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Abstract

With the advent of solid state drives (SSDs), the storage industry has experienced a
revolutionary improvement in I/O performance. Compared to traditional hard disk drives
(HDDs), SSDs benefit from shorter I/O latency, better power efficiency, and cheaper ran-
dom I/Os. Because of these superior properties, SSDs are gradually replacing HDDs. For
decades, database management systems have been designed, architected, and optimized
based on the performance characteristics of HDDs. In order to utilize the superior perfor-
mance of SSDs, new methods should be developed, some database components should be
redesigned, and architectural decisions should be revisited.

In this thesis, novel methods are proposed to exploit the new capabilities of modern
SSDs to improve the performance of database systems. The first is a new method for using
SSDs as a fully persistent second level memory buffer pool. This method uses SSDs as
a supplementary storage device to improve transactional throughput and to reduce the
checkpoint and recovery times. A prototype of the proposed method is compared with its
closest existing competitor. The second considers the impact of the parallel I/O capability
of modern SSDs on the database query optimizer. It is shown that a query optimizer
that is unaware of the parallel I/O capability of SSDs can make significantly sub-optimal
decisions. In addition, a practical method for making the query optimizer parallel-I/O-
aware is introduced and evaluated empirically. The third technique is an SSD-friendly
external merge sort. This sorting technique has better performance than other common
external sorting techniques. It also improves the SSD’s lifespan by reducing the number of
write operations required during sorting.

iv



Acknowledgements

During my work on this thesis, I had the distinct honor of being supervised by Prof.
Kenneth Salem whose vast knowledge and insight in the field together with his nice per-
sonality made this journey a wonderful experience. Without his invaluable help, guidance,
and support I would not be able to complete this thesis. I could not have imagined having
a better supervisor and mentor for my Ph.D study.

I would also like to thank my committee members, Tim Brecht, Ashvin Goel, Lukasz
Golab, and Ihab Ilyas for taking the time to read and critique my thesis and for their
constructive comments.

I would also like to thank my mentors and colleagues at SAP Waterloo, especially, Anil
Goel, Ivan Bowman, Reza Sherkat, Anisoara Nica, John Smirnios, Peter Bumbulis, and
Mohammed Abouzour, for giving me the opportunity to work in their wonderful team, and
for all the help and support they gave me, and for all the valuable things I learned from
them.

I would also like to thank the many friends I have met during my studies. Without you
this could probably be finished earlier, but surely not as enjoyable as it was.

Last, but not least, I want to thank my family from the bottom of my heart, especially
my lovely wife Somayeh who without her love, support, and encouragement, and without
the sacrifices she made during the course of this journey, I would not be where I am today.

v



Dedication

This thesis is dedicated to my amazing son, my beloved wife, and my wonderful parents.

vi



Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Hypotheses and Thesis Organization . . . . . . . . . . . . . . . . 4

2 SSDs as a Persistent Second Level Cache 6

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Summary Of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Database Checkpointing . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 PC: SSDs as a Persistent Cache . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Page Access Sequence . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 SSD Cache Replacement Policy . . . . . . . . . . . . . . . . . . . . 12

2.4.3 SSD Cache Admission Time . . . . . . . . . . . . . . . . . . . . . . 12

2.4.4 Eviction From the SSD . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.5 Qualified Pages for Admission . . . . . . . . . . . . . . . . . . . . . 13

2.4.6 Checkpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.7 Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



2.4.8 Crash Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.9 Soundness of Crash Recovery . . . . . . . . . . . . . . . . . . . . . 20

2.5 System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 PC2: Optimizing PC with Batch Eviction . . . . . . . . . . . . . . . . . . 21

2.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7.2 Transactional Throughput . . . . . . . . . . . . . . . . . . . . . . . 23

2.7.3 The Maximum Achievable Throughput . . . . . . . . . . . . . . . . 26

2.7.4 Recovery Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.5 Ramp-up Time After a Crash Recovery . . . . . . . . . . . . . . . . 29

2.7.6 Summary of Conclusions From the Experiments . . . . . . . . . . . 30

2.8 Review of Recent Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Parallel I/O Aware Query Optimization 35

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Characterizing the Impact of I/O Parallelism in Scan Operators . . . . . . 42

3.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.3 Employing Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.4 Summary of Conclusions From the Experiments . . . . . . . . . . . 49

3.5 Queue Depth Aware Disk Transfer Time Model . . . . . . . . . . . . . . . 50

3.5.1 DTT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.2 QDTT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.3 Experimenting with QDTT Model . . . . . . . . . . . . . . . . . . 53

3.5.4 Application of QDTT Model in Other Operators . . . . . . . . . . . 55

3.5.5 Calibrating QDTT Model . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.6 Bilinear Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.7 Improving the Calibration Time . . . . . . . . . . . . . . . . . . . . 59

viii



4 An External Merge Sort for Solid State Drives 62

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 SSD-sort: an SSD-Friendly External Merge Sort . . . . . . . . . . . . . . . 68

4.4.1 Project Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.2 Run Generation Phase . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.3 Merge Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.4 Fetch Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.5 SSD-sort vs. the Traditional External Merge Sort . . . . . . . . . . 72

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.2 SSD-sort vs. the Traditional Method . . . . . . . . . . . . . . . . . 78

4.5.2.1 Identifying the Impact of Memory Buffer Pool Size and Row
Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.2.2 Identifying the Impact of Sorting Memory Size and Row Size 79

4.5.2.3 Identifying the Impact of All Parameters in One Picture . 82

4.5.2.4 Impact of Pre-sortedness on SSD-sort . . . . . . . . . . . . 82

4.5.2.5 Impact of SSD-sort on Improving the Lifespan of SSDs . . 85

4.6 Similarity between SSD-sort and Parallel Index Scan . . . . . . . . . . . . 86

5 Conclusion, Discussion, and Future Work 90

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 92

References 95

ix



List of Tables

2.1 Recovery time and recovery rate comparison before and after employing the
PC method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Recovery time and recovery-rate comparison before and after employing the
PC method with different SSD cache sizes. In all cases the elapsed time
after the last checkpoint is 3 minutes. . . . . . . . . . . . . . . . . . . . . . 28

2.3 Ramp-up time of LC when the Cache size is 50% of the database size . . . 30

3.1 Experimental configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Summary of non-parallel and parallel break-even points on the HDD and
SSD in different experiments. NP- refers to the crossing point of IS and
FTS, and P- refers to the crossing point of PIS32 and PFTS32 . . . . . . . 46

3.3 Summary of shifts in selectivity break-even points in different experiments.
NP- refers to the crossing point of IS and FTS, and P- refers to the crossing
point of PIS32 and PFTS32 . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Parameters used in implementation of SSD-sort and the traditional method 76

4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Summary of total-execution-time speed-ups/slow-downs of SSD-sort over
traditional method when the original table is already sorted . . . . . . . . 85

4.4 Required write volume in SSD-sort compared to that in the traditional method 86

4.5 Speed-ups/slow-downs of nonclustered index scan over traditional external
merge sort when the data is distributed uniformly random . . . . . . . . . 88

4.6 Speed-ups/Slow-downs of nonclustered index scan over traditional external
merge sort when the data is already sorted . . . . . . . . . . . . . . . . . 89

x



List of Figures

2.1 Effect of the checkpoint on TPC-C throughput. In both experiments, the
entire DB fits into the memory buffer pool. In (a) and (b) the entire DB is
stored on the HDD and the SSD, respectively. Y-axis represents the number
of the new order transactions per minute in the TPC-C benchmark (tpmC). 11

2.2 Page flow in PC method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 TPC-C transactional throughput under PC, PC2, LC, HDD and SSD. The
HDD and SSD refer to settings in which the entire database is located on
the HDD and SSD respectively and no second level cache is employed. . . 24

3.1 Impact of queue depth on throughput of random 4KB reads on the SSD and
HDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Parallel full table scan (PFTS) in SAP SQL Anywhere. Each color repre-
sents a different worker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Parallel index scan (PIS) in SAP SQL Anywhere. Each color represents a
different worker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Runtime of Query 3.1 using IS, FTS, PIS32 and PFTS32 access methods
over tables T1, T33 and T500 on the HDD and SSD. In each graph, the red
and green circles indicated the non-parallel and parallel break-even points,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Index scan runtime with different parallel degrees when prefetching is en-
abled in each worker. Each curve represents a different parallel degree . . . 48

3.6 A sample DTT model for the HDD and SSD. . . . . . . . . . . . . . . . . 51

3.7 A sample QDTT model for the HDD and SSD. . . . . . . . . . . . . . . . 53

3.8 Comparing the performance of DTT-based and QDTT-based optimizers . . 54

xi



3.9 QDTT on RAID (8 spindles). The x-axis represents the queue depth and
the y-axis represents the cost of reading a single page in microseconds . . 60

4.1 Traditional external merge sort . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 SSD-sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 The execution time of SSD-sort vs. that of the traditional method when the
sorting memory is 8 Mbytes. In each graph, the blue color represents the
time-to-first-row, and the orange color represents the fetch time. . . . . . 80

4.4 The execution time of SSD-sort vs. that of the traditional method when the
memory buffer pool size is 50% of the input size. In each graph, the blue
color represents the time-to-first-row, and the orange color represents the
fetch time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Total-time speed-ups/slow-downs of SSD-sort over the traditional method 83

4.6 Time-to-first-row speed-ups/slow-downs of SSD-sort over the traditional
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xii



Chapter 1

Introduction

Hard disk drives (HDDs) have been used as a persistent storage layer in database systems
for many years. In spite of decades of advancements in HDD technology, due to the
mechanical nature of HDDs, they can still provide high performance only for sequential
access, while suffering from a much lower performance in random I/O. A decade ago, SSDs
emerged as a viable storage alternative, aiming to address the limitations of HDDs.

Because of their electrical nature, SSDs benefit from much better random I/O perfor-
mance, as well as better power consumption. Due to these impressive characteristics, the
research community has shown a lot of interest in the application of SSDs in I/O inten-
sive use cases. Database systems have been designed and developed over more than three
decades of research based on the I/O characteristics of HDDs. In order to benefit from the
outstanding I/O characteristics of SSDs, there are many architectural aspects in database
systems that need to be revisited.

1.1 Background

Flash memory is a type of memory that stores data in NAND gate arrays called flash
cells. A variety of flash cells have been introduced by storage manufacturers in recent
years. Single-level cells (SLC) can store only one bit by identifying only the presence or
absence of the electrical current. Multi-level cells (MLC) can typically store two bits, by
detecting four voltage levels. Although MLC devices are denser than SLC devices, they
are slower as it takes longer to deal with four voltage levels. In addition, MLC devices
can endure fewer program/erase cycles (P/E). SLC devices are therefore more expensive
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and they are typically used in enterprise applications with high-performance and high-
endurance requirements. Triple-level cells increase the data density to 3 bits by storing 9
voltage levels. Although the TLC devices are slower than MLC devices and have a shorter
lifespan, they form a cheaper alternative to MLC devices for the consumer market. Very
recently a new class of flash cells called quadruple-level cell (QLC) has been introduced
which increases the data density to 4 bits per cell. Because of the fewer predicted number
of P/E cycles in QLC devices, they are expected to be used in write-once-read-many
(WORM) applications in some specific enterprise use cases like large cache servers.

Solid State Drives, also known as flash drives or flash disks, consist of multiple flash
memory chips in a single enclosure. SSDs are equipped with a controller that is connected
to a DRAM buffer. The controller is in charge of translating system read and write I/O
requests to physical read, erase and program instructions on the flash chips. The controller
also performs a variety of tasks for improving the performance and improving the lifetime
of the flash chips. In order to improve the throughput of the write requests, part of the
internal DRAM is used for buffering the received writes. The remaining part of the DRAM
is used as a temporary memory for executing the regular tasks of the controller. In some
enterprise SSDs, the DRAM is backed by super-capacitors. In the event of a power failure,
the super-capacitor gives the controller enough time to persist the contents of the DRAM.

Since SSDs have no mechanical moving parts, they benefit from much lower access
latency, better power efficiency, and lower heat generation. In addition, they incur faster
startup times and offer better shock resistance. The internal architecture of modern SSDs
allows them to improve random I/O throughput by exploiting the internal I/O parallelism.
In terms of price per capacity, SSDs are more expensive than HDDs, but in terms of price
per IOPS (input/output operations per second), they easily outperform HDDs.

SSDs suffer from two main issues. The first one is called the Erase-before-write con-
straint: even for changing a single sector, the entire flash block to which it belongs should
be first copied into the internal memory; then the flash block should be erased, and finally
the memory content should be programmed back into the erased block. This process makes
writes much more expensive than reads. The second issue is the limited number of P/E
cycles supported by flash chips. This problem gets worse as the density of the flash cell
increases.

In order to address these two problems, the controller uses a software layer called Flash
Translation Layer (FTL) [9, 14, 22, 53, 64, 68]. This software layer is in charge of logical-
to-physical address mappings. It also is responsible for wear-leveling and power-failure
recovery. To improve the write performance, whenever a new write request is received,
the content of the flash block to which the corresponding sector belongs is copied into the
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internal memory. Then, if a free flash block is available, it is programmed and marked as
the valid block in the address translation table of FTL. Finally, the old block is marked
as garbage. The marked blocks are erased later by a periodical garbage collector task
performed by the controller. In some controllers, the garbage collector even tries to combine
the existing partially-empty blocks to claim as many free blocks as possible, making them
ready for the incoming writes.

The larger the capacity of the SSD, the less frequently the garbage collector needs to
work. That is why the random write performance of the higher capacity SSDs is typi-
cally better than that in lower capacity devices. In order to guarantee a specific write
performance, some Enterprise SSDs employ a mechanism called over-provisioning. In this
method, a portion of the available flash chips is used for write optimization. This portion
is not usually advertised as the available capacity of the SSD. The garbage collector tries to
erase at least as many blocks as needed to maintain the cleanness of the over-provisioning
capacity.

The issue of limited P/E cycles is addressed by employing the wear leveling techniques:
the controller spreads writes as even as possible across all flash chips and all flash blocks
in the same chip by maintaining an array of counters in the FTL layer. An SSD with a
larger capacity will have a better lifetime as it takes a longer time for the first flash chip
to pass its P/E cycle limit. The controller will also mark the flash chips that have already
reached their maximum allowed P/E cycles and will transfer their content to healthy chips
to postpone the total drive failure.

In some recent TLC-based devices, in order to improve the durability and write per-
formance while benefiting from the high data density, a layer of SLC-based flash chips are
employed for write caching, translation table maintenance, and other FTL optimizations.

The additional write operations performed for wear leveling and garbage collection are
referred to as write amplification. A probabilistic analysis of write amplification shows that
it heavily affects both the write performance and the lifetime of the SSD [27, 47].

Modern SSDs can substantially benefit from I/O parallelism, the ability to perform
multiple I/Os simultaneously. Chen et al. have studied the substantial impact of parallelism
in I/O performance of SSDs [21]. A modern SSD is capable of utilizing multiple levels of
parallelism: plane, channel, package, and die levels. Almost all modern SSDs support
native command queuing mechanisms (NCQ), which were first introduced in the SATA II
standard [24]. These capabilities allow the SSD to accept multiple concurrent I/O requests
or a burst of successive I/O requests from the operating system. The received I/O requests
are queued, and the host interface will reorder them to create a favorable I/O pattern for
the internal parallel organization of the SSD. In other words, increasing the I/O queue
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depth, defined as the number of outstanding I/Os in the I/O queue at any point of time,
of modern SSDs will give them a chance to exploit their internal parallel organization to
improve the I/O throughput. The I/O queue depth can be increased by issuing multiple
I/Os at the same time. Alternatively, issuing I/O requests with a rate faster than the rate
of handling I/O requests by the device can increase the I/O queue depth. Increasing the
I/O queue depth of the SSD can significantly improve the random I/O throughput of the
SSD.

1.2 Research Hypotheses and Thesis Organization

In terms of price per IOPS (I/O per second), SSDs are better than HDDs. However, in
terms of price per capacity, SSDs are still more expensive than HDDs, and this trend is
expected to continue for the foreseeable future. The issue of cost-effectiveness of SSDs
adds another constraint to the adaptation of SSDs in database systems. When replacing
the entire storage layer by SSDs is not a cost-effective decision, the SSD can be used as
a supplementary storage layer. When storing the entire database on the SSD is a feasible
choice, the effective use of SSDs depends on proper architectural adjustments in database
internals.

In this thesis, first, we target the use cases in which due to size, budgeting, or technical
constraints, storing the entire database on the SSD is not feasible. In this case, our first
research hypothesis is as follows:

Hypothesis 1: SSDs can be used as a fully persistent second level buffer pool to improve
the transactional throughput, checkpoint time, and recovery time and to avoid a long ramp-
up time after a crash recovery in traditional database systems.

To test our hypothesis, in Chapter 2, a novel approach for using SSDs as a persistent
second level memory buffer pool is designed, implemented, and evaluated experimentally.

By mass adoption of SSDs, the price per capacity of the SSD is declining day by day.
Although it is not expected to see that SSDs will become cheaper than HDDs anytime soon,
the price gap between the two is gradually getting narrower. This trend will slowly improve
the cost-effectiveness of storing the entire database on SSDs, especially in applications in
which the size of the database is not that large. Thus, we devote the remaining part of
the thesis to scenarios in which storing the entire database on the SSD is feasible. The
research hypotheses of the thesis, in this case, are as follows:

Hypothesis 2: When the entire database is stored on the SSD, we need to make the
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query optimizer SSD-aware; failing to do so will result in sub-optimal query optimizer
decisions.

To test hypothesis 2, in Chapter 3, the impact of parallel I/O on optimal access path
selection in the query optimizer is identified. It is shown that the optimizer’s error can
be significant when the optimizer knows nothing about the parallel I/O capability of the
SSD. Moreover, a practical method for capturing and utilizing the I/O capability of SSDs
by the query optimizer is introduced, implemented and evaluated.

Hypothesis 3: When the entire database is stored on the SSD, we need to redesign
some of the major database operators so that they can make better use of the capabilities
of SSDs; failing to do so will result in performance degradation of the operator.

To test hypothesis 3, in Chapter 4, an SSD-friendly external merge sort method is
proposed, and it is experimentally shown that it outperforms the traditional external sort
in a range of configurations while improving the lifetime of the SSD by reducing the number
of temporary writes.

5



Chapter 2

SSDs as a Persistent Second Level
Cache
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2.1 Overview

Although the I/O performance of the SSD is superior to that of the HDD, its price per
capacity is still higher. The market trends show that this price gap is expected to exist for
the foreseeable future. Therefore, in large-scale databases, utilizing the SSD as an HDD
supplement might be more cost-effective than replacing the HDD with the SSD. One way
of using the SSD as an HDD supplement is to store the most-frequently-accessed data
in the SSD and to leave the cold data in the HDD [18, 56, 74]. In this approach, every
data item is stored either in the HDD or the SDD and not in both. Although storing the
hot data objects on the SSD sounds appealing, the proposed approaches for realizing this
idea suffer from inaccurate static decisions, costly back and forth periodical data transfers
between the SSD and the HDD, and the coarse granularity of the transferred objects. In
order to address these issues, utilizing the SSD as a second level cache has become a very
popular alternative [13, 19, 30, 48, 49, 56, 65, 66]. In this method, the SSD is used as
a caching layer between the hard disk and the memory. Whenever a memory cache-miss
(first level cache-miss) takes place, the SSD cache is probed to see if the page can be found
there. Due to the lower price of the SSD compared to the RAM, the size of the second
level cache is supposed to be much larger than that of the memory buffer pool. Therefore,
the SSD can cache a much larger number of pages. This larger cache capacity can reduce
the number of expensive hard disk I/O requests significantly, resulting in a considerable
jump in the overall system performance.

So far, several approaches for using the SSD as a second level cache have been proposed.
Prior studies either treat the SSD as a volatile memory, exploiting only the higher I/O
performance of the SSD compared to the HDD, or do not exploit the persistence of the
SSD effectively. In this chapter, a novel method for exploiting the SSD as a fully persistent
second level cache is introduced. The proposed method is called PC, short for the persistent
cache. PC addresses the drawbacks of the prior methods. It has been patented [38].

A prototype of PC, as well as its closest prior competitor, was implemented in SAP
SQL Anywhere. In the prototype, the cache management, I/O management, checkpoint
mechanism, and recovery process of the database engine are modified. The experimental
results show significant improvements in transactional throughput1 and recovery time of
the database.

1Transactional throughput refers to the number of transactions per minute that can be processed by
the database system.
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2.2 Summary Of Contributions

The main research contributions presented in this chapter can be summarized as follows:

1. A novel approach for using the SSD as a fully persistent second level cache in tradi-
tional RDBMSs.

2. An implementation of the proposed method, as well as its closest competitor, by
modifying the I/O manager, cache manager, checkpointing mechanism, and recovery
mechanism of a commercial RDBMS.

3. A comparison of the proposed approach with its competitor, under transactional
workloads, showing that the proposed approach benefits from significantly higher
transactional throughputs and lower recovery times.

2.3 Background

The SSD can be utilized either as a write-through or as a write-back second level cache.
In a write-through cache, the contents of the SSD cache are used only to satisfy read
requests. In this approach, the content of the SSD should be kept consistent with that of
the HDD at all times. Therefore, whenever a dirty page (modified page) gets evicted from
the memory buffer pool (first level cache) and a version of that page resides in the SSD
cache (second level cache), its modifications must be reflected both on the SSD and the
HDD. In contrast, in a write-back caching mechanism, there is no need to guarantee the
consistency of the pages between the SSD and the HDD. Hence, pages residing in the SSD
are free to be fresher than their corresponding copy in the HDD.

In write-intensive transactional workloads such as TPC-C [81], which are the focus
of our study, a write-back second level cache performs much better than a write-through
cache. This is because, in write-intensive workloads, the dirty pages in the second level
cache tend to be re-referenced and re-dirtied several times before they get evicted. In
a write-back second level cache, such pages are written to and read back from the SSD
multiple times before they are finally written back to the disk. In a write-through second
level cache, however, such pages are written to the HDD every time they are evicted from
the memory buffer pool. This increases the I/O load of the HDD significantly, resulting in
dramatic performance degradations.

Several approaches for using the SSD as a second level cache have been proposed.
Koltsidas et al. studied a variety of data flow schemes (inclusive, exclusive and lazy) in
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a multi-level caching approach, both theoretically and experimentally [57]. However, all
caching schemes discussed in their study are based on the assumption that the SSD is an
extension of RAM. Moreover, the recovery implications of the proposed schemes and the
role of the checkpoint are not considered in that analysis. The process of copying dirty
pages from the memory buffer pool to the disk is known as a checkpoint. Checkpoints have a
considerable impact on database performance, especially in write-intensive workloads. The
main goal of the checkpoint is to reduce the recovery time after a database crash.

Canim et al. exploited the SSD as a write-through cache [19]. They introduced a
temperature-aware admission and replacement policy called TAC, short for temperature-
aware caching. This policy tends to replace the pages that come from hot regions of the
HDD with the ones belonging to the colder regions. Three different caching schemes, CW
(clean-write), DW (dual-write), and LC (lazy-cleaning) are proposed by Do et al. in [30].
The performance of these approaches over different workloads has been studied using a
prototype implementation over Microsoft SQL Server 2008. CW and DW, similar to TAC,
are write-through while LC is a write-back caching scheme. In CW, which stands for
Clean-Write, only clean pages are stored in the SSD. Whenever a dirty page is evicted
from the RAM, it is written only into the disk. In DW, which stands for Dual-Write, the
dirty pages evicted from RAM are written to both the SSD and the HDD. In both CW
and DW, the contents of the SSD and HDD are always kept consistent. In LC, which
stands for Lazy-Cleaning, the dirty pages written to the SSD cache are flushed into the
HDD whenever their count passes a specific threshold. Therefore, unlike CW, DW and
TAC, in LC the contents of the SSD cache can be fresher than the contents of the HDD.
It is shown that in read-intensive (analytical) workloads such as TPC-H and TPC-E, the
caching mechanisms DW, TAC and LC perform almost as well as each other. However, in
the TPC-C benchmark, which is a write-intensive transactional workload, LC shows up to
6.8X and 5X speedup over TAC and DW respectively [30]. CW performs worse than all
the other methods both in read- and write-intensive workloads.

As mentioned before, in write-intensive workloads, a write-back caching method will
perform much better than a write-through caching method. However, the implementation
of a write-through cache is much easier. This is because in a write-back cache the content
of the SSD can be fresher than the content of the HDD. Consequently, the checkpoint and
recovery logic must be modified accordingly.

2.3.1 Database Checkpointing

At a database checkpoint, all dirty pages residing in RAM are flushed into the stable stor-
age, allowing a larger part of the transaction log file to be ignored at the recovery time. The
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Checkpoint interval, which is defined as the time interval between two consecutive check-
points, is an important tuning parameter in modern DBMSs, especially in write-intensive
workloads. Choosing a longer checkpoint interval roughly corresponds to having a longer
recovery time. On the other hand, since the checkpoint is a costly I/O-bound operation,
choosing a very short checkpoint interval might affect the performance of the database
negatively. Choosing a proper checkpoint interval in write-intensive workloads such as
OLTP is more vital than in read-intensive workloads such as OLAP. In write-intensive
workloads, the memory pages tend to get dirty quicker and more often. Consequently, if a
checkpoint does not happen for a long time, the transaction log file grows quickly and the
recovery time becomes prohibitively long. At the same time, in write-intensive workloads,
the negative impact of a checkpoint on performance is potentially much higher than in
read-intensive workloads.

To show the negative impact of each checkpoint in write-intensive workloads, we per-
formed an experiment. Figure 2.1(a) illustrates the tpmC-time diagram of a TPC-C work-
load with 1000 warehouses when the entire database is stored in a commodity 7,200 RPM
hard disk. The y-axis represents the number of new order transactions per minute in the
TPC-C workload. The experiment was performed using SAP Sybase SQL Anywhere. A
memory buffer pool larger than the database size is used in both experiments. Thus, af-
ter the buffer pool warm-up period, the number of writes into the disk as a result of the
eviction from the memory buffer pool will become almost zero. In this way, the impact
of the checkpoint on the degradation of the transactional throughput can be observed in
isolation. After the memory buffer pool warms up, all the regular I/Os are entirely routed
to the memory buffer pool. The checkpoint interval in both experiments is 60 minutes.

As depicted in Figure 2.1(a), each checkpoint results in a significant degradation in
the transactional throughput. This is because of a burst of random I/O pressure on
the disk during the checkpoint process. Figure 2.1(b) shows the same experiment when
the entire database is stored on a consumer-level SSD. The extra I/O pressure can be
handled perfectly well by the SSD while it presents difficulty for the HDD. We stopped each
experiment after processing 80 million new order transactions. On the SSD all transactions
are processed in almost half the time they are processed on the HDD.

By using the SSD as a second level write-through cache, there is no need to make any
modification in the checkpoint and recovery modules of the database because, in a write-
through cache, the disk content is always consistent with the SSD content. In contrast, in
a write-back caching mechanism, both of these modules have to be modified to guarantee
the recoverability of the database.

When the SSD is used as a volatile write-back second level cache, such as what is done
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Figure 2.1: Effect of the checkpoint on TPC-C throughput. In both experiments, the entire
DB fits into the memory buffer pool. In (a) and (b) the entire DB is stored on the HDD
and the SSD, respectively. Y-axis represents the number of the new order transactions per
minute in the TPC-C benchmark (tpmC).

in LC, the HDD will be the target of extra I/O pressure, when a checkpoint occurs. In the
LC method, before flushing the dirty pages from the memory into the disk, the existing
dirty pages in the SSD need to be flushed into the HDD. Since the size of the SSD is
supposed to be much larger than the size of the RAM, the number of dirty pages in the
SSD tends to be much larger than the number of dirty pages in the RAM. Besides, since no
direct memory access between the disk and the SSD is possible, all the dirty pages residing
in the SSD must be copied into memory before being flushed into the disk. Consequently,
a checkpoint becomes extremely expensive.

The proposed methods in this chapter, avoids these problems by using the SSD as a
non-volatile write-back second level cache. Thus, it does not need to flush dirty pages from
the SSD to the HDD during checkpoints. Exploiting SSDs’ non-volatility also shortens
recovery times and reduces the ramp-up time of the cache after a crash.

2.4 PC: SSDs as a Persistent Cache

In this chapter we introduce a new method for using SSDs as a fully persistent cache. Our
proposed method is called PC, short for persistent cache. First, the page access sequence
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and caching policies enforced by PC are presented. Then, the checkpointing mechanism of
PC is described. Finally, the recovery scheme of PC is explained, and its recoverability is
discussed.

2.4.1 Page Access Sequence

Our design uses the same page access sequence which is used in the LC method. When the
cache manager receives a page request, it first looks for the page in the first level cache. If
it cannot find the page there, then the second level cache is examined. If the page is not
found there, it is fetched from the disk storage. In PC, at any point of time, the memory
cache content (the first level cache) is always either fresher than or as fresh as the SSD
cache content, and the SSD cache content is always either fresher than or as fresh as the
HDD content.

2.4.2 SSD Cache Replacement Policy

The replacement policy of the second level cache in PC is a variation of the Clock re-
placement policy [90]. We chose this policy because it is a very low-overhead yet effective
replacement policy. It is confirmed by Canim et al. [19] that in TPC-C workload when the
SSD cache is at least three times larger than the memory buffer pool, the cache hit rate of
the Clock replacement policy is almost as good as that of more sophisticated policies such
as ARC [69] and LRU [73].

2.4.3 SSD Cache Admission Time

In methods in which the SSD is used as a second level cache, there are two alternatives
for the time of admission into the second level cache. The first alternative is to decide
about the admission of the page into the second level cache at the same time that a page is
admitted to the first level cache. In this case, whenever a page is admitted to the first level
cache, it will be considered for admission to the second level cache as well. This decision
might result in degradation of the system performance because of the potential for latch
contention between the thread which is writing the page into the second level cache and
the thread which is trying to modify the content of the page after its admission to the first
level cache. It is worth mentioning that copying a page from the disk storage to the second
level cache must be done through the first level cache because no direct memory access
(DMA) between the SSD and the disk storage is possible. Therefore, copying a page from
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the disk storage to the second level cache can be started only after finishing its admission
into the first level cache.

The second alternative is to decide about the admission of the page into the second
level cache at the time it is evicted from the first level cache. We decided to use the second
alternative as it does not suffer from the latch contention problem mentioned above. This
decision also reduces the impact of the cache inclusion problem [92]. The cache inclusion
problem refers to the issue of having the same copy of a page in different levels of a multi-
level caching scheme. Cache inclusion can result in wasting the cache capacity of the middle
levels.

2.4.4 Eviction From the SSD

Whenever a new page is admitted into the second level cache and the second level cache
is full, a victim needs to be selected for eviction according to the replacement policy. In
PC, if the selected victim is fresher than its disk-resident version, it is flushed into the disk
before the eviction. If it is as fresh as its disk-resident version, there is no need to flush it
into the disk.

2.4.5 Qualified Pages for Admission

Whenever a page is evicted from the first level cache, it is considered for admission into
the second level cache. In our design, in order to avoid polluting the second level cache
with useless data, the candidate pages for admission should be qualified first. There are
two possible qualification criteria in our design: (1) whether the victim has been originally
read randomly or sequentially, and (2) whether the victim is dirty or clean. If a page is
admitted to memory as a result of a high-level operator with a sequential I/O pattern,
e.g. a full table scan, a flag called isRandom will be set to false in the page’s metadata.
In contrast, if the admitted page to memory is a result of a high-level operator with a
random I/O pattern, e.g. an index scan, the isRandom flag for that page is set to true.
Using this flag, at the time of admission to the second level cache, it can be determined
whether a page is accessed randomly or sequentially. Since sequential reads can be done
efficiently from the disk, we avoid caching the sequential pages in the second level cache.
We observed that admitting the sequential pages in the second level cache not only results
in wasting the capacity of the cache but also degrades the overall I/O performance. The
sequential reads from the disk go to a temporary memory buffer in large blocks consisting
of multiple consecutive pages. The read pages are then admitted from the temporary
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memory buffer to the memory buffer pool one by one. After reading each block into the
temporary memory buffer, before admitting each page within that block into the memory
buffer pool, the content of the second level cache is examined to see if a fresher version
of that page can be found there. If that is the case, the page should be fetched from the
second level cache. This extra step places extra read overhead on the SSD. By disqualifying
the sequential pages from admission to the second level cache, this extra overhead can be
reduced. Therefore, in our design, only randomly-accessed pages will normally be qualified
for admission into the second level cache. Sequential pages will be qualified only if they
are dirty and an older version of them already exists in the second level cache. If an older
version of a dirty sequential page is not in the second level cache then it will be flushed
directly to the disk. The details of the page flow of our proposed approach are illustrated
in Figure 2.2.

2.4.6 Checkpoint

Similar to LC, in PC, the SSD is used as a write-back second level cache. However, unlike
LC, in PC, the SSD is treated as a persistent storage. By relying on persistence of the
SSD, there is no need to copy any dirty page from the SSD to the HDD when performing
a checkpoint. At the recovery time, the latest version of each page can be retrieved from
the SSD. If a page is not found in the SSD, it means that its latest version is available in
the HDD. This decision results in a significant improvement in the checkpoint time.

Since the checkpoint is performed only over the dirty pages residing in the RAM, the
need for having an SSD cache cleaner process would be eliminated as well. Consequently,
there would not be any dramatic drop in the transactional throughput as a result of starting
the cleaner process. Moreover, there is no need to tune a cleaning threshold parameter
anymore.

Since the SSD cache is persistent, we must decide about the target of the dirty pages
flushed from the memory at the checkpoint time. Here, there are two possible choices.
The first option is to write all the first level dirty pages into the second level cache no
matter whether they are already there or not. An alternative is to check each dirty page
individually to determine whether it is already in the second level cache. If so, then the
dirty page would be flushed in-place in the second level cache. If a dirty page is not in the
second level cache, then it would be written into the HDD.

At first, the former option may seem to have better checkpoint performance. How-
ever, in practice, for two reasons the latter alternative is preferable. First, the former
alternative results in more admissions and eviction into and from the second level cache
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during the checkpoint. In contrast, in the second alternative, all the second level cache
I/Os are in-place writes. More admissions and evictions will increase the contention over
the replacement queue. Note that during the checkpoint, the regular transactions are not
frozen, and the admissions and evictions caused by the regular transactions will compete
with those caused by the checkpointing. Second, writing all first level cache dirty pages
into the second level cache will worsen the cache inclusion problem.

To achieve the benefits of both alternatives mentioned above, we decided to use a
hybrid approach. In the hybrid approach, the first alternative will be applied until the
second level cache gets full. Afterwards, the second alternative will be employed. An
additional benefit of using the hybrid approach is that the second level cache gets warm
faster. This improves the ramp-up time of the second level cache. Moreover, by using this
approach, all checkpoints happening during the ramp-up time would be extremely fast as
all random writes in these checkpoints would be directed to the SSD.

2.4.7 Recovery

By employing a persistent second level cache, the recovery process can be accelerated
significantly. Recovery is typically a read/write intensive process. Pages will be randomly
read from or written into the stable storage during the recovery. In a database with no
persistent second level cache, all those reads and writes should be performed on the HDD.
With a persistent second level cache, however, most of those requests can be directed to
the second level cache. In other words, if a page resides in the second level cache, the I/O
request would be sent to the second level cache. Otherwise, it would be sent to the disk
storage. This results in a considerable performance improvement.

To benefit from the persistence of the second level cache during the recovery process,
before starting the recovery, the location of a data page (i.e. whether it is on the second
level cache or in the disk storage) must be known at the time the crash occurred. Thus,
the page directory of the second level cache must be maintained in a reliable way.

The page directory can be maintained either in the memory or the stable storage.
Maintaining the page directory in memory results in better performance. However, in this
case, if the database crashes, the page directory will be lost. Upon recovery, the page
directory must be reconstructed. One solution for reconstructing the page directory at the
beginning of the recovery process is to scan the entire second level cache and reconstruct
the page directory using the pages’ metadata. However, scanning the entire second level
cache is very costly. This operation is also subject to the single-page failure problem [43],
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aka torn page problem or partial write problem. The torn page refers to a page that, due
to a media failure or power outage, has been not entirely written into the storage media.

In our design, the page directory is stored on the SSD. Since the SSD is persistent,
reconstructing the page directory by scanning the entire SSD is not necessary.

Storing the page directory on the SSD seems to be an expensive design decision. The
page directory is supposed to track the changes made to the content of the second level
cache. Whenever the cache content is changed the page directory should be updated,
resulting in extra writes. By performing a simple trick, we have significantly reduced the
number of these extra writes.

The trick is that we maintain a memory-resident version of the page directory as well
as a lightweight SSD-resident version of it. The memory-resident version contains all
of the information necessary for caching and for enforcing the replacement policy. The
SSD-resident version contains only the information which is needed for rebuilding the
memory-resident version at recovery time. In the light-weight version, we do not keep
pointers, unnecessary flags, and latches. Eliminating pointers and unnecessary flags will
make it impossible to rebuild the same exact cache state that exists before a crash. That
is because the pointers and flags which are used for enforcing the Clock replacement policy
are lost after a crash. Consequently, immediately after finishing the recovery process, the
utilization of the cache will be slightly lower than before the crash, and it takes a while
to reach the same cache utilization as before the crash. Compared to LC, which has an
empty cahce after a crash recovery, a minor degradation in cache utilization is acceptable.
This trade-off is done to reduce the number of required modifications on page directory.
By using this technique, the page directory needs to be modified only on 3 occasions; at
admission time, at eviction time, and whenever a clean page residing in the second level
cache gets updated for the first time.

As the second level cache gets warmer the first and the second occasions become less
likely to happen. When the working set of the database fits in the second level cache, the
number of admissions and evictions becomes very low. The third occasion happens only if
a clean page from the memory gets admitted into the second level cache and later it gets
re-admitted from the second level cache to the memory and then it gets dirtied there, and
then it gets evicted from the memory. This page should be updated in-place in the second
level cache before eviction from the memory. In this case, the page directory needs to be
updated to set a flag (fresher than disk flag2) indicating that the content of that page is
fresher than the content of its HDD-resident version. The frequency of the occurrence of
this situation in practice is very low. Suppose a page residing in the second level cache,

2This flag is used to determine if a page should be flushed to the HDD when it is evicted from the SSD.
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which is already fresher than its HDD-resident version, becomes admitted into the memory,
gets dirty in there, and then becomes evicted from the memory. In this case, there is no
need to update the page directory because the fresher than disk flag is already set for that
page. In this case, an in-place update of the page in the SSD suffices.

In a write-intensive workload in which the pages are modified many times if the working
set of the database fits into the second level cache, then most requests to the second level
cache will be the reads and in-place updates. None of these requests need a change in the
page directory. The fact that maintaining the page directory in the SSD does not have a
considerable negative impact on performance has been confirmed by Bhattacharjee et al.
as well [13].

2.4.8 Crash Consistency

Because the page directory is stored in the second level cache, if an eviction from the
first level cache results in an eviction from the second level cache, as described above, one
method of proceeding is as follows. At step one, a victim must be found in the second level
cache. This victim is copied into the disk to make a free frame for a victim page from the
first level cache at step two. At step three, the victim page from the first level cache is
copied into the second level cache, and the page directory is updated accordingly at step
four. However, if a crash occurs during the steps two or three, a torn page can potentially
exist on the HDD or the SSD. A torn page can result in data loss or inconsistency in the
database. Torn pages can happen while writing to both SSDs and HDDs but they are less
likely in SSDs. Since a torn page may put the page directory in an inconsistent state, we
need to define a mechanism to avoid this inconsistency.

The page directory will be in an inconsistent state in two cases. First, when the page
directory falsely reports that a page is stored in the SSD while the SSD-resident version
of the page is torn. Second, when the page directory reports that a page is located in
the HDD while the latest version of the page is located in the SSD and its HDD-resident
version is torn.

To avoid the possible inconsistencies when a torn page happens at the crash time, if an
eviction from the first level cache results in an eviction from the second level cache, after
the victim page from the second level cache is copied into the disk, the page directory is
invalidated for that victim pages page frame. The victim page from the first level cache is
copied into the now-free frame on the second level cache, and then the page directory is
updated and validated for the corresponding page frame. To employ this idea a flag called
is valid is used for each page frame in the page directory.
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If a crash occurs while the victim page from the second level cache is being copied into
the disk storage, a torn page on the disk storage might be possible. However, in this case,
the torn page does not result in any inconsistency, because the latest version of the page
is located in the second level cache and it is still valid.

Similarly, if a crash occurs after the victim page from the second level cache is suc-
cessfully copied into the disk, but before the page frame can be invalidated, then no
inconsistency will exist because the page directory will truly report that the latest version
of the page is located in the SSD.

If a crash occurs while the page is invalidated in the page directory, then two possible
situations exist. Either the invalidation will be done successfully, or it will fail. If the
page is invalidated successfully, it will contain an invalid frame, and a correct copy of the
page for that frame is already available on the disk. If the invalidation fails, then the page
directory will correctly report that the page is still located in the SSD. The is valid flag
is just a bit in an integer variable which is used for storing the flags. A torn bit is not
possible, and the value of this bit after a crash can be either one or zero.

If a crash occurs directly after the page frame is successfully invalidated, then an invalid
frame will exist in the page directory, but a correct copy of that page is already safely stored
in the disk, and so there will be no inconsistency in the page directory.

If a crash occurs when the victim page from the first level cache is copied into the second
level cache, the contents of that page frame might become torn. However, no inconsistency
will exist in this case, because the page frame for that page is already marked as invalid,
and the crash recovery process will not rely on the contents of that torn page in the second
level cache.

Further, if a crash occurs after the victim page from the first level cache is successfully
copied into the second level cache, and before validating the page in the page directory,
then the contents of that page frame will be valid, but the page directory will report that
the page frame is not valid. No inconsistency will exist in this case either. The recovery
process will assume that this page is located in the HDD and will re-write the HDD-resident
version of the page with a clean copy which is stored in checkpoint log [7] and then the
content of the page will be updated using the existing redo logs in the transactional log.

Finally, a crash may occur after successful validation of the page in the page directory.
In this case, the final step of the eviction is completed, and the page directory will correctly
report that a correct and up-to-date version of the page is located in the SSD. Hence, no
inconsistency will exist.
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2.4.9 Soundness of Crash Recovery

The crash recovery is sound if all and only committed transactions are recovered by the
recovery process. PC adds a preparation phase to the recovery process of the database
system. In the preparation phase, first, the memory-resident page directory is built using
the SSD-resident page directory. Then, the required in-memory data structures, i.e. the
FIFO queue and the hash table are built in memory over the in-memory page directory.
The crash consistency mechanism described in Section 2.4.8 guarantees that at this point
of time the persistent layer of the database is consistent with its persistent layer at the
crash time. This means that the page directory reports the location of the latest version
of every page correctly. Thus, since the consistency of the storage layer is guaranteed,
assuming the recovery process of SAP SQL Anywhere is sound, we can conclude that it
will remain sound after adding the preparation phase as well.

2.5 System Components

A prototype of PC has been implemented in SAP SQL Anywhere. The main components
of the system are as follows:

1. SSD cache file is a file stored in the SSD and contains the second level cache page
images.

2. Memory-resident page directory is a data structure which is used to keep track
of the position of the cache pages in the SSD cache file. The page directory is an array
of PageInfo elements. Each PageInfo is a data structure including all information we
need to know about each page in the second level cache. PageInfo includes the slot
number of the page in the second level cache as well as a few flags. Those flags
indicate whether a page in the second level cache is fresher than its disk-resident
version (is fresher than disk), valid (is valid), free (is free), or accessed at least one
time after admission (is touched). It also includes pointers to the next and the
previous pages in a hash chain, a pointer to the next free page in the linked list of
free pages, as well as a latch for concurrency control. In order to improve performance
and increase the concurrency by avoiding I/O bottlenecks, the memory-resident page
directory is maintained in RAM. However, a lighter version of the page directory is
maintained in the SSD to ensure the persistence of the mapping information.
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3. SSD-resident page directory is a lighter version of the memory-resident page
directory in which the PageInfo elements include only the slot number of each page
in the SSD cache file as well as is valid, is free and is fresher than disk flags.

4. In-memory FIFO queue is used to enforce the clock replacement policy. Whenever
a candidate victim is dequeued from the FIFO queue, its is touched flag is checked
to see if it has been touched at least once since the last time it is enqueued. If it is
not touched, then it will be evicted. Otherwise, its flag will be reset, and it will be
enqueued again.

5. In-memory hashtable is created over the in-memory page directory for fast and
concurrent lookups. The number of hash chains is determined dynamically, and it
depends on the size of the SSD cache. The hash chains are build using the next and
pre pointers of the PageInfo elements. Common optimization techniques are applied
to maximize the concurrency of the hash table operators by minimizing the latch
contention.

2.6 PC2: Optimizing PC with Batch Eviction

When the second level cache is full, a page must be evicted from the second level cache
before the admission of every new page from the first level cache. When the victim is fresher
than its corresponding disk-resident version, it must be flushed into the disk. Flushing a
page from the SSD to the disk is a costly operation. The victim must be copied to the
memory first, and then it must be flushed into the disk, and at the end, an fsync command
must be issued to make sure that the page is written physically and persistently. At this
time, the SSD slot of the victim can be reused safely for admission of a new page.

In our design, in order to reduce the impact of evictions from the second level cache, a
batch of pages is evicted whenever eviction is necessary. Based on the replacement policy,
a batch of candidate victims is selected, then each page in the batch is copied into the
memory asynchronously. Then, they will be written into the disk asynchronously. After
ensuring that all victims in the batch are written into the disk, an fsync command is issued.
Finally, all SSD slots corresponding to those victims are released and added to the free list
to be used for future admissions. Employing this technique improves performance after
the second level cache becomes full and the eviction starts.

The benefits of this batch optimization are as follows: First, instead of one fsync
command per write, we will need only one fsync for a batch of writes to the disk. Second,
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the asynchronous reads from the SSD result in increasing the queue depth of the SSD. It is
known that increasing the queue depth in SSDs significantly improves the I/O utilization
by exploiting the I/O parallelism in the SSD. In the SSD which is used in our experiments,
increasing the queue depth of the SSD to a number larger than 32 results in about 20 times
improvement in random 4 Kbytes IOPS. Third, issuing the asynchronous write requests
to the disk improves its I/O utilization. This improvement is more pronounced when a
RAID array of multiple HDDs is used rather than a single HDD because, a RAID array,
can perform multiple writes in parallel. The version of the PC method in which the batch
eviction technique is employed is called PC2.

In the hope of improving the write performance of the HDD by reducing the number
of seeks, we attempted to sort the selected victims based on their physical location in the
disk before flushing them. However, it turned out that in practice the benefit of sorting
is not enough to compensate its cost. This can be attributed to the fact that the batch
size is much smaller than the size of the second level cache. Therefore, the chance of
having many physically consecutive pages after sorting is pretty low. Moreover, according
to our admission policy, we avoid admitting pages which are related to a sequential read.
Consequently, the locality of the pages at the end of the queue tends to be low.

One drawback of PC2 is that during the batch eviction process the second level cache
cannot admit any new page from the first level cache because no free space will be available
in the SSD for admitting new pages until the entire batch is written in the HDD and
fsynced. Thus, the average latency of transactions during the batch eviction process will
be increased. However, immediately after finishing the batch eviction, the average latency
of the transactions will be significantly improved until the next batch eviction happens.
However, in-place update and read requests issued to the second level cache can still be
handled while the batch eviction is in progress. This is possible with the help of latches.
The PC2 method improves the throughput of the transaction processing at the cost of a
negligible increase in the latency of some transactions.

2.7 Experimental Results

We implemented prototypes of the PC and PC2 methods as well as the LC method in SAP
SQL Anywhere. In our implementation, the cache manager, I/O manager, checkpoint, and
recovery components of SQL Anywhere are modified.

In this section, first, we compare the transactional throughput of PC, PC2, LC, an
HDD-resident database, and an SSD-resident database. Then, we study the impact of PC
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on recovery time. Finally, we measure the ramp-up time of LC after a crash recovery to
understand how much PC wins over LC by avoiding a prolonged ramp-up period.

The objectives of the experiments presented in this section are as follows. First, we
want to compare the transactional throughput of PC with that of LC. Second, we want to
investigate the impact of the batch eviction mechanism of PC2 on transactional through-
put. Third, we want to see that under what conditions PC can achieve the transactional
throughput of an SSD-resident database. Fourth, we are interested in understanding what
factors limit the transactional throughput of PC. Fifth, we want to study the recovery
time of PC and how it is affected by the SSD cache size. Finally, we want to compare the
ramp-up time of LC with that of PC after a crash recovery.

2.7.1 Experimental Setup

To compare the transactional throughput of PC, PC2, LC, the HDD-resident database,
and the SSD-resident database, the TPC-C benchmark was used [6]. All experiments
were executed on a server with an Intel Xeon Quad-Core E5420 2.50GHz processor, a
RAID array of two 15K RPM HDD drives configured as RAID zero and a consumer
level PCIe SSD drive which is used for the second level cache. The maximum advertised
sequential throughput for read and write of the SSD drive are about 1.5 GB/s and 1.3
GB/s, respectively. The maximum random throughput for read and write of our SSD
drive are 230,000 IOPS and 140,000 IOPS, respectively. Note that these numbers are
the maximum possible numbers advertised by the manufacturer. In reality, the random
performance depends mainly on parameters like queue depth, band size (physical address
range in which the consecutive random I/Os are issued), the compressibility of data, the
ratio of reads to writes, and the size of the free space on the SSD.

2.7.2 Transactional Throughput

Figure 2.3 shows the TPC-C transactional throughput of PC, PC2, LC, SSD and HDD,
for three different databases, with 500, 1000 and 1500 warehouse and initial database
sizes of 50GB, 100GB and 150GB, respectively. In each diagram, the HDD and the SSD
curves represent scenarios in which the entire database is located on the HDD and the
SSD, respectively, and no second level cache exists. The y-axis in all diagrams represents
the number of NewOrder transactions executed per minute in the TPC-C benchmark.
This metric is conventionally known as tpmC or tpm-C. The tpmC metric is measured
by computing the average of the transaction rates over a period in which the second
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Figure 2.3: TPC-C transactional throughput under PC, PC2, LC, HDD and SSD. The
HDD and SSD refer to settings in which the entire database is located on the HDD and
SSD respectively and no second level cache is employed.
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level cache has become full, and the tpmC graph reaches a steady state. The x-axis
represents the size of the second level cache compared to the size of the database, as a
percentage. In all experiments, the size of the first level cache is consistently about 3%
of the size of the database. This way the impact of the size of the second level cache in
transactional throughput will be isolated from the impact of the size of the first level cache.
We observed that choosing larger percentages for the size of the first level cache will not
have a considerable impact on transactional throughput (tpmC metric) in our workloads3.

Each graph shows results for a different database size. In all experiments, the checkpoint
interval is set to 30 minutes. This is the maximum possible checkpoint interval suggested
by the TPC-C specification [81] and is usually used in the TPC-C benchmark report of the
commercial database vendors. In all experiments, the reported throughput is the average
throughput for two hours during the steady state. The cleaning threshold used in PC is
set to 50%.

In all graphs, the SSD curve represents the maximum possible throughput for each
workload-size, and the HDD curve represents a baseline, to be able to observe the amount of
the effectiveness of the second level cache in different methods. At all times, the throughput
of PC and PC2 is substantially better than that of LC. This is expected because, compared
to PC, in LC the checkpoints are much more I/O intensive. In addition, LC employs a
frequent cleaning process that increases the I/O contention even more. These two main
parameters have a considerable negative impact on transactional throughput of LC.

As expected, in all experiments, PC2 performs either better than or as well as PC.
Wherever the maximum throughput is achievable, PC and PC2 perform almost the same.
We measured the average transaction response time of PC and PC2, and we observed that
the difference between their average response times, in almost all experiments, is less than
1 ms, which is fairly negligible. PC2 sacrifices the response time of some transactions
to improve the overall transactional throughput. However, this sacrifice does not have a
considerable impact on the average response time.

3In general, in TPC-C workload, increasing the size of the memory buffer pool without improving the
performance of the I/O subsystem does not have a considerable impact on transactional throughput. The
TPC-C workload is a write-intensive transactional workload. In this workload, when the memory buffer
pool gets full and the evictions start, since many of the eviction candidates are dirty, the I/O bandwidth
to the stable storage becomes a performance bottleneck. Moreover, as we increase the size of the memory
buffer pool, we will need to deal with longer checkpoint times. During a checkpoint, the transactional
throughput is normally reduced. When the checkpoint time becomes longer, the transactional throughput
drops for a longer period.
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2.7.3 The Maximum Achievable Throughput

As we discussed before, employing the SSD as a second level cache makes sense when
storing the entire database in the SSD is not feasible or cost-effective. Here, one interesting
question is that if by using the SSD as a second level cache we can achieve a transactional
throughput as good as when the entire database is stored on the SSD.

Figure 2.3 shows that in the 500-warehouse experiment, PC can achieve the transac-
tional throughput of the SSD experiment, when the size of the second level cache is only
25% of the size of the database. In other words, in this workload size, instead of storing
the entire database on the SSD, we can employ an SSD cache that holds only 25% of the
database size and still achieve the same performance.

The maximum-throughput point shifts to 50% and 75% for the 1000-warehouse and
1500-warehouse experiments, respectively. We can conclude that, as the number of ware-
houses increases (as the database size gets larger), to achieve the maximum possible
throughput, we need to cache a larger fraction of the database.

To be able to explain this behavior, we measured the rate of the I/Os issued to the SSD
and HDD in each experiment, during the steady state. We noticed that in all experiments,
there is a large gap between the rate of I/Os issued to the SSD and the maximum IOPS
of the SSD. Also, we observed that, in any experiment in which the maximum throughput
is not achievable, the HDD had reached its maximum IOPS. Based on these observations,
we can conclude that, in our experiments, the SSD is never the bottleneck. Rather, the
HDD is the bottleneck.

After the second level cache becomes warm, it handles a portion of the I/O requests
that without a second level cache would have been handled by the HDD. When the second
level cache is bigger, a greater portion of those I/O requests will be handled by the second
level cache. After the second level cache gets full, the admission of the new pages from
RAM into the SSD results in the eviction of the dirty pages from the SSD into the HDD.
Suppose the rate of these extra disk I/Os as a result of evictions from the SSD is Eiops I/Os
per second. Suppose the rate of the regular disk I/Os resulting from the first and the second
level cache-misses together is CM iops I/Os per second. When CM iops + Eiops is smaller
than the maximum IOPS of the HDD, the maximum possible transactional throughput
is achievable. Otherwise, the HDD becomes the bottleneck, resulting in reducing the
transactional throughput.

In the 500-warehouse experiment, when the second level cache size is 25% of the
database size, CM iops + Eiops is smaller than the maximum IOPS of the HDD. In the
1000-warehouse experiment, the maximum possible throughput is 2 times that of the 500-

26



warehouse experiment. This is because doubling the number of warehouses also doubles
the number of terminals in the TPC-C benchmark. Therefore, the number of requested
transactions per minute is doubled as well. A higher rate of requested transactions results
in a higher I/O rate. Thus, in this experiment, when the second level cache size is 25%,
CM iops + Eiops is no longer smaller than the IOPS of the disk. In this case, to reach the
maximum throughput, we need a larger second level cache, i.e. 50%. A larger second level
cache will reduce the rate of HDD I/Os by absorbing more I/Os, making it possible to
achieve the maximum throughput.

In all experiments we performed, the I/O bandwidth of the SSD is underutilized. The
important lesson we can learn here is that the impact of the second level cache on trans-
actional throughput depends on the IOPS of the HDD. In other words, as the number of
HDDs in the disk array increases, the maximum possible throughput can be achieved by
employing a smaller second level cache. This important fact has been widely overlooked
in prior studies. For instance, the authors of LC method in their experiments have used a
large RAID array with 8 disks. The hardware acquisition cost, power consumption cost,
and operational cost of a large array of disks could be potentially much more than the cost
of the SSD. In addition, a large array of disks configured in RAID-0 is prone to component
failure. This adds even more to the total cost of ownership of the hardware. In other
words, using a large and powerful RAID array to improve the transactional throughput of
LC, somehow defeats the purpose of using SSD as a second level cache. With the budget
of a large disk array, we can buy a larger SSD and store the entire database on it.

To further confirm our argument about the impact of using a larger disk array on PC,
we repeated the 500 and 1000-warehouse experiments over a RAID array with 8 disks.
We observed that the maximum achievable throughput of PC shifts from 25% to 12.50%,
and from 50% to 25% in 500-warehouse and 1000-warehouse workloads, respectively. In
other words, in both cases, the amount of the SSD cache we will need to achieve the
maximum possible throughput is almost halved when the number of disks in the RAID
array is quadrupled.

The impact of the poor performance of the storage level (HDD) on the utilization of
the second level cache can be reduced by employing a cleaner process for the second level
cache. The cleaner process can be started during the idle I/O cycles of the system to
flush the potential future dirty victims located in the second level cache into the disk. The
potential future victims must be untouched and fresher than their disk-resident version to
be selected for cleaning. To avoid reducing the cache hit rate, the cleaned victims should
not be removed from the second level cache after being flushed into the disk.
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Table 2.1: Recovery time and recovery rate comparison before and after employing the PC
method

Elapsed time after Recovery time Recovery time Recovery time tpmC Recovery rate
the last checkpoint in HDD in PC speedup Ratio to Min speedup

1 Min 3:20 2:05 1.6X 4.6 7.36X
2 Min 5:25 3:05 1.75X 4.6 8.08X
3 Min 6:17 3:32 1.77X 4.6 8.18X

Table 2.2: Recovery time and recovery-rate comparison before and after employing the
PC method with different SSD cache sizes. In all cases the elapsed time after the last
checkpoint is 3 minutes.

Cache Size Recovery time Recovery time Recovery time tpmC Recovery rate
in HDD in PC speedup Ratio to Min speedup

6.25% 6:17 5:23 1.16X 1.32 1.54X
12.5% 6:17 4:17 1.46X 2.26 3.31X
25% 6:17 3:32 1.77X 4.6 8.18X
50% 6:17 2:53 2.17X 4.6 10.02X

2.7.4 Recovery Rate

Table 2.1 compares the recovery time of the database server with and without employing
the PC method. This experiment has been done with 500 warehouses when the second
level cache is 25 % of the database size. In PC, when the throughput is in steady state,
after 1, 2 and 3 minutes from the end of the latest checkpoint, we killed the database engine
process and measured the recovery time after the restart. We repeated the experiment 5
times, and the reported numbers are the average of the 5 trials. The maximum deviation
in recovery time is 7 seconds. When the PC is used, the transactional throughput is about
4.6 times better than when no second level cache is employed. Therefore, in the same
time interval after the latest checkpoint, the number of completed transactions when PC
is employed is about 4.6 times more than that when no second level cache is used. The
number of completed transactions has a direct impact on the recovery time. To have a fair
comparison, we need to consider the recovery-rate-speedup, rather than the recovery-time-
speedup. Recovery rate refers to the number of recovered transactions per second during
the recovery process. To compute the recovery-rate-speedup, we need to simply multiply
the recovery-time-speedup by 4.6 because the recovery rate when PC is employed is 4.6
times better than that when no second level cache is used.
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Table 2.2 summarizes the impact of the cache size on recovery-time-speedups and
recovery-rate-speedups with 500 warehouses. In all cases, when the throughput is in steady
state, after 3 minutes from the end of the last checkpoint, we killed the database engine
process and measured the recovery time after the restart. As expected, by increasing the
SSD cache size, the amount of speed-up increases. This is because when the cache size is
larger, a larger portion of the I/Os issued during the recovery process will be routed to the
SSD, rather than the HDD.

As mentioned before, in LC, the recovery process is not modified. After each restart in
LC, the content of the SSD is assumed to be clean. In other words, LC cannot benefit from
the I/O performance of the SSD during the recovery process. Therefore, the recovery time
of LC is the same as the recovery time of an HDD-resident database. Thus, we can use
the speed-ups reported in Tables 2.1 and 2.2 to compare the recovery time and recovery
rate of PC with LC as well.

2.7.5 Ramp-up Time After a Crash Recovery

Table 2.3 shows the ramp-up time of LC over different workloads when the size of the SSD
cache is 50% of the database size. Ramp-up time refers to the time that LC needs to achieve
the same transactional throughput as the one before the crash. Unlike in PC, in LC, after
the recovery process is done, the cache is empty. For LC to reach the same transactional
throughput as the one before the crash, the SSD cache should become populated again.
The process of populating the SSD cache in LC is very slow. When the second level cache
is empty, because of the high I/O contention on the HDD, the transactional throughput
is very low. Consequently, the rate at which the pages in the memory cache get dirty is
low too. In this case, the rate of eviction from the first level cache will be low as well.
Therefore, at the beginning of the ramp-up period, the warming rate of the second level
cache is very low. As the second level cache gets warmer, warming rate increases gradually.
Moreover, in LC, during the cache warming period, the cleaner process and checkpoints
add to the already high I/O load of the HDD. Besides, during the ramp-up period, some of
the dirty pages in memory get clean at checkpoints before having a chance to be admitted
to the SSD cache. All these facts contribute to the slow ramp-up time of the LC. As you see
in Table 2.3, the ramp-up time gets longer as the workload size increases. This is because
a larger workload uses a bigger cache. It takes a longer time for a bigger cache to become
fully populated.

Unlike in LC, in PC, the SSD cache is already fully populated immediately after the
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Table 2.3: Ramp-up time of LC when the Cache size is 50% of the database size

Workload Size LC Ramp-up Time in hours
500-warehouse 8.2
1000-warehouse 14.2
1500-warehouse 29

recovery process. Therefore, in PC, almost4 the same transactional throughput as the one
before the crash is immediately achievable.

2.7.6 Summary of Conclusions From the Experiments

From the experiments presented in this section, we can conclude the following:

1. In all experiments, PC outperforms LC in terms of the transactional throughput. In
some cases, the transactional throughput of PC is over 3 times higher than that of
LC.

2. In all experiments, the transactional throughput of PC2 is either slightly better than
or as good as that of PC. However, the superior transactional throughput of PC2
comes at the cost of a very minimal increase in latency of some transactions, as well as
the additional implementation complexity. Since there is no significant performance
difference between PC and PC2, we can conclude that replacing PC with PC2 is not
a good idea.

3. In PC, by using a large enough SSD cache, we can achieve a transactional throughput
as good as the transactional throughput of an SSD-resident database.

4. In experiments in which the maximum possible transactional throughput is not
achieved, the throughput is limited by the random I/O capacity of the HDD. In
those cases, the transactional throughput can be improved by employing a more
powerful HDD array.

5. PC can improve the recovery rate of the database by over an order of magnitude.
The recovery rate of the PC is improved by increasing the SSD cache size.

4The transactional throughput will be slightly lower at the beginning because it still takes some time
for the memory cache to become warm, and also because all is touched flags are reset after the recovery.
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6. After a crash recovery, LC needs a ramp-up period as long as several hours while in
PC, the SSD cache is warm immediately.

2.8 Review of Recent Literature

The PC method was originally proposed and patented in 2012. Since then, several related
techniques have been proposed. In this section, we give a brief summary of that recent
related work.

An enhanced version of LC is proposed by DeWitt et al. that uses the persistence of the
SSD to improve the recovery and cache ramp-up time after a crash or restart [28]. In this
enhanced version, three different restart mechanisms are presented. In the first method,
which is called Memory-Mapped Restart (MMR), the page directory of the second level
cache is stored in the SSD using a memory-mapped file. In the second method, which
is called Log-based Restart (LBR), the changes to the page directory are logged in the
transactional log file, and the page directory is reconstructed during the recovery using
the recorded changes. The third method which is called Lazy Verification Restart (LVR),
periodically and asynchronously flushes the page directory into the SSD, and after a restart,
the latest stable version of the page directory is used, and its contents are verified on-
demand lazily. Also, a simple technique called aggressive fill is introduced which results
in up to 7X faster ramp-up time in LC method over a TPC-C workload. When the
aggressive fill is employed, every single page HDD read request is expanded to read eight
adjacent pages. Although the proposed restart mechanism results in up to 2.8x and 1.8x
improvement in the peak-to-peak interval after a crash and a restart, respectively, the
enhanced method still suffers from the expensive checkpoints and performance degradations
as a result of the I/O activity of the I/O cleaning thread.

The Cost-Adjusted Caching (CAC) is a cost-based cache replacement algorithm for
managing the SSD cache that together with the Greedy Dual algorithm (GD2L), which
is used as a replacement policy for a memory buffer pool, aims to minimize the total I/O
cost of the workload [65, 66]. To realize this goal, reference stats should be maintained in
the memory for cached pages. Although CAC shows promising results in improving the
cache hit rate, the impact of maintaining the reference statistics in CAC on performance
when the workload gets large can be potentially high. Besides, the impact of checkpoints
in degradation of the transactional throughput in CAC is unknown. As we discussed
before, in write-intensive transactional workloads, checkpoints have a significant impact
on transactional throughput. In CAC, similar to PC, the SSD has been considered as an
extension of the disk. However, the recovery mechanism used in CAC for reconstructing the
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SSD page directory is different from that in PC. In CAC, a snapshot of the page directory
of the second level cache is stored periodically in the SSD. In order to reduce the number
of required snapshots, an area containing k low priority pages is identified as an eviction
zone on the SSD. Until the next snapshot, only the pages that fall in the eviction zone will
be selected as eviction candidates. At the recovery time, the most recent copy of the page
directory will be fetched from the snapshot log, and the eviction zone will be examined to
update the inconsistencies in the page directory. Employing an eviction zone is a trade-off
between the effectiveness of the replacement policy and the speed of checkpoints and the
recovery process.

FaCE is another proposed approach for using SSDs as a second level cache [48, 49].
FaCE is designed based on this assumption that the sequential write bandwidth of the SSD
is significantly better than its random write bandwidth. By focusing on this assumption,
FaCE tries to improve the overall I/O performance by converting the random writes to the
SSD to the sequential writes. In FaCE, a multi-version FIFO replacement policy (mvFIFO)
is employed for management of the SSD cache. Pages admitted to the second level cache
are always added to the rear of the FIFO queue, and the eviction candidates are selected
from the head. FaCE does not perform any in-place page updates. If a new version of a
page, which an older version of it already resides somewhere in the middle of the queue,
gets admitted to the SSD cache, the older version gets invalidated in the page directory.
In other words, all writes to the SSD are done sequentially.

The multi-version FIFO replacement policy has two main benefits. First, as claimed by
the authors of FaCE, converting random writes to sequential writes will significantly reduce
the write amplification factor5 in the SSD, resulting in improving its lifespan. Second,
it allows for a more efficient recovery mechanism. Because of the sequential nature of
mvFIFO, the changes in the page directory as a result of admissions, evictions, and updates
are done in consecutive addresses of the page directory, in time order. Therefore, these
changes can be checkpointed one segment at a time. At the recovery time, the entire page
directory can be recovered from the checkpoint log except for the latest segment which has
been not checkpointed. The last segment can be reconstructed by scanning a small part of
the FIFO queue that corresponds to that segment. This way, the impact of checkpointing
the page directory on I/O bandwidth will be minimal.

Employing a multi-version FIFO queue in FaCE results in a potential underutilization
of the second level cache because, at any point in time, there might exist multiple versions

5Write amplifications factor (WAF) refers to the ratio of the real physical writes performed on flash
memory blocks in the SSD to the logical writes received by the SSD controller. The WAF depends on
several parameters such as the size of writes, the locality of write and the degree of write randomness.
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of the same page in the cache. This redundancy will reduce the cache hit rate. By reducing
the hit rate of the SSD cache, I/O traffic to the HDD is increased. Consequently, compared
to other caching methods such as PC or CAC, in which a redundant cache is not employed,
in FaCE, there will potentially be higher I/O pressure on the HDD layer. Since FaCE is
not able to convert the random writes issued to the HDD into sequential writes, the extra
I/O pressure on the HDD should be compensated for by using a more powerful disk array.
Otherwise, the disk layer will potentially become a bottleneck. As we discussed in Section
2.7.3, this will defeat the purpose of using SSDs as a second level cache. The fact that
FaCE is evaluated over a RAID-0 disk array with 16 disks can support this hypothesis.
Testing this hypothesis by performing a real comparison of the transactional throughput
of FaCE with that of PC and CAC is an interesting direction for future work.

Another possible problem is that in FaCE, every database checkpoint results in the
admission of a large number of dirty pages into the FIFO queue. In a write-intensive
workload, after cache warm-up, it is very likely that many of those admitted pages already
reside in the queue, resulting in a high degree of redundancy. This redundancy can signif-
icantly reduce the cache hit rate. The impact of the checkpoint can be even higher when
the SSD cache is full, and therefore, a large number of evictions might be required to make
room for the new dirty pages admitted to the SSD.

The advent of big-memory many-core machines has brought about a flurry of research
and development into main-memory database systems in recent years [32, 70, 95] . H-
Store [88] and HyPeR [50] are examples of main-memory multi-core systems developed
in academia as research platforms. SAP HANA [86], Oracle TimesTen [58], Microsoft
SQL Server Hekaton [29], VoltDB [89], and MemSQL [85] are some of the commercial
main-memory database systems developed in recent years. By effective exploitation of
terabytes of RAM as well as a large number of CPU cores, main-memory databases easily
outperform their disk-resident counterparts. However, due to their high cost of ownership,
main-memory databases are still mostly used in specific performance-hungry use cases. In
terms of price and performance, there is a spectrum of possible database solutions. On
one side of the spectrum lies the very expensive main-memory database with the highest
performance. A fully SSD-based database is placed next with lower cost and performance.
A disk-based database which is equipped with a second level SSD cache is placed next
with even lower cost and performance. Finally, a fully disk-based database lies in the other
side of the spectrum with the lowest cost and performance. Choosing the right solution
for a specific use case depends on many parameters such as the database size, workload,
expected performance, software architecture, and the availability and cost of resources,
especially in the cloud. As the cost of the SSD and RAM decreases, choosing a solution
from the hight performance side of the spectrum becomes more affordable. However, at
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the time of writing this thesis, the disk-side of the spectrum is still extensively used in the
industry, especially when the database is very large.

An alternative to implementing a persistent second level cache inside the database
engine is to use a block layer persistent SSD cache, e.g. Fashcache [51], bcache [1], or
dm-cache [2]. The benefit of using a block layer persistent cache is that it avoids the com-
plexities associated with changing the database engine. One interesting question here is
how PC would compare with a block layer persistent SSD cache. Since a block layer persis-
tent cache works in isolation from the database engine, it cannot benefit from some useful
information accessible by the database engine to improve the effectiveness of the caching
scheme. For instance, the admission policy in PC accepts only random pages. Whether
a specific page residing in the first level cache of the database has been read randomly
or sequentially is know only by the database engine. A block layer cache will admit all
pages regardless of whether they are random or sequential, resulting in underutilization of
the persistent cache. As another example, in PC, at checkpoint time, for every dirty page
residing in the first level cache, if a version of that page is already residing in the second
level cache, it is flushed there, otherwise it is flushed to the HDD. This policy cannot be
applied when a block layer cache is used because a block layer cache has no idea that
a checkpoint is in progress. Therefore, it will admit all pages to the second level cache,
resulting in excessive evictions from the second level cache to the HDD to make room for
new admissions to the second level cache. Because of the low I/O bandwidth of the HDD,
these excessive evictions will result in a significant degradation in transactional throughput
during the checkpoints. Kim et al. has shown that the throughput under an OLTP work-
load actually degrades by 79.1% with flashcache, compared to the baseline performance
[52]. An experimental comparison of PC with the existing block layer caching schemes is
an interesting avenue for future work.
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3.1 Overview

No matter what type of storage device is used, a natural way of improving I/O throughput
is to perform I/Os sequentially1. In use cases in which sequential I/O is not possible, the
only remaining option is random I/O, i.e. performing small I/Os from/to non-consecutive
addresses. It is known that the throughput of random I/O in HDDs is very poor because
HDDs are mechanical devices in which a physical head needs to move from one cylinder to
another in order to perform random I/Os. These mechanical movements are slow. More-
over, in HDDs, there is almost no chance of performing more than one I/O at a time. In
contrast, there are no moving parts in SSDs. Therefore, both latency and throughput of
random I/O in SSDs are much better than those in HDDs. In addition, modern SSDs can
substantially benefit from I/O parallelism, the ability to perform multiple I/Os simultane-
ously. Chen et al. have studied the substantial impact of parallelism in I/O performance of
SSDs [21]. A modern SSD is capable of utilizing multiple levels of parallelism: plane, chan-
nel, package, and die levels. Almost all modern SSDs support native command queuing
mechanisms (NCQ), which were first introduced in the SATA II standard [24].

These capabilities allow the SSD to accept multiple concurrent I/O requests or a burst
of successive I/O requests from the operating system. The received I/O requests are queued
up and the host interface will reorder them to make a favorable I/O pattern for the internal
parallel organization of the SSD. In other words, increasing the I/O queue depth, defined
as the number of outstanding I/Os in the I/O queue at any point of time, of modern SSDs
will give them a chance to exploit their own internal parallel organization to improve the
I/O throughput. The I/O queue depth can be increased by issuing multiple I/Os at the
same time. Alternatively, issuing I/O requests with a rate faster than the rate of handling
I/O requests by the device can increase the I/O queue depth.

Experiments show that if we increase the I/O queue depth of SSDs, we can observe
a significant improvement in random I/O throughput. Figure 3.1 shows the impact of
increasing queue depth on the throughput of 4 Kbytes random reads in the SSD and HDD.

1A sequential I/O pattern can be achieved by either a few large I/Os or many small I/Os with consec-
utive addresses. Each I/O request involves some processing overhead including the time it takes to receive
the requests and do the required address translations. Therefore, performing fewer but larger I/Os has a
lower overhead, and it usually results in a better throughput compared to performing many small I/Os. In
some storage devices, the controller of the device can look at the I/O queue to see if there are many small
consecutive I/Os, and then convert them to a single large I/O request which can be processed more effi-
ciently. However, even combining several small I/Os has some extra overhead that makes the throughput
of a single large I/O better than multiple small I/Os. Moreover, the controller cannot wait, more than a
particular amount of time, for the next small I/Os to come and so the size of the final combined large I/O
is limited. Generally, the I/O throughput improves by increasing the I/O size up to a specific threshold.
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Figure 3.1: Impact of queue depth on throughput of random 4KB reads on the SSD and
HDD

In this experiment, a 240GB OCZ RevoDrive 3 X2, which is a consumer-grade PCIe-based
SSD, and a 500GB Western Digital 7200 RPM SATA III HDD, which is a commodity 7200
RPM HDD, are used. To increase the I/O queue depth in the random 4K read workload
multiple threads are used. These threads send synchronous read requests to the storage
device.

By increasing the SSD queue depth to 32, the throughput of random I/O improves by
a factor of 20. This is roughly 51.7% of the throughput of the sequential I/O in this SSD.
After that point, no further tangible throughput improvement is observed. However, on
the HDD, by using a queue depth of 32, the throughput improves by a factor of only 2.642.
This is only 1.3% of the throughput of sequential I/O in the HDD. This experiment shows
that unlike on the HDD, on the SSD, if we can increase the queue depth of random I/O, an
I/O throughput very close to that of sequential I/O is achievable. In other words, unlike
in the HDD, in the SSD, the performance gap between sequential and random I/O can be
significantly reduced by exploiting I/O parallelism.

Pelley et al. argue that an SSD-oblivious query optimizer is unlikely to make significant
errors in choosing the best access method [78, 79]. We will show that when the I/O paral-
lelism is employed in the execution of the access methods, this argument is no longer true.
Traditionally, most database query optimizers are designed by considering the substantial
disparity between the runtime of random and sequential I/O in HDDs. Moreover, con-

2This little improvement in the HDD is as a result of reordering the I/O requests in the I/O queue of
the device controller to reduce the number of movements between cylinders or to combine consecutive I/O
requests.
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ventionally, query optimizers assume that there is no considerable performance difference
between parallel and non-parallel I/O. These assumptions have been proven to work very
well over decades of using HDD-based storage subsystems. However, by moving from the
HDD to the SSD, relying on the same assumptions will result in sub-optimal optimization
decisions. In this chapter, we will study the impact of exploiting I/O parallelism on query
processing and optimization.

Lee et al. [61] studied the impact of inter-query parallelism in exploiting the parallel
I/O capability of SSDs. Roh et al. [82] proposed a new approach for executing multiple
index scans at the same time. They showed that their proposed method increases the I/O
queue depth of the SSD and consequently improves the total execution time. Their method
exploits the inter-query parallelism to increase the I/O queue depth. To the best of our
knowledge, prefetching and intra-query parallelism have been not studied as methods for
exploiting the I/O parallelism in SSDs. In this chapter, we will see how these techniques
can be employed to utilize the parallel I/O capability of SSDs.

While there are some studies showing approaches to improve I/O parallelism in database
systems, the query optimization problem has not been fully addressed in this context. In
particular, a query optimizer that operates on a range of storage technologies (HDD, RAID
HDD, SSD, and even future technologies) must have a way to determine likely benefit of
I/O parallelism in order to distribute parallelism opportunities among query operators. In
this chapter we propose a novel, general, and dynamic I/O cost model for accurate I/O
cost estimation of those database operators which can benefit from I/O parallelism. This
model, dynamically defined by a calibration process, accurately summarizes the behavior of
the storage device, no matter how much it can benefit from I/O parallelism. The proposed
model has been implemented in SAP SQL Anywhere. Experiments show that leveraging
the new model in the query optimizer results in selecting execution plans with up to 20
times shorter runtime.

3.2 Summary of Contributions

The contributions of this study can be summarized as follows:

1. Characterizing the impact of I/O parallelism in database scan operators, showing
how the decision made by the query optimizer can be affected when parallel I/O is
employed.
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2. Showing that, contrary to popular belief, when the I/O parallelism is employed in the
execution of the access methods, the query optimizer must be aware of the benefit of
I/O parallelism in the underlying storage device.

3. Demonstrating that the intra-query parallelism and the effective use of prefetching
can be used as two alternative approaches for exploiting the I/O parallelism of SSDs
in index scans, to eliminate the limitations of the existing approaches.

4. Introducing a novel, general, and dynamic I/O cost model for accurate I/O cost
estimation of those database operators which can benefit from I/O parallelism.

5. Introducing a practical method for initializing, calibrating and employing the pro-
posed cost model.

3.3 Background

Choosing the optimal access method for a given query is one of the fundamental and
classic problems in database systems. This problem has been studied since 1970 [33, 84].
Index scan and full table scan (hereafter, IS and FTS, respectively) are two traditional
access methods which are implemented in all database systems3. When a relevant index is
available, the database engine traverses the index to find and fetch only the required rows
that satisfy the given scan predicate. Unlike IS, in FTS all rows within a table are fetched
and scanned one-by-one to find those rows which satisfy the given predicate.

FTS suffers from unnecessary I/Os because it must read all table pages, whether rele-
vant or not. In addition, for any retrieved page, all rows within the page must be evaluated
against the given predicate. This results in the execution of extra CPU instructions. This
problem becomes more pronounced when there are a large number of rows which are re-
jected by the predicate. However, FTS benefits extensively from an efficient sequential
I/O pattern. Unlike FTS, in IS, with the guidance of an index, only relevant table pages
are fetched. In addition, it is not necessary to scan all rows within every fetched page.

3In this chapter, wherever we are talking about index scan we are referring to non-clustered index scan.
An index can be clustered, non-clustered, or partially clustered. In a clustered index, the physical order
of rows in the table matches the ordering of the indexed key. Although using a clustered index is very
efficient, creating clustered index is not a common practice, due to the extra overhead of maintaining the
physical order in update-intensive workloads. Moreover, for a given table, only a single clustered index
can be defined while more than one non-clustered index may exist. In a partially clustered index some
statistics are computed and maintained to indicate how close the index is to a clustered index. These
statistics are employed to improve the accuracy of I/O cost estimation.
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Therefore, the number of CPU instructions executed for an index scan could be signifi-
cantly smaller. However, index scan suffers from an expensive random I/O pattern. Due
to the substantial disparity between sequential and random I/O in hard disk drives, the
significantly more expensive I/O in index scan plays an important role in preferring FTS
over IS over a large selectivity4 range. Another disadvantage of the index scan is that in
this method when the selectivity is large, all the table pages might be fetched and it is
also very likely that the same table pages will be retrieved over and over again. When the
memory buffer pool is small, these repetitive retrievals result in extra disk I/Os. There-
fore, for a large enough selectivity, the total number of pages fetched using IS can be even
greater than those fetched using FTS.

Traditionally, it is known that the selectivity break-even point between IS and FTS
occurs at around 10 percent [34]. It means that when less than 10 percent of the rows in
a table satisfy a given predicate, then it is better to use an IS to scan the table. However,
recent studies [78, 79], as well as our own experiments, show that on today’s modern storage
devices this number is much smaller than 10 percent.

The selectivity break-even point depends on two major parameters: the size of memory
buffer pool, and the number of records per page. Having a larger memory buffer pool
improves the performance of the index scan as it is more likely that the re-referenced table
pages can be fetched from the memory buffer pool rather than the disk. If the number
of rows per page increases (or equivalently the row size gets smaller) the performance of
index scan becomes worse. Hence, the break-even point shifts toward smaller selectivities.
When a page contains only a single row, the number of rows retrieved is equal to the
number of fetched pages. However, as the number of rows per page increases, even at
small selectivity, the number of pages that must be fetched quickly approaches 100% of the
table pages. When the available memory is small, this number goes beyond 100% of the
table as some pages might be fetched multiple times. One study [94] proposes an analytical
formula for the expected number of pages retrieved, given the size of the table, number of
rows per page, and selectivity. Many commercial optimizers use their own formulas for the
cost model of IS and FTS.

Some modern database management systems, like SAP SQL Anywhere, support intra-
query parallelism [39, 91], which involves having more than one CPU core handle a single
query simultaneously so that portions of the query result are computed in parallel on multi-
processor hardware. Parallel full table scan and parallel index scan (hereafter, PFTS and

4Selectivity of a SQL query in the form of ”SELECT * FROM T WHERE P” refers to the percentage
of rows in T that satisfy the predicate P. Selectivity estimation in database management systems is a
well-studied problem[20, 34, 80].
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Figure 3.2: Parallel full table scan (PFTS) in SAP SQL Anywhere. Each color represents
a different worker.

Leaf NodeLeaf Node

Index

Figure 3.3: Parallel index scan (PIS) in SAP SQL Anywhere. Each color represents a
different worker.

PIS, respectively) are two basic algebraic operators that can be executed in parallel in
SAP SQL Anywhere. Parallel hash join, parallel nested loop join, parallel hash filter and
parallel hash group by are some other operators in SQL Anywhere for which intra-query
parallelism is supported. The focus of our study is on PIS and PFTS.

Figure 3.2 and Figure 3.3 show a schematic view of PFTS and PIS operators, respec-
tively. In PFTS, each worker fetches a table page and starts processing the rows within
that page. The workers fetch table pages one by one. As soon as a worker has finished
processing all rows within a page, it fetches the next available page and starts processing
it. To improve the I/O performance, instead of reading pages one by one from disk, a large
block consisting of several consecutive pages is read at a time. A prefetching mechanism
is employed that guarantees prefetching up to n blocks ahead of the current page which
is being currently processed, asynchronously, where by default n is two times the number
of workers used in PFTS. Therefore, when a worker requests the next available page, the
page might be already in memory buffer pool.

PFTS is a CPU intensive operator. CPU utilization during a PFTS is usually close to
100%. Because of the sequential I/O pattern and efficient prefetching mechanism in PFTS,
CPU will never wait for I/O. The only exception is when the number of CPU cores is so
high that the storage device reaches its maximum possible bandwidth. In that case, the
CPU is blocked for I/O, and the CPU utilization goes below 100%.

In PFTS, especially on the SSD, the I/O queue depth is usually smaller than the number
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of workers. That is because in PFTS the speed of processing pages is usually lower than
the speed of fetching pages from disk into memory. In other words, to increase the I/O
queue depth, more CPU cores are required.

In PIS, one worker traverses the index from root to leaf level and finds the range
of leaf pages which must be accessed. Then, leaf pages are retrieved and processed by
multiple workers one by one. Each leaf page consists of (key, row id) tuples. Each thread
retrieves an index leaf page, and then goes over all row ids in it one by one and retrieves
the corresponding table page for each row id. By profiling the I/O queue depth of the
SSD during the execution of the PIS operator using n workers, a queue depth of n is
clearly observable. Since the time interval between issuing consecutive I/O requests by
each worker is much shorter than the I/O latency of the storage device, at any point of
time, during the execution of PIS, the number of outstanding I/Os will be n. This pattern
is observable in all cases except in very selective queries in which the number of leaf pages
which are required to be retrieved is smaller than the number of workers. Thus, the I/O
pattern of PIS with parallel degree5 n is the parallel random I/O with a constant queue
depth of n.

Unlike in PFTS, in PIS the pages are not read from disk in multi-page blocks. That
is because, unlike in PFTS, in PIS the pages needed to be fetched are not necessarily
consecutive unless the index is clustered.

3.4 Characterizing the Impact of I/O Parallelism in

Scan Operators

In this section, we characterize the impact of I/O parallelism in scan operators in SAP
SQL Anywhere. We will demonstrate how the query optimizer’s choice for the best access
method is affected by the exploitation of the parallel I/O by the IS, FTS, PIS, and PFTS
access methods. In particular, we explore the magnitude of the shift from non-parallel to
parallel selectivity break-even points in different configurations. Non-parallel and parallel
selectivity break-even points refer to particular points in the selectivity range in which the
runtime curve of the IS access method crosses the FTS runtime curve, and the runtime
curve of the PIS access method crosses the PFTS runtime curve, respectively.

The main goal of the experiments presented in this section is to show why the query
optimizer must be aware of the impact of I/O parallelism on the underlying storage device.

5Parallel degree of a database operator is defined as the number of workers used for the parallel execution
of that database operator.
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Table 3.1: Experimental configurations
Experiment Table Rows per page Device Memory buffer pool Table Size

E1-HDD T1 1 HDD 5% 1.9 GB
E1-SSD T1 1 SSD 5% 1.9 GB

E33-HDD T33 33 HDD 5% 1.15 GB
E33-SSD T33 33 SSD 5% 1.15 GB

E500-HDD T500 500 HDD 5% 781 MB
E500-SSD T500 500 SSD 5% 781 MB

As discussed in Section 3.3, intra-query parallelism in PIS and PFTS is one way to increase
the I/O queue depth. We will also demonstrate how an effective prefetching mechanism
can increase the I/O queue depth in index scans.

3.4.1 Experimental Setup

As mentioned in Section 3.3, the number of rows per page and the size of the available
memory buffer pool are two important factors in determining the position of the selectivity
break-even point. In order to consider the impact of the number of rows per page, we fixed
the size of memory buffer pool and performed three sets of experiments with different
numbers of rows per page. In all experiments, the amount of buffer pool memory is about
5% of the size of the table.

The first, second and third set of experiments are performed on tables T1, T33, and
T500, respectively. Tables T1 and T500 represent two extreme cases for studying the
impact of a very large and very small row size in the performance of access methods. T33
represents a case in between which represents a non-extreme case. Each set consists of 2
experiments. The first one uses an HDD and the second one uses an SSD. The numbers
of rows in T1, T33 and T500 are 500,000, 10,000,000, and 100,000,000, respectively. The
sizes of T1, T33 and T500 are 1.9 GB, 1.15 GB, and 781 MB, respectively. Note that, since
the relative size of the memory buffer pool to the table in all experiments is constant (5%),
our experimental results do not depend on the table size. In our experiments, we are only
interested in selectivity break-even-points. A configuration summary of all experiments is
given in Table 3.1.

In all experiments the following query is used:

SELECT MAX(C1) FROM Ti WHERE C2 BETWEEN low AND high (3.1)

where low and high are used to control the selectivity. Tables T1, T33, and T500 include
columns C1 and C2 plus some additional columns. The additional columns are used as
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padding to adjust the target row size. A non-clustered index is created on C2. No index is
created on C1. The data type of all columns is integer and the values in each column are
a random permutation of the integers in [1,n], where n is the number of rows in the table6.
All experiments have been done on a machine with a quad-core Xeon W3530 2.80GHz
CPU, a 7200 RPM hard disk drive, and a consumer level PCIe SSD drive. The maximum
advertised sequential throughput for read and write of the SSD drive are about 1.5GB/s
and 1.3GB/s, respectively. The maximum random throughput for read and write of our
SSD drive are 230K IOPS and 140k IOPS, respectively. These numbers are the maximum
possible numbers. In reality, the random I/O performance depends mainly on parameters
like queue depth, band size (physical address range in which the random I/Os are issued),
the compressibility of data, the rate of reads to writes, and the size of free space on the
SSD.

3.4.2 Experimental Results

In Figure 3.4, diagrams (a), (b), (c), (d), (e), and (f) represent experiments E1-HDD,
E1-SSD, E33-HDD, E33-SSD, E500-HDD, and E500-SSD, respectively (see Table 3.1). In
all diagrams, the x-axis represents a selectivity range. The selectivity range and its scale
in each diagram is different. The selectivity range in each experiment is chosen such that
it covers both parallel and non-parallel break-even points. In each diagram, the y-axis
represents the total runtime of the execution of the Query 3.1. Each curve shows the
execution time of the query executed using a different access method. PIS32 and PFTS32
refer to PIS and PFTS with a parallel degree of 32, respectively. To improve the readability
of the diagrams, the curves related to parallel degrees 2, 4, 8, and 16 are omitted from all
diagrams. In addition, to improve the clarity of the graphs we have replaced all curves with
their corresponding best fit curves. In each diagram, the parallel and non-parallel break-
even points are indicated by green and red circles, respectively. In all graphs, the amount
of error, defined as possible speedup after considering the parallelism, is represented using
a red curve. For any selectivity, the error is computed by dividing the execution time of
the best non-parallel access method by that of the best parallel access method. In each
graph, the y-axis on the right side of the graph shows the error (possible speedup) range.
The minimum, maximum and range of y-axises in all graphs are similar. This makes the
inter-graph comparisons easier.

6To generate a random permutation, we start with a sorted array of keys in which key[i]=i (for i=1 to
n). Then, for each k (k = 1 to n-1), using a uniform pseudo-random generator, we generate an integer r
between k and n, and we swap key[k] with key[r].
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(a)E1-HDD, one row per page (b)E1-SSD, one row per page

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

0
.0

0
0

1
 

0
.0

1
 

0
.0

2
 

0
.0

3
 

0
.0

4
 

0
.0

5
 

0
.0

6
 

0
.0

7
 

0
.0

8
 

Er
ro

r 
(P

o
ss

ib
le

 S
p

e
e

d
u

p
) 

T
im

e
 (

Se
co

n
d

s)
 

Selectivity % 

NP-BEP 

P-BEP 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

0
.0

0
1

 

0
.2

 

0
.4

 

0
.6

 

0
.8

 

1
 

1
.2

 

1
.4

 

1
.6

 

1
.8

 

2
 

2
.2

 

2
.4

 

2
.6

 

2
.8

 

3
 

3
.2

 

3
.4

 

3
.6

 

3
.8

 

4
 

4
.2

 

4
.4

 

4
.6

 

4
.8

 

5
 

5
.2

 

5
.4

 

5
.6

 

5
.8

 

Er
ro

r 
(P

o
ss

ib
le

 S
p

e
e

d
u

p
) 

T
im

e
 (

Se
co

n
d

s)
 

Selectivity % 

NP-BEP 

P-BEP 
 

(c)E33-HDD, 33 rows per page (d)E33-SSD, 33 rows per page
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(e)E500-HDD, 500 rows per page (f)E500-SSD, 500 rows per page

Figure 3.4: Runtime of Query 3.1 using IS, FTS, PIS32 and PFTS32 access methods over
tables T1, T33 and T500 on the HDD and SSD. In each graph, the red and green circles
indicated the non-parallel and parallel break-even points, respectively.
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Table 3.2: Summary of non-parallel and parallel break-even points on the HDD and SSD
in different experiments. NP- refers to the crossing point of IS and FTS, and P- refers to
the crossing point of PIS32 and PFTS32

Rows per page NP-HDD P-HDD NP-SSD P-SSD
1 0.55% 1.4% 12% 46%
33 0.02% 0.05% 0.55% 2.05%
500 0.0045% 0.005% 0.11% 0.5%

Table 3.3: Summary of shifts in selectivity break-even points in different experiments. NP-
refers to the crossing point of IS and FTS, and P- refers to the crossing point of PIS32 and
PFTS32

Rows per page HDD-SHIFTNP→P SSD-SHIFTNP→P NP -SHIFTHDD→SSD P -SHIFTHDD→SSD

1 0.85% 34% 11.45% 44.6%
33 0.03% 1.5% 0.53% 2%
500 0.0005% 0.39% 0.1055% 0.495%

Before analyzing the experimental results, for the sake of clarity, let’s make some defi-
nitions.

• HDD-SHIFTNP→P refers to the amount of shift (in percentage) from non-parallel
to parallel selectivity break-even point in the HDD

• SSD-SHIFTNP→P refers to the amount of shift (in percentage) from non-parallel
to parallel selectivity break-even point in the SSD

• NP -SHIFTHDD→SSD refers to the amount of shift (in percentage) from non-parallel
selectivity break-even point in the HDD to that in the SSD

• P -SHIFTHDD→SSD refers to the amount of shift (in percentage) from parallel selec-
tivity break-even point in the HDD to that in the the SSD

All non-parallel and parallel selectivity break-even points are summarized in Table 3.2.
All the shifts in selectivity break-even points (as defined above) are summarized in Table
3.3. The summary of our observations from Figure 3.4 and Tables 3.2 and 3.3 are as follows:

1. In all graphs, there exists a selectivity range in which the amount of error is larger
than 1.
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2. In all SSD-based graphs, i.e. graphs (b), (d), and (f), for the entire selectivity range,
the amount of error is larger than 3. Even in graphs (c) and (e) the amount of error
in the entire selectivity range is larger than 1.

3. In HDD-based experiments, the maximum amount of error is 2.62, and the maximum
error occurs only in a very narrow selectivity range.

4. In SSD-based experiments, the minimum and maximum errors are 3.03 and 19.29,
respectively.

5. Compared to HDD-based experiments, in SSD-based experiments, the selectivity
range in which the amount of error is larger than its minimum is significantly wider.
This selectivity range becomes wider as the number of rows per page is reduced. For
instance, in graph (b), for all selectivities smaller than 46% the amount of error is
larger than 3. As the selectivity decreases, the amount of error increases and reaches
to over 16 in selectivities close to zero.

6. HDD-SHIFTNP→P , SSD-SHIFTNP→P , NP -SHIFTHDD→SSD and
P -SHIFTHDD→SSD are all inversely proportional to the number of rows per page.

7. No matter how many rows there are in each page, SSD-SHIFTNP→P is larger than
HDD-SHIFTNP→P . This difference is more pronounced as we reduce the number
of pages per row.

8. No matter how many rows there are in each page, P -SHIFTHDD→SSD is larger than
NP -SHIFTHDD→SSD. This difference is more pronounced as we reduce the number
of pages per row.

From the above observations, we can conclude that, in an SSD-resident database, a
parallel-I/O-oblivious query optimizer may make decisions with an execution time more
than 19 times worse than the optimum decision. We can also conclude that, compared
to the HDD, in the SSD, the range of selectivities in which a parallel-I/O-oblivious query
optimizer is prone to significant errors is much wider. This is contrary to the findings of
Pelley et al. [78, 79], mainly because they have neglected to consider the impact of I/O
parallelism in their analysis.

3.4.3 Employing Prefetching

In Section 3.3, we described how the I/O queue depth in index scans can be increased using
intra-query parallelism. Each worker thread devotes a portion of the system resources, e.g.
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Figure 3.5: Index scan runtime with different parallel degrees when prefetching is enabled
in each worker. Each curve represents a different parallel degree

the available memory, to itself. The total number of worker threads is therefore limited. If
one query consumes a large number of available worker threads then other queries might not
be able to start. This will reduce the concurrency of the system. Moreover, coordination
and synchronization of threads introduces extra overhead. Thus, a non-parallel plan is
usually preferable to a parallel query plan when their estimated costs are close to each
other.

As mentioned before, because of the low performance of random I/O, the index scan is
not a CPU intensive access method. While we would like to generate a high queue depth
to exploit I/O parallelism, doing so with a large number of worker threads can be wasteful.
An alternative approach is to employ asynchronous prefetching.

We implemented prefetching in the index scan operator of SAP SQL Anywhere, with
each of W workers prefetching up to P pages that are expected to be required in the near
future. In this case, the expected peak queue depth is WP . For the sake of simplicity, we
only prefetch table pages referenced by a single index leaf page. As a worker gets closer to
the last page which is referenced by a leaf index page, the number of prefetched table pages
for that worker is reduced until it moves to another index leaf page. Since the number of
(key, row id) tuples in each index leaf page is typically large, this simplification does not
have a large impact on the overall runtime of the index scan.

One interesting question here is the extent to which intra-query parallelism can be
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replaced by the prefetching method we described above. To answer this question we per-
formed an experiment. Figure 3.5 shows the impact of prefetching on index scans with
different parallel degrees. Parallel degree refers to the number of workers used to execute
the index scan. In this experiment, a range index scan over a large table with 80 million
rows has been performed. The number of rows in each page is 33. Each curve represents
the execution of index scan with a different number of workers. The x-axis indicates P ,
the number of prefetching requests issued by every individual worker. The y-axis shows
the total execution runtime. In this experiment, the selectivity of the predicate is 0.03%.

Consider two different executions of the index scan such that in the first one W is 0 and P
is n and in the second one, W is n and P is zero. Intuition suggests the same execution time
in these two cases. However, this is not the case. In other words, intra-query parallelism
cannot be completely replaced by prefetching7. That is mainly because of the mentioned
simplification we made in the implementation of prefetching which results in an imperfect
overlapping of I/O and CPU. Nevertheless, the good news is that by combining prefetching
with intra-query parallelism, by using fewer workers, we can achieve a runtime even better
than that in sole intra-query parallelism. For example, as depicted in Figure 3.5, at W=4
and P=32, the runtime is 1.62 seconds. This runtime is about 33% better than the runtime
when W is 32 and P is zero (2.11 seconds). In other words, by exploiting prefetching in
intra-query parallelism, we cannot only reduce the number of required workers but also
achieve a better execution time.

3.4.4 Summary of Conclusions From the Experiments

From the experiments presented in this section we can conclude the following:

1. In SSDs, increasing the I/O queue depth plays an essential role in the I/O cost
estimation of database access methods.

2. Increasing the I/O queue depth in SSDs can result in a considerable shift in the
selectivity break-even point of database access methods. The query optimizer must
be aware of this shift. Otherwise, it would end up choosing plans with much worse
execution time than the optimum plan.

7The only exception here is when W is 0 and P is 2 which its runtime is better than when W is 2 and P is
0. This exception can be explained as follows. Intra-query parallelism has some extra overhead for worker
synchronization. The cost of this extra overhead will discount the benefit of parallelism. When there
are only 2 workers, the impact of this extra overhead is enough for seeing a worse runtime in intra-query
parallelism compared to prefetching. As we start using more than two workers, the benefit of parallelism
increases more, and the impact of the extra overhead will become proportionally lower.
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3. Intra-query parallelism and prefetching are two mechanisms that can be employed to
generate a higher I/O queue depth in index scan. The combination of these methods
can result in a better I/O utilization with a lower negative impact on concurrency.

3.5 Queue Depth Aware Disk Transfer Time Model

In Section 3.4 we observed that the selectivity break-even point faces a significant shift
when parallel access methods are employed on the SSD. Now, the question is how we can
make the query optimizer aware of the potential benefit of I/O parallelism and its impact
on the I/O cost estimation of the query plans.

3.5.1 DTT Model

SAP SQL Anywhere employs an I/O cost model called the disk transfer time (DTT)
model to estimate the cost of I/O operations [8, 15, 16]. The DTT model summarizes disk
subsystem behavior with respect to an application. The DTT model is a function DTT (B)
that takes the band size B as input and returns the amortized cost of reading one page
randomly within band size B. Band size is the size of a contiguous disk area (in number
of pages8) from/to which the random I/Os are going to be issued.

In the DTT model, a band size of 1 represents a sequential I/O pattern. In a DTT
model calibrated for a hard disk drive, increasing the band size results in a significant
increase in I/O cost. When the band size is larger, it will span more cylinders on the disk.
Consequently, it is more likely that for every retrieval, the disk arm needs to be moved
from one cylinder to another, resulting in higher overall seek time. By calibrating and
using the DTT model, just by knowing the band size in which a database operator is going
to perform its I/Os, we can have a fairly accurate estimate of the amortized cost of each
individual page I/O.

Figure 3.6 shows DTT models of a consumer-level SSD and HDD. In the HDD, the
difference between the minimum and maximum DTT values is about 115 times while on
SSD this difference is less than 3 times. Although an SSD has no moving parts, the
band size still has an impact on I/O cost. The impact of band size in the SSD depends
on its internal architecture. Clustered page size and cache effects in modern SSDs can

8The page size is determined at the creation time of a database schema. Most database systems allow
different page sizes for different database schemas. The DTT model is calibrated and stored for every
created database schema separately.

50



0

2000

4000

6000

8000

10000

12000

1 200 800 3200 2M 4M 8M

C
o

st
 (

m
ic

ro
se

c
o

n
d

)

Band Size

DTT on HDD

0

50

100

150

200

250

300

350

1 200 800 3200 2M 4M 8M

C
o

s
t 

(m
ic

ro
s
e

c
o

n
d

)

Band Size

DTT on SSD

Figure 3.6: A sample DTT model for the HDD and SSD.

contribute to this impact. Suppose the clustered page size of the SSD is 128 Kbytes while
the database page size is 4 Kbytes. Then, to read a 4 Kbytes database page a 128 Kbytes
cluster is read into the internal buffer pool of the SSD. Thus, if the next requests fall into
the same clustered page, the latency of fulfilling those requests will be reduced as they
are already in the buffer pool of the SSD. Moreover, some modern SSDs benefit from an
internal prefetching mechanism. The smaller the band size is, the higher is the likelihood
of the usefulness of the prefetching mechanism in improving the I/O throughput. As the
band size becomes bigger, the likelihood of accessing the prefetched pages in the internal
buffer pool of the SSD, before they get evicted, will be reduced.

The DTT model can be calibrated easily for any particular hardware at any time.
This allows the database optimizer to be adapted to the new hardware and perform more
accurately after calibration. This eliminates the trouble of using inaccurate hardcoded
parameters which are tuned ahead of time and used for any deployment of the database.

3.5.2 QDTT Model

Although the DTT model works very well for modeling the I/O cost of commodity hard
disk drives, it is not accurate enough for modeling the behavior of modern storage devices
such as solid state drives. This is because the DTT model does not capture the impact of
queue depth. This will result in inaccurate optimization decisions when devices with high
parallel I/O capability (like SSDs) are employed.

In order to solve this problem, we have introduced an extension of the DTT model which
considers the I/O queue depth as well as band size. The new model is called queue-depth-
aware disk transfer time (QDTT) [36, 37]. Unlike the DTT model, the QDTT model is a
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function that takes two parameters, band size and queue depth, and returns the amortized
cost of a random I/O within the given band size, when the queue depth of the storage
device is equal to the queue depth. For database operators which can benefit from I/O
parallelism, this new model provides a much more accurate estimation of the I/O cost. It
is clear that this model will be more beneficial when the data are located on an SSD. For
hard disk drives, the QDTT model maintains the same functionality as the DTT model.
Therefore, the new QDTT model can be considered as a generalization of the DTT model.

Although both DTT and QDTT models are used in a similar way by the query op-
timizer, the interpretation of the value they return is slightly different. What the DTT
model returns is the estimated I/O latency of a single I/O. However, what QDTT model
returns is not exactly the I/O latency of an individual I/O. QDTT(band size, queue depth)
takes into account the parallel I/O capability of the device. Therefore, the returned value
by QDTT is smaller than the real I/O latency of each individual I/O. Let’s clarify this by
an example. Assume the query optimizer knows a database operator will read 100 pages
randomly from a file that spans 2000 pages. To compute the time it takes to perform all
200 I/Os using the DTT model, the query optimizer multiplies 200 by DTT (2000). Here
it is assumed that the latency of each individual I/O is estimated as DTT (2000). Now
assume that the query optimizer knows that the database operator is executed using a
technique that increases the I/O queue depth to 32 during the execution (e.g. PIS). In
this case, the query optimizer still estimates the total I/O time of all 200 pages by multi-
plying 200 by QDTT (2000, 32). However, here, QDTT (2000, 32) is smaller than the I/O
latency of each individual I/O because when the queue depth is 32, multiple I/Os will be
fulfilled in parallel. Note that when k I/Os are fulfilled in parallel in n seconds, then the
I/O latency of each I/O will be close to n seconds but the amortized cost of each I/O is
n/k. That is why, instead of I/O latency, in this chapter, we have used amortized cost as
a universal term for interpreting the return value of both DTT and QDTT models. For
further clarification please see Section 3.5.5.

Figure 3.7 shows a calibrated QDTT model of an SSD drive and an HDD drive9. Each
curve represents a different queue depth. As it is shown, by increasing the queue depth the
amortized cost of one I/O (in microseconds) decreases significantly. This impact is clearly
more pronounced in the SSD.

A calibrated QDTT model helps the optimizer to hide the internal complexities of the
underlying storage subsystem for I/O cost estimation. The only things the optimizer needs

9The QDTT model is a model with a two-dimensional input and a one-dimensional output. A natural
method for visualizing such models is using a 3D graph. For the sake of clarity of presentation, we decided
to flatten the 3D graph and convert it to a 2D graph in which each curve represents a different queue
depth.
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Figure 3.7: A sample QDTT model for the HDD and SSD.

to know are the band size and queue depth. The QDTT model will take care of the rest.

3.5.3 Experimenting with QDTT Model

Here we would like to perform some experiments to see the impact of using the new model
in the query optimizer. In the cost estimation function of PIS and PFTS operators, there
is a call to the DTT function. The cost estimation function first estimates the band size
on disk from which the physical I/O fetches will be issued. This band size will be sent
to the DTT model as an input parameter, and the DTT model will return the amortized
cost of reading a page randomly within the given band size. Then, the number of pages
needed to be retrieved during the scan is estimated. By multiplying this number by the
amortized cost of reading a single page, the total I/O cost is calculated. We changed the
cost estimation functions of PIS and PFTS so they use QDTT model instead of DTT
model. This time, in addition to band size, the expected queue depth of the operator will
be passed to the model as well. The calibrated QDTT model must know the expected
queue depth, and it will return a more accurate estimated I/O cost. By having a more
accurate estimation of the I/O cost, the optimizer will be able to make a better choice
between PIS and PFTS operators. When the optimizer is using the DTT model, it may
not realize that there might be some benefits (in terms of I/O cost) from executing the
operator in parallel. From the perspective of the optimizer, the I/O cost of a parallel and
non-parallel access method will be similar. Consequently, the optimizer would prefer a
parallel access method over a non-parallel access method only in cases in which the CPU
cost benefit of doing things in parallel will surpass the overhead of parallelism. By using
the new QDTT model, the optimizer will consider the advantage of I/O parallelism as well.

Figure 3.8 shows the runtime of Query 3.1 before and after using QDTT model for
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Figure 3.8: Comparing the performance of DTT-based and QDTT-based optimizers

experiments E1-SSD, E33-SSD and E500-SSD. In each diagram, the old optimizer curve
represents the runtime of the query when the DTT model is used by the optimizer. The
new optimizer curve represents the runtime of the query when the optimizer employs the
QDTT model, and the speedup curve indicates how many times the query runtime has
improved after utilizing the QDTT model. The y-axis on the right side of each diagram
represents the amount of speedup. By using the new model, a significant improvement in
query runtime is observable. The maximum speedups in E1-SSD, E33-SSD and E500-SSD
are 19.7, 16.9, and 13.7, respectively. The old optimizer uses the DTT model and since
it does not realize the benefit of parallel I/O it always prefers a non-parallel method over
a parallel one for these experiments. Since the estimated I/O cost is much higher than
the estimated CPU cost, the CPU benefit of parallel plans does not have any impact on
the decision of the optimizer. Therefore, the optimizer prefers a non-parallel plan. By
employing the QDTT model, the optimizer will be aware of the benefit of parallel I/O
for the SDD used in these experiments. Therefore, parallel plans will be preferred to
non-parallel plans based on the correct cost estimations.

In these experiments, in new optimizer, the parallel degree of PIS is set to the maximum
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beneficial queue depth derived from the QDTT model, e.g. 32. The queue depth parameter
passed to the QDTT function inside the I/O cost estimation function of the PIS is set to
32 as well. The parallel degree of PFTS is set to the number of available CPU cores, e.g.
8. The queue depth parameter passed to the QDTT function in the I/O cost estimation
function of the PFTS is set to 8 as well. The logic behind choosing this number has been
described with more details in Section 3.5.4.

In all three experiments, the amount of improvement for low selectivities is high; then
it starts to drop, and finally, it becomes constant. When the amount of improvement
becomes constant, both the new and old optimizers are choosing the full table scan. How-
ever, since the new optimizer chooses the parallel version of the table scan its runtime is
consistently better. For a very large range of selectivities, we can observe at least 3 to 5
times improvement while for a small range of selectivities we can achieve up to 20 times
improvement.

3.5.4 Application of QDTT Model in Other Operators

As the focus of our research in this chapter is on access path methods, we studied the
impact of the QDTT model only on PIS and PFTS operators. However, this model can
potentially be used in I/O cost estimation of other database operators as well. Parallel
hash join, parallel nested loop join, parallel hash filter, and parallel hash group by are some
other operators in SAP SQL Anywhere for which the intra-query parallelism is supported.
Application of the QDTT model is not limited only to the parallel operators. This model
can be used even for I/O cost estimation of non-parallel operators in which employing
prefetching increases the I/O queue depth.

To use the QDTT model for a specific parallel operator, in the I/O cost estimation
function of the operator, all invocations of the DTT function should be replaced by those
to the QDTT function. Unlike the DTT function, which only takes a band size parameter,
the QDTT function takes an additional parameter for queue depth. Now, the question is
how to find the proper queue depth that should be passed to the QDTT function. Finding
the proper queue depth parameter is something that needs to be investigated for each
invocation of the QDTT function in the I/O cost estimation function of the operator10. To
do so, we need to study the I/O pattern in each phase of the database operator.

10Note that there might be more than one invocation of the DTT or QDTT functions in the cost
estimation function of a database operator. This happens when the operator consists of multiple phases
each with a different I/O pattern.
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There are two facts that make finding the proper queue depth for passing to the QDTT
function non-trivial. First, the I/O queue depth during the execution of a parallel operator
is not necessarily equal to the parallel degree of the operator. A parallel operator may
read chunks of data sequentially and then process them in parallel. In this case, during
the execution of the parallel operator, the queue depth may never go over one. Second, in
some parallel operators, e.g. PIS, while increasing the parallel degree to a number larger
than the number of CPU cores has no positive impact on the CPU cost of the operator,
it still reduces the I/O cost by increasing the I/O queue depth. In other words, in order
to increase the I/O queue depth to the maximum beneficial queue depth supported by the
storage device, we might need to increase the number of workers to a number larger than
CPU cores11.

Based on these two facts, to determine the parallel degree and the QDTT queue depth
parameters for a given database operator, what we need to do is as follows. First we need
to carefully study the I/O patterns in every phase of the operator to figure out the average
I/O queue depth that is generated in each phase. Then, we need to adjust the queue depth
parameter passed to the QDTT function in each phase accordingly. Second, based on
our findings about the I/O patterns of the database operator, we might need to re-adjust
the parallel degree of the operator. The parallel degree is typically set to the number of
available CPU cores. However, for some database operators that can benefit from an I/O
queue depth larger than the number of cores, e.g. PIS, the parallel degree should be set to
the maximum beneficial queue depth derived from the QDTT model.

For example, in Section 3.5.3, we determined the parallel degree and the QDTT queue
depth parameters for PIS and PFTS as follows. After studying the I/O pattern of PIS,
we realized that the I/O pattern of this operator, when executed using a parallel degree
equal to P, is a random I/O pattern with an average queue depth very close to P. Thus, in
Section 3.5.3, we forced the query optimizer to use the maximum beneficial queue depth
derived from the QDTT model, i.e. 32, as the queue depth parameter sent to the QDTT
function. Similarly we forced the query optimizer to set the parallel degree of the PIS
to this number. Since PFTS is a CPU-bound operator, increasing its parallel degree to a
number larger than the number of available CPU cores has no impact on the total execution
time of this operator. Thus, we set the parallel degree of PFTS to the number of available
cores, e.g. 8. After studying the I/O pattern of the PFTS we realized that during the
execution of this operator with parallel degree P, the queue depth is smaller than P. The
queue depth in PFTS depends on the number of rows per page. When the number of rows
per page is higher, processing each page needs more CPU instructions and it will take

11Alternatively, increasing the queue depth might be possible by employing an effective prefetching
mechanism similar to the one discussed in Section 3.4.3
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longer. In other words, it takes a longer time before the CPU becomes blocked by I/O.
Consequently, I/O queue depth will be reduced because the speed of processing data will
be less than the speed of reading data. When the number of rows per page is smaller,
the fetched pages will be processed faster because each page needs fewer CPU instructions
to be processed. Consequently, the CPU will be blocked for I/O more quickly. In this
case, the CPU will generate I/O requests more quickly. Thus, the I/O queue depth will
be increased. We realized that, in experiments described in 3.5.3, the I/O queue depth
during the execution of PFTS varies from 2 to 6, depending on the number of rows per
page. Making the queue depth parameter a function of row size is possible. However, this
approach adds unnecessary complications to our I/O cost estimation model. Therefore,
for the sake of simplicity, we decided to consider the number of available CPU cores, i.e.
8, as the queue depth parameter passed to the QDTT function in I/O cost estimation
function of the PFTS. This number is in fact the maximum possible queue depth during
the execution of the PFTS operator. Although this simplification reduces the accuracy of
the I/O cost estimation, in practice, this inaccuracy is negligible. As we saw in Figure
3.8, the amount of improvement in quality of the decision made by the query optimizer is
still very promising. Studying the application and impact of the QDTT model on other
database operators is an interesting avenue for future work.

3.5.5 Calibrating QDTT Model

The QDTT model can be calibrated by executing an SQL command. However, since the
calibration command is not a standard SQL command, many users might not be familiar
with it. Moreover, in a self-tuning database system like SAP SQL Anywhere, which is
supposed to work with minimum user administration, it would be very desirable if the
model can be calibrated automatically in proper times in which the I/O activity of the
system is minimal. To achieve this goal we need to minimize the amount of resources needed
for calibration. Moreover, since calibrating the entire model for all possible queue depths
is very expensive, we need to minimize the number of calibration points. In this case, we
need to employ a proper method to estimate the values associated with the non-calibrated
points in the model based on the values of the calibrated points.

In order to calibrate the QDTT model for a band size of b and a queue depth of d
we need to measure the amortized cost of a single page I/O, when the I/Os are randomly
issued, within a band size of b when the average queue depth is d. The amortized cost
of a single page I/O will then be calculated by dividing the total measured I/O time by
the number of issued I/Os. One way of increasing the I/O queue depth is to use multiple
threads. Each thread issues a synchronous page I/O, and as soon as that synchronous
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I/O finished, it issues another synchronous I/O. Since the pages are just read, the total
CPU time for processing a page is almost zero; hence the CPU time compared to the I/O
latency is negligible. Therefore, by using n threads we can keep the average I/O queue
depth constantly equal to n.

In order to minimize the amount of resources needed for calibration, instead of us-
ing multiple workers (threads) we achieved the same results by employing asynchronous
prefetching using a single worker. To do so, we need n buffers. At first, a group of n
asynchronous I/Os are issued by the thread to the buffers 1 to n. Then, the thread waits
for the I/O associated with the first buffer to finish. As soon as that I/O was finished, the
thread issues another asynchronous I/O into buffer 1 and then immediately waits for the
I/O associated with the buffer 2 to finish. As soon as the I/O associated with buffer 2 was
finished, the thread issues another asynchronous I/O into buffer 2 and then immediately
waits for the I/O associated with the buffer 3. This process continues until the I/O associ-
ated with the nth buffer is finished. Then, the thread issues another I/O into buffer n and
then waits for associated I/O to buffer 1 to complete. This circular process continues until
all pages are read. We validated this method by comparing its resulting calibrated model
with that of a multi-worker implementation (over multiple different drives) and noticed
very similar models.

3.5.6 Bilinear Interpolation

Calibrating the QDTT model for all queue depths from 1 to 32 will increase the calibration
time substantially. This will be a more serious issue when the model is calibrated on an
HDD drive. Therefore, we need to reduce the number of calibration points somehow and
use an interpolation method to estimate the value of non-calibrated points when needed
during the cost estimation.

For the original DTT model, a linear interpolation method is used to calculate the cost
associated with band sizes for which there is no calibration point in the computed model.
We decided to adopt the same approach to calculate the cost associated with the queue
depths for which there is no calibrated point in the QDTT model. Namely, we will first
interpolate linearly on the band size and then on the queue depth. This method is also
known as bilinear interpolation. Suppose the value of QDTT (b, q) is unknown. Suppose
q′ is the largest queue depth smaller than q for which the value of QDTT (b, q′) is known.
Similarly, suppose q′′ is the smallest queue depth larger than q for which the value of
QDTT (b, q”) is known. Then, to calculate the value of QDTT (b, q) we use the following
formula:
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QDTT (b, q) = QDTT (b, q′) +
QDTT (b, q′′) −QDTT (b, q′)

q′′ − q′
× (q − q′)

Now, the question is, from 1 to 32, which queue depths can be used by the linear
interpolation more accurately. We assumed that queue depths 1, 2, 4, 8, 16, and 32 are
the best candidates. This is based on the fact that the number of parallel I/O units in
storage devices is usually a power of 2. In other words, exponentially increasing the queue
depth during the calibration process will result in a reasonably accurate model. In this
model, values of important points are more accurate, and a bilinear interpolation is used
for calculating values of less-important missing points. To validate our assumption we
performed an extensive set of experiments on different drives.

In Figure 3.9 each diagram represents the cost of a random read for a given band size
over different queue depths on an 8-spindle RAID-0 array. The red square-shaped points
represent the observed I/O times associated with queue depths 1, 2, 4, 8, 16 and 32 and
the blue diamond-shaped points represent the observed I/O times associated with other
queue depths. For the sake of clarity, we have avoided connecting consecutive red points
to each other. It is apparent that almost all blue points fall on (or close to) an imaginary
line between consecutive red points. This imaginary line represents the estimated values
based on a linear interpolation. In other words, we can conclude that calibrating for points
1, 2, 4, 8, 16, and 32 and employing linear interpolation for other points (blue diamond
points in Figure 3.9) is a reasonably accurate approach. This confirms the validity of our
assumption. We repeated the same experiments on RAID arrays of different sizes as well
as on SSD and observed very similar results. For the sake of brevity, we decided not to
include the result of all experiments.

3.5.7 Improving the Calibration Time

Calibrating a QDTT model is slower than calibrating a DTT model. That is because there
are many more calibration points in the QDTT model. For devices which cannot benefit
from parallel I/O, performing calibration for high queue depths is pointless. If we know
for sure that a device cannot benefit even from a queue depth of 2, then there is no point
in calculating and maintaining the accurate costs for queue depths larger than 1 because
the optimizer will never use the costs associated with queue depths larger than 1 for that
device.

In order to reduce the calibration time, we can take advantage of this fact and propose
a control mechanism that stops the calibration process when continuing it is no longer
beneficial. The mechanism works as follows. The calibration starts from queue depth 1.
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Figure 3.9: QDTT on RAID (8 spindles). The x-axis represents the queue depth and the
y-axis represents the cost of reading a single page in microseconds
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After calibrating all band sizes for queue depth 1, the queue depth is doubled, and the
calibration will be performed for queue depth 2. For each queue depth, the calibration is
done from the largest to the smallest band-size. After that the calibration of the largest
band size in queue depth 2 is finished, we check the calibration point associated with the
largest band size in queue depths 1 and 2. If increasing queue depth has resulted in at
least T percent improvement, we will continue the calibration. Otherwise, the calibration
will be stopped and a default value slightly larger than the measured costs for queue depth
one is assigned to the remaining calibration points. If the calibration did not stop, after
calibrating the largest band size in next queue depth we recheck the stop condition. This
approach results in a significant improvement in calibration time especially for devices
with weak parallel I/O capability. For example, on a single 7200 RPM HDD, the total
calibration time with and without employing the stop condition takes 1.09 and 5.63 seconds
respectively. This is about 5 times improvement in calibration time.

Another benefit of this approach is that it adjusts the calibration runtime dynamically
based on the parallel I/O capability of the device. For example, in a drive in which the
maximum beneficial queue depth is 4, calibration stops at queue depth 4. In other words,
by employing this approach, the calibration process stops whenever there is no point in
continuing the process. We experimentally found that 20% is a reasonable value for T.
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Chapter 4

An External Merge Sort for Solid
State Drives
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4.1 Overview

As we discussed in Chapter 3, the gap between the throughput of the sequential and random
I/O is much narrower in SSDs than in HDDs. For decades database operators have been
designed based on the I/O characteristics of the HDDs. As HDDs are replaced by SSDs,
some assumptions about the I/O characteristics of the storage layer will become outdated.
Consequently, the design decisions of database operators need to be reconsidered.

External sort is one of the fundamental operators in database systems. In addition to
ordering result sets, it is used as part of many other database operations, such as duplicate
removal, uniqueness verification, rank and top, roll-up, cube, merge join, index creation for
tables and materialized views, and logical and physical consistency checks [31, 44, 45, 87].
Because of the importance of external sort, it has been studied extensively since before the
advent of database systems [54]. External merge sort and external distribution sort are
two main types of external sort [40]. Due to the advantages of the external merge sort over
external distribution sort, it has been adopted in most database systems [40].

In this chapter, we will propose a new variation of external merge sort called SSD-sort
which exploits the I/O characteristics of modern SSDs. We will see in which range of con-
figurations SSD-sort will beat the traditional external merge sort in terms of performance.

4.2 Summary of Contributions

The contributions of this study can be summarized as follows:

1. An SSD-friendly external merge sort that outperforms the traditional external merge
sort in terms of time-to-first-row in all configurations, beats the traditional method in
terms of total execution time in a range of configurations, and increases the lifespan
of the SSD

2. A comparison of the proposed method with the traditional external merge sort show-
ing the range of configurations in which the proposed method presents a superior
performance

3. An exploration of the similarity of the last stage of SSD-sort to parallel index scan,
and of the possibility of replacing external merge sort with parallel index scan when
a relevant index is available
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There exists a variety of external merge sort methods in which different optimization
techniques and implementation tricks have been applied [10, 42, 55, 59, 60, 71, 72, 75, 76,
83, 93, 97, 96, 98]. The idea behind SSD-sort is orthogonal to those existing optimization
methods. In other words, the technique used in SSD-sort is applicable to almost all existing
variations of the traditional external merge sort. In this chapter, traditional external merge
sort refers to any existing variation of the external merge sort in which there are only two
phases, run generation and merge. However, for the sake of simplicity, we compare SSD-sort
with a selected existing variation of the external merge sort that we believe is fairly close to
optimal but not necessarily the best in all scenarios. We believe that the selected variation
serves well as a baseline for our comparisons for two reasons: (1) there is no such thing
as the best possible external merge sort because the performance of different variations
depends on many parameters such as the distribution of data, data type, variability of the
size of the data items, available resources, and the underling processing hardware, and (2)
in SSD-sort we propose a technique for exploiting the I/O characteristics of the modern
SSDs that is applicable to almost any existing variation of the external merge sort.

4.3 Background

Traditional external merge sort consists of two major phases: run generation and merge.
Given a memory budget of B Mbytes, in the run generation phase, in each step, B Mbytes
of data is fetched into memory, sorted, and written back to the disk. This process is
repeated until there is no more input data. This method of run generation is called the
load-sort-store method. In this method, a larger memory budget results in longer sorted
runs and fewer of them.

In the basic version of the load-sort-store, after loading data to memory, the I/O is
blocked until sorting is finished. Then, computation is blocked until the sorted data is
written to disk, and then the next chunk of unsorted data is read into the memory. I/O
and computation overlapping can be employed in load-sort-store by dividing the available
memory into two buffers. The data is loaded into the first buffer, then at the same time
that the first buffer is being sorted, the next chunk of data is loaded into the second buffer.
After that sorting the first buffer is finished, sorting the second buffer is started, and at
the same time, the sorted data of the first buffer is written into the disk, and then the next
chunk of unsorted data is loaded into the second buffer. The same scheme is repeated until
all runs are generated. Dividing the memory into two buffers makes it possible to benefit
from I/O and computation overlap. However, when the memory is divided into two pieces,
the length of generated runs will become shorter, and the number of generated runs will
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be doubled. This will potentially result in more merging passes in the merge phase.

The most famous alternative method to load-sort-store which is used for increasing
the length of sorted runs during the run generation phase is called replacement selection
[40, 55, 60]. This method keeps track of the highest key output so far to the current run. It
can then determine whether an incoming record can still be made part of the current run
or whether it should be deferred to the next run. This algorithm is implemented efficiently
using a min heap data structure and in average generates runs twice as large as the size of
the memory buffer.

Although replacement selection can generate larger runs, in practice, quicksort-based
load-sort-store is a more widely used method of run generation. This is because of its
better performance compared to replacement selection. Compared to replacement selec-
tion, quicksort benefits from much better CPU cache locality of reference1 and when it is
implemented carefully it is less CPU intensive [72].

In the merge phase, in every pass, a number of sorted runs are merged to form a larger
sorted run. The merging process is repeated until a single sorted run is formed. The
number of sorted runs that can be merged in every pass depends on the given memory
budget. Merging can be done by employing a tree of losers data structure [55]. In this
method, the data is read randomly and is written sequentially. A memory buffer is assigned
to each input run in the tree. The size of this buffer is known as the cluster size. In this
chapter we will refer to cluster size as C. During the merging process, at first C Mbytes
from each participating sorted run is read from disk into the corresponding run buffer.
Whenever all data items inside a particular run buffer are consumed, an I/O read request
is issued to fetch the next C Mbytes from disk into the buffer.

When the cluster size is small, the data items inside the buffers are consumed quickly,
and I/O read requests will frequently be needed. The data items inside each sorted run on
disk are stored consecutively. However, the order in which the run buffers are consumed is
data-dependent. Therefore, consecutive I/O read requests might be from different sorted
runs. This will increase the cost of I/O, especially on HDDs. When different sorted runs
are stored on different cylinders (tracks), in order to fulfill each read request, the disk head
should move from one cylinder to another. These seek times are expensive and will reduce
the I/O throughput.

In order to improve the read I/O throughput during the merge phase, we need to

1The poor cache behavior of the replacement selection can be attributed to the fact that the heap
usually cannot be fit in CPU cache and therefore the cache thrashes in the bottom levels of the heap. In
other words, every single heapification operation leads to multiple cache misses. This results in wasting
CPU cycles waiting for the cache misses and increasing the total run generation time.
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increase the cluster size. In this way, many small reads will be replaced with fewer large
block reads. Consequently, the number of seeks will be reduced significantly and the read
I/O throughput will be improved.

When all items inside a run buffer are consumed, the merge process will be blocked
until the issued read I/O for next block is finished. Double buffering and forecasting [55],
and their variations [97] are the standard methods which are used to avoid blocking. These
methods overlap I/O and computation. In double buffering, two run buffers are allocated
for each run. While the first run buffer is being processed, an asynchronous read request
will be issued to fetch the next block into the second run buffer. When all items inside the
first buffer are consumed, processing the second buffer is started immediately, and another
asynchronous read request is issued to fetch the next block into the first run buffer. In the
forecasting method, one run buffer is allocated for each run, and one extra run buffer is
allocated which is used to prefetch the next block from a run which is expected to need its
next block before all other runs. To predict the target run for prefetching, the last data
item of all run buffers are examined, and the run buffer with minimum (or maximum) key
will be chosen for prefetching. The number of prefetching buffers can be increased to more
than one to improve the I/O utilization. Also in some variations of prefetching, a separate
list of last block items for each run is computed during the run generation phase. These
lists are used during the merge phase to accelerate the prediction process.

Cluster size is a fraction of the given memory budget. Although larger cluster size
results in better I/O throughput, when the memory budget is limited, choosing a larger
cluster size reduces the number of runs that can be merged in one pass. Consequently, the
number of merging passes would potentially be increased, resulting in more I/Os. Thus,
the cluster size should be selected carefully.

When HDDs are replaced by SSDs, increasing the cluster size has no longer a significant
impact on I/O throughput. That is because the performance gap between the throughput
of the sequential and random I/Os in SSDs is much narrower than that in HDDs. There-
fore, on SSDs, in general, a smaller cluster size would be more beneficial for the overall
performance of the merge phase [63].

The possibility of proposing an SSD-friendly external merge sort has been studied
previously. Liu et al. have proposed a flash-friendly external sorting algorithm that avoids
non-necessary writes during the run generation phase by detecting the natural page runs
[67]. A natural page run is a sequence of pages in which the tuples are already sorted. They
map the problem of finding naturally occurring runs into the shortest distance problem
in a directed acyclic graph. Since their proposed approach is computationally expensive,
they use a heuristic approach to tackle the problem. The method proposed by Liu et al. is
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only suitable for partially sorted relations, and it fails to show promising performance as
the input data becomes more unsorted. The idea behind SSD-sort is orthogonal to that in
this study. In other words, the project and fetch phases of SSD-sort can be applied to the
method proposed by Liu et al as well.

A number of other previous studies have proposed flash-friendly external sorting algo-
rithms for mobile databases and embedded systems such as sensor networks [11, 23, 77]. In
these environments, usually, the main memory is very limited and flash chips are used as
a raw storage layer in which the write performance is 10 to 100 times worse than the read
performance. Therefore, these methods try to either eliminate writes completely or reduce
the number of required writes at the cost of a significant increase in the number of reads.
For example, Park and Shim propose an external sorting algorithm called FAST(1) that
generates a single sorted run [77]. There is no merge step in this algorithm. This algorithm
reads the entire relation multiple times. Each time it finds the K smallest elements using
an in-memory heap and writes a sorted run into the disk at the end of the pass. The
number of passes over data is equal to the size of the relation divided by the size of the
available memory. Park and Shim propose an extended version of FAST(1) called FAST.
In the first phase of FAST, the relation is divided into Q partitions, and each partition is
sorted using the FAST(1) algorithm. In the second phase, the sorted runs generated in the
first phase are merged to form a single sorted run. The performance gap between writes
and reads in SSDs is significantly narrower than that in raw flash chips. Thus, these flash-
chip-optimized methods can not beat the traditional external merge sort on SSDs. Unlike
the simple flash memories which are used in embedded systems, modern SSDs employ an
internal controller, a parallel architecture, an internal cache, as well as mechanisms like
garbage collection and wear leveling to improve the performance of both reads and writes,
and to reduce the performance gap between the two. Thus, the sorting algorithms which
are designed for embedded systems are not suitable for DBMSs with modern SSDs.

Graefe et al. discuss the required modifications in external merge sort in a systems in
which the SSD is used as a supplementary storage for storing the temporary generated
runs [42]. The adjustments needed in buffer sizing in external merge sort and the optimal
order and schemes for merging the generated runs in scenarios in which either the entire
generated runs fit in the SSD, or only a portion of it fits there are discussed. Although SSD-
sort has been primarily designed for a system in which the entire database is stored on the
SSD, it can be used in a system configuration in which the SSD is used as a supplementary
device as well. In that scenario the advice given by Graefe et al. for adjusting the buffer
sizes as well as the suggested schemes for merge ordering are applicable to SSD-sort as
well. In other words, SSD-sort is orthogonal to the ideas presented in this study.

FMsort is maybe the closest SSD-friendly external merge sorting approach to SSD-sort
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[62]. The main idea behind FMsort, though different, is in line with the main idea behind
SSD-sort. Like SSD-sort, FMSort tries to exploit the parallel I/O capability of the SSDs.
However, unlike SSD-sort, in FMsort the parallel I/O is exploited only in the merge phase.
In FMsort the sequence of page numbers which need to be fetched during the merge phase
is precomputed during the run generation phase. This sequence is computed by keeping
track of the value of the minimum key in every block of each sorted run and comparing
the smallest values from the runs which are participating in a merging pass. The pages
which are supposed to be needed in the near future are prefetched using asynchronous
I/Os. By issuing multiple asynchronous requests at the same time, the queue depth of the
SSD would be increased and the I/O throughput would be improved. The idea proposed
in FMsort is orthogonal to that in SSD-sort. In other words, both methods can be applied
at the same time to improve the performance further. To be fair, in our implementation
of both SSD-sort and the traditional method we used this technique to improve the I/O
throughput during the merge phase.

4.4 SSD-sort: an SSD-Friendly External Merge Sort

In this section, a variation of external merge sort called SSD-sort is proposed. It outper-
forms the traditional external merge sort in terms of time-to-first-row in all configurations.
The proposed approach is also capable of beating the traditional method in terms of total
execution time in a range of configurations. Moreover, replacing the traditional method
with SSD-sort will increase the lifespan of the SSD.

The proposed approach is capable of outperforming the traditional method by gener-
ating longer runs using the same amount of memory. SSD-sort can improve the lifespan
of the SSD by reducing the number of required writes. These benefits, however, will come
at the cost of extra random read requests which will be compensated for by exploiting the
parallel I/O capability of the SSD.

Figures 4.1 and 4.2 show the data flow of the traditional external merge sort and SSD-
sort, respectively. Unlike the traditional external merge sort, which has only run generation
and merge phases, SSD-sort includes two additional phases: project and fetch. The project
phase happens before the run generation phase and the fetch phase happens after the merge
phase.
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Figure 4.1: Traditional external merge sort

Figure 4.2: SSD-sort
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4.4.1 Project Phase

The input of the project phase is a stream of rows, and its output is a stream of rows
projected over the sorting key (SK) and the row id (RID). In other words, for each input
row, a pair [SK,RID] is extracted and streamed into the run generation phase. The
sorting key can be a simple key or a compound key consisting of multiple fields. A row id
is a compound number that consists of the page number and the offset (or number) of the
row within the page. RID is a pointer to the physical location of the row on disk. The
complete rows can be fetched from disk later on using their RIDs. The project phase can
be overlapped perfectly with the sequential I/Os issued for reading the input data. It can
also be perfectly pipelined with the run generation phase. Thus, the impact of this extra
phase in overall execution time of the sorting operator is very minimal.

4.4.2 Run Generation Phase

During the run generation phase, the memory is filled with only the [SK,RID] pairs.
Load-sort-store and replacement selection methods both will work exactly the same way
in SSD-sort as they do in the traditional method, except that in SSD-sort the generated
runs consist of only [SK,RID] pairs. Since the complete rows are not kept in memory,
the extra available room can be used to maintain more items. Therefore, the generated
runs are expected to be longer. This benefit will be more pronounced when the row size is
larger. In addition, since only the [SK,RID] pairs are written into the disk, the amount
of data written to the disk will be smaller.

4.4.3 Merge Phase

In SSD-sort’s merge phase the generated sorted runs are merged the same way they are
merged in the traditional method. However, since the length of runs is expected to be
larger, than in the traditional method, the number of runs needed to be merged will be
smaller. This will reduce the number of merging passes. Moreover, since the total size of
the generated runs is smaller, the amount of data required to be read and written in each
merging pass will be smaller.
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4.4.4 Fetch Phase

The output of the merge phase in SSD-sort will be a single sorted run consisting of
[SK,RID] pairs. While the last sorted run is being generated, the [SK,RID] pairs will be
streamed into the next phase, which is the Fetch phase. During the fetch phase, the row
corresponding to each [SK,RID] pair is fetched from disk using the RID, and is written
into the final sorted result set or streamed into the next operator in the query execution
pipeline. To fetch a row, the page containing that row must be read from disk. During the
fetch phase, the memory buffer pool of the database engine will play an important role. If
a page is already in the buffer pool, there is no need for a physical I/O request from the
SSD. The fetch phase and merge phase can be perfectly pipelined. Therefore, the first row
in the sorted dataset will be available almost immediately after the merge phase generates
it.

Although the last phase of SSD-sort requires many random reads from the SSD, random
I/O is faster on SSDs than on HDDs and many such requests can be served in parallel.
Our experiments show that the speed of generating the sorted output stream of the merge
phase is higher than the speed of the random I/O fetches in fetch phase2. In other words,
assuming all pages are located in the SSD, the speed of revealing the page numbers which
are going to be fetched in the near future is more than the speed of fetching those pages.
This observation can be employed to exploit the parallel I/O capability of the SSD. Suppose
the 4 Kbytes read IOPS of our SSD when the queue depth is 1 is 4,000 and the rate of
emitting the [SK,RID] pairs by the merge phase is 132,000 pairs per second. Suppose
fetching each page will take about 250 microseconds. By the time the first page which
contains the first row is fetched, we will know the page number of the next 32 pages.
Thus, instead of issuing another single synchronous I/O we can issue 32 simultaneous
asynchronous I/Os. By doing so, the queue depth of the SSD will be increased to 32. This
will increase the read IOPS of the SSD to about 40,000. By employing this method, the
I/O bandwidth of the fetch phase will be increased about 14 times. This will potentially
compensate for the high cost of the random I/Os during the fetch phase. The idea of
asynchronous prefetching in fetch phase is the key idea in designing SSD-sort. It can
significantly improve the I/O throughput and execution time of the fetch phase. Lee et
al. have employed a very similar prefetching idea but in merge phase of the traditional

2This observation happens when the size of the memory buffer pool is 75% or smaller than the size
of the input data. The efficient I/O and computation overlapping in merge phase of SSD-sort makes the
merge phase in most cases CPU-bound. The fetch phase is slower than the merge phase because the
fetch phase is I/O-bound. In an extreme case in which the size of memory buffer pool is zero, for every
[SK,RID] pair generated in fetch phase, an actual physical random I/O will be required. This will make
the fetch phase extremely I/O-bound.
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method [62]. In our implementation of SSD-sort, which is described in next section, we
have exploited parallel I/O in both merge and fetch phases of SSD-sort.

4.4.5 SSD-sort vs. the Traditional External Merge Sort

One important advantage of SSD-sort over the traditional approach is its better time-
to-first-row or response time. Time-to-first-row is defined as the time it takes from the
beginning of the sorting process to the point that the first row in the sorted result set
is returned. Even when the total execution time of SSD-sort in a particular setting is
more than that of the traditional approach, its time-to-first-row might be much shorter.
In external merge sort, the first-sorted row is generated immediately after the last merging
step in the merge phase starts. The number of sorted runs in SSD-sort is normally smaller
than that in the traditional method. Besides, the amount of data that needs to be read and
written during the merge phase of SSD-sort is typically less than that in the traditional
method. Thus, the merge phase in SSD-sort is typically done faster. Consequently, the
last merging step in SSD-sort starts earlier than that in the traditional method. That is
why the time-to-first-row in SSD-sort is better than that in the traditional method.

The last step of the merge phase is usually the most expensive step in SSD-sort because,
in this step, the corresponding row to each emitted [SK,RID] pair should be fetched.
Fetching rows that do not reside in memory will generate a costly random I/O pattern.
However, as soon as this step starts, the generated rows can be either used by the next
operator in a query execution pipeline or returned to the client application. In interactive
applications and use cases in which time-to-first-row is more important than the total
execution time, SSD-sort can potentially show a considerable advantage.

Another advantage of SSD-sort over the traditional approach is its superior total ex-
ecution time in a range of configurations. In particular, it is more likely that SSD-sort
shows a superior performance when the sorting memory is smaller, the memory buffer pool
is larger, and the row size is bigger.

To understand why SSD-sort is more likely to outperform the traditional method when
the sorting memory is smaller, we need to analyze the run generation and merge phases in
the external merge sort. Unlike the traditional approach, SSD-sort uses [SK,RID] pairs
rather than the complete rows. Thus, compared to the traditional approach, SSD-sort can
generate longer and fewer runs with the same amount of sorting memory. This will reduce
the number of merge passes, and the amount of data that need to be read and written
during the merge phase of SSD-sort. This results in a faster merge phase. Thus, when the
sorting memory is smaller, SSD-sort is more likely to outperform the traditional approach.
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Note that this does not mean that reducing the sorting memory improves the performance
of SSD-sort. Rather, it says that, compared to the traditional method, decreasing the
sorting memory has a lower negative impact on the performance of SSD-sort. In other
words, in a configuration in which the execution time of both methods is equal, if we
decrease the sorting memory, it is more likely that SSD-sort outperforms the traditional
method.

Even in database systems in which a large amount of memory is employed, being able
to sort with a limited amount of memory can decrease the overall execution time of the
query. This is because, in a complex query, a larger share of the memory budget can be
assigned to the more memory-hungry operators such as hash join. Moreover, processing the
same query with the same performance but smaller memory footprint allows the database
engine to process more queries concurrently.

To understand the impact of the row size and memory buffer pool size on the relative
performance of SSD-sort, we need to analyze the fetch phase in SSD-sort. Suppose the size
of the memory buffer pool is zero and the number of rows in the input data is R. Also,
suppose that the row size is so big that each page contains only one big row. In this case,
the number of physical page reads during the fetch phase of SSD-sort is equal to R. It
means that each page in the input data is physically read only once. In other words, the
input data is scanned only once. Now, assume the memory buffer pool size is still zero, but
the row size is so small that each page contains K rows. Then, in the worst-case scenario,
the number of physical page read I/Os issued to fetch all rows is equal to R × K. In
other words, each page is read K times. This is similar to scanning the entire input data
K times, using a random I/O pattern. Therefore, size of the rows in the input data has
a significant impact on the performance of the fetch phase of SSD-sort. The traditional
method has no fetch phase. Therefore, its performance does not depend on row-size.

Now, assume the size of the memory buffer pool is greater than zero, and the number of
rows per page is K. In this case, during the fetch phase of SSD-sort, each page that is read
can be cached in the buffer pool. The cached pages can be reused to fulfill the upcoming
row requests, avoiding the unnecessary physical page reads. In this case, the number of
physical page reads during the fetch phase of SSD-sort is smaller than R×K. The extent
to which the number of physically read pages is smaller than R×K depends on the buffer
pool size. A bigger buffer pool has a higher hit rate and can prevent more of the physical
reads. Thus, the memory buffer pool size has a direct impact on the performance of the
fetch phase. In other words, a large buffer pool can discount the negative effect of a small
row size. Again, since the traditional method does not have a fetch phase, its performance
is independent of the memory buffer pool size.
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In conclusion, SSD-sort is more likely to outperform the traditional method when the
sorting memory is smaller and when the rows and the memory buffer pool are bigger.

Finally, another benefit of SSD-sort over the traditional method is that SSD-sort re-
quires fewer writes in the run generation and merge phases when more than one merge
pass is required. As we discussed before, fewer writes can be translated to a more extended
lifetime for SSDs. Even in configurations in which SSD-sort and the traditional method
show very comparable total execution times, this advantage can be a tiebreaker.

4.5 Experimental Results

In this section, we present an experimental evaluation of SSD-sort. Our main objective is
to compare the performance of SSD-sort with that of the traditional approach. In partic-
ular, we are interested to know in which ranges of configurations SSD-sort shows superior
performance over the traditional method. The query optimizer of a database system can
benefit from the answer to this question. By identifying the range of configurations in
which SSD-sort shows better performance than the traditional method, the query opti-
mizer can decide which sorting operator to choose in a given configuration. A sorting
configuration refers to a combination of the following parameters: (1) row size, (2) size
of the available sorting memory, (3) size of the memory buffer pool relative to the size
of the input, and (4) type (or I/O capabilities) of the storage device. In the experiments
presented in this section, we will investigate how changing the first three parameters will
impact the total execution time and the time-to-first row of SSD-sort compared to those in
the traditional method. As SSD-sort is an SSD-specific sorting method, we have included
only the experiments we performed on SSD in this section. Thus, the 4th parameter is
fixed in all experiments.

In order to have full control over the experiments, we have implemented a standalone
version of SSD-sort. This standalone version is implemented using the STXXL package
[12, 25, 26]. STXXL is a C++ standard template library for large datasets. It is, in fact,
an extension of the C++ standard template library, STL. STXXL is designed for external
memory computations. This library provides the basic functionality needed in external
memory algorithms, e.g. streaming, pipelining, and overlapping of I/O and computation.

We compared SSD-sort with the default implementation of the traditional external
merge sort which is available in STXXL package. This implementation is highly optimized
and employs I/O and computation overlapping. It also uses the forecasting method (see
Section 4.3) during the merge phase for predicting the next required blocks. To the best
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of our knowledge, this implementation is among the best general purpose open-source
implementations of the external merge sort in terms of performance.

Table 4.1 summarizes the parameters used in the implementation of the traditional
method and SSD-sort in our experiments. The default implementation of the traditional
method in STXXL uses a cluster size of 2 Mbytes. It is known that the optimal cluster size
has steadily increased over the past decade, as the gap between latency and bandwidth has
become wider [41, 46]. Because of the superior I/O latency of SSDs over HDDs, on SSDs
we can choose a much smaller cluster size [63]. By choosing a smaller cluster size, using
the same amount of memory, more runs can be merged in each merging pass. This will
potentially reduce the number of merging passes. Consequently, the number of required
I/Os will be reduced and the execution time would be improved. We experimentally
determined that on SSD, a cluster size of 32 Kbytes is a reasonable choice in most cases
in both SSD-sort and the traditional method3. Therefore, we decided to use a cluster size
of 32 Kbytes in both SSD-sort and the traditional method.

For the fetch phase of SSD-sort we chose a page size of 4 Kbytes as it is a common
choice for page manager of most database systems. 4 Kbytes is the smallest physical unit of
I/O in many existing modern SSDs. This parameter is irrelevant in the traditional method
as it does not have a fetch phase and it does not utilize the memory buffer pool.

In the run generation phase of both the SSD-sort and the traditional method, an
improved version of the load-sort-store method is used in which the memory is divided
into two buffers and I/O and computation are overlapped to improve the I/O utilization.

In the merge phase of both methods, the I/O read throughput is optimized using a
forecasting method similar to the one used in FMSort [62]. In the forecasting method,
during the run generation phase, for each run, a sequence of the last key of each block
is computed. During the merge phase, these computed sequences are used to predict the
next required block. This is done using a tournament tree over the computed sequences
of the runs which are participating in the merge pass. The predicted next blocks are
prefetched into a number of assist blocks in order to eliminate or reduce I/O blocking
and to improve the I/O utilization. In FMSort the parallel I/O capability of the SSD is
exploited during the merge phase by issuing multiple prefetch requests at the same time.
Prefetching degree during the merge phase refers to the number of assist blocks used for

3To find the optimal cluster size we started with 2 Mbytes and reduced the cluster size gradually and
measured the execution time of a multi-pass merge phase with every cluster size. We observed an increase
in execution time after we passed 32 Kbytes. In SSD-sort, row size has no impact on optimal cluster size,
but in the traditional method, when the row size is very large (e.g. 4096) a cluster size of 64 Kbytes shows
slightly better results. However, considering different row sizes, on average, a 32 Kbytes cluster size shows
better results.
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Table 4.1: Parameters used in implementation of SSD-sort and the traditional method
Parameter name Traditional Method SSD-sort

Cluster Size 32 Kbytes 32 Kbytes
Run Generation Method load-sort-store (2 buffers) load-sort-store (2 buffers)

Page size Irrelevant 4 Kbytes
Merge phase optimization forecasting (8 assist blocks) forecasting (8 assist blocks)

prefetching the predicted next pages. We experimentally determined that employing a
prefetching degree larger than 8 does not result in any tangible improvement. Thus, we
used 8 assist blocks in both methods.

4.5.1 Experimental Setup

All experiments have been performed on a server running Windows Server 2008 R2 oper-
ating system with 24 Gbytes of RAM and two Intel Xeon E5620 2.40 GHz. The amount
of RAM used in the experiments is much less than 24 Gbytes, and it is explicitly indicated
in each experiment. A 10K RPM Seagate Cheetah NS.2 SAS hard drive is used for the
operating system. A 240 Gbytes OCZ Vector, which is a consumer-grade SATA III MLC
SSD is used for our experiments. The input, output, and temporary data are all stored on
the SSD. The maximum sequential I/O throughput of the SSD is about 270 Mbytes/sec
and the maximum random I/O throughput of 4 Kbytes pages (both read and write) in the
SSD is about 180 Mbytes/sec (about 46,000 IOPS). Each experiment has been repeated 5
times and the reported execution times are averages of the observed execution times. In
every experiment, the maximum absolute deviation of the observed values is within 5% of
the reported mean.

As mentioned before, the following parameters will impact the performance of SSD-sort:

• Row size

• Memory buffer pool size

• Sorting memory size

• I/O performance

To study the impact of row size, we have considered 4 different tables with four different
row sizes; 16 bytes, 256 bytes, 2048 bytes, and 4096 bytes. For the sake of simplicity, in
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Table 4.2: Experimental setup
Table Name Row Size Columns Rows Table Size

T16 16 256 134,217,728 2GB
T256 256 16 8,388,608 2GB
T2048 2048 2 1,048,576 2GB
T4096 4096 1 524,288 2GB

our experiments, each column is a 4-byte integer, and we adjust the size of the row by
changing the number of columns. The first column in each table is used as the sorting
key. The values generated for the sorting key follow a uniform random distribution4. The
values of the other columns are not important in our experiments, and they are used only
to increase the size of the row. We filled those columns with random numbers generated
using a pseudo-random number generator. For row sizes 16 bytes, 256 bytes, 2048 bytes,
and 4096 bytes, the number of columns per row would be 256, 16, 2 and 1, respectively.

If we choose a different row size for each table while keeping the number of rows in all
tables equal, then we will end up having a very small table when the row size is 16B, and
a very large table when the row size is 4096 bytes. If we compare the sorting time of the
tables with significantly different sizes, the one which is smaller will fit better in the cache
and its sorting time will be much lower than that of a larger table. To increase the fairness
of our comparisons and to eliminate the impact of the table-size-related parameters such
as caching, we decided to equalize the size of all tables. To do so, we added more rows
to the tables with smaller row size. Table 4.2 summarizes our dataset configuration. The
size of all tables T16, T256, T2048 and T4096 is 2 Gbytes. T16 is the tallest and thinnest
table, and T4096 is the shortest and fattest one.

To study the impact of the memory buffer pool size, we have repeated the experiments
by employing memory buffer pools that are 25%, 50%, 75%, and 100% of the input size.

To investigate the impact of sorting memory size, we have repeated the experiments
using 1 Mbytes, 8 Mbytes, and 64 Mbytes of sorting memory. At first look, compared to
the large amount of memory which is used in today’s database servers, these three sorting
memory sizes might seem to be relatively small and unrealistic. However, in practice, this
is a typical range of sorting memory size which is used in many database systems. For
instance, the default sorting memory used in Postgress SQL, MySQL, and Oracle database
are 4 Mbytes [5], 256 Kbytes [3], and 64 Kbytes [4], respectively. The default size of the

4To generate a random sequence of n keys we start with a sorted array of keys in which key[i]=i (for
i=1 to n). Then for each k (k = 1 to n-1), using a uniform pseudo-random number generator, we generate
an integer r between k and n, and we swap key[k] with key[r].
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sorting memory in database systems is typically much smaller than the total available
memory for the database for three main reasons. First, allocating a major part of the
available system memory for a shared memory buffer pool is in general more beneficial
than allocating that memory for the working memory of individual queries. Since the
memory buffer pool is shared among all queries, the data fetched into it by a query is
likely to reduce the I/O cost of other existing or upcoming queries as well. Second, the
remaining part of the system memory after deducting the memory buffer pool size is used
for multiple purposes such as the working memory of the queries running concurrently,
query optimization, plan caching, session management, networking, database cursors, etc.
Granting a smaller working memory to individual queries, allows more queries to be exe-
cuted concurrently. Third, in complex queries containing multiple operators, allocating a
larger portion of the working memory of the query to more memory-hungry operators, e.g.
hash join, improves both performance and robustness of the query execution.

Since SSD-sort is an SSD-specific sorting method, we have only presented the results
of the experiments performed on the SSD.

4.5.2 SSD-sort vs. the Traditional Method

In this section, we will present the results of different sets of experiments with the goal of
identifying the range of configurations in which SSD-sort can outperform the traditional
method.

4.5.2.1 Identifying the Impact of Memory Buffer Pool Size and Row Size

Figure 4.3 shows the results of comparing the execution time of SSD-sort with that of the
traditional method when the sorting memory is fixed to 8 Mbytes. In each graph, the
execution time of SSD-sort and the traditional method is shown using a separate bar. In
each bar, the blue part represents the time taken from the beginning of the sort to a point
in which the first row in the result set is ready to be streamed out (time-to-first-row).
The orange part represents the time needed for fetching the entire sorted result set. For
SSD-sort the orange part is, in fact, the execution time of the fetch phase. Each row in
the figure presents a different cache size, and each column represents a different row size.
The columns from left to right correspond to tables T16, T256, T2048, and T4096 (see
Table 4.2). By looking at the total execution times of SSD-sort in any row in the figure
from left to right, it can be observed that the total execution time of SSD-sort improves as
the row size increases. By looking at each column from top to bottom, it can be observed
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that the cache size has a considerable positive impact on the total execution time of SSD-
sort. A larger cache can absorb a larger number of random reads during the fetch phase
of SSD-sort.

No matter how large the cache or row size, the time to first-row of SSD-sort is better
than that of the traditional method. The cache size has no impact on the time-to-first row
of SSD-sort because the cache is utilized only during the fetch phase. The cache also has
no impact on the traditional method as it is not utilized by any phases in the traditional
method.

In terms of total execution time, SSD-sort outperforms the traditional method in 10
out of 16 configurations presented in the figure. When the row size is very small (e.g. 16
bytes or 256 bytes) the execution time of the fetch phase of SSD-sort becomes prohibitively
large. To improve the fetch time of SSD-sort in this case, a very large cache, i.e. close to
100% of the input size, is required. Even a cache as large as 75% of the input size cannot
help SSD-sort to beat the traditional method when the row size is small. In contrast,
when the row size is large (e.g. 2048 bytes or 4096 bytes), no matter how large the cache,
SSD-sort outperforms the traditional method. In this case, a larger cache will increase the
gap between the total execution time of SSD-sort and that of the traditional method.

4.5.2.2 Identifying the Impact of Sorting Memory Size and Row Size

Figure 4.4 shows the results of comparing the execution time of SSD-sort with that of the
traditional method when the memory buffer pool size (cache size) is fixed to 50% of the
input size. Each row in the figure presents a different sorting memory size. Similar to
Figure 4.3, each column represents a different row size. Similar to our observation from
Figure 4.3, by looking at the total execution times of SSD-sort in any row in Figure 4.4,
from left to right, it can be observed that the total execution time of SSD-sort improves as
the row size increases. By looking at any column from top to bottom, it can be observed
that increasing the sorting memory has a very limited impact on the total execution time
of SSD-sort. However, a larger sorting memory clearly improves the performance of the
traditional method. This observation is in line with our discussion in Section 4.4.5 regarding
the suitability of SSD-sort when the sorting memory is limited. In other words, when the
sorting memory is large, SSD-sort is not able to outperform the traditional method in
terms of the total execution time unless the row size and cache size are very large as well.
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Figure 4.3: The execution time of SSD-sort vs. that of the traditional method when the
sorting memory is 8 Mbytes. In each graph, the blue color represents the time-to-first-row,
and the orange color represents the fetch time.
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Figure 4.4: The execution time of SSD-sort vs. that of the traditional method when the
memory buffer pool size is 50% of the input size. In each graph, the blue color represents
the time-to-first-row, and the orange color represents the fetch time.
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4.5.2.3 Identifying the Impact of All Parameters in One Picture

To have a larger picture about the range of configurations in which SSD-sort outperforms
the traditional method, we measured the execution time of both methods over all possible
combinations of the three parameters: row size, sorting memory, and cache size. We
have summarized the total execution time and time-to-first-row speed-ups/slow-downs of
SSD-sort over the traditional method in Tables 4.5 and 4.6, respectively. In these tables,
speed-ups and slow-downs are highlighted by colors green and red, respectively. A number
larger than 1 indicates a speed-up, and a number smaller than 1 represents a slow-down.

As expected, in terms of total execution time, SSD-sort tends to outperform the tra-
ditional method where the sorting memory becomes smaller, and/or when the cache size
and row size become larger. In terms of total execution time, SSD-sort shows a supe-
rior performance in 28 out of 48 configurations. One interesting observation from Table
4.5 is that when the cache size is 100%, no matter how large the sorting memory or the
row size, SSD-sort outperforms the traditional method. In contrast, when the row size is
smaller than or equal to 256 bytes, unless the cache is 100%, in all other configurations
the traditional method wins. Similarly, When the sorting memory is 64MB, unless the
cache is 100%, in all other configurations the traditional method either wins or looses with
a relatively small margin. Note that in all these experiments, the permutation of soring
keys in the original table follows a uniform random distribution. This permutation is the
worst-case scenario for SSD-sort because in this case, the locality of reference among con-
secutive sorting keys is in its lowest possible. As we will see in Section 4.5.2.4, increasing
the locality of reference will improve the hit rate of the cache, resulting in a better total
execution time for SSD-sort.

Table 4.6 shows that in terms of time-to-first-row, SSD-sort dominantly outperforms
the traditional method in all configurations. This is a very promising observation that
confirms the dominant applicability of SSD-sort in use cases in which time-to-first-row is
more important than the total execution time.

4.5.2.4 Impact of Pre-sortedness on SSD-sort

In all experiments presented in Section 4.5.2, we considered a worst-case scenario in which
the initial ordering of the rows is uniformly random. In practice, in many use cases, there
is usually some sort of locality of reference in the initial ordering of the data. The locality
of reference refers to the fact that two consecutive rows in the sorted result set are close
to each other in the original table as well. This property results in a much better cache
utilization during the fetch phase of SSD-sort. A better cache utilization will reduce the
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Figure 4.5: Total-time speed-ups/slow-downs of SSD-sort over the traditional method
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Figure 4.6: Time-to-first-row speed-ups/slow-downs of SSD-sort over the traditional
method
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number of required physical reads during the fetch phase. The degree of locality of reference
is higher when the data is partially sorted. When the input data is partially sorted, even
with a very small cache size, we might end up having very few physical reads during the
fetch phase.

In order to see the impact of the locality of reference on the performance of the fetch
phase of SSD-sort, we have performed a new set of experiments in which the input table
is already sorted. These experiments represent an extreme case in which the locality of
reference is maximum. Since locality of reference is maximum, during the fetch phase
of SSD-sort, each page which is read will be reused immediately for multiple consecutive
future row fetches. For instance, when the row size is 16 bytes, after fetching a page, it
can be used to fulfill 256 consecutive row requests because all those rows physically reside
on the same page.

In order to reduce the amount of required physical reads in the fetch phase to the size
of the original table, only a very small cache is sufficient. To confirm this, we have used a
2 Mbyte cache (0.1% of the input size). To consider the impact of sorting memory size, we
have repeated the experiment with 1 Mbyte, 8 Mbytes and 64 Mbytes of sorting memory.

For the sake of brevity we have presented only the speed-up/slow-down values in Table
4.3. When the sorting memory is 1 Mbyte or 8 Mbytes, no matter how large the row size,
SSD-sort beats the traditional method. When the sorting memory is 64 Mbytes, in row
sizes 256B, 2048B and 4096B SSD-sort still beats the traditional method. The only case in
which the traditional method shows a superior performance is when sorting memory is 64
Mbytes, and row size is 16B. Even in this case, the traditional method is only 1.35X times
faster than SSD-sort. Remember that when data was not sorted and the sorting memory
was 64 Mbytes, even with a 512 Mbytes cache (25% of the input size) the traditional
method was 33.3X better than SSD-sort (see Table 4.5). By comparing Table 4.3 with the
first column in Table 4.5 (the cache=25% column), it can be seen that in spite of having a
significantly larger cache(0.1% vs. 25%), when the data is pre-sorted, the speed-up values
are considerably better.

This set of experiments confirms the significant impact of the locality of reference on
the performance of SSD-sort.

The promising results we observed in Table 4.3 are not limited to a completely pre-
sorted table. Even if we sort a partially sorted table in which any pair of unordered rows
in the original table are not too far from each other, we can expect to see very similar
results. As the distance of out-of-order pairs in our original table becomes longer, we can
use a larger cache in fetch phase to catch up. In general, as long as the maximum distance
between two out-of-order elements is within the boundaries of our cache we can expect
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Table 4.3: Summary of total-execution-time speed-ups/slow-downs of SSD-sort over tra-
ditional method when the original table is already sorted

very similar results.

In practice, there are many use cases in which we need to sort a partially sorted table.
One of the possible use-cases is the periodic rebuild of a clustered index which has become
partially unsorted after multiple inserts, deletes, and updates. Another use case is sorting
partially sorted server logs in data centers. In data centers log data is collected from many
servers and brought together either immediately or periodically and stored in a central log
store. The central partially sorted log is then typically sorted by timestamp before doing
temporal analysis over the log data.

4.5.2.5 Impact of SSD-sort on Improving the Lifespan of SSDs

As mentioned earlier, SSD-sort can potentially improve the lifespan of SSDs by reducing
the number of required writes during the sorting process. In order to realize how many
writes can be saved by using SSD-sort instead of the traditional method, we measured
the number of writes in both methods and divided the write volume of the traditional
method by that of SSD-sort and summarized the results in Table 4.4. Changing row size
will change the volume of writes only in SSD-sort. That is because, unlike the traditional
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Table 4.4: Required write volume in SSD-sort compared to that in the traditional method

Table Name Sorting Mem=1MB Sorting Mem=8MB Sorting Mem=64MB
Row Size=16 2.5X 2X 2X
Row Size=256 53.33X 48X 21.33X
Row size=2048 640X 256X 256X
Row size=4096 1280X 768X 512X

method, SSD-sort has a project phase. Thus, it can benefit from more saving on the
number of required writes when the row size is larger. Sorting memory can have an impact
on the write volume of both methods. Employing a larger sorting memory reduces the
number of generated runs, and consequently, the number of merge passes in merge phase.
Fewer merge passes will need fewer writes. For both methods, cache size has no impact
on the write volume as the cache size only affects the I/O throughput during the fetch
phase of SSD-sort which contains only random reads. As indicated in Table 4.4, when the
sorting memory is 1MB, and the row size is 4096 bytes, SSD-sort will need 1280X fewer
writes compared to the traditional method.

4.6 Similarity between SSD-sort and Parallel Index

Scan

In Chapter 3, we studied the performance of parallel index scan (PIS) on SSDs5. Suppose
an index IXc1 has been created over column C1 in table T which is stored on the SSD.
Consider an SQL query in the form of ”SELECT C1, C2, C3 FROM T ORDER BY C1”.
Since IXc1 does not cover columns C2 and C3, the leaf nodes in IXc1 are not enough to
answer the above query. For answering the above query, there exist two possible execution
plans. The natural choice is to perform a complete external merge sort. An alternative
plan is to perform a PIS using IXc1. It is believed traditionally that the cost of an index
scan is much higher than that of an external sort. This belief is based on the traditional
assumption about the large performance gap between the throughput of the random and
sequential I/O in HDDs. When the database is stored on an SSD, based on the observations
we made from our experiments, we can argue that, for processing an ORDER BY operator,
a PIS is not necessarily more expensive than a full external merge sort.

5Here, by index we mean nonclustered index.
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An index is similar to a pre-computed output of the merge phase in SSD-sort. In other
words, in SSD-sort we build an index and then perform a full PIS using it; but the built
index is not materialized on disk. Instead, it is used on-the-fly, as it is created, to feed
the fetch phase. Thus, the execution time of performing a PIS would be very close to
that of the fetch phase in SSD-sort. Therefore, for processing the ORDER BY operator
mentioned above, a full PIS scan should be cheaper than a complete external merge sort
which is performed using SSD-sort.

One question is whether or not a PIS is cheaper than a traditional external merge sort
as well. As expected, the answer to this question depends on the row size, sorting memory
size, cache size, and the degree of pre-sortedness of the table T. To find out in which
configurations the PIS outperforms traditional merge sort, it is enough to compare the
execution time of the fetch phase of SSD-sort with total execution time of the traditional
method. Table 4.5 and Table 4.6 show the results of these comparisons when the data
distribution is uniformly random, and when the data is already sorted, respectively. These
tables show that there are cases in which PIS is two orders of magnitudes better than
the traditional external merge sort. For example, when the row size is 4096, the sorting
memory is 1 Mbyte, and the cache size is 100%, then PIS is 109.12X better. When the
row size is 2048 or bigger, in all cases except one, PIS shows a superior execution time.
Also, when the cache is 100%, no matter how big the sorting memory or row size, PIS is
the absolute winner.

From the results of this experiment, we can conclude that when the table is stored on
the SSD, the traditional belief about the superior performance of the traditional external
merge sort over index scan is not accurate, and it might result in choosing execution plans
with significantly higher execution times.

Note that Table 4.5 represents a worst-case scenario in which the initial distribution of
rows is uniformly random. As mentioned before, in many cases, there exists some degree of
locality of reference in the original table. This locality of reference results in better cache
utilization during the fetch phase of SSD-sort. Similarly, it will result in a better cache
utilization during PIS.

Table 4.6 represents a fully sorted table. In practice, a fully sorted table is equivalent
to a clustered index6. When a clustered index exists, it would be the natural choice for
processing the ORDER BY statement mentioned above. However, we present Table 4.6
just to see the extreme impact of the maximum locality of reference on PIS. When the

6To be more accurate, a sequential scan of a fully sorted table is equivalent to the sequential scan of
the leaf nodes in a clustered index.
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Row Size 
(Bytes) 

Cache Size (Percentage of Input Data) 

25% 50% 75% 100% 
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1 

16 0.03X 0.04X 0.09X 4.82X 

256 0.40X 0.59X 1.09X 31.41X 

2048 2.85X 3.40X 6.43X 93.99X 

4096 5.33X 6.06X 9.43X 109.12X 

8 

16 0.02X 0.03X 0.06X 3.44X 

256 0.22X 0.32X 0.59X 17.31X 

2048 1.53X 1.83X 3.45X 50.47X 

4096 2.86X 3.24X 5.05X 58.44X 

64 

16 0.02X 0.02X 0.05X 2.32X 

256 0.13X 0.19X 0.35X 10.53X 

2048 0.93X 1.12X 2.11X 30.83X 

4096 1.70X 1.93X 3.00X 34.72X 

Table 4.5: Speed-ups/slow-downs of nonclustered index scan over traditional external
merge sort when the data is distributed uniformly random

data is pre-sorted, PIS outperforms external merge sort, regardless of the size of the cache,
the sorting memory, and the row size.
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Row Size 
(Bytes) 

Cache Size = 2MB 
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1 

16 3.76X 

256 6.81X 

2048 7.70X 

4096 7.75X 

8 

16 2.04X 

256 3.78X 

2048 4.20X 

4096 4.16X 

64 

16 1.19X 

256 2.18X 

2048 2.49X 

4096 2.54X 

Table 4.6: Speed-ups/Slow-downs of nonclustered index scan over traditional external
merge sort when the data is already sorted
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Chapter 5

Conclusion, Discussion, and Future
Work
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5.1 Conclusion

This thesis has introduced systems and methods for exploiting the capabilities of modern
SSDs to improve the performance of database systems.

In Chapter 2, we showed that SSDs can be used effectively as a fully persistent second
level buffer pool in relational database systems to improve the transactional throughput,
checkpoint time, and recovery time, and to avoid a long ramp-up time after a crash recovery.
We proposed PC, a novel method for exploiting the SSD as a fully persistent second
level cache. We discussed our design decisions and the logic behind them in detail and
showed empirically how the effective use of the persistence of the SSD can improve the
performance. Compared to LC, PC shows more than 3X improvement in transactional
throughput. Employing PC can enhance the recovery rate of the database by an order of
magnitude. Moreover, after a crash recovery, the SSD cache in PC is immediately warm.
In contrast, LC suffers from a prolonged ramp-up time.

In Chapter 3, we showed that when the entire database is stored on the SSD, we need
to make the query optimizer SSD-aware because failing to do so will result in sub-optimal
query optimizer decisions. We characterized the impact of I/O parallelism in database scan
operators on SSDs and HDDs. We showed empirically how query optimization in the SSD
is affected when I/O parallelism is employed. Our experiments confirmed that, contrary
to popular belief, an SSD-oblivious query optimizer can fail to choose the optimal access
method, with a big margin of error, when parallel I/O is employed in access methods.
We proposed a novel, general and dynamic I/O cost model called QDTT, for accurate
I/O cost estimation of parallelizable database operators. We explained how QDTT can be
efficiently calibrated and employed by the query optimizer. The QDTT model allows the
optimizer to accurately choose among execution alternatives on a range of storage devices.
Our experiments demonstrate that an SSD-aware query optimizer can choose plans with
up to 20X better execution time, compared to its SSD-oblivious counterpart. We also
demonstrate how intra-query parallelism and prefetching and their combination can be
leveraged to exploit the I/O parallelism in SSDs to avoid the excessive use of valuable
workers.

In Chapter 4, we showed that when the entire database is stored on the SSD, we need
to redesign some of the major database operators so that they can make better use of
the capabilities of SSDs because failing to do so will result in performance degradation
of the operator. We proposed a variation of external merge sort, called SSD-sort, which
is designed to exploit the I/O capabilities of SSDs to outperform the traditional method
in a range of configurations. SSD-sort outperforms the traditional method in terms of
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time-to-first-row in all configurations, achieves a better total execution time in a range
of configurations, and reduces the number of required writes. In terms of total execution
time, the superiority of SSD-sort becomes more evident when the sorting memory is limited,
the row size and memory buffer pool size are larger, and there is a higher degree of pre-
sortedness or locality of reference in the input data. SSD-sort reduces the number of
required merge passes in the merge phase by generating larger and fewer runs. It also
exploits the parallel I/O capability of the modern SSDs to compensate for the cost of the
additional random writes during its fetch phase. Our experimental evaluations showed
that time-to-first-row of SSD-sort can be up to 8.86X, and its total execution time can
be up to 8.66X better than those in the traditional method. We also empirically showed
that SSD-sort may require orders of magnitude fewer writes compared to the traditional
method. We also experimentally showed that the traditional belief about the superiority
of the external merge sort over parallel index scan (when a relevant index is available) does
not hold when the table resides on an SSD. A PIS can perform up to about two orders of
magnitude better than a traditional external merge sort in extreme cases. This suggests
an important possible improvement in the query optimizer of the database systems, where
the query optimizer tries to optimize an ORDER BY operator over an SSD-resident table,
and there exists a relevant index.

5.2 Discussion and Future Work

The PC method was originally proposed and patented in 2012. Since then, several related
techniques have been proposed. An analytical comparison of the different performance
aspects of PC with those in the newer approaches is one interesting topic for future work.

Another exciting path for further research is to investigate the impact of having an
additional layer of buffer pool on query optimization. The second level cache introduces
new challenges for a cost-based query optimizer. When a multi-layer caching mechanism
is employed, the cost model must be aware of the portion of each database object which
is located in each caching layer. Otherwise, the estimated costs will become inaccurate.
In addition, some database operators, e.g. full table scan, which are sensitive to sequential
I/O patterns might become affected by this additional caching layer, mainly because there
might be a fresher SSD-resident version of some pages which are sequentially read from
the HDD. Those pages need to be re-fetched from the SSD using a random access pattern.
Those re-fetch requests may potentially degrade the performance of full table scans.

The proposed QDTT model is based on the assumption that queries will be executed
in isolation. This is a simplifying assumption that makes the problem tractable. A similar
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assumption is used in the design of the DTT model. The accuracy of the I/O cost estima-
tions based on the QDTT model will be reduced when multiple queries are being executed
concurrently. For instance, suppose the maximum beneficial queue depth of a specific de-
vice is 32. Assume for every index scan operator which is done on this device the QDTT
model will suggest a queue depth of 32. Suppose 4 queries are running concurrently on the
system. In this case, the queue depth of the system will become 128. Increasing the queue
depth to a number above the maximum beneficial queue depth will result in excessive I/O
latencies. This will increase the response time of queries. Besides, if we use prefetching to
increase the queue depth, the memory buffer pool might be polluted by many prefetched
pages which may be evicted before they can even have a chance to be used by a scan opera-
tor. This reduces the utilization of the memory buffer pool, especially in cases in which the
size of the memory buffer pool is small. A queue depth governor is needed to address this
problem. The governor must share the maximum beneficial queue depth among different
queries based on a specific controlling protocol. This protocol must maximize the queue
depth utilization of the storage while preventing the queue depth from overloading. The
controlling protocol must be employed both at the optimization time and execution time.
Since the state of the system might change from optimization time to execution time, the
controlling mechanism must adjust itself at execution time. Designing and implementing
a queue depth governor and its related controlling protocol and measuring its impact on
overall performance of the concurrent workloads is an interesting direction that we leave
it to future work.

In this thesis, we considered the optimizer’s decision about IS, FTS, PIS and PFTS op-
erators. Investigating the behavior of more complex database operators and more complex
queries is another interesting topic for further research.

One of the advantages of SSD-sort over the traditional method is that it is more CPU
cache efficient. This is because items which are moved or replaced in memory in SSD-sort
are smaller than those in the traditional method. Therefore, the workload will expose a
higher level of locality of reference. This results in fewer cache misses. This argument is
confirmed by Nyberg et al. as well [72]. Studying the impact of this locality of reference
on the overall execution time of SSD-sort is another opportunity for future work.

Since SSD-sort works with smaller data items during the run generation phase, using
co-processors such as GPUs in SSD-sort will be potentially easier and more effective. It
is known that the main bottleneck of using co-processors in database operators is the
expensive data transfer between the RAM and the co-processor’s memory [17, 35]. By
reducing the size of the input data from the entire rows to [SK,RID] pairs, the data
transfer cost would be reduced. Extending and evaluating a GPU-enabled version of SSD-
sort is another interesting path for further research.
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We showed that SSD-sort can outperform the traditional method over a range of con-
figurations. The analysis we presented will give the query optimizer some general clues
about its decision between SSD-sort and the traditional method. However, to make a
more accurate decision, the query optimizer needs a cost model. The cost model should
estimate the execution time based on parameters such as the row size, the sorting memory
size, the memory buffer pool size, the degree of pre-sortedness in the data, the parallel I/O
capability of the storage device, and even the processing power of CPUs. Designing such
a complex cost model and evaluating its effectiveness on improving the query optimizer’s
decision is another promising avenue for further research.

Implementing a parallel version of SSD-sort and comparing its performance with a
parallel version of the traditional method is another area that is worthy of further study.
Since modern SSDs benefit substantially from the parallel I/O, a parallel SSD-sort might
potentially show a superior performance over a parallel traditional merge sort, in a wider
range of configurations. In the run generation phase of the parallel external sort, the
available sorting memory is divided between the different threads. Since the negative
impact of reducing the sorting memory on SSD-sort is lower than that in the traditional
method, it is likely that SSD-sort shows a better parallel execution performance.
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