
Models and Solution Methods for the

Pallet Loading Problem

by

Burak Can Yildiz

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Management Sciences

Waterloo, Ontario, Canada, 2018

c© Burak Can Yildiz 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the

Examining Committee is by majority vote.

External Examiner: José Fernando Oliveira

Professor, Dept. of Industrial Engineering and Management

University of Porto

Supervisor(s): Samir Elhedhli

Professor, Dept. of Management Sciences

Fatma Gzara

Assoc. Professor, Dept. of Management Sciences

Internal Member: Sibel Alumur Alev

Asst. Professor, Dept. of Management Sciences

Internal Member: Houra Mahmoudzadeh

Asst. Professor, Dept. of Management Sciences

Internal-External Member: Ramadan El-Shatshat

Lecturer, Dept. of Electrical and Computer Engineering

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

The three-dimensional bin packing problem (3DBPP) seeks to find the minimum number

of bins to pack a finite number of rectangular boxes. It has a wide array of applications,

ranging from airline cargo transportation to warehousing. Its practical extension, the

distributor’s pallet loading problem (DPLP), requires the pallets to be stable, packable,

and adhering to several industry requirements such as packing sequences and weight limits.

Despite being studied extensively in the optimization literature, the 3DBPP is still one

of the most difficult problems to solve. Currently, medium to large size instances are only

solved heuristically and remain out of reach of exact methods. This also applies to the

DPLP, as the addition of practical constraints further complicates the proposed models. A

recent survey identified the scarcity of exact solution methods that are capable of handling

practical versions of the problem and the lack of a realistic benchmark data set as major

research gaps.

In this thesis, firstly, we propose a novel formulation and an exact solution approach

based on column generation for the 3DBPP, where the pricing subproblem is a two-

dimensional layer generation problem. Layers are highly desirable in practical packings

as they are easily packable and can accommodate important practical constraints such as

item support, family groupings, isle friendliness, and load bearing. Being key to the success

of the column generation approach, the pricing subproblem is solved optimally as well as

heuristically, and is enhanced using item grouping, item replacement, layer reorganization,

and layer spacing. We also embed the column generation approach within a branch-and-

price framework. We conduct extensive computational experiments and compare against

existing approaches. The proposed approach outperforms the best performing algorithm

in the literature in most instances and succeeds to solve practical size instances in very

iv

reasonable computational times.

Secondly, we extend the column generation scheme to incorporate practical constraints

set by the warehousing industry. We introduce a nonlinear layer spacing model to improve

the stability of the planned pallets, which we then reformulate as an SOCP. In order to

calculate the weight distribution within pallets, we introduce a new graph representation for

placed items. Finally, we propose construction and improvement heuristics to tackle each

practical constraint, such as vertical support, different item shapes, planogram sequencing,

load bearing, and weight limits. We conduct extensive computational experiments to

demonstrate the good performance of the proposed methodology, and provide results for

future benchmarking. To the best of our knowledge, this is the first approach to fully

solve the DPLP. Computational experiments show that the proposed approach succeeds

in solving industry size instances in record computational times and achieves high quality

solutions that account for all practical constraints.

Finally, we propose realistic benchmark instances by designing and training an instance

generator using industry data. We apply clustering and curve fitting techniques to 342

industry instances with 166,406 items to obtain the distributions for item volumes, dimen-

sions, and frequencies. We separate the instances into several classes and categories using

k-clustering and generate multiple instances with different sizes. We, then, extend the

generator to incorporate practical features such as weight, load capacity, shape, planogram

sequencing, and reduced edge support.

v

Acknowledgements

First and foremost, I would like to express my utmost gratitude to my supervisors,

Prof. Samir Elhedhli and Prof. Fatma Gzara, for their invaluable guidance and support

throughout my degree. They helped me grow academically and professionally not just

with the education and ideas that they provided, but also with their financial support,

bottomless understanding, constant encouragement, and with their admirable character

and personality. They were absolutely the best supervisors I could have worked with and

I could not have asked for anything more.

Secondly, I would like to thank the members of my thesis committee: Prof. Sibel

Alumur, Prof. Houra Mahmoudzadeh, Ramadan El-Shathat, and Prof. José Fernando

Oliveira. Their suggestions and ideas helped improve this work immensely. In addition, I

would like to extend my gratitude to Prof. Hossein Abouee Mehrizi and Prof. Leonardo

Simon for their valuable input during my comprehensive examination.

I am also extremely lucky for being a member of the Waterloo Analytics and Opti-

mization Lab (WanOpt), again thanks for Samir Elhedhli and Fatma Gzara. The time I

spent among my colleagues at the lab, discussing new ideas and helping each other, proved

invaluable in shaping who I am today and my academic work. For this reason, I am hon-

oured to have worked with Da Lu, Ahmed Saif, Ugur Yildiz, Cynthia Waltho, Paulo de

Carvalho, and Daniel Ulch. I was also able to work on two different industry projects

during my time at the lab, second of which motivated the work in this thesis. Therefore,

I am humbled and grateful for the opportunity that I was provided.

I would like to extend my gratitude towards the Management Sciences department and

the University of Waterloo as a whole, for the educational, financial, and administrative

support that they granted.

vi

Last but not least, I would like to thank my family for their infinite support and love.

My parents, Zeynep and Kadir Yildiz, raised me and made me into who I am today, and

there are absolutely no words to do justice to the effort they spent. To them, I will eternally

be indebted.

vii

Table of Contents

List of Tables xi

List of Figures xiii

List of Abbreviations xv

List of Symbols xvi

1 Introduction 1

1.1 The Three Dimensional Bin Packing Problem 2

1.2 The Distributor’s Pallet Loading Problem 3

1.3 Contribution and Outline of the Thesis . 4

2 Literature Review 7

2.1 Lower Bounds . 8

2.2 Heuristic Methods . 11

2.3 Exact Methods . 14

viii

2.4 Practical Constraints . 15

3 A Layer-based Column Generation Solution Approach 19

3.1 Solution by Column Generation . 24

3.1.1 Solution of the Pricing Subproblem 26

3.1.2 Branch-and-Price and Column Generation Frameworks 28

3.1.3 Bin Construction Heuristic . 31

3.2 Layer and Bin Improvement Strategies . 35

3.2.1 Practical Requirements . 42

3.3 Computational Experiments . 46

3.3.1 Comparison of the Proposed Methodologies 46

3.3.2 Comparison of LCGA to the State-of-the-art 47

3.3.3 Vertical Support . 51

3.4 Conclusion . 52

4 Generating Realistic Benchmak Instances 55

4.1 Training on Basic Item Features . 55

4.2 Results and Comparison on Generated Instances 61

4.3 Extending the Instance Generator . 62

4.4 Conclusion . 72

ix

5 The Distributor’s Pallet Loading Problem 74

5.1 Practical Constraints . 74

5.1.1 Vertical Support . 75

5.1.2 Load Bearing . 82

5.1.3 Planogram Sequencing and Pallet Weight Limit 84

5.2 Computational Experiments . 85

5.2.1 Results and Analysis . 86

5.3 Conclusion . 90

6 Conclusions 92

6.1 Summary of the thesis . 92

6.2 Future Research Directions . 94

References 96

APPENDICES 102

A Results for the Generated Benchmark Instances 103

B Sample Figures for LCGA Results on Generated Instances 108

C Cumulative Distribution Function Plots 112

D Results for the generated benchmark instances 114

x

List of Tables

1 Sets, parameters, and variables for the mathematical models. xvi

2.1 Performance of the exact methods. 15

3.1 Results for Branch-and-Price. 47

3.2 List of papers used for comparison in Table 3.3. 48

3.3 Detailed comparison with literature on standard instances. 49

3.4 Comparison of Algorithm 864 and LCGA with different bin size. 50

3.5 Vertical support results. 52

4.1 Distribution functions and parameters for item characteristics. 59

4.2 Percentage of each category of item in each instance class. 61

4.3 Comparison of Algorithm 864 and LCGA. 63

4.4 Correlation between the five practical item features. 65

4.5 Distribution functions for item density. 67

4.6 Load capacity curve fits. 70

xi

4.7 Item shape probabilities. 71

4.8 Correlation matrix of the generated data. 72

5.1 Results of the computational experiments. 87

A.1 Results of LCGA on class 1 of the generated instances. 104

A.2 Results of LCGA on class 2 of the generated instances. 105

A.3 Results of LCGA on class 3 of the generated instances. 106

A.4 Results of LCGA on class 4 of the generated instances. 107

D.1 Results of DPLP on class 1 of the generated instances. 115

D.2 Results of DPLP on class 2 of the generated instances. 116

D.3 Results of DPLP on class 3 of the generated instances. 117

D.4 Results of DPLP on class 4 of the generated instances. 118

xii

List of Figures

2.1 2D representation of placement methods. 12

3.1 Better utilization of the height dimension using superitems. 22

3.2 S-Shaped placement. 35

3.3 Superitem formations. 38

3.4 Limited item distribution and wasted 2D space with [SM]. 40

3.5 Visual representation of the segments. 40

3.6 The overall solution methodology for 3DBPP. 44

3.7 Vertical support solution for class 1, 100 items, instance 4. 53

3.8 Vertical support solution for class 1, 1000 items, instance 5. 53

4.1 Comparison between a standard benchmark and a real-life instance. 56

4.2 Distribution of item characteristics. 57

4.3 Distribution fitting results for depth to width (d/w) ratios. 58

4.4 Distribution fitting results for height to width (h/w) ratios. 58

4.5 Distribution fitting results for item frequency of occurrence. 59

xiii

4.6 Sum of squared error plots for k-clustering. 60

4.7 Item shapes. 65

4.8 Relationship between item features. 66

4.9 Separation of item density into curves. 67

4.10 Load capacity heat map. 68

4.11 Detailed load capacity charts. 69

4.12 Width and depth edge reduction difference. 71

5.1 Two-dimensional overlap between two items. 77

5.2 Graph representation of the items in a bin. 83

5.3 Sample pallet for Instance 2 of Class 3 and 150 items. 88

5.4 Sample pallets for Instance 3 of Class 2 and 500 items. 88

5.5 Sample pallets for Instance 1 of Class 1 and 1000 items. 89

5.6 Sample pallets for Instance 2 of Class 4 and 1000 items. 90

B.1 Solution for class 1, 50 items, instance 1. 108

B.2 Solution for class 2, 200 items, instance 1. 109

B.3 Solution for class 3, 1000 items, instance 1. 110

B.4 Solution for class 4, 2000 items, instance 1. 111

C.1 Cumulative distribution functions of the fitted load capacity curves. 113

xiv

List of Abbreviations

1DBPP one-dimensional bin packing problem 2, 12

2DBPP two-dimensional bin packing problem 2, 11, 14, 19

3DBPP three-dimensional bin packing problem xiii, 1–5, 7–11, 13, 14, 18, 25, 28, 29, 31,

42, 44, 46, 56, 72, 94, 95

CLP container loading problem 7, 15

DPLP distributor’s pallet loading problem xii, 3–5, 7, 18, 72, 74, 90, 94, 115–118

GRASP greedy randomized adaptive search procedure 13

LCGA layer-based column generation algorithm xii, 46–48, 50, 51, 55, 61, 62, 73, 90, 94,

104–107

ODPP open dimension packing problem 2, 21, 24, 31

RPM relative positioning model 14

SOCP second-order cone programing 6, 79, 91, 93, 94

SPP strip packing problem 19

xv

List of Symbols

Sets
I = Set of items
CI = Set of superitems and items
IG = Set of item groups
L = Set of layers
B = Set of bins
Parameters
W = Width of a layer/bin
D = Depth of a layer/bin
H = Height of a bin
wi = Width of item i ∈ I
di = Depth of item i ∈ I
hi = Height of item i ∈ I
vi = Volume of item i ∈ I
fsi = 1 if superitem s ∈ CI includes item i ∈ I, 0 otherwise
Variables
zil = 1 if item i ∈ I is placed in layer l ∈ L, 0 otherwise
xij = 1 if item i ∈ I precedes item j ∈ I along the width dimension, 0 otherwise
yij = 1 if item i ∈ I precedes item j ∈ I along the depth dimension, 0 otherwise
αl = 1 if layer l ∈ L is selected, 0 otherwise
ulb = 1 if layer l ∈ L is placed in bin b ∈ B, 0 otherwise
tb = 1 if bin b ∈ B is used, 0 otherwise
c1i = Bottom-left coordinate of item i ∈ I in the width dimension
c2i = Bottom-left coordinate of item i ∈ I in the depth dimension
ol = Height of layer l ∈ L
a1 = The minimum distance between every pair of items in a layer along the width

dimension
a2 = The minimum distance between every pair of items in a layer along the depth

dimension
sij1 = The amount of width overlap between items i, j in consecutive layers
sij2 = The amount of depth overlap between items i, j in consecutive layers

Table 1: Sets, parameters, and variables for the mathematical models.

xvi

Chapter 1

Introduction

The 3DBPP seeks to pack small rectangular boxes into the minimum possible number of

larger boxes, called bins. The problem is frequently encountered in logistics and supply

chain operations. Pallets and containers, being the most common platform for shipping,

are essentially three-dimensional packings with side constraints. Pallet loading is a major

component of any warehouse operation where thousands of items are packed in industry-

size pallets on a daily basis. The current research is inspired by an industry project for

a global warehousing and logistics company. Building optimized three-dimensional pallets

is a major bottleneck in its highly-automated warehouse sorting, retrieval, and palletizing

systems. Its automated warehouse has the capability to build 50 to 100-item pallets in 2

minutes. Being done dynamically, palletization must be optimized both for the number of

bins and for the quality of the packings in less than 2 minutes.

1

1.1 The Three Dimensional Bin Packing Problem

Three dimensional bin packing problems come in three variants: the knapsack loading

problem, the ODPP, and the 3DBPP (Martello et al.,2000). The knapsack loading problem

focuses on packing a subset of rectangular boxes into one or more containers such that the

total value of the packed items is maximized (Gehring et al., 1990, Pisinger, 2002, Wang

et al., 2008). The ODPP aims to pack a set of rectangular boxes into a container with

limited width and depth, and unlimited height, such that the height of the top item is

minimized (George and Robinson, 1980, Bischoff and Marriott, 1990, Bortfeldt and Mack,

2007). Finally, the 3DBPP considers packing a set of items into a minimum number of

fixed-sized containers (bins). A typology of packing problems is provided by Wäscher et al.

(2007).

The 3DBPP is NP-Hard (Martello et al., 2000). It is easy to see that a three-dimensional

bin packing problem reduces to a one-dimensional bin packing problem when two dimen-

sions (e.g., height and depth) are equal to the bin dimensions for all items. This makes

the 1DBPP a special case of the 3DBPP. As 1DBPP is already known to be NP-Hard, the

3DBPP is NP-Hard as well (Martello et al., 2000).

Although 3DBPP is a direct extension of the 1DBPP and the 2DBPP, the third dimen-

sion introduces substantial complications such as vertical support, bin stability, and load

bearing (Bortfeldt and Wäscher, 2013). The problem has been the subject of extensive

research for at least two decades with a wealth of solution approaches, mostly based on

placement heuristics and metaheuristics, but with timid progress on exact methods. In

fact, the proposed exact methods cannot handle industry-size instances, and the heuristics

do not consider most of the practical constraints. Moreover, a recent survey by Zhao et al.

(2016), focusing on solution methodologies and their comparative performance on bench-

2

mark data sets, identified three main research gaps: the lack of approaches for multiple

container size problems, the inadequate handling of real-world practical constraints such

as bin stability and vertical support, and the absence of realistic benchmark data sets.

1.2 The Distributor’s Pallet Loading Problem

Warehousing and delivery costs are two dominating factors in logistics. Based on the

2013 State of Logistics Report by the Council of Supply Chain Management Professionals

(CSCMP), annual transportation and warehousing costs were $836 billion and $434 billion

in the U.S., respectively (Kearney, 2014). Together, they represent 95.4% of total logistics

costs. Furthermore, 77.4% of the transportation costs were trucking costs, which are

directly correlated with the number of trucks used to carry goods. Therefore, minimizing

the number of trucks used is critical in reducing the operating costs in a supply chain.

Goods are generally transported using pallets and containers, which are planned and

packed in automated warehouses and distribution centers. Thus, the 3DBPP and its

practical counterpart, the DPLP, are of great importance, as they minimize the number

of pallets, and therefore trucks used for transportation. The DPLP deals mostly with

heterogenous items and is sometimes referred to as the mixed-case pallet optimization

problem. It is closely related to the Container Loading Problem. The Manufacturer’s Pallet

Loading Problem, on the other hand, considers homogenous items. A modern automated

warehouse is expected to pack thousands of items into hundreds of industry-sized pallets

every day. Owing to the dynamic and fast paced nature of the packaging operation, a

solution approach to the DPLP has to plan a pallet every 2 minutes. Additionally, these

pallets have to be stable and light enough for transportation.

Being an extension to the 3DBPP, the DPLP is further complicated by the addition of

3

practical constraints such as vertical support, load bearing, planogram sequencing, and bin

weight limits. Current methodologies that account for these practical constraints cannot

solve even the smallest of industry instances in reasonable times. Furthermore, none of the

approaches devised to tackle the entirety of the DPLP is fast enough to be used in industry.

This research is highly motivated by the lack of fast and scalable solution methodologies

for the DPLP.

1.3 Contribution and Outline of the Thesis

In this thesis, we study the 3DBPP and its practical extension, the DPLP. Motivated by the

need to provide an efficient solution methodology that can handle industry-size problems,

we provide a novel formulation based on layers and exploit it to provide a branch-and-price

solution framework. We extend the approach to handle practical constraint such as bin

stability, and provide a benchmark data set that is trained on industrial data. The use of

layers has numerous advantages related to stability and support. It also enables the use

of a column generation approach where the subproblem is a two-dimensional bin packing

problem. Finally, we tackle the entirety of the DPLP, incorporating the full range of the

practical constraints in a scalable and fast solution methodology.

The thesis is organized as follows. In Chapter 2, we review the literature on the 3DBPP,

focusing on lower bounds, exact methods, and heuristic approaches. We, then, review

the literature that considers practical constraints, namely bin stability, item orientations,

vertical support, load bearing, weight distribution and limit, and multiple container shapes

and sizes.

In Chapter 3, we discuss the main contributions of the thesis: a novel formulation and

a column generation framework based on layers. We explicitly model layers and devise

4

branch-and-price and column generation methodologies. Being key to the success of the

approach, we focus on the layering subproblem, solving it both exactly to achieve tight

lower bounds and heuristically for quick warm-starting. To construct feasible solutions, we

propose strategies for layer selection and bin construction as well as a simple placement

heuristic to pack remaining items. Second, we address one of the most important practical

constraints which is item support and highlight its relationship with the proposed layering

approach and the construction heuristic we adopt. Increasing the density of layers implic-

itly provides bins with high stability and vertical support (Zhao et al., 2016). Therefore,

we maximize layer density through item groupings that we call superitems and prioritize

denser layers when bins are constructed. We also propose an optimization model to evenly

distribute items in layers for better spacing and increased support. To the best of our

knowledge, this is the first work to propose a rigorous layer-based column generation ap-

proach for 3DBPP that is capable of handling industry-size instances, addresses practical

constraints, and outperforms previous approaches. The results show a clear superiority

in terms of optimal number of bins used and solution times as well as bin stability and

vertical support.

In Chapter 4, we analyze a large set of industrial data and propose a framework to

generate realistic instances for the 3DBPP and the DPLP that we hope will be used as

a basis for future benchmarking. The analysis first identifies item types based on their

dimensional proportions, volumes, and frequency of occurrence, and uses these features to

construct statistical distributions and parameters that are utilized to generate instances

that resemble real-life palletization problems. It, then, uses practical item features such

as weight, load bearing capacity, shape, reduced support, and sequence number in a more

detailed analysis to extend the instance generator to provide a data set for the DPLP.

We extend the proposed methodology for the 3DBPP in Chapter 5 to explicitly account

5

for all practical constraints set by the industry. We apply both exact and heuristic and

post-processing to generated layers to improve the chances of feasible placements, and use

an extreme point placement method to deal with items that cannot be placed in layers.

We propose a SOCP approach to maximize spacing within the layer under consideration

while ensuring enough overlap with the layer beneath it to satisfy support. In addition,

we use a graph based breadth-first search algorithm to verify the load bearing feasibility of

a packing in a fast manner. We propose algorithms for incorporating items with different

shapes, and several layer sorting rules to improve the quality of the resulting pallets.

We, also, provide the results of the extensive computational tests that we conducted to

underline the effectiveness of the proposed solution methodology. On average, we are able

to provide compact and stable solutions well within the industry time standard of two

minutes. Moreover, these solutions satisfy all known practical constraints. Finally, we

provide concluding remarks in Chapter 6 and discuss possible future research directions.

6

Chapter 2

Literature Review

Although the 3DBPP may be modeled and solved as a MIP, exact solution methodologies

are scarce. The literature offers a variety of heuristics instead. Furthermore, studies that

consider even a subset of the practical constraints are even fewer. This is largely due to

the increasing complexity of the problem with each additional practical constraint. To the

best of our knowledge, there is no methodology in the literature that considers the entirety

of the DPLP that can also solve realistically large instances. In what follows, we review

the best performing heuristic and exact methods, bounding schemes, and commonly used

benchmark instance sets for the 3DBPP. We also review the limited number of publications

on practical constraints. For recent reviews on the 3DBPP and the CLP, we refer to the

work of Zhao et al. (2016) and Bortfeldt and Wäscher (2013).

7

2.1 Lower Bounds

Bounding schemes are important to accurately test the performance of a proposed solution

method. Stricter lower bounds would allow a more precise look into how close a solution

is to the optimal. There are three main lower bounds proposed in the literature for the

3DBPP.

The first of these bounds is called the continuous lower bound (L0) (Martello et al.,

2000). This bound is applied to all bin packing problems, independent from how many

dimensions they have. L0 is basically defined as the number of bins required to pack all

items, if there is no empty space in any of the bins. For the three-dimensional case, it is

calculated using the following equation:

L0 =

∑
i∈I

widihi

WDH

when the set of items are defined using I, item dimensions are shown using wi, di, and hi

(∀i ∈ I), and bin dimensions are given with W , D, and H for width, depth, and height,

respectively.

Martello et al. (2000) argue that this bound would perform well if the item sizes are

small with regards to the bin size. However, they continue that if there are large items

present (e.g., wi > W/2), L0 would not provide a strict enough bound. They proved that

the worst case performance of this bound is
1

8
. This means that it may be as low as one

eighth of the optimal value. In light of this, they provide two more lower bounds for the

3DBPP, referred to as L1 and L2.

8

L1 is obtained using a reduction to the one-dimensional case. Let

IWH =

{
i ∈ I : wi >

W

2
and hi >

H

2

}
,

and define

LWH
1 =

∣∣∣∣{i ∈ IWH : di >
D

2

}∣∣∣∣+
max

1≤p≤D/2

{
∑

i∈Is(p) di −
(
|Il(p)|D −

∑
i∈Il(p) di

)
D

,

|Is(p)| −

∑
i∈Il(p)

⌊
D − di
p

⌋
⌊
D

p

⌋

}
,

Il(p) =

{
i ∈ IWH : D − p ≥ di >

D

2

}
,

Is(p) =

{
i ∈ IWH :

D

2
≥ di ≥ p

}
.

LWH
1 is obtained by considering the boxes that have more than half of the bin dimensions

in the width and height dimensions. Such items can only be packed into a bin one behind

another, this reduces the problem into a single dimension. Martello et al. (2000) proved that

LWH
1 is a valid lower bound for the 3DBPP. Moreover, LWD

1 and LDH1 , which are calculated

by interchanging different dimensions, are also valid lower bounds. L1 is calculated using

the following equation:

L1 = max
{
LWH
1 , LWD

1 , LDH1

}
.

They provided another lower bound by taking three item dimensions into account.

9

Using any pair of integers (p,q) such that 1 ≤ p ≤ W/2 and 1 ≤ q ≤ H/2, define

Kv(p, q) = {i ∈ I : wi > W − p and hi > H − q} ,

Kl(p, q) =

{
i ∈ I \ Kv(p, q) : wi >

W

2
and hi >

H

2

}
,

Ks(p, q) = {i ∈ I \ (Kv(p, q) ∪ Kl(p, q)) : wi ≥ p and hi ≥ q} ,

and let

LWH
2 (p, q) =LWH

1 +

max

0,

∑

i∈Kl(p,q)∪Ks(p,q)
vi −

(
DLWH

1 −
∑

i∈Kv(p,q)
di

)
WH

B

 ,

where vi is the volume of item i ∈ I and B is the volume of a bin, and

LWH
2 = max

1≤p≤W/2;1≤q≤H/2

{
LWH
2 (p, q)

}
.

L2 starts from L1 and takes the remainder of the boxes into account. They proved that a

valid lower bound for the 3DBPP is given by

L2 = max
{
LWH
2 , LWD

2 , LDH2

}
,

where LWD
2 and LDH2 are calculated by interchanging different dimensions. Lastly, they

proved that L2 dominates both L0 and L1, and can be calculated in O(n2) time.

10

2.2 Heuristic Methods

The 3DBPP literature includes several well-performing heuristic approaches that are capa-

ble of solving larger and more realistic instances compared to exact methodologies. They

are generally of two types: placement point methods and metaheuristics. Baker et al.

(1980) were the first to introduce a placement point method for the 2DBPP, called bottom-

left placement. This method works by placing a sorted list of items into a bin such that

their bottom-left corner coincides with the lowest possible position. Martello et al. (2000)

extended this methodology using corner points. A corner point is the result of the inter-

section between the three planes formed by the right, back, and top sides of items already

placed in a bin. The bin is divided in two parts using a staircase that separates already

placed items from the rest of the available space. They also introduced benchmark instances

that were used in most subsequent work. Crainic et al. (2008) extended this approach by

introducing the concept of extreme points. The latter result from the projections of the

right, back, and top of items already placed in a bin. This method does not use an envelope

to separate placed items from the rest of the bin as in the corner point approach. Using

projections increases the number of candidate points for placement. Figures 2.1a and 2.1b

show a 2D representation of the corner point and the extreme point methods, respectively.

Based on the extreme point method, Crainic et al. (2008) provided first-fit decreasing

and best-fit decreasing heuristics, both of which use item sorting rules based on height-

volume, volume-height, etc. After the items are sorted, the first-fit decreasing heuristic

places the next item in the first open bin with a feasible extreme point placement. If

there are no feasible placements, a new bin is opened. The best-fit decreasing heuristic on

the other hand, evaluates extreme point item pairs based on a merit function and places

them at the best point available. Zhu and Lim (2012) proposed a greedy look-ahead tree

11

(a) Corner point. (b) Extreme point.

Figure 2.1: 2D representation of placement methods.

search algorithm. It starts by generating blocks of items and places them at the corner

of the bin. The residual space created provides new corners that are, in turn, used to

place new blocks. At each node of the search tree, they select a limited number of best

placements and create child nodes by placing a new block at each. Zhu et al. (2012)

presented a construction heuristic based on the extreme point and space defragmentation

methods. Items are placed at extreme points and space is consolidated by pushing items

out to the edges. They further improve the solution by moving items from a bin to another

using space defragmentation. Faroe et al. (2003) proposed a Guided Local Search heuristic

where the neighborhood is defined by either moving an item in any orthogonal direction

or moving it to the same location in another bin while allowing overlapping. To find a

feasible placement of items for a bin, they minimize the overlap between items, and guide

the solution by penalizing consecutive overlaps.

Two Tabu Search heuristics were proposed for the problem. The first is due to Lodi

et al. (2002). It starts by packing one item per bin. The neighborhood is defined by picking

one bin and placing all its items into other bins. Items are placed in layers in two steps.

A height-first and an area-first strategies are used in steps one and two, respectively. At

the end of each step, a 1DBPP is solved to pack the layers into the bins. The second Tabu

12

Search heuristic is TS2PACK due to Crainic et al. (2009), which also has two main steps.

The first step determines the set of items to be packed into each bin, while the second

step determines the position of each item in the bins. They use the extreme point based

first-fit descending heuristic to find an initial solution. In the first step, the neighborhood

is constructed by either swapping items from different bins or moving an item to another

bin, where the bin dimensions are relaxed. In the second step, they find a feasible packing

in a bin by swapping the relative positions of items.

Parreño et al. (2010) presented a hybrid heuristic that combines variable neighborhood

descent and the GRASP. It starts by constructing an initial solution using the maximal

space algorithm, which was for the container loading problem, based on GRASP. It then

uses four improvement procedures (neighborhoods) in a variable neighborhood descent

scheme by testing a move in each neighborhood. Wu et al. (2010) presented a genetic

algorithm that is based on the relative positioning MIP. The chromosomes represent the

order of items to be packed and their orientations, which are initially assigned by fixing an

item sequence and randomly determining orientations. They use single point crossover to

keep the order of the items relatively stable, a sequential and a random repair scheme to

fix the chromosomes, and two different mutation schemes.

Zhu et al. (2012) proposed a column generation approach where each column is a

certain arrangement of items in a single bin. The columns are generated by solving a

single container loading subproblem. Since the subproblems are difficult, they solve a

single container knapsack problem to generate approximate columns.

Out of all these heuristic methodologies, Space Defragmentation of Zhu et al. (2012)

is found to perform the best with practical computational time limitations. Table 3.3 in

Section 3.3 summarizes the performance of the most competitive heuristics for 3DBPP.

13

2.3 Exact Methods

Due to the complexity of the 3DBPP, the literature offers few exact solution methods.

Chen et al. (1995) provided the first MIP formulation for 3DBPP based on the relative

positions of items, which we refer to as the RPM in the rest of this paper. Their work

is later extended by Wu et al. (2010) to allow for item orientations and by Junqueira

et al. (2012) and Paquay et al. (2016) to accommodate practical constraints. Hifi et al.

(2010) provided several lower bounds to RPM to decrease the solution time. They are

based on the LP relaxation and valid inequalities. Junqueira et al. (2012) accounted for

cargo stability and load bearing. They provided a framework to generate groups of items,

which we expand on in this paper. Paquay et al. (2016) extended RPM by accounting for

load bearing, item orientations, container shapes, weight distribution, and stability. Both

Junqueira et al. (2012) and Paquay et al. (2016) solve their models using a commercial

solver.

Martello et al. (2000) presented an enumerative two step tree search algorithm based

on the corner-point placement method. Their work is extended by Martello et al. (2007)

who provided an improved solution algorithm called “Algorithm 864”. This algorithm

determines which items to be packed into which bin at each node of the tree, ignoring

placement. The feasibility of the formed bins is verified using constraint programming. A

similar two-step approach was provided by Fekete et al. (2007) for higher dimensional bin

packing problems (e.g., 2DBPP, 3DBPP). The main difference is in the way the feasibility

of a bin is tested. They use an enumerative solution approach based on isomorphic packing

classes.

A comparison of the aforementioned methods is provided in Table 2.1. Note that

Junqueira et al. (2012), Paquay et al. (2016), and Fekete et al. (2007) generated and used

14

Methodology Max. nb. of items Avg. optimality gap % of instances solved to opt.
Martello et al. (2007) 50 - 89
Fekete et al. (2007) 80 - 72

Hifi et al. (2010) 90 21.27 -
Junqueira et al. (2012) 100 1.77 50
Paquay et al. (2016) 27 8.37 54

Table 2.1: Performance of the exact methods.

their own instances, rather than the Martello et al. (2000) benchmark instances. There are

two main issues with the proposed approaches. The exact methods are computationally

slow. Solving a medium size problem to optimality is still computationally very challenging.

Heuristics on the other hand consider only a limited number of options or disregard basic

practical constraints such as bin stability and item support. We believe the methodology

we propose is a serious attempt at using exact approaches, namely, column generation to

solve large problem instances while being able to accommodate practical constraints such

as item support.

2.4 Practical Constraints

The first practical constraint that was considered in the literature is bin stability, which

refers to the resilience that pallets should have when subject to acceleration or movement

during transportation. This is also called load balancing. Davies and Bischoff (1999),

Bortfeldt and Gehring (2001), and Eley (2002) incorporated this constraint into their

proposed methodologies. In their approach, they tried to align the center of mass of the

pallets to the geometric centre of the container. More recent work in this field is provided

by Trivella and Pisinger (2016) and Ramos et al. (2018). Trivella and Pisinger (2016)

provided a mathematical model of the CLP with load balancing constraints and used a

15

multi-level local search heuristic to solve the problem. In the first level, they explore

the transitive orientations of the feasible packing graphs. In the second, they change

the structure of these graphs. Finally, in the third, they exchange items between weakly

balanced bins. They also provided lower bounds for the problem. They showed that their

method can solve instances with up to 200 items in a few seconds. Ramos et al. (2018)

further examined the problem in terms of placing the center of mass of the pallets based

on specific vehicles used. They proposed a multi-population biased random-key genetic

algorithm, where they designed a new fitness function that takes static stability and load

balance into account. They also provided an instance generator that includes item weights

on top of item dimensions. However, they based their weight values on a simple beta

function, without an in-depth analysis of real-life data.

Ceschia and Schaerf (2013) worked on a multi-drop multi-container loading problem

with several practical constraints, such as item orientations, load bearing, and different

drop-off locations for the packed items. They use local search metaheuristics (based on

tabu search and simulated annealing), where the search space is a sequence of boxes to be

packed, rather than their placements. After they obtain a sequence, they place the items

following a greedy heuristic that exploits the remaining space and the presence of identical

items, while taking the practical constraints into account. They tested their method on

real-life instances as well as benchmark instances, and found that it outperforms most other

heuristics in terms of volume use and provides solutions in a few minutes of computation

time.

Related to the previous work, Junqueira et al. (2012) provided the first MIP model

that considers weight distribution and load bearing and tries to tackle the load balancing

constraints. They tested their model on randomly generated instances. However, since

their model is highly complex, it can only find solutions to instances with up to 100 items,

16

in a few hours of computational time.

A more in depth MIP model is presented by Paquay et al. (2016) that includes con-

straints such as load bearing, weight distribution, item orientations, and different container

shapes. Their work was derived from a real-life air cargo transportation application. Their

model captures the most amount of practical constraints in the literature by far. How-

ever, since it is an exceptionally complex mathematical model, they were only able to use

it to solve instances with up to 13 items to optimality, using branch-and-bound. They

further extended this work in Paquay et al. (2017) by providing three mathheuristics:

Relax-and-Fix, Insert-and-Fix and Fractional Relax-and-Fix. These heuristics are based

on the decomposition of the original problem into smaller subproblems. They tested their

approaches on instances with up to 100 items and a computational time limit of one hour

and provided comparable results to the branch-and-bound approach in a fraction of the

time.

Finally, Toffolo et al. (2017) introduced a heuristic decomposition method to solve the

multiple container-size loading problem introduced by the Renault Challenge (Clautiaux

et al., 2015). Their method takes advantage of the structure included in the challenge.

They first convert the 3D items into 2D and place them into stacks, and then use these

stacks to construct bins, hence decomposing the problem by grouping items together. They

generate stacks by solving a 2D placement problem. Their approach is similar to what is

presented in this thesis, albeit without the help of exact mathematical approaches such as

column generation.

Looking at the previous work, the lack of research that considers the full problem, with

all of the practical constraints that are used in the industry, is apparent. Most of the work

on practical constraints either simplify or do not consider a subset of the requirements.

The limited number of approaches that consider the full problem cannot provide solutions

17

in industry time limits. This is expected, since the 3DBPP with no other constraints is

already NP-Hard and the practical constraints add even more complexity to the problem.

However, in this thesis, we show that all of the practical constraints can be tackled in

acceptable computational time with the help of efficient decomposition techniques and

smart algorithms. Indeed, this is the first work in the literature that tackles the DPLP

in its entirety. Additionally, we provide realistic benchmark instances with practical item

attributes so that the future work on DPLP can easily provide comparisons.

18

Chapter 3

A Layer-based Column Generation

Solution Approach

Layer building approaches for packing problems are introduced by George and Robinson

(1980). Lodi et al. (2004) proposed layering based mathematical models for the SPP and

the 2DBPP and introduced new combinatorial lower bounds that can be computed in

O(nlogn). Based on these models, Bettinelli et al. (2008) developed a branch-and-price for

the SPP. The branching rule that they used is based on the initializing item for each layer.

Finally, Cui et al. (2017) worked on a triple solution approach where they use column gen-

eration and a residual algorithm to obtain one-dimensional layers. These papers generally

build layers with single type items, or do not generate layers with homogeneous height,

undercutting the real-world applicability of the solutions. Additionally, they work on sim-

pler two-dimensional problems, and do not allow for multiple items to be stacked vertically

inside each layer. In our approach, however, we consider complex two-dimensional layers

individually in a column generation procedure, allowing vertical stacking throughout each

19

layer.

Consider a set of items I, each with width wi, depth di, height hi, and an unlimited

number of identical containers (bins) b ∈ B with width W , depth D, and height H.

Let layer l ∈ L be a two-dimensional item arrangement where items are confined to the

horizontal area of a bin and no items are on top of each other. Let continuous variables c1i

and c2i represent the width and depth coordinates of the front, left, bottom corner of item

i. Define binary variables xij and yij that take value 1 if item i precedes item j along the

width and depth directions, respectively. Let binary variables zil take value 1 if item i is

in layer l. A layer l is defined by the following constraints:

xij + xji + yij + yji ≥ zil + zjl − 1 i, j ∈ I, i < j (3.1)

xij + xji ≤ 1 i, j ∈ I, i < j (3.2)

yij + yji ≤ 1 i, j ∈ I, i < j (3.3)

c1i + wi ≤ c1j +W (1− xij) i, j ∈ I, i 6= j (3.4)

c2i + di ≤ c2j +D(1− yij) i, j ∈ I, i 6= j (3.5)

0 ≤ c1i ≤ W − wi i ∈ I (3.6)

0 ≤ c2i ≤ D − di i ∈ I (3.7)

zil ∈ {0, 1} i ∈ I, l ∈ L (3.8)

xij, yij ∈ {0, 1} i, j ∈ I, i 6= j (3.9)

Constraints (3.1) enforce at least one relative positioning relationship between each

pair of items in a layer. Constraints (3.2) and (3.3) ensure that there is at most one

spacial relationship between items i and j along each of the width and depth dimensions.

Constraints (3.4) and (3.5) are the non-overlapping constraints. Constraints (3.6) and (3.7)

20

ensure that items are placed within the boundaries of the bin. Constraints (3.9) define the

domain of the variables xij and yij.

Since a layer is a two-dimensional arrangement of items and it is not affected by the

specific bin that it is placed in, we consider an easier ODPP to generate them. Define

continuous variable ol to represent the height of layer l ∈ L, and binary variable zil which

takes value 1 if item i ∈ I is included in layer l ∈ L. Using the layer definition constraints,

and variables ol and zil, the ODPP is formulated as:

[LODPP] : min
o,z,x,y,c

∑
l∈L

ol (3.10)

s.t.
∑
l∈L

zil = 1 i ∈ I (3.11)

ol ≥ hizil i ∈ I, l ∈ L (3.12)∑
i∈I

widizil ≤ WD l ∈ L (3.13)

(3.1)− (3.9)

ol ≥ 0 l ∈ L (3.14)

The goal of [LODPP] is to build layers that cover every item in a way that the total height

of such layers is minimized (3.10). Constraints (3.11) ensure that all items are covered.

Constraints (3.12) determine the height of each layer l ∈ L. Constraints (3.13) are valid

inequalities which state that the total surface area of all items in a layer cannot exceed the

surface area of the bin.

Even though this set-partitioning like formulation is prone for solution by decomposi-

tion, it does not allow for multiple stacked items within a layer. Consequently, it ignores

certain arrangements of items, possibly resulting in sub-optimal solutions. This issue is

21

Width

H
e
ig
h
t

(a) Item placement without su-
peritems.

Width

H
e
ig
h
t

(b) Item placement with superitems.

Figure 3.1: Better utilization of the height dimension using superitems.

clearly visualized in Figure 3.1, where the more compact arrangement in (b) is not consid-

ered by [LODPP] whereas the arrangement in (a) is. This is, however, done intentionally

to reduce the complexity of the formulation and to push some of the considerations to the

subproblem, when decomposition is used. This is where we use the concept of superitems.

A superitem is a collection of individual items that are stacked together. A superitem is

useful as it is a stable collection of items by design, and it provides support to items placed

on top as single items do. Superitems are treated as new items and are added to set I to

form set CI, which includes both the original items and the superitems.

Let us define binary parameter fsi that takes value 1 if candidate item s ∈ CI includes

item i ∈ I, and modify the decision variable zil to zsl; i.e. zsl takes value 1 if item s ∈ CI

is included in layer l ∈ L. The width and depth of superitems are denoted by ws and ds.

22

The extended formulation with superitems is:

[SIODPP] : min
o,z,x,y,c

∑
l∈L

ol

s.t.
∑
l∈L

∑
s∈CI

fsizsl = 1 i ∈ I

ol ≥ hszsl s ∈ CI, l ∈ L∑
s∈CI

wsdszsl ≤ WD l ∈ L

xsj + xjs + ysj + yjs ≥ zsl + zjl − 1 j > s : s, j ∈ CI, l ∈ L

xsj + xjs ≤ 1 j > s : s, j ∈ CI

ysj + yjs ≤ 1 j > s : s, j ∈ CI

c1s + ws ≤ c1j +W (1− xsj) s 6= j : s, j ∈ CI

c2s + ds ≤ c2j +D(1− ysj) s 6= j : s, j ∈ CI

0 ≤ c1s ≤ W − ws s ∈ CI

0 ≤ c2s ≤ D − ds s ∈ CI

xsj, ysj ∈ {0, 1} s 6= j : s, j ∈ CI

zsl ∈ {0, 1} l ∈ L, s ∈ CI

ol ≥ 0 l ∈ L

Unless all possible superitem combinations are considered, the formulation does not

guarantee solutions to the original problem. However, our computational experiments

show that even with a limited number of superitems, the proposed approach outperforms

all solution methodologies in the literature. Details on how to generate superitems for both

theoretical and practical implementations are given in Section 3.2.

23

3.1 Solution by Column Generation

Although [LODPP] models the ODPP using layers, it is a large MIP formulation with

many binary variables. Testing on industry data, we found that it solves instances with

up to 20 items to optimality within 5 minutes using a commercial solver. Without valid

inequalities (3.13), the solution takes 30 minutes. However, instances with 50 items are

not solvable within 24 hours. To remedy this, we adopt a column-generation framework.

In fact, the formulations are developed with this in mind. Using the set L that contains all

possible layers, continuous parameter ol for the height of a layer l ∈ L, binary parameter zsl

that takes value 1 if layer l includes candidate item s, and binary decision variable αl that

takes value 1 if layer l is selected, the layer based open dimension bin packing formulation

is:

[LCODPP] : min
α

∑
l∈L

αlol (3.15)

s.t.
∑
l∈L

∑
s∈CI

fsizslαl ≥ 1 i ∈ I (3.16)

αl ∈ {0, 1} l ∈ L (3.17)

Using binary variables tb that take value 1 if bin b ∈ B is used and ulb that take value

24

1 if layer l ∈ L is assigned to bin b ∈ B, the layer-based 3DBPP is:

[3DLCBPP] : min
α,t,u

∑
b∈B

tb (3.18)

s.t.
∑
l∈L

∑
s∈CI

fsizilαl ≥ 1 i ∈ I (3.19)

∑
l∈L

olulb ≤ H b ∈ B (3.20)

tb ≥ ulb b ∈ B, l ∈ L (3.21)

αl ≤ ulb b ∈ B, l ∈ L (3.22)

αl, tb, ulb ∈ {0, 1} l ∈ L, b ∈ B (3.23)

Constraints (3.16) and (3.19) ensure that each item is covered. Constraints (3.20) ensure

that the total height of the layers assigned to a bin does not exceed the height of the bin.

Constraints (3.21) and (3.22) make sure that a bin is used and a layer is selected when a

layer is assigned to a bin. The main differences between [LCODPP] and [SIODPP] are

that items are pre-assigned to layers and their placements are pre-determined.

The optimal layers for [LCODPP] and [3DLCBPP] may be different. However, the

difference between the two is expected to be minimal. In principle, [LCODPP] provides a

lower bound to [3DLCBPP]. It can be used to produce a feasible solution by introducing

separator sheets to [LCODPP] at height intervals of H. This way, the open dimension is

separated into bins with height H. Adding the separator constraints to [LCODPP] should

yield a good feasible solution to [3DLCBPP] since decreasing the total layer height also

decreases the number of ”bins”. Because [LCODPP] is a much easier problem to solve,

we use it for column generation.

The linear relaxation of [LCODPP] is the Dantzig-Wolfe master problem. When de-

25

fined on a subset of layers L′, we obtain the restricted master problem [RMP].

[RMP] : min
α

∑
l∈L′

αlol

s.t.
∑
l∈L′

∑
s∈CI

fsizslαl ≥ 1 i ∈ I

αl ≥ 0 l ∈ L′

Let λi, i ∈ I be the dual variables corresponding to constraints (3.16). The reduced

cost of a new layer l is ol−
∑
i∈I

∑
s∈CI

λifsizsl. The pricing subproblem to generate new layers

(columns) is:

[SP] : min
o,z,x,y,c

ol −
∑
i∈I

∑
s∈CI

λifsizsl (3.24)

s.t. (3.1)− (3.9)∑
s∈SI

wsdszsl ≤ WD

In [SP], only items with λi ≥ 0 are considered, since it is a minimization problem and

thus items with λi < 0 will not be included in the optimal solution. New columns (ol, zsl)

are added to [RMP] as long as they have a negative reduced cost. If all such columns are

included in [RMP], a lower bound to [LCODPP] is obtained.

3.1.1 Solution of the Pricing Subproblem

The subproblem [SP] takes less than one minute to solve using CPLEX when the number

of items considered in a layer is 20 or less. As the number of items increases, the solution

time increases significantly. For example, when |I| > 100, CPLEX takes more than one

26

hour of CPU time. Since [SP] is solved repeatedly in column generation, such times are

not acceptable. To overcome this, we suggest to solve a relaxed problem where placement

is ignored and we use the property that the objective function of [SP] is only a function

of the items in the layer (variable zsl) and not on the placement (variables c1s and c2s) to

suggest an iterative algorithm to solve [SP].

The algorithm first ignores the placement constraints (3.1)-(3.9) and finds a set of items

such that the reduced cost is minimized. If the reduced cost is nonnegative, the column

generation algorithm terminates. Else, a set of items S is found such that the reduced cost

is negative. The algorithm then checks if there is a feasible placement of S in a layer, by

solving [SP] for the set S instead of I until a feasible solution is found. If such a feasible

placement exists, the algorithm terminates and the column is added to the master problem.

Else, a feasibility constraint
∑
s∈S

zsl ≤ |S| − 1 is added to the relaxed subproblem, and the

iterative algorithm continues. Because of the valid inequality (3.13), |S| is expected to

be much smaller than |I|, which makes the feasibility check fast regardless of the size of

I. Based on our experiments, even for problems with |I| > 100, the iterative algorithm

succeeds in finding good layers within a maximum of one minute.

To improve the solution time, [SP] could also be solved heuristically so that multiple

columns can be added to [RMP] at each iteration of column generation, reducing the num-

ber of iteration needed for termination. There are numerous well-performing 2D packing

algorithms in the literature. In this work, we use the placement algorithm called Maxrects

implemented by (Jylänki, 2010) since it is readily available as a C++ library and was found

to perform well in our experiments.

Maxrects uses 5 different objectives in object placement. We generate layers using all

of these objectives. Since the reduced cost of a layer l is ol −
∑
i∈Il

∑
s∈CI

λifsizsl, items with

27

higher dual variables are more likely to minimize the reduced cost. Therefore, we sort the

items in decreasing order of λi and use Maxrects to place them. Experimentally, a layer is

generated in less than 0.0001 seconds on average for instances with up to 3000 items.

3.1.2 Branch-and-Price and Column Generation Frameworks

We introduce both a layer-based column generation algorithm (LCGA) and a branch-and-

price method to obtain solutions to 3DBPP. In this subsection, we explain both of these

approaches.

To solve [LODPP] to proven optimality, we incorporate the column generation in a

branch-and-price scheme. We use the Ryan and Foster (1981) branching rule where two

items are either forced to belong to the same layer or to different layers. To find the

constraints to branch on, we scan the coefficient matrix of [RMP] to identify two items

m and n, and two layers (columns) where m and n are both in the first layer, but only

one is in the second layer. The columns with the highest αl values are picked first. In

the left child node, m and n are forced to be together, while in the right only one is (see

Vance et al. (1994) for more details). Since the left child reduces the size of the model, it

provides an easier problem to solve. Therefore, we use a depth-first search through the left

child when traversing the branch-and-bound tree. Note that instead of adding these rules

as constraints to the master problem, we simply remove the columns that do not satisfy

them from the respective child node.

These restrictions can easily be applied to the column generation subproblem. To

generate columns in the left child node, we add a constraint in the form of
∑

s∈CI fsmzsl =∑
s∈CI fsnzsl. For the right child, the constraint to be added is

∑
s∈CI(fsm + fsn)zsl ≤ 1,

where we remove the super items that include both items m and n from CI to reduce the

28

problem size.

To begin the column generation process with a warm start, we first generate a subset of

layers using Maxrects with randomly generated dual variables. Also |I| single item layers

are included to ensure feasibility. As proven by Vance et al. (1994), it is not always neces-

sary to solve the root node [RMP] to optimality to obtain a lower bound on [LCODPP].

Where vB is the optimal value of [RMP] over the current set of columns and cmin is the

reduced cost of the column given by the optimal solution to [SP], column generation in

the root node is terminated when dvBe = dvB/(1 − cmin)e. Let vLB be equal to the final

vB value obtained from the column generation process.

We also suggest a column generation heuristic to construct feasible solutions for large

instances of 3DBPP. The column generation algorithm terminates when no columns with

negative reduced cost can be generated, or when the objective value of [RMP] is not

improved in the last 20 iterations. After layer generation, layers with less than 50% density(∑
i∈Il widi

WD

)
are discarded, since their use would lead to unstable bins. The heuristic

selects layers ordered in descending order of density, until all items are covered. Algorithm

1 showcases this heuristic, where L and SL refer to the sets of generated and selected

layers, respectively. The parameter del is the density of layer l and it is calculated using

the expression

∑
s∈CIl wsdshs

WDol
. Layers with higher densities are prioritized, since they

implicitly improve bin stability. Based on our tests, many of the layers with high density

have common items. To be able to select more of these layers, we allow each item to be

covered at maximum 3 times. We also let each selected layer to have a maximum of 3

items that are covered using the previously selected layers. To ensure that each item is

covered only once, we keep the items that are covered multiple times only in the layer with

the highest αl value, and remove them from the rest of the selected layers. We then place

the remaining items in an empty layer using the Maxrects heuristic. Since the removal

29

of items creates empty space, we also try to place items that are not covered yet in this

layer to further improve item coverage and increase layer density. This approach is further

elaborated on in Algorithm 2, where SL refers to the set of selected layers.

Algorithm 1 Layer Selection Algorithm
1: procedure Initialization

2: Set SL = ∅.

3: end procedure

4: procedure Select–Layers(L)

5: Sort layers in SL in descending order by decision variables αl.

6: for each layer l ∈ L do

7: for each item i in layer l do

8: if item i is already covered then

9: Go to next layer.

10: end if

11: end for

12: Set SL ← SL ∪ l.

13: end for

14: end procedure

30

Algorithm 2 Layer Reorganization Algorithm
1: procedure Replace–Items(SL)

2: for each layer l ∈ SL do

3: SL ← SL \ l.

4: for each item i in l do

5: if i is covered before then

6: Remove i from l.

7: end if

8: end for

9: Clear layer l and place the remaining items in it using Maxrects.

10: Sort items not in l by λi in descending order.

11: Use Maxrects to put the sorted items to l.

12: SL ← SL ∪ l.

13: end for

14: end procedure

3.1.3 Bin Construction Heuristic

Once a solution to ODPP is found, whether exactly using branch-and-price or heuristically

through column generation, the selected layers are used to construct a solution to the

3DBPP. Since denser layers provide more support, the layers are first sorted in decreasing

density. Then, L2 number of bins are opened and the layers are placed sequentially, starting

from the lowest possible placement in any bin. This way the layers with higher density

are distributed among the open bins, increasing bin stability. If a layer cannot fit in any

bin, a new bin is opened. The bin construction procedure is explained in Algorithm 3,

where B refers to the set of constructed bins and SL represents the set of selected layers.

31

Parameters hb and hl are the total height of the layers in the bin b and the height of layer

l, respectively. H is the maximum height of a bin.

Algorithm 3 Bin Construction Algorithm
1: procedure Initialization

2: Set |B| = L2.

3: end procedure

4: procedure Construct–Bins(SL)

5: Sort layers in SL in descending order by density.

6: for each layer l ∈ SL do

7: for each bin b ∈ B do

8: if hb + hl ≤ H then

9: Place l in b.

10: end if

11: end for

12: if l cannot be placed in any bin b ∈ B then

13: Open a new empty bin n and place l in n.

14: Set B ← B ∪ n.

15: end if

16: end for

17: end procedure

Unfortunately, not all items are always covered by layers. There are two main reasons

for this. Layers with less than 50% density are discarded and some items may have heights

that are too different from the rest and cannot be grouped in a layer in a stable manner.

Therefore, we build the majority of bins using layers and place the remaining items on top

in an S-shape (see Figure 3.2), while alternating between short and tall items. Algorithm

32

4 describes this approach, where N refers to the set of items that are not covered. The

parameter itr is the iteration count. To keep the overall height constant throughout the

top sections of the bins, we alternate the placement of items in descending and ascending

orders of height in each consecutive iteration. This reduces the negative impact on vertical

stability. If the majority (e.g., 70%) of the bin is filled with layers and the remaining

items occupy only a small portion at the top, the constructed bin would be stable. Minor

instabilities can be fixed through shrink wrapping (i.e., horizontally compressing the pallet

by wrapping stretch film around it), which is standard in the industry.

33

Algorithm 4 The S-Shaped Placement Algorithm
1: procedure Place–Items(N)

2: Sort N in descending order by width and depth.

3: for each bin b ∈ B do

4: itr ← 1.

5: while N 6= ∅ do

6: if itr ≡ 1 (mod 2) then

7: Sort N in descending order by height.

8: else

9: Sort N in ascending order by height.

10: end if

11: Place the items in an S-Shape.

12: if No other item can be fit in current layer then

13: Go up a layer, and set itr ← itr + 1.

14: end if

15: if No other item can be fit in current bin then

16: Go to next bin.

17: end if

18: end while

19: end for

20: end procedure

34

D
e
p
th

Width

Figure 3.2: S-Shaped placement.

3.2 Layer and Bin Improvement Strategies

To construct dense and stable layers, we propose three enhancement strategies. The first

strategy is based on the formation of superitems. The second is a post processing strategy

through item replacement. The third is layer reorganization and spacing strategy.

For stability, industry rules require a minimum percentage of the surface area of an

item to be supported by the item(s) underneath it. As suggested by our industry partner,

we used 70%. To satisfy this, superitems are formed by stacking a large item on top of an

almost equal item (see Figure 3.3a). Additionally, superitems are formed by placing iden-

tical items horizontally as in Figures 3.3b and 3.3c. Figure 3.3d shows a mixed formation.

Larger items are placed on top of smaller items to increase the potential support surface. In

our implementation, we use 2 and 4-item horizontal and 2-item vertical formations. While

increasing the number of items per formation provides many more potential placements,

the computational effort increases significantly. Algorithm 5 describes the superitem gen-

eration in more detail, where SI refers to the set of superitems while LI refers the set of

items from which superitems can be created. In line 20, |i| is the number of items currently

35

in superitem i and max items is the maximum number of items that can be stacked on

top of one another for a superitem. In our experiments, we used the value of 4 for this

parameter. At the end of the algorithm, LI includes all the items and superitems that can

be used to generate layers.

36

Algorithm 5 Superitem Generation Algorithm
1: procedure Initialization

2: Set SI = ∅.

3: Set LI = ∅.

4: end procedure

5: procedure Generate Super–Items(I)

6: for each set Is of items with identical dimensions do

7: if |Is| > 1 then

8: Create all possible superitems with 2 items by putting items side-by-side.

9: end if

10: if |Is| > 3 then

11: Create all possible superitems with 4 items by putting items side-by-side.

12: end if

13: Add the created superitems to SI.

14: end for

15: Set LI ← I ∪ SI.

16: Sort each item i ∈ LI in ascending order by width, depth, and height.

17: for each item i ∈ LI do

18: for each item j > i ∈ LI do

19: if 0.7wjdj ≤ widi then
20: if (i ∈ SI and |i|+ 1 ≤ max items) OR i 6∈ SI then

21: Create superitem k by stacking item j over item i such that

22: xi =
wj − wi

2
and yi =

dj − di
2

.

23: Set LI ← LI ∪ k.

24: Set SI ← SI ∪ k.

25: end if

26: end if

27: end for

28: end for

29: end procedure

37

(a) Vertical. (b) 2-item horizontal. (c) 4-item horizontal. (d) Mixed.

Figure 3.3: Superitem formations.

The item replacement strategy is a simple procedure that allows the generation of

additional layers with minimal computational effort. The replacement is limited to items

that satisfy the minimum industry overlap in surface area with the item being replaced.

The approach is described in Algorithm 6, whereNL refers to the set of new layers obtained

by replacing an item in a pre-existing layer and L represents the set of generated layers.

Algorithm 6 Item Replacement Algorithm
1: procedure Initialization

2: Set NL = ∅.

3: end procedure

4: procedure Replace–Items(I,L)

5: for each layer l ∈ L do

6: for each item i in layer l do

7: for each item j not in layer l do

8: if 0.7widi ≤ wjdj ≤ widi then
9: Replace i with j to create layer k.

10: Set NL ← NL ∪ k.

11: end if

12: end for

13: end for

14: end for

15: Set L ← L ∪NL.

16: end procedure

38

Spacing aims at consolidating dead space to increase density and avoid towers. The

marked area in Figure 3.4a shows the wasted space in a bin if spacing is not applied.

Therefore we introduce an approach to space items evenly in a layer. One way to space

items is to fix the relative positioning variables in constraints (3.1)-(3.9) and solve the

following mathematical model:

[SM] : max
a,c

a1 + a2

s.t. c1i + wi ≤ c1j +W (1− xij) i 6= j, i, j ∈ I

c2i + di ≤ c2j +D(1− yij) i 6= j, i, j ∈ I

c1i ≤ W − wi i ∈ I

c2i ≤ D − di i ∈ I

a1 ≤ c1j − (c1i + wi) i 6= j, xij = 1, i, j ∈ I (3.25)

a2 ≤ c2j − (c2i + di) i 6= j, yij = 1, i, j ∈ I (3.26)

c1i , c
2
i ≥ 0 i ∈ I

where we try to maximize the continuous variables a1 and a2 that denote the minimum

distance between each pair of items in the width and depth dimensions, respectively. Con-

straints (3.25) and (3.26) determine the value of the variables a1 and a2. xij and yij are

the binary parameters obtained from the relative positions of the items in the layer.

This model, however, is not effective as empty spaces are not necessarily distributed

fully throughout a layer (Figure 3.4). Alternatively, we propose a segmented approach.

When an item moves in one direction (width or depth), it may impact other items in that

direction. Let a segment Si be the set of items that may be impacted by moving item i

in some direction. For the width dimension, the complement to the set {j ∈ S : (c2j >

39

(a) Before spacing. (b) After spacing.

Figure 3.4: Limited item distribution and wasted 2D space with [SM].

D
e
p
th

Width

1 2 3

4567

Figure 3.5: Visual representation of the segments.

c2i + di) ∪ (c2j + dj < c2i)} defines segment Si. Figure 3.5 illustrates this concept where the

spacing of item 5 in the width dimension can only be affected by items 1, 4, 6, and 7. Note

that we only consider unique segments, and we only use the distances between the items

that directly follow one another. Additionally, a segment is discarded if it is a subset of

another segment.

Using Sw and Sd as the set of segments for the width and depth dimensions, and

continuous decision variables a1s and a2s that denote the minimum distance between the

items in segment s along the width and depth dimensions, respectively, the layer spacing

40

formulation is:

max
a,c

∑
s∈Sw

a1s +
∑
s∈Sd

a2s

s.t. c1i + wi ≤ c1j +W (1− x̄ij) i 6= j, i, j ∈ I

c2i + di ≤ c2j +D(1− ȳij) i 6= j, i, j ∈ I

0 ≤ c1i ≤ W − wi i ∈ I

0 ≤ c2i ≤ D − di i ∈ I

a1s ≤ c1j − (c1i + wi) i 6= j, x̄ij = 1, i, j ∈ I, s ∈ Sw

a2s ≤ c2j − (c2i + di) i 6= j, ȳij = 1, i, j ∈ I, s ∈ Sd

c1i , c
2
i ≥ 0 i ∈ I

where the objective is to maximize the minimum distance between the items in each seg-

ment. Since segment definitions in one dimension may change with spacing in the other

dimension, we decompose this model and apply spacing to each dimension sequentially.

The segmented spacing formulation in the width dimension is:

max
a,c

∑
s∈Sw

a1s

s.t. c1i + wi ≤ c1j +W (1− x̄ij) i 6= j, i, j ∈ I

0 ≤ c1i ≤ W − wi i ∈ I

a1s ≤ c1j − (c1i + wi) i 6= j, x̄ij = 1, i, j ∈ I, s ∈ Sw

c1i ≥ 0 i ∈ I

After this model is solved and the set Sd is updated, a similar model is used to space in

41

the depth dimension.

3.2.1 Practical Requirements

In practice, three-dimensional bin packing has to satisfy important practical constraints.

In distributor’s pallet loading and container loading problems, item support, bin stability,

and load bearing are particularly important. The proposed layering approach is suitable

to deal with some of these constraints, either explicitly or implicitly, when the layers are

being formed and selected to create feasible solutions.

To ensure item support, we divide the set of items CI in (3.1)-(3.9) into item groups

IG that only contain items of the same height. We allow a tolerance of 5 mm, which is an

industry standard. It is important to note that an item may be in multiple item groups

g ∈ IG based on its height. Another important practical constraint is family grouping.

Items in the same family group (e.g., beverages) should preferably be packed close to each

other and in the same bin, which may also be handled in the definition of IG. Finally,

load bearing, an important practical constraint, may be accommodated by limiting the sets

IG to only contain items with similar load bearing capabilities. To ensure bin stability,

layers are placed in the bins in decreasing order of load bearing capability. This approach

decomposes the layer generation subproblem into multiple smaller subproblems, one for

each group, which results in a considerable decrease in solution time. Finally, we restrict

the number of sets IG by eliminating groups with
∑

i∈g,g∈IG widi ≤ 0.5WD, since they do

not lead to dense layers. The grouping approach is explained in Algorithm 7.

Using the column generation and branch-and-price frameworks, pre- and post-processing

approaches, and the bin construction heuristic, the overall solution methodology for 3DBPP

is summarized in Figure 3.6. The item grouping pre-processing for tackling practical con-

42

straints is examined in more detail in Chapter 5.

43

Figure 3.6: The overall solution methodology for 3DBPP.

44

Algorithm 7 Item Grouping Algorithm
1: procedure Initialization

2: Set IG = ∅.

3: end procedure

4: procedure GroupItems(CI)

5: Sort items in CI in descending order by height.

6: Create an item group g1 for the first item in CI, and set IG ← IG ∪ g1.

7: for each item i > 1 ∈ CI do

8: if hi 6= hi−1 then

9: Create an item group gi for item i, and set IG ← IG ∪ gi.

10: end if

11: end for

12: for each item group g ∈ IG do

13: for each item i ∈ CI do

14: if hg − hi ≤ 5 then

15: Set g ← g ∪ i.

16: end if

17: end for

18: end for

19: for each item group g ∈ IG do

20: if |g| = 1 then

21: Set IG ← IG \ g.

22: else if
∑

i∈g widi ≤ 0.5WD then

23: Set IG ← IG \ g.

24: end if

25: end for

26: end procedure

45

3.3 Computational Experiments

We perform extensive computational testing of the proposed solution approach and com-

pare it to the best solution methodologies. We start by describing standard benchmark

instances from the literature and then provide a new and realistic benchmark data set.

We compare our approach with the best performing heuristic and exact approaches from

the literature on the standard instances, and provide a comparison to Algorithm 864 of

Martello et al. (2007) on the new instances. Testing is conducted on a computer with Intel

i7-5500U CPU, with 2.40 Ghz and 16 GB on Windows 8.1. The mathematical models are

solved using CPLEX Concert technology with CPLEX version 12.6.1. The algorithms are

coded in C++ using Visual Studio 2012 IDE.

There is only one standard 3DBPP data set based on the random instance generator of

Martello et al. (2000). The set has 9 classes with 50, 100, 150 and 200 items. We generate

360 instances, 10 for each class and item combination. The random instance generator

uses the same seed, so all generated instances are guaranteed to be the same as those used

in the literature.

3.3.1 Comparison of the Proposed Methodologies

The Branch-and-Price methodology and the Layer-Based Column Generation Algorithm

(LCGA) are tested and compared on 50-item instances from Martello et al. (2000). Table

3.1 displays the average number of bins used, the average number of nodes searched, and

the average CPU time in seconds. The results show that the branch-and-price method finds

optimal solutions within a maximum of 465.3 seconds. Additionally, it finds the optimal

fairly close to the root node, which shows us that the gap at the root node is small. On the

46

other hand, LCGA finds good solutions in less than one second. As branch-and-price is

not expected to handle large instances, we focus on LCGA for the rest of the experiments.

BnP LCGA

Class Avg Bin Avg Nodes Avg CPU (s) Avg Bin Gap (%) Avg CPU (s)

1 13 5.7 378.4 13.2 1.5 0.56

2 13.1 4.2 349.2 13.3 1.5 0.68

3 12.5 4.8 416.7 12.8 2.4 0.41

4 29.2 3.9 363 29.4 0.7 0.27

5 7.9 3.4 395.9 8.4 6.3 0.43

6 9.5 4.1 387.6 9.8 3.2 0.79

7 7.1 5 448.7 7.4 4.2 0.82

8 8.9 3.3 465.3 9.2 3.4 0.77

9 3.8 3.1 418.5 4 5.3 0.91

Table 3.1: Results for Branch-and-Price.

3.3.2 Comparison of LCGA to the State-of-the-art

To assess the efficacy of the proposed layer based column generation approach, we compare

to the best performing algorithms in the literature. Zhao et al. (2016) give a comparison

of 10 algorithms (Table 3.2) based on the total number of bins used for classes 1 and 4-8 of

Martello et al. (2000). Some classes are omitted as some approaches do not test on them.

The comparison is given in Table 3.3. The column IbB-2004 gives the best known lower

bound due to Boschetti (2004). The bold results are the best solutions in terms of number

of bins used for each class and instance size. LCGA outperforms the best algorithm in the

literature in 13 out of 24 class-item size combinations and in all classes except 6 and 7. This

47

is likely because classes 6 and 7 have relatively small bin size and large item dimensions,

which is far from being realistic and does not favor layering since only few items can fit

in one bin. Even though the improvements on the average number of bins used may not

seem too large, it is important to note that the overall optimality gap is 2.8%. The fastest

methodology in Table 3.3 is Space Defragmentation by Zhu et al. (2012) with a time limit

of 30 seconds per instance. In comparison, LCGA uses only 3.17 seconds on average.

Year Paper Code Name
2000 Martello et al. (2000) MPV-2000 Algorithm 864
2000 Martello et al. (2000) MPV-2000-BS Algorithm 864
2000 Martello et al. (2000) MPV-2000-Spack Algorithm 864
2002 Lodi et al. (2002) L2002-HA Tabu Search
2002 Lodi et al. (2002) L2002-TS Tabu Search
2003 Faroe et al. (2003) F-2003 Guided Local Search
2008 Crainic et al. (2008) C-2008 Extreme Point Placement Algorithm
2009 Crainic et al. (2009) C-2009 TS2PACK
2012 Zhu et al. (2012) SD Space Defragmentation
2004 Boschetti (2004) IbB-2004 Lower Bound

Table 3.2: List of papers used for comparison in Table 3.3.

In Table 3.4, we compare to Algorithm 864 (MPV-2000) on 100 item instances with

standard and larger bin sizes. The larger bin sizes have approximately 10 times the total

volume compared to the standard sizes. Increasing bin dimensions reduces the item to

bin volume ratio and leads to more realistic data sets. All of the solutions reported for

Algorithm 864 are obtained using the provided C code [27] with a CPU time limit of

1000 seconds. In Table 3.4, LB gives the average lower bound (L2) over 10 instances and

#Better provides the number of instances in which LCGA outperforms Algorithm 864. The

columns Min, Max, Avg and CPU report the minimum, maximum, and average number

of bins used and the average CPU time for both approaches, respectively.

48

C
la

ss
B

in
d
im

en
si

on
s

It
em

n
o.

M
P

V
-2

00
0

M
P

V
20

00
-B

S
M

P
V

20
00

-S
p
ac

k
L

20
02

-H
A

L
20

02
-T

S
F

-2
00

3
C

-2
00

8
C

-2
00

9
S
D

L
C

G
A

Ib
B

-2
00

4
1

10
0x

10
0

50
13

.6
13

.5
15

.3
13

.9
13

.4
13

.4
13

.7
13

.4
-

1
3
.2

12
.9

10
0

27
.3

29
.5

27
.4

27
.6

26
.6

26
.7

27
.2

26
.7

-
2
6
.1

25
.6

15
0

38
.2

38
40

.4
38

.1
3
6
.7

37
37

.7
37

-
3
6
.7

35
.8

20
0

52
.3

52
.3

55
.6

52
.7

51
.2

51
.2

51
.9

51
.1

-
5
0
.7

49
.7

C
la

ss
to

ta
l

13
1.

4
13

3.
3

13
8.

7
13

2.
3

12
7.

9
12

8.
3

13
0.

5
12

8.
2

12
7.

4
1
2
6
.7

12
4

4
10

0x
10

0
50

2
9
.4

2
9
.4

29
.8

2
9
.4

2
9
.4

2
9
.4

2
9
.4

2
9
.4

-
2
9
.4

29
10

0
59

.1
59

60
59

59
59

59
5
8
.9

-
59

58
.5

15
0

87
.2

87
.3

87
.9

86
.9

8
6
.8

8
6
.8

8
6
.8

8
6
.8

-
8
6
.8

86
.4

20
0

11
9.

5
11

9.
3

12
0.

3
11

9
11

8.
8

11
9

11
8.

8
11

8.
8

-
1
1
8
.6

11
8.

3
C

la
ss

to
ta

l
29

5.
2

29
5

29
8

29
4.

3
29

4
29

4.
2

29
4

29
3.

9
29

4
2
9
3
.8

29
2.

2
5

10
0x

10
0

50
9.

2
9.

1
10

.2
8.

5
8.

4
8
.3

8.
4

8
.3

-
8.

4
7.

6
10

0
17

.5
17

17
.6

15
.1

15
15

.1
15

.1
15

.2
-

1
4
.6

14
15

0
24

23
.7

24
21

.4
20

.4
20

.2
21

20
.1

-
1
9
.8

18
.8

20
0

31
.8

31
.7

31
.7

28
.6

27
.6

27
.2

28
.1

27
.4

-
2
6
.9

26
C

la
ss

to
ta

l
82

.5
81

.5
83

.5
73

.6
71

.4
70

.8
72

.6
71

70
.3

6
9
.7

66
.4

6
10

x
10

50
9
.8

11
11

.2
10

.5
9.

9
9
.8

10
.1

9
.8

-
9
.8

9.
4

10
0

19
.4

22
.3

24
.5

20
19

.1
19

.1
19

.6
19

.1
-

1
8
.9

18
.4

15
0

29
.6

32
.4

35
30

.6
29

.4
29

.4
29

.9
2
9
.2

-
29

.5
28

.5
20

0
38

.2
40

.8
42

.3
39

.1
37

.7
37

.7
38

.5
37

.7
-

3
7
.4

36
.7

C
la

ss
to

ta
l

97
10

6.
5

11
3

10
0.

2
96

.1
96

98
.1

95
.8

9
5
.5

95
.6

93
7

40
x
40

50
8.

2
8.

2
9.

3
8

7.
5

7
.4

7.
5

7
.4

-
8.

1
6.

8
10

0
15

.3
13

.9
15

.3
13

.3
12

.5
1
2
.3

13
.2

1
2
.3

-
12

.8
11

.5
15

0
19

.7
18

.1
20

.1
17

.2
16

.1
1
5
.8

17
1
5
.8

-
16

.5
14

.4
20

0
28

.1
28

28
.7

25
.2

23
.9

2
3
.5

25
.1

2
3
.5

-
24

.3
22

.7
C

la
ss

to
ta

l
71

.3
68

.2
73

.4
63

.7
60

59
62

.8
59

5
8
.4

61
.7

55
.4

8
10

0x
10

0
50

10
.1

9.
9

11
.3

9.
9

9.
3

9.
2

9.
4

9.
2

-
9

8.
7

10
0

20
.2

20
.2

21
.7

19
.9

18
.9

18
.9

19
.5

1
8
.8

-
18

.9
18

.4
15

0
27

.3
26

.8
28

.3
25

.7
24

.1
23

.9
25

.2
23

.9
-

2
3
.8

22
.5

20
0

34
.9

34
35

31
.6

30
.3

29
.9

31
.3

30
-

2
9
.2

28
.2

C
la

ss
to

ta
l

92
.5

90
.9

96
.3

87
.1

82
.6

81
.9

85
.4

81
.9

81
.3

8
0
.9

77
.8

T
ot

al
76

9.
9

77
5.

4
80

2.
9

75
1.

2
73

2
73

0.
2

74
3.

4
72

9.
8

7
2
6
.9

72
8.

4
70

8.
8

T
ab

le
3.

3:
D

et
ai

le
d

co
m

p
ar

is
on

w
it

h
li
te

ra
tu

re
on

st
an

d
ar

d
in

st
an

ce
s.

49

LCGA Algorithm 864

Nb. of Bins Nb. of Bins

Class Size (WxDxH) LB #Better Min Max Avg CPU (s) Min Max Avg CPU (s)

1 100x100x100 25.2 8 24 28 26.8 1.9 25 30 27.5 1000

215x215x215 2 10 3 4 3.2 6.05 4 5 4.9 1000

2 100x100x100 24.2 7 23 27 25.9 1.97 24 29 26.4 1000

215x215x215 2 8 2 4 3.4 6.47 4 5 4.7 1000

3 100x100x100 24.7 7 23 30 27.1 2.05 26 33 29 1000

215x215x215 2 10 3 4 3.3 6.25 4 5 4.9 1000

4 100x100x100 57.8 2 52 65 59.1 1.48 52 66 59.2 1000

215x215x215 3.8 10 4 5 4.5 2.68 6 7 6.5 1000

5 100x100x100 13.2 5 12 19 15.3 2.28 13 21 17.3 1000

215x215x215 1.8 10 2 3 2.2 1.37 3 4 3.5 1000

6 10x10x10 17.5 6 15 24 18.2 2.22 17 21 19.4 1000

22x22x22 2 3 3 4 3.1 0.95 3 4 3.4 1000

7 40x40x40 11 4 11 15 13.8 1.93 12 17 15.3 1000

86x86x86 1.2 4 2 3 2.3 0.83 2 4 2.7 1000

8 100x100x100 17.8 5 17 28 18.9 3.03 18 28 19.9 1000

215x215x215 2 10 2 3 2.6 3.18 3 4 3.9 1000

9 100x100x100 3 10 4 4 4 2.05 5 8 6.7 1000

215x215x215 1 10 1 1 1 0.9 2 4 2.4 1000

Average 11.78 7.17 13.04 2.64 14.07 1000

Table 3.4: Comparison of Algorithm 864 and LCGA with different bin size.

LCGA outperforms Algorithm 864 on all instances based on the average number of

bins used. LCGA uses 44.14% less bins than Algorithm 864 for large bins and 5.55% for

50

smaller ones. This proves the efficacy of LCGA to solve realistic instances. Additionally,

there was no instance where Algorithm 864 uses less bins than LCGA. LCGA is nearly 500

and 300 times faster for small and large bin sizes, respectively.

3.3.3 Vertical Support

One of the benefits of the layering approach is its ability to handle item support relatively

easily. Once a layer is formed, the areas requiring support as well as those that may

provide support are known. We exploit such information to account for support explicitly

and provide preliminary results. For that, we modify the bin construction (Algorithm 3),

the item spacing, and the S-Shaped placement algorithms.

In Algorithm 3, items are placed based on their density. We only check if items are

parts of previous layers. To ensure support, we conduct a second check. A layer is placed

only if items have at least 70% of their bottom surface covered by the layer underneath. If

not, items are spaced to remedy this. For that, a nonlinear mathematical program is used

to maximize the overlap between the current layer and the one below it. The objective

maximizes the overlap in the width and depth directions.

As the S-shaped placement approach used previously cannot guarantee support, we

adopt an extreme point approach that uses a merit function to decide on the placement.

The merit function evaluates extreme points and favors items that are placed lower in the

bin. Even though the approach is only applied to the top 30% of the bin, all extreme

points and empty spaces are considered. Table 3.5 displays preliminary results on two

of the generated instances. The columns report the instance details, CPU time, support

percentage, number of items with more than 70% support, number of items that have all

4 corners supported, and number of bins used, respectively, with and without accounting

51

for vertical support. The bins are displayed in Figures 3.7 and 3.8.

Class Items Instance CPU (s) Support (%) Supported 4-corner Bins
With support

1 100 4 2.87 94.52 100 84 1
1 1000 5 299.29 95.17 1000 872 8

Without support
1 100 4 1.75 87.57 72 51 1
1 1000 5 240.99 92.76 826 634 8

Table 3.5: Vertical support results.

According to Table 3.5, every item is 100% supported with an 85.6% of the items having

additional 4-corner support, on average. While there is a slight increase in computational

time, the number of bins used did not increase. In an industrial setting minimizing the

number of bins is the ultimate measure. Therefore, being able to achieve stability without

increasing the number of bins is remarkable. The results are very promising and clearly

demonstrate that the layering approach can easily handle a variety of critical practical con-

straints. The modifications and additions required to tackle vertical support are described

in detail in Chapter 5.

3.4 Conclusion

Motivated by a pressing need from the automated warehousing industry, we studied the

three-dimensional bin packing problem and its practical counterpart, the distributor’s pal-

let loading problem. Unlike previous models in the literature, we proposed a new formula-

tion that inherently lends itself to branch-and-price and column generation methodologies.

The resulting subproblem is a two-dimensional layer generation problem that is solved op-

timally as well as heuristically. Generated layers are further enhanced using a variety of

52

Figure 3.7: Vertical support solution for class 1, 100 items, instance 4.

Figure 3.8: Vertical support solution for class 1, 1000 items, instance 5.

53

strategies such as item grouping, item replacement, layer reorganization, and layer spacing.

Generating layers and using them to construct bins/pallets has numerous advantages

both at the packing stage in terms of stability and at the unpacking stage for ease of shelv-

ing. In addition, layering can accommodate some of the more difficult practical constraints

such as item support and bin stability. We developed the analysis on how to account for

support and provided results where every item is fully supported. Even when support

is not accounted for explicitly, the layering approach constructed bins where support is

guaranteed for the majority of items.

We conducted extensive numerical testing using standard benchmark instances and

compared against all previous approaches. The proposed approach found better solutions

compared to the best performing approach in the literature in most of the standard bench-

mark instances both in terms of number of bins used and bin stability within significantly

shorter computational times. It was only outperformed by the Space Defragmentation

when the instance did not inherently have layers.

54

Chapter 4

Generating Realistic Benchmak

Instances

A major gap in the three-dimensional packing literature is the lack of realistic benchmark

instances. Most of the published work uses the instance generator of Martello et al. (2000).

However, solutions to these instances do not represent the packing problems encountered

in the industry as items are relatively large compared to the bin. To remedy this, we

designed an instance generator that is trained using industrial data. This chapter discusses

the details of the instance generator and provides solutions obtained using LCGA.

4.1 Training on Basic Item Features

We obtained 342 real-life data sets from an industrial partner, with number of items ranging

from 50 to 3000. All of these sets use bin dimensions of W = 1200 mm, D = 800 mm,

H = 2055 mm.

55

(a) A Martello et al. (2007) instance. (b) A real-life instance.

Figure 4.1: Comparison between a standard benchmark and a real-life instance.

When comparing the number of items per bin and the ratio of item to bin dimensions in

the industry data set to those from Martello et al. (2007) instance generator, it is obvious

that the latter are far from being realistic (Figure 4.1). The main issue is that items are

large relative to the bin. Based on the L2 lower bound, the average number of items per

bin is 4.31 in the Martello et al. (2000) instances, while it is at least 90 items per bin

for the industry data set. The same was found by Zhu et al. (2012), leading them to use

a secondary real-life data set for testing. To best of our knowledge, there is no 3DBPP

instance generator that produces realistic instances. To remedy this, we propose a new

instance generator.

The most important packing-related characteristics of an item are: the ratio of item

depth and height to its width, its volume, and its frequency of occurrence. The first two

determine the dimensions of an item. The reason for considering the proportions and the

volume of an item instead of its dimensions is to construct items with different sizes whose

dimensions are properly scaled to each other.

56

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Fr
e
q
u
e
n
cy

Interval

(a) Depth to width (d/w) ratio.

0

5000

10000

15000

20000

25000

30000

35000

Fr
e
q
u
e
n
cy

Interval

(b) Height to width (h/w) ratio.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Fr
e
q
u
e
n
cy

Interval

(c) Volume.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Fr
e
q
u
e
n
cy

Value

(d) Frequency of occurrence.

Figure 4.2: Distribution of item characteristics.

The item characteristics are determined based on the industry data we had access to. A

total of 166,406 items with 73,978 distinct items are used to construct distribution functions

that form the basis of the proposed generator. Figure 4.2 shows histograms for each item

characteristic. A distribution fitting package in R, called “fitdistrplus” (Delignette-Muller

and Dutang, 2015), is used. It provides the fitting and comparison of different probability

distribution functions with goodness-of-fit tests such as Kolmogorov-Smirnov, Cramer von

Mises, and log-likelihood. We tested fitting Normal, Lognormal, Gamma, Weibull, and

Beta functions to each characteristic. Based on these tests, the best probability distribution

functions and their parameters are given in Table 4.1.

57

Figure 4.3: Distribution fitting results for depth to width (d/w) ratios.

Figure 4.4: Distribution fitting results for height to width (h/w) ratios.

58

Figure 4.5: Distribution fitting results for item frequency of occurrence.

Characteristic Distribution Parameters
Depth to width (d/w) ratio Normal (0.695, 0.118)
Height to width (h/w) ratio Lognormal (-0.654, 0.453)

Frequency of occurrence Lognormal (0.544, 0.658)

Table 4.1: Distribution functions and parameters for item characteristics.

59

(a) k-clustering results for volumes. (b) k-clustering results for classes.

Figure 4.6: Sum of squared error plots for k-clustering.

For the volume characteristic (v), we applied k-means clustering to assess its distri-

bution. We tested the k values [2, 10], and provide the plot of the sum of squared errors

in Figure 4.6a. The analysis separates the 166,406 items into five categories, as using

more categories does not decrease the error significantly. Category 1 has 72,037 items

and v ∈ [2.72, 12.04], category 2 has 55,436 items and v ∈ [12.05, 20.23], category 3 has

26,254 items and v ∈ [20.28, 32.42], category 4 has 9,304 items and v ∈ [32.44, 54.08], and

category 5 has 3,376 items and v ∈ [54.31, 100.21] (in dm3). Furthermore, we calculated

the distribution of item categories for each industry instance and applied k-clustering (see

Figure 4.6b). Based on the analysis, we determined that the instances can be separated

into four classes according to the percentage of items of each category they include. We,

then, calculated the average percentages for each item category for each class (cluster) and

report them in Table 4.2.

The instance generator uses the determined parameters to generate instances with

different sizes. We provide the C++ code of the generator, using a default seed, at

www.wanopt.uwaterloo.ca/projects/3dbppRealisticInstanceGen/ for use by the academic

community. We use the generator to create 5 instances of size 50, 100, 150, 200, 500, 1000,

60

Percentage of items
Class Category 1 Category 2 Category 3 Category 4 Category 5

Class 1 28.48% 58.75% 12.67% 0.1% 0%
Class 2 33.08% 32.36% 23.34% 7.94% 3.28%
Class 3 66.88% 24.75% 5.7% 2.6% 0.08%
Class 4 78.58% 13.16% 6.33% 1.78% 0.15%

Table 4.2: Percentage of each category of item in each instance class.

1500, and 2000 for each class, leading to 160 instances in total.

Finally, we applied Kolmogorov-Smirnov tests with the null hypothesis stating that

the two sets of data follow the same distribution to verify the similarity of the generated

instances to the industry ones. The Kolmogorov-Smirnov D values (supremums) related to

the depth and height to width ratio, volume, and frequency of occurrence comparisons are

0.11, 0.03, 0.05, and 0.02, respectively. Moreover, the p-values corresponding to these tests

are 0.07, 0.24, 0.17, and 0.15, respectively. According to the Kolmogorov-Smirnov test,

the closer the value of D to zero, the more likely the samples are similar. Moreover, the

null hypothesis that the two samples are similar cannot be rejected at the 0.05 significance

level (p-values > 0.05). Therefore, we conclude that the generated instances sufficiently

represent the industry data.

4.2 Results and Comparison on Generated Instances

In this section, we compare the performance of LCGA to the exact approach of Martello

et al. (2007), referred to as Algorithm 864, on the generated instances. The purpose of the

experiment is to demonstrate that LCGA is suited to tackle realistic problems with up to

2000 items. The code provided for Algorithm 864 is only able to solve instances with up

to 100 items, due to a parameter they use for array sizes. We increased this parameter

61

to accommodate larger problems. The results are reported in Table 4.3, where the class,

number of items, average lower bound (L2), average CPU time, average number of bins

used, and average support percentage per item (Support %) are reported for LCGA and

Algorithm 864, respectively. The support percentage refers to an item’s base area that is

supported by items underneath it. This metric is important in assessing bin stability, and

is a requirement in practice. The results are averaged over 5 instances.

The results show that LCGA clearly outperforms Algorithm 864 in terms of number of

bins, support and CPU time. LCGA requires less bins and achieves an overall reduction of

about 10%. Algorithm 864 reaches the 1 hour time limit in 133 out of the 160 instances,

while LCGA spends a maximum of 25 minutes. Please note that Algorithm 864 reaches

the computational time limit in less than 5 instances in some of the class and instance

size pairs (e.g., 4 out of 5 instances for Class 2, |I| = 100). The increase in percentage

support is remarkable. LCGA provides 74.14% more vertical support than Algorithm 864.

The latter is only able to provide the 70% industry minimum in only 27 out of the 160

instances, while LCGA achieves this in all 160. Considering that 70% support per item is

the industry requirement, LCGA can be directly used for real-life palletization problems.

Finally, in Tables A.1-A.4 in Appendix A, we provide detailed computational results

for all instances. The tables report the class, number of items, instance number, lower

bound, the number of bins used, CPU time, average support percentage per item, and the

percentage of items with at least 70% support for each instance.

4.3 Extending the Instance Generator

There are additional item features that characterize practical distributor’s pallet loading

problems. To include these, the instance generator is extended by adding five practical

62

LCGA Algorithm 864
Bins # Bins

Class Items L2 CPU (s) Min Max Avg Support (%) CPU (s) Min Max Avg Support (%)

50 1 0.24 1 1 1 86.70 0.10 1 1 1 34.13
100 1 1.38 1 1 1 87.77 3600 2 2 2 41.14
150 2 15.50 2 2 2 89.90 3600 2 2 2 36.37
200 2 37.46 2 2 2 91.40 3600 3 3 3 41.14

1 500 4 120.31 5 5 5 91.98 3600 5 5 5 50.78
1000 7.2 218.05 8 9 8.8 92.67 3600 10 10 10 63.52
1500 11 439.27 12 13 12.4 93.26 3600 13 14 13.6 68.49
2000 14 888.66 16 16 16 92.97 3600 17 18 17.2 73.95

50 1 0.19 1 1 1 89.50 0.51 1 1 1 34.61
100 1 1.60 1 1 1 86.84 2880 1 2 1.8 48.57
150 1.2 15.44 2 2 2 92.00 3600 2 2 2 38.19
200 2 55.29 2 2 2 91.61 3600 2 3 2.8 48.82

2 500 4 144.37 5 5 5 91.76 3600 5 5 5 60.74
1000 7 244.66 9 9 9 92.43 3600 9 10 9.2 72.04
1500 11 585.42 12 12 12 92.97 3600 13 13 13 78.20
2000 14 1035.09 16 16 16 92.86 3600 17 18 17.4 73.00

50 1 0.17 1 1 1 88.89 0.18 1 1 1 31.78
100 1 1.50 1 1 1 87.46 2880 1 2 1.8 45.35
150 1 21.00 1 2 1.8 89.35 3600 2 2 2 30.36
200 2 70.49 2 2 2 91.32 3600 2 2 2 33.32

3 500 3 344.60 4 4 4 91.76 3600 5 5 5 46.10
1000 6 424.41 7 7 7 92.12 3600 8 8 8 58.69
1500 9 884.64 10 11 10.6 92.33 3600 11 12 11.6 61.79
2000 12 1208.16 14 14 14 92.50 3600 14 15 14.8 74.91

50 1 0.13 1 1 1 88.80 0.67 1 1 1 32.72
100 1 1.77 1 1 1 87.88 720 1 2 1.2 38.93
150 1 21.67 1 2 1.2 89.70 2880 2 2 2 35.37
200 1.8 75.14 2 2 2 90.33 3600 2 2 2 50.11

4 500 3 252.94 4 4 4 91.46 3600 4 5 4.2 47.83
1000 6 536.38 7 7 7 91.17 3600 7 8 7.6 66.16
1500 8 944.40 10 10 10 91.71 3600 10 11 10.4 83.65
2000 11 1462.29 12 13 12.8 92.20 3600 14 14 14 67.82

Average 4.73 314.14 5.52 90.8 2992.55 6.08 52.14

Table 4.3: Comparison of Algorithm 864 and LCGA.

63

features. To this end, we further analyzed the industry data and obtained probability

distribution functions for each feature. The industry data that we used spans 153 separate

instances and includes 60,663 items, 6,387 of which are distinct. Finally, we validated the

generated instances, comparing them to the industry data.

There are five practical item features that are considered in most industry applications:

weight, load capacity, support surface shape, edge reduction (along width and depth di-

mensions), and sequence number. The weight of an item is straightforward, and is given

in grams. Load capacity is defined as the maximum weight that can be carried per unit

surface area of an item (in kg/m2). To calculate the total maximum weight that an item

can carry (i.e., load bearing limit), we multiple the load capacity by the surface area of the

item. Items can have six different support surface shapes: the standard full support (i.e.,

the item is a rectangular box), along all edges, along only short or long edges, at corners,

and reduced support. Figure 4.7 shows all support surface shapes except the standard

full support case. In the industry data we use, edge and corner support surfaces have a

thickness of 27 mm. Furthermore, the surface of a full support item may be reduced in

width and depth dimensions (i.e., the item may not provide support along its edges). This

is called width and depth edge reduction and its value may vary from item to item. Lastly,

each item has a sequence number that depicts its arrival order at the packing area.

For the basic instance generator, we determined that generating item volumes and

width, depth, and height ratios was a better approach instead of generating each dimension

separately. This is done to capture the correlation between item dimensions and volumes.

We follow a similar approach for the practical features. To determine how each feature

is related to the others, we applied correlation analysis to the data. Table 4.4 shows

the correlation matrix. Note that we added the item densities (weight/volume) into the

analysis, anticipating that it would also be correlated.

64

(a) All edges support. (b) Long edges support. (c) Short edges support.

(d) Corner support. (e) Edge reduction.

Figure 4.7: Item shapes.

Volume Weight Density Load Capacity Width R. Depth R.
Volume 1 0.51 -0.05 -0.07 -0.11 -0.1
Weight - 1 0.72 0.47 0.37 0.37
Density - - 1 0.75 0.28 0.25

Load Capacity - - - 1 0 -0.05
Width Reduction - - - - 1 0.98
Depth Reduction - - - - - 1

Table 4.4: Correlation between the five practical item features.

65

Density

Load Cap.

(a) Density and load capacity.

Width R.

Depth R.

(b) Width and depth edge reduc-
tion.

Figure 4.8: Relationship between item features.

According to Table 4.4, it is clear that there is a strong correlation between an item’s

density and its load capacity, as well as between the width and depth edge reduction values.

Figures 4.8a and 4.8b further demonstrate these correlations. The remaining features are

more or less independent, and can be analyzed independently.

Since the density of an item encompasses most its attributes (e.g., weight, volume, and

load capacity), we focused on analyzing it first. Figure 4.9 depicts the sorted density values.

Visually, it is clear that the density values can be separated into two distribution curves.

The two curves have densities in [31.76, 434.64) and [434.64, 1771.11] g/dm3, and include

31.32% and 68.68% of the items, respectively. We, then, used the fitdistrplus package to

determine the best probability distribution functions to fit these curves and report them

in Table 4.5 along with the p-values. Both distribution functions have p > 0.05, validating

their accuracy.

After item densities are determined, we can analyze weight and load capacity further.

66

1st

distribution
curve

2nd

distribution
curve

Figure 4.9: Separation of item density into curves.

Curve Fit Probability of appearing (%) p-value
Distribution Curve 1 Gamma(3.211, 58.824) 31.32 0.08
Distribution Curve 2 Lognormal(6.502,0.208) 68.68 0.06

Table 4.5: Distribution functions for item density.

67

Figure 4.10: Load capacity heat map.

The connection between the density and the weight of an item is straightforward, especially

considering that the basic instance generator already includes item volumes. The weight,

in grams, is determined by multiplying volume by density. Note that density is given in

g/dm3 and volume in dm3.

To better understand the relationship between load capacity and density, we cleaned

the data in Figure 4.8a. We used a heat map (Figure 4.10) to determine where the data

is concentrated. We identified the sections that have 10% or less concentration compared

to the maximum (1000 data points) according to the heat map and removed them (see

Figure 4.11a). Note that the plot has scaled data so that the relationship is further un-

derlined. This cleaned plot includes 84.78% of the original data points, which gives a good

representation of the overall data set.

Observing the plot in Figure 4.11b it is clear that the majority of the load capac-

ity values follow several distinct curves and lines. Therefore, we separated the load ca-

68

Density

Load Cap.

Section 1

Section 2 Section 3

(a) Load capacity cleaned and scaled.

Line 1
Line 2
Line 3
Curve 1
Curve 2
Curve 3
Curve 4
Curve 5

(b) Load capacity trend lines.

Figure 4.11: Detailed load capacity charts.

pacity data following these trend lines and fitted curves/lines to each. In addition, we

found that these trend lines can be separated into three sections, with respect to density.

This way, we can calculate the probability that the load capacity of an item belonging

to a certain trend line, based on its density. The sections 1, 2, and 3 have densities

in [31.76, 434.64),[434.64, 617.56), and [617.56, 1771.11], respectively. Table 4.6 shows the

probability distribution function, the likelihood of an item belonging to each trend line,

and the p-value for each section. Since none of the distribution functions have p ≤ 0.05, the

null hypothesis cannot be rejected, validating the accuracy of the fits. Figures C.1a-C.1e

show the cumulative distribution function plots of the best fits.

Using these distributions and probabilities, the connection between the density and the

other features are incorporated into the instance generator as follows:

Step 1. Generate the volume (dm3) and dimensions (mm) of an item using the basic instance

generator.

Step 2. Determine the density (g/dm3) of the item following Table 4.5.

69

Trend line Load capacity (kg/m2) Probability of appearing (%) p-value
Section 1

Line 1 250 16.84
Curve 1 Gamma(5.698, 142.857) 24.33 0.31
Curve 2 Gamma(4.589,142.857) 27.48 0.52
Curve 3 Gamma(12.324,37.037) 31.35 0.19
Section 2

Line 3 2000 5
Curve 4 Gamma(127.49, 100) 65.13 0.14
Curve 5 Lognormal(6.944,0.143) 29.27 0.22
Section 3

Line 2 2500 4.85
Line 3 2000 81.02

Curve 5 Lognormal(6.944,0.143) 14.13 0.22

Table 4.6: Load capacity curve fits.

Step 3. Calculate the weight (g) using the volume and density.

Step 4. Determine which load capacity section the item belongs to, with respect to density.

Step 5. Calculate the load capacity (kg/m2) of the item following Table 4.6.

Step 6. Calculate the maximum weight capacity (g) by multiplying load capacity by width

and depth.

The other correlated attributes are the width and depth edge reduction values. To

analyze the relationship, we plotted them against each other, along with the width-depth

difference (see Figures 4.8b and 4.12). According to the data, 52.97% of the items have

width and depth edge reduction of 0 mm. The remaining 47.03% of the items have a

width edge reduction that follows a Weibull distribution with shape 2.289 and rate 22.802.

The difference between width and depth edge reduction for these items follow a Normal

distribution with mean 1.229 and standard deviation 3.264. The p-values corresponding to

70

Figure 4.12: Width and depth edge reduction difference.

the distributions are 0.39 and 0.34, respectively. Using these two distributions, the width

and depth edge reduction values are determined.

The remaining item features are not correlated and can be analyzed independently.

For item shapes, we calculated the likelihood that an item having a certain shape and

report them in Table 4.7. Finally, planogram sequence values are completely randomized,

as there is no inherent connection between an item and its arrival order at the packing

area. Further discussion on these features is given in Chapter 5 where we describe each

practical constraint in detail.

Shape Probability of appearing (%)
Full 87.19

Long Edge Support 0.06
Short Edge Support 0.05
All Edge Support 12.25
Corner Support 0.45

Table 4.7: Item shape probabilities.

The generator is used to create 5 instances for each class and size combination (|I| ∈

71

{50, 100, 150, 200, 500, 1000, 1500, 2000}), leading to 160 instances and 110,000 items in

total. The generated instances are given in this format: width (mm), depth (mm),

height (mm), weight (g), load capacity (kg/m2), width edge reduction (mm), depth

edge reduction (mm), support surface type, frequency of occurrence, and planogram se-

quence, respectively. A C++ implementation of the instance generator is provided at

http://www.wanopt.uwaterloo.ca/ projects/3dbppPracticalInstanceGen/.

Finally, to further validate the generated data, we calculated the correlation matrix

and report it in Table 4.8. The correlation values are very similar to the industry data.

Furthermore, all of the reported p-values for the determined distribution functions are

greater than 0.05. Based on these, the generated data seems to successfully represent the

industry data.

Volume Weight Density Load Capacity Width R. Depth R.
Volume 1 0.52 -0.01 -0.01 0 0
Weight - 1 0.8 0.67 0.03 0.03
Density - - 1 0.84 0.03 0.03

Load Capacity - - - 1 0.03 0.03
Width Reduction - - - - 1 0.85
Depth Reduction - - - - - 1

Table 4.8: Correlation matrix of the generated data.

4.4 Conclusion

The benchmark instances that the literature offers were found to be unrealistic, thus making

it impossible to assess the true efficacy of any proposed solution methodology for 3DBPP

and DPLP. To remedy this, we proposed a new instance generator whose parameters and

distributions are determined based on industry data.

72

First, we used industry data to analyze item dimensions and volumes. We applied

statistical techniques such as clustering and curve fitting to determine instance classes and

distribution functions. We, then, generated 160 instances with different sizes and item

types, and conducted extensive numerical testing to compare LCGA against Algorithm

864 of Martello et al. (2007). In the experiments, LCGA found better solutions on all

instances, both in terms of number of bins used and bin stability, within significantly

shorter computational times.

Finally, we extended the instance generator by further analyzing the item features,

adding practical concepts such as weight, load capacity, different item shapes and support

surfaces, and planogram sequences. To this end, we conducted correlation analysis as well

as clustering, data cleaning, and curve fitting. As a result, we determined distribution

functions and parameters for the new features and added them to the basic instance gener-

ator. Based on our validation tests, the generator is able to create instances that accurately

capture the practical features.

73

Chapter 5

The Distributor’s Pallet Loading

Problem

As Zhao et al. (2016) points out, there is no solution methodology that considers all

practical constraints in the distributor’s pallet loading problem. In this chapter, we propose

what we believe is the first approach that accounts for all practical constraints. It is based

on a layer generation approach and is able to solve large and realistic instances within the

industry time limit of 2 minutes. We first describe the practical constraints set out by the

palletization industry, and then propose solution techniques for each.

5.1 Practical Constraints

The palletization industry requires four critical constraints for the DPLP: vertical item

support, load bearing, planogram sequencing, and bin weight limit. In this section, we will

explain each practical constraint in detail.

74

Vertical support: To build stable pallets, it is essential to provide sufficient vertical

support for each item; i.e., sufficient bottom support to ensure the item is stable. Industry

guidelines use two criteria: (1.) 70% of the bottom surface of an item or (2.) all four

corners of an item are supported. Both guarantee that the center of gravity of the item has

enough support. Vertical support should be considered both in terms of item dimensions

and shape.

Load bearing: It is unreasonable to place heavy items on top of fragile ones (e.g., a

case of beverages on top of a box of potato chips). The weight distribution of the items

throughout a pallet should be managed extremely carefully so that no item is in risk of

breaking or giving way, resulting in lost stability. Additionally, items should be placed

with respect to their load bearing capabilities in a way that more of the volume of a bin

is leveraged. For example, if an extremely fragile item is placed at the bottom of a pallet,

not many items can be placed on top.

Planogram sequencing: In large automated warehouses, there is generally a buffer

area prior to palletization where items for a specific order are gathered. Since the size

of the buffer is limited, it is sometimes impossible to wait for all items in an order to

arrive in order to start the palletization process. This may result in pallets being planned

considering only a partial order. This is taken into account using planogram sequences.

Weight limit: This refers to limiting the weight of pallet for ease of handling.

5.1.1 Vertical Support

After a layer is formed, the areas it can provide and it requires support are known. The

methodology that we use to tackle vertical support takes advantage of this information

and places a layer on top of another, only if vertical support is guaranteed for all items.

75

When two layers are considered for placement, first, items in the top layer are spaced out

in a way that ensures there is sufficient support received from the bottom layer. To this

end, we use a mathematical model with an objective to minimize the width-depth overlap

between the items in the bottom and top layers, while adding a constraint that guarantees

support. This corresponds to solving a 2D placement problem where the values for all the

relative positioning variables are known.

The two-dimensional overlap between items i and j is visually described in Figure 5.1.1.

To calculate the overlapping area between the items, we determine the coordinates of the

overlapping area, cxij, c
y
ij, c

x
ij + wij, c

y
ij + dij using the following equations:

cxij1 = max{cxi , cxj }, (5.1)

cyij1 = max{cyi , c
y
j}, (5.2)

cxij2 = min{cxi + wi, c
x
j + wj}, (5.3)

cyij2 = min{cyi + di, c
y
j + dj}. (5.4)

Let I be the set of items, wi and di be the width and depth of an item, and W and

D be the width and depth of a pallet, respectively. Let zxij and zyij take value 1 if item i

precedes item j in the width and depth dimensions, respectively. Note that these are all

parameters obtained from the information included in a layer. Let cxi and cyi be the width

and depth coordinates of the front bottom left corner of item i. Using sij1 = cxij2− cxij1 and

76

D
e
p
th

Width

𝑖

𝑗

overlap

(𝒄𝒊
𝒙, 𝒄𝒊

𝒚
)

(𝒄𝒋
𝒙, 𝒄𝒋

𝒚
)

(𝒄𝒊𝒋𝟏
𝒙 , 𝒄𝒊𝒋𝟏

𝒚
)

(𝒄𝒊
𝒙 +𝒘𝒊, 𝒄𝒊

𝒚
+ 𝒅𝒊)

(𝒄𝒋
𝒙 +𝒘𝒋, 𝒄𝒋

𝒚
+ 𝒅𝒋)

(𝒄𝒊𝒋𝟐
𝒙 , 𝒄𝒊𝒋𝟐

𝒚
)

Figure 5.1: Two-dimensional overlap between two items.

sij2 = cyij2 − c
y
ij1, the spacing model is:

[SM] : min
s,c

∑
i∈It,j∈Ib

sij1 + sij2 (5.5)

s.t.
∑
j∈Ib

sij1sij2 ≥ 0.7widi i ∈ It (5.6)

cxi + wi ≤ cxj +W (1− zxij) i 6= j : i, j ∈ It (5.7)

cyi + di ≤ cyj +D(1− zyij) i 6= j : i, j ∈ It (5.8)

0 ≤ cxi ≤ W − wi i ∈ It (5.9)

0 ≤ cyi ≤ D − di i ∈ It (5.10)

where It and Ib are the set of items in the top and bottom layers, respectively. The objective

of [SM] (5.5) is to minimize the width-depth overlap between items in the bottom and top

layers. Constraints (5.6) ensure that there is sufficient support for every item in the top

77

layer. Since support is guaranteed, we seek to minimize the overlap between items so that

they are as spaced out as possible, which results in more support surface for the items to

be placed later on. Constraints (5.7) and (5.8) ensure the items in the top layer do not

overlap in the width and depth dimensions. Constraints (5.9) and (5.10) ensure that the

items reside within the boundaries of a pallet.

The objective (5.5) is nonlinear due to the multiplication and min/max operators. It

can be partially linearized by defining variables xmaxij , xminij , ymaxij , and yminij for the nonlinear

terms in (5.5), respectively. [SM] becomes:

[SML] : min
s,c,x,y

∑
i∈It,j∈Ib

sij1 + sij2 (5.11)

s.t. (5.6)− (5.10)

xmaxij ≤ cxi + wi i ∈ It, j ∈ Ib (5.12)

xmaxij ≤ c̄xj + wj i ∈ It, j ∈ Ib (5.13)

xminij ≥ cxi i ∈ It, j ∈ Ib (5.14)

xminij ≥ c̄xj i ∈ It, j ∈ Ib (5.15)

ymaxij ≤ cyi + di i ∈ It, j ∈ Ib (5.16)

ymaxij ≤ c̄yj + dj i ∈ It, j ∈ Ib (5.17)

yminij ≥ cyi i ∈ It, j ∈ Ib (5.18)

yminij ≥ c̄yj i ∈ It, j ∈ Ib (5.19)

sij1 ≥ xmaxij − xminij i ∈ It, j ∈ Ib (5.20)

sij2 ≥ ymaxij − yminij i ∈ It, j ∈ Ib (5.21)

sij1, sij2, x
min
ij , xmaxij , yminij , ymaxij ≥ 0 i ∈ It, j ∈ Ib (5.22)

78

Note that (5.6) is still nonlinear. [SML] can be modeled as an SOCP by noting that:

(sij1 − sij2)2 = s2ij1 + s2ij2 − 2sij1sij2,

⇐⇒ sij1sij2 = 0.25[(sij1 + sij2)
2 − (sij1 − sij2)2], (5.23)

substituting sij1sij2 in (5.6) using (5.23) we obtain:

∑
j∈Ib

[(sij1 + sij2)
2 − (sij1 − sij2)2] ≥ 4× 0.7widi i ∈ It,

⇐⇒
∑
j∈Ib

(sij1 + sij2)
2 ≥

∑
j∈Ib

(sij1 − sij2)2 + 2.8widi i ∈ It,

⇐⇒
∑
j∈Ib

(sij1 + sij2) ≥
√∑

j∈Ib

(sij1 − sij2)2 + 2.8widi i ∈ It,

⇐⇒
∑
j∈Ib

(sij1 + sij2) ≥

∥∥∥∥∥∥
∑j∈Ib(sij1 − sij2)

1.4
√
widi

∥∥∥∥∥∥ i ∈ It. (5.24)

Replacing (5.6) with (5.24) in [SML] and modifying the objective, we obtain:

[SML− SOCP] : min
s,c,x,y

∑
i∈It,j∈Ib

(sij1 + sij2)

s.t. (5.7)− (5.10), (5.12)− (5.22), (5.24)

[SML− SOCP] is easily solvable using a commercial solver such as CPLEX.

Using the spacing model, we tackle the vertical support using Algorithm 8. After

layer placement is done, any remaining items are placed using an extreme point heuristic

(Crainic et al., 2008) that favors lower positions in the bin, with respect to height, width,

and depth, respectively. The vertical support tests are applied for any extreme point and

79

item pair, and only feasible placements are used. It is important to note that we remove

layers with non-homogeneous height (i.e., layers generated using the complete set of items

CI) from the set L before we start the solution approach for the practical constraints, since

these layers cannot provide proper vertical support.

80

Algorithm 8 Vertical Support Algorithm
1: procedure Initialization

2: L = Set of generated layers.

3: end procedure

4: procedure Tackle–Vertical–Support(L)

5: Sort layers in L in descending order by density.

6: Open an empty bin b and set B ← B ∪ b.

7: for each layer l ∈ L do

8: for each bin b ∈ B do

9: if b is empty then

10: Place l in b.

11: else

12: Space l using [SML].

13: if hb + hl ≤ H AND every item i ∈ Il is supported then

14: Place l in b.

15: end if

16: end if

17: end for

18: for each remaining layer k ∈ L do

19: for each item i ∈ Ik do

20: if i ∈ Il then

21: L ← L\k

22: end if

23: end for

24: end for

25: end for

26: end procedure

81

5.1.2 Load Bearing

To account for load bearing, we first need to ensure that each layer has a nearly homoge-

neous distribution of load capacity. This means that fragile and hard items should not be

parts of the same layer. This way, layers, being blocks of items with similar load bearing

limits, can be placed on top of each other in decreasing order of overall carrying capacity.

To this end, we further divide the item groups IG. We first calculate the average load

bearing limit of items, denoted by bg, for group g ∈ IG. For each group g, items with load

bearing limits outside of bg +/- a certain percentage are removed. Algorithm 9 describes

this process more formally.

Algorithm 9 Practical Item Groupung Algorithm
1: procedure Initialization

2: Create item groups IG following Algorithm 7.

3: end procedure

4: procedure GroupItemsExtended(CI)

5: for each item group g ∈ IG do

6: Calculate bg.

7: end for

8: for each item group g ∈ IG do

9: for each item i ∈ g do

10: if bi < 0.7bg OR bi > 1.3bg then

11: Set g ← g \ i.

12: end if

13: end for

14: end for

15: end procedure

82

1
2

3

4

5
6

7

Front view of a bin

70%

30%

40%
60%

100%

100%

100 kg

100 kg

100 kg

100 kg

Graph representation

Figure 5.2: Graph representation of the items in a bin.

To construct pallets, we previously sorted the layers L based on their densities. To

account for load bearing, a subset of the sorted layers are sorted according to their load

bearing. In other words, layers are first sorted based on density, then groups of adjacent

layers are sorted based on load bearing.

When either layers or individual items are stacked on top of another, the weight carried

by the items beneath should be updated to determine if any item is carrying more than its

load bearing limit. Since the placement of a layer or an item needs to be tested each time

a layer is added, the updates should be done in a fast manner. To this end, we designed a

level-based graph representation of the items in a pallet, where layers are levels.

An example of the graph representation is given in Figure 5.2, where every node i

represents an item, and an arc (i, j) exists between the nodes i and j if and only if item i is

supported by item j. Every item has a weight mi and a load bearing limit bi, and every arc

has a percentage value pij that depicts how much of the surface of item i is supported by

item j. Note that for every item i that is not at the bottom of a bin,
∑

j pij = 100%. This

83

graph lets us quickly traverse through every item that may be affected by the placement

of a new item, while not considering the rest of the bin. For example, if an item is placed

on top of item 5, only the total weights carried by items 1, 2, 3, and 5 are updated.

When the placement of an item is tested, we try adding a node at a higher level than

the items that are supposed to support it. We, then, connect the node of the tested item

to the supporting items with arcs and calculate the support percentages. Afterwards, we

update the total weight carried by each node in the graph using a breadth-first search

algorithm, starting from the tested item. If no node carries a higher weight than its load

bearing limit, the placement is approved. Placement of a layer is done in the same way,

with the addition of the load bearing test being done for every item in that layer.

5.1.3 Planogram Sequencing and Pallet Weight Limit

To account for planogram sequencing, subsets of n items are used at a time. n is the

maximum number of items allowed in the buffer zone. In this work, we consider n = 400.

Details are given in Algorithm 10. Finally, we satisfy the maximum pallet weight limit by

checking the pallet weight after every item or layer placement.

84

Algorithm 10 Planogram sequencing
1: procedure Initialization

2: Set I, CI, CL = ∅.

3: end procedure

4: procedure plnSequence

5: while |I| > 0 do

6: Sort items in I by their planogram sequence.

7: Take the first n items from I into the list CI.

8: Use column generation to generate layers CL for items CI.

9: Construct a bin using CL and CI, following the general solution approach and other

practical constraints.

10: Remove placed items from CI.

11: if |CI| > 0 then

12: Reintroduce CI into I.

13: end if

14: end while

15: end procedure

5.2 Computational Experiments

We conducted extensive computational experiments to test the effectiveness of the proposed

solution methodology. The testing is done using a workstation with Intel i7-5500 running

at 2.4 GHz, 16 GB memory, and Microsoft Windows 10 OS. The algorithms are coded in

C++ on Microsoft Visual Studio 2015 IDE, and the optimization models are solved using

CPLEX Concert technology with IBM ILOG CPLEX 12.6.1.

85

5.2.1 Results and Analysis

The pallets used for testing are of size 1240 × 840 × 2200 mm (W × D × H) and weight

limit of 1.5 tonnes. We considered that two side by side items can provide a continuous

support surface if their height difference is within 10 mm. For items with edge or corner

support surface shapes, we considered 27 mm surface thickness through the width and

depth dimensions for each edge or corner. Additionally, width and depth edge reduction

values are applied on each side (i.e., two times the width reduction value is subtracted

from the overall width and so on). Finally, we considered a buffer area size of 400 items.

Testing is done on 160 instances ranging from 50 to 2000 items. Average results over

5 instances for each class and instance size combination are reported in Table 5.1. The

columns represent the class and the item size combination, the number of pallets used to

pack the items, the total and per pallet CPU times, volume usage, and pack density. The

volume usage is the used percentage of the pallet volume, while the pack density is the

density of the constructed pallet.

According to Table 5.1, the average number of items per pallet is 124.72, which is

close to the expectation of the industry. And the average time to plan a pallet is 63.67

seconds, which is well inside the industry requirement of two minutes. Finally, the average

pack density is 78.68%, which is within the industry expectation. This, combined with

homogeneous load bearing distribution throughout the layers and pallets, shows that the

constructed pallets are highly stable. Note that every practical constraint is satisfied.

Sample pallets are displayed in Figures 5.3-5.6. Detailed results for each class, item size,

and instance combination are given in Appendix D.

86

Pallets CPU per Vol. Use (%) Pack Dens. (%)
Class Items Min Max Avg CPU (s) Pallet (s) Min Max Avg Min Max Avg

1 50 1 1 1 2.3 2.3 29.9 33.4 31.4 71.1 74.6 72.5
100 1 2 1.2 4.3 4.2 32.2 62.2 53.1 77.2 82.5 78.9
150 2 2 2 6.3 3.1 45.2 49.3 47 77.3 80.4 78.7
200 2 3 2.2 16.1 7.1 41.4 62.4 57.4 79.5 82.8 81.2
500 4 5 4.6 275.5 59.4 62.2 76.9 68.1 75.8 87.4 80.6
1000 8 8 8 819.1 102.4 77.7 79.9 78.4 78.1 80 79
1500 12 12 12 1310 109.2 77.5 78 77.8 77.8 79 78.5
2000 15 16 15.6 2083.4 134.4 78.1 82.4 79.9 78.9 82.5 80.4

2 50 1 1 1 0.2 0.2 29.7 31.8 30.7 76.3 82 72.1
100 1 2 1.4 4.2 3.4 31 61.6 49.1 71.4 82 73
150 2 2 2 3.8 1.9 43.3 47.8 45.8 75.8 79.1 77.7
200 2 2 2 14.4 7.2 59.6 63.6 61.2 74.4 82.4 81.7
500 4 5 4.6 354 76.5 60.8 77.9 67.9 74 85.4 80.2
1000 8 8 8 1227.7 153.5 76.6 77.6 76.9 76.7 77.8 77.1
1500 12 12 12 1717.2 143.1 76.7 78.6 77.4 77.8 79.1 78.4
2000 15 16 15.6 2398 153.6 77.5 82.6 79.5 78.4 82.7 80.2

3 50 1 1 1 1.3 1.3 23.4 28.8 25.8 78.8 85.5 81.9
100 1 1 1 2.5 2.5 47.6 51.1 49.5 78.5 81.6 79.8
150 2 2 2 8 4 35.8 38.4 37.1 72.6 78.6 75.6
200 2 2 2 20.8 10.4 48.7 52.2 50.5 70.5 82.8 71.3
500 4 4 4 469.4 117.4 61.1 63.5 62.1 72.8 83.3 74.7
1000 6 7 6.8 1304 195.3 70.8 80.3 73.3 72.4 80.5 74.3
1500 10 10 10 2539.3 253.9 73.6 75.4 74.5 74.2 76.5 75.5
2000 14 15 14.6 1067.8 77.3 66.6 77.5 68.4 76 77.7 78.6

4 50 1 1 1 1.3 1.3 18.9 24 21.9 74.4 82.9 79.4
100 1 2 1.2 1.5 1.4 23 46.1 40.6 73.9 79.5 76.6
150 1 2 1.6 7.4 5.6 33.6 64.7 46.3 74.9 85.2 82.5
200 2 2 2 17 8.5 45.5 49.8 47.3 77.3 85.6 78.2
500 3 4 3.8 650.6 177.7 57.8 77.6 62.1 77.8 83.3 81.7
1000 7 7 7 935.3 144.9 57 76.6 66.4 76.1 80.1 77.7
1500 11 11 11 315.6 28.7 62.3 64.3 63.2 74.8 85.6 80.6
2000 14 15 14.2 648.3 45.8 60.5 65.9 64.6 75.5 85.8 79

Average 5.5 569.6 63.7 57.3 78.7

Table 5.1: Results of the computational experiments.

87

Figure 5.3: Sample pallet for Instance 2 of Class 3 and 150 items.

Figure 5.4: Sample pallets for Instance 3 of Class 2 and 500 items.

88

Figure 5.5: Sample pallets for Instance 1 of Class 1 and 1000 items.

89

Figure 5.6: Sample pallets for Instance 2 of Class 4 and 1000 items.

5.3 Conclusion

Driven by the lack of an efficient solution methodology to solve the full DPLP, we propose

an extension of LCGA to account for each practical requirement. The use of layers provided

concrete advantages in incorporating sophisticated constraints such as load bearing and

vertical support.

Vertical support, albeit being the most important practical constraint, is rarely consid-

ered in previous work. We proposed a novel nonlinear model for item spacing to ensure

90

the 70% minimum industry support. We, then, reformulated as an SOCP. Additionally,

we accommodated reduced support surfaces and different item shapes into the placement

algorithm. To the best of our knowledge, this is the first work that considers such features.

We devised a placement algorithm to place layers based on their density and load

bearing limits. As load bearing capabilities have to be updated throughout the construction

of the pallet, we devised a new graph representation for fast weight distribution updates.

Finally, we included planogram sequencing and pallet weight limits.

According to our extensive computational tests, the proposed approach provides re-

markable solutions with low computational times and high stability.

91

Chapter 6

Conclusions

6.1 Summary of the thesis

Motivated by the lack of efficient solution methodologies to handle the three-dimensional

bin packing and the distributor’s pallet loading problems, we proposed a layer based col-

umn generation approach that is capable to handle industry-size instances and all related

practical constraints in very short computational times. The approach is able to construct

stable pallets where vertical support, load bearing, reduced support surfaces, different item

shapes, planogram sequencing, and bin weight limit requirements are satisfied in about one

minute of computational time.

In the first chapter, we introduced the two problems and underlined their importance.

We, then, briefly discussed Lagrangean relaxation, which is one of the main building blocks

of our proposed approach. The second chapter discussed the literature related to the three-

dimensional packing problems, focusing on the proposed lower bounds, the heuristic and

exact methods, and the practical constraints.

92

In Chapter 3, we described the proposed layer-based column generation algorithm in

detail. We first defined the concept of a layer mathematically and proposed a novel math-

ematical model that uses them to solve the open dimension packing problem. Secondly, we

reformulated the proposed model into a set covering formulation which we, then, solved

using branch-and-price and column generation. We used exact and heuristic solution

methodologies for the layer generation subproblem, and introduced post processing al-

gorithms such as item replacement, item grouping, layer reorganization, and layer spacing,

to improve the generated layers. We conducted extensive computational experiments on

standard benchmark instances and compared to the state-of-the-art, and concluded that

our approach provides superior solutions, both in terms of the number of bins used and

stability, in better computational times.

We discussed the severe lack of realistic benchmark instances in Chapter 4 and pro-

posed an instance generator that is trained using industry data. We conducted rigorous

analyses on close to 200,000 items obtained from an industry partner to determine the

parameters and distribution functions for basic item features such as dimensions, volume,

and frequency of occurrence in an instance. We, then, extended the instance generator us-

ing practical item features such as weight, load capacity, different item shapes and support

surfaces, and sequence numbers. Additionally, we provided the results that can be used

for future comparison and benchmarking.

Finally, we proposed a solution methodology that tackles the entirety of the distrib-

utor’s pallet loading problem in Chapter 5. First, we described the practical constraints

and the related item features. Second, we considered these constraints individually and

explained the different approaches we devised to account for them. These approaches range

from a novel layer spacing model that is transformed into an SOCP, to a layer/item place-

ment algorithm that uses a new graph representation to consider load bearing and weight

93

distribution in a fast manner. We add these new methodologies to the previously described

LCGA and conduct testing on the newly generated realistic instances. The results revealed

the quality of the approach in providing compact pallets with high stability in an average

of one minute, a solution time well under the industry requirement.

Our main intuition at the start of this work was that the use of layers would implicitly

produce bins that are more stable and lead to problems that are easier to solve. We also

hypothesized that the concept of layers would enable the straightforward inclusion of some

important practical constraints. The results of the proposed layer-based solution approach

confirms the intuition and the hypotheses.

In conclusion, the contributions are: a novel layer-based mathematical model for the

3DBPP, which enabled the solution of the problem using column generation and branch-

and-price for the first time; the first realistic benchmark instance generator with practical

item features to better assess the real-life performance of the methodologies proposed for

the 3DBPP and the DPLP; and a novel nonlinear layer spacing model that is solved rapidly

using SOCP. Overall, this is the first work to solve industry-level instances of the DPLP

in less than the industry requirement of 2 minutes.

6.2 Future Research Directions

There are three possible directions to further expand the current research. Additional

practical constraints can be added to the methodology, different three-dimensional packing

problems can be tackled using the proposed methodology, and the layer generation step

can be enhanced.

Some of the optional practical constraints, not considered in this thesis, include the

94

use of sheet separators, the account for isle friendliness, the minimization of orderline

separation, and the consideration of more item footprints. Sheet separators are usually

placed in between layers to increase the support surface. This can be included trivially

and would improve the general bin stability. Isle friendliness dictates that items that are

most similar to one another should be packed as closely as possible (e.g., beverages, dairy

products, etc.). This can be achieved by further limiting the item grouping to separate

different product types. Similar to isle friendliness, it is preferred that the orderlines, a

batch of orders of the same product, are grouped as closely as possible for ease of unpacking.

This can be done with a combination of better item grouping and a modification to the

pallet construction heuristic. The modification would entail sorting the layers by similar

orderlines, as well as density and load bearing capacity. Finally, different item footprints

(e.g., placing an item on its depth-height surface) can be handled by adding copies of the

same item with different dimensions to the layer generation subproblem and forcing the

model to select only one of them.

The proposed methodology can also be extended to solve different and more sophis-

ticated packing problems. The container loading problem is one possibility, where other

requirements such as the delivery order could also be included. Moreover, multiple con-

tainer size packing problems can be solved by generating layers with different dimensions.

Finally, the dimension reduction that is achieved by considering two-dimensional layers

in 3DBPP can be applied to the layer generation itself. This translates to considering

one-dimensional strips that are then combined to form two-dimensional layers. This would

lead into a nested layer and strip generation solution approach.

95

References

[1] Brenda S Baker, Edward G Coffman, Jr, and Ronald L Rivest. Orthogonal packings

in two dimensions. SIAM Journal on Computing, 9(4):846–855, 1980.

[2] A. Bettinelli, A. Ceselli, and G. Righini. A branch-and-price algorithm for the two-

dimensional level strip packing problem. 4OR, 6(4):361–374, 2008.

[3] E.E. Bischoff and M.D. Marriott. A comparative evaluation of heuristics for container

loading. European Journal of Operational Research, 44(2):267–276, 1990.

[4] A. Bortfeldt and H. Gehring. A hybrid genetic algorithm for the container loading

problem. European Journal of Operational Research, 131(1):143 – 161, 2001.

[5] A. Bortfeldt and D. Mack. A heuristic for the three-dimensional strip packing problem.

European Journal of Operational Research, 183(3):1267–1279, 2007.

[6] A. Bortfeldt and G. Wäscher. Constraints in container loading - A state-of-the-art

review. European Journal of Operational Research, 229(1):1–20, 2013.

[7] M.A. Boschetti. New lower bounds for the three-dimensional finite bin packing prob-

lem. Discrete Applied Mathematics, 140(1):241–258, 2004.

96

[8] S. Ceschia and A. Schaerf. Local search for a multi-drop multi-container loading

problem. Journal of Heuristics, 19(2):275–294, 2013.

[9] C.S. Chen, S.-M. Lee, and Q.S. Shen. An analytical model for the container loading

problem. European Journal of Operational Research, 80(1):68–76, 1995.

[10] F. Clautiaux, A. Nguyen, and J.P. Brenaut. Model for the challenge renault/ESICUP:

version 1.3. http://challenge-esicup-2015.org/doc/modele_renault.pdf, 2015.

Accessed: 2016-10-20.

[11] T.G. Crainic, G. Perboli, and R. Tadei. Extreme point-based heuristics for three-

dimensional bin packing. Informs Journal on Computing, 20(3):368–384, 2008.

[12] T.G. Crainic, G. Perboli, and R. Tadei. TS2PACK: A two-level tabu search for the

three-dimensional bin packing problem. European Journal of Operational Research,

195(3):744–760, 2009.

[13] Y.-P. Cui, Y. Zhou, and Y. Cui. Triple-solution approach for the strip packing problem

with two-staged patterns. Journal of Combinatorial Optimization, 34(2):588–604,

2017.

[14] A.P. Davies and E.E. Bischoff. Weight distribution considerations in container loading.

European Journal of Operational Research, 114(3):509 – 527, 1999.

[15] M.L. Delignette-Muller and C. Dutang. fitdistrplus: An R package for fitting distri-

butions. Journal of Statistical Software, 64(4):1–34, 2015.

[16] M. Eley. Solving container loading problems by block arrangement. European Journal

of Operational Research, 141(2):393 – 409, 2002.

97

http://challenge-esicup-2015.org/doc/modele_renault.pdf

[17] O. Faroe, D. Pisinger, and M. Zachariasen. Guided local search for the three-

dimensional bin-packing problem. Informs Journal on Computing, 15(3):267–283,

2003.

[18] S.P. Fekete, J. Schepers, and J.C. Van der Veen. An exact algorithm for higher-

dimensional orthogonal packing. Operations Research, 55(3):569–587, 2007.

[19] H. Gehring, K. Menschner, and M. Meyer. A computer-based heuristic for packing

pooled shipment containers. European Journal of Operational Research, 44(2):277–

288, 1990.

[20] J.A. George and D.F. Robinson. A heuristic for packing boxes into a container.

Computers & Operations Research, 7(3):147–156, 1980.

[21] M. Hifi, I. Kacem, S. Nègre, and L. Wu. A linear programming approach for the

three-dimensional bin-packing problem. Electronic Notes in Discrete Mathematics,

36:993–1000, 2010.

[22] L. Junqueira, R. Morabito, and D.S. Yamashita. Three-dimensional container loading

models with cargo stability and load bearing constraints. Computers & Operations

Research, 39(1):74–85, 2012.

[23] J. Jylänki. A thousand ways to pack the bin - A practical approach to two-

dimensional rectangle bin packing. retrieved from http://clb.demon.fi/files/

RectangleBinPack.pdf, 2010.

[24] A.T. Kearney. 25th annual state of logistics report, 2014.

[25] A. Lodi, S. Martello, and D. Vigo. Heuristic algorithms for the three-dimensional bin

packing problem. European Journal of Operational Research, 141(2):410–420, 2002.

98

http://clb.demon.fi/files/RectangleBinPack.pdf
http://clb.demon.fi/files/RectangleBinPack.pdf

[26] A. Lodi, S. Martello, and D. Vigo. Models and bounds for two-dimensional level

packing problems. Journal of Combinatorial Optimization, 8(3):363–379, 2004.

[27] S. Martello, D. Pisinger, and D. Vigo. Algorithm 864. retrieved from http://www.

diku.dk/~pisinger/codes.html, 1998. Accessed: 2017-03-30.

[28] S. Martello, D. Pisinger, and D. Vigo. The three-dimensional bin packing problem.

Operations Research, 48(2):256–267, 2000.

[29] S. Martello, D. Pisinger, D. Vigo, E.D. Boef, and J. Korst. Algorithm 864: General

and robot-packable variants of the three-dimensional bin packing problem. ACM

Transactions on Mathematical Software (TOMS), 33(1):7, 2007.

[30] C. Paquay, M. Schyns, and S. Limbourg. A mixed integer programming formulation

for the three-dimensional bin packing problem deriving from an air cargo application.

International Transactions in Operational Research, 23(1-2):187–213, 2016.

[31] C. Paquay, S. Limbourg, M. Schyns, and J.F. Oliveira. Mip-based constructive heuris-

tics for the three-dimensional bin packing problem with transportation constraints.

International Journal of Production Research, 0(0):1–12, 2017.

[32] F. Parreño, R. Alvarez-Valdés, J.F. Oliveira, and J.M. Tamarit. A hybrid

GRASP/VND algorithm for two-and three-dimensional bin packing. Annals of Oper-

ations Research, 179(1):203–220, 2010.

[33] D. Pisinger. Heuristics for the container loading problem. European Journal of Oper-

ational Research, 141(2):382–392, 2002.

[34] A.G. Ramos, E. Silva, and J.F. Oliveira. A new load balance methodology for container

99

http://www.diku.dk/~ pisinger/codes.html
http://www.diku.dk/~ pisinger/codes.html

loading problem in road transportation. European Journal of Operational Research,

266(3):1140 – 1152, 2018.

[35] D.M. Ryan and B.A. Foster. An integer programming approach to scheduling. Com-

puter Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling,

pages 269–280, 1981.

[36] T.A.M. Toffolo, E. Esprit, T. Wauters, and G.V. Berghe. A two-dimensional heuristic

decomposition approach to a three-dimensional multiple container loading problem.

European Journal of Operational Research, 257(2):526–538, 2017.

[37] A. Trivella and D. Pisinger. The load-balanced multi-dimensional bin-packing prob-

lem. Computers & Operations Research, 74:152 – 164, 2016.

[38] P.H. Vance, C. Barnhart, E.L. Johnson, and G.L. Nemhauser. Solving binary cut-

ting stock problems by column generation and branch-and-bound. Computational

Optimization and Applications, 3(2):111–130, 1994.

[39] Z. Wang, K.W. Li, and J.K. Levy. A heuristic for the container loading problem:

A tertiary-tree-based dynamic space decomposition approach. European Journal of

Operational Research, 191(1):86–99, 2008.

[40] Gerhard Wäscher, Heike Haußner, and Holger Schumann. An improved typology of

cutting and packing problems. European Journal of Operational Research, 183(3):

1109–1130, 2007.

[41] Y. Wu, W. Li, M. Goh, and R. de Souza. Three-dimensional bin packing problem

with variable bin height. European Journal of Operational Research, 202(2):347–355,

2010.

100

[42] X. Zhao, J.A. Bennell, T. Bektaş, and K. Dowsland. A comparative review of 3D

container loading algorithms. International Transactions in Operational Research, 23

(1-2):287–320, 2016.

[43] W. Zhu and A. Lim. A new iterative-doubling Greedy-Lookahead algorithm for the

single container loading problem. European Journal of Operational Research, 222(3):

408–417, 2012.

[44] W. Zhu, W. Huang, and A. Lim. A prototype column generation strategy for the

multiple container loading problem. European Journal of Operational Research, 223

(1):27–39, 2012.

[45] W. Zhu, Z. Zhang, W.-C. Oon, and A. Lim. Space defragmentation for packing

problems. European Journal of Operational Research, 222(3):452–463, 2012.

101

APPENDICES

102

Appendix A

Results for the Generated

Benchmark Instances

103

Items Instance # CPU (s) LB # Bins Support (%) (%) Items Supported
50 1 0.10 1 1 83.94 58.00
50 2 0.39 1 1 88.68 58.00
50 3 0.26 1 1 87.92 60.00
50 4 0.29 1 1 84.02 70.00
50 5 0.16 1 1 88.93 70.00
100 1 1.03 1 1 88.04 81.00
100 2 1.30 1 1 86.80 77.00
100 3 1.43 1 1 87.04 76.00
100 4 1.75 1 1 87.57 72.00
100 5 1.38 1 1 89.40 78.00
150 1 10.91 2 2 87.67 70.00
150 2 20.30 2 2 91.93 76.00
150 3 12.90 2 2 88.84 75.33
150 4 12.08 2 2 90.70 72.00
150 5 21.31 2 2 90.36 79.33
200 1 55.98 2 2 91.21 81.50
200 2 36.41 2 2 90.41 77.50
200 3 30.26 2 2 90.84 81.50
200 4 41.14 2 2 92.87 88.50
200 5 23.50 2 2 91.67 79.50
500 1 79.15 4 5 91.48 80.40
500 2 148.36 4 5 92.17 79.60
500 3 171.75 4 5 92.21 80.80
500 4 104.23 4 5 91.99 81.00
500 5 98.08 4 5 92.05 83.20
1000 1 226.20 7 9 92.47 83.70
1000 2 216.53 7 9 92.63 82.70
1000 3 215.23 8 9 92.46 83.80
1000 4 191.28 7 9 93.01 83.60
1000 5 240.99 7 8 92.76 82.60
1500 1 480.76 11 13 93.02 84.27
1500 2 426.49 11 12 93.32 86.47
1500 3 438.23 11 13 93.27 84.93
1500 4 433.17 11 12 93.36 86.00
1500 5 417.68 11 12 93.31 86.13
2000 1 784.98 14 16 93.06 84.05
2000 2 969.60 14 16 93.36 85.65
2000 3 855.88 14 16 93.12 85.20
2000 4 1037.95 14 16 92.64 83.60
2000 5 794.92 14 16 92.68 84.40

Table A.1: Results of LCGA on class 1 of the generated instances.

104

Items Instance # CPU (s) LB # Bins Support (%) (%) Items Supported
50 1 0.24 1 1 85.76 66.00
50 2 0.15 1 1 90.30 64.00
50 3 0.21 1 1 92.86 74.00
50 4 0.25 1 1 87.48 68.00
50 5 0.08 1 1 91.10 66.00
100 1 1.32 1 1 81.91 66.00
100 2 0.94 1 1 86.11 74.00
100 3 1.63 1 1 87.08 73.00
100 4 2.03 1 1 91.75 77.00
100 5 2.08 1 1 87.36 70.00
150 1 13.80 2 2 92.37 76.00
150 2 13.51 1 2 90.78 74.67
150 3 14.43 1 2 91.17 74.67
150 4 25.25 1 2 92.01 76.00
150 5 10.20 1 2 93.67 76.00
200 1 49.60 2 2 89.62 80.50
200 2 56.44 2 2 93.68 82.50
200 3 46.87 2 2 92.94 81.50
200 4 88.03 2 2 91.96 79.00
200 5 35.49 2 2 89.85 75.50
500 1 148.14 4 5 92.63 80.00
500 2 207.27 4 5 92.17 81.20
500 3 149.97 4 5 91.14 78.40
500 4 101.81 4 5 91.09 80.00
500 5 114.67 4 5 91.79 78.60
1000 1 266.68 7 9 92.34 83.40
1000 2 273.50 7 9 92.20 82.70
1000 3 303.37 7 9 92.78 84.70
1000 4 190.73 7 9 91.67 82.10
1000 5 189.00 7 9 93.18 83.40
1500 1 504.79 11 12 93.04 85.13
1500 2 570.13 11 12 92.96 84.47
1500 3 508.58 11 12 93.51 86.13
1500 4 793.34 11 12 92.77 84.80
1500 5 550.26 11 12 92.59 84.20
2000 1 1187.42 14 16 92.71 84.30
2000 2 983.60 14 16 92.86 85.65
2000 3 915.78 14 16 92.71 85.05
2000 4 941.06 14 16 92.97 85.50
2000 5 1147.59 14 16 93.06 85.05

Table A.2: Results of LCGA on class 2 of the generated instances.

105

Items Instance # CPU (s) LB # Bins Support (%) (%) Items Supported
50 1 0.13 1 1 82.99 58.00
50 2 0.15 1 1 85.53 64.00
50 3 0.30 1 1 94.85 70.00
50 4 0.14 1 1 90.68 64.00
50 5 0.12 1 1 90.39 58.00
100 1 1.64 1 1 83.29 70.00
100 2 1.30 1 1 90.97 78.00
100 3 1.71 1 1 86.15 68.00
100 4 2.09 1 1 90.64 74.00
100 5 0.76 1 1 86.26 68.00
150 1 29.15 1 2 89.93 80.67
150 2 13.76 1 1 90.67 78.00
150 3 18.79 1 2 88.86 80.00
150 4 17.55 1 2 88.32 77.33
150 5 25.78 1 2 88.94 79.33
200 1 66.92 2 2 91.52 77.00
200 2 44.47 2 2 92.82 80.50
200 3 98.57 2 2 89.97 77.00
200 4 76.35 2 2 92.03 77.00
200 5 66.14 2 2 90.24 76.50
500 1 181.33 3 4 92.73 83.00
500 2 416.39 3 4 91.22 79.60
500 3 252.67 3 4 91.76 80.40
500 4 410.61 3 4 91.04 79.20
500 5 462.00 3 4 92.04 81.80
1000 1 378.94 6 7 92.16 84.60
1000 2 389.29 6 7 92.09 84.80
1000 3 355.97 6 7 92.46 83.60
1000 4 658.97 6 7 91.61 84.20
1000 5 338.88 6 7 92.29 85.00
1500 1 1032.15 9 11 92.21 83.60
1500 2 801.09 9 11 92.30 83.33
1500 3 750.07 9 10 92.04 85.07
1500 4 780.79 9 10 92.84 84.93
1500 5 1059.09 9 11 92.28 83.60
2000 1 1330.08 12 14 91.89 83.35
2000 2 1068.59 12 14 92.94 85.35
2000 3 1243.27 12 14 92.53 85.10
2000 4 1103.31 12 14 92.71 84.75
2000 5 1295.56 12 14 92.45 84.95

Table A.3: Results of LCGA on class 3 of the generated instances.

106

Items Instance # CPU (s) LB # Bins Support (%) (%) Items Supported
50 1 0.14 1 1 90.20 62.00
50 2 0.10 1 1 88.06 50.00
50 3 0.18 1 1 90.98 62.00
50 4 0.18 1 1 87.48 62.00
50 5 0.06 1 1 87.28 60.00
100 1 1.82 1 1 88.91 75.00
100 2 1.47 1 1 86.08 71.00
100 3 1.89 1 1 86.65 74.00
100 4 1.39 1 1 89.13 72.00
100 5 2.30 1 1 88.61 77.00
150 1 25.24 1 2 91.82 80.67
150 2 37.13 1 1 88.41 76.67
150 3 10.17 1 1 88.58 78.00
150 4 16.41 1 1 90.90 80.67
150 5 19.38 1 1 88.81 78.67
200 1 49.42 2 2 88.42 73.50
200 2 77.96 1 2 91.60 76.50
200 3 46.22 2 2 90.71 74.50
200 4 113.91 2 2 90.26 75.00
200 5 88.18 2 2 90.66 76.50
500 1 340.42 3 4 91.64 81.80
500 2 261.55 3 4 91.58 82.00
500 3 167.61 3 4 90.59 78.60
500 4 242.38 3 4 91.53 80.00
500 5 252.75 3 4 91.97 80.60
1000 1 516.74 6 7 90.78 82.20
1000 2 706.60 6 7 91.21 81.40
1000 3 470.70 6 7 91.93 82.80
1000 4 395.40 6 7 91.48 82.20
1000 5 592.44 6 7 90.45 81.70
1500 1 1074.27 8 10 91.70 82.87
1500 2 838.53 8 10 90.93 82.67
1500 3 1099.02 8 10 92.72 83.53
1500 4 886.32 8 10 91.48 82.80
1500 5 823.89 8 10 91.73 83.40
2000 1 1458.63 11 12 92.72 85.80
2000 2 1145.12 11 13 92.16 84.20
2000 3 1442.41 11 13 92.24 85.10
2000 4 1813.35 11 13 92.04 83.60
2000 5 1451.93 11 13 91.85 84.55

Table A.4: Results of LCGA on class 4 of the generated instances.

107

Appendix B

Sample Figures for LCGA Results on
Generated Instances

Figure B.1: Solution for class 1, 50 items, instance 1.

108

Figure B.2: Solution for class 2, 200 items, instance 1.

109

Figure B.3: Solution for class 3, 1000 items, instance 1.

110

Figure B.4: Solution for class 4, 2000 items, instance 1.

111

Appendix C

Cumulative Distribution Function
Plots

112

(a) Curve 1. (b) Curve 2.

(c) Curve 3. (d) Curve 4.

(e) Curve 5.

Figure C.1: Cumulative distribution functions of the fitted load capacity curves.

113

Appendix D

Results for the generated benchmark
instances

114

CPU Avg Avg
Items Instance Pallets CPU (s) per Pallets (s) Vol Use (%) Density (%)

50 1 1 0.23 0.23 30.80 71.24
50 2 1 5.43 5.43 30.36 71.91
50 3 1 0.21 0.21 33.35 74.61
50 4 1 5.53 5.53 29.87 71.09
50 5 1 0.18 0.18 32.39 73.87
100 1 1 6.42 6.42 57.10 77.15
100 2 1 6.35 6.35 57.38 77.46
100 3 1 6.27 6.27 56.74 77.47
100 4 2 0.94 0.47 32.18 79.64
100 5 1 1.27 1.27 62.19 82.51
150 1 2 6.42 3.21 47.35 78.04
150 2 2 10.11 5.05 49.26 79.84
150 3 2 7.78 3.89 47.42 77.76
150 4 2 4.03 2.01 45.17 77.31
150 5 2 2.92 1.46 45.73 80.35
200 1 3 29.19 9.73 41.35 79.46
200 2 2 13.52 6.76 61.51 81.83
200 3 2 13.28 6.64 61.59 81.83
200 4 2 16.84 8.42 59.92 80.27
200 5 2 7.75 3.88 62.40 82.78
500 1 5 256.04 51.21 62.64 76.07
500 2 5 245.32 49.06 62.22 87.35
500 3 5 447.20 89.44 62.27 75.82
500 4 4 278.50 69.63 76.60 76.62
500 5 4 150.32 37.58 76.87 76.91
1000 1 8 541.26 67.66 77.67 78.07
1000 2 8 817.21 102.15 77.91 79.72
1000 3 8 1330.33 166.29 79.88 80.00
1000 4 8 623.54 77.94 78.26 78.42
1000 5 8 783.11 97.89 78.32 78.62
1500 1 12 1495.68 124.64 77.64 78.93
1500 2 12 890.11 74.18 77.97 78.30
1500 3 12 1264.60 105.38 77.71 78.34
1500 4 12 1209.59 100.80 77.90 78.96
1500 5 12 1689.82 140.82 77.51 77.80
2000 1 16 1428.50 89.28 78.26 79.14
2000 2 16 1747.20 109.20 78.12 79.31
2000 3 15 2297.68 153.18 82.39 82.54
2000 4 15 2687.25 179.15 82.16 82.36
2000 5 16 2256.28 141.02 78.50 78.85

Table D.1: Results of DPLP on class 1 of the generated instances.

115

CPU Avg Avg
Items Instance Pallets CPU (s) per Pallet (s) Vol Use (%) Density (%)

50 1 1 0.28 0.28 30.28 80.47
50 2 1 0.19 0.19 31.84 82.03
50 3 1 0.17 0.17 29.68 76.26
50 4 1 0.20 0.20 31.64 81.80
50 5 1 0.30 0.30 29.98 80.14
100 1 1 6.32 6.32 61.23 71.35
100 2 2 6.35 3.17 31.04 80.48
100 3 1 6.05 6.05 61.63 81.99
100 4 2 1.07 0.53 31.72 81.60
100 5 1 0.96 0.96 59.70 79.70
150 1 2 5.40 2.70 46.26 79.06
150 2 2 2.14 1.07 47.82 78.40
150 3 2 4.54 2.27 45.35 75.79
150 4 2 4.19 2.10 43.31 78.61
150 5 2 2.74 1.37 46.44 76.52
200 1 2 11.86 5.93 60.77 81.24
200 2 2 23.04 11.52 62.17 82.41
200 3 2 7.60 3.80 63.61 74.40
200 4 2 18.81 9.41 59.67 80.38
200 5 2 10.81 5.40 59.60 79.85
500 1 5 444.73 88.95 62.51 85.38
500 2 5 394.82 78.96 61.39 75.99
500 3 4 291.49 72.87 77.88 78.51
500 4 4 281.21 70.30 76.69 77.08
500 5 5 357.88 71.58 60.80 74.00
1000 1 8 733.34 91.67 76.79 77.00
1000 2 8 1466.15 183.27 77.61 77.78
1000 3 8 1753.32 219.17 76.55 76.74
1000 4 8 675.23 84.40 76.65 76.91
1000 5 8 1510.22 188.78 76.70 76.98
1500 1 12 1931.69 160.97 76.65 77.75
1500 2 12 1776.36 148.03 78.56 78.94
1500 3 12 1642.30 136.86 77.66 79.14
1500 4 12 1494.14 124.51 76.83 78.05
1500 5 12 1741.43 145.12 77.35 78.28
2000 1 15 1769.22 117.95 82.58 82.70
2000 2 16 1622.88 101.43 77.84 79.66
2000 3 15 2738.17 182.55 81.60 81.82
2000 4 16 2882.99 180.19 78.20 78.41
2000 5 16 2976.50 186.03 77.45 78.58

Table D.2: Results of DPLP on class 2 of the generated instances.

116

CPU Avg Avg
Items Instance Pallets CPU (s) per Pallet (s) Vol Use (%) Density (%)

50 1 1 0.57 0.57 24.49 84.51
50 2 1 0.15 0.15 23.94 81.38
50 3 1 5.52 5.52 23.39 85.48
50 4 1 0.27 0.27 28.51 78.84
50 5 1 0.18 0.18 28.75 79.06
100 1 1 2.30 2.30 48.99 79.17
100 2 1 1.78 1.78 50.53 80.58
100 3 1 0.77 0.77 51.06 81.62
100 4 1 6.73 6.73 49.19 79.26
100 5 1 0.88 0.88 47.62 78.50
150 1 2 8.30 4.15 37.68 74.98
150 2 2 7.74 3.87 37.63 74.83
150 3 2 4.13 2.06 38.35 78.61
150 4 2 12.75 6.38 36.01 76.79
150 5 2 6.83 3.41 35.82 72.59
200 1 2 14.98 7.49 51.10 71.40
200 2 2 12.98 6.49 52.23 72.59
200 3 2 32.61 16.31 48.66 79.34
200 4 2 26.52 13.26 50.36 70.52
200 5 2 16.89 8.44 50.11 82.76
500 1 4 384.73 96.18 61.25 74.71
500 2 4 407.83 101.96 61.52 75.62
500 3 4 393.07 98.27 61.12 72.83
500 4 4 499.77 124.94 63.17 83.30
500 5 4 661.79 165.45 63.48 77.12
1000 1 7 1295.87 185.12 71.46 72.44
1000 2 7 1229.16 175.59 71.51 72.87
1000 3 7 967.71 138.24 72.55 72.73
1000 4 7 1128.10 161.16 70.81 72.94
1000 5 6 1899.21 316.54 80.26 80.51
1500 1 10 1868.64 186.86 73.59 75.24
1500 2 10 2108.89 210.89 75.41 76.34
1500 3 10 1938.94 193.89 74.14 75.35
1500 4 10 5131.19 513.12 73.87 74.21
1500 5 10 1648.88 164.89 75.30 76.53
2000 1 13 2955.90 227.38 77.50 77.68
2000 2 15 424.85 28.32 66.05 76.18
2000 3 15 497.05 33.14 65.81 76.50
2000 4 15 409.02 27.27 65.83 76.00
2000 5 15 1051.96 70.13 66.56 76.70

Table D.3: Results of DPLP on class 3 of the generated instances.

117

CPU Avg Avg
Items Instance Pallets CPU (s) per Pallet (s) Vol Use (%) Density (%)

50 1 1 0.14 0.14 22.50 81.42
50 2 1 5.57 5.57 24.03 82.94
50 3 1 0.33 0.33 20.27 76.63
50 4 1 0.38 0.38 18.89 81.80
50 5 1 0.24 0.24 23.95 74.40
100 1 2 1.35 0.68 23.03 79.49
100 2 1 1.07 1.07 46.07 76.86
100 3 1 1.84 1.84 43.28 73.90
100 4 1 1.60 1.60 45.75 77.05
100 5 1 1.68 1.68 44.97 75.78
150 1 1 6.84 6.84 64.70 75.17
150 2 2 6.37 3.19 35.59 84.25
150 3 1 12.18 12.18 62.89 83.09
150 4 2 5.10 2.55 34.68 74.91
150 5 2 6.59 3.29 33.64 85.18
200 1 2 14.82 7.41 46.64 79.02
200 2 2 16.03 8.02 45.49 85.63
200 3 2 12.76 6.38 48.75 79.03
200 4 2 14.44 7.22 49.77 80.19
200 5 2 26.91 13.45 45.80 77.29
500 1 3 901.08 300.36 77.58 77.77
500 2 4 740.01 185.00 58.35 82.37
500 3 4 448.59 112.15 57.82 82.44
500 4 4 785.41 196.35 58.11 82.71
500 5 4 377.79 94.45 58.48 83.30
1000 1 7 1485.92 212.27 67.22 80.07
1000 2 6 2583.54 430.59 76.57 76.70
1000 3 8 278.57 34.82 56.96 78.91
1000 4 7 124.87 17.84 64.98 76.10
1000 5 7 203.41 29.06 66.15 76.87
1500 1 11 259.83 23.62 63.03 85.55
1500 2 11 248.11 22.56 63.71 74.81
1500 3 11 260.18 23.65 62.79 83.69
1500 4 11 341.02 31.00 62.33 82.71
1500 5 11 469.05 42.64 64.25 76.03
2000 1 14 796.95 56.93 65.66 85.83
2000 2 14 645.68 46.12 65.90 76.10
2000 3 14 536.66 38.33 65.47 75.64
2000 4 14 716.31 51.17 65.29 75.45
2000 5 15 545.65 36.38 60.51 81.87

Table D.4: Results of DPLP on class 4 of the generated instances.

118

	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Introduction
	The Three Dimensional Bin Packing Problem
	The Distributor's Pallet Loading Problem
	Contribution and Outline of the Thesis

	Literature Review
	Lower Bounds
	Heuristic Methods
	Exact Methods
	Practical Constraints

	A Layer-based Column Generation Solution Approach
	Solution by Column Generation
	Solution of the Pricing Subproblem
	Branch-and-Price and Column Generation Frameworks
	Bin Construction Heuristic

	Layer and Bin Improvement Strategies
	Practical Requirements

	Computational Experiments
	Comparison of the Proposed Methodologies
	Comparison of LCGA to the State-of-the-art
	Vertical Support

	Conclusion

	Generating Realistic Benchmak Instances
	Training on Basic Item Features
	Results and Comparison on Generated Instances
	Extending the Instance Generator
	Conclusion

	The Distributor's Pallet Loading Problem
	Practical Constraints
	Vertical Support
	Load Bearing
	Planogram Sequencing and Pallet Weight Limit

	Computational Experiments
	Results and Analysis

	Conclusion

	Conclusions
	Summary of the thesis
	Future Research Directions

	References
	APPENDICES
	Results for the Generated Benchmark Instances
	Sample Figures for LCGA Results on Generated Instances
	Cumulative Distribution Function Plots
	Results for the generated benchmark instances

