devices with different lengths, for example a 800µm×

40µm × 5µm cantilever had a natural frequency of fn = 10 kHz and a spring constant

of k = 0.5 N/m. The gap between the microbeam and the counter electrode was 3µm

producing a capacitance of 100fF . Three years later, Blanc [11] presented an array of

AFM probes based on configuration of Brugger et al.'s integrated probes.

Figure 2.5: Brugger et al.'s electrostatically actuated AFM probe with integrated detection [12]

(reproduced under the license number 4344290287168 dated 08/May/2018 from Elsevier and Copyright

Clearance Center).

These two systems are the closest to achieving the main objective of this research, an

integrated AFM system. However, the fall short in the former because of the use of optical

detection and in the latter because of their use of proprietary probes and a pedestrian

implementation of capacitive sensing.

Müller et al. [35] designed and fabricated a parallel plate actuated AFM device (Figure

2.6) with an array of two tips including separate parts for actuation and detection. The

tips are actuated with a voltage applied to the electrostatic actuator and its current is mod-
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(a) SEM image of the tips

(b) Schematic drawing of AFM device with two sets of
electrostatic actuation and detection membranes and two
tips

Figure 2.6: Electrostatically actuated and detected AFM device and test setup presented by

Müller et al [35] (reproduced under written permission of Japan Society of Applied Physics dated

09/May/2018).

ulated by the surface forces which change during scanning as the gap between the sample

and the tip changes due to the sample’s vertical movement. The actuator part consists up

of a metallic bottom electrode and a moving membrane with an area of 0.5mm2 and the

gap of 10µm while the triangular cantilever is at the endmost of the membrane. The third

mode shape of this structure has a node exactly at the point the cantilever starts so Müller

used the actuator’s third eigenfrequency (around 140.6kHz) for excitation. The detection

scheme will be declared in section 2.2.1. Figure 2.6a shows an Scanning Electron Micro-

scope (SEM) picture from the tips and Figure 2.6b shows the device schematic drawing.

Geerlings et al. [21] in 2014 used the parallel plate principle to design a micromachined

cantilever and integrated in-plane tip based on Silicon On Insulator (SOI) process as shown
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Figure 2.7: Electrostatically actuated AFM cantilever proposed by Geerlings et al. [21] (repro-

duced under the confirmation number 11716355 dated 08/May/2018 by Copyright Clearance Center).

in Figure 2.7.

This design had the potential of batch processing and the experiments based on optical de-

tection showed the feasibility of the function. The actual resonant frequencies for different

cantilevers with different lengths were from 35.6kHz to 56.3kHz. The shortest cantilever

with 100µm length showed 1.8µm displacement in its resonant frequency at 56.3kHz mea-

sured with stroboscopic video microscopy. The actuation voltage for this experiments was

20Vpp.

Akiyama et al. [3] showed a cantilever equipped with two comb-drive actuators in

either side of the cantilever to produce out-of-plane movement as shown in Figure 2.8. The

dynamic range of this design was 1µm with a 11.4nm/V efficiency. The imaging bandwidth

was reported as 80kHz.

In 1997, Miller et al. [34] designed an array of a combined mechanism of comb-finger

drive and torsional actuators proposing an out-of-plane movement of ±0.7µm at the res-

onant frequency of 68.6kHz and 20V actuation voltage. They also utilized an integrated

sensing technique based on capacitance measurement. The structure of Figure 2.9 has a
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Figure 2.8: Electrostatically actuated AFM cantilever proposed by Akiyama et al. [3] (reproduced

under the license number 4344240323803 dated 08/May/2018 by AIP Publishing and Copyright Clearance

Center).

total area of 1.5µm×1.5µm and an array of 12×12 probes in an area of less than 1cm2 pro-

duces a device appropriate for surface manipulation with high throughput. For instance,

Information storage, molecular manipulation, and nanolithography are a few examples

worth to mention.

Figure 2.9: Electrostatically actuated AFM cantilever proposed by Miller et al. [34] (reproduced

under the license number 4344240516659 dated 08/May/2018 by AIP Publishing and Copyright Clearance

Center).
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Tabak et al. [52, 18] used the PolyMUMPs process based on parallel plate technique

to design a special MEMS-based z-scanner for out-of-plane movement of the stylus in

high frequency for high speed AFM and STM applications. The MEMS membrane was

suspended by four crab-leg springs. The resonance frequency of their structure was 186

kHz. Figure 2.10 shows the SEM micrograph of the device.

Figure 2.10: Electrostatically actuated AFM membrane proposed by Tabak et al. [52] (reproduced

under the license number 4344240781734 dated 08/May/2018 by Elsevier and Copyright Clearance Center).

There have also been several attempts to design and produce XY scanners based on

electrostatic actuators specially comb-finger drives [37, 24]. Here, two reports as samples

for miniaturization will be introduced.

Olfatnia et al. [37] demonstrated a MEMS-based XY-microstage utilizing comb-finger

actuators depicted in Figure 2.11. This two degree of freedom scanner proposes a wide

scanning range which facilitates many applications including scanning probe microscopy.

This group reported a displacement range of 225µm per axis with the bandwidth of 400

Hz. This bandwidth is high enough to support many high speed scanning probe microscopy

applications.
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Figure 2.11: Electrostatically actuated XY- microstage presented by Olfatnia et al. [37] (repro-

duced under the license number 4346090676095 dated 10/May/2018 by American Society of Mechanical

Engineers and Copyright Clearance Center).

In 2017, Ruppert et. al. [46] reported a single-chip AFM device depicted in Figure

2.12, including the electrostatic XY-scanner for horizontal movement of a cantilever which

is actuated by a piezoelectric layer at its base. Ruppert achieved scanning frequencies

of 2.85 kHz in the X direction and 2.77 kHz in the Y direction while they scanned the

imaging sample in a 8µm by 8µm frame. They utilized the piezoelectric property for both

actuation and sensing the AFM’s cantilever.
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Figure 2.12: Electrostatically actuated XY-scanner for the AFM’s cantilever by Ruppert et al.

[46] (Copyright ©2017, IEEE).

Resonant Drive

Electrostatic actuators usually require high voltages for drive. Consequently, they need

high voltage amplifiers and high voltage power supplies which leads to bulky and compli-

cated systems and contradict the backbone idea of my research, miniaturization.

An appropriate approach to overcome this challenge is the use of resonance effect in the

electrical drive circuits [42, 56]. To put it simple, by integrating the capacitance of a MEMS

actuator into a resonant RLC circuit, a mixed signal made of a low-frequency (baseband)

actuation signal and a high-frequency carrier signal in the configuration of Double Side

Band Large-Carrier Amplitude Modulation can be magnified to drive the MEMS actuator

with a high voltage.

Magnification is obtained by tuning the carrier signal frequency to match the RLC
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circuit’s resonant frequency. This is called the Electrical Resonance and the magnification

ratio is equal to the resonant circuit’s quality factor QL. The frequency of the baseband

(modulating) signal is equal or near the resonant frequency of the MEMS device to achieve

the highest displacement. This is called Mechanical Resonance and the quality factor of

mechanical resonator is QM .

This actuation scheme is depicted in Figure 2.13. The overall quality factor of the

resonant circuit QT , calculated from Equation (2.4), determines its dynamic amplification

and therefore gain.

1

QT

=
1

QL

+
1

QM

(2.4)

MEMS electrostatic actuators usually have very high quality factors so the limiting pa-

Figure 2.13: The basic concept of resonant drive actuation for electrostatic MEMS.

rameter for QT in Equation (2.4) will be QL. It means this technique needs very high

quality factor inductors.

The capacitance of the MEMS electrostatic actuator demodulates the actuation signal.

Consequently, only the magnified low frequency signal is left to drive the MEMS actuator.
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Figure 2.14: Piezoelectric integrated cantilevers by Indermuhle et al. [25] (reproduced under

the confirmation number 11716448 dated 08/May/2018 by Institute of Physics Publishing and Copyright

Clearance Center).

2.1.2 Piezoelectric Actuation

Piezoelectric actuation is the dominant method of actuating the AFM probe holder and/or

sample stage in conventional AFM systems. These actuators have a large volume relative

to the sample of interest. A great trend in MEMS research exists to integrate the AFM

probe’s actuation with the piezoelectric layers on the cantilever. Despite of some draw-

backs of piezoelectric devices like nonlinearity with respect to actuation voltage, drift and

incompatibility with standard CMOS fabrication process, this technique is still in the cen-

ter of interest as a step toward miniaturization of AFMs.

As an example, Indermuhle et al. [25] fabricated cantilevers with 700µm length, piezo-

electric layers for actuation and detection and integrated tips. They exploited the first

resonance frequency for imaging a grid with a 1µm period and 15nm vertical steps. Figure

2.14 illustrates the cantilever array.
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2.1.3 Electrothermal Actuation

This type of actuation is common in microelectromechanical devices because of geometric

simplicity and compatibility with MEMS processes. Electrothermal actuation is established

on the principle of the expansion of substructures due to increase in temperature. In fact,

the main way of heating up the parts in a MEMS device is passing electric current through

the part. Two methods are common for this purpose, depositing resistive materials on the

desired substructure, and passing the current through the part itself. The former method

which is called Bimorph Method is able to produce out-of-plane movements by selecting

two similar movable devices connected together but with different resistances [58]. The

second method, which is best for in-plane movements, is implemented by several well-

known structures like U-shape structure which uses two legs with unequal cross sections but

similar thermal expansion coefficients. The smaller cross-section shows higher resistance

and produces more heat by passing the same current as the thicker leg. Consequently, the

thinner leg will experience more expansion and causes a displacement.

While thermal actuation is advantageous in easiness, it suffers from several disadvan-

tages which drop it from the list of possible actuators in high frequency AFMs. The most

important drawback is high time constant of the actuation system to reach temperature

equilibrium in each actuation cycle. The other difficulty with thermal actuation is its inter-

ference with surrounding environment which results in low actuation efficiency. For these

reasons, miniature atomic microscopes which benefit the thermal actuation are mostly de-

signed to work in contact mode. Two major examples of integrated actuating and reading

schemes will be presented in the following.
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Figure 2.15: Electrothermal actuated AFM design proposed by Akiyama et al. [2] (reproduced

under the license number 4344260259380 dated 08/May/2018 by AIP Publishing and Copyright Clearance

Center).

Akiyama et al. [2] demonstrated a full custom-made cantilever array design (Fig-

ure 2.15) combined with thermal bimorph actuators as the primary out-of-plane actuator

and feedback actuators. They used a metal oxide field effect transistor (Metal-Oxide-

Semiconductor Field Effect Transisitor (MOSFET)) stress sensor integrated in the can-

tilever as the force detection mechanism along with on-chip CMOS circuitry.

Sarkar [50] designed the first-in-the-world single-chip contact mode atomic force micro-

scope using the CMOS-MEMS technology employing electrothermal bimorph actuators for

both XY scanning and Z-movement of the cantilever. Figure 2.16a shows the geometry of

this design. In Figure 2.16b we can see the lateral actuator, and the transversal actuator

is illustrated in Figure 2.16c. The XY scanner is able to cover a 10µm by 10µm area and

the range of vertical scanning is 30µm. This design facilitated one of the most compact

complete designs of AFM systems which integrated all actuators and detectors needed for

an AFM scan. It also opened a window toward other types of scanning probe microscopy

techniques like Scanning Microwave Microscopy (SMM). [5].
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Figure 2.16: Electrothermal actuated AFM chip proposed by Sarkar [50] (Copyright ©2011,

IEEE).

2.2 Integrated Detection Schemes

2.2.1 Electrostatic Detection

1. As mentioned in section 2.1.1, Blanc et al. used a cantilever with a counter electrode

as shown in Figure 2.5. Figure 2.17b depicts an array of electrostatic probes fabricated

based on this design. Blanc used cantilever’s resonant frequency shift as the feedback

loop signal which occurs because of the tip-sample forces. Then the output of the loop

was applied to the piezoelectric stage holding the cantilever compartment to control the

vertical movement as illustrated in Figure 2.17b.

The force gradients which cause the frequency shift were measured by the capacitive
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(a) Schematic drawing of the probe array

(b) Test setup

Figure 2.17: AFM system including the probe array and test setup for capacitive detection with

a feedback loop controlling the height through a piezostage developed by Blanc et al. [11] (re-

produced under the license number 4344251447743 dated 08/May/2018 by AIP Publishing and Copyright

Clearance Center).

sensor's current after converting it to voltage. This voltage needs to be constant in order

to have a one-to-one relation between the sensor's current and cantilever's displacement so

the voltage was applied back to the cantilever through a gain-control circuit and a Variable

Gain Amplifier (VGA). Blanc et al. successfully scanned a Cr grating with a pitch of 250nm

on a quartz substrate.

2. In Müller’s report, section 2.1.1, an AFM device including two tips with separate

parallel plate electrostatic actuator and detector parts was employed. The measurement

parameter in this effort was the current of the sensing part which was measured by a lock-in

amplifier. To scan the sample, they used a closed-loop feedback mechanism controlling the

gap between the tips and the sample by a vertical piezoscanner. The test setup is shown
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Figure 2.18: Test setup for capacitive detection with a feedback loop controlling the height

through a piezostage presented by Müller et al. [35] (reproduced under written permission of the

Japan Society of Applied Physics dated 09/May/2018).

in Figure 2.18. Despite of the feedback system, this setup is similar to the setup used in

our research.

Bay et al. [7] proposed a balanced plate capacitor supported by two bottom electrodes

acting in a differential manner. The balanced cantilever is equipped with a sharp tip

fabricated by anisotropic etching at one end. Figure 2.19a shows the structure and Figure

2.19b describes the electrical circuit for providing the AC actuation voltage. A DC voltage

is applied to a bottom electrode to compensate the atomic force produced by the tip-

sample interaction and holding the balancing plate in its rest situation concluding in equal

capacitances in balance capacitors (∆C = 0). This will eliminate the nonlinear behavior

of the electrostatic actuator. The DC voltage will be used as the information outcome of
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the system.

Figure 2.19: Capacitive actuation and differential detection by parallel plate capacitors; proposed

by Bay et al. [7], (reproduced under the confirmation number 11716440 dated 08/May/2018 by Institute

of Physics Publishing and Copyright Clearance Center).

2.2.2 Piezoresistive Detection

By definition, piezoresistivity means the change in the electrical resistance of solids due to

the change in their strain in response to an applied stress [58]. Piezoresistive materials can

be easily deposited on MEMS structures like AFM cantilevers and provide an integrated

force sensing method. Here, two examples out of numerous cases reported in the literature

will be presented.

1. Sarkar [50] has used piezoresistive strain gauges and temperature sensors in the

actuators to detect the forces and perform the measurement using a circuit.

2. Thysen et al. [53] developed a SPM probe with two cantilevers. One is for imaging

and the second is for reference. They used SOI wafers for fabricating this device. As Figure
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Figure 2.20: AFM probe with integrated piezoresistive read-out; Thaysen et al. [53] (reproduced

under license number 4344290818159 dated 08/May/2018 from Elsevier and Copyright Clearance Center).

2.20 shows, thin film piezoresistive transducers have been encapsulated in a dielectric film

to on the cantilevers to complete a symmetric Wheatstone bridge for signal read-out.

At the end, Table 2.1 summarizes the advantages and disadvantages of different actu-

ation and detection properties including the conventional optical detection method.

2.3 Summary

In this chapter, the reported attempts of integrating the actuation mechanism to the

scanning probe microscope’s tip and cantilever were reviewed with an emphasize on the

electrostatic actuation and capacitive detection after introducing the basic methods of ac-

tuation in microelectromechanical devices. Other methods of actuation and detection were

covered which can be applied in MEMS technology including piezoelectric, piezoresistive

and electrothermal properties.

In the investigated reports, there are cases which have similarities with the main stream-

line in this research in the fundamentals of the theory while the overall approaches are dif-
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Table 2.1: Comparison of different MEMS actuation/detection methods [32]

Method Pros Cons

Optical simple readout not array compatible,

very high sensitivity susceptible to refractive index changes,

mature technology limited scanning range.

No need to modify the cantilever

Electrostatic Naturally compatible with MEMS Need to high voltage,

No need to external fields Need to very close electrodes,

very low power consumption Nonlinearity.

applicable for actuation & detection

very fast response time

Piezoelectric applicable for actuation & detection nonlinear vs actuation voltage,

fast response time. incompatible with CMOS fabrication

process.

Piezoresistive array applications applicable for detection only.

Electrothermal array applications, applicable for actuation only,

CMOS compatible. relatively high time constant.

easy implementation interference with environment

ferent. Consequently, the approach in this research including the structure, the detection

method of measuring the actuator’s current at second harmonic of excitation frequency

and the closed-loop feedback scheme controlling the probe’s effective deflection are not

analogous to others’ works to the best of our knowledge.
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Chapter 3

EAFM System

In this chapter, the hardware which have been designed, manufactured, and revised to

realize the conceptual model of the research will be explained in three sections. First, we

will describe the realization of electrostatic actuators based on commercial AFM probes

in two scenarios, then we will focus on different apparatus designed and constructed for

implementing the function of current measurement. At last, we will introduce the electronic

circuits we have developed.

3.1 Integrated Probes

For the purpose of electrostatic actuation, a conductive microbeam and a counter elec-

trode are needed. Usually in MEMS structures, the whole body of the structure including

the device and the electrodes are in the same chip, however, in AFM probes, AFM mi-

crocantilever and tip should be free and able to oscillate and move above the specimen.
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Consequently, the counter electrode can not cover the whole length of the cantilever in the

same side of the specimen. Considering this condition, four different strategies depicted in

Figure 3.1 were possible:

Figure 3.1: Four scenarios for applying the electrostatic force to AFM cantilever while scanning

the specimen in general design.

1. The bottom electrode overlaps a portion (less than 1
2
) of the cantilever’s length. This

will let the cantilever to accomplish free oscillation over the specimen with the desired

amplitude and there is no need to manipulate the sample and/or the XY&Z stage.

This method supports diverse types of specimen and can work in vacuum, air or

even liquid environments. The next advantage of this case is the independence of

the electrostatic force from the interatomic forces of the tip and the surface which

resembles the mechanical actuation of the SPM probe in commercial AFMs and

facilitates a simpler analytical model.

Moreover, by employing proper type of the cantilever and/or its coating materials

and selecting suitable height, the physical interaction of the microbeam’s tip and

the specimen can be managed to perform more than one method of scanning probe
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microscopy. For instance, the same AFM probe can accomplish the atomic force

microscopy while its separation to the specimen is limited to a few nanometers; or, a

single scan electrostatic force microscopy to detect surface charges by hovering above

the surface with larger gap. This scenario also supports all three AFM working modes

by a well-defined height control system.

The first issue in this design is the cantilever’s length, namely we need cantilevers

having enough length to cover the bottom electrode and at the same time, being able

to have access to the sample’s surface. This fact restricts our selections to probes

with minimum length of 250µm, provided that we can produce PCBs with very high

precision cut and chamfer at the edge.

The second issue with this scenario is the high actuation voltage it needs because

of the small overlapping area, and difficulty in the relatively high gap between the

cantilever and bottom electrode.

2. The specimen is able to carry the actuation voltage. The advantages of this method

are working with relatively low voltages and simplicity in mechanical fixture. One of

the important disadvantages is the need to conductive specimen, or, a way to manip-

ulate the sample to carry electric charges. This will affect the properties of the sample

and also producing complex fringe fields. Evidently, this method is contradicting the

philosophy of atomic force microscopy compared to scanning tunneling microscopy

and will not meet the generality of the design. The probability of emerging tunneling

current, pull-in and damaging the specimen is high in this approach.

3. A conductive plane drove by the actuation voltage covers the XY&Z stage under-
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neath of the specimen. This method basically has the advantage of ability to work

with relatively low voltages and scanning all types of specimen. However, its main

drawback is the nonuniform electric field between the bottom electrode and the con-

ductive cantilever which will affect all the analytical models of the vibration because

the permittivity of the sensing capacitor will be a function of the sample’s substance

and more or less like a random variable. So the process of controlling the average

height of the cantilever will be extremely complicated although not impossible.

In this case, the electrostatic force can not be independent from the interatomic forces

of the tip and the surface, causing extra complexity in deriving a comprehensive

analytical model. For the same reason, we will have intricate fringe fields between

the tip and the sample which in many cases cause a more effective impact compared

to uniform electrical field. With this scenario, the AFM cantilever is more likely to

pull-in and damage the specimen.

4. A counter electrode at the top side of the cantilever will carry the excitation signal

and the specimen is underneath the cantilever’s tip. This scenario has the main

advantage of higher current induced by the vibrating cantilever thus the detection

system provides higher performance.

The second advantage of this strategy is the low price. This design needs only a

commercial AFM probe, a PCB probe carrier (will be called daughterboard) and very

small amounts of conductive paste. The third technical advantage of this method is

its simplicity in assembling, explained in more detail in section 3.1.2.

An issue for this scenario is the requirement to increase the counter electrode’s thick-
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ness drastically; however, this issue could be addressed by the same conductive paste

used to install the AFM probe on the probe carrier PCB. The thickness could be

augmented gradually by some control on the amount of paste.

In this way, we would be able to manage the gap between the counter electrode and

the cantilever because it has a substantial impact on the displacement and velocity

of the cantilever, affecting the required levels of DC and AC components of the

excitation voltage. The other disadvantage of this design is that once it is installed,

there is no optical access to the probe for other measurements like displacement

and/or velocity using a laser Doppler vibrometer.

Despite of the shortcomings, this design was selected and exploited for all the exper-

iments of line scanning and raster scanning.

Relying on this discussion, eventually the first scenario was selected to design the probe

holder assembly for the first part of the research and the fourth scenario for experiments

regarding tapping mode and scanning.

3.1.1 EAFM Probe Prototype 1

For the first probe scenario, two different structures were designed. These structures will

be declared in this section including the design details, challenges and some measurements.

The analytical model and numerical simulations will be explained in chapter 4.
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Figure 3.2: EAFM probe assembly for the first design. (a) probe carrier PCB (first version), (b)
probe clamp PCB, (c) AFM silicon probe (courtesy of Brukerr Corporation) (d) the assembled
AFM probe with the inset showing the configuration of the bottom electrode and the cantilever
(dimensions not to scale).

.

Assembly 1

The simplest and fastest commercial technology for the structure of the probe holder was

the printed circuit board (PCB) because the state-of-art manufacturing methods support

capabilities as low as 3 mils (76.4µm) in track widths and separations. This facilitated

PCBs containing structures in the order of the AFM probes’cantilevers. Figure 3.2 shows

the components of this design.

1. The probe carrier PCB. As Figure 3.2a shows, this part includes the bottom

electrode and an electrode to connect to the body of the AFM probe’s silicon chip.

Two versions for this piece of PCB were designed. In the first version, this part

included an extra selective gold coating on the place of the silicon probe to guarantee
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the gap between the surface of the silicon probe and the bottom electrode. But after

assembling all parts and measuring the surface profile of the probe structure, we

figured out that the practical gap was far above the desired value. This challenge is

discussed in detail in section 3.1.1.

2. The probe clamp PCB which is responsible for securing the silicon probe on the

probe carrier PCB (Figure 3.2b).

3. AFM silicon probe: Commercial silicon AFM probes in two versions: 450µm from

Brukerr Corporation and 225µm from NANOSENSORSTM (Figure 3.2c).

These components are tightened together using screws and bolts. The Prototype 1 of final

assembled device is shown in Figure 3.2d.

Design Challenges

Two challenges were encountered in the design and realization of the probe carrier PCB.

1. Silicon AFM Probes with Rectangular Cantilevers

The common microfabrication process for standard rectangular AFM cantilevers is

wet-etching. This means the cantilever is not protruded from the body of probe chip,

instead, it is like an extra layer on the surface of the silicon probe chip. This fact was

not evident from the pictures in the datasheet prior to ordering the AFM probes.

Figure 3.3 shows the profile of the silicon probe measured by Veeco NT1100 Optical

Profilometer and the schematic of the silicon probe provided by Brukerrs catalog

[15]. This profile shows the cantilever’s stem is 8µm high which will not allow the
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Figure 3.3: The surface profile of NANOSENSORSTM 225µm AFM silicon probes. The profile
shows the thickness of the cantilever’s stem on the probe chip is around 8µm. The inset shows a
schematic of the silicon probe adopted from Bruker’s catalog [15].

surface of the silicon probe’s chip to sit on the probe carrier PCB’s surface. The

effect is shown in Figure 3.4b. This will add a significant gap between the bottom

electrode (on the probe carrier PCB) and the AFM cantilever.

2. Probe Carrier PCB

The first version of the probe carrier PCB was designed based on the fact that the

thickness of the copper layer on the PCB’s substrate (known as FR4) is uniform

and we could add extra selective gold coating with a known thickness on any desired

position. Hence, this board was ordered based on the assumption shown in Figure

3.4a. The diagrams in this figure represent the A-A’section shown in red color in

Figure 3.2a.

Indeed, the thickness of the extra gold coating should be around 50 microinches (or

1.27µm) as per PCB manufacturer specifications. Moreover, the thickness of the

bottom electrode was expected to be equal to the thickness of the copper areas on
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Figure 3.4: Declaration of the problem in probe carrier board PCB: (a) primary design assump-
tion, (b) the first version

the board. With these assumptions and considering a flat AFM silicon probe sitting

evenly on the surface of the extra gold coating, a gap around 1.5 to 3µm between the

bottom electrode and the cantilever was awaited, promising an effective electrostatic

field with reasonable actuation voltages. However, as the AFM probe was completely

assembled using this board and a 225µm AFM probe, the practical gap was measured

more than 60µm based on the information of the optical profilometer shown in Figure

3.5b.

Figure 3.5a shows the inclination in the thickness of the extra gold coating. This

means the gold area is thicker in the edge. This phenomenon is reasonable because

the extra gold coating has been implemented by electroplating which makes slightly

higher thickness in the edges compared to the middle of the coating area.

Furthermore, the thickness of the bottom electrode is less than other copper parts

because in the production of PCB, the copper in unwanted area is etched with acid

which causes the edges of copper tracks and areas etched more. Consequently, narrow
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Figure 3.5: The profile of (a) the first version of probe carrier PCB near the bottom electrode,
the practical gap is 13.3 instead of 1.27 µm, (b) the gap between the 225µm AFM probe and
bottom electrode is 61.1µm.

tracks will get thinner than wider areas. This causes a huge gap, namely 13µm

between the surface of the extra gold layer and the bottom electrode as evident in

Figure 3.5a while they were supposed to be 1.27µm different.

The integration of these problems is shown schematically in Figure 3.4b and the

profile of real device along with the measurement in Figure 3.5b.

To address this problem, different mechanical and chemical ways were tested to

mitigate the thickness of the gold layer or the whole copper layer on the PCB. Finally,

a probe with 14.1µm separation was achieved. This method was not systematic and

there was no control on the process while it was too time consuming. For this reason,
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the second version of the probe carrier PCB was initiated.

Assembly 2

To comply with other researches, and to be able to use other equipment in the CIRFE-Lab,

Assembly 1 needed to be upgraded to new design including a trans-impedance amplifier

very close to the AFM device. The outcome of this requirement is illustrated in Figure

3.6. This board named as daughterboard, is the probe carrier board and other parts are

similar to Assembly 1.

Figure 3.6: Second design for the first scenario, showing EAFM probe carrier PCB’s top layer
(left) and bottom layer (right), including the trans-impedance amplifier

3.1.2 EAFM Probe Prototype 2

The second design illustrated in Fig. 3.7 used scenario 4 in Figure 3.1. In this design, the

bolts and nuts were eliminated while a conductive paste was used to stick the AFM probe

to the PCB. Compared to the previous design, this process is easier, faster and less likely

to break the cantilever. As depicted in Fig 3.7a, thickness of the fixed electrode can be

managed to be in the order of the probe’s chip thickness plus the copper layer resulting in

a gap as wide as 15µm (Fig. 3.7c). The overlapping area is also increased by 2 orders of
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magnitude resulting in C◦ ≈ 10000aF . This structure produced promising results and was

used for line and raster scanning.

(a) Outline of second design

(b) Schematic and a picture of assembled device (flipped over)

(c) Microscopic picture showing the cross section of the cantilever and fixed electrode

Figure 3.7: Details of second design

3.2 Fixtures

A scanning probe microscope needs a stable fixture to minimize external disturbances

(mechanical noise). This fact forced us to design and manufacture the fixture with steel

and aluminum. The fixture had to satisfy these fundamental functionalities:

• providing a platform to hold the sample,
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Figure 3.8: The basic part of all fixtures including the coarse and fine Z-stage.

• ability to manage the relative separation of the sample and AFM probe’s tip,

• accommodating the mechanism of raster scanning,

• reducing the ambient mechanical noise.

To meet these requirements, we considered to hold the sample on a platform with

very accurate manually controlled vertical movement, and a 0-D, 1-D or 2-D positioner

close to the vertical stage holding the AFM probe assembly. This assembly included the

motherboard and daughterboard.

For this purpose, a very accurate manual linear stage with the accuracy of 22nm
seg

was

designed and constructed which does not have a commercial equivalent to the best of our

knowledge. This linear positioner, called the fine knob, was attached to a commercial

linear stage with the accuracy of 10µm
seg

, called coarse knob. These two manual micrometers
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together configured the vertical stage facility in the fixture, common in all four apparatus

as shown in Figure 3.8.

To address the issue of ambient mechanical noise and minimizing it, standard vibration

isolators were exploited. Based on the type of scanning and the horizontal stages possessed

temporarily, the constructed fixture needed to be reconfigured. These different designs will

be discussed below:

3.2.1 First Apparatus

In this part, the main goal was to investigate the behavior of the EAFM current in tapping

mode without scrolling over the sample. In fact, this step was crucial for the surface scan-

ning because there was a strict need to an estimation of the optimum tip-sample distance.

This option was performed by one-point scanning of the sample and recording the current

frequency response for different tip-sample distances. Thus providing with comprehensive

information about the current’s magnitude and phase in frequency bands close to the sec-

ond harmonic of cantilever’s first resonant frequency, which was indispensable for deriving

the calibration curve. The calibration curve was used to find the optimum distance for the

highest differentiability in the most linear fashion. Figure 3.9 illustrates the picture of the

apparatus used for this step.

This fixture was used to investigate other properties of the actuator’s current versus

change in DC and AC components of excitation voltage, nonlinear behaviors. Results of

these tests will be discussed in chapter 5.
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Figure 3.9: The fixture used for tapping mode tests. including the coarse and fine Z-stage.

3.2.2 Second Apparatus

The first experiment to investigate the feasibility of the constructed system was repeated

scanning of one line of a specimen. Using the 1-D positioner, several line scanning mea-

surements were implemented after the hight of the probe was set to an appropriate value,

enabling tapping. The fixture for these experiments is shown in Figure 3.10. In each scan,

the same line was scanned in different lengths and the measured current was recorded.

1-D Piezoscanner

After deriving the optimum distance, line scanning was started to investigate the feasibility

of the approach and the performance of the manufactured hardware. A 1-D piezoscannar

from nPoint Inc. was employed which supported very good resolution and linearity while
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Figure 3.10: EAFM fixture with nPoint’s 1-D scanner, implemented for line scanning.

scanning. The moving range of this stage was 150µm and the resolution was 1 nm. a

friendly graphical user interface facilitated the settings and control of the stage. Figure

3.11b shows the scanner installed in the fixture, the controller and the graphical user

interface.
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3.2.3 Third Apparatus

The high precision piezoscanner described in section 3.2.2 provided only the X-direction

scanning while for Y-direction we had to confine ourselves to a manual XY-stage with the

accuracy of 10µm/segment. Fig. 3.11a shows this fixture. For raster scanning, we scanned

(a) EAFM fixture with the nPoint’s 1-D scanner
installed on a manual XY-scanner, implemented
for raster scanning.

(b) nPoint’s 1-D scanner intalled in the fixture,
the control device and the GUI.

Figure 3.11: Third apparatus

one line of the sample, thereafter, we progressed the tip toward the next line manually with

an accuracy worse than 5µm and started scanning the next line. Evidently, this distance
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was far below the requirements of AFM images, but at this step, the proof of concept

of integrated electrostatic actuation/detection in the implemented structure was the main

goal only.

3.2.4 Fourth Apparatus

The fourth fixture illustrated in Figure 3.12, was configured for open-loop and closed-loop

raster scanning based on a motorized XY-stage from National Apertures Inc.®.

Figure 3.12: Fourth apparatus

Each direction on this stage had a DC motor with a 64:1 gearbox to reduce the speed and

an encoder and controller. The claimed accuracy of movement for the linear stages was

125nm which was enough for scanning requirements.
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3.3 Circuits

During this project different circuits were designed and used. The most important ones

will be described in this section.

3.3.1 Resonant Drive Circuit

The function of this circuit is explained in section 2.1.1. Here the block diagram, schematic

diagram, and PCB layouts and some pictures of the populated board will be presented.

Figure 3.13: Resonant drive circuit’s block diagram.

The resonant drive circuit includes several building blocks as depicted in Figure 3.13, with

the most important ones explained in the following:

• Internal Oscillator. This part produced the carrier frequency (ωc) employing a

Voltage controlled oscillator (VCO) with a square wave output. The oscillator fre-

quency was designed around 1MHz while it can be tuned by a variable DC voltage.
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• Low-pass Filter. The carrier frequency deployed to the multiplier needs to be a

pure sinusoid without higher harmonics of ωc. Therefore, a low-pass filter with the

specifications listed in Table 3.1 was designed.

Table 3.1: Design specifications for the low pass filter in resonant drive circuit.

Specifications Description

Filter Type Low-Pass, Chebyshev

Filter Order 6

Specification Optimize for Noise

Passband -3dB at 1MHz

Stopband -40dB at 2MHz

Passband Ripple 2%

The output of this filter was a sinusoidal signal, consequently, it was not sensitive

to the pass-band ripple. This fact enabled the benefit of lower order configuration

of Chebyshev filters while keeping high stop-band attenuation ratio and minimum

error between the actual and the idealized filter characteristics. Figure 3.14 depicts

the most important characteristics for the filter of Table 3.1

• Analog Multiplier This multiplier was designed using the AD835 chip from Analog

Devices™ with the features listed in Table 3.2.

AD835 is an optimized device to guarantee low noise operation of the circuit and a precise

function regardless of the inputs polarities.

The schematic diagram, top and bottom layer PCB layouts and pictures are shown in

Figures 3.15 and 3.16 respectively.
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(a) Magnitude [dB] (b) Phase [deg]

(c) Noise Density [V/
√
Hz] (d) Step Response

Figure 3.14: Characteristics of the low-pass filter of resonant drive circuit. The brown margins
show the drift in characteristics because of components’ tolerances.

3.3.2 Motherboard Circuit

This circuit provides the power supply for daughter board. Low noise and low drop out

linear regulators were used to convert the±9V input to clean±5V to drive the electrometer

on the daughterboard. Figure 3.17 shows the schematic diagram. The PCB was designed

to be compatible to the AFM system existent in CIRFE Lab. Figure 3.18 illustrates the

PCB layout and pictures of the populated board.
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Table 3.2: Technical features of AD835 analog multiplier chip.

Feature Description

Multiplier Type Four quadrant

Output Signal Voltage

-3 dB Bandwidth up to 250 MHz

Settling Time 20 ns (to settle to 0.1% of full scale (FS))

Input Impedance 100kΩ‖2pF

Multiplier Noise 50nV/
√
Hz

3.3.3 Daughterboard Circuit

Daughter board circuit accommodates the AFM probe and the low noise trans-impedance

amplifier. The active element in this circuit is an electrometer with very high input

impedance and very low input bias current, qualified for measuring very low currents like

capacitive or chemical sensors. This circuit has some considerations regarding the PCB

design which were applied to some extent.

Table 3.3: Main technical features of ADA4530-1 electrometer.

Feature Description

Low input bias current ±20fA @ 25°C

Low offset voltage 50µV/°C maximum

Low voltage noise density 14nV/
√
Hz

Wide bandwidth 2MHz unity-gain crossover

Figure 3.19 shows the schematic diagram and Figure 3.20 depicts the PCB design. The

pictures of populated board have been shown in Figure 3.6.
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3.4 Summary

The hardware designed and constructed for this research were described in this chapter.

First, the devices which contributed the main objective of this research, namely integration

of electrostatic actuation/capacitive detection were explained. Different scenarios for these

devices were thought and finally two prototypes were implemented. To complete a test

fixture for scanning the surface of a sample, we needed to design and produce different

fixtures based on the scanning stages available to us. In fact, the AFM system needs

a sturdy structure to accommodate an XY-scanner, an appropriate assembly to hold the

circuits and the EAFM probe, a vertical stage to hold the sample. This fixture was isolated

from the unwanted ambient vibrations by standard Sorbothane® vibration isolators.

The vertical stage with fine and coarse adjustments had the ability the control the

tip-sample distance in sub-micrometer accuracy.

Finally several circuits were designed and developed to facilitate the resonant drive

phenomenon and biasing requirements for the transimpedance amplifier on the EAFM

Prototype 2.
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Figure 3.15: Resonant drive circuit’s schematic diagram.
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(a) Top layer (b) Bottom layer

(c) Top layer (d) Bottom layer

Figure 3.16: Resonant drive board’s PCB layout and pictures.
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Figure 3.17: Schematic diagram of the motherboard.

(a) Top layer (b) Bottom layer

(c) Top layer (d) Bottom layer

Figure 3.18: Motherboard’s PCB layouts and pictures
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Figure 3.19: Schematic diagram for daughterboard including the AFM probe and tran-
simpedance amplifier.

(a) Top layer (b) Bottom layer

Figure 3.20: Daughterboard’s PCB layouts.
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Chapter 4

Analytical and Numerical Results

4.1 Theory of Operation

Understanding the components of current in an electrostatic MEMS actuator is of trivial

importance for motion detection in cases we want to prevent using an optical motion

detection scheme. Many applications need this knowledge of current because it is not

possible to utilize a Doppler laser motion detection system in all cases. For example, many

devices are already packaged and there is no access to the moving parts, some devices have

an in-plane motion which is hardly detectable by the optical system. In most cases the

optical vibration analysis system is usually too bulky and expensive.

On the other hand, the fundamental necessary equipment for current measurement are

a trans-impedance amplifier for bringing up the level of actuator’s current and a lock-in

amplifier for detecting the current at higher harmonics of the actuation frequency. These
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systems can be implemented for the proprietary application by standard digital signal

processing modules.

In this study, the electrostatic actuator is formed by a fixed-free cantilever and a fixed

electrode with the same length as the cantilever. The fringing electric field is not considered

for simplicity.

4.1.1 Electrostatic Actuation

The electrostatic force in a parallel plate electrostatic actuator will be reviewed to investi-

gate the effect of actuation voltage components.

Electrostatic Force

The electrostatic force produced by the applied voltage Va(t) = VDC + VAC sin(Ωt) is:

Ees(t) =
1

2
CVa(t)

2,

Fes(t) = −∂Ees

∂x
= −1

2

∂C

∂x
Va(t)

2,

= −1

2

∂C

∂x

(
V 2
DC + 2VDCVAC sin(Ωt) + V 2

AC sin2(Ωt)
)
,

= −1

2

∂C

∂x

(
V 2
DC +

V 2
AC

2
+ 2VDCVAC sin(Ωt)− V 2

AC

2
cos(2Ωt)

)
(4.1)

The terms including VDC have a dominant effect in the final value of Fes compared to the

second harmonic component as illustrated in Figure 4.1. Concluding, if we want to apply

only the AC component (VDC = 0), we have to set the actuation frequency to half of the
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Figure 4.1: Comparison of two functions for Ω = 1, VDC = 1, VAC = 1

device mechanical resonant frequency. As thus:

VDC =0 ⇒ Ωa =
1

2
Ω◦ (4.2)

Ees(t) =− 1

2

∂C

∂x

V 2
AC

2
(1− cos(Ω◦t)) (4.3)

As an experimental example, Fig. 4.2 shows the displacement response of an AFM can-

tilever to the pure AC excitation with half the resonant frequency captured by the laser

Doppler vibrometer. The displacement response at resonance frequency is 80 times bigger

than the excitation frequency because of the mechanical resonant effect.
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Figure 4.2: VDC = 0, VAC = 10Vpeak and f0 = 12296Hz, the actuation frequency is 6148Hz and
the displacement at resonant frequency is 80 times bigger than actuation frequency

4.1.2 Analysis of Motion Induced Current

The current in a capacitor is the time derivative of its charge. For an electrostatic actuator

with a voltage-dependent capacitance, current can be written as:

i(t) = q̇ =
dq

dt
,

i(t) =
d(C · V )

dt
,

i(t) = V (t)
dC(t)

dt
+ C(t)

dV (t)

dt
. (4.4)

where C(t) is the whole capacitance of the electrostatic actuator and V (t) is the actuation

voltage.
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Capacitance of the Electrostatic Actuator

The capacitance of electrostatic actuator can be considered as two parallel components:

C(t) = Cp + Ca(t), (4.5)

where Cp is the parasitic capacitance due to all PCB traces, wire bondings and unavoidable

proximities of conductive parts in the MEMS device and has a constant value.

Ca(t) is the pure capacitance of the electrostatic actuator and is calculated by (4.6).

Ca(t) =
εA

g◦ − x̂(t)
, (4.6)

where ε is the permittivity of the isolator in actuator (mainly air or vacuum), A is the

coinciding area of electrodes, g◦ is the gap between the electrodes at rest and x̂(t) is the

instantaneous displacement of the cantilever toward the fixed electrode. For simplicity in

the future equations, we will use the non-dimensional instantaneous displacement

x(t) =
x̂(t)

g◦

in the form of:

Ca(t) =
εA

g◦

1

1− x(t)

= C◦
1

1− x(t)
, (4.7)
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where C◦ is the actuator’s capacitance at rest. Hence, we have:

dC(t)

dt
=

d

dt
(Cp + Ca(t))

= C◦
ẋ(t)

(1− x(t))2
. (4.8)

Motion Induced Current

The actuation voltage consists of a DC component (VDC) and an AC component (VAC) at

a frequency equal or close to the cantilever’s mechanical resonant frequency Ω◦. For a pure

AC actuating signal (VDC=0), one has to use Ω = Ω◦/2 because of the quadratic relation

of electrostatic force and actuation voltage as described in section 4.1.1. The intention now

is to find a closed form relation between the actuator’s displacement and it’s current; to

retain the generality, the general sign Ω for the actuation frequency will be used.

V (t) = VDC + VAC sin(Ωt),

dV (t)

dt
= ΩVAC cos(Ωt).

Substituting all relevant equations in (4.4), we have:

i(t) = (VDC + VAC sin(Ωt))C◦
ẋ(t)

(1− x(t))2
+
(
Cp + C◦

1

1− x(t)

)
(ΩVAC cos(Ωt))

i(t) = VACCpΩ cos(Ωt) + ia(t) (4.9)
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The first term in Equation (4.9) is the feed-through current passing through the parasitic

capacitance Cp and is not relevant to the probe displacement so it will not be considered.

It can be used for measurement of Cp. The remaining terms rewritten in Equation (4.10)

are called motion induced current [43] and are of our primary interest:

ia(t) = VDCC◦
ẋ(t)

(1− x(t))2
+ VACC◦

ẋ(t)

(1− x(t))2
sin(Ωt) + VACC◦Ω

1

1− x(t)
cos(Ωt) (4.10)

A closed form expression for ia(t) based on the cantilever’s displacement and the elec-

trostatic force Fes(t) as per Equation 4.1 will be derived.

EAFM prototype 2 includes a fixed-free cantilever and a counter electrode overlapping

the whole length of the cantilever. This structure allows us to use the lumped-mass ap-

proach to derive the displacement of the cantilever’s free end. The equation of motion for

the actuator can be written as

meff ẍ+ cẋ+ kx = Fes(t), (4.11)

where meff is the effective mass (e.g. meff = 0.24m for a fixed-free cantilever of mass m

[45]), c is the damping coefficient, k is the actuator’s stiffness at rest and Ω◦ =
√

k
meff

is

the actuator’s first mechanical resonant frequency.

There are two points to consider about x(t) helping to simplify Equation (4.10):

1. Solving the equation of motion 4.11 for the electrostatic actuator excited by actuation

voltage Va(t) with reasonable values for VDC and VAC and a frequency equal or close
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to Ω◦ will end up in a stable harmonic displacement with the general equation of [17]

x(t) = X0 +X1 sin(Ωt+ φ1) +X2 sin(2Ωt+ φ2) + · · · (4.12)

All the harmonics higher than 2 can be ignored because of their trivial amplitudes

compared to X1 and just the static deflection X0 and the amplitude of main actuation

frequency Ω or X1 will be maintained. Thus, x(t) = X0 + X1 sin(Ωt + φ1). Hence,

ẋ(t) = X1Ω cos(Ωt+ φ1), where X0, X1 and φ1 can be represented by [12, 43, 17]:

X0 =
ε◦kAeff

2g2
◦

V 2
DC , X1 =

ε◦Aeff
kg2
◦
VDCVACβ (4.13)

while Aeff is actuator’s effective area (e.g. Aeff = 3
8
A for a fixed-free cantilever

with area A [48]), β is a magnification factor related to the damping for excitation

frequencies other than natural frequency, Ω◦

β =
1√(

1− Ω2

Ω2
◦

)2

+
(

Ω
QΩ◦

)2

φ1 = arctan
( Ω

QΩ◦

1− Ω2

Ω2
◦

)
Q =

meffΩ◦
c

(4.14)

2. Using the Taylor series, 1
1−x(t)

and 1
(1−x(t))2

can be expanded around the static de-

flection distance, X0. According to the small values of higher order components, all
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orders higher than 2 can safely be neglected. Consequently:

1

1− x |x=X0

∼= a0 + a2
0(x−X0) + a3

0(x−X0)2,

1

(1− x)2
|x=X0

∼= a2
0 + 2a3

0(x−X0) + 3a4
0(x−X0)2

(4.15)

where a0 = 1/(1−X0).

Applying point 1 in 2, Eq. (4.15) can be rewritten with the higher harmonics as:

1

1− x |x=X0

≈ (a0 +
a2

1

2
) + a1 sin(Ωt+ φ1)− a2

1

2
cos(2Ωt+ 2φ1),

1

(1− x)2
|x=X0

≈ (a0 +
3a2

1

2
) + 2a0a1 sin(Ωt+ φ1)− 3a2

1

2
cos(2Ωt+ 2φ1),

ẋ

(1− x)2
|x=X0

≈ X1Ω
(

(a2
0 +

3

4
a2

1) cos(Ωt+ φ1) + a0a1 sin(2Ωt+ 2φ1)− 3

4
a2

1 cos(3Ωt+ 3φ1)
)

(4.16)

where a1 = a0X1. Equation (4.17) can be derived by substituting approximations of (4.16)

in Equation (4.10):

ia(t) =VDCC◦ΩX1

(
a2 cos(Ωt+ φ1) + a0a1 sin(2Ωt+ 2φ1)− 3

4
a2

1 cos(3Ωt+ 3φ1)
)

+

VACC◦ΩX1

(
a2 cos(Ωt+ φ1) + a0a1 sin(2Ωt+ 2φ1)− 3

4
a2

1 cos(3Ωt+ 3φ1)
)

sin(Ωt)+

VACC◦Ω
((
a0 +

a2
1

2

)
+ a1 sin(Ωt+ φ1)− a2

1

2
cos(2Ωt+ 2φ1)

)
cos(Ωt),

(4.17)

where a2 = a2
0 + 3

4
a2

1. The general relation between the motion induced current and
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displacement x and velocity ẋ can be concluded by simplifying Equation (4.17) using

trigonometric identities and collecting for frequency harmonics:

ia(t) =
1

2
VACC◦Ω sin(φ1)(a1 −X1a2)

+
(
VDCC◦ΩX1a2 cos(φ1) + VACC◦Ω

3a2
1

4
cos(2φ1) + VACC◦Ω

(
a0 +

a2
1

2

))
cos(Ωt)

−
(
VDCC◦ΩX1a2 sin(φ1)− VACC◦Ω

a2
1

4
sin(2φ1)

)
sin(Ωt)

+
(
VDCC◦Ωa

2
1 sin(2φ1) + VACC◦Ω

X1a2 + a1

2
sin(φ1) + VACC◦ΩX1

3a2
1

8
sin(3φ1)

)
cos(2Ωt)

+
(
VDCC◦Ωa

2
1 cos(2φ1) + VACC◦Ω

X1a2 + a1

2
cos(φ1)− VACC◦ΩX1

3a2
1

8
cos(3φ1)

)
sin(2Ωt)

−
(
VDCC◦ΩX1

3a2
1

4
cos(3φ1)− VACC◦Ω

3a2
1

4
cos(2φ1)

)
cos(3Ωt)

+
(
VDCC◦ΩX1

3a2
1

4
sin(3φ1) + VACC◦Ω

3a2
1

4
sin(2φ1)

)
sin(3Ωt)

−
(
VACC◦ΩX1

3a2
1

8
sin(3φ1)

)
cos(4Ωt)

−
(
VACC◦ΩX1

3a2
1

8
cos(3φ1)

)
sin(4Ωt)

(4.18)

Henceforth, The biased actuation voltage at resonant frequency will be considered be-

cause the preliminary experiments showed promising results with this type of excitation.

Consequently, Ω = Ω◦ and φ1 = 90◦, hence Equation (4.18) will simplified as:
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ia(t) =
1

2
VACC◦Ω(a1 −X1a2)

+ VACC◦Ω

(
a0 −

a2
1

4

)
cos(Ωt)− VDCC◦ΩX1a2 sin(Ωt)

+ VACC◦Ω
(a0a1

2
− a1

2

)
cos(2Ωt)− VDCC◦Ωa2

1 sin(2Ωt)

− VACC◦Ω
3a2

1

4
cos(3Ωt) + VDCC◦ΩX1

3a2
1

4
sin(3Ωt)

+ VACC◦ΩX1
3a2

1

8
cos(4Ωt)

(4.19)

By substituting Equation (4.19) in (4.9) and shifting the coordinate system to the static

deflection X0 as the center, X0 will be zero, and

a0 = 1 , a1 = X1 , a2 = 1 +
3

4
X2

1 .

Consequently, the equation of current versus displacement can be derived as:

i(t) =− VACC◦Ω◦
3

8
X3

1

+ VACCpΩ◦ cos(Ω◦t) + VACC◦Ω◦

(
1− X2

1

4

)
cos(Ω◦t)− VDCC◦Ω◦

(
X1 +

3

4
X3

1

)
sin(Ω◦t)

+ VACC◦Ω◦X1 cos(2Ω◦t)− VDCC◦Ω◦X2
1 sin(2Ω◦t)

− 3

4
VACC◦Ω◦X

2
1 cos(3Ω◦t)−

3

4
VDCC◦Ω◦X

3
1 sin(3Ω◦t)

+
3

8
VACC◦Ω◦X

3
1 cos(4Ω◦t).

(4.20)

The terms including the main harmonic Ω◦ can not provide information about displacement
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(X1) because of the dominant value of Cp >> C◦ in the first term and its independence

from X1. The terms of third and fourth harmonics (3Ω◦) and (4Ω◦) have amplitudes

proportional to X2
1 an X3

1 which are in the orders of 10−12m2 and 10−18m3 and can be

ignored in comparison to X1 which is in the order of 10−6m. As a consequence, they are

not able to provide promising information regarding displacement.

All in all, the current at the second harmonic (2Ω◦) is the only term which produces

information about the displacement, as Equation (4.21) shows:

i(t) = VACC◦Ω◦X1 cos(2Ω◦t) (4.21)

This current is proportional to the cantilever’s velocity and can be measured by a lock-in

amplifier tuned at 2Ω◦. Other parameters affecting this current are the AC component

of actuation voltage, the initial gap between the counter-electrode and cantilever and the

AFM probe’s geometry.

Figure 4.3 illustrate the experimental results affirming this outcome. Figure 4.3a cer-

tifies the significant difference among current’s magnitude at first harmonic and higher

harmonics and its proportional relation to frequency only. Figure 4.3b depicts the con-

stant value of phase versus frequency for harmonics 1, 3 and 4 and reveals the fact that

these phase values are not affecting from cantilever’s displacement. Figure 4.3c shows lit-

tle amplitude of harmonics three and four compared to second harmonic, and their linear

change with frequency. Figure 4.3d illustrates the resonant behavior of phase near to the

resonant frequency only showed up by second harmonic.

Concluding, only second harmonic is showing the resonance effect versus frequency at

71



(a) Magnitude of harmonics 1 to 4 (b) Phase of harmonics 1 to 4

(c) Magnitude of harmonics 2 to 4 (d) Phase of harmonics 2 to 4

Figure 4.3: Experimental results of EAFM Prototype 1 current frequency response for four
harmonics.

the resonant frequency 13.54kHz and the actuator’s current at second harmonic provides

robust information regarding EAFM probe’s tip displacement.

4.2 System Model

For modeling the AFM probe Prototype 1 analytically, the methodology to describe the

behavior of the cantilever in response to external excitations should be determined. In
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the case of a long fixed-free cantilever with an electrostatic excitation which is not implied

uniformly to the whole length of the beam, called leveraged bending method [22] in the

literature, the lumped-mass model can not describe the exact reaction of the beam, be-

cause, the assumption of a concentrated mass at the end of the cantilever and a massless

beam with spring constant k connecting the mass to the post is not realistic. Hence, a

distributed-parameter model is necessary. The Euler-Bernoulli equation of motion consid-

ers the bending elements throughout the beam with respect to the position, therefore, it

can describe the bending of the beam more effectively. The variables used to develop the

model are listed in Table 4.1.

Table 4.1: List of variables in the analytical model

Variable Description

L Length of the beam (m)

b Width of the beam (m)

h Thickness of the beam (m)

d Gap between the cantilever and the bottom electrode at rest (m)

A Effective overlapping area of the cantilever and the bottom electrode b×B (m2)

B Width of the bottom electrode (m)

ρ Density of probe’s material (kg/m3)

E Young’s modulus of probe’s material (Pa)

I Second moment of area for a rectangular beam (Nm2)

ε◦ Permittivity of air (F/m)

ĉ Dimensional damping factor (kg/s)

N̂ Dimensional tensile stress along the beam (N/m2)

v̂(t) Dimensional actuation voltage (V )

ŵ Dimensional displacement of cantilevers’s tip (m)
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Here, the linear equation of motion for the EAFM probe Prototype 1 consisting of a

fixed-free microbeam and a fixed counter-electrode will be introduced, which is well known

as the Bernoulli-Euler equation of motion and describes the transversal motion of the beam,

ŵ(x̂, t̂) at a distance x̂ from the post at time t̂ [58, 59].

EI
∂4ŵ

∂x̂4
+ ρbh

∂2ŵ

∂t̂2
+ ĉ

∂ŵ

∂t̂
=
[EA

2L

∫ L

0

(
∂ŵ

∂x̂

)2

dx̂+ N̂
]∂2ŵ

∂x̂2
+ F̂es(x̂) + FvdW (4.22)

In the right hand side of the equation of motion two different loads are implied to the

cantilever. First, the effective electrostatic force or Fes(x̂) exerted to a portion of the beam

close to its post and causes the oscillation of the beam and governs the average separation

to the sample’s surface. This force can be represented by

Fes(x̂) = U
(
x̂− B

L

) ε◦Av̂2(t̂)

2(d− ŵ)2
(4.23)

where U(x) is the unit step function, defining the geometry of the bottom electrode com-

pared to the cantilever.

Second, the van der Waal force acts between the cantilever’s tip and the surface of

the specimen and will affect the oscillation of the beam corresponding to the topography

of the surface. According to molecular dynamics, the potential energy arising when two

molecules come to their close vicinity is called Lennard-Jones potential and is represented

in its general form by: [30, 27].

ULJ = D
[
E
(R
r

)m
− F

(R
r

)n]
(4.24)
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while r is the distance between particles and m and n are integers and m > n. D, E

and F are constants related to the materials, environment and specific conditions of the

experiment. R is the intermolecular distance in which the non-bonded interactions between

molecules emerge [30]. For a general definition in atomic force microscopy, m = 12 and

n = 6 and the resultant Lennard-Jones force can be defined as [14]:

FLJ = −24ε

[
2

(
σ12

r13

)
−
(
σ6

r7

)]
(4.25)

where ε (in meters) and σ (in J/mol) are parameters dependent on the particles.

To derive the potential energy between the AFM probe’s tip and sample’s surface, all

the energies corresponding to the atoms of the tip and the atoms of the surface should be

integrated to form the two-body potential of an atom on the tip nearest to the surface. For

these calculations, usually the geometry of sphere-surface will be chosen. As a result, the

van der Waal interaction for this geometry, based on the configuration depicted in Figure

4.4 is represented as [27, 20, 6]:

Figure 4.4: Geometry of EAFM Prototype 1 used to explain the van der Waal force.
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FvdW = −HR
6z2

, z ≥ a◦

FDWT = −HR
6a2
◦

+
4

3
E∗
√
R(a◦ − z)3/2, z < a◦

1

E∗
=

1− ν2
t

Et
+

1− ν2
s

Es
(4.26)

where FvdW is the van der Waal non-contact force for tip-sample distances larger than a◦

with an attractive nature, FDWT is the Derjaguin–Muller–Toporov contact force when the

tip-sample separation is smaller than a◦ with a repulsive nature, a◦ is the intermolecular

distance at which two objects are considered to be in contact, H is the Hamaker constant,

R is the tip’s radius wich is assumed to be much larger than a◦ and Et, νt and Es, νs are

the Young’s modulus and Poisson coefficients of the tip and sample respectively.

Hamaker constant H is represented by [27]:

H = π2Cρ1ρ2

where C is a constant related to the material properties and is equal to 10−77Jm6 for solids.

ρ1 and ρ2 are the densities of materials at the tip and the sample. Considering both the

tip and the sample have dense materials, ρ1 ≈ ρ2 = 3× 1028m−3, then H will be 10−19J in

vacuum.

The geometry of the tip and the sample in Figure 4.4 illustrates that electrostatic

force Fes(x̂) and van der Waal force FLJ are independent of each other and modeled in

the literature based on two different approaches [58, 9]. Table 4.2 shows the geometric

and material specifications of two different AFM probes from Bruker® Corporation [15],
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namely the RESPA™ and SCM-PIT™. In the following calculations, nominal values will be

used.

Table 4.2: (Bruker™ AFM Probes Specifications)

Parameter

Value

Unit DescriptionRESPA SCM-PIT

Nom. Min. Max. Nom. Min. Max.

L 450 440 460 225 200 250 µm Length

b 35 33 37 28 23 33 µm Width

h 1.8 1.05 2.75 2.5 2 3.5 µm Thickness

k 0.1 0.03 0.2 2.8 1 5 N/m Spring Constant

f0 10 4 16 75 50 100 kHz First Natural Frequency

σ 0.01 to 0.025 Ω· cm Resistivity

ρ 2330 kg/m3 Density

Antimony n doped silicon – Material

The analytical model will be derived based on Reduced-order modeling exploiting the

equation of motion in Equation (4.22) by applying the Galerkin Method [58].

4.2.1 Structural Analysis

In this analysis, the first five natural frequencies and the first five modeshapes of the

RESPATM cantilever are investigated (refer to Table 4.2 for dimensions). To benefit the

advantages of simpler formula and the ability to compare the results of analyses for dif-

ferent structures, the Equation (4.22) will be normalized using the following normalizing
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equations:

w =
ŵ

d
, x =

x̂

L
, t =

t̂

T
, T =

√
ρbhL

6EI
L3

, c =
ĉ

EIT
L4

, N =
N̂
EI
L2

, Fes =
F̂es
EI
L3

By substituting the normalizing equations in (4.22), this model can be reduced to:

∂4w

∂x4
−N ∂2w

∂x2
+
∂2w

∂t2
+ c

∂w

∂t
= Fes(x). (4.27)

In the absence of damping and by neglecting the axial force and no input force, Equation

(4.27) can be written in the form of:

∂4w

∂x4
+
∂2w

∂t2
= 0. (4.28)

Solving this equation is known as the Eigenvalue Problem and tends to be the general

solution of w(x, t) = φ(x)ejωt where j =
√
−1 and ω is the natural frequency. Substituting

this equation in (4.28) and some math manipulation yields to the following general form

for φ(x):

φ(x) = A cos(βx) +B sin(βx) + C cosh(βx) +D sinh(βx) (4.29)

where β =
√
ω. A, B, C and D are specific to each problem and can be determined by the

boundary conditions of that problem. For a fixed-free beam, determining the constants A

to D tends to the characteristic function for a cantilever:

1 + cos(βi) cosh(βi) = 0 (4.30)
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This equation has infinite solutions where βi =
√
ωi is a representative of the eigenfrequen-

cies or natural frequencies of the cantilever. These eigenfrequencies are corresponding to

φi(x) or eigenvectors (modeshapes). The five first natural frequencies and modeshapes are

considered but later, it will be seen that only the first three eigenvectors have the most

contribution in shaping the final displacement w(x, t).

The first five nondimensional ωi and modeshapes are listed in Table 4.3 and Figure 4.5

shows the five modeshapes of the 450µm cantilever.

Figure 4.5: The first five mode shapes of the 450 µm cantilever

4.2.2 Analysis under Electrostatic Actuation

According to the intrinsic nonlinearity in electrostatic actuation, the static behavior of

microelectromechanical devices will differ from the structural response. On the other hand,

one of the most important information in electrostatic actuation of MEMS devices is the

pull-in voltage and its corresponding pull-in distance. These information are crucial in both

AFM devices designed for this project because an estimation about the actuation voltage
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Table 4.3: List of natural frequencies, mode shapes and model coordinates in the analytical
model (all quantities are nondimensional)

i ωi φi(x) ui(t)

1 3.516
0.7341 sin(1.8751x)− cos(1.8751x)−

245.853× 10−6

0.7341 sinh(1.8751x) + cosh(1.8751x)

2 22.035
1.01847 sin(4.6941x)− cos(4.6941x)−

31.2431× 10−6

1.0185 sinh(4.6941x) + cosh(4.6941x)

3 61.697
0.9992 sin(7.8548x)− cos(7.8548x)−

8.6858× 10−6

0.9992 sinh(7.8548x) + cosh(7.8548x)

4 120.902
sin(10.9955x)− cos(10.9955x)−

3.2413× 10−6

sinh(10.9955x) + cosh(10.9955x)

5 199.856
0.9999 sin(14.1372x)− cos(14.1372x)−

1.3398× 10−6

0.9999 sinh(14.1372x) + cosh(14.1372x)

is necessary to manage the average distance between the tip and the sample’s surface as

well as the amplitude of oscillation to keep the AFM probe working in the desired mode.

In fact, unlike other MEMS devices, the pull-in phenomenon in Prototype 1 is different

from other electrostatic actuators as the tip of the AFM cantilever is hovering above the

sample’s surface not on the substrate of the electrostatic actuator. As a result, based

on the position of the specimen on the XY&Z positioner, the pull-in may have different

meanings.

80



4.2.3 Static Analysis for EAFM Prototype 1

The static behavior of the cantilever for Prototype 1 has been modeled in this section.

In Galerkin Method, using the expansion theorem [58], the discretized variables can be

defined as

w(x, t) =
n∑
i=1

ui(t)φi(t) (4.31)

while φi(t) are orthonormal functions expressing the mode shapes and ui(t) are model

coordinates. These functions are listed in Table 4.3. By substituting this equation in the

equation of motion (4.22), and continuing the math, the bifurcation curve or the static

response of the AFM probe to the DC actuation voltage for a given gap (d = 6µm) shown

in Figure 4.6 will be derived.

0 50 100 150 200
Vdc @VD0.0

0.1

0.2

0.3

0.4

ws

Figure 4.6: The displacement of AFM probe versus DC actuation voltage for a gap of d = 6µm in

the absense of van der Waasl force. Solid: normalized displacement at the tip, dashed: normalized

displacement at the bottom electrode.

Figure 4.6 also reveals the static pull-in voltage as 247.8V and the nondimensional

pull-in distance as 0.416. According to the structure of AFM probe in Prototype 1 and

the gap between the cantilever and the bottom electrode, it is very important to know the
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Figure 4.7: Pull-in voltages versus gap for a 450µm long cantilever. For gaps greater than 6µm,

pull-in voltages are drastically high.

range of pull-in voltages in terms of the gap. This information was calculated using the

analytical model in the absence of van der Waal force and the result is depicted in Figure

4.7.

The next important information about the AFM probe Prototype 1 is the effect of the

width of the bottom electrode compared to the length of the cantilever. As explained in

section 3.1.1, the bottom electrode which is a track very close to the edge of the PCB,

is responsible for providing the actuation signal to the AFM probe and functions as the

fixed electrode of the electrostatic actuator. The width of this track has a crucial effect

on the static behavior of the AFM probe. Figure 4.8a shows the effect of this width on

pull-in voltage and pull-in distance. Figure 4.8b depicts the change in bifurcation curves

for different bottom electrode widths.

Figures 4.8a and 4.8b show that using wider bottom electrode will provide us with lower

actuation voltages, however, according to the AFM probe’s structure, some space under

the free end of the cantilever is needed for the specimen and the sample holder. Therefore,
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(a) pull-in voltage and pull-in distance vs bot-
tom electrode’s width

(b) Bifurcation curves vs bottom electrode’s
width

Figure 4.8: The effect of the bottom electrode width on the pull-in voltage, pull-in distance and

bifurcation curves of the EAFM Prototype 1.

the width of the bottom electrode was selected to be 1/4 of the length of the cantilever.

Referring to the experimental results, The dynamics of Prototype 1 is not mentioned here,

because according to the device’s geometry, the cantilever of this prototype acts as a regular

resonator and does not show significant behavior worth to study.

The Effect of van der Waal Force on Pull-in Voltage and Tip Displacement

The next interesting study was the effect of van der Waal force on the pull-in voltage and

tip’s displacement under the electrostatic actuation. The pull-in voltage will be investigated

first. By applying the van der Waal force to the model, there will be a sudden change in

the pull-in voltage at zc = 0.058. Figure 4.9 shows this change for an EAFM prototype

1 device when the gap between the cantilever and bottom electrode is 10µm. Below the

certain tip-sample distance, the pull-in voltage is negligibly small because of the strong

attractive force between the tip and the sample.

Tip displacement demonstrates a similar behavior versus tip-sample separation. Figure
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Figure 4.9: Pull-in voltages versus tip-sample separation for a 450µm long cantilever for gap

= 10µm.

4.10 depicts this behavior. For high values of zc, the displacement will be decayed by

reducing zc because of the effect of long-range attractive forces. At a certain value of zc,

there is an abrupt increase in displacement because of stronger attractive forces. Then the

displacement will decrease linearly. This outcome is in accordance with results proposed

in [20].

Figure 4.10: Displacements of two points on the AFM’s cantilever: at the end and at the bottom

electrode, gap = 10µm.
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4.2.4 Dynamic Analysis of Prototype 2 in Tapping mode

The behavior of the electrostatic actuator under dynamic excitation is always of interest,

specifically when there is a need to information about the actuator in tapping mode.

Therefore, the dynamic analysis for a cantilever with dimensions mentioned in Table 4.2

with the actuation voltage of Va(t) = 47.5 + 47.5 sin(2πf◦t) where f◦ = 11.9kHz will be

studied. The gap between the cantilever and the counter electrode was 20µm. In this

study, only first-mode analysis will be considered.

The outcomes of analytical and experimental results in this section will be compared to

a comprehensive numerical analysis on the dynamics of AFM cantilevers in tapping mode

proposed in [6]. It is important to note that excitation method in this report is based on

piezoelectric actuation with linear relation between the force and the applied amplitude

and the output parameter is tip’s displacement. In our research, the applied force to

the cantilever is electrostatic, hence, intrinsically nonlinear and the output parameter is

actuator’s current.

The results of first-mode analysis have been demonstrated as displacement and velocity

frequency responses versus the tip-sample distance in Figure 4.11.

The flat tops of displacement curves in Figure 4.11b show the effect of tapping which

means the displacement is limited by the tip-sample distance. This curve is in agreement

to the displacement’s frequency response proposed in [6]. In fact, the results regarding z =

16µm (blue curve) obtained in this research are compatible with mode-one analysis in [6].

By decreasing the tip-sample distance, which is similar to increasing the cantilever’s input

amplitude, some fluctuations appear at frequencies that a flat top begins. These variations
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(a) Velocity (b) Displacement

Figure 4.11: Dimensional (a) velocity and (b) displacement for the cantilever of Table 4.2.

illustrate the effect of chaos caused by grazing bifurcation in cantilever’s tip vibration at

these specific frequencies. This is the characteristic of an impact oscillator. While the

excitation frequency grows, the displacement (velocity) settles to a stable amount showing

the instability has been liquidated. By further decreasing the tip-sample distance, the

effect of chaotic variations will continue to persist for more frequencies. This consequence

fit to the discussions presented in [6].

Figures 4.11a and 4.11b also show the effect of period doubling in the analysis of this

research.

The phase portraits of each tip-sample distance are important sources of information

which are sketched in Figure 4.12 based on the last ten cycles of the time histories at the

resonant frequency f◦ = 11.9kHz. The following points can be derived from these phase

portraits:

• All phase portraits show the flat region which corresponds to the limitation in dis-

placement because of tapping.
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Figure 4.12: Phase portraits versus tip-sample distance for the 450µm cantilever.

• All phase portraits are asymmetric to w = 0 or the rest position of the cantilever

because of the static deflection. The static deflection depends on gap, the tip-sample

distance and actuation voltage.

• The flat region in displacement causes a sudden jump in the direction of the velocity

which is expected from the dynamic behavior of harmonic oscillators.

• The flat region is in the negative plane of displacement because the sample and the

counter electrode are in two sides of the cantilever and w(t) has a positive sign when

it deflects toward the counter electrode.

To compare the analytical result to experimental results, the outcomes of current mea-

surement in tapping mode are illustrated in Figure 4.13. This Figure includes current’s

magnitude and phase curves versus frequency for different tip-sample distances. For better

comparison, current responses for fly mode and contact mode are also included. Figure
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(a) Magnitude (b) Phase

Figure 4.13: Experimental results for current’s magnitude versus frequency in tapping mode for

different tip-sample distances.

4.13a shows the similarity between the current’s magnitude of AFM probe and cantilever’s

velocity in Figure 4.11a because of the Ω◦X1 term in Equation (4.21) in the shape of flat

tops. Moreover, the magnitude of current decreases as the sample gets closer to the can-

tilever’s tip. The next point is, the range of frequencies at which the magnitude stays

at its flat top is inversely related to the tip-sample separation. This experimental results

These flat tops can be interpreted as an impact oscillation with a grazing bifurcation at

these frequencies. It was observed that if the actuation voltage was decreased, the cur-

rent magnitude showed the behavior of a smooth oscillator instead of impact oscillator

at the same frequencies. It is expected that for a known actuation voltage and a fixed

excitation frequency (like the cantilever’s resonant frequency), a chaotic behavior emerges

at tip-sample distances that tapping starts. To examine this expectation, the so-called

‘magnitude noise’ and ‘phase noise’ were sketched by deriving the amount of fluctuations

at different tip-sample distances starting from free running mode and ending up at contact

mode. The same procedure explained in section 5.4.1 for calibration curves was employed
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(a) Magnitude Noise (b) Phase Noise

Figure 4.14: Experimental results for Magnitude Noise and Phase Noise versus tip-sample dis-

tance. V (t) = 75 + 75 sin(2πf◦t), f◦ = 10.54kHz

here.

For measuring the variations, the local regression of the data called ‘Local regression us-

ing weighted linear least squares and a 2nd degree polynomial model’ was subtracted from the

real value of data at each tip-sample distance. The outcome of this procedure is sketched

as Magnitude Noise and Phase Noise curves illustrated in Figure 4.14: These curves also

certify the amplification of fluctuations at distances which the impact phenomenon starts

to emerge. This is equivalent to the grazing bifurcation and leads to chaos in terms of dis-

placement and velocity and have been discussed. As explained in [6], the tip’s oscillations

will be converged to a periodic attractor in phase plane which can be translated to low

amount of magnitude and phase noise in terms of current measurement.

As a conclusion, although the dynamic analysis of tapping mode in this research did

not support higher modes of Galerkin discretization, the analysis results for first mode and

the experimental measurements comply with the analysis results proposed in [6].
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4.3 Finite Element Simulation

4.3.1 Structural Analysis

Figure 4.15 shows the first six modeshapes of the AFM cantilever calculated by COMSOL.

Modes 4 and 5 are not out-of-plane and can not be calculated by the analytical model.

The eigenfrequencies corresponding to these modeshapes are listed in Table 4.4. This table

also shows the natural frequencies from the analytical model for comparison. Table 4.4

shows that the natural frequencies calculated by two methods are very close.

Table 4.4: List of natural frequencies calculated by the FEM software and analytical model.

Method

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Analytical 12231 75539 211511 414477 685161

COMSOL 12327 77235 216330 424210 N/A

Figure 4.15 illustrates four modeshapes with out-of-plane motion, one modeshape with

in-plane vibration and one modeshape with torsional vibration.

4.3.2 Analysis Under Electrostatic Force

The result of COMSOL static analysis for the first modeshape deflection of AFM probe’s

cantilever is an important piece of information because of the dominant amplitude of the

first modeshape.
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Figure 4.15: The modeshapes of the 450µm cantilever calculated by COMSOL

In this part, the parameters listed in Table 4.5 are used. The maximum deflection

under a test force of 1µm is shown in Figure 4.16. Figure 4.17 depicts the softening effect

of electrostatic force, namely, the cantilever’s resonant frequency versus applied voltage.

4.3.3 Dynamic Analysis

The response of AFM probe’s structure against the actuation voltage Va(t) = 75+sin(2π10400t)

with a constant VDC was the target of this simulation. Parameters used for this analysis

are listed in Table 4.6 and the results are depicted in Figure 4.18a for VAC < 10Vpp and

Figure 4.18b for 10Vpp < VAC < 60Vpp.

Figure 4.18 clarifies the softening effect of electrostatic actuators versus actuation volt-

ages beyond 10 Vpp. We can see for voltages below 10 Vpp the decay in the resonant

frequency is negligible. These results are in compliance with the experimental results for
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Table 4.5: List of parameters for COMSOL dynamic analysis

Name Expression Value Description

Lb 450 [µm] 4.5× 10−4 m Length of Beam

Wb 45 [µm] 4.5× 10−5 m Width of Beam

Hb 1.8 [µm] 1.8× 10−6 m Thickness of Beam

Yb 130 [GPa] 1.3× 1011 Pa Modulus of Beam

ρb 2325 [kg/m3] 2325 kg/m3 Density of Beam

Da 30 [µm] 3× 10−5 m Gap

Ftest 1 [µN ] 1× 10−6 N Test mechanical Force

current’s magnitude depicted in Figure 4.18c and Figure 4.18d.

4.4 Summary

The first part of this chapter was dedicated to the development of the relation between

the EAFM probe’s displacement (or velocity) and the electrostatic actuator’s current. The

mathematical analysis showed a linear relation between the current’s magnitude and tip’s

velocity at the second harmonic of a biased actuation voltage. It was approved that higher

harmonics do not have significant contribution in current measurement.

From this point on, the structural and the static analysis for EAFM probe Prototype 1

was initiated by using the reduced-order model and Galerkin method to solve the equation

of motion. This analysis included the electrostatic actuation force and the van der Waal

surface force.
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Figure 4.16: First modeshape of probe’s cantilever under test force of 1µN

The next section covered a dynamic analysis for the EAFM device Prototype 2 in

tapping mode. The results were compared to experimental results in tapping mode. In each

case, the outcomes were compared to results proposed in the literature. The comparison

showed compatibility among the results.

Finally, a numerical analysis including structural, static and dynamic investigations

using COMSOL was run. The dynamic analysis was employed to study the behavior of the

EAFM probe’s cantilever under different actuation conditions. Comparing the outcomes

to the experimental results showed adaptability.
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Figure 4.17: The decay in resonant frequency caused by electrostatic force versus applied DC
voltage.

Table 4.6: List of parameters for COMSOL dynamic analysis for the structure of Table 4.5

Name Expression Value Description

VDC 75 [V] 75 V DC Value of Actuation Voltage

VAC 1 [Vpp] 1 V AC Value of Actuation Voltage

Vrms

√
V 2
DC + 0.5V 2

AC 75.003 V RMS Value of Actuation Voltage

Vpk
√

2× VDC × VAC 12.247 V Peak Value of Actuation Voltage

f◦ 10.4 [kHz] 10400 Hz First Eigenfrequency

Q 20 20 Quality Factor

ζ 1/Q 0.05 Damping Factor

BW f◦/Q 520 Hz Bandwidth

f1 f◦ − 2×BW 9360 Hz Start Frequency

f2 f◦ + 2×BW 11440 Hz Stop Frequency

Nf 500 500 Number of
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(a) VAC < 10Vpp (b) 10Vpp < VAC < 60Vpp

(c) VAC < 100Vpp (d) VAC > 150Vpp

Figure 4.18: (a) and (b) numerical analysis results for AFM probe’s beam displacement versus
dynamic force VAC with VDC = 75V ; related to Table 4.6; (c) and (d) experimental results
of EAFM Prototype 2 for different VAC values while VDC = 100V . The device’s gap in the
experimental results were different from the one used in simulation.
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Chapter 5

Experimental Results

In this chapter, the outcomes of the experiments are proposed to show the performance

of capacitive detection for surface force scanning. The information acquired from the

measurement's setup are the magnitude (|ia(t)|), phase (]ia(t)), X = |ia(t)| cos(]ia(t))

and Y = |ia(t)| sin(]ia(t)) where ia(t) is the motion induced current.

5.1 Experimental Setup

The setup used for these experiments is shown in 5.1. The excitation frequency was the

cantilever’s mechanical resonant frequency (f◦) and in majority of the experiments, the

measurements (observations) were in the second harmonic of the excitation frequency (2f◦)

because of the biased actuation voltage Va(t) = VDC + VAC sin(2πft).

Figures 5.2 and 5.3 try to illustrate a comparison among the magnitude and phase of
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Figure 5.1: Experimental setup used for scanning.

harmonics 1 to 6.

As explained in section 4.1.2 and is evident from Figure 5.2a, the magnitude of first

harmonic is three orders of magnitude higher than second harmonic and linear in all fre-

quencies. The phase of first harmonic is also constant in all frequencies. Consequently,

they can not provide promising information about the cantilever’s vibration in a specific

frequency range, even though the magnitude has the purpose of measuring the parasitic

capacitance in the AFM device.

In fact, it was shown in section 4.1.2 that second harmonic is the best representative

of the motion induced current. It is evident through the dominance of the magnitude of

second harmonic in frequencies close to the resonant frequency in Figures 5.3a and 5.3b.
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(a) Magnitude (b) Phase

Figure 5.2: Frequency responses of first six harmonics of EAFM Prototype 1 current in the
frequency range of 10 to 16kHz with V (t) = 75 + 75 sin(2πf◦t), f◦ = 13.54kHz.

5.2 Experimental Approach

The experiments were arranged in three steps, first the response of the detection system to

changes in the actuation voltage and the effect of tip-sample distance on current’s frequency

response were investigated, to derive the calibration curves by using Fixture 1 (described

in section 3.2.1).

Second, single-line scanning of an random sample was performed in different line

lengths, while exploiting the 1-D piezoscanner.

Lastly, by adding the manual micrometer to the fixture, as demonstrated in section

3.2.3, scanning several lines of the specimen was performed. Then, a semi-automatic raster

scanning was implemented after exploiting the motorized XY-stage as explained in section

3.2.4.
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(a) Magnitude (b) Phase

Figure 5.3: Frequency responses of harmonics 2 to 6 of EAFM Prototype 1 current in the
frequency range of 13 to 14 kHz with V (t) = 75 + 75 sin(Ωt).

5.3 Single-point Experiments

Single-point tests were performed in the first step of scanning experiments. Three main

goals were pursued in this part:

1. Investigating the effect of actuation voltages on the behavior of electrostatic detection

scheme.

2. Finding optimum parameters of the actuation voltage Va(t) = VDC + VAC sin(2πf◦t).

3. Deriving the calibration curves for the developed capacitive detection system in tap-

ping mode to find the optimum tip-sample distance.

The outcomes of the experiments will be discussed in the following.
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5.3.1 The Effect of Actuation Voltage Levels

This feature is very important because of its direct impact on the parameters measured

as the source of information for the scanning process and producing output images. It is

worth repeating that all the measurements in this part are based on the EAFM probe’s

current measured at the second harmonic of the excitation frequency. This frequency is

equal or very close to the probe’s mechanical resonant frequency.

The electrostatic force has a quadratic relation with the actuation voltage. Same be-

havior could be seen in current’s magnitude vs actuation voltage. The sweeping feature of

Zürich Instruments HF2LI™ lock-in amplifier was used to test this relation in our EAFM

devices. This feature was employed to sweep the DC voltage, the AC voltage or the fre-

quency.

Prototype 1

Figure 5.4a illustrates the magnitude and phase of current vs changing in VAC and Figure

5.4b shows the current vs VDC for the first EAFM probe design (section 3.1.1). Both graphs

show similar quadratic trends for magnitude but different trends for phase.

Prototype 2

In this part we tested the actuator’s current versus excitation voltage in three different

tip-sample distances, namely high, corresponding to free-running mode, medium, corre-

sponding to tapping mode, and low, corresponding to contact mode.
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(a) Sweeping VAC while VDC = 75V (b) Sweeping VDC while VAC = 15.75VPP

Figure 5.4: Current versus changes in actuation voltage parameters for EAFM device 1 in free
running mode.

High Tip-Sample Separation: Free-running Mode

Figure 5.5a illustrates the magnitude and phase of current versus changing VAC and

Figure 5.5b shows the current versus VDC for the second EAFM probe design (section 3.1.2).

Similar to EAFM first design, both graphs show similar quadratic trends for magnitude

but different trends for phase. The phase responses are in compliance to results of first

EAFM probe design.

Medium Tip-Sample Separation: Tapping Mode

Figure 5.6a shows the magnitude and phase of second design’s current versus changing

VDC . The output curves have been derived by measuring the current’s magnitude and

phase at the resonant frequency, 10568Hz. The magnitude shows quadratic trend while

phase has an almost linear trend, in compliance to results of first EAFM probe design.

We will see later that this feature can be used as a matter of measurements for tip-sample
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(a) Sweeping VAC while VDC = 75V (b) Sweeping VDC while VAC = 60VPP

Figure 5.5: Current versus changes in actuation voltage parameters for EAFM device 2 in free
running mode. The devices for two experiments were not the same.

distance in tapping mode.

Low Tip-Sample Separation: Contact Mode

Figure 5.6b shows the magnitude and phase of second design’s current versus changing

VDC in contact mode while VAC was fixed at 60VPP . Like the free-running mode, the output

curves have been derived by measuring the current’s magnitude and phase at the resonant

frequency, 10568Hz, although for contact mode, we do not have the resonant effects, and

the magnitude and phase have almost constant values at all frequencies.

Figure 5.6 also shows a quadratic trend for magnitude and a piecewise linear trend

for the phase in both operating modes. This fact certifies that both tapping and contact

modes could be used for topography if the DC voltage applied to the EAFM probe could

be controlled to maintain the phase at a fixed value while the EAFM tip is scanning the

sample’s surface.

102



(a) Tapping mode (b) Contact mode

Figure 5.6: Current versus VDC for EAFM device 2 in two scanning modes, VAC = 60VPP .

5.3.2 Softening Effect

The well-known decrease in resonant frequency of the electrostatic actuators by increasing

actuation voltage is also observable by the measurement of actuator’s current in dynamic

mode. Figure 5.7 shows the results of this test to investigate the impact of VDC and VAC

on decreasing resonant frequency.

5.3.3 Hysteretic Jump

Hysteretic jump is one of nonlinear observations we had in driving the EAFM probe with

relatively high voltages. The effect of this property is a sudden jump in the magnitude

and phase of the actuator’s current response if the excitation voltage increases from a

certain level. This level depends on the initial gap between the cantilever and the counter
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(a) Sweeping VAC while VDC = 100V (b) Sweeping VDC while VAC = 100VPP

Figure 5.7: Current versus changes in actuation voltage parameters for EAFM device 2 in contact
mode.

electrode. As Figure 5.8 depicts, the frequency at which the magnitude or phase jump

to another value decreases by increasing the actuation voltage because of the softening

property in electrostatic actuators.

(a) Magnitude (b) Phase

Figure 5.8: Current frequency responses showing the hysteretic jump and multivaluedness for
different values of VAC while VDC = 75V .
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5.3.4 Hysteresis Effect of Frequency Response

When an electrostatic actuator is working in tapping mode, the frequency responses of

displacement to frequency sweeps in upward (increasing) and downward (decreasing) di-

rections are not the same [20]. We observed the same phenomena for current measurements

as illustrated by Figure 5.9.

(a) Magnitude (b) Phase

Figure 5.9: The hysteretic effect of current magnitude and phase in upward and downward
frequency sweeps.

The step in the frequency response is because of the bistable behavior of the vibrating

cantilever. It depends on different factors including the cantilever’s displacement ampli-

tude, interacting surface forces, material stiffness and frequency.

5.4 Tapping

The purpose of the experiments in this part was finding the calibration curves of a tip-

sample pair before the start of scanning. Calibration curves show the magnitude and

phase of the electrostatic actuator’s current versus tip-sample distance for a given actuation

frequency. This frequency is usually the cantilever’s resonant frequency (f◦) in free running

mode (before tapping). Frequencies close to f◦ can also be selected.
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The set of calibration curves can be exploited to determine the best tip-sample distance

as well as best excitation frequency for tapping mode scanning in terms of linearity and

sensitivity. The procedure was explained in section 3.2.1 with a set of results shown in Fig.

5.12.

In this experiment, current’s magnitude and phase from all frequency responses at

frequencies (2f◦), 2(f◦ − 20Hz) and 2(f◦ + 20Hz) were selected as shown in Figure 5.13.

f◦ is the resonant frequency of the AFM probe, measured by the frequency sweeps in the

free running mode.

5.4.1 Calibration Curves

To derive the calibration curves depicted in Figure 5.11, one needs to select the current’s

magnitude and phase at a specific frequency while changing the tip-sample distance. Con-

sequently, the frequency response curves for different tip-sample distances were recorded as

illustrated in Figure 5.10. Figure 5.11 illustrates the cross section of the desired frequencies

(f◦ − 20Hz, f◦ and f◦ + 20Hz) with the frequency response curves which are known as

calibration curves. In fact, for deriving these curves, all the frequency response vectors

from the magnitude measurement were arranged in a matrix while the rows of this matrix

were the individual frequencies and the columns were the vectors corresponding to different

distances.

Then one row which represents all the magnitude values for different tip-sample dis-

tances was selected at a certain frequency, f◦. This procedure was iterated for two other

frequencies, namely f◦ − 20Hz and f◦ + 20Hz. The whole process was repeated for the
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(a) Magnitude (b) Phase

Figure 5.10: Waterfall diagram of current frequency response curves versus different tip-sample
distances.

phase in order to have six vectors including the magnitude and phase versus different

tip-sample distances.

(a) Magnitude (b) Phase

Figure 5.11: Calibration curves versus tip-sample distance for three different frequencies.

At the next step, the area on the curves of Figure 5.11 with the steepest slope and

simultaneously, highest linearity were recognized to provide the best differentiability. In

this way, the difference of tip-sample distances were found by measuring the current’s

magnitude and phase. These information resemble the topography of the surface at the
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point of scanning. The sections on the calibration curves satisfying the criteria were close

to tip-sample distances in which slight tapping started. These area are assigned with ‘Start

of Tapping’ in Figure 5.11.

Then the partial calibration curves were resketched in Figure 5.12 again to find the best

excitation frequencies and optimum tip-sample distances while scanning the specimen.

Figure 5.12: Partial calibration curves for distances close to the start of tapping at three fre-
quencies.

In Figure 5.12, two curves which showed the highest linearity and differentiability are

sketched with red color. In fact, the best response in regards to the magnitude, happened

at f◦ and to the phase at f◦ + 20Hz. Table 5.1 shows a summary of these results.

Figure 5.13 illustrates another representation for this approach. This figure shows

the selected frequency response curves near to tapping with the raw and processed data.
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Table 5.1: Summary of measurement results to find the optimum tip-sample distance and best

excitation frequency.

Quantity Sensitivity Unit Frequency

Magnitude 3.42 nA/µm f◦

Phase 5.06 deg/µm f◦ + 20Hz

Indeed, the frequency response curves which contributed in the partial calibration curves

were selected and shown only. The dashed curves represent the same data after applying a

local regression method with a small window for data smoothing. Then the magnitude and

phase values were derived for the selected distances as shown in Figure 5.12. The curves

in Figure 5.12 are the same as insets in Figure 5.13.

(a) Magnitude (b) Phase

Figure 5.13: Current frequency response curves vs tip-sample distance showing the responses for
’free running’ and ’close to start of tapping’. The response for contact mode has been added for
the purpose of comparison. The insets show the partial calibration curves produced by crossing
the vertical lines and the frequency response curves.
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To achieve the maximum phase difference, it is better to scan the sample at a frequency,

higher than resonant frequency and for magnitude, scanning in resonant frequency produces

the best result. Based on the information of insets with red curves in Fig. 5.13 , and

the calculated RMS value of noise in each distance, this open-loop setup can provide a

minimum detectable range for magnitude as 68.71nm scanned at 2f◦ and for phase as

50.5nm scanned at 2(f◦ + 20Hz).

5.5 Line Scanning

One line of a random specimen was rescanned in order to investigate the feasibility of the

constructed system and the measurement approach. Using the 1-D piezoscanner, several

line scannings were implemented. Scans were started from lines of 15µm length and fixed

speed of 9.43µ/sec. In next steps, the same line was scanned with the same speed and

longer lengths up to 150µm.

5.5.1 Scanning Procedure

The sample was brought to the vicinity of the AFM probe by the vertical stage while the

sweeper feature of Zürich Instruments HF2LI lock-in amplifier was measuring the current’s

frequency response to certify the optimum tip-sample distance. Once the probe came to

tapping, line scanning started.

The spectroscopy feature of HF2LI was used for acquiring the data. The timing of this

feature was set to provide the trace of 5 lines scanning in one screenshot which could be
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captured by the host computer. The curves in the screenshots were digitized later to derive

the values for current’s magnitude and phase. The digitized data was then segmented into

separate curves as illustrated in Fig. 5.14.

5.5.2 Scanning Results

General patterns of magnitude and phase show a repeating scheme which resemble the

sample’s topography and approves the functionality of this approach.

(a) Length 50µm (b) Length 100µm

Figure 5.14: Electrostatic transducer’s current while scanning lines with different lengths. Scan-
ning speed=9.43µm/s speed, Excitation signal: Vin(t) = 75 + 75 sin(Ω0t), measurement at 2Ω0.

Comparing the magnitude curves in Figure 5.14a to magnitude curves in Figure 5.14b

from 0 to 50µm discloses the similarity which also certifies the validity of measurements.
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5.6 Raster Scanning

Raster scanning was implemented in open-loop and closed-loop fashions. Two fixtures were

used for open-loop scanning, namely fixture 3 (section 3.2.3) and fixture 4 (section 3.2.4).

Closed-loop scanning was performed by fixture 4 only.

To investigate any raster scanning, it is better to use known samples then compare the

outcome of scanning process to the reality of the specimen. Several standard specimen

are available on the market including calibration grating samples like TGZ2 and TGZ3

samples from NT-MDT Spectrum Instruments [26].

TGZ2 and TGZ3 have a periodic pattern with 3µm pitch. Their vertical features are

110nm and 500nm respectively as depicted in Figure 5.15.

Figure 5.15: The outline and SEM picture of TGZ2 calibration grating sample.

The data produced by the HF2LI lock-in amplifier in this set of experiments were

captured using LabOne, the new user interface deployed by Zürich Instruments. The

plotter feature of HF2LI which is the time-domain data streaming tool was exploited for

acquiring the current’s magnitude and phase.
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5.6.1 Open-loop Scanning

Scanning Procedure

Each line of the sample has been scanned 5 times. Each scan took 60sec with 13491 sam-

ples to produce enough source of information for post processing. The line scanner for

this step was the nPoint piezoscanner with the scanning characteristics shown in Figure

5.16. This Figure shows the property of moving-dwelling which is crucial for all AFM XY

scanner stages.

Figure 5.16: A sample of moving-dwelling method in piezoelectric scanners.

This property lets the scanner to settle after the transients caused by moving are dimin-

ished. The transients create a destroying impact on the quality of the final data. For better

results, the data acquisition system should be synchronized to the line scanner in order to

capture the data only when the scanner has been settled and is in the dwelling state.

For capturing the next line, the EAFM probe was progressed toward the next line

manually with an accuracy less than 5µm and the aforementioned line scanning procedure
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was repeated. Evidently, this distance was far below the requirements of AFM images, but

at this step, the goal was only to show how this implementation can prove the concept of

integrated electrostatic actuation/detection.

Scanning Results

The result of raster scanning of TGZ2 sample is shown in Fig 5.17. This scan covered a

width of X = 15µm, but only a length of 10µm was used for imaging. In the Y direction,

we had 14 lines with 5 scans in each line or 70 vectors covering a length of almost 70µm.

The sample had parallel features but it was placed with 45° angle in the stage.

X and Y matrices have been calculated in post-processing and for this specific case,

they show more salient features. All four images in Fig. 5.17 show a rough resemble of the

sample and prove the functionality of the device in an open-loop scheme. Apparently, a

Y-direction scanner similar to the one exploited for X-direction scanning is an inevitable

requirement for higher resolutions.

The sample illustrated in Figure 5.17 was scanned by 13491 samples acquired from

60 segments (pixels) in each row. The same area of the sample was scanned with 4497

samples acquired from 20 segments (pixels) in each row to compare the effect of number

of samples visually. The result for magnitude, phase, X and Y are depicted in Figure 5.18.

The images in Figure 5.17 show more details compared to Figure 5.18. The advantage of X

and Y images is that they correlate two sets of information, namely magnitude and phase,

and are able to show a better contrast from the sample’s surface features.

As a result, a light post-processing was applied to the Y frame of Figure 5.17 to com-
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Figure 5.17: Results for open-loop raster scanning of AFM transducer’s current using Fixture

3 before post-processing with 13491 samples-per-row. Images represent the magnitude, phase, X

and Y of 10µm× 70µm frame with scanning speed of 0.25µm/s.

pensate the misalignment of adjacent rows. The result depicted in Figure 5.19 shows an

image which can significantly resemble the TGZ2 calibration grating sample.

5.6.2 Closed-loop Scanning

Zürich Instrument™ HF2LI lock-in amplifier supports two PLLs modules and four Pro-

portional Integral Derivative (PID) control modules. These options enable completing a

closed-loop feedback scanning force microscopy with the block diagram shown in Figure

5.20a. For a better understanding of the test setup, the simplified block diagram of a

115



Figure 5.18: Results for open-loop raster scanning of AFM transducer’s current using Fixture

3 before post-processing with 4497 samples-per-row. Images represent the magnitude, phase, X

and Y of 10µm× 70µm frame with scanning speed of 0.75µm/s.

lock-in amplifier is depicted in Figure 5.20b.

To start a perfect scanning process, one needs to tune the PID controller gains. These

gains are absolutely dependent to the lock-in amplifier’s internal low-pass filter characteris-

tics. To limit the maximum allowable variation of the output parameter, the PID controller

needs to set the range of the output parameter. Consequently, the tuning problem has five

variables to be determined together. The algorithm used in this research for setting these

five parameters is as follows.

1. Low-pass filter characteristic This parameter determines the -3dB cut-off fre-

quency (or time constant) of the lock-in amplifier filter. For the second harmonic of
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Figure 5.19: Y-image of Figure 5.17 after post-processing.

the excitation frequency it is better to select small cut-off frequencies to eliminate

the high frequency noise.

2. Range This variable will be multiplied by the PID controller’s gain (P) and added

algebraically to the output signal. If it is selected large, it can help the potential

instability in the feedback loop, and if it is too small, it can not compensate the

output variable. As a result it has to be set carefully.

3. PID Gains By implementing known methods available, optimum values for the P,

I and D gains could be found. One of these methods, recommended by the lock-in

amplifier designer is the Ziegler-Nichols method.

Figure 5.21 shows two examples of applying the above method for the first and second

harmonics. the PID gains and the Range values are determined with red boxes.

The block diagram in Figure 5.20 illustrates the closed-loop system. As the input

parameter, one can select current’s magnitude, phase, X or Y. Figure 5.21 shows R, but

selecting X can involve both the current’s magnitude and phase while it is insensitive to
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(a) Closed-loop feedback based on HF2LI’s PID
controller

(b) Simplified Lock-in amplifier

Figure 5.20: Block diagrams of EAFM setup and lock-in amplifier. The selection box in (a)

selects the control parameter: VAC or VDC .

unwanted phase unwrapping. The output parameter for this set of raster scanning was

VAC . This means one can use either the error signal or the output signal as the imaging

parameter.

After tuning the PID parameters, several frames on the calibration grating sample

TGZ3 were scanned using fixture 4 with results shown in Figure 5.22.

The same frame was scanned in the reverse direction with the feedback loop’s output

signal mapped in Figure 5.23.

The outcomes of closed-loop scanning illustrate the strong presence of transients be-

cause of the linear motion of motorized XY-stage. Indeed, for a perfect data acquisition,

any scanning probe microscope needs to move the probe to a point, dwell at that point

sufficiently long to allow the vibration of the probe settles, then collect the data, then let

the probe move to the next pixel.
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When the probe is moved by the scanner linearly, it looses the chance of settling to

measure the exact surface force interactions at the desired point.

5.7 Summary

This chapter demonstrated the experiments designed and performed in this research with

the results acquired by measuring the current of AFM probe at the second harmonic of

actuation frequency. The vast majority of experiments proposed in this chapter were

employing the latest AFM device named as Prototype 2.

The experiments were organized in four main sections.

1. One point tapping to investigate the behavior of the AFM probe and tip while actu-

ated by a biased actuation voltage. The sample was vertically aligned to be in close

proximity to the AFM probe's tip in most trials of these experiments. One of the

main goals of this part was deriving the calibration curve necessary for adjusting the

tip-sample distance.

The nonlinear effects of electrostatic actuators in high actuation voltages were exam-

ined and recorded by measuring the actuator's current to compare with the mathe-

matical and numerical analyses.

2. Line scanning for testing the validity of current measurement for deriving the topog-

raphy of a random sample. The measurements show an acceptable output certifying

the fundamental objective of the project.
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3. Open-loop raster scanning of a known standard grating sample produced preliminary

images which resembled the pattern of the sample according to the overall conditions

of the equipment.

4. Closed-loop raster scanning of a known standard grating sample.
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(a) Main harmonic

(b) Second harmonic

Figure 5.21: PID controller step responses after tuning the PID gains.
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(a) Error signal (b) ∆VAC

Figure 5.22: Spatial map of feedback loop’s input and output signals for a raster of 20× 18µm.
VDC = 33V, VAC,initial = 63Vpp, f◦ = 9985Hz.

Figure 5.23: Spatial map of VAC for the same raster as Figure 5.22 scanned in the reverse
direction. VDC = 33V, VAC,initial = 63Vpp, f◦ = 9985Hz.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, a profound review on different methods applied for integration and miniatur-

ization of AFM devices and systems was proposed to conclude that electrostatic actuation

and detection could provide a promising tool to achieve the objective of the project.

In next step, appropriate devices and circuits based on available technologies and off-

shelf AFM probes were designed which resulted in two feasible design concepts. The

analytical models for each design concept were developed in order to evaluate the perfor-

mance of the AFM probe prototypes and designed structures. Numerical analysis methods

in static and dynamic modes were exploited to show the structural mechanics of the sens-

ing device as well as to simulate the behavior of the designed AFM device under different

actuation conditions. The results of this analysis were in compliance to the experimental
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results.

To find the optimum design and measurement strategy, determining a conceptual model

of the measurement system was inevitable. This model proposed the relation of the desired

information to the measurable quantity in the integrated electrostatic actuator / capacitive

detector. As a matter of fact, the model defined the displacement of the AFM probe as the

source of information governed by the actuator's excitation voltage and interatomic forces

at each point of the sample. These forces managed the amplitude of probe's tip, thus, the

motion induced current. A lock-in amplifier was used to measure this current at the second

harmonic of excitation frequency for a biased actuation voltage and the third harmonic of

excitation frequency for an unbiased actuation voltage. The mathematical model of the

actuators's current versus the tip displacement was developed.

To examine the feasibility of the conceptual model, two types of integrated actua-

tor/detector devices were designed, implemented and tested leading to selection of the

appropriate operating mode, or tapping mode. Therefore, necessary test setups were de-

signed and constructed to facilitate this operating mode in the next steps.

Finally, several components for the EAFM device and mechanical fixtures were devel-

oped to accommodate all components of the system.

To prepare the required hardware, a step by step procedure was considered to reach the

final target of the project, namely, scanning a raster on calibration grating samples. This

procedure included firstly the point scanning to test the effect of tapping on the motion

induced current and to find the optimum tip-sample distance. Secondly, scanning a line

on a random sample to check the validity of the employed system and finally scanning a
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raster on a calibration grating sample.

The surface of calibration grating samples were scanned while the transducer's current

was recorded. Two sets of experiments, namely, open-loop scanning and closed-loop scan-

ning were implemented. The AFM images acquired in open-loop scanning resembled the

topography of the sample while the signals mapped spatially in closed-loop scanning were

overwhelmed by transients.

6.2 Future Work

There are a number of points which need further efforts to be addressed:

1. According to the dynamic analysis and experimental results in this research and

based on the dynamic analysis of an AFM probe in tapping mode presented in [6],

it is evident that a second mode (or even higher modes) of excitation emerges when

the AFM’s cantilever starts to touch the sample’s surface. In fact, the cantilever will

leave the state of smooth oscillation and enter the new state of impact oscillation with

different kinds of nonlinearities like grazing bifurcation and period doubling which

tend to chaos. These nonlinear behaviors need to be investigated through considering

higher modes of excitation, otherwise, limitations will be imposed to the accuracy of

the AFM’s probe analysis. This analysis could be of a high interest because of the

inherent nonlinearity of electrostatic actuation which was not the subject of research

in [6].

2. The difference of the outputs in this research and what has been proposed in [6] is
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another topic which can be investigated in a future work combined to the first topic.

The output of reviewed researches in the literature [6, 20, 4] is the displacement (or

velocity) with absolute and average values measurable at any frequency harmonic

including the excitation frequency. On the other hand, the output in this research is

the Root Mean Square value of current’s magnitude and current’s phase measurable

only at the second harmonic of the excitation frequency.

3. Applying other modes of scanning like non-contact mode with changes in cantilever’s

resonant frequency or FM-AFM is an attractive area of research.

4. Improving the quality of images produced. Following cases could be considered for

this purpose:

(a) Any XY-stage employed for scanning should facilitate step-wise motions in both

directions.

(b) The number of scanned rows could be increased to raise the image resolution.

(c) The data acquired by the AFM transducer need to go through further processing

techniques according to conventional AFM image post-processing methods like

leveling or filtering [19] to eliminate the artifacts caused by sample tilting or

noise.

(d) The PID controller gains could be revised before starting each scan to achieve

more accurate feedback parameters.

5. Investigating the ability of this approach in simplifying other methods of force mi-

croscopy for instance, electric force microscopy, magnetic force microscopy and Kelvin
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probe force microscopy.

6. Investigating the capability of this system in manipulating the surface of objects.

Specifically, producing micro and nano-channels for lab-on-a-chip projects.

7. Investigating the capability of this system in inspecting the surface of objects in micro

scale.

8. Extending the mathematical model to include other surface forces.

9. Investigating the effect of damping and temperature change on the output perfor-

mance of the detection mechanism.

10. Improving the mechanical structure of the EAFM device and the mechanical fixture

to shrink the size and price of the whole system.
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