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Abstract 

This thesis explores the relation between equation-based models (EBMs) and agent-based 
models (ABMs), in particular, the derivation of agent rules from equations such that 
agent collective behavior produces results that match or are close to those from EBMs. 

This allows studying phenomena using both approaches and obtaining an understanding 
of the aggregate behavior as well as the individual mechanisms that produce them. The 
use of ABMs allows the inclusion of more realistic features that would not be possible (or 
would be difficult to include) using EBMs. 

The first part of the thesis studies the derivation of molecule displacement probabilities 
from the diffusion equation using cellular automata. The derivation is extended to include 
reaction and advection terms. This procedure is later applied to estimate lifetimes of 
nuclear waste containers for various scenarios of interest and the inclusion of uncertainty. 

The second part is concerned with the derivation of a Bayesian state algorithm that 
consolidates collective real-time information about the state of a given system and 
outputs a probability density function of state domain, from which the most probable 
state can be computed at any given time. This estimation is provided to agents so that 
they can choose the best option for them. The algorithm includes a diffusion or diffusion-
like term to account for the deterioration of information as time goes on. This algorithm 
is applied to a couple of road networks where drivers, prior to selecting a route, have 
access to current information about the traffic and are able to decide which path to 
follow. 

Both problems are complex due to heterogeneous components, nonlinearities, and 
stochastic behavior; which make them difficult to describe using classical equation 
models such as the diffusion equation or optimization models. The use of ABMs allowed 
for the inclusion of such complex features in the study of their respective systems. 
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Chapter 1. Introduction 

 

Motivation 
There are systems whose adequate performance have significant impacts on societies, 
e.g., transportation networks, economic markets, waste treatment; or whose 
understanding are essential for the preservation of life either human or otherwise, e.g., 
water pollution, carbon cycle, soil erosion. Having models that accurately describe them 
becomes important for designing, optimizing, or controlling such systems; but the 
validity of the solution largely depends on the accuracy and assumptions of the models. 
However, those systems are complex due to one or more of the following features 

• Large number of elements, 
• Heterogeneous components, 
• Larger number of relations/interactions, 
• Nonlinearity, 
• Stochastic behavior, 
• Contradicting goals among elements, 

 
which makes them difficult to track. In general, there are two approaches to deal with 
these kind of systems: 1) simplify the real system into a more tractable one and solve it 
using an equation-based model (EBM) that describes the aggregate behavior, or 2) use a 
more sophisticated model like agent-based models (ABMs) that incorporates complex 
features as the ones listed above and describes the micro state behavior. 

EBMs are useful to predict aggregate behavior and, in the case of differential equations, 
they are also concise and elegant. However, they often rely on assumptions such as 
homogeneity, continuity, or rationality that restrict the cases that can be studied by them. 
The treatment of stochastic components increases notably the difficulty of any equation-
based solution procedure, so much that entire field branches have been created 
specifically to study probabilistic cases, such as stochastic programming or stochastic 
differential equations, with particular methods of solution. Another complication is the 
analyst’s time invested in creating and verifying the code for solving EBMs, in particular, 
expanding the model may complicate significantly the script, e.g., expanding a partial 
differential equation to include two state variables or two dimensions. 

The second approach to deal with complex systems is the use of ABMs. They offer an 
alternative paradigm where systems arise from the collective interaction of multiple 
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agents. This bottom-up approach allows for the inclusion of multiple features such as 
heterogeneity, nonlinear responses, etc. The introduction of stochastic parameters does 
not increase significantly the computational cost of solving the model than that of 
deterministic parameters. Another advantage is the analyst’s time require to expand the 
model, since many ABMs are coded in a modular form, it simplifies the addition or 
verification of new agents or methods. However, ABMs are computationally expensive to 
run, require the calibration of many parameters, and because of its stochastic nature, it 
would require the execution of multiple runs to create outputs statistically significant to 
describe the system. 

The work developed in this thesis aimed at creating a bridge between both approaches, 
that is, from EBMs that describe the aggregate behavior of a system of interest, find the 
agent-based behavior that collectively will give rise to it. Having a way to relate 
macrostates to microstates allows for creating an ABM that is consistent globally to an 
EBM, whose agent rules can be expanded to include more complicated behavior, and 
then study how that translates to the overall behavior. This procedure creates an ABM 
that is grounded on an EBM. 

Two cases are studied: 1) the estimation of lifetimes of nuclear waste containers and 2) 
the effect on drivers of using real-time travel times estimates in road networks. Both 
cases are similar in that they have heterogeneous elements whose behavior produce 
nonlinearities, they have stochastic parameters (or decisions in the case of road 
networks), and the aggregate system is sensitive to local interactions. They are different 
in that molecules are not goal-oriented as drivers are, and the goal of the nuclear waste 
problem is to describe how chemicals interact whereas that of the road network problem 
is to find a way to nudge drivers into an efficient behavior, i.e., to prescribe certain 
behavior. 

Nuclear Waste Management 
This problem is concerned with the calculation of lifetimes of nuclear waste containers 
that may potentially be affected by sulphide corrosion. The EBM that governs the 
movement of the chemicals and the reduction of sulphate to sulphide is the reaction-
diffusion equation.  

The ABM method developed may be implemented in two manners: 1) as molecule agents 
representing the chemicals as they move throughout a discretized medium, or 2) as 
cellular automata representing the solution/medium with state variables representing the 
solutes as they move; in either case, agents behave autonomously from the rest.  

The goal of this ABM is exploratory of scenarios of interest that may describe different 
conditions under which the containers will be placed for permanent storage, and 
descriptive of the local molecule interaction and the aggregate behavior produced by it. 
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 Road Networks 
This section studies the effect of having drivers that have access to travel times estimates 
before the make a decision about the path to follow to arrive to their destination, and how 
that affects their individual decision-making and the aggregate efficiency of the network. 
Those estimates are calculated from measuring the speed of current drivers along road 
segments. Therefore, an algorithm was created to update information and to account for 
the passing of time. 

Drivers are represented by autonomous agents that make simple and rational decisions in 
regard to the path to follow (minimal-time path or minimal-gradient-time path). The 
agent decision rule for route selection was derived from a standard optimization model 
for road networks. Although it is possible to expand the sophistication of the driver 
decision models, this thesis is limited to simple decision models. 

The goal of this ABM is as an exploratory study about the benefit of using current travel 
time estimates, and to offer a possible implementation for nudging drivers into a more 
efficient configuration, i.e., a prescriptive behavior. 

Research Objectives 
The main objective of this thesis is to show the capabilities of agent-based models in 
representing and solving systems described with partial differential equations or 
optimization models by deriving agent rules of behavior that make agents behave 
collectively in a similar fashion as the descriptions obtained from such equation models. 

In particular this thesis aimed at 

• Building an agent-based model to describe the diffusion of chemical species with 
space-dependent parameters, heterogeneity of materials, and reaction terms while 
keeping the model simple to solve and explore. 

• Developing a Bayesian algorithm to gather information from various agents and 
produce probability density functions describing the state of traffic networks. 

 

Organization 
The first part of the thesis outlines the problem of estimating lifetimes of used fuel 
containers and is divided in three chapters: 

Chapter 2. Cellular automata and nuclear waste management. Here relevant 
literature is shown as well as a background review on cellular automata and the 
long-term nuclear waste solution design. Some examples of how to solve partial 
differential equations using cellular automata are presented. 
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Chapter 3. Diffusion using cellular automata. In this chapter, the derivation of 
displacement probabilities displacement is described as well as the inclusion of 
reaction and advection terms. 

Chapter 4. Estimating lifetimes of nuclear waste containers. In this chapter, the 
ideas developed in Chapter 3 are applied to the problem of estimating lifetimes of 
nuclear waste containers. 

The second part studies the use of real-time travel time estimates and its effect on route 
selection decisions for drivers on road networks; it is divided in three chapters: 

Chapter 5. Agent-based modeling. This chapter contains a literature and 
background review on agent-based models and the use of information to improve 
decision-making. 

Chapter 6. Bayesian state estimation using collective information. In this chapter, 
the algorithm to collect current observations from by agents is made, as well as 
the computation of the probability density function describing the current state. It 
is also described the process of forgetting information as it becomes obsolete over 
time. 

Chapter 7. Traveling time estimation on road networks. This chapter contains the 
application of the algorithm developed in Chapter 6 to the problem of path 
selection for drivers wanting to go from a source to a destination node. 

Chapter 8. Summary and Conclusions. This chapter presents a summary of the 
work done and highlights the contribution of the thesis. It also presents future 
directions of research. 
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Chapter 2 Cellular Automata and 

Nuclear Waste Management 

 

 

 

 

INTRODUCTION 

This chapter provides a literature review on cellular automata (CA) for diffusion or 
reaction diffusion systems, and the description its basic features and rules of behavior. 
Then, the chapter presents the deep geological repository solution for nuclear waste 
disposal and describes its main design features. A failure definition is provided, that will 
later be used for lifetime calculation. The corrosion reaction is presented. Finally, the 
relation between CA and partial differential equations (PDEs) is presented as well as 
some examples of typical PDEs solved using CA. 

Cellular automata models in this chapter were created using Wolfram|Alpha Pro for 
Students® or Netlogo®. 
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2.0 Literature Review 

The use of agent-based models (ABM), such as cellular automata, to solve ordinary or 
partial differential equations has been motivated by the need for including a higher level 
of detail into components’ behavior that would be analytically difficult to solve deriving 
exact solutions or what it could be achieved using computationally expensive numerical 
methods [1] – [5]. Some examples of diffusion or reaction diffusion systems are the 
following. 

Scalise and Schulman [6] used a reaction-diffusion system to derive a CA set of rules 
using logic gates. Their aim was to show that DNA networks may behave like a CA and 
potentially be programmed to sense and respond to dynamic signals, which could be the 
basis of intelligent biomaterials. However, the derivation they found is based on Boolean 
logic and requires at least 29 logic gates, making it difficult to implement. They found it 
is equivalent to rule 110 or 60 of Wolfram’s elementary CA rules. 

Odagiri and Takatsuka [7] compared bacterial proliferation models using PDEs and CA. 
They derived diffusion coefficients from probabilities of movement, and probabilities of 
reaction from the chemical reactions. They found that CA exhibited a more detailed 
behavior due to its stochastic nature, which could be mimicked with stochastic 
differential equations. 

Another example of diffusion using ABM is the work of Azimi et al. [8]. They developed 
a 3D model for the cytoskeletal diffusion using probabilities of movement. In addition to 
that, they introduced a crowding behavior that further limits the spreading of molecules 
down the gradient of concentration. In this work, molecules are the agents. 

Kawamata et al. [9] also explored DNA chemical networks and derived rules for a simple 
cellular automaton.  Tang and Benett [10] used diffusion for a non-biological system, 
which is the spatial spreading of opinions using GPUs. Faber et al. [11] applied diffusion 
to the demand of technologies in the Netherlands using ABM. 

The problem of computational complexity in CA may be solved with parallel 
computation, especially for stochastic CA. Bandman [12] studied the efficiency of 
parallelization in CA for reaction diffusion processes. She found that an asynchronous 
CA can be properly parallelized; however, there is tradeoff between efficiency and 
stochasticity. 

Applications to study potential threats to deep geological repositories (DGR) have not yet 
been explored. Diffusion of potential harmful chemicals may pose a risk to nuclear waste 
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containers. The purpose of using CA here is to use a tool that allows modeling of multi-
chemical species with some interactions among chemicals. 

2.1 Nuclear Waste Management 

2.1.1 Problem Description 

Deep geological repositories (DGR) are considered to be the safest long-term nuclear 
waste disposal solution [13]. It involves the excavation of an underground site where 
used fuel containers (UFC) are placed for permanent storage. The basic idea of the design 
is to use barriers of different materials to protect and contain the containers. Several 
countries are currently developing DGRs, the most developed of which are Finland, 
Sweden, and Canada [14]-[16]. 

2.1.2 Canadian DGR Design Concept 

The Canadian design is planned to manage more than 4.6 million fuel bundles in a 
suitable rock formation that may be crystalline or sedimentary. It will have underground 
facilities at ~500 m containing the UFCs and facilities on the surface of the site for 
operation, maintenance, and long-term monitoring [16]. 

 

Figure 2.1 Canadian DGR design (Source: www.nwmo.ca Image by NWMO) 

 

The design is based on a multiple-barrier system consisting of 5 barriers that contain and 
isolate the nuclear waste. The first barrier is the creation of ceramic fuel pellets from 
uranium dioxide powder which are durable, difficult to dissolve in water, and resistant to 
high temperatures. The second barrier are fuel bundles made of Zircaloy with a graphite-
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coated inside. Then bundles will be placed inside UFCs, the third barrier, whose design 
has been optimized to cope with thermomechanical forces. They are capsules made of 30 
mm of steel with a 3 mm copper coating. The fourth barrier is the buffer box containing 
each UFC. It is made of highly compacted bentonite (HCB), a material made from 
volcanic ashes that is a natural water barrier and its swelling property makes it an 
excellent sealer. The last barrier is the geosphere, the ~500 m rock layer in between the 
underground facilities and the surface [17]. 

 

 

Figure 2.2 UFC dimensions 2506×556×556 mm (Source: [16] Image by NWMO) 

 

2.1.3 Normal Evolution Scenario 

Since the DGR is intended to last for a long-term period, it is fundamental to ensure it 
remains safe and secure for people, communities and the environment, and fair to current 
and future generations [18]. There are disruptive scenarios that may lead to penetration of 
barriers and abnormal loss of containment such as tectonic movement, glacial effects, 
human intrusion, or meteorite impact among others. For a thorough screening of extreme 
conditions see [19], [20]. 

For the present study it was assumed the normal evolution scenario, which “is based on 
a reasonable extrapolation of site and repository features, events and processes” [19], and 
the attention was limited to the breaching of the copper layer of UFCs caused by sulphide 
corrosion. 
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Figure 2.3 Placement room for UFCs (Source: [16] Image by NWMO) 

 

2.1.4 Definition of failure 

This work followed [22] defining failure of the UFC as a breach of the copper layer. 
From all the possible UFCs that will be inside the emplacement, those closest to the rock 
were selected, which are the first seven canisters to be placed per room [22]. The number 
of rooms is 318 [16], giving a total of 2,226 canisters. That is about 2% of all UFCs or 1 
per 50 canisters. Our study determines lifetimes for those 2,226 UFCs. 

2.1.5 Copper corrosion 

The reaction describing copper corrosion by sulphide is 

2𝐶𝑢(𝑠) 	+	𝐻𝑆� + 𝐻9 ⇄ 𝐶𝑢�𝑆(𝑠) + 𝐻�																																		(2.1) 

a conservative assumption is to assume copper reacts instantaneously with sulphide [22], 
[23] implying the rate of corrosion is determined by the rate at which sulphide reaches the 
copper surface (See Appendix A for a test on this assumption). From stoichiometry the 
depth of corrosion can be calculated using the formula proposed in [23]: 

𝑑I5JJ =
𝑁dE𝑓dE𝑀I�

𝐴I5JJ𝜌I�
																																																								(2.2) 

 where NHS is the amount of sulphide, fHS is the stoichiometric factor (equal to 2), MCu is 
the molar mass of copper, ACorr is the area exposed to corrosion, and ρCu is the copper 
density. In Chapter 4 it is shown how this formula was applied to time-dependent results. 
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2.1.6 Groundwater composition 

Data in Table 2.1 contains an estimation of groundwater composition in crystalline and 
sedimentary rock. Since there is no site of construction defined, the values are intended to 
represent plausible site conditions at a depth close to 500 m. 

Table 2.1 Estimation of groundwater composition 
Rock type Crystalline Sedimentary 

pH 7.5 6.5 
Environment Reducing Reducing 
SO4 [mg/L] 1,000 310 
HS- [mg/L] 0 0 

 

2.1.7 Bentonite Density 

Bentonite clay MX-80 will be used for the buffer box protecting the UFC and to fill the 
gaps between the host rock and the buffer boxes. The former is referred to as highly 
compacted bentonite (HCB) and the latter gapfill (GF). However, dry densities are 
different producing different effective diffusivity coefficients. 

The effective diffusivity for sulphide in HCB is assumed to be 1×10-11 [m2/s] in [22], 
[24], [25] although that value is likely overestimated because it corresponds to a density 
of 1,590 [kg/m3] as commented in [24]. 

Table 2.2 Properties of Bentonite clays 

Clay 
Dry density 

[kg/m3] 
Saturation 

[%] 
Porosity 

[%] 
Bulk density 

[kg/m3] 
GF 1,410 6 48.6 1439 

HCB 1,700 67 38.2 1955 

 

Instead, the effective diffusivity was estimated using the following formula from [24] for 
effective diffusivity of anions 

𝐷� = 5.30087× 10�:h × 	𝑒𝑥𝑝(−2.561 × 10�� ×	𝜌aJO)																							(2.3) 

where ρDry is the dry density in [kg/m3], De is in [m2/s]. 
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This work followed [25] estimating the effective diffusivity of sulphate as half that of 
sulphide. Table 2.2 shows some properties of the clay that will be useful to determine the 
initial conditions for our models. 

2.2 Cellular Automata 

2.2.1 Definition and development 

A cellular automata (plural) or cellular automaton (singular) (CA) is a computational 
model represented by a structure of adjacent and interactive cells. The simplest CA have 
one discrete state variable whose domain is {0,1}; for a value of zero the cell is colored 
white and for a value of one it is colored black. The state changes according to the state 
of the surrounding cells (its neighborhood). Cellular automata can be defined in one, two 
or three spatial dimensions. 

Triangular Square Hexagonal 

   
Figure 2.4 Examples of 2D cellular automata 

Its formal development may be traced back to the work of John von Neumann when he 
tried to develop a self-reproducing automaton and later use the same framework to solve 
differential equations [26] around 1950s. The field grew steadily by the work of von 
Neumann and Stanislaw Ulam at the Los Alamos laboratory and by the 1960s there were 
attempts to link it with dynamical systems via evolving CA. On 1970 John Conway 
creates the ‘The game of “Life”’ model [27]. At that time some connections between CA, 
parallel computing and neural networks were discovered. Around 1980s Stephen 
Wolfram [28] starts studying systematically the properties of CA since then the field has 
attracted wide attention [29]. 

2.2.2 Neighborhood 

The neighbor of a reference cell (x0, y0) is the set of adjacent cells (including itself) with 
which the reference cell has some interaction. The von Neumann neighborhood of range r 
is defined as 

𝑁4���U = {(𝑥, 𝑦):	|𝑥 − 𝑥h| + |𝑦 − 𝑦h| ≤ 𝑟}																																									(2.3) 
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the number of neighbors as r increases produces the following sequence 1, 5, 13, 25, 41, 
61, 85,…, described by 2𝑟(𝑟 + 1) + 1. The Moore neighborhood of range r is defined as 

𝑁4���� = {(𝑥, 𝑦):	|𝑥 − 𝑥h| ≤ 𝑟	 ∧ |𝑦 − 𝑦h| ≤ 𝑟} 

as r increases, we obtain the following number of neighbors 1, 9, 25, 49, 81,…, described 
by (2𝑟 + 1)�. The neighborhood will determine the degree of interaction (connectedness) 
of the CA. Both neighborhood definitions can be extended to 3D. 

Von Neumann Neighbors Moore Neighbors 

  
Figure 2.5 Definitions of neighborhood for a square 2D CA (Image from 

Wolfram|Alpha) 

2.2.3 Rules of behavior 

It was mentioned before the state of the cells changes according to some function of the 
state of its neighbors, e.g., if more than two neighbor cells are black at time t, turn to 
black at time t+1; otherwise, turn white at time t+1. This function may be deterministic 
or stochastic and defined over a von Neumann or Moore neighborhood of size r. 

For a deterministic 2D square CA, the number of states of its Von Neumann 
neighborhood of range r is 2�J(J9:)9: and the total number of rules is 2���(� ¡) ¡, which 
produces 232 different rules for r = 1. 

Stephen Wolfram [29] has studied extensively the 1D square CA with r=1, also named 
elementary cellular automata, where the number of states of the neighborhood is 23 and 
the total number of rules is 2�¢ = 256. He has categorized, studied its properties, and 
numbered (from 0 to 255) all the rules. 

A convenient way to show the rules is by using the diagrams developed by Wolfram, 
where the 8 possible neighbor states are arranged in boxes. The figures inside indicate 
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particular neighbor configurations and the next state for the following time step. Below 
we show an example of a behavior rule. 

 

Figure 2.6 Example of a behavior rule (Image from Wolfram|Alpha) 

If exactly one cell in your neighborhood is black at time t, turn black at time t+1; 
otherwise, turn white at time t+1, we apply this rule (see Figure 2.6) to a single black 
cell, we will notice that a fractal pattern emerges after a few time steps, the Sierpinski 
triangle: 

10 time steps 100 time steps 1000 time steps 

   
Figure 2.7 Plot of the evolution of a 1D CA from a single black cell 

 

If instead, the same rule is applied to a random initial state then it produces 

10 time steps 100 time steps 1000 time steps 

   
Figure 2.8 Plot of the evolution of a 1D CA from a random seed 

 

Approximately one-third of the rules produce patterns that grow infinitely and about 14% 
of the rules produce complicated patterns. The author suggests consulting Wolfram’s 
book for further information [29]. 
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2.2.4 Collective behavior 

The power of CA is that from simple rules, a complex collective behavior arises, i.e., 
emergent properties such as uniformity, self-similarity, recurrence, randomness. From 
observing the different patterns formed, Wolfram divided the behavior of the CA in four 
categories: 

• Class 1. The cellular automaton evolves to a homogeneous state despite different 
initial states. 

• Class 2. Oscillating patterns where initial perturbations remain local. 
• Class 3. Chaotic structures, initial perturbations are propagated. 
• Class 4. Complex patterns with persistent local structures, these are capable of 

universal computation (i.e., performing a finite set of instructions). 

Class 1 (rule 0) Class 1 (rule 255) Class 2 (rule 5) 

   

Class 3 (rule 30) Class 3 (rule 73) Class 3 (rule 169) 

   

Class 3 (rule 182) Class 4 (rule 110) Class 4 (rule 110 random) 

   
Figure 2.9 Examples of different classes CA 

 

2.2.5 Conway’s Game of “Life” 

John H. Conway first designed this experiment in 1970 [27]. It describes the behavior of 
a cellular automata grid with simple rules of interaction. It is interpreted as an analogy of 
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how species survive on a resource-constrained environment. Tiles are to represent living 
creatures, and its eight neighbors are the competitors. The possible states for each tile are: 
alive or dead. The rules to modify these states are: 

1. If a tile has two or three live neighbors, then it survives to next time step. 
2. If a tile has one or more than three alive neighbors, then it dies. 
3. If a dead tile has exactly three alive neighbors, then it becomes alive.  

These simple rules give raise to a non-trivial behavior on the whole grid. Nevertheless, 
future states are completely determined by the initial state. Typically, the initial state is 
determined randomly. 

Step 0 

 

Step 1 

 

Step 10 

 

Step 100 

 

Step 500 

 

Step 1000 

 

Figure 2.10 Conway’s Game of Life (blue = alive) random seed 

 

2.2.6 Relation between CA and PDEs 

Cellular automata are by their own nature dynamic structures defined over a discretized 
space; therefore, it is possible to find a bridge to partial differential equations (PDEs) by 
means of the finite difference scheme. Each cell or patch may represent a state variable 
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∆x distance apart, and the change of state may be synchronized to take place every ∆t. 
The state variable is then changed from a discrete to a real domain. Therefore, it is 
possible to convert a PDE into a CA, however the inverse problem is not as 
straightforward. Omohundro [30] studied a procedure to derive generic PDE from a CA 
rules; however, his procedure is not simple to implement. 

Some examples of how to derive CA rules from some typical PDEs are presented next. 

2.2.7 Chemical Reaction 

Let us derive a cellular automata rule for the Biochemical-Oxygen demand reaction [32]: 

ψ̇ = −𝑘¤ψ 

after applying a backward difference scheme, it is obtained 

ψ=9: − ψ=

∆𝑡 = −𝑘¤ψ=9: 

then solving for the concentration for the next time step, and the updating state rule is 

ψ=9: =
ψ=

1 + ∆𝑡	𝑘¤
. 

Figure 2.11 shows a frame of the CA simulation and a plot of concentration over time. 

  
Figure 2.11 Biochemical-Oxygen demand reaction using cellular automata 

 

2.2.8 Diffusion Equation 

For the diffusion equation, let us derive the state rule for 1D space knowing that it can be 
extended to more dimensions 
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ψ̇ = 𝐷N
𝜕�ψ
𝜕𝑥�  

after applying forward and central differences, it is obtained 

ψ8=9: − ψ8=

∆𝑡 = 𝐷N §
ψ89:= − 2ψ8= + ψ8�:=

∆𝑥� ¨ 

then, the updating state rule becomes 

ψ8=9: = ψ8= + 𝐷N
∆𝑡
∆𝑥�

(ψ89:= − 2ψ8= + ψ8�:= ) 

by choosing proper units such that ∆x = 1 and 𝐷N
∆=
∆N�

≤ :
�
, and introducing initial and 

boundary conditions, the CA can evolve describing a diffusion process. In the next 
chapter we develop a procedure to derive displacement probabilities allowing us to solve 
the diffusion equation using CA or individual molecule agents. 

 

   
Figure 2.12 2D diffusion using cellular automata with a constant circle source 

 

   
Figure 2.13 3D diffusion using cellular automata with a constant sphere source 
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2.2.9 Wave Equation 

The wave equation is 

ψ̈ = 𝑐�
𝜕�ψ
𝜕𝑥�  

after applying central difference scheme, it is obtained 

ψ8=9: − 2ψ8= + ψ8=�:

∆𝑡� = 𝑐�
ψ89:= − 2ψ8= + ψ8�:=

∆𝑥�  

then, the CA state rule becomes 

ψ8=9: = 2ψ8= + «𝑐
∆𝑡
∆𝑥¬

�
(ψ89:= − 2ψ8= + ψ8�:= ) − ψ8=�: 

the stability condition here is met by 𝑐 ∆=
∆N
≤ 1. Figure 2.14 shows six frames of two 

waves colliding. 

 

   

   
Figure 2.14 2D cellular automata describing the wave equation 
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2.2.10 Reaction Diffusion Equation 

Let us consider the second-order nonlinear Fisher-Kolmogorov PDE (or Fisher-KPP) 
with convection; it is used to describe the spreading of biological populations: 

ψ̇ + 𝑉N
𝜕ψ
𝜕𝑥 = 𝐷N

𝜕�ψ
𝜕𝑥� + R

(ψ) 

𝑅(ψ) = ψ(1 − ψ) 

after applying finite difference, it is obtained 

ψ8=9: − ψ8=

∆𝑡 + 𝑉N
ψ89:= − ψ8=

∆𝑥 = 𝐷N
ψ89:= − 2ψ8= + ψ8�:=

∆𝑥� + ψ8=(1 − ψ8=) 

then, the CA state rule becomes 

ψ8=9: = ψ8= − 𝑉N
∆𝑡
∆𝑥

(ψ89:= − ψ8=) + 𝐷N
∆𝑡
∆𝑥�

(ψ89:= − 2ψ8= + ψ8�:= ) + ∆𝑡	ψ8=(1 − ψ8=) 

Figure 2.15 shows the evolution of five initial populations as they spread while moving to 
the right. 

 

   
Figure 2.15 Fisher-Kolmogorov equation using 2D cellular automata 

 

In the next chapter we will describe the derivation of diffusion and reaction terms for 
cellular automata in a probabilistic framework. 
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Chapter 3 Diffusion using Cellular 

Automata 

 

 

 

 

 

 

INTRODUCTION 

This chapter shows how to use cellular automata to describe diffusion by computing 
probabilities of displacement for particles. The methodology is described along with 

• Its derivation from the diffusion PDE 
• How to introduce initial and boundary conditions 
• Its relation to Brownian motion and Markov chains 
• The derivation of diffusion displacement 
• Its consistency, order, stability, and convergence. 

The method outlined in this chapter will be used to compute lifetimes of nuclear waste 
containers on Chapter 4. 
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3.1 Diffusion 

Diffusion is the displacement of small particles of solute as they spread down the 
concentration gradient of a suspension or solution due to thermal molecular movement 
[32]. It is also used to describe heat propagation, groundwater flow among other 
applications in biology, sociology, economics, and finance. This work uses diffusion to 
describe the change in concentration of a solute along a solution/medium. 

Fick’s second law for a 2D space describes diffusion of solute φ throughout a solution as 
follows 

𝜕𝜑
𝜕𝑡 = 𝐷N

𝜕�𝜑
𝜕𝑥� + 𝐷O

𝜕�𝜑
𝜕𝑦� 																																																			(3.1) 

with initial conditions 

𝜑(𝑥, 𝑦, 0) = ℎh(𝑥, 𝑦) 

and boundary conditions 

𝜑(𝑥, 0, 𝑡) = ℎ:(𝑥, 𝑡)	 

𝜑(0, 𝑦, 𝑡) = ℎ�(𝑦, 𝑡) 

𝜑(𝐿N, 𝑦, 𝑡) = ℎ�(𝑦, 𝑡) 

𝜑v𝑥, 𝐿O, 𝑡x = ℎ/(𝑥, 𝑡) 

φ is the concentration; x and y are space dimensions; Dx and Dy are the diffusivity 
parameters along x and y; x = Lx and y = Ly are the right and upper boundaries; and h1, 
h2, h3, h4 are functions defining the values for the four boundaries. Common methods to 
solve PDEs are finding the analytical solution when it exists (it depends on the initial and 
boundary conditions), finite element, and finite differences. In the next sections an agent-
based method is developed that has certain advantages over those methods but some 
restrictions as well. 

3.2 Discretized Diffusion 

Some particular problems are suitable and convenient for using a discretized space over 
which solute moves. For example: systems with heterogeneous materials with different 
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physical properties, or systems where the focus is on modeling molecule interactions. The 
method of Section 3.3 accounts for discrete or continuous solute over a discretized space. 

 

Figure 3.1 Discretized and continuous solute diffusion over a discretized space 

 

3.3 Probability of Displacement 

Diffusion on a discrete space is related to that on a continuous one by the probability of 
displacement of solute particles throughout the solution. We show next how to derive 
such probabilities for a 2D system from the diffusivity coefficients Dx and Dy. 

1. Discretize the space domain using Δx and Δy as width and length of each panel or cell 
of the grid: 

 

Figure 3.2 Discretization of the domain space 

2. Replace the differentiation terms of eq. (3.1) by first-order difference terms using the 
explicit formulation: 

𝜑8	R=9: − 𝜑8	R=

𝛥𝑡 = 𝐷N §
𝜑89:	R= − 2	𝜑8	R= + 𝜑8�:	R=

∆𝑥� ¨ +	𝐷O §
𝜑8	R9:= − 2	𝜑8	R= + 𝜑8	R�:=

∆𝑦� ¨ 

3. Solve for the concentration for the next time step, i.e., φijt+1: 

Y 

X 

Δy 

Δx 

Y 

X 
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𝜑8	R=9: = ±1 − 2𝐷N
Δ𝑡
∆𝑥� − 2𝐷O

Δ𝑡
∆𝑦�³	𝜑8	R

= + 𝐷N
Δ𝑡
∆𝑥� 𝜑89:	R

= + 𝐷N
Δ𝑡
∆𝑥� 𝜑8�:	R

=

+ 𝐷O
Δ𝑡
∆𝑦� 	𝜑8	R9:

= + 𝐷O
Δ𝑡
∆𝑦� 𝜑8	R�:

= 																																																								(3.2) 

This equation may be interpreted as a Markov chain where the cells of the grid represent 
states and φ concentrations ‘jump’ from state to state with a probability equal to the 
coefficients of eq. (3.2). 

 

Figure 3.3 Transition from states at time t to a single state at t+1 

4. Compute probabilities of displacement: 

𝑝8±:,R = 𝐷N
Δ𝑡
∆𝑥� 

𝑝8,R±: = 𝐷O
Δ𝑡
∆𝑦� 

𝑝h = 1 − 2𝐷N
Δ𝑡
∆𝑥� − 2𝐷O

Δ𝑡
∆𝑦� 

𝑝h is the probability that a particle in cell ij will remain in cell ij for the next time step and 
𝑝±8,R, 𝑝8,±R  are the probabilities of a particle moving from neighbor cells to cell ij. 
According to the axioms of probability, the above distribution must meet the following 
requirements to be a pdf 

1. 𝑝8R ≥ 0, ∀𝑖, 𝑗 
2. 𝑝h + 𝑝89:,R + 𝑝8�:,R + 𝑝8,R9: + 𝑝8,R�: = 1 

The second requirement is met if the following inequality holds 

t+1 

t 
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𝑝h = 1 − 2𝐷N
Δ𝑡
∆𝑥� − 2𝐷O

Δ𝑡
∆𝑦� ≥ 	0																																								(3.3) 

assuming Dx = Dy = D and Δx = Δy = Δu, then it yields 

𝐷
Δ𝑡
∆𝑢� ≤

1
4																																																																

(3.4) 

The first requirement is met from the fact that diffusivity coefficients (Dx, Dy) are never 
zero or negative. However, in the majority of cases the computed probabilities do not 
meet (3.3). In that case, either the space or the time increment must be changed to a 
proper scale. Most time in ABMs the space increment is fixed and equal to one (i.e. Δu = 
1), therefore the time increment must be modified to a proper value so that eq. 3.4 is met. 

5. Compute the expected concentration for each cell and time as follows 

𝜑8	R=9: = 𝑝h	𝜑8	R= + 𝑝89:,R𝜑89:	R= + 𝑝8�:,R𝜑8�:	R= + 𝑝8,R9:𝜑8	R9:= + 𝑝8,R�:𝜑8	R�:=  

																										= 	 ¹ 𝑝8R	𝜑8	R=
8,R∈UVWXX

 

																										= 	𝐸P𝜑8	R= S8,R∈UVWXX
																																																																																															(3.5) 

which is the same equation as (3.2) but with probability notation instead, 𝑁4��� =
{(i, j), (i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1)} is the von Neumann neighborhood of cell ij 
(includes itself) . Section 3.5 shows this result is the same as the main assumption made 
in [1] to derive the diffusion equation from Brownian motion of particles. 

 

Figure 3.4 Neighbor cells (orange) of a reference cell (blue) 

 

1D 2D 
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Concentration variance can be computed with 

𝑉P𝜑8	R= S = 𝐸 r𝜑8	R=
�s − 𝐸P𝜑8	R= S

�
 

which may be used to measure the homogeneity of the solute inside the solution. Chapter 
4 applies this discretized diffusion method to compute expected lifetimes of nuclear 
waste canisters. 

3.4 Initial and Boundary Conditions 

The initial condition is implemented by assigning an initial concentration to each cell of 
the cellular automata. Boundary conditions are typically implemented by applying 
Dirichlet or Neumman conditions; the implementation of a Robin condition which is a 
general case that includes both of them is shown next. Robin conditions are of the form 

𝑎½𝜑(𝐿N, 𝑡) + 𝑏½
𝜕𝜑(𝐿N, 𝑡)

𝜕𝑥 = 𝑔(𝑡), 𝑡 ≥ 0 

where aR and bR are constants and g(t) is a function at the boundary x = Lx. After 
applying backward differentiation 

𝑎½	𝜑¿À
= + 𝑏½

v𝜑¿À
= − 𝜑¿À�:

= x
Δ𝑥 = 𝑔(𝑡), 𝑡 ≥ 0 

and solving for concentration at time t: 

𝜑¿À
= = 	

𝑔(𝑡)	Δ𝑥 + 𝑏½	𝜑¿À�:
=

𝑎½	Δ𝑥 + 𝑏½
.									𝑡 ≥ 0																																	(3.6) 

To represent a physical barrier (von Neumann condition), set aR = 0, bR = 1, g(t) = 0; 
which yields 

𝜑¿À
= = 	𝜑¿À�:

= , 𝑡 ≥ 0																																														(3.7) 

which affects the computation of all cells adjacent to Lx, which are φij with i = Lx-1 

𝜑¿À�:	R
=9: = 𝑝8R 	𝜑¿À�:	R

= + 𝑝89:	R𝜑¿À	R
= + ⋯ 

																				= 𝑝8R 	𝜑¿À�:	R
= + 𝑝89:	R	𝜑¿À�:	R

= + ⋯ 
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										= v𝑝8R + 𝑝89:	Rx	𝜑¿À�:	R
= + ⋯ 

increasing the probability of remaining on the same cell. 

To represent a constant concentration (Dirichlet condition), set aR = 1, bR = 0, g(t) = c; 
which yields 

𝜑¿À = 	c																																																											(3.8) 

changes in the adjacent cells are 

𝜑¿À�:	R
=9: = 𝑝8R 	𝜑¿À�:	R

= + 𝑝89:	R𝜑¿À	R
= + ⋯ 

									= 𝑝8R 	𝜑¿À�:	R
= + 𝑝89:	R	c + ⋯ 

Similarly, other boundary conditions may be introduced using equation (3.6). 

 

Figure 3.5 Boundary cells (red) in a 1D and 2D cellular automata 

 

3.5 Relation to Brownian Motion 

When describing the irregular movement of particles suspended in a liquid, Einstein 
assumed that each particle moves independently from the rest and that the set of path 
realizations after a time interval is mutually independent as long as the time increment is 
not too small [32]. 

If we select a time interval τ, then we can assume the displacement of particles along x-
axis increases by Δx, where Δx may be positive or negative and is different for each 

2D 1D 
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particle. The displacement Δx has a domain on the real line and probability p(Δx), where 
p(Δx) is an even function, i.e., p(Δx) = p(-Δx), from the fact that displacement Δx is 
symmetrical about the y-axis. We know that 

Ã 𝑝(Δ𝑥)	𝑑Δ𝑥
Ä

�Ä
= 1 

for p(Δx) is a continuous probability distribution, now if we have a function that 
describes the number of particles per unit of volume φ(x,t), we can calculate the 
distribution of particles at time t + τ from the distribution at time t by calculating the 
particles in between two planes perpendicular to the x-axis, namely x and x + dx, then it 
is obtained 

𝜑(𝑥, 𝑡 + 𝜏) ∙ 𝑑𝑥 = 𝑑𝑥 ∙ Ã 𝜑(𝑥 + Δ𝑥, 𝑡)	𝑝(Δ𝑥)	𝑑Δ𝑥
ÆN	Ç	Ä

ÆN	Ç	�Ä
															(3.9) 

which can be simplify and rewritten it in terms of the expected value 

𝜑(𝑥, 𝑡 + 𝜏) = Ã 𝜑(𝑥 + Δ𝑥, 𝑡)	𝑝(Δ𝑥)	𝑑Δ𝑥
ÆN	Ç	Ä

ÆN	Ç	�Ä
 

																																																												= 𝐸ÆN[𝜑(𝑥 + Δ𝑥, 𝑡)] 

																																																												= 𝐸ÆN[𝜑(𝑥, 𝑡)]																																																													(3.10) 

Equation (3.10) derived in [32] is the same as (3.5), they are different in that the former is 
1D over a continuous domain whereas the latter is 2D with a bounded discrete domain. 

𝜑8	R=9: = 𝐸P𝜑8	R= S8,R∈UÉÊ
 

𝜑(𝑥, 𝑡 + 𝜏) = 𝐸ÆN[𝜑(𝑥, 𝑡)] 

For those interested in how Einstein derived the diffusion equation from (3.9) the author 
highly recommends reading his original paper. Using the same rationale, the derivation of 
particle displacements for 2D is shown in Section 3.7. 

3.6 Relation to Markov Chains 

It was mentioned before that the solute particles ‘jump’ from a cell in time t to a neighbor 
cell in time t+Δt. Which is an indication that the future state of the system depends only 
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on the current state and not on past states. This property is known as the Markov 
property. 

For sake of simplicity in notation, let us consider diffusion in 1D (plus time) over a 
discretized domain. φt is the vector containing the concentration of solute along the x-
axis at time t as follows 

𝝋= =

⎣
⎢
⎢
⎡ 𝜑:

=

𝜑�=
⋮
𝜑¿À
= ⎦
⎥
⎥
⎤
 

the Markov property states that 𝑃(𝝋=|𝝋=�:, 𝝋=��,… , 𝝋h) = 𝑃(𝝋=|𝝋=�:), let PT be the 
transition probability matrix 

𝑷j = Ó
𝑝8R ⋯ 𝑝8U
⋮ ⋱ ⋮
𝑝�R ⋯ 𝑝�U

Õ 

where the entries are the same probabilities as those computed in equation (3.5), then it is 
possible to compute the concentration for the next time step using the formula 

𝝋=9: = 𝝋= ∗ 𝑷j.																																																										(3.11)	 

The advantage of using a Markov chain is that it need not compute the concentration 
vector at every time. For example, φt+3 may be computed directly from φt: 

𝝋=9� = 𝝋=9� ∗ 𝑷j 

																							= (𝝋=9: ∗ 𝑷j) ∗ 𝑷j 

											= 𝝋=9: ∗ 𝑷j� 

																					= v𝝋= ∗ 𝑷j�x ∗ 𝑷j 

							= 𝝋= ∗ 𝑷j�. 

The general formula to get the concentration after n periods from time t is 

𝝋=96 = 𝝋= ∗ 𝑷j6																																																								(3.12) 
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Initial conditions are introduced by specifying the initial vector φ0 with initial values. 
Boundary conditions can be introduced using the equation (3.6) and modifying the PT 
matrix accordingly. For example, to fix the boundaries to a constant (Dirichlet) we need 
to introduce a column in PT with zeros except at the boundary and place a one instead. An 
example is shown below. For Neumann boundaries the procedure is similar, except that 
the entries of the column depend on the form obtained from (3.6), below an example is 
shown as well. 

Let us assume a 1D system with the following characteristics: Dx = 0.1 [cm2/day], Δx = 1 
[cm], Δx2 = 1 [cm2], Δt = 1 [day]. The corresponding probabilities are computed from 
equation 3.2 but for 1D. Probabilities of displacement are p(Δx = -1) = p(Δx = 1) = 
Dx*(Δt/Δx2) = 0.1 and p(Δx = 0) = 1- 2*Dx*(Δt/Δx2) = 0.8 

The initial condition is φ0 = [10, 0, 0, 0, 0]T. We introduced a Dirichlet left boundary 
equal to ten and a Dirichlet right boundary equal to zero by including two columns with 
zeros everywhere except at the boundaries: 

𝑷j =

⎣
⎢
⎢
⎢
⎡
1
0
0
0
0

0.1
0.8
0.1
0
0

0
0.1
0.8
0.1
0

0
0
0.1
0.8
0.1

0
0
0
0
1⎦
⎥
⎥
⎥
⎤
	. 

The calculation of the concentration profile after 5, 10, and 100 days is 

𝝋× = 𝝋h ∗ 𝑷j× = [10 3.43 0.66 0.07 0]j 

𝝋:h = 𝝋h ∗ 𝑷j:h = [10 4.88 1.71 0.42 0]j 

𝝋:hh = 𝝋h ∗ 𝑷j:hh = [10 7.49 4.98 2.48 0]j. 

After 100 days, the system is near steady steate, φSteadyState = [10, 7.5, 5, 2.5, 0]T. 

Now, for solving the same system but with a Neumann right boundary instead, ∂φ(Lx)/∂x 
= 0, which yields φLx = φLx-1 as seen in eq. (3.7). The matrix changes to 

𝑷j =

⎣
⎢
⎢
⎢
⎡
1
0
0
0
0

0.1
0.8
0.1
0
0

0
0.1
0.8
0.1
0

0
0
0.1
0.8
0.1

0
0
0
1
0⎦
⎥
⎥
⎥
⎤
. 

The concentration distribution after 5, 10, and 100 days is 
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𝝋× = 𝝋h ∗ 𝑷j× = [10 3.43 0.66 0.07 0.03]j 

𝝋:h = 𝝋h ∗ 𝑷j:h = [10 4.88 1.72 0.48 0.37]j 

𝝋:hh = 𝝋h ∗ 𝑷j:hh = [10 9.20 8.55 8.17 8.14]j. 

After 100 days the system is becoming homogeneous as expected since the right 
boundary is a ‘wall’ preventing any concentration from leaving the system. 

3.7 Particle Displacement 

The relation between diffusion and displacement in 2D diffusion is given by the 
following equation 

𝐸[∆𝑢�] = 2𝑡v𝐷N + 𝐷Ox																																																				(3.13) 

which is in agreement with the 1D result found in [32] and the result showed in [8] when 
both diffusivity coefficients are the same. To derive (3.13) assume a function φ(x,y,t) 
such that its value at t+Δt equals the expected value of the function at time t but with 
space increments Δx and Δy. Each pair (Δx, Δy) has a probability p(Δx, Δy), then we 
have 

𝜑(𝑥, 𝑦, 𝑡 + ∆𝑡) = Ø𝜑(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡)	𝑝(∆𝑥, ∆𝑦)	𝑑∆𝑥	𝑑∆𝑦 

assuming independence in the displacement along x and y, then the equation can be 
rewritten as 

𝜑(𝑥, 𝑦, 𝑡 + ∆𝑡) = ÃÃ𝜑(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡)	𝑝(𝑥)	𝑑∆𝑥 	𝑝(𝑦)	𝑑∆𝑦 

															= Ã𝐸∆N[𝜑(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡)] 	𝑝(𝑦)	𝑑∆𝑦	 

= 	𝐸∆OP𝐸∆N[𝜑(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡)]S																																					(3.14) 

applying Taylor series expansions on both functions at base point φ(x,y,t) 

𝜑(𝑥, 𝑦, 𝑡 + ∆𝑡) = 𝜑(𝑥, 𝑦, 𝑡) + 𝜑̇(𝑥, 𝑦, 𝑡)∆𝑡	 +
1
2 𝜑̈

(𝑥, 𝑦, 𝑡)∆𝑡� + ⋯ 

𝜑(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡) = 𝜑(𝑥, 𝑦, 𝑡) + 𝜑N(𝑥, 𝑦, 𝑡)∆𝑥	 + 𝜑O(𝑥, 𝑦, 𝑡)∆𝑦 + 
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1
2𝜑NN

(𝑥, 𝑦, 𝑡)∆𝑥� + 𝜑NO(𝑥, 𝑦, 𝑡)∆𝑥∆𝑦 +
1
2𝜑OO

(𝑥, 𝑦, 𝑡)∆𝑦� +⋯	 

taking the double expectation on the RHS and simplifying notation 

𝜑 + 𝜑̇∆𝑡 + ⋯ = 𝜑 +
1
2𝐸

[∆𝑥�]𝜑NN +
1
2𝐸

[∆𝑦�]𝜑OO + ⋯ 

dropping higher order terms because they become insignificantly small and solving for φt 

𝜑̇ =
𝐸[∆𝑥�]
2∆𝑡 𝜑NN +

𝐸[∆𝑦�]
2∆𝑡 𝜑OO  

comparing this equation to eq. (3.1) we get that Dx = E[Δx2]/(2Δt) and Dy = 
E[Δy2]/(2Δt); setting Δu2 = Δx2 + Δy2 and taking the expectation over Δs, and it is finally 
obtained 

𝐸[∆𝑢�] = 𝐸[∆𝑥�] + 𝐸[∆𝑦�] 

															= 2∆𝑡𝐷N + 2∆𝑡𝐷O  

										= 2𝑡v𝐷N + 𝐷Ox 

the same procedure can be applied to a 3D system. 

Displacement of a particle can be computed by solving for Δs in eq. (3.13) 

𝐸[∆𝑢�] = 2𝑡v𝐷N + 𝐷Ox 

¹ ∆𝑢8R�𝑝8R
8,R	∈UVWXX

= 2𝑡v𝐷N + 𝐷Ox 

Assuming Δx = Δy and Dx = Dy = D produces equal probabilities for the neighbor cells, 
i.e., pi+1 j = pi-1 j = pi j+1 = pi j-1= pout, then we have 

∆𝑢�4𝑝5�= = 4𝐷𝑡 

∆𝑢 = Ù
𝐷𝑡
𝑝5�=

.																																																						(3.15) 
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The displacement of a particle with D = 0.1 [cm2/day], and pout = ¼ after 10 days is 2 cm. 
If pout = 1/8, the displacement changes to 2.83 cm; and for pout = 1/16, the displacement 
becomes 4 cm for the same period. The displacement increases as pout decreases; this is 
because the displacement must be larger since it is happening with less frequency to be in 
consistency with the value of the second raw moment of displacement. 

3.8 Diffusion in Mixed Mediums 

When a system has an interface of two mediums with different diffusivities, the effective 
diffusivity between them is different from the average of their respective diffusivities. 
This is due to the reciprocal interaction between the two adjacent cells. This work 
followed [33] to determine the effective diffusivity between any two different mediums. 
The author explains that the temperature infinitely close to the interface must converge to 
the same value and the flux into the interface equals the flux coming out of it, which 
equals the flux between the two cells. 

 

Figure 3.6 Adjacent cells with different diffusivities 

Applying a conservation of flow restriction to the interface: incoming concentration is 
equal to the concentration coming out: 

𝑝¿𝜑¿ + 𝑝½𝜑½ + (1 − 𝑝¿ − 𝑝½)𝜑i = 𝑝¿𝜑i + 𝑝½𝜑i + (1 − 𝑝¿ − 𝑝½)𝜑i 

where φL, φR, φI are the concentration of the left and right cell and the interface, pL = 
DL*(Δt/Δx2), pR= DR*(Δt/Δx2). Simplifying and solving for φI, the concentration at the 
interface is 

𝜑i =
𝑝¿𝜑¿ + 𝑝½𝜑½
𝑝¿ + 𝑝½

.																																																												(3.16) 

Factoring out the term (Δt/Δx2), then it is obtained the same result as in [33]: 

𝜑i =
𝐷¿𝜑¿ + 𝐷½𝜑½
𝐷¿ + 𝐷½

.																																																							(3.17) 

Δx 

Medium	1	 Medium	2	
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Applying the restriction of concentration from left to interface must equal that from the 
interface to the right, and must be equal that from left to right, we get 

𝑝:/�𝜑¿ − 𝑝:/�𝜑i = 𝑞:/�𝜑i − 𝑞:/�𝜑½ = pi𝜑¿ − pi𝜑½ 

where p1/2 = 2p, q1/2 = 2q due to 

𝑝:/� = 𝐷¿
Ý∆𝑡2 Þ

Ý∆𝑥2 Þ
� =

4
2𝐷¿

∆𝑡
∆𝑥� = 2𝐷¿

∆𝑡
∆𝑥� = 2𝑝 

and similarly, for q, pI is the probability of moving from left to right cell and vice versa is 

𝑝i =
2𝑝¿𝑝½
𝑝¿ + 𝑝½

.																																																													(3.18) 

Factoring out the term (Δt/Δx2) and the probability of moving between mediums can be 
also expressed as 

𝑝i = «
2𝐷¿𝐷½
𝐷¿ + 𝐷½

¬	
∆𝑡
∆𝑥�.																																																			(3.19) 

Eq. (3.18) or (3.19) will be used to model diffusion between different clay materials in 
Chapter 4. 

3.9 Reaction Probability 

Spatial transition is modeled by diffusion probabilities; however, when the system has 
also reaction terms, we must find a way to express species transition in a probabilistic 
framework. For that, we have defined interspecies transition probabilities, i.e., the 
probability that a species A will remain A, turn into B, or otherwise for the next time 
step. 

Consider a simple chemical reaction 𝐴
wßàá 𝐵 , and 𝑝(𝑗=9:|𝑖=); 	𝑖, 𝑗 ∈ {𝐴, 𝐵}  is the 

probability that species i will change to j for the next time step. Finite differences can be 
used to obtain the interspecies transition probabilities from the numerical solution 
approximation as follows 

[𝐴]̇ = −𝑘½[𝐴] 
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[𝐴]=9: − [𝐴]=
∆𝑡 = −𝑘½[𝐴]=9: 

[𝐴]=9: = «
1

1 + ∆𝑡𝑘½
¬ [𝐴]= 

the transition probability from A to A is 

𝑃(𝐴=9:|𝐴=) = «
1

1 + ∆𝑡𝑘½
¬																																												(3.20) 

that from A to B (assuming 100% efficiency) is 

𝑃(𝐵=9:|𝐴=) = «
∆𝑡𝑘½

1 + ∆𝑡𝑘½
¬ 

𝑝(𝐴=9:|𝐴=) + 𝑝(𝐵=9:|𝐴=) = 1 must be satisfied. The transition probabilities for B are 
𝑝(𝐵=9:|𝐵=) = 1 and 𝑝(𝐴=9:|𝐵=) = 0, since once B is produced there is no change to A or 
otherwise. 

Let us assume an efficiency of 𝜒 ∈ [0,1] in the production of B, then the transition 
probability from A to B changes to 

𝑃(𝐵=9:|𝐴=) = 𝜒 «
∆𝑡𝑘½

1 + ∆𝑡𝑘½
¬																																									(3.21) 

and the probability of losing chemical A, i.e., becomes unavailable in the system is 

𝑃(𝑙𝑜𝑠𝑡=9:|𝐴=) = (1 − 𝜒) «
∆𝑡𝑘½

1 + ∆𝑡𝑘½
¬ 

𝑝(𝐴=9:|𝐴=) + 𝑝(𝐵=9:|𝐴=) + 𝑝(𝑙𝑜𝑠𝑡=9:|𝐴=) = 1  holds true. The transition probability 
from A to B remains the same and likewise for the transitions from B. 

Example, consider a system with kR=1/9 [1/s], χ=0.6, and ∆t=1 [s], the interspecies 
transition probability matrix after one time step is 

 A B lost ∑ 
A 0.9 0.06 0.04 1 
B 0 1 0 1 
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Alternatively, the interspecies transition probabilities can be derived from the analytical 

solution as follows. Consider the same reaction 𝐴
wßàá 𝐵 with analytical solution for A: 

[𝐴] = 𝑎h𝑒𝑥𝑝(−𝑘½𝑡) 

normalizing it such that the area under the curve is equal to one 

𝑎h𝑒𝑥𝑝(−𝑘½𝑡)
∫ 𝑎h𝑒𝑥𝑝(−𝑘½𝑡)𝑑𝑡
Ä
h

=
𝑎h𝑒𝑥𝑝(−𝑘½𝑡)

Ý𝑎h𝑘½
Þ

= 𝑘½𝑒𝑥𝑝(−𝑘½𝑡).																			(3.22) 

For this example, the normalized function is the exponential probability distribution, but 
if the integral does not converge, then we may use the numerical derivation instead. We 
can regard the area under eq. (3.22) as the fraction of chemical that has reacted from time 
zero until time ∆t; then the probability of not reacting (i.e., the fraction of remaining 
chemical) during the same period is 

𝑃(𝐴∆=|𝐴h) = 1 − Ã 𝑘½𝑒𝑥𝑝(−𝑘½𝜏)𝑑𝜏
∆=

h
 

																																							= 1 − «−
𝑘½
𝑘½
[𝑒𝑥𝑝(−𝑘½∆𝑡) − 𝑒𝑥𝑝(0)]¬ 

														= 1 − v1 − 𝑒𝑥𝑝(−𝑘½∆𝑡)x 

= 𝑒𝑥𝑝(−𝑘½∆𝑡). 

Since the exponential probability distribution has the Markov property, the result can be 
reexpressed as a recurrent function 

𝑃(𝐴=9∆=|𝐴=) = 𝑒𝑥𝑝(−𝑘½∆𝑡)																																															(3.23) 

then the transition probability from A to B is 

𝑃(𝐵=9∆=|𝐴=) = 𝜒v1 − 𝑒𝑥𝑝(−𝑘½∆𝑡)x																																						(3.24) 

where 𝜒 is the efficiency coefficient. 

Example, say we want to know [A] at time t=3. Taking steps of ∆t=1, we have 
𝑎h𝑒𝑥𝑝(−𝑘½)𝑒𝑥𝑝(−𝑘½)𝑒𝑥𝑝(−𝑘½) = 𝑎h𝑒𝑥𝑝(−3𝑘½) , which yields the same result as 
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taking one step of ∆t=3, which is the same as the value we get from the analytical 
solution. 

3.10 Reaction-Diffusion Probability 

Reaction and diffusion are described by independent distributions; since the diffusion 
probability is based on the expected concentration, we may use the law of total 
expectation and the law of total variance to compute the expected concentration and 
variance for each particular cell and time. 

For simplicity, let us formulate the expected concentrations in terms of two chemicals 
{A, B} to show how they are computed: 

𝐴8	R=9: = 𝐸P𝐴8	R=9:|𝐴=S	𝑃(𝐴=9:|𝐴=) + 𝐸P𝐴8	R=9:|𝐵=S	𝑃(𝐴=9:|𝐵=) 

𝐵8	R=9: = 𝐸P𝐵8	R=9:|𝐴=S	𝑃(𝐵=9:|𝐴=) + 𝐸P𝐵8	R=9:|𝐵=S	𝑃(𝐵=9:|𝐵=) 

where 𝐸P𝐴8	R=9:|𝐴=S is the concentration of A coming from neighbor cells (by diffusion) 
conditional to them being A at time t, whereas 𝐸P𝐴8	R=9:|𝐵=S is the concentration of A 
coming from neighbors conditional of them being B at time t. Likewise for B. Transition 
probabilities  𝑝(𝐴=9:|𝐴=) , 𝑝(𝐴=9:|𝐵=) , 𝑝(𝐵=9:|𝐴=) , and 𝑝(𝐵=9:|𝐵=)  have the same 
meaning as in 3.9. 

There is some freedom to choose when the transition between species takes place: before, 
halfway or after the particle has moved. For simplicity in computation, in this work it was 
decided the interspecies change occurs after molecules ‘jump’ from one position to 
another. 

The general formulation for concentration and variance is 

𝜑8	R=9: = 𝐸è𝐸P𝜑8	R=9:|𝑘=Sé																																																		(3.25) 

𝑉P𝜑8	R=9:S = 𝐸è𝑉P𝜑8	R=9:|𝑘=Sé + 𝑉è𝐸P𝜑8	R=9:|𝑘=Sé																												(3.26) 

where 𝜑, 𝑘 ∈ {′𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙	𝑠𝑝𝑒𝑐𝑖𝑒𝑠′}; the conditional probabilities come from diffusion 
distribution, and the expectation and variance operators applied to them come from the 
reaction distribution. 
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3.11 Advection Term 

It is possible to include an advection term using the procedure described in eq. (3.9-10) 
such that  

𝑝89: = 𝐷N
Δ𝑡
∆𝑥� + 𝑉N

∆𝑡
2∆𝑥 

𝑝8�: = 𝐷N
Δ𝑡
∆𝑥� − 𝑉N

∆𝑡
2∆𝑥 

𝑝h = 1 − 2𝐷N
Δ𝑡
∆𝑥� 

where Vx is the x component of advection although it imposes the following restriction 
2Dx ≥ Vx∆x. Using the method in eq. (3.9-10) is possible to show that Vx = E[∆x]/∆t. The 
above probability distribution meets this requirement (E[∆x] = ∆tVx) and that of diffusion 
(E[∆x2] = 2Dx∆t). See Appendix B. 

3.12 Consistency, Order, Stability, and Convergence 

In conformance with standard engineering practices in using numerical methods as laid 
out by Hoffman [34], it is important to ensure that the discrete system has certain 
properties to yield a reliable and accurate approximation of the original PDE solution. 
These properties are 

1. Consistency 
2. Order 
3. Stability 
4. Convergence 

Consistency refers to the truncation error between the finite difference and the PDF 
solution. If the error vanishes as space and time increments approach to zero, then the 
finite difference is consistent with the PDE. The order refers to the rate at which the 
global error decreases as the space and time increments approach to zero. For a stable 
PDE, a finite difference method is stable if it produces a bounded solution and unstable if 
such solution is unbounded. Convergence refers to the solution of the finite difference, if 
it approaches the exact solution of the PDE as space and time increments approach to 
zero, then the finite difference converges to the PDE [34]. 
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A 1D diffusion problem is used to test these properties for simplicity in notation, noting 
that these results can be also be proven for 2D and 3D simply by introducing more terms. 
To test consistency, each term of the finite difference must be expressed using a Taylor 
series, then simplify the expression and approach the space and time increment to zero. 
The original PDE must be obtained from the finite difference. 

The finite difference is 

𝜑8=9: − 𝜑8=

∆𝑡 = 𝐷N §
𝜑89:= − 2𝜑8= + 𝜑8�:=

∆𝑥� ¨ 

rearranging 

𝜑8=9: = 𝜑8= + 𝐷N
∆𝑡
∆𝑥�

(𝜑89:= − 2𝜑8= + 𝜑8�:= ).																														(3.27) 

The base point for the Taylor series expansion is x = i and t. The expansions are 

𝜑8=9: = 𝜑8= + 𝜑̇|8=	∆𝑡	 +
1
2 𝜑̈|8

=	∆𝑡� + ⋯	 

𝜑89:= = 𝜑8= + 𝜑N|8=	∆𝑥	 +
1
2𝜑NN|8

=	∆𝑥� +⋯ 

𝜑8�:= = 𝜑8= − 𝜑N|8=	∆𝑥	 +
1
2𝜑NN|8

=	∆𝑥� −⋯ 

plugging in those series into eq. (3.27) 

𝜑8= + 𝜑̇|8=	∆𝑡 +
1
2 𝜑̈|8

=	∆𝑡� +⋯ 	= 𝜑8= + 𝐷N
∆𝑡
∆𝑥� 	(𝜑8

= + 𝜑N|8=	∆𝑥	 +
1
2𝜑NN|8

=	∆𝑥� +⋯ 

−2𝜑8= + 𝜑8= − 𝜑N|8=	∆𝑥	 +
1
2𝜑NN|8

=	∆𝑥� −⋯ ) 

cancelling zero-order terms and dividing by Δt 

𝜑̇|8= 	+
1
2 𝜑̈|8

=	∆𝑡 + ⋯	

=
𝐷N
∆𝑥� 	(𝜑N|8

=	∆𝑥	 +
1
2𝜑NN|8

=	∆𝑥� +⋯− 𝜑N|8=	∆𝑥	 +
1
2𝜑NN|8

=	∆𝑥� −⋯ ) 

simplifying right-hand side terms and distributing the division by Δx2 
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𝜑̇|8= 	+
1
2 𝜑̈|8

=	∆𝑡 + ⋯	= 𝐷N «𝜑NN|8= +
1
12𝜑NNNN|8

=	∆𝑥� +⋯¬											(3.28) 

approaching Δt to zero and Δx to zero, the eq. (3.28) yields 

𝜑̇ 	= 𝐷N	𝜑NN 

the original PDE. The order of the finite difference is obtained from eq. (3.28), which is 
O(Δt) + O(Δx2). 

We performed a Neumann stability analysis on the finite difference using the following 
steps 

1. Replace the terms φi+1 and φi-1 by Fourier complex components and simplify: 

𝜑8=9: = 𝜑8= + 𝐷N
∆𝑡
∆𝑥�

(𝜑89:= − 2𝜑8= + 𝜑8�:= ) 

 

𝜑8=9: = 𝜑8= + 𝐷N
∆𝑡
∆𝑥�

(𝜑8=	𝑒𝑥𝑝(𝑖𝜃) − 2𝜑8= + 𝜑8=	𝑒𝑥𝑝(−𝑖𝜃)) 

 

𝜑8=9: = 𝜑8= ±1 + 𝐷N
∆𝑡
∆𝑥� 	

(𝑒𝑥𝑝(𝑖𝜃) − 2 + 𝑒𝑥𝑝(−𝑖𝜃))³ 

 

𝜑8=9: = 𝜑8= ±1 + 2	𝐷N
∆𝑡
∆𝑥� «

𝑒𝑥𝑝(𝑖𝜃) + 𝑒𝑥𝑝(−𝑖𝜃)
2 − 1¬³ 

 
2. Express the equation in terms of sin θ and cos θ, and determine the amplification 

factor GA: 
 

𝜑8=9: = 𝜑8= ±1 + 2	𝐷N
∆𝑡
∆𝑥�

(𝑐𝑜𝑠(𝜃) − 1)³ 

 
3. Analyze if | GA| ≤ 1 to determine stability: 

 

𝐺` = 1 + 2	𝐷N
∆𝑡
∆𝑥�

(𝑐𝑜𝑠(𝜃) − 1) 

 

−1 ≤ 1+ 2	𝐷N
∆𝑡
∆𝑥�

(𝑐𝑜𝑠(𝜃) − 1) ≤ 1 

 

−1 ≤ 𝐷N
∆𝑡
∆𝑥�

(𝑐𝑜𝑠(𝜃) − 1) ≤ 0 
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The upper limit holds always since Dx, Δx, and Δt are positive and max(cos θ - 1) 
= 0 and min(cos θ - 1) = -2. 
 
The lower limit yields 
 

𝐷N
∆𝑡
∆𝑥� ≤

1
1 − 𝑐𝑜𝑠(𝜃) 

 
which is undetermined for max(1-cos θ) = 0 and ½ for max(1-cos θ) = 2. 
Therefore, the minimum value for Dx(Δt/Δx2) is ½ and the finite difference is 
stable: 
 

𝐷N
∆𝑡
∆𝑥� ≤

1
2. 

The Lax equivalence theorem is used to show convergence of the method, which states 
“Given a properly posed linear initial-value problem and a finite difference 
approximation to it that is consistent, stability is necessary and sufficient condition for 
convergence”.  

Therefore, our probability-based method is consistent, stable, and converges to the true 
solution of the PDE. Its order is O(Δt) + O(Δx2) for 1D. 

In the next chapter we apply this method to estimate the lifetimes of nuclear waste 
containers. 
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Chapter 4 Estimating Lifetimes of 

Nuclear Waste Containers 

 

 

 

 

 

 

 

INTRODUCTION 

This chapter describes the implementation of the cellular automata (CA) model to 
estimate lifetimes of used fuel containers (UFCs). First, this chapter explains the 
sulphate-reducing bacteria (SRB) threat and the steps followed to model their sulphide 
production inside the deep geological repository (DGR). Then the coupled CA model is 
presented to account for diffusion and reaction inside the DGR. Then the validation 
process is presented by replicating published results and solving equivalent finite 
differences problems. Some the scenarios of interest are presented as well as a sensitivity 
analysis. Finally, some conclusions are discussed about the advantages and disadvantages 
of CA models. 
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4.0 Assumptions and limitations 
The basic assumptions and limitations behind the modeling and calculation of lifetimes 
presented in this chapter are the following 

• Models do not account for any copper corrosion during the aerobic period of the 
DGR. Although it is possible to include an estimate of corrosion during that 
period into lifetime calculation. 

• The activity of Sulphate reducers is well approximated by a first-order reaction 
rate. 

• No other chemical produces any relevant interaction in terms of affecting 
diffusion, sulphide production, or copper corrosion. 

• 1D and 2D models describe the endcaps of the containers because that is likely the 
region with the highest corrodent concentration. 

• All the input values were drawn from literature and represent best estimates or 
experimental results. Therefore, the results of the models presented here depend 
on the accuracy of such values. 
 

4.1 Sulphate-Reducing Bacteria 

Sulphate-reducing bacteria (SRB) refers to a diverse group of anaerobic microorganisms 
that degrade organic compounds by reducing sulphate to sulphide. They are ubiquitous in 
anoxic habitats, whether natural or human-made, e.g., marine sediments, hydrothermal 
vents, mud volcanoes, oil fields, deep sub-surface, and waste-water treatment plants [35]. 
They have been found in habitats with extreme pressure and temperatures making them a 
potential threat to the barrier system protecting UFCs. 

The chemical reaction describing the sulphate-reducing mechanism carried out by SRB is 
[35] 

4𝐻� + 𝑆𝑂/�� + 𝐻9 ⟶ 𝐻𝑆� + 4𝐻�𝑂.																																		(4.1) 

If the reaction rate is known, sulphate reduction to sulphide can be determined. Assuming 
(4.1) is an elementary reaction, the following ODEs describe the reduction of SO42- and 
the production of HS-: 

𝜑̇(EFG) = −𝑘½P𝜑(d�)S
/
𝜑(EFG)𝜑(d )																																				(4.2𝑎) 
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𝜑̇(dEe) = 𝑘½P𝜑(d�)S
/
𝜑(EFG)𝜑(d )																																				(4.2𝑏) 

where kR is the reaction coefficient and φ(.) is the concentration of the chemical species in 
[mol/L]. The approach followed in this chapter was to use experimental results about 
SRB activity under similar conditions and obtain the reduction rate of sulphate. Then use 
that rate to describe sulphide production but accounting for efficiency on the reaction. 
Finally compare the reaction rate to similar estimations. 

4.1.1 Reaction Rate 

Data from [36] and [37] was used, who performed an experiment to study copper 
corrosion on the presence and absence of SRB. Copper specimens were exposed to biotic 
and abiotic artificial anoxic groundwaters for periods of 4 and 10 months and then 
examined their chemical and electrochemical changes. The microorganisms were 
extracted from the deep bedrock of Okiluoto, Finland. Relevant results to our study are 
summarized on Table 4.1. 

Table 4.1 Composition of groundwater before and after tests [mg/L] 
Chemical Initial 4 months 10 months 

pH 7.78 7.18 7.09 
SO4 582 580 483 
S2-  <0.01 8.08 
HS-   8.08 

 

A detail to notice is that pH decreased after the experiment, meaning that the 
concentration of hydrogen ions increased, since [H+]=10-pH from pH = -log10[H+]. It 
would be expected to decrease by reaction (4.1), it suggests that other reactions took 
place increasing the hydrogen ion concentration. 

Since hydrogen ions were not limiting the reaction, they were assumed to be in 
abundance for groundwater with similar characteristics, this is a conservative, bounding 
scenario as the real rate of sulphide production will be significantly less than this. 
Additionally, the electrolysis of water into hydrogen gas (H2) and oxygen (O2) was 
assumed to be faster than sulphate reduction to represent a conservative scenario; 
therefore, hydrogen gas was also considered in abundance inside the DGR. However, the 
use of HCB would prevent the formation of a biofilm on the surface of the UFCs as it did 
in the experiments, therefore, this sulphide production rate is an extreme boundary 
condition representing the worst-case scenario in which every engineered barrier system 
fails [67]. 
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Therefore, a conservative, bounding upper limit of the reaction rate is described by 

𝜑̇(EFG) = −𝑘½𝜑(EFG)																																																											(4.3𝑎) 

𝜑̇(dEe) = 𝑘½𝜒𝜑(EFG)																																																												(4.3𝑏) 

where χ is the efficiency of the reaction, φ(.) is in [mol/L]. If φ(.) is expressed in [mg/L], 
then the right-hand side of eq. (4.3b) must be multiplied by κHS = 33.07/96.06 to account 
for the mole-to-mole conversion.  

4.1.2 Optimal Reduction Rate Coefficient 

The analytical solution of (4.3a) describes an exponential decay: 

𝜑(EFG) = 𝑎h𝑒𝑥𝑝(−𝑘½𝑡)																																																								(4.4) 

a0 can be determined from the initial conditions. For kR however, there are two data 
points. Optimization was used to find the kR* that minimizes the error with respect to the 
observed data. Two objective functions were tested: the sum of squared differences and 
the sum of squared log differences. 

The first optimization model is 

𝑀𝑖𝑛	𝜖 =
1
2 Ý𝑑:

(EFG) − 𝜑D:
(EFG)Þ

�

+
1
2 Ý𝑑�

(EFG) − 𝜑D�
(EFG)Þ

�

																								(4.5) 

subject to 

𝜑D8
(EFG) = 𝑎h𝑒𝑥𝑝(−𝑘½𝑡8), ∀𝑖 = 1,2 

𝑘½ ≥ 0 

d1(SO4) and d2(SO4) are the two data points, kR is the decision variable. After differentiating 
(4.5) with respect to kR and using the bisection algorithm to find ñò

ñwß
= 0, we obtained 

kR*= 0.015671/month = 5.96309×10-9/s after 15 iterations. Figure 4.1 shows a plot of the 
iterative approximation to zero and the error function. 
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Figure 4.1 Bisection iterative approximation to zero and convergence plot 

 

The second optimization model is 

𝑀𝑖𝑛	𝜖 =
1
2
ó𝑙𝑛r𝑑:

(EFG)s − 𝑙𝑛r𝜑D:
(EFG)sô

�

+
1
2
ó𝑙𝑛r𝑑�

(EFG)s − 𝑙𝑛r𝜑D�
(EFG)sô

�

							(4.6) 

subject to 

𝑙𝑛r𝜑D8
(EFG)s = −𝑘½𝑡8, ∀𝑖 = 1,2 

𝑘½ ≥ 0 

Differentiating (4.6) with respect to kR, setting ñò
ñwß

= 0 and solving for kR, we get 

𝑘½∗ =
𝑡:𝑙𝑛 §

𝑎h
𝑑:
(EFG)¨ + 𝑡�𝑙𝑛 §

𝑎h
𝑑�
(EFG)¨

𝑡:� + 𝑡��
 

The optimal value is kR* = 0.016192/month = 6.16146×10-9/s. Both values are compared 
in Table 4.2. The highest value was chosen kR* = 0.016192/month = 6.16146×10-9/s 
because it relates to the most unsafe situation in addition to have the lowest error in two 
out of three error measures. 
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Table 4.2 Comparison of optimal values 
Model kR* SSE1 SSLE2 SAE3 

1 5.96309×10-9/s 662.8 2.19×10-3 47.9 

2 6.16146×10-9/s 667.0 2.18×10-3 46.5 
1 Sum of squared errors. 2 Sum of squared log errors. 3 Sum of absolute errors 

 

The reduction of sulphate (4.3a) becomes 

𝜑̇(EFG) = −6.16146 × 10�õ𝜑(EFG)																																															(4.7) 

with units [mg*L-1*s-1] if φ(SO4) is in [mg/L] or [mol*L-1*s-1] if φ(SO4) is in [mol/L]. Its 
solution is 

𝜑(EFG) = 582𝑒𝑥𝑝(−6.16146× 10�õ𝑡)																																							(4.8) 

with units [mg*L-1] if φ(SO4) is in [mg/L] or 

𝜑(EFG) = 6.06 × 10��𝑒𝑥𝑝(−6.16146 × 10�õ𝑡)																							(4.9) 

with units [mol*L-1] if φ(SO4) is in [mol/L]. 

4.1.3 Sulphide Production 

To determine the efficiency parameter χ the total amount of sulphide produced must be 
known. From stoichiometry we know that about one millimoles of sulphate reacted 
(1.03[mmol/L] ≈ 99 [mg/L]) which must have produced the same millimoles of sulphide 
(1.03[mmol/L] ≈ 34.6 [mg/L]) had it not been reduced by another reaction. Therefore, the 
following relation must hold 

𝜑1
(dEe) + 𝜑I

(dEe) + 𝜑U
(dEe) = 34.6	[𝑚𝑔/𝐿] 

φG(HS), φC(HS), and φR(HS) are the sulphide measured in groundwater, that reacted with 
copper, and that not reacted/reacted in a different reaction. The total amount of sulphide 
produced is the sum of the first two terms. The first is given in the table; the second can 
be estimated from the amount of copper corroded. The weight lost was 0.8 mg/cm2 of a 
copper coupon with area of 17.5 cm2 (7cm×2.5cm) giving a total mass loss of 140 mg of 
Cu. That amount is more than 2 millimoles (2.2 mmol ≈ 140 mg), from stoichiometry the 
sulphide reacted with copper must have been 1.1 mmol ≈ 36.377 mg (or 2.2 mmol using 
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the path reaction mentioned in [36, 37]), which divided by the 12 L where the experiment 
was performed, we get 3.0314 [mg/L] (or 6.0628 [mg/L]) of sulphide reduced. The 
highest number was chosen because it is the most unsafe case: 

𝜑1
(dEe) + 𝜑I

(dEe) = 8.08	[𝑚𝑔/𝐿] 	+ 	6.0628	[𝑚𝑔/𝐿] = 14.1428	[𝑚𝑔/𝐿]. 

The efficiency parameter becomes 

𝜒 =
14.1428	[𝑚𝑔/𝐿]
34.6	[𝑚𝑔/𝐿] = 0.408751 

which is unitless. The production of sulphide (4.3b) after multiplying by κHS to account 
for the mole-to-mole production becomes 

𝜑̇(dEe) = 8.670301 × 10�:h𝜑(EFG)																																											(4.10) 

with units [mg*L-1*s-1] if φ(SO4) is in [mg/L] or 

 𝜑̇(dEe) = 2.518503 × 10�õ𝜑(EFG)																																											(4.11) 

with units [mol*L-1*s-1] if φ(SO4) is in [mol/L]. 

Figure 4.2 shows a picture of the chemical reaction in milligrams and moles. 

 

 
Figure 4.2 SRB-driven chemical reaction 
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4.1.4 Density-Dependent Reaction Rate 

After considering that the DGR conditions are going to be different from the conditions 
of the experiments, it was decided to adjust the reaction rate using dry density. Dry 
density was chosen because it determines the pore size of the clay and the swelling 
pressure, which are the two major factors limiting SRB growth. 

The linear decay obtained is 

𝑘`(𝜌a) = 𝑘½
𝜌E − 𝜌a
𝜌E − 1

, 𝜌a ∈ [1, 𝜌E]																										(4.12) 

ρD is the dry density of the clay in [g/m3] and ρS is the specific density (ρS = 2.76 
[g/cm3]), which is the density of bentonite with no voids in it, i.e., its maximum density 
possible. 

For an exponential decay, it is known that the exponential function is never zero, 
meaning that density could be arbitrarily large and still have a positive reaction rate 
coefficient, which is unrealistic; therefore, a constant (CE) was included to represent a 
value at which we will consider the rate to be zero: 

𝑘`(𝜌a) = 𝑘h𝑒𝑥𝑝[−𝑏ö(𝜌a − 1)] − 𝐶ö 

𝑘h = 𝑘½ + 𝐶ö, after some algebra and eliminating bE from kA(ρS)=0 and replacing back 
into the function (See Appendix C), the exponential decay is obtained  

𝑘`(𝜌a) = ÷«
𝑘½
𝐶ö
+ 1¬

øù�øú
øù�:

− 1û𝐶ö, 𝜌a ∈ [1, 𝜌E]												(4.13) 

CE must be selected such that 0 < CE << kR, e.g. CE = kR × 10-4. Dividing eq. (4.13) by kR 
gives the probability of having active SRB (See appendix C), therefore the equation is 
just an approximation to model local density heterogeneity that may allow SRB to remain 
active. However, it should be noted that at uniform density of ~1.6 [g/cm3] SRB activity 
is suppressed [68]. 
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Figure 4.3 Linear and exponential adjustment of reaction rate 

Sulphate to sulphide reduction rates estimated by Bengtsson and Pedersen in [38] were 
used to determine CE. They did a series of experiments to study SRB activity inside 
different types of clays for two densities and three incubation days. Table 4.3 shows their 
estimations and our correspondent values. It is worth mentioning that their values are 
lower bounds. The exponential adjustment (kA) was obtained by minimizing the error 
with respect to five of the six experimental results. The result for density 1,562 [kg/m3] 
and 77 incubation days was excluded for it being inconsistent with the rest of the data. 

 

Table 4.3 Comparison of reduction rates of SRB in bentonite MX-80 
Dry Density 

[kg/m3] 
Wet Density 

[kg/m3] 
Incubation [days] 

Sulphate to sulphide 
reduction rate [mol s-1 m-3] 

Source 

1,000 1,000 Not adjusted 2.5 × 10-6 Ours 
1,171 1,750 47 8.2 × 10-7 [38] 
1,171 1,750 77 3.2 × 10-7 [38] 
1,171 1,750 123 5.0 × 10-8 [38] 
1,171 1,750 Linearly adjusted 2.2 × 10-6 Ours 
1,171 1,750 Exp. adjusted* 3.97 × 10-7 Ours 
1,562 2,000 47 6.1 × 10-9 [38] 
1,562 2,000 77 9.2 × 10-11 [38] 
1,562 2,000 123 3.2 × 10-10 [38] 
1,562 2,000 Linearly adjusted 1.7 × 10-6 Ours 
1,562 2,000 Exp. adjusted* 5.79 × 10-9 Ours 

Calculated with CE* = 1.38×10-14 
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The optimization model is 

𝑀𝑖𝑛	𝜖 =
1
2¹Ý𝑘a

(8) − 𝑘`
(8)Þ

�
×

8Ç:

 

subject to 

𝑘`
(8) = ü«

𝑘½
𝐶ö
+ 1¬

øù�øú
(É)

øù�:
− 1ý𝐶ö, ∀𝑖 = 1, … ,5;	𝐶ö > 0 

where CE is the decision variable, kD(i) are the values from the experiment, kR is our 
unadjusted estimation. Gradient descent was used to find CE*= 1.375159 × 10-14. 

 

 
Figure 4.4 Convergence and error plot for parameter CE 

 

4.2 Reaction – Diffusion Model 

The system of interest consists of two chemical species: sulphate and sulphide. The host 
rock of the emplacement acts as the source of sulphate. In between the rock and the UFC 
are two layers of clay with different densities, diffusivities and different probabilities of 
hosting and thriving SRB. Sulphate travels by diffusion from the rock to the clays and the 
UFC; if at any point SRB is present and active, sulphide will be produced. When sulphide 
interacts with the copper surface of the UFC, a corrosion reaction takes place. This 
reaction is assumed to be instantaneous. 
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The following problem is described in 1D by 

𝜑̇(EFG) = 𝐷�(𝑥, 𝑆𝑂/)	𝜑NN
(EFG) + 𝑅(EFG)(𝑥)																															(4.14𝑎) 

𝜑̇(dEe) = 𝐷�(𝑥, 𝐻𝑆�)	𝜑NN
(dEe) + 𝑅(dEe)(𝑥)																												(4.14𝑏) 

with initial conditions 

𝜑(EFG)(𝑥, 0) = ℎh
(EFG)(𝑥) 

𝜑(dEe)(𝑥, 0) = ℎh
(dEe)(𝑥) 

and boundary conditions 

𝜑(EFG)(0, 𝑡) = ℎ:
(EFG)(𝑡) 

𝜑(EFG)(𝐿N, 𝑡) = ℎ�
(EFG)(𝑡) 

𝜑(dEe)(0, 𝑡) = ℎ:
(dEe)(𝑡) 

𝜑(dEe)(𝐿N, 𝑡) = ℎ�
(dEe)(𝑡) 

where φ(SO4) and φ(HS-) are the concentration of the chemical species in [mg/L], Lx is the 
right boundary dividing HCB and the surface of the UFC. 𝐷�(𝑥, 𝑆𝑂/) and 𝐷�(𝑥,𝐻𝑆�) are 
the diffusivity coefficients for sulphate and sulphide depending on x. 𝑅(EF/)(𝑥) and 
𝑅(dE�)(𝑥) are the reaction terms as a function of x. Solving such system of PDEs is 
challenging because of the space dependent diffusivity and reaction terms. 

4.2.1 Cellular Automata Model 

The equivalent CA representation of the same problem is a grid of cells with attributes or 
internal variables representing chemical species in [mg/L] and parameters. A 2D model 
was created to solve the deterministic case and another 1D model to solve stochastic 
scenarios and validation. 
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Figure 4.5 1D Cellular automata 

 
Figure 4.6 2D Cellular automata (image not to scale) 

4.2.2 Diffusion 

The probabilities of movement were calculated using the procedure described in Chapter 
3. For 1D is  

𝑝8±: = 𝐷�
Δ𝑡
Δ𝑥� 

𝑝h = 1 − 2𝑝8±: 

for 2D is 

𝑝R±: = 𝐷�
Δ𝑡
Δ𝑦� 

𝑝8±: = 𝐷�
Δ𝑡
Δ𝑥� 

𝑝h = 1 − 2𝑝8±: − 2𝑝R±: 

Gapfill	 HCB	

Cell	a&ributes	
•  Dry	density	
•  Sulphate	
•  Sulphide	

1D	

Rock	 Cu	

15	cm	 19.3	cm	

Δx 

Gapfill	 HCB	
Rock	

Rock	

2D	

115	cm	

15	cm	 48	cm	
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where De is the diffusivity coefficient obtained by eq. (2.4), p0 is the probability to remain 
on the same cell, p±i is that of moving one cell ahead or backwards x-wise, and p±j is 
that on y-wise. For the cells located at the interface of GF and HCB, the probability of 
movement in between them pI is 

𝑝i =
2𝑝¿𝑝½
𝑝¿ + 𝑝½

																																																											(4.15) 

where pL is p±i of the left cell and pR is p±i of the right cell. 

4.2.3 Reaction 

The interspecies transition probabilities derived in section 3.9 were used. The reaction 
probabilities from the analytical solution are 

𝑝v𝑆𝑂/=9:|𝑆𝑂/=x = 𝑒𝑥𝑝(−𝑘`∆𝑡) 

𝑝v𝐻𝑆=9:|𝑆𝑂/=x = 𝜒v1 − 𝑒𝑥𝑝(−𝑘`∆𝑡)x 

𝑝v𝑆𝑂/=9:|𝐻𝑆=x = 0 

𝑝(𝐻𝑆=9:|𝐻𝑆=) = 1 

with kA dependent on the dry density of each patch i, j and computed according to eq. 
(4.13). 

4.2.4 Reaction-Diffusion 

Each cell of the grid computes the concentration for the next time step according to eq. 
(3.25) 

𝜑=9:,			8,R
(EFG) = 𝐸 r𝜑=9:,			8,R

(EFG) |𝑆𝑂/=s 	𝑝v𝑆𝑂/=9:|𝑆𝑂/=x + 𝐸 r𝜑=9:,			8,R
(EFG) |𝐻𝑆=s 	𝑝v𝑆𝑂/=9:|𝐻𝑆=x	(4.16𝑎) 

𝜑=9:,			8,R
(dEe) = 𝐸 r𝜑=9:,			8,R

(dEe) |𝑆𝑂/=s 	𝑝v𝐻𝑆=9:|𝑆𝑂/=x + 𝐸 r𝜑=9:,			8,R
(dEe) |𝐻𝑆=s 	𝑝(𝐻𝑆=9:|𝐻𝑆=)	(4.16𝑏) 

Variance is computed according to eq. (3.26). 

4.2.5 Initial Conditions 

Initial conditions depend on the amount of groundwater contained in the clays at the 
beginning of the simulation. Estimate values were used for dry and wet density given in 
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Table 2.1 of Chapter 2; the determination of water was made using two methods, both 
yielded the same result. 

1) Multiplying porosity by saturation and by the number of liters of water in 1 [m3]: 

𝑊𝑎𝑡𝑒𝑟 = 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 ∗ 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 1000	[𝐿/𝑚�] 

2) The second method is using wet and dry densities: 

𝑊𝑎𝑡𝑒𝑟 =
(𝜌! − 𝜌a)
𝜌2"=�J

∗ 1000	[𝐿/𝑚�] 

 

Table 4.4 Water content in 1 [m3] of clay 
Clay Porosity ρW [kg/m3] ρD [kg/m3] Water [L/m3] 

Gapfill 0.486 1439 1410 29 
HCB 0.382 1955 1700 255 

 

Deterministic case 

For the crystalline rock, the initial amount of sulphate in GF is 1000 [mg/L] * 29 [L/m3] 
= 29,000 [mg/m3] = 29 [mg/L]. For HCB: 1000 [mg/L] * 255 [L/m3] = 255,000 [mg/m3] 
= 255 [mg/L]. The initial amount of sulphide is zero. 

Table 4.5 Initial amounts per cell/patch [mg/L] 
Clay Sulphate Sulphide 

Gapfill 29 0 
HCB 255 0 

For sedimentary rock, the amout of sulphate is the groundwater is 310 [mg/L]. For GF: 
310 [mg/L] * 29 [L/m3] = 8,990 [mg/m3] = 8.99 [mg/L]. For HCB: 310 [mg/L] * 255 
[L/m3] = 79,050 [mg/m3] = 79.05 [mg/L]. The initial amount of sulphide is zero. 

Stochastic case for randomness in groundwater 

The concentration of sulphate was assumed to be log-normally distributed and have a 
standard deviation such that µ[so4] + 3*σ[SO4] = ln (2*[SO4]) 
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[𝑆𝑂/]12~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 $𝜇[EF/] = 𝑙𝑛	[𝑆𝑂/],𝜎[EF/] =
𝑙𝑛(2)
3

'	 

where [SO4]Gw is the concentration of sulphate in groundwater and [SO4] is the 
concentration from according to the estimates in Table 2.1. 

 
Figure 4.7 Assumed sulphate content in groundwater 

 

4.2.6 Boundary Conditions 

The rock interface was assumed to have a constant concentration of sulphate equal to the 
concentration contained in the groundwater or, for the stochastic case, a constant 
concentration drawn randomly from the lognormal distribution. The rock also acts as a 
barrier for sulphide, preventing any molecule from leaving the system. 

Left boundary conditions 

𝜑=,			8Çh,			R
(EFG) = [𝑆𝑂/]12, ∀𝑡, 𝑗 

𝜕
𝜕𝑥 𝜑=,			8Çh,			R

(dEe) = 0.														∀𝑡, 𝑗 

As mentioned previously, the reaction of sulphide and copper is assumed to occur 
infinitively fast, therefore the right boundary for sulphide is set to zero at any time. For 
sulphate however, it acts as a barrier. 

Right boundary conditions 
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𝜕
𝜕𝑥 𝜑=,			8Ç¿N,R

(EFG) = 0, ∀𝑡, 𝑗 

𝜑=,			8Ç¿N,R
(dEe) = 0.														∀𝑡, 𝑗 

For the 2D model, the upper boundary consists of a block of clay with the same 
properties as the clay immediately below. They are also equally distant from the left and 
upper rock interfaces as the clays below are from the left and lower rock boundaries. 
Therefore, the upper clay should have the same concentration in both sulphate and 
sulphide as the clay below. This boundary was modeled by setting the gradient with 
respect to the y direction equal to zero.  

Upper boundary conditions 

𝜕
𝜕𝑦𝜑=,			8,RÇ¿O

(EFG) = 0, ∀𝑡, 𝑗 

𝜕
𝜕𝑦𝜑=,			8,RÇ¿O

(dEe) = 0.								∀𝑡, 𝑗 

The lower boundary is the rock interface; therefore, we used the same constant 
concentration for sulphate and a physical barrier for sulphide as in the left boundary. 

Lower boundary conditions 

𝜑=,			8,RÇh
(EFG) = [𝑆𝑂/]12, ∀𝑡, 𝑖 

𝜕
𝜕𝑦𝜑=,			8,RÇh

(dEe) = 0.														∀𝑡, 𝑖 

4.3 Lifetime Calculation 

4.3.1 Sulphide Flux 

To determine the lifetime of the canisters, the flux of sulphide to the UFCs must be 
obtained first. Although Fick’s first law describes diffusion flux under steady state, since 
our model has a discretized domain with discontinuous concentrations, to compute the 
flux between any two cells we used a time-varying flux: 

𝐽=(𝐿N) = −𝐷�
𝜕𝜑(dEe)

𝜕𝑥 , ∀𝑡 
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using finite differences 

𝐽=(𝐿N) = −𝐷�
𝜑=,			¿À
(dEe) − 𝜑=,			¿À�:

(dEe)

∆𝑥 , ∀𝑡 

from the boundary conditions, we know 𝜑=,			¿À
(dEe) = 0 for all t, therefore 

𝐽=(𝐿N) = 𝐷�
𝜑=,			¿À�:
(dEe)

∆𝑥 , ∀𝑡 

The amount of sulphide flowing to the copper layer of the UFC is 

𝑁dEe= =
𝐽=(𝐿N) 	× 	𝐴I5JJ 	×	∆𝑡

𝑀dE
, ∀𝑡 

NtHS is in [mol/t], ACorr is the area where corrosion will take place [m2] and MHS is the 
molar mass of sulphide [g/mol]. 

4.3.2 Corrosion depth 

This work used a time-dependent formulation of eq. (2.3) to determine the depth of 
corrosion per unit of time [m/t] 

𝑑I5JJ= =
𝑁dE= 	𝑓dE	𝑀I�

𝐴I5JJ	𝜌I�
.								∀𝑡 

The total depth corrosion from time one to T is then obtained by 

𝜏I5JJ =¹𝑑I5JJ= 	× 	𝛥𝑡
j

=Ç:

 

τCorr is the accumulated from t = 1 to t = T in units [m], T is the number of time steps 
simulated in the model [t]. 

4.3.3 Determination of the lifetime of canisters 

The lifetime of the canister is then computed as follows 

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 =
0.003 − 𝜏I5JJ

𝑑I5JJE  



 59 

where dCorrS is the depth of corrosion at steady-state [m/t], which is usually reached after 
1,200 years. 

4.4 Verification and Validation 

The validation of the CA models in this thesis was made by replicating recent published 
results. This process proved to be useful also for troubleshooting and ensuring the right 
conversion of units. Verification of the models came from finding the source of 
discrepancies between the published results and the model predictions. This does not 
mean that we tuned the CA models to produce the published results, but rather those 
results were used to detect coding or unit conversion errors. Validation scenarios are 
described in Table 4.6, it is worth noting that none of them model SRB activity; rather, 
authors acknowledged that SRB may be present and used assumed values for sulphide. 

Table 4.6 Validation scenarios for CA model 
Validation 
scenario 

Author 
Sulphide at 

rock interface 
CA model Comments 

I Järvine [21] 30 ppb 1D 
No reaction, only 
diffusion of sulphide. 

II Briggs [22] 3 ppm 1D and 2D 
No reaction, only 
diffusion of sulphide. 

4.4.1 Validation Scenario I 

Results reported in [21] assumed a constant concentration of 30 ppb of sulphide, at an 
average distance of 0.165 [m] from the copper surface and diffusivity De = 1×10-11 [m2/s].  
We solved the system using a 1D CA with ∆x = 0.5 [cm] and ∆t = 1/40 [year], and 1D 
implicit finite differences (IFD) scheme with same space increment and ∆t = 1 [year]. 
Steady state is reached after ~250 years. 

Table 4.7 Lifetimes for Validation Scenario I [year] 
Statistic Results [21] CA (1D) IFD (1D) 

Mean 9.6 × 107  11.2 × 107 10.7 × 107 
Minimum 1.3 × 107 2.0 × 107 2.0 × 107 
Maximum 5.8 × 108 4.8 × 108 4.7 × 108 

Mode 8.0 × 107 9.0 × 107 8.0 × 107 
Skewness  1.12 1.14 
Kurtosis  5.20 5.27 

SD  4.2 × 107 4.0 × 107 
Realizations 95,737 32,000 95,000 
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Lifetimes (Cellular Automata) Lifetimes (Finite Differences) 

  
Figure 4.8 Histogram of UFC lifetimes for Validation Scenario I 

 

4.4.2 Validation Scenario II 

Results reported in [22] assumed a constant concentration of 3 ppm of sulphide solving a 
deterministic 3D model with De = 1×10-11 [m2/s]. This work solved the same system 
using a 1D CA with ∆x = 1 [cm] and ∆t = 1/13 [year], and 1D implicit finite differences 
(IFD) scheme with same space increment and ∆t = 1 [year]. Steady state is reached after 
~500 years in the 1D models and after ~2000 years. 

 

Table 4.8 Lifetimes for Validation Scenario II [year] 
Statistic Result CA (1D) CA (2D) IFD (1D) 
Mean 1.2 × 106* 2.5 × 106 2.2 × 106 2.4 × 106 

Minimum  6.1 × 105 6.2 × 105 5.8 × 105 
Maximum  9.3 × 106 6.6 × 106 8.6 × 106 

Mode  2.3 × 106 2.0 × 106 2.2 × 106 
Skewness  1.15 0.95 0.85 
Kurtosis  5.19 4.51 4.6 

SD  1.0 × 106 8.2 × 105 7.2 × 105 
Realizations 1 10,000 1,000 10,000 

* Computed from 0.8 nm/yr/ppm reported in [22] 

 

[year]	 [year]	
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Figure 4.9 Histogram of UFC lifetimes for Validation Scenario II (1D models) 

 
Figure 4.10 Histogram of UFC lifetimes for Validation Scenario II (2D CA) 

 

4.5 Scenarios 

The main source of uncertainty is the degree at which SRB will remain active; therefore, 
three scenarios were created to explore different situations that might happen inside the 
DGR: Scenario I represents the worst condition, however we decided to explore this case 
and compute lifetimes on highly adverse conditions; GF and HCB have different 
densities according to Table 2.2 (see section 4.1.1 and 4.1.4 for the assumptions on this 
scenario); Scenario II is the base case, it assumes SRB is active at the rock interface only, 
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meaning that no bacterial activity is present inside the bentonite clay. Scenario III 
assumes a high homogeneous dry density of 1.7 [g/cm3] and assumes that SRB activity is 
expected to be inside the bentonite clay (see section 4.1.1 and 4.1.4 for the assumptions 
on this scenario). All three scenarios have uncertainty in the groundwater composition, 
i.e., the amount of sulphate is assigned stochastically from run to run. 

1. Scenario I. SRB active in clays and rock interface 
• SRB active in rock interface, GF, and HCB 
• Different dry densities for GF and HCB. 

 
2. Scenario II. SRB active in rock interface 

• SRB active in rock interface 
• Different dry densities for GF and HCB 

 
3. Scenario III. SRB active, homogeneous densities 

• SRB active in rock interface, GF, and HCB 
• Same dry densities for GF and HCB 

 

4.6 Results  
Results labeled ‘deterministic’ refer to the deterministic value in the groundwater 
sulphate content but they are the expectation value with respect to the movement and 
reaction probabilities. Results labeled ‘stochastic’ refer to a Monte Carlo sampling on the 
distribution of sulphate concentration, but they are also expectations with respect to 
movement and reaction. The size of the sample (10,000 runs) was chosen under the 
following criteria: 1) it should be large enough such that its shape and statistics become 
sample-independent, and 2) the sample is not large enough so as to require large 
computation times and limit the exploration of scenarios. 

4.6.1 Scenario I. SRB active in clays and rock interface 

Deterministic 

Lifetimes of 2D models are about 2/3 of those of 1D. Concentration profiles show an 
abrupt change at the interface between GF and HCB, this is due to the change in density 
and its corresponding effect on diffusion and reaction. From looking at the concentration 
and flux plots at the canister boundary, it is noticeable the steady state was obtained after 
~1,500 years. 
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Table 4.9 Lifetimes for Scenario I [year] 

Rock type 1D 2D 

Crystalline 1.34 × 105 8.79 × 104 
Sedimentary 4.40 × 105 2.91 × 105 

 

  
Figure 4.11. Profile of steady state concentration (distance from boundary) 

 

  
Figure 4.12. Sulphide concentration at the left boundary and flux for at the right 

boundary for Scenario I 
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Stochastic results 

Mean lifetime values are close to those found using deterministic sulphate values. 
Lifetimes of sedimentary rock are about three times those of crystalline rock. 

Table 4.10 Lifetimes for Scenario I, groundwater uncertainty [year] 

Statistic Crystalline rock (1D) Sedimentary rock (1D) 

Mean 1.38 × 105 4.53 × 105 
SD 3.29 × 104 1.07 × 105 

Minimum 5.65 × 104 1.64 × 105 
Maximum 3.22 × 105 1.24 × 106 

Mode 1.4 × 105 4.1 × 105 
Skewness 0.72 0.76 
Kurtosis 3.91 4.24 

Realizations 10,000 10,000 
 

 

 
Figure 4.13 Scenario I lifetimes for 1D 
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(a) (b) (c) 

   
Figure 4.14 Frame of concentrations at steady state: (a) sulphate, (b) sulphide, (c) 

ln(sulphide) 

 

4.6.2 Results Scenario II. SRB active in rock interface 

Deterministic results 

All the lifetimes are in the order of a million years for the deterministic results. Here 
again it is possible to see a change in concentration profile at the interface of GF and 
HCB. Sulphate concentration is practically saturated along the system; this is because the 
reaction takes place only at the rock boundary. Steady states were achieved ~1,000 years. 

 

Table 4.11 Lifetimes for Scenario II [year] 
Rock type 1D model 2D model 

Crystalline 2.13 × 106 1.31 × 106 

Sedimentary 6.87 × 106 4.25 × 106 
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Figure 4.15 Profile of steady state concentration (distance from boundary) 

 

  
Figure 4.16 Sulphide concentration at the left boundary and flux for at the right boundary 

for Scenario II 

 

 

Stochastic results 

Sedimentary lifetimes are higher than three times those from crystalline rock. Mean 
values are close to those obtained using deterministic sulphate values. 
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Table 4.12 Lifetimes for Scenario II, groundwater uncertainty [year] 
Statistic Crystalline rock (1D) Sedimentary rock (1D) 

Mean 2.18 × 106 7.06 × 106 
SD 5.1 × 105 1.6 × 106 

Minimum 8.55 × 105 2.82 × 106 
Maximum 4.9 × 106 14.7 × 106 

Mode 2 × 106 6.6 × 106 
Skewness 0.66 0.69 
Kurtosis 3.74 3.79 

Realizations 10,000 10,000 
 

 
Figure 4.17 Scenario II lifetimes for 1D 
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4.6.3 Results Scenario III. SRB active, homogeneous densities 

Deterministic 

This scenario presented more consistent results in that the 2D lifetimes are about 4/5 of 
those from the 1D model. Concentration profiles are smooth due to the assumption of 
having a homogeneous density. The steady state was achieved after 2,000 years. 

 

Table 4.13 Lifetimes for Scenario III [year] 

Rock type 1D model 2D model 

Crystalline 1.42 × 106 1.21 × 106 
Sedimentary 4.58 × 106 3.92 × 106 

 

  
Figure 4.18 Profile of steady state concentration (distance from boundary) 
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Figure 4.19 Sulphide concentration at the left boundary and flux for at the right boundary 

for Scenario III 

 

Stochastic results 

Here again the mean values were close to those obtained using a deterministic sulphate 
input, and lifetimes of sedimentary rock are about three times the lifetimes of crystalline 
rock. 

  

Table 4.14 Lifetimes for Scenario II, groundwater uncertainty [year] 

Statistic Crystalline rock (1D) Sedimentary rock (1D) 

Mean 1.45 × 106 4.71 × 106 
SD 3.4 × 105 1.1 × 106 

Minimum 6.41 × 105 1.65 × 106 
Maximum 3.62 × 106 10.7 × 106 

Mode 1.3 × 106 4.0 × 106 
Skewness 0.75 0.67 
Kurtosis 4.0 3.72 

Realizations 10,000 10,000 

 



 70 

 
Figure 4.20 Scenario III lifetimes for 1D 

 

 

4.7. Sensitivity Analysis 

Since the density of the gapfill is another main source of uncertainty, lifetimes under 
different gapfill densities were computed, ranging from 1,300 to 1,700 [kg/m3] (dry 
density). It’s worth noting that the density of the gapfill determines the reduction rate at 
the rock interface and inside the gapfill, as well as the diffusivity of molecules through 
gapfill. 

The density of the HCB remained constant at 1,700 [kg/m3] for scenarios I and III. For 
scenario II, since it assumes homogeneous density, GF were HCB assumed to have the 
same density, which was changed according to the range mentioned above. 
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4.7.1 Scenario I. SRB active in clays and rock interface 
 

Lifetimes exhibit an exponential response to gapfill density, for crystalline rock the range 
of lifetimes is ~[2 × 104  – 1.4 × 105] years and for sedimentary is ~[1.2 × 105  – 4.3 × 
106] years. 

 

 
Figure 4.21 Lifetimes for Scenario I 
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4.7.2 Scenario II. SRB active only at rock interface 
 
Here again lifetimes are exponential with respect to gapfill density, for crystalline rock 
the range of lifetimes is ~[3.9 × 105  – 5 × 107] years and for sedimentary is ~[1.2 × 106  – 
1.6 × 108] years. 

 

 
Figure 4.22 Lifetimes for Scenario II 
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4.7.3 Scenario III. SRB active, homogeneous densities 
 

Lifetimes exhibit an exponential response to gapfill density, for crystalline rock the range 
of lifetimes is ~[1.5 × 104  – 1.4 × 105] years and for sedimentary is ~[1.0 × 105  – 4.8 × 
106] years. 

 

 
Figure 4.23 Lifetimes for Scenario III 

 

4.8 Part I Conclusions 

The use of cellular automata to describe diffusion has advantages as well as limitations. 
The following list outlines the most salient ones that were noticed from applying CA to 
the nuclear waste problem. 

Advantages: 
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1. Uncertainty and space-dependency in parameters is easier to implement and treat 
than in analytical or numerical methods. 

2. It makes the diffusion process more intuitive to understand, in particular when 
relating diffusivity (in [m2/s]) and spreading of a solute. 

3. Reaction terms are coupled easier than in a finite difference scheme. 
4. Introduction of more chemical species may also be simpler since each species can 

be managed as an independent process, interacting only at discrete points in time 
in each cell. 

Limitations: 

1. Nonlinear shapes may require a finer grid to get an appropriate approximation.   
2. The model requires decreasing the space increment to increase the accuracy of the 

results. If we decrease the size increment by a factor of 1/a, the number of cells 
grows by a factor of adim, dim being the number of dimensions. 

Overall, using CA is recommended when the system to be modeled has some level of 
complexity, e.g. two or more chemicals or space-dependent parameters, reaction terms. If 
the system is only diffusion, the analytical solution or a finite difference method is 
recommended instead. If the system has complicated nonlinear shapes and is important to 
model them adequately, then the use of ad hoc software is recommended such as 
Comsolâ. 

With respect to the nuclear waste problem, the following conclusions were inferred from 
looking at the results of sections 4.6 and 4.7: 

1. Bentonite dry density has a drastic effect on the lifetime of the container. If SRB 
is active only at the rock, lifetimes will be around 106 years. However, if SRB is 
also active inside the bentonite clay, having a homogeneous high dry density of at 
least 1,600 [kg/m3] becomes essential to achieve lifetimes of 106 years or higher. 
In particular for the gapfill dry density, which is the clay that will be placed in 
between the host rock and the buffer boxes, may have a lower value due to in situ 
placement challenges. 

2. We may remind the reader that the lifetimes computed here are for the canisters 
closest to the rock and that failure was defined as a breach in the copper layer, but 
canisters will be placed at different distances from the rock and they are also 
made of 30 mm steel. Therefore, our lifetimes are lower bounds of the lifetimes of 
the canisters under current assumptions. 

3. Lifetimes seem to have a linear response with respect to the amount of sulphate 
and an exponential response with respect to the gapfill dry density. It may be 
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possible to construct a simpler surrogate model that inputs sulphate and dry 
density and outputs the lifetime of the canister. 
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Chapter 5 Agent-based Modeling 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION 

In this chapter provides literature review on the use of agent-based modeling in road 
networks and route planning, as well as the use of information to improve agent’s 
decision-making. Then it discusses the advantages of using ABMs over EBMs and show 
an example where an ABM is a more flexible tool to use and another where an EBM is a 
better option. It also introduces the functions of travel time and road density that will be 
use on the Chapter 7. 

Models were solved using Matlab®, Netlogo® or Python®. 
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5.0 Literature Review 

The use of information to enhance decision-making of agents has been studied widely in 
different contexts. Below we describe relevant literature regarding road networks and 
agent decision-making. 

A thorough overview about the historical development of transportation models can be 
found on [39]. A summary is provided next. In the most general case, the transportation 
problem is a multi-scale mobility problem that deals with 1) the demand of trips; the 2) 
the allocation of travelling units to paths from origins to destinations such that their 
requirements in terms of timing, mode, and other preferences are met within some 
satisfaction interval; and 3) the simulation of the dynamic interaction of such agents as 
they move along the road network. 

The selection of the aggregation is important in as much as there is a tradeoff between 
micro-scale accuracy (realism) and computational complexity. Three approaches have 
been studied: models of the macro-state using aggregate variables (generally mean 
values); microsimulations that aim at modeling road segments in intra urban roads, great 
detail is put in the modeling of drivers’ behavior, lane crossing and intersections; and 
mesoscopic models that incorporate a sophisticated driver’s decision model but with a 
medium level aggregation on road segment dynamics. 

An example of the last type of model is the Dynamic Traffic Assignment (DTA), which 
has the same aggregation level as those used in this thesis. Vehicles are assumed to travel 
at the same speed on each road segment; speeds are computed from a travel-delay 
function with parameters that are segment-specific. Drivers based their path selection on 
travel times at the time of the decision, not on predicted times. Although there are models 
that use experienced travel times. Mesoscopic models are used mainly for design and 
real-time control purposes. 

The use of microsimulation for traffic models is discussed in [40]. Microsimulation is the 
disaggregated or micro level replication of a system that is dynamic, has some 
probabilistic components, has different type of actors and those actors behave according 
to some rule. Some problems are suitable to study using EBMs; however, 
microsimulation becomes essential in situation/systems that cannot be simplified without 
incurring in significant inaccuracies or when the actual local behavior will determine the 
success of a given policy, design or control effectiveness. 

However, the use of microsimulation requires disaggregate data, which is not always 
available. It is possible to use a disaggregation method called synthesis, which is a 
procedure to generate a population set that is statistically consistent with the aggregate 
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data available. However, synthesis methods may fail to capture significant heterogeneity 
in the population. 

Another feature microsimulations should include is the updating of the population as the 
simulation time runs. For short timespans it may not be necessary, but if the simulation 
time runs over a considerable timespan, then it becomes necessary the updating of 
population features to adequately replicate the real system. Therefore, the simulation 
must incorporate a model for each dynamic feature. 

Major obstacles of microsimulation are 1) the accuracy of its results depend on the 
accuracy of the input data; therefore, the disaggregation of data is essential to obtain 
representative population and ensure the validity of the outputs of the model; 2) the 
determination of an appropriate level of aggregation in terms of space, time, behavior; 3) 
the statistical treatment of the results; and 4) the computational complexity associated 
with solving a detailed object-based model. 

Diffusion of information has been studied in [41], where authors studied how news are 
transmitted throughout a network that describes a particular social structure. One way of 
transmission is when a given node reaches a threshold of neighbors with a given 
‘position’, then that node also assumes the same position. Another way is using 
‘infection’ spreading, meaning that when a node acquires certain news, it may ‘infect’ 
(transmit the news to) neighbors with a probability. 

An agent-based approach to the study of road networks has been studied in [42] where 
current travel information is used to determine shortest paths and agents learn from 
previous experiences; user-equilibrium is achieved, and under certain circumstances, the 
system’s optimum. However, the study does not account for the estimation of the state of 
the roads nor the deterioration of information as time goes on. 

Another example of an ABM of road networks with information sharing is [43] where the 
authors studied a double layer network, where one layer describes the connections among 
drivers and the spreading of information and the other layer describes the physical road 
network. Agents are given the capacity to learn from previous experiences and eventually 
the network converges to steady probabilities of route selection. 

Wei et al. studied the social interaction of drivers in terms of choice behavior [44]. They 
found that the interaction (information sharing) of drivers affects their decision about 
route selection; however, it has no effect on the overall performance. They also 
discovered that user equilibrium in a network does not imply fixed route selection for 
drivers. 
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The implementation of a credit scheme to charge drivers for using determinate links and 
how it affects the overall network is studied in [45]. Drivers are given a certain amount of 
credits for free and they have to pay if that amount is exceeded. Fares vary depending on 
each road link. 

The use of advanced traveler information systems (ATIS) that provides current or 
predictive information about traffic flows to drivers is studied in [46]. The authors used a 
road network with two roads to study the effects of ATIS and they also explored different 
information collection methods. 

Lehrer and Smorodinsky [47] study how agents facing a sequential decision problem, 
starting from an initial belief of the payoffs distribution, learn to adjust its belief to match 
the true underlying distribution. They show that an optimal decision occurs when the 
relative entropy between the true and the believed distribution is zero, which in turn is the 
asymptotical result of the continuous adjustment of posterior beliefs as more realizations 
are observed. 

In a very interesting paper [48] the authors show how brainless organisms are capable of 
complex decision-making simply by the use of a Bayesian rule of selection. Amoeboid 
organisms are stimulated to grow two arms (left or right) by providing different amounts 
of food at each side. They start by exploring equally both sides, and after finding or not 
food on that side, they adjust the growth of each arm to respond to the different food 
supply. The most accurate model that describes the organism’s behavior is a Bayesian 
model. Following a simple conditional model yields an optimal strategy for any of the 
tested scenarios. This paper is relevant to our research in that it is an example of how a 
brainless agent, i.e., an agent with no prior information and with no information 
processor, is capable of making good decisions by ‘sampling’ the environment and 
adjusting its prior belief. Eventually, the organism matches the underlying true 
distribution behind the environment. 

As an example of the use of entropy as a measure of uncertainty, in [49] the authors 
characterized two attributes of asset pricing: dispersion and horizon dependence. For 
dispersion they used information entropy of the pricing kernel; whereas for horizon 
dependence they measured the relative entropy between several periods and that from 
one. They used examples to show the goodness of their approach. 

Van Nieuwerburgh and Veldkamp [50] studied how information acquisition affects 
posterior investment decisions on financial investors. They showed that there is positive 
feedback between assets chosen to acquire information from and assets expected to hold. 
It increases the chances of holding the assets the investor knows more about, which in 
many cases lead the investor to hold an undiversified portfolio. This paper provides some 
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understanding about the information-dependence decision-making and the capacity of 
information acquisition. 

C. Turkay et al. used information entropy and relative entropy [51] to improve the 
realism of agent-based crowd simulation models. They constructed a grid to represent the 
spatial location of a facility that pedestrians use to walk from one point to another. They 
mapped users’ velocity (speed and direction) onto a grid and computed the frequency of 
each direction users are heading to. With that probability they computed the current 
information entropy of each grid. They kept track of previous time steps and compared 
them against the current calculation using the relative entropy. A linear combination is 
used to combine both entropies and then the final estimation is provided to agents, so 
they can choose the path with less ‘chaotic’ crowds, i.e., the path with minimal entropy. 
For the validation of the model they did a comparative analysis of the results of their 
model with previously known models. They also used real-world room evacuation videos 
and visually compared them with the simulation obtained using his model. 

 

5.1 Agent-Based Modeling 

Agent-Based Modeling is an approach to study any social or nature phenomena or system 
by focusing on the interactions of agents composing the system. An agent is an 
autonomous unit with simple rules of behavior, whose actions have an effect on other 
agents and it is affected by their actions. ABMs have proved to be useful in imitating or 
reproducing the emergent properties of complex systems; “large scale patterns in the 
world are usually the result of the interactions of large numbers of smaller pieces” [52]. 

Agents are discrete objects with well-defined properties and rules of interaction. 
Oftentimes, there are different types of agents within a simulation analysis, whose 
characteristics will depend on the experiment. For instance, modeling human disease 
transmission would require two types of agents: ‘person’ and ‘environment’. A ‘person’ 
would represent an individual with certain attributes (health, age, spatial movement) 
whereas ‘environment’ would represent a 2D spatial location where people move and 
interact. 

5.1.1 Properties of agents 

Despite the fact that agent attributes are defined according to the purpose of the 
experiment or the goal of the simulation, some common attributes are general and 
distinctive of ABMs [53]: 
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• Autonomy. Agents are entities with internal goals that behave independently. 
They make decisions based on the state of the environment and its individual 
state. 

• Self-contained. Agents are discrete objects whose internal description is not 
dependent on the outside world. They are fully defined entities with a known 
behavior spectrum. 

• Interaction. A major advantage of ABMs is the fact that agents are able to interact 
and affect each other. This feature triggers new and unexpected global behavior. 

• Environment. As mentioned before, the environment is the spatial location where 
agents interact. It can be a network, a Cartesian plane, cellular automata, etc. The 
environment will dictate the ways of interaction. 

• Goals. Agents have internal goals that are the basis of the decisions they make. 
They may be represented by a single or multiple objective functions. Agents may 
want to minimize or maximize or reach a threshold of satisfaction on one or many 
attributes. 

• Learning. Agents may have memory and the capacity of modify its behavior upon 
experience by comparing predictions against outcomes. 

5.1.2 ABM implementation 

The implementation of an ABM simulation experiment follows these steps [3]: 

1. Problem. Definition of a problem to be solved or studied. 
2. Design of agents. Definition of types of agents as well as the fixed and dynamic 

attributes. 
3. Design of environment. The selection of a proper topology where agents are going 

to interact. 
4. Design of behavior. The definition of the rules of decision in discretized time 

steps. 
5. Design of interaction. This stage can be performed in the previous step. It is the 

extent in which an agent is going to be affected by others. Typically, this 
influence is reflected in the decision-making process. 

6. Data. The collection of historical data from where to derive parameters from. 
7. Validation. To ensure that the outcomes of the model are sufficiently predictive of 

the real phenomena. 

5.2 Agent-Based Models vs. Equation-Based Models 

ABMs have the following advantages over equation-based models (EBM) [1]: 
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• ABM can model heterogeneous populations 
• Its results are discrete, as many of the components of real social, economic or 

ecological systems 
• Including spatial effects in EBMs is difficult 
• Modelling in ABM is easier since agents have a match with real entities 
• ABM does not require full knowledge or description of the aggregate system 
• ABM provides results at the aggregate and individual level 

Next an example is shown where the ABM representation offers more advantages in 
terms of modeling compared to the EBM. 

5.2.1 ABM vs. ODEs: A Microeconomics Example 

To illustrate how ABMs allow for introducing more realism into the modeling of a 
system, the classic microeconomics problem of finding the price and quantity of 
equilibrium of a market was solved using agents and ODEs. 

Let us assume a market with a single product under trade, composed of a fixed number of 
buyers and sellers, where 

• m = ‘number of buyers’ 
• n = ‘number of suppliers’ 
• p =  ‘unitary price of the good’ 
• d(p) = ‘individual demand’ 
• s(p) = ‘individual supply’ 
• 𝐷 = ∑ 𝑑8(𝑝)∀8 = ‘total demand’ 
• 𝑆 = ∑ 𝑠R(𝑝)∀R =‘total supply’ 

Assuming the change in unitary price over time to be proportional to the difference 
between D and S, the following is obtained 

𝑑𝑝
𝑑𝑡 = 𝜔(𝐷 − 𝑆)																																																									(5.1) 

where ω controls the speed of the price adjustment, it was set to 𝜔 = :
:hh(*96)

 [$/unit]. 

Two cases were considered: linear and nonlinear demand and supply. For a linear 
demand and supply we have 

𝑑(𝑝) = 𝑑*"N «1 −
𝑝

𝑝*"N
¬																																													(5.2𝑎) 



 84 

𝑠(𝑝) = 𝑠*"N
𝑝

𝑝*"N
.																																																				(5.2𝑏) 

For a nonlinear demand and supply we have 

𝑑(𝑝) = (𝑑*"N + 1)	𝑒𝑥𝑝(−𝜂7𝑝) − 1																																			(5.3𝑎) 

𝑠(𝑝) = 𝑒𝑥𝑝(𝜂Z𝑝) − 1																																																(5.3𝑏) 

where pmax is the maximum price; dmax, smax are the maximum unitary demand and 
supply, 𝜂7 =

�6(7,-À9:)
.,-À

and 𝜂Z =
�6(Z,-À9:)

.,-À
. Functions were created such that d(0)=dmax, 

d(pmax)=0 and s(0)=0, s(pmax)=smax. We followed the convention of plotting price in the y-
axis and quantity in the x-axis. 

 
Figure 5.1 Single buyer’s demand and single seller’s supply 

 

Solving the system using ABM 

Two types of agents were created: buyers and sellers; and a variable to represent the 
unitary price of the product. Buyers have an internal variable called “demand” and that 
for sellers is called “supply”. Their rule of behavior is described by equations (5.2a – 
5.3b) for both linear and nonlinear cases, i.e., at each time step both agents input the 
current price pt and output either the amount demanded or the amount supplied during 
that period. The unitary price is then adjusted according to the difference between total 
demand and total supply. The simulation starts with a random initial price po. A sketch of 
the algorithm is 
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• Step 0. Agents are created: {Buyers, Sellers}. Buyers are assigned the rule d(p), 

Sellers the rule s(p). The initial price is determined by 

𝑝h~𝑈(𝑎, 𝑏) 

• Step 1. Buyers determine their individual demand: 

𝑑(𝑝=) 

• Step 2. Sellers determine their individual supply: 

𝑠(𝑝=) 

• Step 3. Set 𝐷 = ∑ 𝑑8(𝑝)∀8  and 𝑆 = ∑ 𝑠R(𝑝)∀R . Adjust unitary price according to 

(derived from eq. (5.1)): 

𝑝=9: = 𝑝= + ∆𝑡𝛼(𝐷= − 𝑆=) 

• Step 4. Stop if 

𝑝= = 𝑝=�:, 

else, set t = t+1 and repeat from Step 1. 

For the purpose of comparing results an example was solved using the following inputs: 

Table 5.1 Input values for the microeconomics problem 
p0 pmax dmax smax m n 
10 10 20 20 20 20 

For the linear response, the market reaches equilibrium at price $5/unit and quantity 
200 units. 

(a) (b) (c) 

   
Figure 5.2 Linear model: (a) Evolution of price, (b) Evolution of total demand and 

supply (c) Evolution of demand and supply with random terms 

For the nonlinear response, the market reaches equilibrium at price $5/unit and 
quantity 71.65 units. 
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(a) (b) (c) 

   
Figure 5.3 Nonlinear model: (a) Evolution of price, (b) Evolution of total demand and 

supply (c) Evolution of demand and supply with random terms 

 

Solving the system using ODEs 

Demand and supply curves are price-dependent, i.e., D(p) and S(p), to find their time 
derivative the chain rule was used as follows 

𝑑𝐷
𝑑𝑡 =

𝑑𝐷
𝑑𝑝

𝑑𝑝
𝑑𝑡 																																																								

(5.4𝑎) 

𝑑𝑆
𝑑𝑡 =

𝑑𝑆
𝑑𝑝

𝑑𝑝
𝑑𝑡 																																																								

(5.4𝑏) 

where 7a
7.
= 7

7.
[∑𝑑8(𝑝)]  and 7E

7.
= 7

7.
[∑ 𝑠8(𝑝)] . The above system describes the 

evolution of total demand and total supply over time. 

For a linear demand and supply and having homogeneous agents, the system (5.4a-b) 
becomes 

𝑑𝐷
𝑑𝑡 = −𝑚

𝑑*"N
𝑝*"N

𝜔(𝐷 − 𝑆) 

𝑑𝑆
𝑑𝑡 = 𝑛

𝑠*"N
𝑝*"N

𝜔(𝐷 − 𝑆). 

The initial condition was computed from the initial price p0 as D0 = D(p0) and S0 = S(p0); 
Figure 5.4 describes the evolution of the market reaching a steady state at price $5/unit 
and quantity 200 units. 
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Figure 5.4 Linear model: Solution to the ODE system 

 

For the nonlinear demand and supply and having homogeneous agents, the system 
(5.4a-b) becomes 

𝑑𝐷
𝑑𝑡 = −𝜂7(𝐷 +𝑚)	𝜔(𝐷 − 𝑆) 

𝑑𝑆
𝑑𝑡 = 𝜂Z(𝑆 + 𝑛)	𝜔(𝐷 − 𝑆) 

The initial condition was computed from the initial price p0 as D0 = D(p0) and S0 = S(p0); 
Figure 5.5 describes the evolution of the market reaching a steady state at price $5/unit 
and quantity 71.65 units. 

 
Figure 5.5 Nonlinear model: Solution to the ODE system 
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For the ODEs we did not attempt to include random terms into the equations and solve 
them since it requires a careful examination using stochastic differential equations, which 
falls out of the scope of this example. This seems however, a compelling area of study. 

Comparison remarks 

ABM is by far more flexible for this problem: the domain can be restricted to integer 
products; any of the parameters can be replaced by a random variable; allows for 
introducing heterogeneous agents, not only with different parameter values but with 
different functions as well; it also allows for a variable population. All that is achievable 
with little increase in computational effort. Overall, ABMs are easier to interact with; 
however, they require some coding skills. 

Formulating and solving the ODE system requires a deeper understanding of the problem. 
Introducing random terms requires knowledge of stochastic differential equations, which 
may involve the treatment of multiplicative noise. However, ODEs are concise and 
elegant formulations. Perhaps full knowledge comes from understanding how a system 
behaves at different scales. For an example where using simulation is inefficient and 
inaccurate, please see Appendix D.  

5.3 Road Networks 

5.3.1 Traveling Time 

For the calculation of traveling times along road segments we chose the BPR (Bureau of 
Public Road) travel time function [54] for kth segment. 

𝑇w = 𝑡2 31 +	𝛽h «
𝑤w
𝑐𝑎𝑝w

¬
6¡
7 																																												(5.5) 

where tf > 0 is the free flow time for that segment in time units [t/segment] or [t/km], wk 
is the volume of vehicles per time or flow [vehicle/t], capk the capacity of the segment 
[vehicle/t], β0 and β1 are shape parameters. Although it may underestimate delays for low 
volumes flows or overestimating delays for high volumes, it satisfies some interesting 
properties and is widely used in the field [54], [55] 

• Second order continuously differentiable 
• Positive over the domain of f    ∀𝑓 ≥ 0, 𝑇(𝑓) ≥ 𝑡2 
• Monotone increasing     𝑓: ≥ 𝑓�, 𝑇(𝑓:) ≥ 𝑇(𝑓�) 
• Strictly monotonic slope    𝑇88 > 0 
• Bounded slope      ∀𝑇′,∃	ℎ ∶ 	𝑇′ < ℎ 
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The selection of β0 should be made considering that when the volume of vehicles is equal 
to its capacity then its travel time is {1+ β0} times its free-flow time: 

𝑇w(𝑐𝑎𝑝w) = 𝑡2{1 +	𝛽h}. 

 
Figure 5.6 BRP travel time function with cap = 20 [vehicle] 

This thesis followed [55] choosing β0 = 1, meaning that at full capacity the driver’s time 
duplicates. For the selection of β1, ranges used in literature vary significantly from 1 to 12 
[54]-[56]. We tried different values and chose β1 = 3 because it allowed to have a higher 
flow of cars before producing a significantly increase in travel time (at 50% capacity, 
travel time increases 12%). 

5.3.2 Road Segment Speed 

Current speed on road segment k is computed using 

𝑣w =
𝑑w

𝑇w(𝑤w)
 

where vk is the speed in units [segment/t] or [km/t], dk distance of the segment and Tk(.) 
the travel time function based on the current volume of vehicles wk. Using the BPR travel 
time function and expressing the free-flow time term, tf, in terms of the free-flow speed: 
𝑡2 = 𝑑w 𝑣2⁄ , the following is obtained 

𝑣w =
𝑑w

𝑑w
𝑣2
$1 +	𝛽h Ý

𝑤w
𝑐𝑎𝑝w

Þ
6¡
'
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𝑣w =
𝑣2

$1 +	𝛽h Ý
𝑤w
𝑐𝑎𝑝w

Þ
6¡
'
																																												(5.6) 

 
Figure 5.7 Road segment speed function with cap = 20 [vehicles] 

 

5.3.3 Road density 

Density refers to the number of vehicles on the road segment [54], [56]; its relation to the 
volume of vehicles and capacity is the following  

𝑤w = 𝑣2𝜌w §1 −
𝜌w
𝜌R"*

¨ 

𝑐𝑎𝑝w =
𝑣2𝜌R"*
4  

where ρk is the density of the link k in units [vehicle/segment] and ρjam is the maximum 
density achieved under congestion in units [vehicle/segment]. Here vf is expressed in 
units [segment/t]. 

In the next chapter we develop an algorithm to estimate the state of a system 
incorporating observations from agents. 
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Chapter 6 Bayesian State Estimation 

using Collective Information 

 

 

 

 

 

 

 

Introduction 

This chapter describes the development of an algorithm to estimate system states based 
on current information observed by agents. First the problem of estimation is presented as 
well as the definition of agent perception. Then the Bayesian mechanism to update 
observations is described, and some examples are presented. The process of diffusion of 
probability is explained; its relevance to real-time systems; and some examples are also 
solved. The algorithm with Bayesian and diffusion mechanism in then presented as well 
as its numerical implementation. Finally, agent learning is described which is the 
individual procedure to correct any systematic bias on estimations. 
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6.1 Definitions and Assumptions 

The system of interest is defined as the dynamic interaction between a sequence of 
subsystem states {𝒮=} (e.g. a road segment, attendance in a beach) and the finite set of 
autonomous agents 𝒵 whose actions are based on and affect {𝒮=}. 

Autonomy refers to the capacity of each agent to make decisions on its own and act 
accordingly based on its goals and current estimation of 𝒮=. Goals are described by a 
utility function 𝒰 which agents optimize every time they make a decision (e.g. time, 
satisfaction). 

Agents also have two main properties: perception and learning. Perception is the 
mapping from the true state of the system to a perceived state and learning is the 
adjustment made to the perceived state to eliminate any bias. The latter requires historical 
information while the former does not. 

It is assumed there is a subset of agents, 𝒜:	𝒜 ⊆ 𝒵, who share their perceived states and 
have access to a collectively perceived state to improve their decisions. Therefore, a 
mechanism by which agents in	𝒜 are able to update and extract current information 
before making a decision is assumed to exist (e.g. an app, an online site). ℬ = 𝒵 ∖𝒜 is 
the set of agents who do not share information nor have access to any collective 
information. 

Some definitions 

1) Discrete time index 	𝑡 ∈ ℝ, ∀𝑡 
2) Continuous state domain 	𝒮 ∈ ℝ  
3) Set of autonomous agents 𝒵 = 𝒜 ∪ ℬ,𝒜⋂ℬ = ∅ 
4) 𝒜 is the partition who share and have access to collective information and ℬ does 

not share nor have access to collective information 
5) Agent perception mapping 𝒫: 𝒮 → Λ 
6) Collective estimation ℰ: {Λ} → 𝒮G 
7) Agent learning mapping ℒ: 𝒮G → 𝒮k 

𝑃v𝒮=wx denotes the probability density function of the subsystem 𝒮= at time t and after 
receiving observations from k agents. For simplicity, 𝑃v𝒮=hx may be simply referred to as 
𝑃(𝒮=). The following sections discuss the method to gather perceptions from 𝒜, and 
section 6.7 studies the process of adjusting that information so as to remove any bias. 
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6.2 Agent Perception 

Agent perception deals with the problem of estimating a true state 𝒮=  from a state 
perceived Λ= at time t. When we have access to more than one observation, then a 
Bayesian procedure to incorporate new information can be used to obtain a better 
estimate. This procedure is aimed only at agents in 𝒜 who are able to share and retrieve 
information. 

 

 

Figure 6.1 Diagram of an agent’s perception 

We want to know the probability of a true state given a vector of observations collected 
during a time interval ∆t = t – t0. The noise or error introduced by the channel is assumed 
to be known and described by the prior pdf 𝑃(Λ=|𝒮=)  and that observations are 
conditionally independent, i.e., 𝑃vλ=

:, λ=
�|𝒮=x = 𝑃vλ=

:|𝒮=x	𝑃vλ=
�|𝒮=x . The rationale 

behind conditional independence is that noise is agent-independent; therefore, the joint 
probability of having two or more agents perceiving the same true state is described by 
the multiplication of the priors given the true state. 

To properly estimate the true state 𝒮=, two processes must be taken into consideration: the 
addition of new information and the process of forgetting past information. At times these 
two may oppose or reinforce each other. The reason why we need a procedure to ‘forget’ 
information is because the Bayesian scheme fails to adapt to a changing state, which is 
what agents are interested in knowing. For example, say that during a ∆t we received n 
observations stating 𝒮= = 0, now say that for the next time step the state has changed to 
𝒮=9∆= = 1, we would need n additional observations just to even out the probabilities of 
both states, which is inefficient. 

 
Figure 6.2 Diagram of the evolution of 𝑃v𝒮=wx 

𝑃v𝒮=wx 

𝑃v𝒮=w9:x 

𝑃v𝒮=9∆=wx 

𝑃v𝒮=9∆=w9:x 

t 

Λ 

Channel Λ= 𝒮=  
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The aim of the algorithm is to produce the most accurate function 𝑃(𝒮=), based on the 
information received and the time when it was received. 

We would like to have a function to update 𝑃(𝒮=) when we received an observation 
èλ∆=

∆wé  at time ∆t. To compute 	𝑃v𝒮=9∆=w9∆wx  we used a first-order Taylor series 
approximation at point [t, k] 

𝑃v𝒮=9∆=w9∆wx = 	𝑃v𝒮=wx + ∇𝑃v𝒮=wx ∗ [∆𝑡, ∆𝑘]j 

= 	𝑃v𝒮=wx + ∆t
∂
∂𝑡 𝑃

v𝒮=wx + ∆𝑘
𝜕
𝜕𝑘 𝑃

v𝒮=wx											(6.1) 

The incorporation of new observations is described by the term ñ
ñw
𝑃v𝒮=wx and a Bayesian 

updating step was used to determine its form. The term K
K=
𝑃v𝒮=wx describes the diffusion 

of probability, i.e., the spreading of probability over its domain as time goes on. This 
term could also be thought of as a process of forgetting past information because as the 
pdf becomes flatter its uncertainty increases and previous information is lost. 

6.3 Addition of New Information 

This process is the assimilation of new perceptions Λ= = èλ=
:, λ=

�, λ=
�, . . . , λ=

wé made by k 
agents about the current state 𝒮= during ∆t. The Bayesian framework was used to update 
the pdf of the system’s state, i.e., 𝑃(𝒮=). We chose the updated function to be a linear 
combination of its previous value and its posterior pdf. After the first perception is 
received, 𝑃(𝒮=) changes to 

𝑃v𝒮=:x = 𝜋`𝑃v𝒮=h|λ=
:x + (1 − 𝜋`)𝑃v𝒮=hx 

where πA is the speed of assimilation of new information, the general formula is 

𝑃v𝒮=wx = 𝜋`𝑃v𝒮=w�:|λ=
wx + (1 − 𝜋`)𝑃v𝒮=w�:x	,					𝜋` ∈ [0,1]															(6.2) 

where 𝑃v𝒮=wx is the pdf of the system after receiving k perceptions from the set of agents. 

By setting πA=1 eq. (6.2) becomes commutative, meaning that the order in which we 
receive and compute perceptions during ∆t does not alter the form of 𝑃v𝒮=wx. Consider 
the case of 𝑃v𝒮=�,:x, which is the pdf after incorporating èλ=

:, λ=
�é in that order.  It can be 

shown that it is equivalent to 𝑃v𝒮=:,�x, i.e., incorporating èλ=
�, λ=

:é as follows 
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𝑃v𝒮=�,:x =
𝑃vλ=

�|𝒮=x	
𝑃vλ=

�|λ=
:x
𝑃v𝒮=:x 

replacing 𝑃v𝒮=:x =
MvNO

¡|𝒮Ox
MvNO

¡x
𝑃(𝒮=) using Bayes theorem 

																																							=
𝑃vλ=

�|𝒮=x	
𝑃vλ=

�|λ=
:x
P
𝑃vλ=

:|𝒮=x
𝑃vλ=

:x
𝑃(𝒮=)Q	 

replacing 𝑃vλ=
�|λ=

:x𝑃vλ=
:x = 𝑃vλ=

:, λ=
�x 

																																	=
𝑃vλ=

�|𝒮=x𝑃vλ=
:|𝒮=x	

𝑃vλ=
:, λ=

�x
𝑃(𝒮=) 

replacing 𝑃vλ=
:, λ=

�x = 𝑃vλ=
�x𝑃vλ=

:|λ=
�x and regrouping 

																																							= P
𝑃vλ=

�|𝒮=x
𝑃vλ=

�x
𝑃(𝒮=)Q

𝑃vλ=
:|𝒮=x	

𝑃vλ=
:|λ=

�x
 

replacing MvNO
�|𝒮Ox

MvNO
�x

𝑃(𝒮=) = 𝑃v𝒮=�x using Bayes theorem 

																	= 𝑃v𝒮=�x
𝑃vλ=

:|𝒮=x	
𝑃vλ=

:|λ=
�x

 

finally, using Bayes theorem and the conditionally independence assumption we get 

= 𝑃v𝒮=:,�x. 

We would like to express eq. (6.2) in a finite difference scheme because we are more 
interested in the change in the pdf rather than its new value. This allow to combine the 
change of adding information and the change of forgetting past information as seen on eq. 
(6.1). Eq. (6.2) can be reexpressed in the following way 

𝑃v𝒮=w9∆wx − 𝑃v𝒮=wx
∆𝑘 = 𝜋`𝑃v𝒮=w|λ=

wx + (1 − 𝜋`)𝑃v𝒮=wx − 𝑃v𝒮=wx 

														= 𝜋`P𝑃v𝒮=w|λ=
w9∆wx − 𝑃v𝒮=wxS 

where ∆k=1, therefore the difference equation is 
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∆𝑃(𝒮=)
∆𝑘 = 𝜋`P𝑃v𝒮=|λ=

wx − 𝑃(𝒮=)S.																																				(6.3) 

The posterior probability is computed according to 

𝑃(𝒮=|λ=) = 𝑃(𝒮= = 𝑠|λ=) =
𝑃(λ=|𝒮= = 𝑠)	𝑃(𝒮= = 𝑠)

𝑃(λ=)
, ∀𝑠 ∈ 𝒮= 

where 𝑃(λ=) = ∫𝑃(λ=|𝒮=)	𝑃(𝒮=)𝑑𝑠  is a normalizing constant whose value can be 
obtained by precomputing 𝑃(λ=|𝒮=)	𝑃(𝒮=), ∀𝑠 and find the area under such curve. Eq. 
(6.3) can be reexpressed in an equivalent form 

∆𝑃(𝒮=)
∆𝑘 = 𝜋` P

𝑃vλ=
w|𝒮=x	

𝑃vλ=
wx

− 1Q𝑃(𝒮=)																																				(6.4) 

Example 6.1 

With the purpose of showing how eq. (6.3) works, let us consider a system with a 
bounded continuous domain and a truncated Gaussian noise 

𝒮= = Λ= + 𝑛=, 𝒮=, Λ=, 𝑛= ∈ [𝑎, 𝑏], 𝑛=~𝑁jJ�64(0,𝜎6� = 1) 

Therefore, 

𝑃(λ=|𝒮= = 𝑠) =
𝑒𝑥𝑝 «−(𝜆 − 𝑠)

�

2𝜎U�
¬

𝜎6√2𝜋	𝐶
																																				(6.5) 

C is the normalizing constant and is equal to the area under the curve between a and b, 
the bounded region, i.e., C = F(b) – F(a), F(.) being the cumulative distribution function. 
Starting from an initial uniform distribution function 

𝑃(𝒮h) = $1/(𝑏 − 𝑎), 𝑠 ∈ [𝑎, 𝑏]
0,																						𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

the evolution of 𝑃(𝒮=) will be computed, having [a, b]=[0, 10], σn=1, a sequence of 
perceptions received from agents {5,5,5,5,5} and {3,4,5,6,7}, and πA=1/2 (Figures 6.3 
and 6.4). 
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Figure 6.3 Evolution of P(S) as new information is incorporated πA=1/2 

 

 
Figure 6.4 Mesh plot of P(S) as observations are incorporated Λ={5,5,5,5,5} (left) and 

Λ={3,4,5,6,7} (right) , πA=1/2 

 

Now, setting πA=1/20 for the same sequences of perceptions, the updated function 
becomes flatter than before (Figures 6.5 and 6.6). 
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Figure 6.5 Evolution of P(S) as new information is incorporated πA=1/20 

 

 
Figure 6.6 Mesh plot of P(S) as observations are incorporated Λ={5,5,5,5,5} (left) and 

Λ={3,4,5,6,7} (right) , πA=1/20 

 

Setting πA=1 the commutative property is preserved; therefore, if we receive a sequence 
like {3,4,5,6,7} it yields the same 𝑃(𝒮=) as if we had received {7,6,5,4,3} or the same 
values in any other order.  
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Figure 6.7 Commutative property in 𝑃(𝒮=) preserved when πA=1 

 

 It is worth mentioning that the area under the curve 𝑃(𝒮=) is equal to one and that feature 
is preserved after applying the finite difference scheme. Therefore, we need not rescale it 
for it is always a probability distribution function (See Appendix E). 

6.4 Process of Forgetting Information 

Two approaches were explored to model the increase of uncertainty as a function of time, 
i.e., the process of forgetting past observations made by agents. The first approach is to 
derive a function similar to diffusion, dubbed ‘diffusion-like’, and the second is to use a 
diffusion term. 

6.4.1 Diffusion-like process 

For the first approach the rationale is the following: if we have a double bounded domain 
on 𝒮=, no matter which shape 𝑃(𝒮=) has, we know that over a long period of time and 
with no new information added, its final form should be uniform (equiprobable), and it 
should be steady state (not changing any more). Therefore, it was assumed that the 
change in probability is proportional to the difference between its steady state value and 
the current one: 

∂
∂𝑡 𝑃

(𝒮=) = 𝛾 ±
1

𝑏 − 𝑎 − 𝑃
(𝒮=)³																																									(6.6) 

where γ ≥ 0 controls the speed of the change. The steady state is reached when 𝑃(𝒮=) =
:

U�"
.  
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Figure 6.8 The diffusion-like process increases values lower than 1/(b-a) and decreases 

values higher than that 

 

The next step is to find the analytical solution of eq. (6.6), which is directly integrable: 

Ã±
1

𝑏 − 𝑎 − 𝑃
(𝒮=)³

�:

𝜕𝑃(𝒮=) 	= Ã 𝛾	𝜕𝑡 

−𝑙𝑛 ±
1

𝑏 − 𝑎 − 𝑃
(𝒮=)³ = 𝛾𝑡 + 𝑐 

𝑙𝑛 ±
1

𝑏 − 𝑎 − 𝑃
(𝒮=)³ = −𝛾𝑡 − 𝑐 

1
𝑏 − 𝑎 − 𝑃

(𝒮=) = 𝑒𝑥𝑝(−𝛾𝑡)	𝑒𝑥𝑝(−𝑐)	 

setting 𝑎h = 𝑒𝑥𝑝(−𝑐) and solving for 𝑃(𝒮=) 

𝑃(𝒮=) =
1

𝑏 − 𝑎 − 𝑎h𝑒𝑥𝑝
(−𝛾𝑡)																																									(6.7) 

The initial condition of eq. (6.7) is 𝑃v𝒮=Vx = 𝑃h, therefore 𝑎h =
:

U�"
− 𝑃h. If the function 

is computed at intervals ∆t (not necessary of the same length), then it can reexpress eq. 
(6.7) in terms of its current value rather than its initial, this is because of the Markov 
property of the exponential function. We do so by setting 𝑎h =

:
U�"

− 𝑃(𝒮=), replacing 
this term into eq. (6.7) and simplifying; we obtained 

𝑃(𝒮=9∆=) = [1 − 𝑒𝑥𝑝(−𝛾	∆𝑡)]
1

𝑏 − 𝑎 + 𝑒𝑥𝑝
(−𝛾	∆𝑡)𝑃(𝒮=) 

a b

1/(b-a)	
+ +

_

pdf	
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subtracting 𝑃(𝒮=) from both sides of this equation to obtain the increment in the pdf and 
arranging terms we get 

∆𝑃(𝒮=9∆=) = [1 − 𝑒𝑥𝑝(−𝛾	∆𝑡)] 	±
1

𝑏 − 𝑎 − 𝑃
(𝒮=)³																											(6.8) 

Example 6.2 

An interesting initial condition was created to show how the probability density function 
converges to its steady state as time goes on, the initial condition is 

𝑃v𝒮=Vx = W
1 + 𝑠𝑖𝑛(𝑠)

2𝜋 , 𝑠 ∈ [0, 2𝜋]

0,																										𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.
 

The evolution over time of the pdf was computed using eq. (6.8). The example converged 
to its steady state 𝑃(𝒮=) =

:
�X

 as shown in Figure 6.9. 

 

 
Figure 6.9 Evolution of 𝑃(𝒮=) using the diffusion-like process of eq. (6.7) 

 

6.4.2 Diffusion process 

The diffusion-like process is driven by the gradient between the current value of the pdf 
at every point of its domain and its steady state. Diffusion, in change, is driven by the 
gradient of every point with respect to its neighbors. 
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Figure 6.10 Diffusion spreads the function 

 

The diffusion, as described previously on Chapter 3, is described by 

∂
∂𝑡 𝑃

(𝒮=) = 𝐷.
𝜕�

𝜕𝑠� 𝑃
(𝒮=)																																												(6.9) 

Dp is the diffusion coefficient of probability. It is also necessary to specify the left and 
right boundary conditions. In order to avoid ‘losing’ probability since we are using a 
double-bounded domain on 𝒮 , insulating boundaries were implemented, i.e., von 
Neumann conditions equal to zero. 

𝜕
𝜕𝑠 𝑃

(𝒮= = 𝑎) = 0, ∀𝑡 

𝜕
𝜕𝑠 𝑃

(𝒮= = 𝑏) = 0, ∀𝑡 

Solving the same example 6.2 using implicit finite differences, the following evolution of 
𝑃(𝒮=) towards steady state was obtained 

 
Figure 6.11 Evolution of 𝑃(𝒮=) using the diffusion process of eq. (6.9) 

a b

pdf	

a b

pdf	
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After comparing this solution to the one on Figure 6.9, we noticed that diffusion shifts the 
shape of the curve while the diffusion-like process rescales it.  

6.5 Most Probable State 

At any time, we would like to extract a value from the domain	𝒮 that best represents the 
current state; the point in the domain with the maximum probability was chosen: 

𝑠̂= = 𝑎𝑟𝑔𝑚𝑎𝑥
Z∈𝒮

𝑃(𝒮=) 

In the unlikely case that 𝑠̂= is more than one point, the average of the modes could be 
computed and set 𝑠̂= equal to that value. When there is a flat or fairly flat 𝑃(𝒮=), then it 
could be set to a default value for 𝑠̂=. Such value will depend on the context of the 
problem. For the speed estimation problem of Chapter 7, it seems reasonable to set 𝑠̂= 
equal to its maximum value, i.e., free-flow speed, because having no information may be 
due to the road being empty. 

Therefore, the process is summarized as follows 

If 𝑚𝑎𝑥	[𝑃(𝒮=)] − 𝑚𝑖𝑛	[𝑃(𝒮=)] ≤ 𝛿, then 𝑠̂= = 𝑠7�2"��= 

Otherwise 𝑠̂= = 𝑎𝑟𝑔𝑚𝑎𝑥
Z∈𝒮

𝑃(𝒮=) 

Where δ is a cutoff value, e.g., δ = E-2. 

Example 6.3 

The next step is to solve a case where observations are received as time goes on. Suppose 
there is an agent moving from along a road segment and at every minute it reports back 
its speed. Say its speed is bounded by [a, b] = [0, 2] [km/min]. We would like to have an 
idea of how crowded the road is from the information provided by the agent. The agent 
provides the following data [2, 2, 2, 0, 0, 0, 1, 1, 1, N/A, N/A, N/A], where N/A 
represents no communication received. Extreme values were chosen to show how both 
processes behave in upset conditions.  

Using the diffusion-like process and the following input values, the evolution of the pdf 
describing the state of the road was computed, assuming a gaussian noise as described in 
eq. (6.5) with 𝜎U = 1/6	[𝑘𝑚/𝑚𝑖𝑛]; diffusion-like parameters are γ = ½, 𝜋` = 0.1; and 
the initial function is 
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𝑃v𝒮=Vx = W
1
2 , 𝑠 ∈ [0, 2]

0,							𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.
 

 
Figure 6.12 Evolution of pdf using the diffusion-like process 

 

The diffusion-like process is quick to respond to changes of state as seen in Figure 6.12 
and 6.13. By extracting the value of the domain with highest probability at every time 
step, the following sequence is obtained [2, 2, 2, 2, 0, 0, 0, 1, 1, 1, 1, 1], which fails on 
two out of nine numerical values. The contour plot shows how the probability 
concentrates around the observations received. 

 
Figure 6.13 Contour plot of the solution using diffusion-like process 
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Now, solving the same problem using the diffusion process with the same inputs except 
for Dp = 0.1 [s2/min] and 𝜋` = 0.5; the evolution of the pdf over time is shown in Figure 
6.14. 

 
Figure 6.14 Evolution of the pdf using the diffusion process 

 

The contour plot shows how the probability spreads around the neighborhood of the 
observation, which is a characteristic of the diffusion term. The sequence of most likely 
states using the diffusion process is [2, 2, 2, 0, 0, 0, 0.9, 0.95, 1, 0.95, 0.95, 0.9], this 
process also failed in two out of nine numerical values. 

 
Figure 6.15 Contour plot of the solution using diffusion process 
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An important aspect to mention is that when the numerical diffusion is applied, the pdf 
has to be rescaled to ensure its area is equal to one, this is due to the numerical error of 
the numerical method. 

6.6 Numerical Implementation 

Finding an analytical solution to both models is not an option for two reasons: 1) the 
updating step using Bayesian probability is only defined for discrete changes in the 
observations, 2) since the pdf 𝑃(𝒮=) may take any shape, it complicates greatly any 
attempt to derive an analytical solution for the diffusion process. Therefore, a numerical 
method may provide us an accurate and fast solution. In particular, we would like to have 
an unconditionally stable scheme; so that its implementation is unconditionally stable 
regardless of the values chosen for the diffusion parameters.  

The observations received during time t are 

𝚲𝒕 = èλ=
:, λ=

�, λ=
�, . . . , λ=

wOé 

meaning that kt agents sent their perception at time t. 

6.6.1 Diffusion-like Process Implementation 

From eq. (6.1), the governing equation is 

𝑃v𝒮=9∆=89:x = 	𝑃v𝒮=8x + ∆𝑘
𝜕
𝜕𝑘 𝑃

v𝒮=8x + ∆t
∂
∂𝑡 𝑃

v𝒮=8x 

and its finite difference representation is 

𝑃v𝒮=9∆=89:x = 	𝑃v𝒮=8x + ∆𝑘
∆𝑃v𝒮=8x
∆𝑘 + ∆t

∆𝑃v𝒮=8x
∆𝑡  

replacing the difference terms with those form eq. (6.3) and (6.8) 

𝑃v𝒮=9∆=89:x = 	𝑃v𝒮=8x + 𝜋`P𝑃v𝒮=|λ=89:x − 𝑃v𝒮=8xS + [1 − 𝑒𝑥𝑝(−𝛾	∆𝑡)]	±
1

𝑏 − 𝑎 − 𝑃
v𝒮=8x³. 

Taking the first two terms of the RHS, rearranging and setting them equal to a new 
variable. Then reexpressing the third RHS term with respect to this new variable  

𝑃v𝒮=8x + 𝜋`P𝑃v𝒮=|λ=
89:x − 𝑃v𝒮=8xS = (1 − 𝜋`)𝑃v𝒮=8x + 𝜋`𝑃v𝒮=|λ=

89:x = 𝑃456789: 
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𝑃v𝒮=9∆=89:x = 	𝑃456789: + [1 − 𝑒𝑥𝑝(−𝛾	∆𝑡)]	±
1

𝑏 − 𝑎 − 𝑃4567
89:³ 

= 	𝑒𝑥𝑝(−𝛾	∆𝑡)	𝑃456789: + [1 − 𝑒𝑥𝑝(−𝛾	∆𝑡)]	
1

𝑏 − 𝑎											
(6.10) 

This equation must be applied on each point in the domain of 𝒮. 

Summary 

Therefore, the algorithm of the diffusion-like process for each time step containing 𝚲𝒕 =
èλ=

:, λ=
�, λ=

�, . . . , λ=
wOé observations can be written as follows 

1. If 𝑘= = 0, 𝑖. 𝑒. ,𝚲𝒕 = ∅, go to step 3b. 

2. Apply the Bayesian updating scheme. 

For 𝑖 ∈ {1, 2,… , 𝑘= − 1} 

𝑃456789: = (1 − 𝜋`)𝑃45678 + 𝜋`𝑃v𝒮=|λ=
89:x 

where 

𝑃v𝒮=|λ=
89:x =

𝑃vλ=
89:|𝒮=x.∗ 𝑃45678

𝑃vλ=
89:x

 

.* means element-wise multiplication. Go to step 3a. 

3a. Apply the diffusion-like term 

𝑃v𝒮=9∆=wx = 	𝑒𝑥𝑝(−𝛾	∆𝑡)	𝑃4567wO + [1 − 𝑒𝑥𝑝(−𝛾	∆𝑡)]	
1

𝑏 − 𝑎 

3b. Apply the diffusion-like term 

𝑃v𝒮=9∆=wx = 	𝑒𝑥𝑝(−𝛾	∆𝑡)	𝑃v𝒮=hx + [1 − 𝑒𝑥𝑝(−𝛾	∆𝑡)]	
1

𝑏 − 𝑎 

The parameter domains are 

𝜋` ∈ [0,1], 𝛾 ∈ [0,∞). 
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As mentioned before, this algorithm is unconditionally stable for the diffusion-term, 
setting a γ = 0 deactivates the diffusion term, while γ >> 0 sets 𝑃(𝒮=) close to :

U�"
. 

6.6.2 Diffusion Process Implementation 

In order to have an unconditionally stable scheme, we would have to use backward 
differentiation with respect to the diffusion term. Again, we start with eq. (6.1) 

𝑃v𝒮=9∆=89:x = 	𝑃v𝒮=8x + ∆𝑘
𝜕
𝜕𝑘 𝑃

v𝒮=8x + ∆t
∂
∂𝑡 𝑃

v𝒮=8x. 

Moving the derivative term to the LHS 

𝑃v𝒮=9∆=89:x − ∆t
∂
∂𝑡 𝑃

v𝒮=8x = 	𝑃v𝒮=8x + ∆𝑘
𝜕
𝜕𝑘 𝑃

v𝒮=8x.														(6.11) 

Replacing the time derivative by the diffusion term on the LHS and appling backward 
differentiation 

𝑃v𝒮=9∆=89:x − ∆t
∂
∂𝑡 𝑃

v𝒮=8x = 𝑃v𝒮=9∆=89:x − 𝐷.𝑡
∂�

∂𝑠� 𝑃
v𝒮=8x 

= 𝑃=9∆=,			R89: − 𝐷.
∆𝑡
∆𝑠�

v𝑃=9∆=,			R9:89: − 2𝑃=9∆=,			R9:89: + 𝑃=9∆=,			R�:89: x 

														= −𝐷.
∆𝑡
∆𝑠� 𝑃=9∆=,			R9:

89: + «1 + 2𝐷.
∆𝑡
∆𝑠�¬ 𝑃=9∆=,			R

89: − 𝐷.
∆𝑡
∆𝑠� 𝑃=9∆=,			R9:

89:  

																										= −𝜃	𝑃=9∆=,			R9:89: + (1 + 2𝜃)𝑃=9∆=,			R89: − 𝜃	𝑃=9∆=,			R9:89:  

the index 𝑗 ∈ [𝑎, 𝑏] refers to the partition on the domain 𝒮 and 𝜃 = 𝐷.
∆=
∆Z�

. 

The RHS of eq. (6.11) is 

𝑃v𝒮=8x + 𝜋`P𝑃v𝒮=|λ=89:x − 𝑃v𝒮=8xS = (1 − 𝜋𝐴)𝑃v𝒮𝑡𝑖x + 𝜋𝐴𝑃Ý𝒮𝑡|λ𝑡
𝑖+1Þ = 𝑃𝑐𝑜𝑛𝑑𝑖+1 

which in this case is expressed in terms of one observation but it can be based on multiple 
observations. The vector representation becomes 

𝑀 ∗ 𝑷=9∆=89: = 𝑷456789: 
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where 

𝑀 =

⎣
⎢
⎢
⎢
⎢
⎡
1 + 𝜃 −𝜃 0
−𝜃 1 + 2𝜃 −𝜃
0 −𝜃 1 + 2𝜃

1 + 2𝜃 −𝜃 0
−𝜃 1 + 2𝜃 −𝜃
0 −𝜃 1 + 𝜃⎦

⎥
⎥
⎥
⎥
⎤

 

M is a square matrix of size = ÝU�"
∆Z
+ 1Þ. 

Summary 

The diffusion process algorithm for each time step containing 𝚲𝒕 =
èλ=

:, λ=
�, λ=

�, . . . , λ=
wOé observations as follows 

1. If 𝑘= = 0, 𝑖. 𝑒. ,𝚲𝒕 = ∅, go to step 3b. 

2. Apply the Bayesian updating scheme. 

For 𝑖 ∈ {1, 2,… , 𝑘= − 1} 

𝑃456789: = (1 − 𝜋`)𝑃45678 + 𝜋`𝑃v𝒮=|λ=
89:x 

where 

𝑃v𝒮=|λ=
89:x =

𝑃vλ=
89:|𝒮=x.∗ 𝑃45678

𝑃vλ=
89:x

 

.* means element-wise multiplication. Go to step 3a. 

3a. Solve the linear system 

𝑃v𝒮=9∆=wx = 	𝑴�:𝑷456789: 

3b. Solve the linear system 

𝑃v𝒮=9∆=wx = 	𝑴�:	𝑃v𝒮=hx 

4. Compute 𝑠̂ for the  
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𝑠̂= = 𝑎𝑟𝑔𝑚𝑎𝑥
Z∈𝒮

𝑃(𝒮=) 

The parameter domains are 

𝜋` ∈ [0,1], 𝛾 ∈ [0,∞) 

This algorithm is also unconditionally stable for the diffusion-term, setting a γ = 0 
deactivates the diffusion term and Dp controls the diffusivity. 

It is possible to extend the both algorithm to discrete states or fuzzy input observations. 

6.6.3 Normalizing a Function 

It is worth mentioning how to normalize a function since this step is used during the 
Diffusion process. If the integration of a function, e.g. 𝑃(𝒮=), between bounds [a, b] is 
equal to I 

Ã 𝑃(𝒮=)
U

"
𝑑𝑠 = 𝐼 

it can be rescaled by I as follows 

𝑃(𝒮=)≔
𝑃(𝒮=)
𝐼 . 

Then, its integration will be equal to one 

Ã 𝑃(𝒮=)
U

"
𝑑𝑠 =

𝐼
𝐼 = 1 

6.7 Agent Learning 

Learning is an internal process carried out by each agent 𝒜, therefore there is no sharing 
among agents in this process. Its purpose is to increase the predictive power of the 
collective information algorithm by removing any linear bias. Since this process is going 
to be carried out by each agent, we would like to have a simple and computationally 
economic procedure. Therefore, agents 𝒜  will perform an online adjustment using 
gradient descent to minimize an error function. The linear adjustment is 

𝒮k = 𝛼h + 𝛼:	𝑠̂ 
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where α0 and α1 are the two parameters to be estimated. A linear mapping was chosen 
because its been shown that we humans are capable to do at best linear relations when it 
comes to decision-making. For the error function we have chosen the sum of square 
differences for simplicity but other functions such as cross entropy could be used 

𝜖 =
1
2¹

v𝒮kR − 𝒮Rx
�

6

RÇ:

 

where n refers to the size of the sample and 𝒮R to the actual value experienced by the 
agent. After differentiating the error function and applying gradient descent, the online 
adjustment becomes 

𝛼h ≔ 𝛼h − 𝜉
𝜕𝜖
𝜕𝛼h

= 𝛼h − 𝜉v𝒮kR − 𝒮Rx																																		(6.12𝑎) 

𝛼: ≔ 𝛼: − 𝜉
𝜕𝜖
𝜕𝛼:

= 𝛼: − 𝜉v𝒮kR − 𝒮Rx𝑠̂																																(6.12𝑏) 

the index j refers to the current values and ξ is the learning rate. Initially, agents start with 
α0 = 0 and α1 = 1. It is worth notice that since there is only one feature for agents to learn 
from (the system state), there is no need to incorporate more sophisticated machinery like 
machine learning or any of its tools such as variance, bias-correction, and activation 
function. However, the ‘intelligence’ of the agent may be expanded to incorporate such 
techniques. 

Example 6.4 

Suppose a bank customer that upon arriving at the bank, glances at the queue and gets an 
estimate of the people waiting to be attended: 𝑠̂ (true value is 𝒮). Using that value, she 
gets a linear estimate of the time she will have to wait in line 𝒮k = 𝛼h + 𝛼:	𝑠̂. After 
leaving the bank she computes the time difference 𝒮k − 𝒮	and adjust her beliefs α0 and α1. 
She would like to have an online procedure with only previous experience memory to 
improve her estimation. 

Say that true waiting time is 

𝒮k = 10 + 3	𝒮, 𝒮~𝑈[1,20]																																					(6.13) 

and the noise in perception is described by 

𝑠̂ = 𝒮 + 𝑟𝑎𝑛𝑑𝑁, 𝑟𝑎𝑛𝑑𝑁~𝑁(0,1) 
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and a learning rate of ξ = 1E-2. The evolution of the parameter values is shown below. 

(a) (b) 

  
Figure 6.16 (a) Plot the parameter values (b) Error2 plot 

 

Table 6.1 Results of Example 6.4 

Parameters Initial 
Visits to Bank True values 

Eq. (6.13) 200 400 800 
α0 0 8.54 9.82 10.1 10 
α1 1 2.87 2.69 2.7 3 

Error2 100 8.15 4.06 2.25  

 

Estimates α0 and α1 will keep moving around its true values due to the noise introduced in 
𝑠̂, but this is a bearable consequence of having an online short memory procedure. 
Parameters α0 and α1 will converge to a local minimum as long as the learning rate is low 
enough. 

In the next chapter we apply this algorithm to estimate travel times in road networks. 
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Chapter 7 Traveling Time Estimation 

in Road Networks 

 

 

 

 

 

Introduction 

This chapter presents the application of the Bayesian state estimation algorithm to 
estimate speed and travel time of road segments and improve drivers’ trip planning. First 
the roads networks to be studied are presented and their formulation as an optimization 
model and ABM. Then agent rules of behavior are derived from the optimization model. 
The purpose of the simulation is to test how real-time information about the current state 
of the roads, collected from a sample of the vehicles traveling on the network, may help 
future agents into adjusting their traveling plan so as to minimize their traveling times 
and how that impacts the overall performance of the network. 

Formulation and solution of the models were made in R®, Netlogo®, or Lingo®. 
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7.0 Assumptions and limitations 
The assumptions behind the creation and simulation of the road network models are the 
following 

• Road network models have two sets of state variables, one describes the actual 
movement of cars and travel times, and the other describes the estimations from 
the Bayesian algorithm. Unless stated otherwise, drivers will always make 
decisions based on the estimates. 

• Cars moving along the same road segment move at the same speed. However, the 
‘perceived’ speed that is reported back to the Bayesian algorithm most likely is 
different from car to car because of the noise. Therefore, the Bayesian algorithm 
has no access to the true state. 

• Travel times along each road segment are computing using a time-delay function 
that inputs current cars on the road. 

• Drivers decide the path to follow when they arrive at the origin node and do not 
make any change of path afterwards.  

• Drivers decide randomly when there is a tie in two or more paths with the same 
time cost. 

 

7.1 Road Networks 

Road networks are represented by a directed graph G=(V,E) where V is the set of 
vertices, E the set of edges, source vertices 𝑠 ∈ 𝑉, sink vertices 𝑧 ∈ 𝑉, 𝑓8Z	[ is the flow on 
the ith path from s to z, and wk is the flow on edge 𝑘 ∈ 𝐸. Auxiliary variables are 𝛿w	8Z	[ = 1 
if k is in path i between s and z, otherwise 0; and 𝒹8	RZ = 1 if path i and j come from 
source s, otherwise 0. 

7.1.1 Road network I (RN-I) 

This network is used primarily to test and compare results from the optimization model 
and the agent-based model. It has one source and one destination vertex; all of the edges 
have the same distance and capacity. We only labeled the source and destination vertices. 
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Figure 7.1 Road network I 

 

7.1.2 Road network II (RN-II) 

This network is used to exemplify the Braess’ Paradox that was first studied by Braess 
[57], in which the addition of a link may produce a decrease on the system’s 
performance. This network has been extensively studied from different perspectives such 
as robustness [58], information implications [59], nonlinear dynamics and control theory 
[60], game theory [61], and agent-based models [62] – [64]. However, we wanted to 
determine if it is possible to derive agent rules that avoid falling in a suboptimal state. 

It is important to mention that the time-delay functions of this network are defined 
differently than our definitions. For this network (and only for this network) those 
functions are T1 = 2w1, T2 = 25, T3=0, T4 = 25, and T5 = 2w5. All links have a distance of 
15 units. 

 

 
Figure 7.2 Road network II 

 

s	 z	

s	 z	

T1	(w1)	

T5	(w5)	T2	=	constant	

T3	=	constant	

T4	=	0	
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7.1.3 Road network III (RN-III) 

This is a larger network intended to represent a small real road network. Here again, each 
edge has the same distance and capacity. 

 
Figure 7.3 Road network II (RN-II) 

 

7.2 Road Network Optimization Model 

The mathematical formulation for user-equilibrium presented in [54], [65] it has been 
shown that it yields a solution consistent with Nash equilibrium; it minimizes the delay 
accumulation per edge. We divided by F, i.e., the total flow, to obtain the average time 
per vehicle. It has been shown this objective function produces a solution for which 
alternative paths have equal delay times while unused paths have higher delay times. This 
formulation is classified as a mixed-integer nonlinear program (MINLP) when the car 
flow is restricted to integer values, but it may be relaxed to continuous values.  

𝑀𝑖𝑛	𝑍: =
1
𝐹¹

Ã 𝑇w(𝜔)
2e

h
𝑑𝜔

w∈ö

																																												(7.3) 

s.t 

¹𝑓8Z	[
8

= 𝐹Z	[, ∀𝑠, 𝑧 

𝑤w = ¹¹¹𝑓8Z	[𝛿w	8Z	[
8[Z

 

s1	

z	

s2	
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𝐹 =¹¹𝐹Z	[
fZ

 

𝑓8Z	[ ≥ 0, ∀𝑠, 𝑧, 𝑖 

𝑓8Z	[ ∈ ℤ			(𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙) 

Another objective function used in the literature is to minimize the average car-
delay/travel time per edge [54], [65]. This is called the system optimal solution because 
minimizes the total time for all travellers. The solution it yields may or may not be a 
Nash. The formulation is also a MINLP. 

𝑀𝑖𝑛	𝑍� =
1
𝐹¹𝑤w𝑇w

w

																																															(7.4) 

with the same set of restrictions as eq. (7.2). 

The third objective function we will examine is to minimize the average car-delay/travel 
time per vehicle. This program is also MINLP. 

𝑀𝑖𝑛	𝑍� =
1
𝐹¹𝑇w

w

																																																	(7.5) 

with the same set of restrictions as eq. (7.3). Section 7.4 discusses the derivation of agent 
rules from these objective functions. 

7.3 Agent-Based Model 

The agent-based model created representing the same system has three types of agents: 
nodes, cars and directed links. Nodes and links are used to create the road network and 
cars are the vehicles traveling from one node to another. Their attributes are as follows 

1) Nodes 
i) Node number 
ii) (x, y) location in plane 

 
2) Links 

i) Length of the link 
ii) Initial and final node 
iii) Number of cars (current) 
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iv) Speed (current) 
v) Traveling time (current) 
vi) Value of Gradient (current) 

 
3) Cars 

i) A?: binary variable where A=1 iff 𝑐𝑎𝑟 ∈ 𝒜, i.e., is a car that shares and 
uses collective information, otherwise A=0. 

ii) Path: list of nodes to follow to arrive destination 
iii) Goal: next node to move to 
iv) Road: current link the car is travelling 

In addition, procedures were created to find shortest paths or minimal gradient paths 
(according to the objective function we want agents to minimize) and the computation of 
the probability density function describing each edge (when using the Bayesian state 
estimation algorithm). Several global variables and arrays were created to keep track of 
the objective function values, mean values, and other model features.  

In order to have results comparable to those from the optimization model, we computed 
the flow or volume of cars [vehicle/t] by counting the number of cars on a given link per 
unit of time and compute their speed using eq. (7.2). 

7.3.1 Pseudo code 

The general pseudo code of the models is written next; however, changes were made 
according to the different scenarios that were tested. 

Create GlobalVariables 
Create AgentType: {Cars, Nodes, Links} 
Create IntervalVariables 
 
Execute InitializeProcedure: 
 Execute CreateNetworkProcedure() 
 Assign InitialValues to GlobalVariables and InternalVariables 
 Reset time-counter; 
end 
 
Execute SimulationProcedure: 
 While (time-counter ≤ T) do 
 Execute Speed_and_Time(): 
  Ask each link [ 
   Count Cars on Myself 
   Compute TravelTime 
   Compute Speed 
   ] 
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 end 
 Execute Bayesian_Algorithm(): 
  Foreach car [ 
   Read location and speed 
   ] 
  Foreach link [ 
   Compute BayesianAlgorithm(): 

Estimate speed, travel time 
   ] 
 end    
 Create-car: x [ 
  Set initialNode InitialNode() 
  Set finalNode FinalNode() 
  Set path MinimalPath() 
  ] 
end 

7.4 Derivation of Agent Rules 

Agents arrive at source nodes and must choose a path to arrive to their destination. An 
agent in 𝒜 will determine its path according to the gradient of the objective function by 
selecting the path with minimum gradient cost. The gradient is computed according to 
current information, which is supplied to the agents. 

min
8
3
𝜕𝑍
𝜕𝑓8Z	[

7 

Z is one of the objective functions described previously in eq. (7.3-7.5) and i is the index 
to represent the set of paths available to that agent to reach its destination. 

For Z1: 

𝜕𝑍:
𝜕𝑓8Z	[

=¹
𝜕𝑍:
𝜕𝑤w

∗
𝜕𝑤w
𝜕𝑓8Z	[w

=
1
𝐹¹𝑇w ∗

𝜕𝑤w
𝜕𝑓8Z	[w

 

where ñ2e
ñ2É

j	k = 1 if wk is an edge along path i, otherwise 0. This rule implies selecting the 

path with minimal time. 

For Z2: 

𝜕𝑍�
𝜕𝑓8Z	[

= ¹
𝜕𝑍�
𝜕𝑤w

∗
𝜕𝑤w
𝜕𝑓8Z	[w

= ¹ 3𝑡2 P1 +	𝛽h(𝛽: + 1) «
𝑤
𝑐𝑎𝑝w

¬
6¡
Q7 ∗

𝜕𝑤w
𝜕𝑓8Z	[w

. 
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The first term of the summation resembles the time function except for one factor. We 
may say this rule of selection implies selecting the minimal time path using a modified 
time function. ñ2e

ñ2É
j	k has the same meaning as described above. 

For Z3: 

𝜕𝑍�
𝜕𝑓8Z	[

=¹
𝜕𝑍�
𝜕𝑤w

∗
𝜕𝑤w
𝜕𝑓8Z	[w

=
1
𝐹¹𝑡2	𝛽h	𝛽:

𝑤w6¡�:

𝑐𝑎𝑝w6¡
∗
𝜕𝑤w
𝜕𝑓8Z	[w

. 

If all road segments have the same capacity and same free-flow time, then this equation 
can be expressed as 

𝜕𝑍�
𝜕𝑓8Z	[

=
𝑡2 	𝛽h	𝛽:
𝐹	𝑐𝑎𝑝6¡¹𝑤w6¡�:

𝜕𝑤w
𝜕𝑓8Z	[w

 

Agents in ℬ, agents who do not have access to collective information, choose their path 
according to the following rule: the probability of selecting the ith path is inversely 
proportional to the exponential of the normalized distance: 

𝑃(𝑓8) =
𝑒𝑥𝑝(−𝔡8)
∑ 𝑒𝑥𝑝(−𝔡8)8

, ∀𝑖																																														(7.6) 

where 𝔡8 is the normalized distance of path i: 

𝔡8 =
𝑑8

min
8
{𝑑8}

, ∀𝑖 

Longer paths are less likely to be selected by agents in ℬ. For example, a road network 
with three paths with distances [1, 2, 3], the probability of selecting of each path is ~[67 
24 9]%. 

7.4.1 Example I. Solving RN-I 

The optimal flow for RN-I was found using the optimization and agent-based models. For 
the agent-based model we assumed all the agents to be from the set 𝒜 to remove any 
noise from random choice. Agents arrive at arrival rate to the source vertex and decide 
which path to follow to reach their destination vertex z. Input values are shown on table 
7.1. All edges have the same distance and capacity. 
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Table 7.1 Input values for Example I 
Parameter Value 

β0 1 
β1 3 

capw 20 [vehicle] 
di 15 [distance unit] 
tf 7.5 [t] 
vf 2 [distance unit/t] 

Constant Arrival rate 2 [vehicle/t] 

 

First we solved the ABM and when it reached steady state flow, the number of vehicles 
on the network was counted, Fs z, this value was entered into the optimization model as a 
input parameter then we solved that model and compared both solutions. Solutions are 
shown in table 7.2. It is worth noting that the ABM not always converge to steady state, 
when the arriving rate of cars is higher than the output rate of the network, the system 
accumulates cars increasingly over time in the same ways as queue systems do. 
Therefore, to prevent oversaturation, values of capacity and arrival rate were carefully 
tested. 

Table 7.2 Value of Objective functions for Example I 
 Min Z1 Min Z2 Min Z3 

Obj. func. Opt ABM Opt ABM Opt ABM 
Z1 11.3 8.7 10.3 7.7 13.8 7.5 
Z2 16.3 12.5 11.6 8.5 14.7 7.6 
Z3 1.8 1.7 2.4 2.3 1.8 1.7 

Error* 2.7 3.1 0.1 
F [vehicle] 30 20 26 

*Error = absolute difference of minimized values 

 

Table 7.3 Optimal flow for Example 7.1 [𝑓i, 𝑓ii , 𝑓iii] in vehicles 
 Z1 Z2 Z3 

Optimization [21 9 0] [14 6 0] [11 8 7] 
ABM [20 10 0] [12 8 0] [4 10 12] 
MSE 2/3 2.6 26 
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Table 7.4 Optimal path times for Example I [𝑇(𝑓i),𝑇(𝑓ii),𝑇(𝑓iii)] in 
time units 

 Z1 Z2 Z3 
Optimization [16.1 16.3 22.5] [10 15.4 22.5] [8.7 15.9 23.4] 

ABM [15 15.2 22.5] [9.1 15.2 22.5] [7.5 15.2 22.6] 
MSE 0.8 0.3 0.8 

 

Solutions and objective function values are relatively close for objective functions Z1 and 
Z2. Mean square errors for vehicle allocation and times are small except for Z3, this is 
because of the dynamic feature of the ABM that the optimization model does not have. 
The optimization model ‘assumes’ all vehicles in a path travel all together and since the 
delay function is not linear, i.e., T(a) + T(b) ≠ T(a+b), it may fail to capture a better 
allocation. For the same reason, the ABM performs better in all three objective functions. 
It is interesting to note how agents minimizing Z3 were able to find a different flow 
allocation with lower cost. It is also worth noting Z2 maximizes the throughput of 
vehicles since it keeps the minimal number of vehicles traveling throughout the network. 

 

7.4.2 Example II Solving RN-II 

Now we proceed to determine optimal flows for network RN-II. When formulating and 
solving this network using the optimization model we were able to produce the paradox 
or avoid it depending on which objective function we minimized; however, when using 
the ABM, it became somewhat problematic, explained next, because of the dynamic 
nature of the ABM. If the arriving rate of agents is low, then no paradox arises because 
the speed on the links is always high. If the arriving rate is high, then speed on the links 
becomes low enough that the paradox does not arise. 

In order to produce the paradox in the ABM we had to fix the number of cars in the 
network to a number F such that the network would have ~F cars at any time; this will 
make the flow per link and per path to converge to an average value. Those values were 
compared to the solution from the optimization model. To have similar flows per link, the 
optimization model has to be solved for a flow rate ~0.5F. 
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(a) (b) (c) 

   
Figure 7.4 ABM following rules: (a) Min Grad(Z1), (b) Min Grad(Z2), (c) Min Grad(Z3) 

 

Table 7.5 Value of Objective functions for Example II 
 Min Z1 Min Z2 Min Z3 

Obj. func. Opt ABM Opt ABM Opt ABM 
Z1 20 10.2 26.5 15.1 30 23.5 
Z2 40 20.5 34.3 16.9 35 26.6 
Z3 9 4.5 7.5 3.5 7 3.31 

F [vehicle] 10 18.9 10 18.7 10 19.1 

 

Table 7.6 Optimal flow for Example II [𝑓i, 𝑓ii, 𝑓iii] in % of F 
 Z1 Z2 Z3 

Optimization [0 100 0] [37.5 25 37.5] [50 0 50] 
ABM [12.5 68.5 19] [26.8 37.3 35.9] [51.1 0 48.9] 
MSE 503 89 0.8 

 

Table 7.7 Optimal path times for Example II [𝑇(𝑓i),𝑇(𝑓ii),𝑇(𝑓iii)] in 
time units 

 Z1 Z2 Z3 
Optimization [45 40 45] [37.5 25 37.5] [35 20 35] 

ABM [39 28.9 39.9] [33 20.2 37.1] [26.6 3.3 26.6] 
MSE 61.7 14.5 140 
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The paradox arises from having two different performance measures/objective functions. 
If drivers minimize its travel time (columns Min Z1 of Table 7.5) then the other objective 
function increase, the paradox appear as having a system optimal (Z2) higher than its 
minimal achievable. However, when drivers minimize the average travel time of all cars 
in the network (columns Min Z2 of Table 7.5) then paradox does not appear. 

If we look at this behavior from an optimization framework, we notice it is perfectly 
possible that minimizing one variable increases others. From a social perspective, we 
may say that agents pursuing exclusively individual goals may harm the collectivity if 
they are given a wider possibility space to gain from. As seen when drivers minimized 
their individual travel time but increased the total average time of the network. 

Optimal flows solutions were not significantly different for Z2 and Z3, the highest error 
occurred on Z1. This discrepancy came from the tendency of cars to cluster inside the 
road segments with travel times proportional to its flow. Therefore, subsequent cars opt 
for faster alternatives. This phenomenon only appears in dynamic models. The equation-
based Braess paradox formulation does not account for this because it implicitly assumes 
uniformity. It is interesting to note that minimization of Z3 yielded no flow through the 
middle path on both models. Optimal path times were more consistent on both models, 
although the error of the third result was higher than the rest due to the dynamic nature of 
the ABM commented above. 

7.5 Agent Decision-Making 

As seen in Example 7.1, objective function Z1 may be called the agent optimal rule of 
selection since it chooses the path with minimal travelling time, whereas Z2 may be called 
the system optimal rule because it minimizes travelling time for all agents. We would 
like to give agents a utility function that takes into account both objectives and balance 
individual gain vs. social gain. In addition to do that, agents will use estimates of current 
times instead of true current times; therefore, some measure of uncertainty about those 
estimates can be computed and supplied along with the estimates. The agent decision-
making model then becomes 

Max
8
𝒰 o

𝜕
𝜕𝑓8

𝑍:(𝑤p),
𝜕
𝜕𝑓8

𝑍�(𝑤p)q 																																										(7.7) 

s.t 

𝐻r(𝑓8) ≤ 𝑇𝑎𝑟𝑔𝑒𝑡 
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𝐻r(𝑓8) =
1
ℓ8
¹𝐻(𝑤w)𝛿w	8
w

 

Since agents have a fixed initial and final destination node, we have removed indices s 
and z from 𝑓8Z	[ and use 𝑓8 instead. H(.) is the differential entropy, 𝛿w	8 = 1 if edge k is 
part of path i, otherwise 0. ℓ8 is the length of path i, i.e., the number of edges it contains. 

Target is the upper bound desired of uncertainty on the path measured either in [bit/edge] 
or [nat/edge] depending on the base of the logarithm and 𝐻r(𝑓8) is the average entropy of 
path i. Since the speed of vehicles is restricted below or above certain values, say (a,b), 
the maximum entropy achievable on any edge is log (b-a). However, introducing a 
restriction may produce an infeasible problem, in order to avoid that, we included the 
restriction in the utility function as a penalizing term in the same way as the mean – 
variance rule [66]: 𝜃	 ∗ 𝐻r(𝑓8), however if we wanted to penalize only values above the 
target, then we would use 𝜃	 ∗ 𝑚𝑎𝑥{𝐻r(𝑓8) − 𝑇𝑎𝑟𝑔𝑒𝑡, 0}. 

The utility function of eq. (7.7) including the uncertainty penalization term is 

Max
8
𝒰8 = −𝜇

𝜕
𝜕𝑓8

𝑍:(𝑤p) 	− (1 − 𝜇)
𝜕
𝜕𝑓8

𝑍�(𝑤p) − 𝜃	𝐻r(𝑓8)	 

which can be expressed in terms of a loss function as 

Min
8
ℒ8 = 𝜇

𝜕
𝜕𝑓8

𝑍:(𝑤p) 	+ (1 − 𝜇)
𝜕
𝜕𝑓8

𝑍�(𝑤p) + 𝜃	𝐻r(𝑓8)																					(7.8) 

where θ is a penalizing factor in [cost/(bit*vehicle)] and µ ∈ [0,1] determines the level of 
‘selfishness’. µ=1 is an agent pursuing only individual gain, µ=0 is a socially driven 
agent. 

7.6 Bayesian State Estimation Implementation 

We proceeded to solve RN-I and RN-III with agents acting based on collective 
estimations instead of true values. Therefore, we implemented the Bayesian State 
Estimation algorithm, which inputs current speeds of agents (with noise), computes a 
probability density function per road, and obtains the most likely speed and entropy per 
road. From these estimates, it is straightforward to obtain the most likely time and 
vehicles per road. This information is supplied to agents 𝒜 for them to make a decision 
that is best for their interest according to eq. (7.8). Values of objective function and 
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performance measures were computed using true values and not estimates; estimates only 
affect the agents’ decision making. 

7.6.1 Input Values 

The following are the default parameter values for all the experiments, unless mention 
otherwise. Agents do not execute the learning algorithm described in Section 6.7 of 
Chapter 6. 

Table 7.8 Input values for network RN-I 
Parameter Value 

β0 1 
β1 3 

capw 5 [vehicle] 
di 10 [distance unit] 
tf 5 [t] 
vf 2 [distance unit/t] 

Arrival rate 1 [vehicle/t] 

 

Table 7.9 Input values the Bayesian State Estimation 
Parameter Value 

∆t 1 [t] 
γ ½  

Dp 0.1 
πA ½ 

vmax 2 [km/t] 
vmin 0 [km/t] 

 

Initial speed probability density function for all links is 

𝑃(𝑣) = 3
1
2u , 𝑣 ∈ [0, 2]

0,										𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

Noise in speed measurements by agents is described by 

𝑣D = 𝑣 +
1
20 𝑣	𝑛, 𝑣 ∈ [0, 2], 𝑛~𝑁J"675*(0,𝜎U� = 1) 
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The Bayesian algorithm assumes that conditional probabilities are described by a 
truncated normal distribution 

𝑃(𝑣|𝑣D) =
𝑒𝑥𝑝 «− (𝑣 − 𝑣D)

�

2𝜎U�
¬

𝜎6√2𝜋	𝐶
, 𝑣 ∈ [0, 2] 

and C = F(2) – F(0), F(.) being the cumulative distribution function. 

7.6.2 Comparison Bayesian vs. True values for RN-I 

In this simulation we ran the ABM using true values (TV), Bayesian with diffusion (BD), 
and Bayesian with diffusion-like process (BDL) to compare how close to true values the 
Bayesian estimates are. When agents set decision parameters [µ, θ] = [1, 0] they act 
minimizing Z1, and when they set [µ, θ] = [0, 0] they minimize Z2, which are the two 
setting we tested. 

 

(a) (b) 

  
Figure 7.5 Road Network I using Bayesian State Estimation 

 

Table 7.10 Objective functions for RN-I with Bayesian 
State Estimation 

 Min Z1 Min Z2 
TV 7.4 5.5 
BD 7.4 5.3 

BDL 8.4 5.7 
F [vehicle] 12 10 

 

 



 128 

Table 7.11 Average flows after 500 time steps for RN-I 
[𝑓i, 𝑓ii, 𝑓iii] in vehicles 

 Min Z1 Min Z2 
TV [5.4 4.5 0] [3.4 3.6 1] 
BD [5.7 5.7 0.5] [3.4 4.2 0.8] 

BDL [5.9 5.9 1] [3.7 3.7 2] 

 

Table 7.12 Error between true values and estimates for RN-I 
 MSE(speed) MSE(travelTime) MSE(vehicles) 

BD 2.6 × 10-3 2.1 × 10-2 1 
BDL 5.8 × 10-4 7 × 10-3 7.8 × 10-2 

 

(a) (b) 

  
Figure 7.6 Probability density functions of roads (a) Bayesian diffusion (b) Bayesian 

diffusion-like 

 

After looking at the average path flows and the error of the estimates we may conclude 
the Bayesian state estimation provided accurate results about the state of the road. In 
particular, the diffusion-like process seems to provide a more accurate estimation. 

7.6.3 Comparison between different types of agents 

In this simulation we compared performance of agents 𝒜, agents who share and have 
access to collective information; against agents ℬ, agents who do not share nor have 
access to information and decide based on eq. (7.6). Agents are created randomly 
according to a given proportion. 
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We computed the average path time per agent for agent sets 𝒜 and ℬ. We set µ = 1 and θ 
= 0 for 𝒜 and used the diffusion-like procedure. The results are shown below. 

Table 7.13 Average path time per agent for RN-I 
Proportion of 𝒜 𝒜 [t/agent] ℬ [t/agent] 

0 0 137.2 
0.1 5.9 165.6 
0.3 7.5 31.9 
0.5 10.4 15.2 
0.7 13.5 25.7 
0.9 11.8 6.8 
1 11.3 0 

 

Agents 𝒜 have a lower average path time per agent compare to agents ℬ, except when its 
proportion exceeds nine to one. This last result may have been produced because agents 
ℬ were few enough to benefit from having a majority of efficient drivers. 

We may also look at these results as an overall performance measure of the road network. 
When agents have access to information, its travel time significantly decreases; whereas 
when they decide based on the shortest path, their travel time increases nonlinearly 
because they all concentrate on the same road (the shortest one). 

7.6.4 Implementing Learning 

For this simulation we included the learning feature described in eq. (6.12a –b) applied to 
the travel time to determine how inaccurate was the estimation provided by the Bayesian 
procedure. 

 

Table 7.14 Learning parameters after 
150 trips 

 BD BDL 
α0 0.0410 0.0407 
α1 0.9785 1.0089 
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(a) (b) 

  
Figure 7.7 Evolution of parameter values for the learning online procedure from 

estimates (a) BD, (b) BDL 

 

Parameter values have values α0 ≈ 0 and α1 ≈ 1 in both procedures, which indicates that 
there is no systematic linear bias introduced by the Bayesian State Estimation; therefore, 
there is no need to implement the learning online adjustment on time estimations since it 
would barely have any effect into the agents’ path selection. 

7.6.5 Implementing RN-III 

In this experiment we used network RN-III with two source nodes and one sink. The 
arrival rate on each source is described by a Poisson-distributed random variable with 
arrivalRate = 2/5. 

 

Figure 7.8 Simulation of RN-III (source nodes in blue; sink in red) 

 

Table 7.15 Average minutes on network per driver for RN-III 
Parameters [µ, θ] [1, 0] [0, 0] [1/2 0] 

BD 10.81 9.91 6.40 
BDL 10.69 7.89 7.75 
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Table 7.16 Average vehicles on network for RN-III 
Parameters [µ, θ] [1, 0] [0, 0] [1/2 0] 

BD 8.84 10.69 8.17 
BDL 9.76 8.18 10.45 

 

Table 7.17 Average flows per path in [𝑓i, 𝑓ii , 𝑓iii , 𝑓iv] in % (rounded) for RN-III 
Parameters 

[µ, θ] 
[1, 0] [0, 0] [1/2 0] 

BD [29, 18, 42, 11] [35, 21, 22, 22] [37 17 34 12] 
BDL [31, 21, 38, 10] [33, 24, 24, 19] [24, 16, 35, 25] 

 

Table 7.18 Error between true values and estimates for RN-III 
 MSE(speed) MSE(travelTime) MSE(vehicles) 

BD 5.9 × 10-3 4.6 × 10-2 1.63 
BDL 5.72 × 10-4 3.8 × 10-3 0.55 

 

 
Figure 7.9 Probability density functions of roads using Bayesian with diffusion 
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Figure 7.10 Probability density functions of roads using Bayesian with diffusion-like 

 

In this network again we see that when agents behave ‘socially responsible’ the average 
time on network per agent decreases compared to that of the user-equilibrium. When 
agents assign equal weight to the user-equilibrium and system optimum (µ= ½) a better 
performance is achieved in terms of average minutes on network. 

There was no significant difference in terms of path flows between the BD and the BDL 
procedures, as both assigned approximately the same proportion of vehicles to the paths. 
Error measures where low again with respect to true speeds, times, and cars on each road. 
The Bayesian diffusion-like procedure produced more accurate results. 

 

7.7 Part II Conclusions 

This chapter showed it is possible to derive agent rules of behavior from a global 
performance measures (or objective functions) and depending on that measure, agents 
may behave greedy or ‘socially responsible’, which establishes a connection between 
classical optimization theory and agent-based methodologies. We showed that it is 
possible to combine many performance measures into the agent decision-making so as to 
represent different agent goals and risk aversion. 
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It was shown that it is possible to obtain somewhat similar results when solving the route-
planning problem using an optimization model as well as using an ABM. We found that 
the optimization model does not capture dynamic interactions that are present in the 
ABM; however, it is possible to use a more sophisticated optimization model to 
incorporate some dynamic, e.g., multi-stage models. 

The derivation of agent rules from an objective function allows for the inverse process, 
i.e., having an individual decision-making model, obtain the aggregate function that 
describes the collective behavior. We did not explore this feature, but we would have to 
double integrate the individual objective function with respect to the path and with 
respect to the link flow to obtain the overall objective function. 

The Bayesian state estimation algorithm proved to be a reliable, unbiased, and 
computationally not expensive algorithm. In particular, the BDL showed lower error in 
estimations. We believe the algorithm has the potential to be applied on other situations 
where information is collected from different sources or individuals. 

  



 134 

 

 

Chapter 8. Summary and Conclusions 

 

8.1 Summary 

This thesis explored the connections between agent-based models and equation-based 
models in some domains, namely, the reaction-diffusion equation and the assignment of 
traffic flows to road networks using optimization. Agent rules were derived such that 
their collective behavior produced similar results than those from the equation-based 
models. The main tasks involved in the realization of this thesis were as follows 

• Derivation of displacement and reaction probabilities to model diffusion using 
cellular automata. 

• Application of those probabilities in the problem of estimating lifetimes of nuclear 
waste containers. 

• Comparison of results from cellular automata models, those from literature, and 
those from numerical methods. 

• Sensitivity analysis on the density of gapfill to determine the degree to which it 
affects the lifetime of the used fuel containers. 

• Derivation of a Bayesian state estimation algorithm that includes diffusion to 
estimate the current state of a system of interest. 

• Application of such algorithm into the problem of estimating speed of road 
segments in a road network. 

• Derivation of driver decision rules from system’s performance measures/objective 
functions, which creates a bridge between optimization and ABMs. 

• Modification of the driver’s decision-making to incorporate different objectives 
(e.g. individual vs. social) and the inclusion of a risk aversion term. 

• Derivation of an online learning procedure for agents to remove any possible 
linear bias in their estimations received about the system payoff. 
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8.2 Contributions 

The main contributions of the thesis are 

Developing a cellular automata/ABM probability-based method to describe diffusion and 
reaction. Previous work treated diffusion and reaction as separate processes with 
probabilities for diffusion and Monte Carlo simulations for reaction. The work developed 
in this thesis derives probabilities for both processes using conditional expectation. 

Developing a Bayesian state estimation algorithm for inferring current state of a system 
of interest. Conditional probabilities are widely used in many fields of science, 
engineering, etc. However, the method developed in this thesis is new, to the best of our 
knowledge, in combining conditional probabilities with diffusion to describe a changing 
process. 

Derivation of agent rules to match results from the network flow optimization model. 
Although there have been many implementations of road network models using agents, 
they have not explicitly derived their behavior from system’s performance measures. This 
thesis implemented a procedure to derive agent rules from the optimization model using 
the chain rule. 

8.3 Conclusions 

The general objective of the thesis about finding local agent behavior whose macrostate is 
the same or similar to the one described by its correspondent equation model (either PDE 
or optimization) was achieved.  

In this work methods to derive probabilities from analytical or numerical solutions to 
ODEs/PDEs were found. Those methods can potentially be extended to other typical 
models such as the Lotka-Volterra equations and it may offer a glimpse of how to 
proceed with the inverse problem, namely, from a consistent agent behavior find the 
ODE/PDE that describes it. In the case of the optimization model, the limitations of the 
equation model restricted the degree of agreement in the results of both models 
(optimization vs. ABM). However, it was noted how the user-equilibrium objective 
function did in fact correspond to a decision rule where agents select the minimal-time 
path, therefore the ABM validated that assumption. 

Finding a way to relate optimization and ABMs could be useful in other fields of study 
with an ecological or environmental outlook such as waste management or pollution 
reduction. If social/economical are indeed valid global representations, then there must be 
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a way to translate those models into single individual representations; this thesis is a step 
in that direction as shown in the microeconomics example of Chapter 5. 

ABMs due to its nature of representing individuals as objects are more robust to sudden 
changes in input values of the model. For example, if the agent is a molecule, it either 
exists or not, but it can never be negative as it sometimes happens with numerical 
differentiation. Or in the case of CA, the probability distribution condition in itself 
corresponds to the stability condition of numerical differentiation. However, attention 
should be paid to how the ABM evolves over time because it may be the case that agents 
are being accumulated, resulting in an exponential increase of memory consumption. This 
situation occurred few times during the simulation of the road networks when the system 
oversaturated its capacity, but problems like this can be resolved by adding a monitoring 
variable, e.g., car counting variable or a travel time threshold. Overall, agents allow for a 
more controlled behavior because its attributes or themselves can be bounded by the 
analyst. 

Another feature that could be exploited from having a way to relate equation models to 
ABMs is that the latter are easier to sell to public or policy makers because of its more 
explicit mapping to the real-world problem. In this sense, ABMs could be presented as an 
approximation to the actual model. 

Another potential benefit from using equation and agent representations is that the former 
may be used as the true or more accurate solution for deterministic values and latter be 
used as a tool to explore the parameter space, behavior under uncertainty, or the 
sensitivity of the system. 

ABMs may be easier to formulate due to its discretized nature that maps well onto real-
world problems; however, the process of refining the model to increase its realism may 
increase the number of variables or procedures, which in turn requires more advanced 
coding skills and makes the model resource consuming. Therefore, it is important to 
determine the degree of aggregation in the model so as to capture the dynamics of the 
process without introducing unnecessary information. 

The treatment of stochastic variables in equations may not always be an easy task, 
particularly for ordinary or partial differential equations. However, for agent-based 
models it is easier to incorporate and study stochastic components. This feature proves to 
be a huge advantage because it allows the introduction of heterogeneity into the system. 

A proper understanding of any phenomena must come from knowledge of how the 
system behaves at different aggregation levels. Equations are concerned with modeling 
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emergent properties while agent models describe the interactions that produce such 
properties. 

8.4 Future work 

There are parts of this thesis susceptible to be expanded further, the most salient of which 
are the following 

• The use of a more accurate numerical scheme to derive probabilities of 
displacement. 

• Modeling of a 3D model of nuclear waste containers and the calculation of 
sulphide flux intervals. 

• Explicit modeling of sulphate-reducing bacteria using the monod equation or 
Michaelis-Menten kinetics. 

• Implementation of the Bayesian state estimation algorithm for discrete states or 
fuzzy inputs from agents. 

• The use of reinforcement learning in driver’s behavior. 
• Solve a larger and more realistic road network using the methods of this thesis. 
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Appendix A 

Derivation of a realistic right boundary condition with reaction. 

Let us assume a 1D (plus time) diffusion problem with a constant concentration on the 
left BC, a chemical reaction on the right BC, and initial condition zero everywhere (but 
the left BC): 

𝜕𝐶
𝜕𝑡 = 𝐷N

𝜕�𝐶
𝜕𝑥� 

Initial condition 

𝐶(𝑥, 𝑡 = 0) = 0, ∀𝑥 

Left BC 

𝐶(𝑥 = 0, 𝑡) = 𝐶h, ∀𝑡 

For the right BC, let us describe the relation between accumulation, incomings and 
outcomings at the boundary as follows 

r 𝑅𝑎𝑡𝑒	𝑜𝑓
𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

s = ±
𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔	𝑟𝑎𝑡𝑒
𝑏𝑦	𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 ³ − ±

𝑂𝑢𝑡𝑐𝑜𝑚𝑖𝑛𝑔	𝑟𝑎𝑡𝑒
𝑏𝑦	𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 ³ 

the incoming concentration arrives at a speed 𝑉N =
aÀ
∆N

 and the outcoming rate is described 

by the reaction term 𝑅v𝐶¿Àx, therefore we have at the right BC 

𝜕𝐶(𝐿N)
𝜕𝑡 = −𝑉N

𝜕𝐶(𝐿N)
𝜕𝑥 + 𝑅v𝐶¿Àx, ∀𝑡																							(𝐴. 1)	 

However, we know that the incoming flux should be the same as the outcoming flux, 

therefore, eq. A.1 should have ñI(¿À)
ñ=

= 0, then the right BC becomes 

𝑉N
𝜕𝐶(𝐿N)
𝜕𝑥 = 𝑅v𝐶¿Àx																																																				(𝐴. 2) 

where 𝑉N =
aÀ
∆N

 



 145 

Dimensional analysis 

Rearranging eq. A.2 we have 

𝑉N
𝜕𝐶(𝐿N)
𝜕𝑥 = 𝑅v𝐶¿Àx 

𝐷N
∆𝑥

𝜕𝐶(𝐿N)
𝜕𝑥 = 𝑅v𝐶¿Àx 

𝐷N
𝜕𝐶(𝐿N)
𝜕𝑥 = ∆𝑥	𝑅v𝐶¿Àx 

Left hand side units 

P
𝑚�

𝑠
Q r
𝑝𝑝𝑚
𝑚

s = r
𝑚	𝑝𝑝𝑚
𝑠

s 

Right hand side units 

[𝑚] r
𝑝𝑝𝑚
𝑠
s = r

𝑚	𝑝𝑝𝑚
𝑠

s 

Example 

Consider the case where 𝑅v𝐶¿Àx = −𝑘𝐶¿À, after applying finite differences the right BC 
becomes 

𝐶¿À
=9: =

𝐷N𝐶¿À�:
=

𝐷N + ∆𝑥�𝑘
	 

we solved the equation using cellular automata with the following values: 

 

C0 Dx ∆t ∆x Lx 
100 ppm 0.4 [m2/s] 1 [s] 1 [m] 30 [m] 
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For k=0 (no reaction at the boundary) 

 

After 10,000 [s] 
Left BC Right BC 
100 ppm 100 ppm 

  

Figure A.1   

For k=0.001 (slow reaction) 

 

After 10,000 [s] 
Left BC Right BC 
100 ppm 93 ppm 

  

Figure A.2   

For k=0.01 (medium slow reaction) 

 

After 10,000 [s] 
Left BC Right BC 
100 ppm 57 ppm 

  

Figure A.3   
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For k=0.1 (fast reaction) 

 

After 10,000 [s] 
Left BC Right BC 
100 ppm 11.7 ppm 

  

Figure A.4   

For k=1 (faster reaction) 

 

After 10,000 [s] 
Left BC Right BC 
100 ppm 1.3 ppm 

  

Figure A.5   

For k=10 (~ instantaneous reaction) 

 

After 10,000 [s] 
Left BC Right BC 
100 ppm 0.13 ppm 

  

Figure A.6   
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Conclusion 

Assuming instantaneous reaction is the worst case, since any other rate produces some 
accumulation at the boundary, i.e., chemical that does not react. Having concentration at 
the boundary slows down the diffusion process. 

A realistic right boundary condition must have the form of eq. A.2 that balances mass 
transport and reaction rate. 

The faster the reaction rate, the closer it resembles the SKB & NWMO assumption of 
fixing 𝐶(𝐿N) = 0. 
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Appendix B 

For the derivation of the advection diffusion equation we start again using a function 
whose value at (x, t+∆t) is equal to the expectation at (x+∆x, t). Then we proceed as 
follows 

𝑓(𝑥, 𝑡 + ∆𝑡) = 𝐸[𝑓(𝑥 + ∆𝑥, 𝑡)] 

																																											= Ã𝑓(𝑥 + ∆𝑥, 𝑡)𝑃(∆𝑥)	𝑑∆𝑥 

Expanding the LHS using Taylor series 

𝑓(𝑥, 𝑡 + ∆𝑡) = 𝑓(𝑥, 𝑡) + 𝑓=(𝑥, 𝑡)∆𝑡 + 𝑅2(∆𝑡�) 

Expanding the RHS using Taylor series 

Ã𝑓(𝑥 + ∆𝑥, 𝑡)𝑃(∆𝑥)	𝑑∆𝑥

= Ã 3𝑓(𝑥, 𝑡) + 𝑓N(𝑥, 𝑡)∆𝑥 + 𝑓NN(𝑥, 𝑡)
∆𝑥�

2! + 𝑅2
(∆𝑥�)7𝑃(∆𝑥)	𝑑∆𝑥 

Taking the expectation of the RHS 

= 𝑓(𝑥, 𝑡) + 𝐸[∆𝑥]	𝑓N(𝑥, 𝑡) +
𝐸[∆𝑥�]
2 𝑓NN(𝑥, 𝑡) + 𝐸P𝑅2(∆𝑥�)S 

Setting equal and simplifying LHS and RHS 

𝑓=(𝑥, 𝑡)∆𝑡 + 𝑅2(∆𝑡�) = 𝐸[∆𝑥]	𝑓N(𝑥, 𝑡) +
𝐸[∆𝑥�]
2 𝑓NN(𝑥, 𝑡) + 𝐸P𝑅2(∆𝑥�)S 

Solving for the derivative with respect to time 

𝑓=(𝑥, 𝑡) =
𝐸[∆𝑥]
∆𝑡 	𝑓N(𝑥, 𝑡) +

𝐸[∆𝑥�]
2∆𝑡 𝑓NN(𝑥, 𝑡) +

𝐸P𝑅2(∆𝑥�)S − 𝑅2(∆𝑡�)
∆𝑡  

In the limit when ∆t®0 the residual terms become zero, therefore we can remove them 
from the equation. Then we have 
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𝑓=(𝑥, 𝑡) =
𝐸[∆𝑥]
∆𝑡 	𝑓N(𝑥, 𝑡) +

𝐸[∆𝑥�]
2∆𝑡 𝑓NN(𝑥, 𝑡) 

which yields the following coefficients for advection and diffusion: 𝑉N =
ö[∆N]
∆=

 and 𝐷N =
öP∆N�S
�∆=

. Therefore 

𝐸[∆𝑥] = 𝑉N	∆𝑡 

𝐸[∆𝑥�] = 2𝐷N∆𝑡. 
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Appendix C 

The exponentially adjusted reduction rate is 

𝑘`(𝜌a) = 𝑘h𝑒𝑥𝑝[−𝑏ö(𝜌a − 1)] − 𝐶ö																																					(𝐶. 1) 

where 𝑘h = 𝑘½ + 𝐶ö, kR being the original reduction rate from the experiment and CE the 
value at which we will consider the rate to be zero. 

For 𝜌a = 1 [g/m3] we must get the reduction rate from the experiment, i.e., 𝑘`(𝜌a) = 𝑘½, 
which holds true: 

𝑘`(1) = 𝑘h − 𝐶ö = 𝑘½ + 𝐶ö − 𝐶ö = 𝑘½  

For 𝜌a = 𝜌E = 2.76 [g/m3], i.e., the specific density, the rate must become zero: 

𝑘`(𝜌E) = 𝑘h𝑒𝑥𝑝[−𝑏ö(𝜌E − 1)] − 𝐶ö = 0 

Solving for bE we get 

𝑏ö =
𝑙𝑛 «𝑘h𝐶ö

¬

𝜌E − 1
																																																													(𝐶. 2) 

Substituting eq. C.2 into eq. C.1, we get 

𝑘`(𝜌a) = 𝑘h𝑒𝑥𝑝 ü−
𝑙𝑛 «𝑘h𝐶ö

¬

𝜌E − 1
(𝜌a − 1)ý − 𝐶ö  

Simplifying the above, we get 

𝑘`(𝜌a) = 𝑘h «
𝑘h
𝐶ö
¬
øú�:
øù�:

(�:)

− 𝐶ö  

									= 𝑘h «
𝑘h
𝐶ö
¬
:�øú
øù�:

− 𝐶ö  
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															= ÷
𝑘h
𝐶ö
«
𝑘h
𝐶ö
¬
:�øú
øù�:

− 1û𝐶ö 

											= ÷«
𝑘h
𝐶ö
¬
øù�øú
øù�:

− 1û 𝐶ö 

																					= ÷«
𝑘½ + 𝐶ö
𝐶ö

¬
øù�øú
øù�:

− 1û𝐶ö  

																			= ÷«
𝑘½
𝐶ö
+ 1¬

øù�øú
øù�:

− 1û 𝐶ö 

Therefore eq. C.1 becomes 

𝑘`(𝜌a) = ÷«
𝑘½
𝐶ö
+ 1¬

øù�øú
øù�:

− 1û 𝐶ö, 𝜌a ∈ [1, 𝜌E], 0 < 𝐶ö < 𝑘½			(𝐶. 3) 

Bacterial Activity Probability 

Dividing eq. (C.3) by kR then we can get the probability of having SRB active at a given 
dry density: 

𝑃(𝜌a) = ÷«
𝑘½
𝐶ö
+ 1¬

øù�øú
øù�:

− 1û
𝐶ö
𝑘½
, 𝜌a ∈ [1, 𝜌E]																				(𝐶. 4) 

where ρD is the dry density of the clay, kR = 6.16146 × 10-9 [1/s] is the reaction rate 
coefficient calculated from experiments and CE = 1.37516 × 10-14 [1/s] represents the 
value at which we will consider the rate to be zero. Both values where found by 
optimization methods to match experiment results and the fact that at ρS = 2.76 [g/cm3] no 
bacterial activity is possible. Replacing those values, we get 

𝑃(𝜌a) = ±(𝑎	 ×	10× + 1)
�.xy�øú
:.xy − 1³ ∗

1
𝑎 	×	10

�×, 𝜌a ∈ [1, 2.76] 
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𝑃(𝜌a) =
(𝑎	 ×	10× + 1)

�.xy�øú
:.xy − 1

𝑎	 ×	10× ,																					𝜌a ∈ [1,2.76] 

where a = 4.4805. 

Figure C.1 Probability of having active SRB as a function of dry density 

 

Table C.1 Selected values 
Dry density [g/cm3] P(SRB) 

1 1 
1.1 0.477420198 
1.2 0.227929436 
1.3 0.108817216 
1.4 0.051950497 
1.5 0.024801111 
1.6 0.011839414 
1.7 0.005651223 
1.8 0.002696848 
1.9 0.001286367 
2 0.000612973 
2.1 0.00029148 
2.2 0.000137992 
2.3 6.47142E-05 
2.4 2.97296E-05 
2.5 1.30272E-05 
2.6 5.05312E-06 
2.7 1.24613E-06 
2.76 0 

 



 154 

Appendix D 

Computation of π 

As an example of a situation where simulation is not the ideal tool to use, we will 
compute an estimation of π using simulation and two convergent series: Leibniz and 
Ramanujan π series. We chose those series to represent two extremes, a sublinear 
convergent series (Leibniz’s) and a superlinear convergent series (Ramanujan’s). 

For the simulation method we used a unitary circle centered at the origin, we created a set 
of points using Monte Carlo and evaluated if they fell inside the unit circle, then we 
proceeded to compute π according to 

𝜋
4 =

𝑃𝑜𝑖𝑛𝑡𝑠	𝑖𝑛𝑠𝑖𝑑𝑒	𝑐𝑖𝑟𝑐𝑙𝑒
𝑇𝑜𝑡𝑎𝑙	𝑝𝑜𝑖𝑛𝑡𝑠  

The Leibniz’s π series is 

𝜋
4 = 1 −

1
3 +

1
5 −

1
7 + ⋯ 

𝜋
4 =¹

(−1)8

2𝑖 + 1

Ä

8Çh

 

The Ramanujan’s π series is 

1
𝜋 =

2√2
9801¹

(4𝑖)! (26390𝑖 + 1103)
(𝑖!)�	396/8

Ä

8Çh

 

The estimation of π using simulation is shown in Table D.1, we see its value gets closer 
to π as we increase the size of the sample and the number of runs; however, it requires 
great computational effort. 

The estimation using Leibniz’s series after 100,000 iterations is 

• 3.1415826535897198 

That using Ramanujan’s series after 2 iterations is 
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• 3.141592653589793 

Table D.1 Estimation of π using simulation 
  Sample size 
  30 100 1,000 10,000 

Runs 

1 3.3333 3.2450 3.1840 3.1288 

10 3.2666 3.2000 3.1040 3.1437 

30 3.1111 3.1213 3.1309 3.1413 

100 3.1578 3.1432 3.1423 3.1416 

 

For this example, we have seen that simulation behaves badly, not only consumes huge 
computational power but it provides an inaccurate estimation. Its most accurate 
estimation was obtained after creating 2×106 random numbers achieving a ~20% better 
estimation than that using Leibniz at 105 iterations. In contrast, two iterations of 
Ramanujan series and the default accuracy of the computer is not enough to carry on with 
the calculation. In addition to that, results from simulation should be treated statistically, 
adding another layer of time or resources. 
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Appendix E 

Proof the area under the diffusion-like curve is always equal to one. 

Suppose an initial value f0(s), such that ∫ 𝑓5(𝑠)𝑑𝑠
U
" = 1. 

The analytical solution of the diffusion-like ODE is 𝑓(𝑡) = :
U�"

− 𝑎h𝑒𝑥𝑝(−𝛾𝑡). 

At time t = 0, the solution should be equal to its initial condition: 

𝑓(𝑡 = 0) =
1

𝑏 − 𝑎 − 𝑎h = 𝑓5(𝑠) 

solving for a0 gives 

𝑎h =
1

𝑏 − 𝑎 − 𝑓5
(𝑠). 

Replacing a0 into the ODE solution and after some algebra it yields 

𝑓(𝑠, 𝑡) =
1

𝑏 − 𝑎
[1	 − 	𝑒𝑥𝑝(−𝛾𝑡)] + 𝑓5(𝑠)	𝑒𝑥𝑝(−𝛾𝑡). 

Since f(s,t) is always nonnegative, to ensure it is a pdf at any time, the following must be 
met 

Ã 𝑓(𝑠, 𝑡)𝑑𝑠
U

"
= 1, ∀𝑡 

Ã 𝑓(𝑠, 𝑡)𝑑𝑠
U

"
=
[1	 − 	𝑒𝑥𝑝(−𝛾𝑡)]

𝑏 − 𝑎
Ã 𝑑𝑠
U

"
+ 𝑒𝑥𝑝(−𝛾𝑡)Ã 𝑓5(𝑠)𝑑𝑠

U

"
, ∀𝑡 

				=
[1	 − 	𝑒𝑥𝑝(−𝛾𝑡)]

𝑏 − 𝑎 𝑠|𝑏𝑎 + 𝑒𝑥𝑝
(−𝛾𝑡) ∗ 1, ∀𝑡 

																																							= 1	 − 	𝑒𝑥𝑝(−𝛾𝑡) + 𝑒𝑥𝑝(−𝛾𝑡), ∀𝑡 

																																							= 1, ∀𝑡 

Therefore, at any time, the area under the curve of the diffusion-like process is equal to 
one. 


