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Abstract

This thesis consists of three self-contained essays evaluating the impacts of educational
attainment and average income at the community level on water consumption, the effects
of different sources of energy on wholesale electricity rates and the effects of eliminating
coal-fired electricity generation on air quality.

The first chapter looks at the impacts of educational attainment and average income at
the community level on water consumption. The focus of this paper is on the three cities of
Cambridge, Kitchener and Waterloo. In this chapter, we construct a unique household-level
panel dataset that has monthly water consumption data of 22,000 households from 2012-
2014. Our study shows that water consumption decreases as income at the Dissemination
Area (DA) level increases. Our findings also show that educational attainment affects
water use in a different way at different education levels in the following sense: increasing
educational attainment at lower levels of education (from no certificate to high school
certificate) increases water consumption, but the effect reverses when people receive post-
secondary education. In addition, our study suggests that although education at different
geographical levels affects household water consumption in different ways, there is a turning
point where the explained relationship changes direction.

By creating and utilizing a unique panel data from the Independent Electricity System
Operator (IESO) and Statistics Canada, over 2009 to 2014, the second chapter intends to
analyze the effects of different sources of energy on wholesale electricity rates to see how
the considerable shifts in electricity fuel mix since 2009 have impacted the Hourly Ontario
Energy Price (HOEP) and Global Adjustment (GA). The study demonstrates that while
less reliance on coal has resulted in an upward pressure on the HOEP, the increase in other
sources of energy such as nuclear, hydro and wind power generations outweighed the effects
of eliminating coal, which explains why the average HOEP fell from 26.4 $/MWh in 2012
to 23 $/MWh in 2014. On the other hand, the GA in terms of $/MWh, rose by almost
50%. Although less coal is significantly associated with higher GA payments, we do not
find that more wind and nuclear power generation have resulted in higher GA payments.
In addition, our results show that more gas power is correlated with a reduction in GA.

Lastly, the third chapter uses the hourly air pollutant data associated with four cities
of Toronto, Hamilton, Ottawa and Sarnia in addition to the data on hourly electricity
generation from coal, gas, hydro, nuclear, wind and other (solar and biofuel) type of power
plants for the period of 2009 to 2016. The pollution data are obtained from the Ontario
Ministry of the Environment and Climate Change and the data on fuel mix are obtained
from the Independent Electricity System Operator (IESO). We estimate the effects of
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hourly changes in fuel mix on Ozone (O3), Nitrogen Oxide (NOx), and Particulate Matter
(PM2.5) over a period in which coal-fired electricity generation was gradually eliminated
from the electricity market. The paper also estimates the impacts of fuel mix on the
probability of smog days. The results suggest that relative to coal, more nuclear and wind
energy is correlated with decreased levels of NOx and PM2.5. In addition, an increase in
nuclear powered generation is associated with reduced O3 levels. On the other hand, the
results suggest that in general, the correlation between different types of fuel mix and the
elimination of smog days are not statistically significant.
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Chapter 1

The Effect of Education and Income

on Household Water Consumption:

Evidence from the Tri-Cities of

Cambridge, Kitchener and Waterloo

1.1 Introduction

Despite the importance of household water consumption behaviour, there remains a paucity

of evidence on investigating the issue in different parts of Canada. Most studies have

tended to focus on water conservation behaviour as a response to some technical changes

driven by certain policy interventions rather than on water consumption behaviour that

may vary depending on the underlying characteristics of a population. Only a handful

of studies, such as Jorgensen et al. [2009] (in Australia) and Fullerton Jr et al. [2013] (in

Canada), have studied the water consumption behaviour of households. In addition, while

many studies have investigated the effects of household characteristics such as education

1



and income on water consumption at the household level, there are fewer papers 1 on

the effects of such attributes at the community level2. Although local government cannot

directly impact a household’s choice, it can use instruments such as community education to

drive aggregated community-level choices in the planned direction. For example, in May

2014, the region of Waterloo prepared the “Water Efficiency Master plan (2015-2025),”

with a goal “to engage municipalities, residents, businesses, and institutions in actions and

behaviours that promote water efficiency and conservation.” In this plan, general education

and awareness was mentioned as one of the continuing activities at the residential sector

that can implement these goals. In this regard, there is a need to understand the effects of

various socioeconomic characteristics at the community level that interact with household

water usage.

The focus of this study is on the impacts of educational attainment and average income

at the community level on water consumption. This paper considers the Regional Munici-

pality of Waterloo, which consists of the three cities of Cambridge, Kitchener and Waterloo,

and the townships of Wellesley, Woolwich, Wilmot, and North Dumfries. However, because

of data availability, the focus of this paper is on the three cities of Cambridge, Kitchener

and Waterloo. While higher education results in significant private returns in form of

increased income and better jobs, there is evidence that it is also correlated with more

civic-minded choices (Milligan et al. [2004]). In other words, more educated people are

careful about water consumption because of environmental concerns regarding the waste

of natural resources. On the other hand, conservative or wasteful consumption practices

by neighbours can impact the consumption patterns of adjacent neighbours. Therefore,

looking at community-level educational attainment and income level is relevant to the ex-

tent that they represent not only individual but peer effects as well. While there exists a

broad literature on household characteristics that affect water consumption, less work has

been done on local characteristics that affect household water consumption. One reason

is the difficulty of obtaining sufficiently detailed data that matches household water con-

sumption with the corresponding neighborhood characteristics. We address these issues

1Readers can refer to research that are done by Fullerton Jr et al. [2013], Hurd [2006] and Domene and
Sauŕı [2006], all of which are discussed in the literature review section of this paper.

2We will adopt a specific definition of a community and our results pertain to that scale only.
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by constructing a unique dataset that relates available household water consumption to

corresponding local educational level and income. In this paper, education at the Cen-

sus Tract (CT) level3 is expressed as the percentage of people in the area who have: no

certificate/degree, high school degree, and post-secondary education. Average income is

expressed at the Dissemination Area (DA) level4.

The value added of this research stems from the availability of household-specific water

consumption data from the three cities. As a result, we are able to construct a unique

household-level panel dataset over time and thus control for the effects of unobserved and

time-invariant household-specific attributes. The research data for this study is drawn from

two primary sources: Statistics Canada Census data for 2011, and billing data for 2006-

2014 from the three municipalities of Waterloo, Kitchener and Cambridge. The billing

data, which is provided by the Water Services Division of the Region of Waterloo, consists

of information for almost 100,000 households from 2006 to 2014. However, our final merged

sample has monthly water consumption data of 22,000 households from 2012-2014. We are

unaware of any other Canadian study that used data on a comparable number of house-

holds over time. In addition, most papers are unable to use detailed monthly panel data.

Building knowledge on household water consumption behaviour in each neighbourhood can

effectively lead policy makers to extend the culture of awareness for water conservation and

consumption among the communities.

We acknowledge certain limitations to our data. We do not have educational attainment

and income data at the individual level. It would be interesting to assess the effects of

income and educational attainment on water consumption at the neighbourhood level

when the data was aggregated from the household-level dataset. However, we have specific

census-level data. In addition, while we have detailed information on water consumption

dataset for the period of 2012-2014, the explanatory variables such as education and income

(at CT and DA levels) are static and we are unaware of any changes to them that may have

occurred during 2012-2014. The analyses are based on the most recent available dataset,

and since there is aggregated data at CT and DA level, we believe that any changes would

3CT is a geographical unit with a population between 2, 500 and 8, 000 individuals.
4DA is a geographical unit with a population between 400 and 700 individuals.
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be negligible and could not drastically change our results.

This study provides new insights into the effects of overall educational attainment

and average income in each neighborhood on household water consumption. Much of the

available literature on water consumption deals with the question of how higher- or lower-

educated people make different choices regarding water consumption, and how income

affects water consumption at the household level. In this study, we answer these questions

at local levels. While other studies show a positive relationship between household income

and water consumption, our study shows that water consumption decreases as income

at the DA level increases. Our findings also show that educational attainment affects

water use in a different way at different education levels in the following sense: increasing

educational attainment at lower levels of education (from no certificate to high school

certificate) increases water consumption, but the effect reverses when people receive post-

secondary education. In addition, our study suggests that although education at different

geographical levels affects household water consumption in different ways, there is a turning

point where the explained relationship changes direction. A strong correlation between

consumption patterns and neighborhood characteristics provides a credible justification

for local government investment to design different policies that are tailored for different

neighbourhoods.

This paper begins with a brief overview of the literature on household water demand

and conservation behaviour in the second section. It will then go on to the data description

in the third section. The fourth section details the empirical model used for this study,

and the fifth section discusses the findings of this research. The sixth section concludes

the paper with a summary of key points.
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1.2 Literature

1.2.1 Socio-demographic variables that affect water consumption

Over the past few decades, researchers have investigated the effects of different socioeco-

nomic variables to explain household water usage behaviour. Several studies have looked

at the impacts of relevant socio-demographic variables including education and income,

the number of residents in each household, stage of life (being retired or having teenage

children), block-size and swimming pool ownership. In general, the literature shows that

some of these variables are statistically more significant than others. In addition, these

studies are carried out using individual or household level datasets.

Household income has been considered an important determinant of water consumption

and conservation behaviour by many authors. Examples include De Oliver [1999]5, Syme

et al. [2004]6, Cole [2004]7, Corbella and Pujol [2009], Grafton et al. [2011]8 and Fielding

et al. [2012]9. They all find a strong relationship between income and water consump-

tion. Some of these studies, such as Syme et al. [2004], Cole [2004] and Fielding et al.

[2012], find that households with higher income use more water. As noted by Cole [2004],

this is primarily because higher-income families enjoy more water-consuming appliances.

Similarly, the prevalence of water-intensive outdoor applications such as lawn gardens and

swimming pools are evident among high-income families, which in turn increases their wa-

ter consumption . However, not all studies find a significant relationship between income

and consumption/conservation. For example, when considering household water conserva-

5The study is based on 203 census tracts for 22 consecutive months (July 1995 - March 1997) in San
Antonio, Texas.

6The study is based on survey data from 397 households in Perth, Western Australia. The data is for
16 months (Summer 1998 - end of Summer 2000).

7The data for this study was provided by the World Bank, and it is based on the regional forecast of
per capita consumption for the period of 2000 - 2020 on different world regions.

8They used “2008 OECD Household Survey on Environmental Attitudes and Behaviour” in this study
which contains data for almost 10,000 households in ten OECD countries.

9The study was conducted based on survey data collected in south-east Queensland, Australia. It
contains water consumption information for 1008 households from October 2009 to March 2010.
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tion behaviour based on 431 households in Concord, New Hampshire, Hamilton [1983]10

finds that the direct and indirect effects of income cancel each other out; as a result, he

concludes that income cannot be considered a good predictor of water conservation .

Other researchers have considered different variables as proxies for income. For example,

in their study of household water consumption in Halifax, Fullerton Jr et al. [2013]11 use

labour market variables, such as employment per capita, as the proxy for personal income.

They observed how high levels of employment could give rise to water consumption in

this region ; however, they used 52 observations to draw that conclusion. Some other

researchers have considered an index of wealth that can be adopted as a proxy for income.

Specifically, property value (“fiscal value of the dwelling as recorded in the urban property

register” (Arbués et al. [2010])) has been considered in the literature as proxy for income.

Some examples are Dandy et al. [1997]12, Aitken et al. [1994]13, Arbués et al. [2004] and

Arbués et al. [2010]14. All of these studies found a positive relationship between water

consumption and property value . However, property value might be affected by variables

that income would not be affected by; for example, the construction of a public transit line

in a neighbourhood could increase property value but not household income. Therefore,

property value as a proxy for income should be used cautiously.

On the other hand, studies that focus mostly on defining residential water demand

typically consider some sort of water price to be the primary variable that can determine

household water consumption behaviour. Such research not only examines the direct ef-

fect of price itself, but also considers the impact of price in response to changes in other

variables, such as household size and income. For example, Arbués et al. [2010] study

household sensitivity to price changes at different levels of household sizes, while Ren-

10The study applies the water use in five successive summers from 1978-1981
11The dependent variable in this study is the total municipal water used for the second quarter of 1996

to the first quarter of 2009. So, the dataset contains 52 observations in total.
12Data on yearly water consumption for 320 households in Adelaide, South Australia was gathered from

the billing records of 8 years (1985-1992). Income information, however, is based on the survey data.
13Survey data is collected from almost 260 households in Melbourne, Australia during June, July and

August (winter months) of 1991.
14For both studies, the dataset contains information on almost 1500 households during 1996 to 1998

(10-time observation for each household). The data for both studies are obtained from the Zaragoza City
Council in Spain.
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wick and Archibald [1998]15 and Renwick and Green [2000]16 examine different income

class household responsiveness to price changes. Arbués et al. [2010] show that although

households are sensitive to price changes regardless of sizes, smaller households are more

sensitive. Renwick and Archibald [1998] and Renwick and Green [2000] demonstrate how

lower income households are more sensitive to price changes. The key finding of the lit-

erature is that although income has a significant effect on household water consumption,

consideration of price as an explanatory variable depends on the evaluated sample.

There are also studies that look at the impact of dwelling type (detached or attached)

and residence size in determining household water consumption. Studies conducted by

Aydinalp et al. [2004], Olmstead [2009] and Grafton et al. [2011] are some prominent ex-

amples. Aydinalp et al. [2004]17 and Grafton et al. [2011] control for type of residence when

studying household water consumption, and Olmstead [2009] focuses mostly on residence

size. It is a common hypothesis that households with larger houses are expected to have

higher water consumption. An example of this is Grafton et al. [2011], who use housing

survey data for ten countries. Their results confirm the positive sign of residence size on

household water consumption Grafton et al. [2011]. In addition, earlier, Olmstead [2009]18

studied both house square footage and lot square footage. She finds that house square

footage has a positive and significant effect on household water demand.

Moreover, Fielding et al. [2012] examines the effect of socio-demographic variables such

as household size, income, education, age and gender on water consumption. Among these

variables, household size “emerged as the strongest predictor of household water use”

15The dataset for this study has been gathered from the monthly bill of 119 households for six years
(1985 to 1990) in Goleta and Santa Barbara, California. Each household then took part in telephone
survey regarding their income, number of people per household and so forth.

16Monthly agency-level data from 1989 to 1996 for eight urban water agencies in California is used in
this study (Number of observation: 776).

17This study is based on the 1993 survey of household energy use (SHEU) database. The dataset
contains information on house characteristics for 8767 households from all provinces of Canada; however,
the authors use 2749 households for which the energy billing data exist.

18This study uses the survey data on 671 households in 1998 in seven areas of the United States and
Canada. In addition, household consumption is observed for four weeks (two weeks of dry and 2 weeks of
wet seasons) and the daily average for every two weeks represents the total consumption for that billing
period.
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(Fielding et al. [2012]). Aitken et al. [1994] considered variables including property value,

clothes washing machine loads, dish washing machine loads, the number of toilets, the

number of showers per week and number of people per household. After running stepwise

regressions, they found that the most suitable model was the one that considered three

variables: property value, clothes washing machine loads, and number of residents per

household. This model explains 60% of variation in data (R2 = 0.6). Furthermore, they

find that number of residents per household is the strongest predictor of water consumption

in their model.

On the other hand, according to Jorgensen et al. [2013]19, a key shortcoming in most

of this literature is a lack of data over time. Thus, -in their contribution- they focus on

the dynamics of water consumption over time. Their findings support the hypothesis that

household-level variables, as suggested by previous literature, are significant predictors

of consumption. However, only household size is a consistent predictor of initial water

consumption .

The effects of other social characteristics such as education and home ownership have

also been researched. The importance of education has been widely examined in papers

that are concerned with analysing water conservation behaviour. An example is a study

by Geller et al. [1983]20, which develops an educational approach that examines the effect

of installing water-conserving appliances on household consumption. The effectiveness

of education is also exemplified in research by Hamilton [1983]. He argues that income

and education, however pivotal, cannot show any significant effect on water conservation

behaviour since their direct and indirect effects cancel each other out. Hamilton’s findings

are supported by De Oliver [1999], who focuses on census tract-level data from San Antonio,

Texas. He shows that income and education are highly correlated in this district and both

have negligible effects on conservation behaviour.

Although extensive research has been carried out on the effects of socio-demographic

19Dataset consists of descriptive information on 615 households in two Australian states for four quarters
in 2009 and 2010.

20In Summer of 1982, 129 residents of Blacksburg, Virginia volunteered to participate in this study for
70 consecutive days.
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variables on household water consumption, this research has been mostly restricted to

data over a short period of time. In addition, the research to date has tended to focus

on a small number of households. On the other hand, the impact of socio-demographic

variables at the community level on household water consumption remains unclear. Most

studies have only focused on survey data at the household level. Although understanding

household behaviour helps to manage water conservation practice, policy makers need to

know the household characteristics and the extent to which each characteristic affects water

consumption in their service area in order to better plan water conservation programs.

1.2.2 Effects of peer behaviour on household water consumption

Research into water conservation psychology conducted by Corral-Verdugo et al. [2003]21

shows how environmental beliefs, such as utilitarian and ecological beliefs regarding water

availability in nature, affect water conservation. In their study, the structure of environ-

mental beliefs has been broadened to include beliefs about “1) the need for maintaining a

“balance” with nature, 2) the need for imposing “limits” to human growth, and 3) a human

exception paradigm (HEP)” (Corral-Verdugo et al. [2003]). Results from their survey of

510 individuals in northern Mexican cities suggest that whereas utilitarian water beliefs

tend to be more concerned with HEP, ecological water beliefs are affected negatively by

HEP and positively by limits. Furthermore, utilitarian water beliefs pursue more water

consumption behaviours; by contrast, ecological water beliefs discourage such behaviour.

More recently, Jorgensen et al. [2009] trace the social and economic models that describe

household water consumption. They argue that while concerned with different sets of vari-

ables, the literature lacks the consideration of trust in household water use. For Jorgensen

et al. [2009], trust refers to both “interpersonal” and “institutional” trust. They highlight

the fact that “trust in water authority and trust in others in community (including different

water using sectors, such as farmers, residents and industry) to take steps to reduce their

21This study uses survey data on 510 individuals living in two Mexican cities. In addition to demographic
information from the survey, water usage information is gathered from the water bill for each family. The
authors then generate individual-level water usage data by dividing the total consumption by family size.
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water consumption will increase the likelihood that people will also take steps to reduce

their water use” (Jorgensen et al. [2009]). One of the examples of households’ beliefs about

water consumption can be seen in the study conducted by Troy et al. [2006]22 in Sydney,

Australia. Their study suggests that only 7% of households guessed that their consumption

was above an average Sydney household, and almost half of households thought they were

below the average consumption level.

With regard to household consumption patterns, one of the sub-areas that attracts

interest is external water use. Such studies have considered the effect of lawn and garden

watering usage and swimming pool ownership on water conservation and consumption.

As Dupont and Renzetti [2013]23 emphasise, lawn and garden watering can increase a

household’s total water consumption by 50%. Similarly, Domene et al. [2005]24 conclude

that on average, gardens use 30% of the annual household water consumption, and this

amount can increase to 50% in summertime in Barcelona. Further, Mini et al. [2014]25

study residential outdoor water uses in Los Angeles, California; they highlight that 54%

of water use in the city has been allocated to landscape irrigations. The effect of home

garden watering is exemplified in work undertaken by Syme et al. [2004]; Not surprisingly,

they find that better gardens use more water .

Given household external water use (specifically watering gardens and lawns) and fac-

tors that affect household water use from the psychological point of view (such as “trust,”

as mentioned by Jorgensen et al. [2009]), a question arises. Is it possible that the choice of

one neighbour regarding watering lawns and gardens affects the choice of others? In other

words, does one neighbour’s greener garden persuade other neighbours to have greener

gardens?

22The data used in this study is from a large-scale telephone interview survey of 2179 people in Sydney,
Australia from December 2004 to May 2005.

23The main data source of this study is the Statistics Canada’s 2006 Households and the Environment
Survey“ and the final sample consists of 9479 households.

24The study is based on 120 interviews with homeowners in six municipalities of Barcelona, Spain during
April to October 2001

25The dataset for this study consists of monthly water data for households residing in 855 census tracts
in the city of Los Angeles for a ten-year period (2000-2010). The water billing and lot size data are
collected from the Los Angeles Department of Water and Power.
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Some researchers have touched on this issue, but none, to the best of our knowledge,

have yet accomplished the study of such relationships. Hurd [2006]26 shows that the land-

scape of neighbours is one factor affecting landscape choice. Nevertheless, Hurd’s primary

focus is on other factors, such as water prices and level of public education. For example,

his results indicate that choices about landscape type are sensitive to water prices. In

the same vein, recently Bollinger et al. [2018] find that a 10% change in neighbour’s land-

scape greenness results in a 1.4% change in the households landscape greenness. However,

their research show that such peer behaviour are completely driven by economic incentives.

Domene and Sauŕı [2006]27, by contrast, found a positive effect of household income rather

than an adverse effect of water prices on outdoor water use in Barcelona. Peer effects are

also considered in the research done by Bollinger and Gillingham [2012] on the adoption

of solar panels. Bollinger and Gillingham [2012] find that the probability of installing a

solar panel in a zip code increases by 0.78 percentage points with an extra installation in

the zip code28. It is also worth noting the studies and datasets on water consumption and

conservation behaviour that have been used so far in Canada. These studies are outlined

in the following subsection.

1.2.3 Canadian Literature

In their empirical analysis of water consumption in Halifax, Fullerton Jr et al. [2013]

use data from Halifax Regional Water Commission, Environment Canada and Statistics

Canada. Specifically, they collected data for municipal water consumption in cubic meters

from the Halifax Regional Water Commission, weather data documented by Environment

Canada, and employment and price index data reported by Statistics Canada. The au-

thors study the long-run and short-run dynamics of water consumption in Halifax. They

investigated the effects of weather and price on municipal water consumption and find

26423 single-family dwellings responded to the questionnaire that was mailed to them. The respondents
were chosen randomly in three cities in Mexico during the summer of 2004.

27Dataset contains information on 532 households in 22 municipalities of Barcelona. Households re-
sponded to telephone questionnaires, and the interviews were conducted from January to March 2004.

28The dataset for this study consists of 85,046 households who requested solar panel installation from
January 2001 to December 2011 in San Francisco, California.
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that consumption is price inelastic. They calculated the municipal water consumption at

a given time by dividing the total water consumed or sold by the number of municipal

utility customers at that time. Therefore, they did not use the historical data for individ-

ual consumption. Besides, they only considered the metered water in their calculation and

therefore the dependent variable (municipal consumption per customer) does not account

for any sort of water leakage. Moreover, Fullerton Jr et al. [2013] did not consider any

socio-demographic variables such as income and education that can differently affect the

regions within the Halifax municipality.

Olmstead et al. [2003], in their study of water demand, analyzed the household data in

eleven urban areas in the United States and Canada, including the Waterloo-Cambridge

region. Data on socio-demographic variables such as gross annual household income, fam-

ily size, home age and size were all collected through an anonymous one-time household

survey. The dataset consists of information on 1082 households. As Olmstead et al. [2003]

state, “households chosen for the study were randomly sampled from a subset of utilities’

customer database: residential single-family households” (Olmstead et al. [2003]). They

focused on different price structure and its impact on residential water demand. They

found significant difference in water demands between households facing increasing block

prices versus households facing uniform marginal prices. However, they are unsure if the

difference is solely due to price structure or to the heterogeneity in utility service area.

Dupont and Renzetti [2013] use Statistics Canada’s 2006 Households and the Environ-

ment Survey (HES) to assess the effects of various socio-demographic variables on decisions

over conservation. HES contains information on household’s income, the number of house-

hold members, the highest level of education of the respondent, the city or town in which

the household is located, and other variables that describe indoor and outdoor water con-

servation choices . They combined HES with the Labor Force Survey (LFS) conducted

in 2006 to identify the outdoor conservation choices that are made under price and non-

price conservation policies. Specifically, they focus on the frequency of lawn and garden

watering to investigate the conservation behaviour of households. They find that price

affects household decisions regarding indoor water conservation more than outdoor water

conservation. In addition, they show higher income and education have positive affect on
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water conservation. A main drawback of their study, however, is the small sample size.

They combine different datasets, resulting in a sample of around 10,000 households all over

Canada which is less than one percent of Canada’s population in 2006. Tables 1.1 and

1.2 summarize some of the more recent studies on water consumption in and outside of

Canada.

As was pointed out in the introduction to this paper, most studies on water consumption

are limited to household surveys, and the units of analysis in these studies are individuals.

Socio-demographic variables considered in these studies, such as education and income, are

at either the individual or household level. However, the aim of this paper is to explore the

relationship between household water consumption and local characteristics. This study

intends to determine the extent to which local characteristics affect water consumption

patterns of households that are living in the same neighbourhood. In particular, we test

the hypothesis that local characteristics affect household-level behaviour and proxy peer

behaviour.

1.3 Data Description

1.3.1 The Tri-Cities Socio-demographic Description

The Tri-Cities of Cambridge, Kitchener and Waterloo are located in Ontario, Canada.

According to Statistics Canada, Waterloo is the smallest of these three cities. Some relevant

characteristics of the Tri-Cities are summarized in Table 1.3. This table provides the

breakdown of educational attainment and some of the economic features of these three

cities. Based on the statistics provided in Table 1.3, Cambridge and Kitchener are very

similar in terms of population education. In addition, the median income in Cambridge and

Kitchener are very close. On the other hand, Waterloo has a higher-educated population

and, unsurprisingly, higher median income29.

29http://www12.statcan.gc.ca/nhs-enm/2011/as-sa/fogs-spg/Pages/FOG.cfm?GeoCode=

3530010&lang=E&level=4
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1.3.2 Data Collection

Based on the submission of our research proposal, we were able to obtain confidential

water usage data for the three municipalities in the region of Waterloo. Subsequently, the

data was released by the Water Service Division in the Region of Waterloo. The dataset

for these regions includes annual water consumption of over 100,000 houses from 2006 to

2014. For some years and some municipalities, we have more detailed information, such

as monthly consumption, average and peak consumption for the year. For the city of

Waterloo, yearly total consumption for 2006 to 2014 and monthly consumption from 2007

to 2014 are reported in the dataset. The dataset for the city of Kitchener contains both

monthly and yearly total water consumption from 2006 to 2014. However, for the city of

Cambridge, monthly consumption is not reported for all years; the dataset for this city has

total consumption for all years from 2006 to 2014 (except 2011) and monthly consumption

from 2012 onward. We also gathered information on the characteristics of each house from

the Residential Building Permits dataset for the Waterloo Region. This dataset contains

house sizes and the value of each house when it was registered in the database. The data

was provided by the City of Waterloo and is accessible at the Geospatial Centre in the

University of Waterloo.

The next step was to merge the two datasets. The unique longitude and latitude

coordinates of each house are available from all datasets. However, the point of origin

for the first dataset (water consumption dataset) was different than the point of origin

for the second dataset (Residential Building Permit dataset). The longitude and latitude

coordinates in the first dataset were reported based on a local point of origin which was

fixed by the Waterloo municipality; this was different from the standard point of origin on

the map. Using the “Location Hub” software provided by the Geospatial Center in the

University of Waterloo, we found the standard longitude and latitude for the data points

of the first dataset. Next, we merged two datasets to construct a unique dataset of 21,756

http://www12.statcan.gc.ca/nhs-enm/2011/as-sa/fogs-spg/Pages/FOG.cfm?GeoCode=3530013&

lang=E&level=4

http://www12.statcan.gc.ca/nhs-enm/2011/as-sa/fogs-spg/Pages/FOG.cfm?GeoCode=3530016&

lang=E&level=4
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houses in the Tri-Cities. Only some of the houses are included in both of the datasets;

therefore, some of the observations were dropped in the merging process. Table 1.4 shows

the distribution of houses in these three municipalities.

The next step involved matching houses with the local characteristics of neighbour-

hoods within the dataset. In particular, we were interested in education level and average

household income30 in different neighbourhoods. We used the Statistics Canada dataset

on local characteristics. Based on the Statistics Canada 2011 Census data (the most recent

census data), houses in the newly constructed dataset are located in 91 Census Tract (CT)

areas and 401 Dissemination Areas (DA). A DA is a geographic unit with a population of

400 to 700 individuals, while CT is larger and has a population between 2,500 and 8,000

individuals. Figure A.1 in the appendix shows the map of the study area with the DA

divisions.

Each CT has information on: 1) total population aged 15 years and older by highest

certificate, diploma or degree; 2) number of people who have no certificate, diploma or

degree; 3) number of people who have a high school diploma or equivalent; 4) number of

people who have a post-secondary certificate, diploma or degree. In addition to education,

we searched for the average income data at neighbourhood level. We found that the average

income data is based on the DA decomposition. More specifically, the average income of

population aged over 15 years and over in 2010 was reported at each DA. This data was

also collected from Statistics Canada.

To merge the datasets for education, income and houses, we used tools within the “Arc

GIS 10.3.1” software provided by Geospatial Centre in the University of Waterloo. We

successfully pinned the education data on the City of Waterloo map first. Afterwards,

using the same software, we pinned the houses on the same map by using longitudinal and

latitudinal information for each house. Then, in the last stage, we extracted the information

for each house from the constructed map. We repeated this three-stage procedure to

gather the average income data at the DA level. The same process was followed to extract

the education and income information for each city. Figure A.2 in the appendix shows

30We think that these levels are small enough so that we do not expect significant heterogeneity within a
neighbourhood that might give rise to aggregation effects (in which we miss some variations in the dataset).
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the geographical distribution of houses in the dataset across the Tri-Cities. More vivid

maps are shown by Figures A.3 to A.5, with both different geographic divisions and house

distributions for each city.

1.3.3 Data Summary

A detailed summary description of the dataset that was used for this study is reported

in Table 1.5. In our dataset, household water consumption data is quite detailed. This

dependent variable has yearly information from 2006 to 2014 (except for the city of Cam-

bridge, which does not have the data for 2011). Specifically, the dataset for the city of

Waterloo has bimonthly billing information for water consumption, whereas the cities of

Cambridge and Kitchener have monthly water consumption reported. In order to have a

balanced panel, we used only bimonthly consumption data for the cities of Cambridge and

Kitchener as well. Thus, there are 6 consumption values collected for each house in each

year. On the other hand, the main independent variables (educational attainment and

average income) carry the information at the CT and DA level. These are gathered from

the 2011 Census data. Therefore, we focused on the more recent period of 2012 to 2014

for which the water consumption data is available for all three cities.

As explained in the Data Collection subsection, the number of houses in the final merged

dataset is around 21, 000, whereas we have water consumption data for 100, 000 houses.

Therefore, we scrutinize both the first dataset (taken from the Water Service Division in the

Region of Waterloo that contains around 100, 000 houses) and the final merged dataset. In

the final dataset, the minimum and maximum of average water consumption are 1 m3 and

742.3.759 m3, respectively. In the first dataset, the minimum and maximum of average

water consumption are 0.6666 m3 and 62234.61 m3, respectively. However, in the first

dataset there are only two houses that have minimum average water consumption lower

than 1 m3 (final merged dataset minimum) and 204 houses that have maximum water

consumption greater than 742.3.759 m3 (final merged dataset maximum). This number

of houses is negligible when compared to the total number of houses, and shows that the

final dataset is reliable in the sense that it contains houses representing the average water
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amount patterns of most of the houses in the first dataset. Table 1.6 shows the summary

statistics of first dataset in detail.

The data for the average income per year is divided by 1000, so it is reported in 1000

dollars per year. As seen in Table 1.5, average income varies from 17, 025.00$ to 97, 376.00$

per year. In this dataset, 139 houses are reported to have an average income lower than

10, 000.00$. This accounts for only 0.63% (less than 1%) of houses that are considered

in this study. To prevent these outliers from changing the results drastically, we dropped

these houses. Since the number of dropped houses is less than 1%, the results are still

robust.

The average income data is at the DA level. Therefore, we have 401 different average

income values. In order to see the relationship between income and water consumption,

we decided to plot the two columns of data against each other; however, before that, we

aggregated the data at Census tract level. Therefore, there are 91 observations that are

shown in Figure 1.1. To plot this graph, we preferred to have a low number of points

so that they can be clearly seen. Most of the data points in this case are at the bottom

left corner of Figure 1.1; this area of the figure is associated with low income and low

consumption. However, it is important to note that the income variable is at the DA level

through our entire empirical analysis.

The percentage of people who have no certificate, high school or post-secondary cer-

tificate in each CT are calculated by dividing those numbers by the total population in

each CT. Figures 1.2 to 1.4 compare the breakdown for each level of education and their

distribution in the Tri-Cities. From the first set of histogram distribution graphs in Figure

1.2, it is apparent that the percentage of Census Tract areas in which few people have

any form of certification decreases when we move from Cambridge (at the top part of the

figure) to Waterloo (at the bottom). This further confirms that the city of Waterloo has

relatively few people with low levels of education.

Figure 1.3 shows the distribution of the percentage of people who have high school

degrees in Census Tract areas of Cambridge, Kitchener and Waterloo. The same trend as

in Figure 1.2 is seen in these sets of histograms. However, we cannot draw any conclusion
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solely by looking at these figures, as we do not know if the rest of population in each city

is more or less educated. Figure 1.4 is quite revealing in several ways. Firstly, unlike the

other two towns, in Waterloo, the percentage of Census Tract areas in which almost 68%

of the population has post-secondary education is 58%. This reemphasizes the fact that

most of the population in the city of Waterloo is educated. Secondly, the distribution of

post-secondary education in Cambridge shows that the percentage of Census Tract areas

in which 50 to 60% of people have post-secondary education is between 14% and 16%.

The observed statistics from these figures are all consistent with the educational at-

tainment of the total population in Tri-Cities (refer to Table 1.3). Therefore, we can

rely on inferences that are drawn from this sample, as it contains information about the

characteristics of the Tri-Cities population.

1.4 Empirical Specification

The focus of this study is on the three cities of Cambridge, Kitchener and Waterloo. Based

on Statistics Canada, each city is divided into small Census Tracts (CT) and smaller

Dissemination Areas (DA). The division is based on the population in each region. This

paper assesses the significance of individual level of education in each CT and income in

each DA in determining water consumption patterns across the Tri-Cities31. In addition

to educational attainment and income, other variables such as monthly precipitation and

temperature32 are also added to the model to capture any water consumption changes due

to climate factors. What follows is an example to show why is it credible to work with the

aggregated data.

In an extreme case, suppose that there are two houses studied in the geographical area.

Every individual in both houses will consume water. Let’s further suppose that there is an

extreme level of disparity in education and in the number of people between the two houses.

Assume that nine individuals are living in the first house and they all have less than high

31The multilevel analysis on page 21-23 considers the different aggregation levels that present in the
dataset of this research.

32Available online at, http://climate.weather.gc.ca/
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school education (no certificate), and there is one person living in the second house who

has post-secondary education. In this case, the education level of the people in the first

household strongly influences the average educational attainment in this area. Therefore,

we can say that 90% of people in this area have less than high school education. Now, let’s

take the average of water consumption between these two households. If there exists a link

between education and water consumption, then averaging the water consumption between

the two households would still be affected by the education of people in the more populated

house. As mentioned earlier, in this study, the considered explanatory variables for water

consumption regressions are reported at the DA (in which 400 to 700 individuals live) and

the CT (in which 2, 500 to 8, 000 individuals live) level. The dependent variable is at the

household level. Since we are interested in dynamics of water consumption over time, we

do not aggregate the water consumption at different geographic levels and consider the

bimonthly water consumption of each household as a dependent variable. We propose and

estimate the following function for family water consumption:

Cijkl = β0 + β1AvgIncjkl + β2PostSecondarykl + β3NoCertificatekl + β4AvgTempi +

β5AvgPrecipi + C + CT + Y +M + εijkl

(1.1)

Where:

i = 1, ..., 6 Bimonthly.

j = 1, .., 401 Number of DAs.

k = 1, ..., 91 Number of CTs.

l = 1, 2, 3 Number of Cities.

Cijkl = Bimonthly water consumption in m3/sqft (cubic meter per square footage) of

household from 2012 to 2014 in the Dissemination Area (DA) j and the Census Tract area

(CT) k and the City l.

AvgIncjkl = Average income of the households living in the DA j and Census Tract area

(CT) k and City l.

NoCertificatekl = Percentage of population that has no certificate in the CT k and City

l.

PostSecondarykl = Percentage of population that has a post-secondary degree in the CT
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k City l.

AvgTemp = Bimonthly average weather temperature based on degree Celsius ◦C.

AvgPrecip = Bimonthly average precipitation based on millimetre (mm).

C = Set of dummy variables for the three municipalities of Cambridge, Kitchener and

Waterloo.

CT = Set of dummy variables for Census Tracts areas (CT).

Y = Set of dummy variables for years.

M = Bimonthly set of dummy variables.

εijkl =is an idiosyncratic error term.

The objective of this research is to determine whether education and income at the

local level can affect household water consumption. In particular, we are interested in

estimating β1, β2 and β3, where the first β shows m3/sqft change in water consumption

in response to 1000$ change of income in DAs, and the other two βs yield the m3/sqft

change in the household water use in response to a one percentage point increase in the

proportion of the population with post-secondary education and no certificate (relative to

high school certificate) in the CT in which they live, respectively.

To run the regressions, we start from the basic model in which we do not control for any

fixed-effects of municipalities, CTs, years or months. Then we proceed by using the fixed

effect models in which we control for characteristics within each city or CT and further

within each month and year. Moreover, we run the Ramsey Regression Equation Spec-

ification Error Test (RESET) to determine if the non-linear combination of independent

variables can better explain the variation in the dependent variable. If we cannot reject

the null hypothesis that the model has no omitted variables, then we can estimate the

following model:

Cijkl = β0 + β1AvgIncjkl + β2AvgInc
2
jkl + β3PostSecondarykl + β4PostSecondary

2
kl +

β5NoCertificatekl + β6NoCertificate
2
kl + β7AvgTempi + β8AvgPrecipi +C +CT + Y +

M + εjkl

(1.2)

The purpose of adding the squared values of the independent variables to the estimation
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is to consider the possibility that the relationship between dependent and independent

variables wears off at a certain point. In this case, for example when interpreting the

ceteris paribus effect of a change in post-secondary education on water consumption, we

must look at the equation:

δCijkl

δPostSecondjkl
= β3 + 2β4PostSecondjkl (1.3)

That is, we cannot interpret the β3 in isolation. Solving equation 1.3 gives us the turning

point of the relationship. If β4 is negative, the relationship reflects an inverse U-Shape,

and vice versa.

The above-mentioned linear models assume that the same intercept and slope charac-

terize all three cities and all 91 Census Tracts; however, we want to make room for the

tendency toward different consumption patterns across Cities and CTs. Therefore, we al-

low each City and each CT to have its intercept. We employ a Multilevel mixed-effects

model, which reflects the multilevel structure of the dataset and allows each of the three

cities and 91 Census Tracts to have its random intercept. Different authors have used this

model to measure the random effects at each level of the dataset (e.g. Moshiri and Simpson

[2011]; Walter and Block [2016]). We estimate the following mixed model:

Cijkl = β0+β1AvgIncjkl+β2PostSecondkl+β3NoCertificatekl+β4AvgTempi+β5AvgPrecipi+

ul + εijkl

(1.4)

Where:

ul = random intercept for City l

In this model, ul is the unobserved city-level effect which allows for the possibility that

the mean of water consumption varies among the cities. This seems appropriate given

the geographical pattern of the dataset. The result of the proposed one-level mixed effect

regression is presented in the first column of Table 1.15 (Reg (1)).

Furthermore, since the water consumption can vary across the CTs, we can control for

the census tract effects in our regression by assuming census-tract to be another level in
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the hierarchical structure of the data. Therefore, we allow for two-level hierarchical model

estimation (City-level and Census Tract-level). We estimate the following model:

Cijkl = β0+β2AvgIncjkl+β3PostSecondkl+β4NoCertificatekl++β4AvgTempi+β5AvgPrecipi+

ul + ulk + εijkl

(1.5)

Where:

ul = Random intercept for City l

ulk = Random intercept for Census Tract k of City l

We first run the regression that is shown in equation 1.4 treating City as one level of the

hierarchy. Then, we add Census Tract as the second level and estimate the proposed two-

level mixed model. This way, we incorporate the hierarchical structure into our model.

By running this regression, we estimate the variability accounted for each level of the

hierarchy. More specifically, ul and ulk quantify the average deviation at each level of the

hierarchy. The results of the proposed one-level (equation 1.4) and two-level mixed-effect

model (equation 1.5) are presented in the first and second column of Table 1.15 (Reg (1)

and Reg (2), Part A), and they are discussed in next section.

We further aggregate the data at the household level and calculate the average water

consumption for each house from 2012 to 2014. Therefore, in this case the dependent

variable is at the household level, while the right-hand-side variables remain unchanged

for each house. This dataset enables us to run the multilevel mixed effect regression when

decreasing the volatility of the dependent variable, and to check the magnitude and sign

of the estimated coefficients of interest. We run the following regression in this case:

ACjkl = β0 + β1AvgIncjkl + β2PostSecondkl + β3NoCertificatekl + ul + εjkl

(1.6)

Where:

ACjkl = Average water consumption in m3/sqft (cubic meter per square footage) of

household from 2012 to 2014 in the Dissemination Area (DA) j and the Census Tract area

(CT) k and the City l.
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ul = random intercept for City l

As before, we run the multilevel regression estimation in which we allow for two levels

of hierarchy: city and CT. We run the following regression:

ACjkl = β0 + β1AvgIncjkl + β2PostSecondkl + β3NoCertificatekl + ul + ulk + εjkl

(1.7)

Where:

ul = Random intercept for City l

ulk = Random intercept for Census Tract k of City l

Since the data are averaged at the household level, we exclude the monthly climate

variables from the regressions. Results of equation 1.6 and 1.7 are presented in Table 1.16

Part A.

In all cases, we also limit the analysis to the summer months. This enables us to see

how the independent variables would explain changes in the dependent variable in the

summer, when water consumption is usually higher. Unless otherwise stated, standard

errors of all OLS estimates are robust. In this case, standard errors are calculated when

we do not impose any assumptions on the structure of heteroskedasticity. As mentioned in

the tables, in some cases, standard errors of OLS estimates are clustered at CT or DA level

to account for within-cluster correlation or heteroskedasticity. In these cases, regression

model errors are considered independent across clusters but correlated within clusters.

A limitation of our analysis is that although there is no direct reverse causality between

the dependent (water consumption) and independent variables (educational attainment and

income), it is possible that observed water consumption pattern might affect where people

decide to live. This is because we are identifying the effect of education by location on

water consumption. For example, a highly-educated person might decide to reside in an

area where people do not waste water. In this case, the estimated coefficients of education

variables would be biased, because they are also capturing mobility pattern among people.

However, we think that these effects are negligible; when deciding where to live, people

typically consider other criteria, such as safety or distance to workplace.
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1.5 Empirical Results

This section presents the findings of the research. While other research relies primarily

on self-reported household level data, our panel data allows us to identify the effects of

household characteristics at different census levels on water consumption taken from billing

data. Most of the literature suggests that there exists a positive relationship between

income and water consumption at household level. In addition, we expect to see a negative

relationship between educational attainment and water consumption, since we believe that

education is correlated with more civic-minded choices that induce people to adopt more

conservation behaviour. What follows is the discussion of our result.

Tables 1.7 to 1.10 show the results obtained from estimation of equation (1.1) when we

transformed the model to a log-log model (Table 1.8) and when we restricted the data to

the summer months (Tables 1.9 and 1.10). Tables 1.13 and 1.14 represent the results when

estimating equation (1.2) using the whole dataset and the dataset limited to the summer

months, respectively. The next part of this section analyses the results obtained from the

multilevel regressions. Tables 1.15 and 1.16 illustrate the results of estimating equations

(1.4) and (1.5). The first columns in Tables 1.7 to 1.14 (except Tables 1.11 and 1.12 ) show

the results of the regression (equations (1.1), (1.2)) in isolation from any dummy variables.

In the next columns, we add city (municipality), CT, year and month, or a combination

of the dummies.

The results from Table 1.7 - Panel A show that, whenever significant, the coefficients of

education variables are both negative. Since these coefficients are in reported percentage

and the omitted category is high school, we interpret them relative to the population in each

CT with a high-school diploma/degree. The results suggest that, holding the population of

people who have a post-secondary degree constant, a one percentage point decrease in the

population of individuals who have no certificate (which translates into a one percentage

point increase in the population of people who have high school degree) in each CT, can

increase the monthly water consumption per square footage. On the other hand, holding all

other variables constant, a one percentage point increase in the population of people who

have a post-secondary education relative to a high school degree in each CT will decrease
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household monthly water consumption per square foot.

In addition to education, other variables that are considered in these regressions, such

as average income in each DA and average monthly temperature, emerge as significant

predictors of household monthly water consumption. The results suggest that a 1000$

increase in the average income of people living in the same DA decreases household monthly

water use by an average 0.0012 m3/sqft. Furthermore, a 1◦C increase in average monthly

temperature increases monthly water consumption by an average 0.0002 m3/sqft. Based

on the result shown in Table 1.7, the coefficient of average income no-certificate and average

temperature keep almost the same level of magnitude and remain statistically significant

at the 1% level through all other model specifications (column 2 to 5). In regression 2,

we controlled for the municipalities fixed effects. Except for education, the coefficients of

other variables did not change significantly. Interestingly, the magnitude of both education

coefficients increased. Also, post-secondary variable is shown to be at a higher significance

level when compared to the basic model.

In regression 3, we have added the CT fixed effects to the underlying model. There

is a significant difference between the results. The coefficient of education has gone up

remarkably. This suggests that when controlling for CT fixed effects, a one percentage

point increase in the population of people who have the post-secondary degree would de-

crease monthly water consumption, on average by 0.0149 m3/sqft. On the other hand,

the coefficient of no-certificate suggests that a one percentage point decrease in the pop-

ulation of people who have no certificate would increase monthly water consumption by

an average 0.0403 m3/sqft. The effects of average income and temperature on household

water consumption are similar to those obtained previously.

The improved Adjusted-R2, which penalizes the model for adding extra variables (CT

dummy variables in this case), is worth noting. The adjusted-R2 increases from 0.0017 to

0.14. This shows that the predictive ability of the proposed model increases when we control

for CT fixed effects. Regression 4 and 5 represent the results of the OLS estimation when

we control for year and month fixed effects. The results are very similar to the underlying

model and only the magnitude of climate variables changed. This is somewhat predictable,

as each year and month has a different weather condition.
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Turning now to the second part of this table, what follows is a description of the result

from the OLS estimation when cluster-adjusted standard errors are considered. Table 1.7 -

Panel B, presents the result obtained from the estimation of equation (1.1), with clustered

standard errors at CT and DA levels. Except the income coefficient, which is statistically

significant in all regressions, other variables are consistent in magnitude but inconsistent

in statistical level of significance. Interestingly, as we change the clustering from CT to DA

and further to house level (Reg (5 and 6)), the adjuster-R2 increases from 0.0017 to 0.1486

in both regressions. It is also interesting to note that the magnitude of the coefficients

does not change when we cluster standard errors at the DA and house level. However, as

the standard errors are increasing by an increasing number of clusters (from DA to house),

the coefficient of no-certificate turns out to be not statistically significant.

Table 1.8 contains estimates of a log-log specification, where all (except climate vari-

ables) are in natural logarithms. We ignored the consideration of CT dummies (and cluster-

ing standard errors at DA and house levels), as it turns out that the independent variables

become highly correlated and are eventually omitted from the regressions. In Panel A,

standard errors are robust. In Panel B, they are clustered at the CT level.

Results from Table1.8 - Panel A suggest that whenever significant, the coefficients of

education levels are negative and similar in magnitude. A one percent increase in popu-

lation of people who have a post-secondary degree decreases monthly water consumption

by 0.11% (Reg (1, 3, and 4)) and a one percent decrease in population of people who

have no certificate in each CT results on a 0.05% increase in monthly water consumption

(Reg (2)). On the other hand, in all model specification income coefficient is statistically

significant at least at 10% level and always negative. The magnitude of all coefficients

change when we control for city fixed effects (Reg (2)). For the income coefficient, these

results suggest that that a one percent increase in the average income of households at DA,

results in an average 0.19% decrease in household monthly water consumption. When we

cluster standard errors, the coefficient on income stays statistically significant and similar

in magnitude to the results shown in Panel A. On the other hand, coefficients of education

are similar in magnitude but not statistically significant in all regressions.

Tables 1.9 and 1.10 summarize the results of running equation 1.1 when we restrict the
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sample to summer months. The results presented in these two tables are very similar to

the results shown in Tables 1.7 and 1.8 in terms of sign of the coefficients. However, the

magnitude of the coefficients increases slightly in Tables 1.9 and 1.10, with the exception

of the income coefficient. When we consider the effect of average income on monthly water

consumption in summer, the coefficient of income decreases in absolute value, from 0.26 to

0.14 in log-log model (Tables 1.8 and 1.10). On the other hand, although the coefficients of

average temperature do not vary a lot in terms of magnitude and statistical significance, the

coefficients of average precipitation become statistically significant. This is not surprising;

in the hot summer months, water consumption is higher than other months and water is

highly needed. Therefore, it is to be expected that the change in income would not change

the summertime water demand as it would in other months.

Overall, the results from running the regression 1.1 indicate that all variables considered

in the OLS and log-log model strongly affect monthly water consumption, both during the

year and in summer months. In the next step, a Ramsey RESET test is performed. The

result of the test is shown in Table 1.11 when all months are considered, and 1.12 when only

summer months are analyzed. Following the result of Ramsey RESET test, we decided to

estimate equation 1.2, in which squared values of independent variables are added. The

results are reported in Table 1.13 and Table 1.14 when we limit the analysis to the summer

months.

Table 1.13 summarizes the results of running regression 1.2 on all months of 2012 to

2014. In this setting, the coefficients of average income and no-certificate are significant in

all columns, however, the coefficient of post-secondary is only significant when we control

for city fixed effects (Reg (2)). In this regard, we focus on interpreting the coefficients that

are reported in the second column of Table 1.13.

Taking the derivative with respect to AvgIncjkl yields:

δCijkl

δAvgIncjkl
= −0.01 + 2 ∗ 0.00007 ∗ AvgIncjkl

Solving for the AvgIncjkl:

δCijkl

δAvgIncjkl
= 0 ⇒AvgIncjkl=70
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This result suggests that the relationship between the average income of people in a

DA and household monthly water consumption is convex. The average water consumption

in a DA goes down with increasing average income of people in a DA, and then starts to

go up when the average income reaches to 70, 000$.

We can calculate the effect of educational attainment on water consumption in a similar

way:

Taking the derivative with respect to PostSecondaryjkl yields:

δCijkl

δPostSecondaryjkl
= −0.027 + 2 ∗ 0.0002 ∗ PostSecondaryjkl

Solving for the PostSecondaryjkl:

δCijkl

δPostSecondaryjkl
= 0 ⇒PostSecondaryjkl=67.5

Therefore, the average water consumption in a CT goes down as the population of

people who have post-secondary education increases and then it starts to increase when

the population reaches to 67.5%

Taking derivative with respect to NoCertificatejkl yields:

δCijkl

δNoCertificatejkl
= 0.00074− 2 ∗ 0.0001 ∗NoCertificatejkl

Solving for the NoCertificatejkl:

δCijkl

δNoCertificatejkl
= 0 ⇒NoCertificatejkl=3.7

This result suggests that the average monthly water consumption decreases as the

population of people who have no certificate increases in a CT. However, there is a turning

point (3.4%) where the effect reverses.

The average marginal effect of average income on water consumption is β1+2β2AvgIncjkl.

With AvgIncjkl = 49.0254, the marginal effect of post-secondary education on water con-

sumption is −0.0065. Therefore, at the average level of income (49.0254), a 1000$ increase

in the average income reduces water consumption by 0.0065 m3/sqft in each DA.

In a similar way, we can calculate the average marginal effect of the population with

no certificate ( post-secondary) on water consumption. With the NoCertificatejkl= 16.63
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(PostSecondaryjkl= 57.98), the marginal effect is −0.0025 (−0.025). This suggests that

on average, an additional 1% decrease (increase) in population of people who have no cer-

tificate (post-secondary education) would increase (decrease) monthly water consumption

by 0.004 (0.025) m3/sqft. Interestingly, the result from the average marginal effect of

education on monthly water consumption suggests that as the population of people with

higher educational attainment increases in each CT, people tend to consume less water.

This differs from the result of equation 1.1 (Tables 1.7 to 1.10), where moving from no-

certificate to high school certificate increases water consumption, whereas moving from

high school to post-secondary decreases monthly water consumption.

Table 1.14 shows the result of running regression 1.2 when the sample is restricted to

summer months. The results are similar in terms of magnitude, sign and level of signifi-

cance. Since the right-hand-side variables are time-invariant, the values for the AvgIncjkl

, PostSecondaryjkl and NoCertificatejkl are the same as before; therefore, the marginal

effect has the same magnitude and interpretation.

The final part of this section discusses the results when the hierarchical nature of the

data is considered. More specifically, instead of the usual fixed-effect model, we allow for

different intercepts for municipalities and CTs. The result is shown in Table 1.15 when

we considered the monthly consumption of each household, and in Table 1.16 when we

averaged the household monthly water consumption. The right side in both tables shown

the results when we restricted the sample to summer months.

The first column in Tables 1.15 and 1.16 presents the result from estimating equations

1.4 and 1.6 (Reg (1)). The second column shows the results of a two-level (City and CT)

mixed model (equations 1.5 and 1.7). The general trend that can be seen is that introducing

more hierarchical levels to the model results in the coefficients of education increasing in

absolute value and the coefficient of average income decreasing. In what follows, we will

discuss the two parts of the model in more detail.

The upper section of Table 1.15 shows the fixed-effects part of the model. The result

obtained from this section is similar to the result in previous parts. A one percentage point

increase in the population of people who have a post-secondary degree will result in an
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average 0.0043 and 0.0037 m3/sqft decrease of water consumption each month when the

one-level and two-level geographical division is considered, respectively. Moreover, a one

thousand dollar increase in average income of people who live in the same DA would result

in lower water consumption; by contrast, as temperature increases, people would consume

more water. Most of the coefficients in the fixed-effects part of the model emerged as highly

significant, similar to the previous results. Interestingly, in these results, the magnitude

of both education variables and average income do not vary when summer months are

considered.

Random Part in Tables 1.15 and 1.16 reflects the results of considering different inter-

cepts in the model. In both tables, the results in each column imply different intercepts,

one for each city (Reg (1)) and 91 intercepts for each CT (Reg (2)). However, intercepts

are not directly estimated. What is reported in Tables 1.15 and 1.16 is the estimated

standard deviation of those random intercepts along with their standard errors. Since the

estimated standard deviations are greatly different from 0 and statistically significant, we

can conclude that these intercepts do change from city to city and from CT to CT. In

addition, when comparing the random intercepts to the metrics of the dependent variable

(m3/sqft), it seems that these values are substantial. Moreover, the likelihood-ratio test

rejects the null hypothesis of linear regression model with fixed-effects against the multi-

level model and confirms that this random intercept model offers significant improvement

over the linear regression with fixed effects only, which further indicates the statistical

importance of considering the levels.

On the other hand, to compare the suitability of the one-level versus two-level model

(comparing Reg (1) and Reg (2)), we run another precise LR test. This LR test performs

a test for whether the two-level model fits significantly better than one-level model. The

result of the LR test is shown in below each part of the tables. Model A and B refers to

Reg (1) and (2) in each part. It turned out that the two-level model in all cases brought

great improvements to the model (P = 0.000).
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1.6 Conclusion

The present study makes several noteworthy contributions to the literature by creating a

unique dataset that matches household level data to the local characteristics at different

geographical levels. To the best of our knowledge, there are very few studies that focus

on the effects of local features on household decisions. The present study provides addi-

tional evidence with respect to the constructed dataset, confirming the impacts of local

characteristics on household water consumption decisions. In particular, this study set

out to evaluate the effects of education and average income at the local level on water

consumption in the Tri-Cities of Cambridge, Kitchener and Waterloo. Multiple regression

analysis shows that within each group of people who are living in the same area, the level

of education could be one of the strong predictors of water consumption. Other predictors,

such as average income and temperature, are also revealed to have significant effects on

household monthly water consumption.

Interestingly, although the results show that education affects household water con-

sumption, there were differences in how increasing levels of education affects water use. In

particular, increasing educational attainment at lower levels of education (from no certifi-

cate to high school certificate) increases water consumption, but the effect reverses when

people receive post-secondary education. These relationships may partly be explained by

how people make their choices when they become more educated. For example, higher-

educated people might start to value water more than they did before. Also, individuals

with higher education might start using more water-efficient appliances that not only save

more water, but also save more money in the long run. On the other hand, adults who

move from the No Certificate to the High School bracket of education might start to value

hygiene more than they did before and care less about the amount of water they use. For

example, they might take more showers or use their washing machines more for sanitation

purposes.

It is interesting to note that in both cases, there exists a turning point where the

relationship changes. For example, the results suggest that the average water consumption

will decrease as the population of people with post-secondary education increases in each
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CT; however, the relationship reverses when around more than 67.5% of the population

in CT are people with post-secondary education. A possible explanation for this could

relate to local features of the neighborhoods in which highly-educated people prefer to live.

For example, larger houses and greener gardens, which essentially imply a high amount of

water consumption, are owned by people in higher income brackets. On the other hand,

higher income is usually associated with higher education.

Moreover, the result from the Multilevel Mixed Effect regression suggests that the effect

of education on water consumption differs from one region to another. The education level

of people who live close to each other (i.e., in a smaller geographic area) affects the average

water consumption of that group of people more than it could affect a distant group. This

result suggests that there should be more awareness at the smaller community levels about

household water consumption and conservation. Since the study was limited to each CT

and we did not have the information on adjacent houses, it was not possible to look at the

peer behaviour in smaller geographical divisions. Therefore, a future study investigating

the effects of peer behaviour would be of interest.

Taken together, the findings of this study suggest a role for the government in promoting

higher education in the Region of Waterloo. Although the government is unable to relocate

people to harmonize neighborhood levels of education, it can invest in the educational

system of each neighborhood. Ensuring appropriate systems, services and support for

higher education should be a priority for decreasing water consumption in the region.

Furthermore, the higher water usage among people with a high school degree may be

a reason to educate individuals about the benefits of conserving water. For example,

promoting a culture of water conservation could start at the high school level. It is also

necessary to investigate why such an increase occurs and how individuals use that extra

amount of water.

On the other hand, a turning point after which the consumption of water increases in

areas with more educated people can direct the government to plan for substantial water

saving in that neighborhood. Since these households are already highly educated, tailoring

a different policy approach such as an increasing block pricing scheme would best curb

their water demands. There is, therefore, a definite need to design and adopt a unique
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policy for each neighborhood based on their underlying characteristics.

The findings of this research show that education plays a more significant role in wa-

ter consumption during summer months, whereas the effect of average income decreases

slightly. These results suggest that local governments should more strongly emphasise pro-

moting water conservation by implementing water efficiency plans that manage household

consumption during summer months.

The study is limited by the lack of information at the household level. Educational at-

tainment and average income variables are reported at different geographical levels. Further

research is required to determine whether the observed relationship between explanatory

variables (educational attainment and average income) and water consumption would exist

if the data was aggregated from the household-level dataset. In addition, we work on water

consumption data from 2012 to 2014, using static right-hand-side variables from Statistics

Canada Census data 2011 (the most recent census data);, therefore, we are unaware of

any mobility issues that might have changed the distribution of people at the considered

geographical levels.
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1.7 Tables

Table 1.1: Studies on the water consumption and water conservation outside Canada.

Author Place Term Data Dep. Var Indep. Var Method Main Findings Critique

Renwick and Archibald [1998] Santa Barbara 1985 -1990 119 Monthly Income level 2SLS1 Smaller household are Small sample

Goleta Household water more sensitive to

(California, consumption water price changes.

United States)

De Oliver [1999] San Diego -Texas July 1995 - 203 - - - Positive relationship Small sample

March 1997 Census Tracts between conservation No econometric method

and both higher used to confirm the findings.

income and education. Findings are based on

data summary statistics

Syme et al. [2004] Perth July 1998 - 397 Monthly Garden Interest Structural Higher Income Short Time- Scale

(Western Australia) September 2000 Households outdoor water Income Dummies Equation households used Small sample

consumption Model more water.

in summer

Arbués et al. [2010] Zaragoza City 1996 - 1998 1500 Daily water Wealth index Dynamic Positive relationship Short Time- Scale

(Spain) Households consumption Climate weather panel data between water Small sample

consumption and

property value.

Fielding et al. [2012] South-east October 2009 - 1008 Monthly Psychological Var. Sequential Households with more Short Time- Scale

Queensland March 2010 Households water Household annual regression people and higher Small sample

(Australia) consumption gross Income analysis income used more water.

Age

Level of education

Jorgensen et al. [2013] South Australia 2009-2010 615 Monthly Household size LGC2 Household size is Small sample

Victorian Households water Attitued toward significant predictor

(Australia) consumption water pricing of water consumption.

Conservation

commitment

1. Two Stage Least Square

2. Latent Growth Curve model
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Table 1.2: Studies on the water consumption and water conservation inside Canada.

Author Location Term Sample Size Dep. Var Indep. Var Method Main Findings Critique

Aydinalp et al. [2004] All Canadian 1993 2749 DHW1 1. DWH Heating system NN3 Both DHW and SH Small sample

provinces Households SH2 characteristics increase linearly as for Canada.

2. Socio-demographic income increases. Short time-scale

characteristics of

household:income

dwelling ownership

Olmstead et al. [2003] United States and 1998 1082 Daily 1. Gross annual GLS4 1. Different price Small sample

Canada (Two periods Households water household DDC5 structure induce for Canada.

(Including Waterloo of two weeks) consumption income IV6 different water Short time-scale

- Cambridge) 2. Family size demand .

3. Home age 2. Positive income

elasticity.

Fullerton Jr et al. [2013] Halifax 1996 -2009 52 Quarterly 1. Price OLS7 Consumption is 1. Small sample size

Observations municipal water 2. Weather Var. 2SLS8 price inelastic. 2. Only metered water is

consumption 3. Non-seasonally considered

per customer adjusted 3. Lack of Socio-demographic

employment, independent var.

Dupont and Renzetti [2013] All Canadian 2006 9479 Monthly 1. Climate Var. Probit Price affects the Small sample

provinces Households water 2. Price indoor water use

consumption 3. Non-Price more than outdoor

conservation water use decisions.

policy var.

4. Household income

1. Domestic Hot Water

2. Space Heating

3. Neural Network

4. General Least Square

5. Discrete-Continuous Choice

6. Instrumental Variables

7. Ordinary Least Square

8. Two Stage Least Square
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Table 1.3: Summary of the underlying characteristics of the Tri-cities

Educational Attainment

University degree/certificate Collage diploma High-School diploma No certificate Population1

Cambridge 18.1% 33.6% 28.4% 19.8% 83690
Kitchener 25.3% 31.8% 26.2% 16.6% 147430
Waterloo 46.6% 24.9% 19% 9.5% 63780

Income Composition Labour Force Status 5

Median employment income2 Top 5%3 Top 1%4 Employment rate Unemployment rate

Cambridge $48,001 3.9% 0.5% 63.8% 8.3%
Kitchener $47,248 3.7% 0.6% 64.8% 7.1%
Waterloo $59,155 8.1% 1.6% 63.7% 7.2%

Source: Statistics Canada - National Household Survey(NHS)
1. Population aged 25 years and over.
2. Median employment income of those persons worked full-year, full-time: worked 49 to 52 weeks.
3. percentage of the population aged 15 years and over who had total income that put them in the top five percent in
2011 (compared with 5% in Canada).
4. percentage of the population aged 15 years and over who had total income that put them in the top one percent in
2011 (compared with 1% in Canada).
5. Based on total labour force in May 2011.
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Table 1.4: House Distribution in Tri-Cities - (2012-2014)

Municipality Freq. Percent Cum.

Cambridge 6,412 29.47 29.47

Kitchener 7,892 36.28 65.75

Waterloo 7,452 34.25 100

Total 21,756 100

Source: authors’ own calculation.

Table 1.5: Summary Statistics (2012-2014)

Variable Observation Mean Std. Dev. Min Max

Avg. Total Consumption (m3) 21756 36.0515 80.5165 1 7423.759
Avg. Income (1000$/year) 21756 49.0254 12.03 17.025 97.376
Post-Secondary (%) 21756 57.9863 9.1705 28.9398 70.2531
No-Certificate (%) 21756 16.6302 5.2002 9.3354 43.553
High-School (%) 21756 25.3696 4.8519 17.4757 38.6059
Square Footage 21756 1389.779 1877.357 10 133692

Source: authors’ own calculation.

Table 1.6: Summary Statistics for Water Consumption of 106571 Houses (2012-2014)

Observation Mean Std. Dev. Min Max

All houses in the dataset:

Avg. Total Consumption (m3) 106571 236.8038 775.1275 0.6666 62234.61

Houses with consumption > 7423.759 :

Avg. Total Consumption (m3) 204 14379.26 8236.537 7440 62234.61

Houses with consumption < 1 :

Avg. Total Consumption (m3) 2 0.8 0.1885 0.6666 0.9333

Source: Authors’ own calculation.
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Table 1.7: OLS estimates of the effects of educational attainment and average income on
average monthly water consumption - (2012-2014)

Panel A: Robust S.E. Reg(1) Reg(2) Reg(3) Reg(4) Reg(5)

Independent Variables:

Avg Inc (1000$) -0.0012*** -0.0011 *** -0.0004*** -0.0012*** -0.0012***

(0.00008) (0.00008) (0.00003) (0.00008) (0.00008)

Post Secondary (%) -0.0001 -0.0043*** 0.0149* -0.0001 -0.0001

(0.0001) (0.0003) (0.0077) (0.0001) (0.0001)

No Certificate (%) -0.0012*** -0.0037*** 0.0403*** -0.0012*** -0.0012***

(0.0002) (0.0004) (0.0079) (0.0002) (0.0002)

Avg. Temp (◦C) 0.0002*** 0.0002*** 0.0002*** 0.0002*** -0.00001

(0.00007) (0.00007) (0.00006) (0.00007) (0.0002)

Avg. Precip (mm) -0.0006 -0.0006 -0.0006 -0.0003 -0.0011

(0.0005) (0.0005) (0.0005) (0.0006) (0.0008)

City Fixed Effect NO YES NO NO NO

CT Fixed Effect NO NO YES NO NO

Year Fixed Effect NO NO NO YES NO

Month Fixed Effect NO NO NO NO YES

Constant 0.1317 *** 0.4455*** -1.3186** 0.1308*** 0.1321***

(0.0152) (0.035) (0.5389) (0.0152) (0.0153)

Adjusted-R2 0.0017 0.0043 0.1486 0.0017 0.0017

Panel B: Cluster S.E. Reg(1) Reg(2) Reg(3) Reg(4) Reg(5) Reg(6)

Independent Variables: Cluster (CT) Cluster (CT) Cluster (CT) Cluster (CT) Cluster (DA) Cluster ( House)

Avg Inc (1000$) -0.0012** -0.0011* -0.0012** -0.0012** -0.0004** -0.0004***

(0.0006) (0.0005) (0.0006) (0.0006) (0.0002) (0.0001)

Post Secondary (%) -0.0001 -0.0043* -0.0001 -0.0001 0.0149 0.0149

(0.001) (0.0025) (0.001) (0.001) (0.0173) (0.0320)

No Certificate (%) -0.0012 -0.0037 -0.0012 -0.0012 0.0403*** 0.0403

(0.0019) (0.0027) (0.0019) (0.0019) (0.0049) (0.0324)

Avg. Temp (◦C) 0.0002*** 0.0002*** 0.0002*** -0.00001 -0.00001 -0.00001

(0.00004) (0.00004) (0.00004) (0.0001) (0.00009) (0.00009)

Avg. Precip (mm) -0.0006*** -0.0006*** -0.0003 -0.0011*** -0.0011 -0.0011***

(0.0002) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001)

City Fixed Effect NO YES NO NO NO NO

CT Fixed Effect NA NA NA NA YES YES

Year Fixed Effect NO NO YES NO NO NO

Month Fixed Effect NO NO NO YES YES YES

Constant 0.1317 0.4455** 0.1308 0.1321 -1.3182 -1.3182

(0.0996) (0.2144) (0.0994) (0.0997) (1.056523 ) (2.2142)

Adjusted-R2 0.0017 0.0043 0.0017 0.0017 0.1486 0.1486

Observation 391608 391608 391608 391608 391608 391608

Note: The omitted category for educational level is “High School.” Standard errors in parentheses. ***, **, * indicate

significance level at 1 percent, 5 percent, and 10 percent, respectively.
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Table 1.8: OLS estimates (log-log model) of the effects of educational attainment and
average income on average monthly water consumption - (2012-2014)

Panel A: Robust S.E. Reg(1) Reg(2) Reg(3) Reg(4)

Avg Inc (1000$) -0.2613*** -0.1933*** -0.2613*** -0.2613***

(0.0190) (0.0199) (0.019) (0.019)

Post Secondary (%) -0.1125*** 0.0016 -0.1125*** -0.1125***

(0.0413) (0.047) (0.0413) (0.0413)

No Certificate (%) 0.0144 -0.0587** 0.0144 0.0144

(0.026) (0.0262) (0.0260) (0.026)

Avg. Temp (◦C) 0.0088*** 0.0088*** 0.0103*** -0.0296***

(0.0003) (0.0003) (0.0003) (0.0017)

Avg. Precip (mm) 0.0004 0.0004 -0.0124*** -0.0198***

(0.0028) (0.0028) (0.0029) (0.004)

City Fixed Effect NO YES NO NO

Year Fixed Effect NO NO YES NO

Month Fixed Effect NO NO NO YES

Constant -2.5392*** -3.1869** -2.4852*** -2.4974***

(0.2414) (0.2588) (0.2411) (0.2414)

Adjusted-R2 0.0039 0.0062 0.0043 0.0062

Panel B: Cluster S.E. Reg(1) Reg(2) Reg(3) Reg(4)

Independent Variables: Cluster (CT) Cluster (CT) Cluster (CT) Cluster (CT)

Avg Inc (1000$) -0.2613657** -0.1933* -0.2613** -0.2613**

(0.1196) (0.11) (0.1196) (0.1196)

Post Secondary (%) -0.1125 0.0016 -0.1125 -0.1125

(0.3347) (0.4528) (0.3347) (0.3347)

No Certificate (%) 0.0144 -0.0587 0.0144 0.0144

(0.2055) (0.2267) (0.2055) (0.2055)

Avg. Temp (◦C) 0.0088*** 0.0088*** 0.0103*** -0.0296

(0.0022) (0.0022) (0.0035) (0.0249)

Avg. Precip (mm) 0.0004 0.0004 -0.0124*** -0.0198***

(0.0148) (0.0148) (0.0038) (0.0070)

City Fixed Effect NO YES NO NO

Year Fixed Effect NO NO YES NO

Month Fixed Effect NO NO NO YES

Constant -2.5392 -3.1869 -2.4852 -2.4974

(1.832) (2.4003) (1.8196) (1.8243)

Adjusted-R2 .0039 0.0062 0.0043 0.0062

Observation 391608 391608 391608 391608

Note: The omitted category for educational level is “High School.” Standard errors in parentheses. ***, **, * indicate

significance level at 1 percent, 5 percent, and 10 percent, respectively.
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Table 1.9: OLS estimates of the effects of educational attainment and average income on
average monthly water consumption - (2012-2014 - summer months)

Panel A: Robust S.E. Reg(1) Reg(2) Reg(3) Reg(4) Reg(5)

Avg Inc (1000$) -0.0012*** -0.0010*** -0.0004*** -0.0012*** -0.0012***

(0.0001) (0.0001) (0.00006) (0.0001) (0.0001)

Post Secondary (%) -0.0004* -0.0046*** 0.0232 -0.0004* -0.0004*

(0.0002) (0.0007) (34.2757) (0.0002) (0.0002)

No Certificate (%) -0.0015*** -0.0041*** 0.0340 -0.0015*** -0.0015***

(0.0005) (0.0008) (9.7130) (0.0005) (0.0005)

Avg. Temp (◦C) 0.0006 0.0006 0.0006 0.0002 0.0021

(0.0005) (0.0005) (0.0004) (0.0006) (0.0013)

Avg. Precip (mm) -0.0011 -0.0011 -0.0011 -0.0004 -0.00007

(0.0009) (0.0009) (0.0008) (0.0011) (0.0012)

City Fixed Effect NO YES NO NO NO

CT Fixed Effect NO NO YES NO NO

Year Fixed Effect NO NO NO YES NO

Month Fixed Effect NO NO NO NO YES

Constant 0.1457*** 0.4609*** -1.7228 0.1493*** 0.1129***

(0.0285) (0.0661) (2226.048) (0.0289) (0.0382)

Adjusted-R2 0.0015 0.0038 0.1381 0.0015 0.0015

Panel B: Cluster S.E. Reg(1) Reg(2) Reg(3) Reg(4) Reg(5)

Cluster (CT) Cluster (CT) Cluster (CT) Cluster (CT) Cluster (DA)

Avg Inc (1000$) -0.0012* -0.0010* -0.0012* -0.0012* -0.0004**

(0.0006) (0.0005) (0.0006) (0.0006) (0.0002)

Post Secondary (%) -0.0004 -0.0046* -0.0004 -0.0004 0.0232

(0.001) (0.0026) (0.001) (0.001) (44.0513)

No Certificate (%) -0.0015 -0.0041 -0.0015 -0.0015 0.0340

(0.002) (0.0029) (0.002) (0.002) (15.2206)

Avg. Temp (◦C) 0.0006*** 0.0006*** 0.0002 0.0021*** 0.0021***

(0.0001) (0.0001) (0.0001) (0.0004) (0.0003)

Avg. Precip (mm) -0.0011*** -0.0011*** -0.0004* -0.00007 -0.00007

(0.0002) (0.0002) (0.0002) (0.0003 ) (0.0002)

City Fixed Effect NO YES NO NO NO

CT Fixed Effect NA NA NA NA YES

Year Fixed Effect NO NO YES NO NO

Month Fixed Effect NO NO NO YES YES

Constant 0.1457 0.4609** 0.1493 0.1129 -1.7556

(0.1030) (0.2299) (0.1032) (0.1024) (3458)

Adjusted-R2 0.0015 0.0038 0.0015 0.0015 0.1381

Observation 130536 130536 130536 130536 130536

Note: The omitted category for educational level is “High School.” Standard errors in parentheses. ***, **, * indicate

significance level at 1 percent, 5 percent, and 10 percent, respectively.

40



Table 1.10: OLS estimates (log-log model) of the effects of educational attainment and
average income on average monthly water consumption - (2012-2014 - summer months)

Panel A: Robust S.E. Reg(1) Reg(2) Reg(3) Reg(4)

Avg Inc (1000$) -0.1475*** -0.0599* -0.1475*** -0.1475***

(0.0296) (0.031) (0.0296) (0.0296)

Post Secondary (%) -0.4865*** -0.4898*** -0.4865*** -0.4865***

(0.0756) (0.0816) (0.0756) (0.0756)

No Certificate (%) -0.0897* -0.1808*** -0.0897* -0.0897*

(0.0462) (0.0467) (0.0462) (0.0462)

Avg. Temp (◦C) 0.0088*** 0.0088*** 0.0018 0.0373***

(0.0024) (0.0024) (0.0028) (0.0062)

Avg. Precip (mm) -0.0248*** -0.0248*** -0.0143** -0.0041

(0.0045) (0.0044) (0.0055) (0.0057)

City Fixed Effect NO YES NO NO

Year Fixed Effect NO NO YES NO

Month Fixed Effect NO NO NO YES

Constant -1.0979** -1.2857 -1.0332** -1.7144***

(0.4351) (0.4507) (0.4353) (0.4511)

Adjusted-R2 0.0027 0.0058 0.0029 0.0029

Panel B: Cluster S.E. Reg(1) Reg(2) Reg(3) Reg(4)

Cluster (CT) Cluster (CT) Cluster (CT) Cluster (CT)

Avg Inc (1000$) -0.1475 -0.0599 -0.1475 -0.1475

(0.1155) (0.097) (0.1155) (0.1155)

Post Secondary (%) -0.4865 -0.4898 -0.4865 -0.4865

(0.4233) (0.3531) (0.4233) (0.4233)

No Certificate (%) -0.0897 -0.1808 -0.0897 -0.0897

(0.2459) (0.2072) (0.2459) (0.2459)

Avg. Temp (◦C) 0.0088** 0.0088** 0.0018 0.0373***

(0.0044) (0.0044) (0.0041) (0.0137)

Avg. Precip (mm) -0.0248*** -0.0248*** -0.0143** -0.0041

(0.0049) (0.0049) (0.0059) (0.0091)

City Fixed Effect NO YES NO NO

Year Fixed Effect NO NO YES NO

Month Fixed Effect NO NO NO YES

Constant -1.0979 -1.2857 -1.0332 -1.7144

(2.2666) (1.8416) (2.2632) (2.3227)

Adjusted-R2 0.0027 0.0058 0.0029 0.0029

Observation 130536 130536 130536 130536

Note: The omitted category for educational level is “High School”. Standard errors in parentheses. ***, **, * indicate

significant level at 1 percent, 5 percent, and 10 percent, respectively.
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Table 1.11: Ramsey RESET Test (2012-2014)

Ramsey RESET test using powers of the fitted values of monthly consumption

Ho: model has no omitted variables
F(3, 391599) = 2382.68
Prob > F = 0.0000

Table 1.12: Ramsey RESET Test (2012-2014 - summer months)

Ramsey RESET test using powers of the fitted values of monthly consumption

Ho: model has no omitted variables
F(3, 130527) = 860.88
Prob > F = 0.0000
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Table 1.13: OLS estimates of the effects of educational attainment and average income on
average monthly water consumption - (estimation with non-linear independent variables
(2012-2014))

All Months Reg(1) Reg(2) Reg(3) Reg(4)

Avg Inc (1000$) -0.0116*** -0.01*** -0.0116*** -0.0116***

(0.0009) (0.0008) (0.0009) (0.0009)

Avg Inc2 0.00008*** 0.00007*** 0.00008*** 0.00008***

(0.000007 ) (0.000006) (0.000007) (0.000007)

Post Secondary (%) -0.001 -0.027*** -0.001 -0.001

(0.0017) (.0031273) (0.0017) (0.0017 )

Post Secondary2 0.00001 0.0002*** 0.00001 0.00001

(0.0001) (0.00002) (0.00001) (0.00001)

No Certificate (%) 0.00038*** 0.00074*** 0.00038*** -0.00038***

(0.0001) (0.00011) (0.0001) (0.0001)

No Certificate2 -0.00002 -0.0001*** -0.00002 -0.00002

(0.00002) (0.00003) (0.00002) (0.00002)

Avg. Temp (◦C) 0.0002*** 0.0002*** 0.0002*** -0.00001

(0.00007) (0.00006) (0.00007) (0.0002)

Avg. Precip (mm) -0.0006 -0.0006 -0.0003 -0.0011

(0.0005) (0.0005) (0.0006) (0.0008)

City Fixed Effect NO YES NO NO

Year Fixed Effect NO NO YES NO

Month Fixed Effect NO NO NO YES

Constant 0.421*** 0.0177 0.4201*** 0.4214***

(0.0679) (0.0797) (0.0678) (0.0679)

Adjusted-R2 0.0054 0.0082 0.0054 0.0053

Observation 391608 391608 391608 391608

Note: The omitted category for educational level is High School. Robust standard errors in parentheses. ***, **, *

indicate significance level at 1 percent, 5 percent, and 10 percent, respectively.

43



Table 1.14: OLS estimates of the effects of educational attainment and average income on
average monthly water consumption - (estimation with non-linear independent variables
(2012-2014 - summer months))

Summer Months Reg(1) Reg(2) Reg(3) Reg(4)

Avg Inc (1000$) -0.0117*** -0.01*** -0.0117*** -0.0117***

(0.0017) (0.0016) (0.0017) (0.0017)

Avg Inc2 0.00008*** 0.00007*** 0.00008*** 0.00008***

(0.00001) (0.00001) (0.00001) (0.00001)

Post Secondary (%) -0.0012 -0.0221*** -0.0012 -0.0012

(0.0029) (0.0055) (0.0029) (0.0029)

Post Secondary2 0.00001 0.0002*** 0.00001 0.00001

(0.00002) (0.00005) (0.00002) (0.00002)

No Certificate (%) -0.00034* -0.00071*** -0.00034 * -0.00034*

(0.00017) (0.0002) (0.00017) (0.00017)

No Certificate2 0.00001 0.0001** 0.00001 0.00001

(0.00004) (0.00005) (0.00004) (0.00004)

Avg. Temp (◦C) 0.0006 0.0006 0.0002 0.0021

(0.0005) (0.0005) (0.0006) (0.0013)

Avg. Precip (mm) -0.0011 -0.0011 -0.0004 -0.00007

(0.0009) (0.0009) (0.0011) (0.0012)

City Fixed Effect NO YES NO NO

Year Fixed Effect NO NO YES NO

Month Fixed Effect NO NO NO YES

Constant 0.4144*** -0.0062 0.4180*** 0.3816***

(0.1154) (0.1351) (0.1155) (0.1183)

Adjusted-R2 0.0048 0.0075 0.0048 0.0048

Observation 130536 130536 130536 130536

Note: The omitted category for educational level is High School. Robust standard errors in parentheses. ***, **, *

indicate significance level at 1 percent, 5 percent, and 10 percent, respectively.
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Table 1.15: Multilevel Mixed-Effect model estimation result

A:(2012-2014) B:Summer Months 2012-2014

Fixed Part: Reg(1) Reg(2) Fixed Part: Reg(1) Reg(2)

Avg Inc (1000$) -0.0011*** -0.0004*** Avg Inc (1000$) -0.001*** -0.0004***

(0.00005) (0.00006) (0.00009) (0.0001)

Post Secondary (%) -0.0043*** -0.0279 Post Secondary (%) -0.0046*** -0.0306

(0.0002) (0.0208) (0.0003) (0.0209)

No Certificate (%) -0.0037*** -0.018 No Certificate (%) -0.0041*** -0.0217

(0.0002) (0.0277) (0.0004) (0.0278)

Avg. Temp (◦C) 0.0002*** 0.0002*** Avg. Temp (◦C) 0.0006 0.0006

(0.00006) (0.00006) (0.0005) (0.0004)

Avg. Precip (mm) -0.0006 -.000693 Avg. Precip (mm) -0.0011 -0.0011

(0.0005) (0.0005) (0.0009) (0.0009)

Constant 0.4041*** 2.0929 Constant 0.4174*** 2.3049

(0.0235) (1.5993) (0.0345) (1.6079)

Random Part: Random Part:

Sd (City Residual) 0.0311*** 0.2260*** Sd (City Residual) 0.031*** 0.2364***

(0.0127) (0.1926) (0.0127) (0.1919)

Sd (Census Tract Residual) 0.7308*** Sd (Census Tract Residual) 0.7311***

(0.0563) (0.0565)

Observation 391608 391608 Observation 130536 130536

Groups: Groups:

City 3 3 City 0 3

Census Tract 91 Census Tract 91

LR test VS Linear Regression 978.51 61596.49 LR test VS Linear Regression 280.66 18551.80

P(0.000) P(0.000) P(0.000) P(0.000)

Log Likelihood -125465.83 -95156.831 Log Likelihood -49104.315 -39968.745

Likelihood-Ratio Test Likelihood-Ratio Test

Likelihood-Ratio Test LR chi2(1) = 60617.99 Likelihood-Ratio Test LR chi2(1) = 18271.14

Assumption: A nested in B Prob >chi2 = 0.000 Assumption: A nested in B Prob >chi2 = 0.000

Note: The omitted category for educational level is High School. Standard errors in parentheses. ***, **, * indicate

significance level at 1 percent, 5 percent, and 10 percent, respectively.
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Table 1.16: Multilevel Mixed-Effect model estimation result at household level

A: (2012-2014) B: Summer Months 2012-2014

Fixed Part: Reg(1) Reg(2) Fixed Part: Reg(1) Reg(2)

Avg Inc (1000$) -0.0011*** -0.0005** Avg Inc (1000$) -0.001*** -0.0005*

(0.0002) (0.0002) (0.0002) (0.0002)

Post Secondary (%) -0.0041*** -0.0283 Post Secondary (%) -0.0044*** -0.031

(0.0008) (0.0207) (0.0008) (0.0208)

No Certificate (%) -0.0036*** -0.0185 No Certificate (%) -0.0039*** -0.0221

(0.0011) (0.0275) (0.0011) (0.0276)

Constant 0.3911*** 2.1246 Constant 0.4128*** 2.3417

(0.0641) (1.5918) (0.0684) (1.6004)

Random Part: Random Part:

Sd (City Residual) 0.0297 0.2283 Sd (City Residual) 0.0296 0.2384

(0.0128) (0.1888) (0.0129) (0.1887)

Sd (Census Tract Residual) 0.7173 Sd (Census Tract Residual) 0.7177

(0.0568) (0.057)

Observation 21756 21756 Observation 21756 21756

Groups: Groups:

City 3 3 City 3 3

Census Tract 91 Census Tract 91

LR test VS Linear Regression 44.50 3174.29 LR test VS Linear Regression 37.36 2797.35

P(0.000) P(0.000) P(0.000) P(0.000)

Log Likelihood -6157.3895 -4592.4948 Log Likelihood -7701.2905 -6321.2975

Likelihood-Ratio Test Likelihood-Ratio Test

Likelihood-Ratio Test LR chi2(1) = 3129.79 Likelihood-Ratio Test LR chi2(1) = 2759.99

Assumption: A nested in B Prob >chi2 = 0.000 Assumption: A nested in B Prob >chi2 = 0.000

Note: The omitted category for educational level is High School. Standard errors in parentheses. ***, **, * indicate

significance level at 1 percent, 5 percent, and 10 percent, respectively.
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1.8 Figures

Figure 1.1: Distribution of Average Income at Census Tract Level
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Figure 1.2: Distribution of percentage of people with No-Certificate in CTs of the Tri-
Cities.
Source: Authors’ own calculations
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Figure 1.3: Distribution of percentage of people with High school degree in CTs of the
Tri-Cities.
Source: Authors’ own calculations
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Figure 1.4: Distribution of percentage of people with Post-Secondary degree in CTs of the
Tri-Cities.
Source: Authors’ own calculations
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Chapter 2

Estimating the Effects of Fuel Mix on

the Hourly Ontario Energy Price

(HOEP) & Global Adjustment (GA):

Evidence from the Ontario Green

Energy Act

2.1 Introduction

Electricity costs are an important location driver for many industries. Recent studies

suggest that wholesale electricity prices in Ontario are higher than in other Canadian

provinces as well as in many US jurisdictions. As pointed out by the Independent Electricity

System Operator (IESO)1, such high electricity rates have made Ontario’s wholesale market

unable to attract and support new entry business (IES). Other studies imply that Ontario

1The IESO manages the demand and supply in Ontario’s electricity wholesale market on a second-
by-second basis. For further information please visit http://www.ieso.ca/en/learn/about-the-ieso/

what-we-do
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is unable to compete with other jurisdictions both inside and outside of Canada (Sen

[2015]). As a policy response, the Government of Ontario recently introduced a new hydro

subsidy program. This hydro subsidy is equal to the provincial portion of the harmonized

sales tax (HST), and therefore, it has been called an HST-rebate (The). Based on the

HST-rebate program, consumers and some businesses would be exempt from paying the

provincial portion of the Harmonized Sales Tax, which eases the burden of high electricity

prices to some extent.

These policy responses as well as recent increases in electricity prices in Ontario moti-

vate an empirical investigation into assessing the impacts of various factors that influence

trends in electricity prices. This is particularly relevant given the enactment of the Ontario

Green Energy Act (GEA) in 2009. A key mandate of the Act was to encourage increased

electricity power generation from renewable sources of energy such as solar power, wind

power, biofuels, and hydro power as well as the elimination of coal-fired plants2. This

would be accomplished through subsidized contracts to generators based on renewable

sources called Feed-in-Tariffs which guaranteed above-market wholesale rates for such gen-

erators over long time periods. Some studies acknowledge these fixed contracts to be a

source of increasing electricity prices in Ontario (Wyman [2014], Sen [2015]).

The government at the time pointed to a variety of benefits that should result from the

GEA including the creation of green economy jobs, reduced pollution levels consistent with

emissions reductions under climate change targets, and improved health3. The elimination

of coal-fired plants by Ontario was a particularly strong policy stance given the cheapness

of coal as well as the fact that in 2008, it constituted 14.5% of electricity power generation 4.

2In addition, the government of Ontario in 2009 claimed that the GEA will create 50, 000 new jobs
over the coming years. For more details on the type of jobs please visit: https://www.thestar.com/

business/2009/02/25/50000_green_jobs_a_tall_order.html
3For further details on pollution and health impacts please see Ontario Public Health

Association (2002) (Perrotta [2002]), Harris et al. [2015] and Presentation to the On-
tario Legislatures Standing Committee on General Government, Bill 9, Environmental Pro-
tection Act (Ending Coal for Cleaner Air Act), by the Ontario Public Health Associ-
ation, available at, http://www.opha.on.ca/getmedia/3b13b10f-83a5-4f4e-912b-8f1c396c85e9/

OPHA-Submission-Bill-9-Ending-Coal.pdf.aspx?ext=.pdf
4For further details on different types of energy sources in Ontario please refer to: http://www.ieso.

ca/en/corporate-ieso/media/year-end-data/2008
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In contrast to other provinces like Saskatchewan, New Brunswick, and Nova Scotia, which

still rely on coal to varying magnitudes, all coal-fired generators in Ontario were eliminated

from the electricity grid by April 2014 (DES). Currently, coal-fired plants generate 40%5,

20%6, 62%7, and 31.61%8 of electricity in Saskatchewan, New Brunswick, Nova Scotia and

Alberta, respectively. However, Canada is planning to phase-out the coal-fired generators

by 2030 nationally9. Currently, reduced electricity supply from the elimination of coal has

been met from increased reliance of nuclear energy as well as higher supply from cleaner

and renewable sources. For example, when compared to 2008, the production of electricity

by wind generations has significantly increased from 0.9% in 2008 10 to 6% in 201711.

The objective of this research is to estimate econometrically the effects of different

sources of energy on wholesale electricity rates. Focusing on wholesale rates is appropriate

given the existence of a real time market where purchasers and generators can submit

bids and offers for specific quantities of electricity at varying rates. This exercise would

shed light on how the considerable shifts in electricity fuel mix since 2009 have impacted

wholesale electricity prices. To the best of our knowledge, previous studies of the Ontario

electricity market have not focused on the differential impacts of energy sources on whole-

sale prices. However, wholesale prices are not the only significant determinant of electricity

bills. An increasing share of consumer electricity bills has been due to the rise of Global

Adjustment (GA) payments. Specifically, Sen [2015] estimates that from 2006 to 2013

5http://www.saskpower.com/wp-content/uploads/power_sources_June2017.jpg
6Please refer to page 37 on: https://www.nbpower.com/media/759035/

2016-2017-annualreport-en_web_ready.pdf?1
7https://www.nspower.ca/en/home/about-us/todayspower.aspx#
8https://www.aeso.ca/aeso/electricity-in-alberta/
9Federal Environment Minister Catherine McKenna during a news conference after a Canadian Council

of Ministers of the Environment meeting in Vancouver on Nov. 3, 2017 noted that Canada is going to
continue to eliminate coal-fired electricity. For further information on this interview please visit:
1) https://www.thestar.com/news/canada/2017/11/14/canadas-coal-phase-out-alliance-unfazed-by-
opposing-us-position-federal-environment-minister-says.html
2) https://www.thestar.com/news/canada/2017/11/12/canada-uk-team-up-at-climate-conference-in-
push-to-eliminate-coal-power.html

10The summary of electricity produced by different types of fuel in 2008 is available at, http://www.
ieso.ca/en/corporate-ieso/media/year-end-data/2008

11The summary of electricity produced by different types of fuel in 2016 is available at, http://www.
ieso.ca/en/corporate-ieso/media/year-end-data
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GA charges have increased from 10% to around 67%. The GA is the difference between

the wholesale electricity rate which generators receive as revenue and the guaranteed rate

through long term contracts given by the province. There is a common belief that higher

GA payments have been due to Feed in Tariff contracts to renewable based generators12.

However, it is also important to note that some nuclear, coal, gas, and hydro generators

have been granted guaranteed rates contracts as well (Wyman [2014]). The question then,

is whether the guaranteed rates to these traditional fuel sources, have had comparable

effects on provincial GA obligations, relative to the impacts of renewable source of energy.

This paper contributes to the literature by exploiting time-series variation in hourly

wholesale electricity prices from January 2009 to August 2014, and estimating economet-

rically the effects of shifts in hourly specific fuel mix on such prices. To the best of our

knowledge, no other study has estimated the effects of changes to fuel mix on wholesale

electricity prices. We also estimate the impacts of change in fuel mix on GA payments.

The effects of fuel mix supply are identified by the elimination of coal-fired plants, that

were responsible for almost 13.75%13 of total electricity supply in January 2009, and which

fell to zero by the end of April 2014. This policy shift arguably provides exogenous iden-

tifying variation, as wholesale electricity rates were not considered a primary driver of the

GEA. We also attempt to control for the potentially confounding impacts of other factors

that could plausibly affect electricity demand and supply such as temperature, relative hu-

midity, and general economic activity as captured through unemployment, and exchange

rates.

A conservative estimate of our empirical results is that in recent years a one percentage

point reduction in the proportion of coal relative to hydro is associated with a 5% decline in

the HOEP. The marginal effects of gas and nuclear based power are similar. On the other

hand, a one percentage point increase in wind based power is associated with almost a 10%

decline in the HOEP, which is roughly twice the marginal impact of other energy sources.

However, over the sample period, wind only constituted a bit more than 3% of total supply.

12For more information please refer to: https://news.ontario.ca/mei/en/2017/03/

refinancing-the-global-adjustment.html
13Based on authors’ own calculation.
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In other words, while less reliance on coal has resulted in an upward pressure on the HOEP,

this has been offset primarily through more nuclear power. Further, we do not find that

more wind power has resulted in higher GA payments. Less coal is significantly associated

with higher GA payments while more gas power is correlated with a reduction in GA.

The remainder of the paper is structured as follows. The next section discusses the

electricity market structure of Ontario14 and the Ontario Green Energy Act. Relevant

studies are discussed in section three. Section four describes the data that have been used

for this study and gives a brief summary description of the dataset. Section five details

the empirical model. Econometric estimates are detailed in section six. Section seven

concludes with a summary of the main results.

2.2 Electricity Market in Ontario

The IESO and Wholesale Electricity Prices

The Independent Electricity System Operator (IESO) is a crown corporation, which runs

and oversees the Ontario electricity market. In particular, the IESO operates on a real-time

wholesale market in which electricity is supplied as needed. It posts the predicted demand

every day for the following month, which allows suppliers to anticipate how much electricity

will be needed. As the IESO notes, this forecast includes roughly 1,400 megawatts (MW)

more than what has been predicted to account for any unanticipated event that might

affect the power system15. Generators/suppliers then send their offers to the IESO on how

much they are willing to produce and at what price. On the other hand, large electricity

consumers, such as industrials, submit their bids on how much electricity they are willing

to consume and at what price. The IESO collects both, offers from suppliers and bids from

large consumers, until two hours before the electricity is needed.

14This section gives a cursory overview of the electricity market in Ontario. For a much more in-depth
explanation, readers can refer to Sen [2015], Dewees [2010], Wyman [2014] and Trebilcock and Hrab [2005].

15For further information please refer to: http://www.ieso.ca/en/learn/electricity-pricing/

how-the-wholesale-electricity-price-is-determined
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Afterwards, the IESO starts to accept the offers from the lowest to the highest, until

demand is met. In the end, all suppliers are paid the same rate and the wholesale price

is set every hour. The Hourly Ontario Energy Price (HOEP) is the average of twelve

wholesale market clearing prices in each hour. This means that there is a market clearing

price every five minutes 16.

Retail Electricity Prices

In Ontario, consumers are divided into two groups based on their consumption: (1) Small

consumers: Residential and small businesses with consumption lower than 250 Megawatt

hours (MWh) per year. (2) Large consumers: Any business that uses more than 250

Megawatt hours (MWh) per year. Small consumers are billed for their electricity usage

by a Local Distribution Company (LDC) while large consumers are usually billed by the

IESO unless they choose to sign a retail contract. Small consumers are either billed based

on time-of-use (T.O.U) or tiered rates. Most small consumers pay the T.O.U rates. Both

groups can sign retail contracts. Large consumers also fall into one of the following three

categories:(1) If the consumer has an interval meter, it pays HOEP. (2) If the consumer

does not have an interval meter, it pays a weighted HOEP based on the consumption

pattern of its LDC. (3) All consumers have the option to enter fixed-price retail contracts

offered by a retailer.

In addition to the IESO, the Ontario Energy Board (OEB) plays a significant role in

wholesale electricity market. Among other things, the OEB oversees, set rules and decide

the rates that utilities can charge. The OEB ensures a reliable and sustainable energy

system17.

16For further details on how the wholesale electricity price is determined in Ontario, please
visit: http://www.ieso.ca/Pages/Ontario’s-Power-System/Electricity-Pricing-in-Ontario/

How-Wholesale-Electricity-Price-is-Determined.aspx
17For more details on the role of OEB please visit: https://www.oeb.ca/about-us/what-we-do
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Global Adjustment

In addition to the different rates that are explained above, electricity consumers in Ontario

pay for the Global Adjustment (GA)18 on their electricity bills. When it comes to paying

for GA, consumers are divided into two classes. Class A consumers are those with average

hourly consumption of 5 megawatts (MW) or more. There has been a recent change

whereby customers with electricity demand of over 1 MW and up to and including 5 MW

can also move to Class A classification19. The GA rate for each customer in this class

depends on the contribution of that customer to the five peak hours of the year. Every day

the IESO publishes information to help Class A consumers predict whether the forecasted

peak demand for the next 24 hours could be a top 10 Ontario demand peak during the

current year20. Therefore, Class A consumers can adjust their electricity consumption and

reduce their GA cost21

Class B customers are customers with peak electricity demand over 50 kilowatts (KW)

and under 5 MW. Class B customers pay for the GA in one of the following forms: (1) The

GA is incorporated in the time-of-use (T.O.U) or tiered rate. In this case, customers do

not see a separate line in their bills for GA rate; (2) Customers who have retail contracts

see a separate line for GA in their bills. The GA, in this case, depends on the billing

cycle and can be one of the following forms22: (i) First estimate: Published on the last

business day of the previous month. (ii) Second Estimate: Published on the last business

day of each month. (iii) Actual: Published on the tenth business day of each month for

the preceding month. As the names show, the first and second rates are estimates which

are calculated based on the last month GA and demand, and the actual rate is based on

18Further details on the main components to calculate the monthly GA rate are available at,
http://www.ieso.ca/Pages/Ontario%27s-Power-System/Electricity-Pricing-in-Ontario/

Global-Adjustment.aspx
19For further details about Class A please visit: http://www.ieso.ca/Pages/Participate/

Settlements/Changes%20to%20Class%20A%20Eligibility.aspx
20Further details on information provided by IESO to track the peak demand hours are available at,

http://www.ieso.ca/en/sector-participants/settlements/global-adjustment-for-class-a
21For more information on the impact of High-5 program on Class A and Class B consumers, readers

can refer to Sen [2015]
22For further details on Class B please visit: http://www.ieso.ca/Pages/Participate/Settlements/

Global-Adjustment-for-Class-B.aspx
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the actual demand and the GA rate. These different mechanisms do not affect the total

GA that has to be paid. Therefore, irrespective of how different classes of consumers are

sharing the payment for the total GA, this total is unaffected.

Payments to Generators in Ontario

Each generator in the Ontario electricity market is paid in one of the following ways:

(1) Generators whose offers are accepted and dispatch electricity- are paid at the market

clearing price. These are generators without guaranteed rates under long term contracts;

(2) Renewable, natural gas and nuclear generators that have contracts with Ontario Power

Authority (OPA)23- are paid either based on the Feed-In-Tariff (FIT) contracts under the

Green Energy Act24 or long-term power-purchase agreements (PPAs) (Wyman [2014]). (3)

Large hydroelectric and nuclear generators that are operating based on a regulated rate-

paid at their guaranteed operating price. This rate is set by the OEB (Wyman [2014])25.

Both the OEB and the OPA contract rates have been higher than the market clearing

price (HOEP) since 2005 and therefore the difference is covered by the GA (Sen [2015]). In

particular, part of the GA is allocated to cover the difference between the regulated price

and the market clearing price (Wyman [2014], Sen [2015]).

The Ontario Green Energy Act

In 2009, Ontario introduced the Green Energy Act (GEA), which promotes the expansion

of renewable energy technology and conservation plans. One of the objectives of the GEA

was to decrease Ontario’s dependence on fossil fuels and improve the air quality. Therefore,

23OPA was established in 2004 by the government of Ontario and in January 2015 merged with the
IESO.

24The FIT program is explained in the next subsection.
25In addition to the mentioned categories, suppliers whose offers have not been accepted are

paid an “Operating Reserve” that is determined by the IESO. This payment is made to gen-
erators for their availability to produce energy when demand spikes or a generator unexpect-
edly is not able to produce for any reason. For further information on the operating re-
serve markets please refer to: http://www.ieso.ca/sector-participants/market-operations/

markets-and-related-programs/operating-reserve-markets
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the Feed-in-Tariff (FIT) program was introduced. The primary focus of the FIT program

is in renewable energy investments. In particular, the program is open to any renewable

energy developer with a project to produce renewable energy more than 10 kilowatts to

500 kilowatts. The market participants in this program can sign a contract to sell the

generated renewable energy to the province at a guaranteed price26.

One of the main achievements of the FIT program is the phase out of coal-fired gen-

erators in 2014. The success of the FIT program includes not only the termination of

coal-fired generators but also the expansion of renewable energy production in Ontario.

Since 2014, solar, biofuel and wind power generations substitute the electricity that was

produced by coal generations. Notably, the production of electricity by wind power gener-

ation increased significantly. In 200827, 14.5% and only 0.9% of electricity were produced

by coal and wind power generators respectively. However, in 2017 the production of elec-

tricity by wind power generations was increased to 6% while coal-fired generations were

fully phased out28.

2.3 Literature Review

Several recent studies such as Sen [2015], Wyman [2014] and Dewees [2010] have identified

that the increased pressure on the generation system and excessive electricity consumption

are primary determinants of the way in which an electricity system is structured. In

trying to design an electricity price paradigm that not only encourages conservation but

also reduces strain on the generation system, the government of Ontario has taken many

approaches during the last decade, some of which have made the province of Ontario less

26For more information on the FIT program please refer to: http://www.energy.gov.

on.ca/en/fit-and-microfit-program/ and http://www.ieso.ca/sector-participants/

feed-in-tariff-program/overview
27The summary of electricity produced by different types of fuel in 2008 is available at, http://www.

ieso.ca/en/corporate-ieso/media/year-end-data/2008
28For the most recent information on share of each fuel type in Ontario’s electricity market please visit:

http://www.ieso.ca/Pages/Power-Data/supply.aspx
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attractive for new electricity consumers29 (Sen [2015], Dewees [2010], ONT). In addition,

detailed examination of Ontario’s electricity market by researchers such as Sen [2015],

Dewees [2010] and Wyman [2014] shows that current Ontario’s electricity consumers are

also keen to see a change in the electricity market: They want to be able to enjoy lower

electricity prices with less price volatility in the electricity wholesale market. For example as

Wyman (2014) states “Ontario electricity consumers stand to benefit from lower electricity

prices and less risk if the province moves to a capacity market for obtaining generation.”

(Wyman [2014]).

To better serve electricity consumers, the province of Ontario has engaged in redefining

electricity prices by looking at the electricity markets from different angles. Ontario has

not only focused on wholesale market prices (supply side) but also taken initiatives to

redefine prices that retail and small business consumers pay (demand side). Despite their

stated objectives, each policy has made little progress so far. This is mainly because of

various problems that have arisen while implementing these policies. In what follows we

discuss some of the government’s most popular programs and the problems within each of

them, as recognized in the literature to date. In addition, this literature review focuses

on recent empirical based studies of Ontario electricity demand and the supply side of the

market. As noted by Choi, Wai Hong [2013], there are, of course, earlier time-of-use (TOU)

econometric studies of residential, commercial, and industrial demand in Ontario during

the 1980s and 1990s, such as Yatchew [2000], Mountain [1994], Mountain and Lawson

[1992], Mountain and Lawson [1995], and Ham et al. [1997]. More recent studies are Choi

et al. [2011] and Genc [2016]; however, the focus of these studies is on real time wholesale

electricity prices on demand by industrial customers.

2.3.1 Small electricity consumers (Demand side)

At the small consumers level (such as a household), the government has focused on up-

grading the infrastructure by installing smart meters. The intention behind installing the

29Some of these approaches are the introduction of time-of-use (TOU) in 2006 and the High-5 program
in 2011.
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smart meters was not only to conserve energy and manage demand (ELE) but also decrease

the need for new generation investments (ONT). Smart meters have been utilized to mea-

sure electricity consumption at each time of day. Once the smart meters were installed, it

was then necessary to adopt a time-of-use (TOU) signal pricing mechanism. Such transi-

tions were believed to help signal electricity users to manage their bills by modifying their

electricity consumption patterns (ELE). Nevertheless, the strategy of having smart meters

and the transition to TOU pricing have not escaped criticism. The most important of

these criticisms is that smart metering failed to note that high-income consumers are not

responding to price changes. The bill increases were very negligible (ELE) and could not

curb the demand as expected (ONT). It has been suggested, however, that were TOU pric-

ing twice or three times higher at the peak demand period, it would decrease demand by 3

to 6 percent (Faruqui and Sergici [2010]). The rationale is that consumers would recognize

major savings in their bills by shifting their consumption to off-peak periods. In addition,

researchers challenge the widely held view that although smart meters and TOU would

benefit some consumers, it cannot be considered fair to some small businesses that cannot

cut their electricity use in peak demand periods. For example, restaurants have to operate

even during the peak hours (Dewees [2010]). Moreover, it is noteworthy that 20 percent of

Ontario’s residents who live in multi-residential apartments are completely isolated from

TOU price signals (Dewees and Tombe [2011]). This occurs because 70 to 90 percent

of these buildings are bulk metered versus individual suite-metering (Dewees and Tombe

[2011]). Research shows that moving from bulk-metering to individual suit-metering would

be economically beneficial only if the cost of installing the meters is ignored.

Tables B.1 and B.2 in the Appendix present various studies that investigate the impacts

of metering and sub-metering on consumer electricity demand respectively. These studies

have explored a number of different factors that influence electricity consumption patterns

when meters are installed. For example, Gilbert and Zivin [2014] discuss how information

signals such as receiving electricity bills would decrease consumption in the following week

more than in other weeks of the month (Gilbert and Zivin [2014]). On the other hand,

Martin and Rivers [2015] show that the in-home electricity display (IHD) and TOU pricing
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can couple and decrease a household electricity consumption by 3% in Ontario30. They

found that the decrease in household electricity consumption were more visible in hours of

the day with more extreme temperature (Martin and Rivers [2015]). Other factors, such as

weather conditions (Sen [2015], Munley et al. [1990], and Kavousian et al. [2013]), adoption

of energy efficient appliances (Kavousian et al. [2013] and McCoy and Lyons [2014]) and

fixed-effects of time trends (Jack et al. [2015] and Sen [2015]) have been recognized by

scholars to influence electricity consumption. The results drawn from the literature are

consistent and show a decreasing trend in electricity consumption when meters are installed;

however, most studies in the field of household electricity consumption have only focused

on short term data in addition to considering specific groups of consumers.

On the other hand, in spite of the crucial role of the supply side of the electricity

market, much less is known about the factors at play in this side. Analyzing the system

in which the supply side of the electricity market works would not only provide direction

for aggregate demand management to decision makers but also result in addressing the

research gap in this area. Therefore, the following subsection provides an overview of the

supply side of Ontario’s electricity market as discussed in the literature.

2.3.2 Supply

On the supply side of the electricity market, most research has focused on policies that

have either encouraged expansion of existing capacity or the possible extension of markets

to generation capacity. In this regard, the government of Ontario took the initiative to

secure the supply of electricity by creating the Ontario Power Authority (OPA) in 2004.

Using central contracting, the OPA has procured new generation and signed twenty-year

power purchase agreements (PPAs) with nuclear plants, which locked down prices for long

time periods (Wyman [2014]). This allowed nuclear plants to focus on refurbishments and

renovations. Although PPAs will be in effect for almost another half decade, experiencing

the rising power costs encouraged the IESO to look for other initiatives to tackle the

30The dataset for this study contains hourly data on electricity consumption of around 7000 households
in Ontario from 2012 to 2014 who are given IHD.

62



problem. A recent study by Wyman (2014) traces the initiatives that the IESO took in this

regard. For example, the IESO has embarked on introducing a capacity market for Ontario

(Wyman [2014]). In 2014, the IESO started to invite interested stakeholders to discuss

designing an effective capacity auction (the so-called capacity market) and published the

Capacity Auction Stakeholder Engagement Plan in October 2014 (IES).

In the capacity market, as Wyman states “... generators receive payments for agreeing

to be available to run at some period in the future” (Wyman [2014]). Therefore, a capacity

market ensures the adequacy of supply and balances prices (Dachis and Carr [2011]). By

drawing on the concept of the capacity market, Wyman has been able to argue that moving

away from PPAs and relying on the capacity market brings not only more transparency

in setting prices, but also a more efficient and trustworthy electricity generation system

(Wyman [2014]). Furthermore, the IESO believes that construction of a capacity auction

would ensure “... future resource needs of Ontario’s electricity system and provide the

flexibility for new and existing technologies to compete on an even footing in the mar-

ketplace.” (IES). This is definitely efficient, as ensuring an appropriate pricing system for

new coming generators in Ontario should be a priority for decision makers. Currently, each

generator is contracted separately to receive a fixed price. If the HOEP is not sufficient

to pay the guaranteed price to generators, consumers will pay the difference through the

Global Adjustment (GA). If the HOEP is more than what has been guaranteed to pay to

generators, consumers would receive money and so the GA would be negative. In addition,

the GA includes the cost of conservation and demand management programs.

It is worth noting that GA has stayed positive since 2007 and it was negative only

once in March 2014 (−0.27). This would imply that the wholesale prices (HOEP) were

not sufficient to cover generators guaranteed prices; therefore, consumers have been paying

the difference between HOEP and contracted prices of generators. Detailed examination

of GA and HOEP from 2005 to 2014 by Sen (2015) revealed an increasing trend in total

GA, and unsurprisingly, a decreasing trend in total HOEP prices from 2006. In regard

to the increasing GA and in another attempt to reduce electricity consumption by major

consumers in Ontario, the High-5 GA program was introduced in 2011. The High-5 GA

program is aimed to reduce the electricity consumption of large industries during the 5
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hours of peak demand each year. Two classes of consumers have been identified within this

program: Class A: Consumers with an average hourly peak demand of 5 MW or higher

who are charged based on their energy used during peak hours31. Class B: Consumers

with a peak demand of 5 KW to 5 MW who pay the actual GA rate. The program gives

enough incentives to Class A consumers to reduce their electricity consumption; however,

not all industries are able to reduce their consumption since they are unable to make

any adjustment in their production schedule (Sen [2015]). In addition, this program has

transferred the GA from one class of customers (Class A) to another (Class B) (Sen [2015]).

In summary, empirical work on the supply side of the market has been limited. There-

fore, there is an urgent need to address the link between wholesale market prices and

electricity supply, and study the magnitude of the effect of each generator on electricity

prices in Ontario during the past years. To the best of our knowledge, although some

research has been carried out on the GA pricing system and electricity conservation by

households and industrial consumers, the effects of fuel mix on the HOEP and GA have

not been examined within an econometric framework. In fact, we have been unable to

locate any other econometric study, which has examined the effects of generation fuel mix

on some measure of wholesale or retail electricity prices.

The purpose of this study is to explore the relationship between prices (HOEP and

GA) and the hourly supply of each generation during 2009 to 2014. Given the lack of cor-

responding research, we believe that this exercise is worthwhile in order to understand the

relationship between fuel mix and HOEP and GA payments should help decision makers

to set the right prices for new generator contracts (within the newly introduced capacity

market) which, in turn, will lessen the burden of GA on all electricity consumers in On-

tario. Further, the results of this paper may be used to direct the government of Ontarios

investment on the efficient combination of generations in the electricity market.

31There has been a recent change whereby customers with electricity demand of over 1 MW and
up to and including 5 MW can also move to Class A classification. For further details about Class
A please visit: http://www.ieso.ca/Pages/Participate/Settlements/Changes%20to%20Class%20A%

20Eligibility.aspx
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2.4 Data Description

The dataset for this study contains HOEP and GA prices in addition to the generations’

hourly production from 2009 to 2014. Both the prices and generations’ hourly production

data are obtained from IESO. Also, we incorporate the data for hourly average temperature

and relative humidity along with monthly exchange rate and the unemployment rate in

Ontario. The data for temperature, relative humidity, Exchange and the Unemployment

rates are gathered from Statistics Canada. Brief summary statistics are shown in Tables

2.1 and 2.2.

Table 2.1 shows general summary statistics for the dataset. As reported in this table,

most of the electricity production comes from nuclear generators. Hydro and gas energy

rank second and third in power generation. Some interesting observations are the reported

negative electricity market prices and zero productions of generations. Table 2.2 indicates

the number of incidents in which value of the variables reported is zero in the dataset.

There are 1338 events in the dataset where the HOEP is negative. The negative HOEP

stem from periods of low demand coupled with continuous production of generations. Some

generators such as nuclear and wind cannot adjust production immediately because of their

nature. Therefore, the HOEP significantly decreases and even becomes negative during

these periods.

When market price (HOEP) is insufficient to meet the guaranteed rates paid to gener-

ators, GA is collected from the consumers to pay the difference between the market price

and the regulated and contracted generators’ rate. In this regard, GA and HOEP add up

to meet the generators’ regulated price. Therefore, the HOEP price can be negative while

generators receive the guaranteed payment. Figures 2.1 and 2.2 show the monthly average

HOEP and the GA prices since 2009 to 2016. As can be seen from these two graphs, since

2009 the HOEP is decreasing and the GA shows an increasing trend in general32.

Regarding the zero electricity production incidents, coal-fired generations hold the

32The sharp increase in the HOEP and the sharp decrease in the GA in 2014 are due to data availability.
We do not have the HOEP prices for the last four months of 2014. Therefore, for comparison purposes,
we dropped the GA data for the last four months of 2014 in Figure 2.1.
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record among all other generations. This is because Ontario was trying to phase out

the burning of coal to produce electricity in all of its five coal power plants. Thunder Bay

Generating Station was the last coal-fired plant, which ceased power production in April

2014 and made Ontario a coal-free province. Figure 2.3 shows the average monthly coal-

fired generations since 2009, in which the sharp decrease in the production of electricity

by coal-fired generations is visible.

Table 2.3 shows the summary description for the HOEP from January 2009 to August

2014 averaged over months. As shown in Table 2.3, there is a marked decrease in the

average HOEP from 34.68$ in March to 25.81$ in April, and it levelled off since then for

Spring months. The most likely causes of the decline in HOEP are Spring run off and

heavy rains that disperse extra water into hydraulic generators. This can increase the

supply of electricity and result in the decrease of HOEP. Also, during the Spring and Fall

months the need to run air conditioning and heaters is very low; as a result, electricity

consumption drops. The low demand in these seasons can give rise to more depressed

HOEP 33. As Winter hits the mean HOEP increases sharply from 29.79 in December to

39.75 in January. This can be explained by lower supply from hydraulic generators and

excessive consumption of electricity by heaters.

2.5 Empirical Model and Results

2.5.1 Model Framework

The aim of this study is to explore the effects of the hourly electricity supply by each

generation on the Hourly Ontario Energy Price (HOEP) and Global Adjustment (GA)

during January 2009 to August 2014. Two approaches were adopted to evaluate both the

magnitude of such effects and the responsiveness of prices to the supply of each generation.

In the first approach, we structured the data in a Panel format and ran Generalized

Least Square estimation. The random effect of hours is captured in this method. In the

33For more information please refer to: https://www.greenhousecanada.com/energy-edge/

procurement/electricity-rate-price-shock-in-ontario-this-month
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second approach, we focus on the Time-Series nature of the dataset. We ran the Unit

Root Test to find out if the time-series dataset is trend-stationary. Since we rejected the

null hypothesis that the series contains a unit root, we concluded that the time-series are

trend-stationary34. Therefore, we used the same set of variables as in the first model to

be able to compare the ability of the two methods in explaining the proposed relationship

between prices and supply. In both regression methods, we use dummy variables to account

for the fixed effects of years, months and days of the week on power generations.

Thus, the price function estimated by the first model in this paper reads as follow:

LnPit = β0 + β1Cit + β2Hit + β3Git + β4Nit + β5Oit + β6Wit + β7Totalit + β8Tempit +

β9Rel.Humit + ExchangeRate+ UnemploymentRate+ Y +M +DW +H + εit

In the Panel dataset:

i = The Panel ID or Panel Variable which are the 24 hours of a day (i.e., 1,...,24);

t = The panel’s Time Variable for duration from 1st of January 2009 to 31st of Aug

2014 (i.e., date);

LnPit is the natural logarithm of the Hourly Ontario Energy Price (HOEP) in hour i

at time t;

Cit, Hit, Git, Nit, Oit and Wit are the percentage of electricity generated by coal-fired,

hydro, gas, nuclear, other type of generations and wind in hour i at time t respectively.

The generations’ productions are the key variables of interest;

Totalit is the total electricity produced in hour i at time t;

Tempit and Rel.Humit are the Ontario average temperature and relative humidity in

hour i at time t;

ExchangeRate is the Canadian monthly cents per United States dollar spot rate.

UnemploymentRate is the estimated percentage of the unemployment rate in Ontario

that is seasonally adjusted;

Y is a vector of year fixed effects. M captures month fixed effects and DW and H are

dummy variables for days of the week and hours;

34The result of the Dickey-Fuller for unit root test is presented in the Appendix (Table B.3)
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εt is an idiosyncratic error term.

The focus of this study is on estimating β1 to β6 which yields the percentage change

in hourly electricity price in Ontario in response to a one percentage point increase in the

average electricity production by each type of generations. Lower cost sources of electricity

are dispatched first, thereby having a larger effect on HOEP. In this regard, we expect a

larger coefficient estimates for wind power generation which has very low to zero marginal

cost of production; and a higher coefficient for coal, gas and nuclear power generations

which have higher marginal cost of production than wind.

The reason to consider the total electricity supplied is to capture the effect of demand

on the HOEP. Since the market price (i.e., HOEP) is determined when the market is at

equilibrium, therefore, the amount of total electricity supplied is not far from the total

electricity demanded. In this regard, in all regressions, we considered the total electricity

produced in addition to the proportional values of electricity generated by each generation

to capture the effects of demand on the HOEP. In addition, since in this study differences in

cost of production are captured by considering fuel mix in each hour, we needed to use the

proportional values rather than absolute values of electricity produced by each generation.

In the Time-Series model, we test the effect of the electricity generations’ production

on hourly price through the following reduced form specification:

LnPt = β0+β1Ct+β2Ht+β3Gt+β4Nt+β5Ot+β6Wt+β7Totalt+β8LnPt−24+β9LnPt−25+

β10Tempt +β11Rel.Humt +ExchangeRate+UnemploymentRate+Y +M+DW +H+εt

Like before, we are interested in checking the magnitude and sign of β1 to β6; however,

in the next section we are going to explain briefly how the introduction of other variables

in the model affects the magnitude and sign of the key variables of interest. We are also

interested in comparing the effect of each generation’s production in terms of the sign and

magnitude on the GA. Therefore we ran the following GLS model:

LnGAit = β0 + β1Cit + β2Hit + β3Git + β4Nit + β5Oit + β6Wit + β7Totalit + β8Tempit +

β9Rel.Humit + ExchangeRate+ UnemploymentRate+ Y + S +Mεit

In the Panel dataset:
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i = The Panel ID or Panel Variable which are the 12 months of a year;

t = The panel’s Time Variable for duration from 2009 to 2014 (i.e, years);

LnGAit is the natural logarithm of the Global Adjustment in month i of year t;

Y is a vector of year fixed effects. M captures month fixed effects and S is a dummy

variable for seasons;

All generation’s production and weather variables are averaged at the monthly level.

In addition to the GLS regressions, we also focused on Time-Series nature of the GA

monthly data and ran the following Time-Series regressions on GA:

LnGAt = β0 + β1Ct + β2Ht + β3Gt + β4Nt + β5Ot + β6Wt + β7Totalt + β8LnGAt−1 +

β9Tempt + β10Rel.Humt + ExchangeRate+ UnemploymentRate+ Y + S +Mεt

Where:

t is the monthly date variable (i.e., January 2009 to August 2014).

Using a fixed-effect model, it was possible to control for characteristics within categories

of the year, month and day of the week that might affect the left-hand side variable

(HOEP or GA). The evidence of year fixed-effects can be clearly seen in the case of high

precipitation or heavy winds in one year; this can result in increased electricity production

from hydro power or wind generations and decrease HOEP prices. Month fixed-effects are

best exemplified during fall and spring months when hardly any heaters or air conditioning

are running. Also, low demand during weekends can rationalize the need for considering

the day of week fixed-effects in this model.

Hourly temperature and relative humidity are considered to control for the effect of

weather condition on the production of electricity by generations such as wind and hydro.

Hourly average Ontario temperature and relative humidity are constructed from hourly

temperature and relative humidity of five major cities in different geographical regions in

Ontario: Toronto, London, Ottawa, Hamilton and Thunder Bay.

Besides, consideration of Exchange rate and Unemployment rate enables the model to

control for economic conditions in Ontario that might impact the business, change the

electricity supply and eventually affect prices.
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In the Time-Series model we use the lagged values of the response variable (Price) to

incorporate feedback over time. Specifically, we see that observations at time t are likely

to be correlated with observations at time t− 24 and t− 25 based on Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC). In the next section, we explain

why and what other lag structures have been considered in the model, and we discuss the

results.

The production of electricity by each generation is in percentage format; therefore,

when running regressions we omit hydro from both equations to avoid collinearity between

independent variables. In the same way, we do not consider month dummies with Exchange

rate and the Unemployment rate in the same regression. This is because both the Exchange

rate and Unemployment rate in our dataset are reported monthly. Incorporating these

variables with month dummies in the same regression may lead to over-specification in

month effects.

Before controlling for time-invariant variables that might affect the model (i.e., using

time-specific fixed-effects), it was important to run the basic regression model within each

defined model without considering any dummy variables on the pooled data for comparison

purposes. The following section discusses the results of both the baseline estimate of price

function and breakdown of the model with different specifications in each model model.

The major limitation of these analysis is the possible presence of endogeneity which

could have been resolved by using Instrumental Variables (IV) for the production of elec-

tricity by each type of generation (such as fuel prices or marginal cost of production by

each generation). However, choosing a desired set of IVs is hard in this analysis. This is

mainly due to data limitation as we are interested to preserve the hourly dynamics in our

analysis and the fuel prices or marginal cost of producing electricity by each generation are

not available at the hourly level. Therefore, we acknowledge the fact that the calculated

coefficients might be biased.
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2.6 Results

In this section, we discuss the outcome of the analysis when different methods of estimation

are used. The first column in all tables (except table 2.10) shows the summary statistics

of the main explanatory variables (production by different sources of energy) to reflect

the scale of production by each energy source in the considered time periods. Table 2.4

compares the results obtained from the panel data analysis of hourly energy prices on the

pooled data from 2009 to August 2014. We then employ the time-series model where the

lagged prices are considered. While Tables 2.4 and 2.5 use the whole available dataset,

the remaining tables use different samples. This is to compare the ability of the proposed

model in explaining the variability in HOEP during 2010 − 2011 and more recent period

of 2012 − 2013. When dividing the data into two sections, we ignored the data for 2014

since we do not have the data for the full year. Further, in order to have two equal time

intervals, we ignored the earlier data for 2009.

In Table 2.4 results of estimating different types of fuel mix on natural logarithm of

HOEP in isolation from any dummy and temperature variables and economic factors is

shown in the second column (Reg(1)). Column 3 includes variables that reflect the weather

conditions in addition to the Exchange and the Unemployment rate (Reg(2)); in column

4, fixed effects for years, months, days of the week and hours have been controlled for

(Reg(3)). To conserve space, coefficients of different dummies that have been considered

in this study are not reported. We have also accounted for fixed effects of days of the

month; however, the results were not significant and therefore are not reported in this

research. Column 5 in this table considers all listed independent variables except month

dummies and total electricity production (Reg(4)). The last column in this table represents

the result of the fully specified model (Reg(5)). All coefficients and their robust standard

errors are reported in the tables.

As can be seen in Table 2.4, in all specifications the coefficients of wind and nuclear

are negative and statistically significant at 0.1%. The coefficient estimate suggests that

relative to hydro, a one percentage point increase in electricity produced by wind and

nuclear generation results on average in 5.6%-10% and 3%-5% decrease in HOEP prices
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respectively. On the other hand, whenever significant, the coefficient of gas shows an

opposite trend; a one percentage point increase in electricity production by Gas generations

on average increases HOEP by around 1%− 2%. This result is comparable to that shown

by the coefficient of coal. An increase in production of electricity by coal generations has

positive effect on prices and it suggests that on average a one percentage point increase in

coal generation’s production results in a 2% − 3.7% rise in HOEP. The ability to explain

the model using GLS estimation is increased in the last columns when time dummies and

all other explanatory variables are considered. In all of these cases the reported R2, which

shows the ability of the proposed model in explaining the variation in HOEP, is around

21%− 29%.

Turning now to the Time-Series estimation of hourly prices, the five Tables of 2.5 to 2.9

contain different time periods and price lag selections. Table 2.5 consists of Time-Series

estimation of the HOEP when different model specifications similar to ones in Table 2.4

are considered. In this analysis, we were interested to find out if the consideration of

lagged prices as explanatory variables can be added to the model. The two most common,

Akaike Information Criterion (AIC) and Bayesian Information, Criterion (BIC), are used

to determine what lags to use. AIC and BIC are two statistics that report the lag selection

when the data is defined as the Time-Series dataset. Both AIC and BIC suggest that the

optimal numbers of price lags are 24 and 25. In this regard, both lags are added to the

model, and the results are presented in Table 2.5.

The first regression analyses in Table 2.5 examined the impact of different types of fuel

mix on the HOEP in the absence of the other explanatory variables. Then moving to re-

gression (2), weather, Unemployment and Exchange rate variables are added to the model.

Regression (3) considers the estimation of the model when controls for time trends are

captured by time dummies. In regression (4), we considered the model when all explana-

tory variables except total electricity production and month dummies are considered and,

as before, the last regression is the estimation of the fully specified model. Based on the

results from the Time-Series model, the coefficients of wind and nuclear are negative and

highly significant at 0.1% level. The results suggest that a one percentage point increase

in production of electricity by wind (nuclear) relative to hydro will decrease HOEP by
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roughly 6.2%−9.4% (3%−4.3%). This is similar to what the GLS model reported earlier.

In addition, production of electricity by wind generations has the most pronounced effect

on HOEP, although it only takes on average 2.7% of the electricity market share.

As shown in Table 2.5, consideration of lagged electricity prices is important in this

model, and the coefficients are significant at 0.1% level. Besides, the proposed model can

explain around 37% of the variation in HOEP, which is higher than what the GLS model

proposed earlier. On the other hand, while the coefficient of coal has a positive sign in all

model specifications like before, the coefficient of gas does not show a consistent pattern.

In the basic regression, the coefficient is reported with a positive sign and highly significant,

whereas it is shown to have a negative impact on HOEP and is still statistically significant

in regressions 3 and 5. Besides, the coefficient of gas is reported to have a lower effect on

HOEP in general when compared to the coefficients reported by the GLS model, likewise,

the coefficient of Coal. In general, the reported adjusted R2 in the Time-Series model is

higher than in the GLS model. When the GLS model is shown to have the R2 around

28%, the Time-Series model reports an adjusted R2 of around 37%. In this regard, we are

going to rely on the Time-Series models in the remaining part of hourly regression results.

Having discussed the two models of Time-Series and GLS, the next section of the

results addresses a brief comparison between two periods: a period from 2010 to 2011 and

a more recent period of 2012 to 2013 are constructed from the dataset. The purpose of

this division is not only to evaluate the significance and magnitude of different types of

generations’ production of electricity on explaining the variation in the HOEP but also

to compare the magnitude of coefficients within these time periods. On the other hand,

although AIC and BIC suggest the consideration of the 24th and 25th lags for the HOEP,

we are more interested in short-term effects of previous prices. In this regard, we consider

the 2nd to the 9th price lags plus the average prices of yesterday and the day before as

explanatory variables in the following regressions. As before, we ran five regressions with

different model specifications in each period; also, we ran the fully specified model in which

the HOEP has its original value and is not transformed to natural logarithmic version. The

results are shown in the last column as regression (6) in Tables 2.6 and 2.7.
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The results, as shown in Table 2.6, indicate that among all fuel types, the wind gen-

eration has the most profound effect on explaining the variation in the HOEP relative to

hydro. A similar result can be found in Table 2.7 where we analyze the most recent data

of 2012− 2013. On the other hand, the coefficient of gas is statistically significant only in

the third, fifth and sixth regressions where we controlled for time-fixed effects. Its negative

sign suggests that on average a one percentage point increase in electricity produced by

gas generations will decrease HOEP by around 0.6%− 0.7%. The small magnitude of gas

generators disappears when we turn our attention to the result in Table 2.7. Despite the

reported result for gas in Table 2.6, Table 2.7 shows a negative and statistically significant

coefficient for gas in all considered regressions. In addition, the effect of gas on the HOEP

is higher, at around 2.8% − 5% for every one percentage point increase in production of

electricity by gas generations (relative to hydro).

The most striking result to emerge from the comparison of the two tables is that

the effect of production of electricity by wind, nuclear and gas generations on prices has

increased in more recent years of 2012 − 2013. In contrast, other types of generations

have shown lower effects over the past years. Moreover, coal generations have not shown

a consistent pattern, and wherever significant, the coefficient of coal is negative and its

magnitude changes from 0.05%− 1% and 1%− 4% in Table 2.6 and Table 2.7 respectively.

Regarding the considered lagged prices, the result suggests that the only significant

lag in all regressions is the second lag. In addition, although the average prices of the

day before are shown to be statistically significant in all periods, the average prices of

two days before are only significant in the more recent period of 2012 − 2013. The two

weather variables of average Ontario temperature and average Ontario relative humidity

that are considered in regressions (2) to (6) are worth noting; however, the purpose of

recruiting them in the model is to control for any changes in electricity production due to

weather conditions that can further affect prices, and they are not variables of interest. In

this regard, we are not going to focus on the interpretation of those variables in details;

however, in general, the results show that whereas average temperature plays a significant

role in explaining price variations in all models, relative humidity is mostly significant in

the more recent period. On the other hand, while the coefficient of temperature is always
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negative, the coefficient of relative humidity is positive. This result suggests that a higher

temperature would result in a decrease of HOEP.

In both Tables 2.6 and 2.7, following the addition of more explanatory variables, the

adjusted R2 rises; however, in Table 2.6, it is only slightly higher in the third regression

where we only consider to control for the different time trends. Also, the adjusted R2

is higher in all regressions of Table 2.7 compared to the similar regressions in Table 2.6.

With almost successive increases in adjusted R2 from regression (1) to regression (5), we

conclude that the fully specified model is worth considering in further analysis.

We also ran a sensitivity analysis to check the robustness of the results. Table 2.10 shows

the results from time-series analysis when the cluster-standard errors (at day level) and

Newey-West standard errors in which we assume that the error structure is heteroskedastic

autocorrelated up to lag (1)35 are considered36. We specifically focused on the fully specified

model in both periods of 2010 − 2011 and 2012 − 2013. Regression (1) and (3) show the

results of the regressions when the standards errors are clustered at day level in each period.

Regression (2) and (4) consider the Newey-West standard errors. As the results show, all

of the independent variables in the model are statistically significant at the same level as

reported in regression (5) in Table 2.6 and 2.7. In 2010 − 2011 the only exception is the

coefficient of “Other” that is significant at 0.1% level in Table 2.6 whereas it is reported

to be statistically significant at 5% level in Table 2.10.

Having discussed the differences between the two periods, in the next step, we scrutinize

the effects of production of electricity by each type of generation on the HOEP when the

data are divided seasonally in each time interval. In what follows, we run the fully specified

model for each season in each period and compare the results that are shown in Tables 2.8

and 2.9. We begin our analyses by looking at the results from Winter 2010 − 2011 and

Winter 2012 − 2013. A comparison of the two results reveals that not only the share of

35We considered the lag (2) and lag (3) and the result did not vary significantly.
36In addition, we used the weekly Bank of Canada energy price index as an IV for coal. We also added

the 4 weeks and 8 weeks lag of the energy price index in the regressions. The coefficients of interest
(except “other”) in the more recent years of 2012-2013 showed a consistent pattern with what we have
found earlier. We did not include these sensitivity analyses in this paper since we believe that we should
have instrumented the hourly coal with the relevant variable at the same frequency.
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production of electricity by wind generations has doubled in the more recent dates, but

also the effect of it on the HOEP. Wind generations in Ontario accounted for 2.19% of

electricity production in Winter 2010 − 2011, whereas this amount was almost doubled

(3.91%) in Winter 2012 − 2013. The reason that the production of electricity by wind

generation (relative to hydro) decreases the HOEP is the relatively less expensive cost of

producing electricity by wind generations. On the other hand, although the electricity

produced by nuclear generations decreased by almost 1.5%, surprisingly the negative effect

of it on the HOEP increased from 6.7% to 10%. The opposite trend, however, can be seen

in the production of electricity by gas generations. Gas generations increased their market

share from 12.33% in Winter 2010 − 2011 to 15.39% in Winter 2012-2013. This 3% rise

in production reflected a tripled negative effect on HOEP prices. The coefficient of gas

increased in absolute value from 4.5% to 11%. This result shows that a one percentage

point increase in production of electricity by gas (relative to hydro) generations on average

decreases HOEP by 11%. Interestingly, whereas coal generations decreased production of

electricity to half (from 6.10% in Winter 2010− 2011 to 2.92% in Winter 2012− 2013), the

negative effect of this on HOEP increased from 4.8% to 7.7%.

The economic reason for such surprising trends in the effect of coal, gas and nuclear

generations on price can be explained as follow. Since Ontario was moving away from

coal-fired generations and was investing more in renewable energy sources like wind, solar

and biofuel, we see a dramatic decline in the percentage of electricity produced by coal

and an increase in wind and other (solar and biofuel) type of generations in recent years.

On the other hand, as noted by Gallant and Fox [2011] and Trebilcock [2017] irregularity

of production of electricity by wind and solar power generation made Ontario to rely more

on gas generation in order to accommodate any unpredictable fluctuations in electricity

production by wind and solar power generation. As the less expensive coal became more

scarce in the Ontario electricity production process, its effect on price increased. For exam-

ple, in Winter 2010-2011 the share of coal was 6.10%, which decreased to 2.92% in Winter

2012-2013; on the other hand, its effect on HOEP prices almost doubled. In particular,

a one percentage point increase in production of electricity by coal-fired generations de-

creased HOEP by 4.8% in Winter 2010-2011 and by 7.7% in 2012 − 2013. In addition,

76



further increases to renewable and gas slightly decreased the operation of nuclear plants,

which in return had a similar effect to coal.

The Spring trend differs from what happened in Winter time. For example the share

of wind generations in the production of electricity went up from 2.20% in 2010 − 2011

to 3.19% in 2012 − 1013; however, the effect of it decreased by 3% (from 10% to 7%).

On the other hand, the more surprising result emerges from the other type of generations

(solar, biofuel and etc.). Although the share of production of electricity by other type

generations increased by only 0.05% in the market, the magnitude of the effect of it on the

HOEP sharply increased from 0.02 to 0.13 in absolute value. It seems possible that these

results are due to Ontario’s transitioning process from using less coal-fired generations and

investing more in green energy generations. This is coupled with the weather conditions

in Spring that allow more production by solar power generations and essentially have a

larger effect on prices.

Comparing Summer of 2010 − 2011 with the Summer of 2012 − 2013, as the coal

generations lose their share in the electricity market, all other types of generations except

gas, escalate their production. The magnitude of coefficients of all type of generations

including gas increased, which further enhances the ability of the model to explain changes

in the HOEP. The adjusted R2 increased from 43% in Summer 2010 − 2011 to 52% in

Summer 2012 − 2013. A similar trend can be seen when comparing the results of Fall

2010− 2011 with Fall 2012− 2013; however, the adjusted R2 in Fall 2012− 2013 increased

more substantially from 27% to 51%.

What stands out in these comparisons is the effect of wind generations: the production

of these increased slightly but showed a relatively higher effect on price. This trend is

repeated in all of the results tables. A possible explanation for such a trend is the less

expensive cost of electricity production by wind generations. Although the sunk cost of

wind generations is high, once the infrastructure is in place the variable costs of producing

electricity by wind generations are considered to be low37. On the other hand, since the

low cost sources of electricity are dispatched before higher cost sources, firms generating

37For further details on the cost of wind power generations please refer to “The economics of wind
energy: A report by the European Wind Energy Association”, page 21, Krohn et al. [2009].
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wind power are bidding very low and undercut the supply curve. Therefore, even though

the production of electricity by wind power plants have increased slightly over the past few

years, the effect of the wind power generation on prices is larger than the effect of other

types of power generation.

In the final part of the price analysis, we investigate the effect of electricity production

by different types of generation GA. As IESO states, “The global adjustment (GA) is the

component that covers the cost of building new electricity infrastructure in the province,

maintaining existing resources, as well as providing conservation and demand management

programs.” Changes in GA are due to changes in HOEP. A lower HOEP triggers a higher

GA in order to cover the additional payments to regulated generations. We are interested

in investigating this relationship as well as assessing the effect of each generation on GA.

The results are summarized in Tables 2.11 to 2.12. which present the results of GLS and

Time-Series regressions on GA.

The present results are significant in at least two major respects. One is the reverse

sign of the coefficients when comparing the result from Table 2.4 and Table 2.5 with the

result from Table 2.11 and Table 2.12. The observed opposite sign of the coefficients38

can be attributed to the complementary nature of GA and HOEP towards payments to

long-term generators contacts. Since GA and HOEP are moving in opposite directions, it

is not surprising to observe an opposite effect of generations’ production on each of them.

The second major result from this set of tables is the effect of the coal on both prices. The

Coefficient of coal is mostly significant at 0.1% level in all model specifications and in all

tables. As can be seen from the results, a one percentage point increase in production of

electricity by coal increases HOEP and decreases the GA (by 10% to 13% in GLS and by

5.5% to 7.1% in the time-series regressions). In addition, the magnitude of the reduction

in GA is greater than the magnitude of increase in HOEP. These differences can be ex-

plained in part by the cheap and already existing infrastructure of coal-fired generations.

For example, a one percentage point increase in the production of electricity by renewable

38Although the sign of the estimated coefficients for each fuel type has not always changed when com-
paring the results in these tables, the general trend shows that different fuel types have opposite effect on
the HOEP and the GA.
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sources such as solar generations would require building the infrastructure, which essen-

tially increases GA; however, if we increased the electricity production by employing the

already existing coal-fired generations, we would not need to account for costs of build-

ing infrastructure. In addition, since coal is relatively less expensive, the more electricity

production increases by engaging coal-fired generations, the more GA decreases.

2.7 Conclusion

The primary goal of this study is to assess the magnitude of effects of fuel mix on the HOEP

and GA in Ontario. The implementation of the GEA in 2009 resulted in Ontario moving

towards renewable energy sources in electricity and a shift away from utilizing coal-fired

generation. Exploiting the changes in generation fuel mix resulting from the GEA offers

some interesting identifying variation to estimate corresponding impacts with respect to

electricity prices. Assessing such effects enables better prediction of future electricity prices

as well as determining the most efficient combination of generations. Most of our analysis

employs data from 2010-2013. This time period witnessed rather sharp changes in fuel mix,

which went beyond the elimination of coal. Specifically, the proportion of electricity from

nuclear and wind power increased substantially. Therefore, our unique dataset enables us

to contribute to the literature by exploiting time-series variation generated by the GEA, to

assess the effects of differences in fuel types on GA and HOEP during the coal phase-out

period.

Since the data contain observations of multiple generations production over multiple

time periods, we were able to form a panel dataset. We employed General Least Square

(GLS) and Time-Series in a semi-log specification to investigate the effects of fuel mix. In

tandem, our econometric results suggest that controlling for other factors, a one percentage

point reduction in the proportion of coal relative to hydro is associated with a roughly 5%

increase in the HOEP in recent years. The marginal effects of gas and nuclear based power

are comparable. On the other hand, a one percentage point increase in wind based power

is associated with almost a 10% decline in the HOEP, which is almost twice the marginal
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impact of other energy sources. But it is important to acknowledge that by the end of the

studied sample, wind was roughly a bit more than 3% of total consumption.

It is important to extrapolate what these econometric results imply for the impacts that

coal elimination has had. Based on the econometric regressions from the 2012− 2013 data

the coefficient estimate of coal power is −0.047. Therefore, controlling for other factors

the decrease in the proportion of coal over this time period from 3.56% to zero implies

that the HOEP should have risen by approximately 2%. This effect should be amplified by

the 8.7 percentage point decline in the proportion of gas (from 17.5% to 8.8%). However,

nuclear power rose by 7.1 percentage points (from 57.7% to 64.8%), wind power increased

by roughly 0.7 percentage points (from 1.89% to 2.59%), and hydro power rose from 18.4%

to 23%. Basically, the increase in other sources of energy outweighed the effects of elimi-

nating coal, which explains why the average HOEP fell from 26.4 $/MWh to 23 $/MWh

(a drop of a little more than 11%)39.

In contrast, the GA in terms of $/MWh, rose by almost 50% from 42.64 $/MWh to

63.47 $/MWh. Taking the more conservative estimates from the Time Series model, the

econometric results imply that the 3.71 percentage point decrease in coal could be linked to

a 24.3% (3.71 x -0.0657) increase in Global Adjustment per MWh. However, we are unable

to confirm why this is exactly the case. A potential reason could be the shift to nuclear

and wind power, with both sources having guaranteed rate long term impacts. The effects

of nuclear power generation on GA could be attributable to the significant refurbishments

of existing nuclear power plants. Future research will be devoted to understanding the

driving factors behind these coefficient estimates. However, it is important to note the

comparable coefficient estimates of coal and nuclear with respect to Global Adjustment.

The implication is that the increase in wind power generation may not be exclusively

responsible for rising Global Adjustment payments.

The HOEP has fallen over time, and any impacts from the elimination of coal have

39Based on authors’ calculation, the distribution of fuel mix and the average HOEP and GA in 2012
(2013) are as follow: coal 3.56% (0.036%), gas 17.44% (8.78%), hydro 18.35% (23%), other 1.03% (0.23%),
nuclear 57.71% (64.82%) wind 1.88% (2.58%), HOEP 26.4 (23.42) $/MWh and GA 42.64 (63.47) $/MWh
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been outweighed by a greater reliance on nuclear and wind. Of course, a lower HOEP from

increased reliance on nuclear power generation comes at the cost of higher GA payments.

However, the benefits from eliminating coal extend beyond implications for consumer elec-

tricity bills. Future research will focus on incorporating the health benefits associated with

the elimination of coal.
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2.8 Tables

Table 2.1: Summary Statistics (2009-2014)

Variable Observation Mean Std. Deviation Min Max

HOEP 49656 30.25796 28.31026 -138.79 1891.14
GA 68 41.8344 16.9641 -0.27 78.55
Coal 49656 684.9861 893.5438 0 5103
Gas 49656 2181.334 1207.373 0 6882
Hydro 49656 3887.352 922.2005 0 6233
Nuclear 49656 9819.255 1033.984 0 12286
Other 49656 152.1841 78.46169 0 1638
Wind 49656 461.306 404.2114 0 2201
Total 49656 17186.42 2321.635 0 25836
Average Temperature 49656 2.9806 3.5866 -7.6652 12.0747
Average Relative Humidity 49656 23.7796 5.0143 5.586 32.8788
Exchange Rate 49656 104.4454 6.4362 95.53 126.4514
Unemployment rate 49656 8.1394 0.6534 7.3 9.6

Source: Authors’ own calculation.
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Table 2.2: Number of Incidents in which Value of the Variable reported as 0 (2009-2014)

Variable Number of Incidents

HOEP 19
Coal 4703
Gas 1
Hydro 1
Nuclear 1
Wind 3
Total 1

Source: Authors’ own calculation.

Table 2.3: HOEP Summary Statistics (2009-2014)

Month Obs Mean Std.Dev Min Max

January 4464 39.75441 34.07248 -138.43 611.38

February 4056 40.85967 48.47652 -71.5 1891.14

March 4464 34.68504 40.27466 -128.18 529.37

April 4320 25.81066 21.14319 -138.79 410.7

May 4464 25.2414 24.14938 -128.12 583.71

June 4320 27.51395 24.43578 -128.23 535.28

July 4464 31.31075 23.71164 -128.05 492.89

August 4464 28.95612 21.82792 -128.64 382.64

September 3600 25.86867 20.18334 -108.51 475.05

October 3720 26.04756 19.1882 -128.13 544.87

November 3600 25.42108 16.41809 -128.08 232.92

December 3720 29.79927 15.4234 -128.12 196.63

Source: Authors’ own calculation.
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Table 2.4: GLS Regression of Natural Log of HOEP (2009-2014)

Summary Reg (1) Reg (2) Reg (3) Reg (4) Reg (5)

Coal 3.7170 0.0226*** 0.0325*** 0.0222*** 0.0371*** 0.0171***

(4.5589) (0.0040) (0.0043) (0.0026) (0.0040) (0.0041)

Gas 12.2449 0.0207*** 0.0092*** -0.0023 0.0122*** -0.0025

(5.5530) (0.0033) (0.0026) (0.0035) (0.0021) (0.0026)

Nuclear 57.8506 -0.0356*** -0.0399*** -0.0497*** -0.0307*** -0.0352***

(7.9108) (0.0017) (0.0019) (0.0047) (0.0030) (0.003)

Other 0.8864 -0.0790* -0.0777 -0.0185 0.0043 0.0218

(0.3810) (0.0378) (0.0343) (0.0332) (0.0312) (0.0252)

Wind 2.7081 -0.0565*** -0.0889*** -0.1001*** -0.0876*** -0.0951***

(2.3464) (0.0072) (0.0097) (0.0121) (0.0099) (0.01)

Total NO NO NO NO 0.00007***

(6.61e-06)

Avg. Temp. NO -0.0394 NO -0.0439 -0.0349***

(0.0059) (0.0067) (0.0058)

Avg. Rel. Hum. NO 0.0061 NO 0.0135 0.0118***

(0.0021) (0.0023) (0.0023)

Exchange Rate NO YES NO YES YES

Unemployment Rate NO YES NO YES YES

Hour NO NO YES YES YES

Day Of Week NO NO YES YES YES

Month NO NO YES NO NO

Year NO NO YES YES YES

Constant 5.0751*** 8.1306 6.8871*** 7.2511*** 6.1541***

(0.1045) (0.5253) (0.3624) (0.4716) (0.4157)

Observation 49637 49637 49637 49637 49637

R2 0.2162 0.2464 0.2942 0.2894 0.2967

Note: Robust standard errors are in parentheses. ***, ** and * indicate statistical significance level at 1 percent, 5

percent and 10 percent, respectively. The omitted category for fuel type is “hydro”. Regressions are based on the hourly

data from January 2009 to August 2014, however, Exchange rate and the Unemployment rate vary monthly.
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Table 2.5: Time-Series Regression of Natural Log of HOEP (2009-2014)

Summary Reg (1) Reg (2) Reg (3) Reg (4) Reg (5)

Coal 3.7170 0.0049*** 0.0125*** 0.0079*** 0.0178*** 0.0002

(4.5589) (0.0009) (0.0010) (0.0015) (0.0013) (0.0014)

Gas 12.2449 0.0089*** 0.00008 -0.0096*** 0.0016 -0.0114***

(5.5530) (0.0009) (0.0011) (0.0015) (0.0012) (0.0014)

Nuclear 57.8506 -0.0307*** -0.0364*** -0.0.436*** -0.0288*** -0.0328***

(7.9108) (0.0010) (0.0011) (0.0018) 0.0014 (0.0014)

Other 0.8864 -0.0530*** -0.0601*** -0.0297** -0.0088 0.0067

(0.3810) (0.0117) (0.0110) (0.0104) (0.0100) (0.0092)

Wind 2.7081 -0.0627*** -0.0877*** -0.0978*** -0.0875*** -0.0942***

(2.3464) (0.0026) (0.0028) (0.0028) (0.0028) (0.0029)

Total NO NO NO NO 0.00007***

(2.64e-06)

Lag24HOEP 0.2425*** 0.2311*** 0.2129*** 0.2154*** 0.2127***

(0.0124) (0.0122) (0.0122) (0.0123) (0.0122)

Lag25HOEP 0.1618*** 0.153*** 0.1393*** 0.1403*** 0.1398***

(0.0117) (0.0115) (0.0117) (0.0117) (0.0116)

Avg. Temp. NO -0.0267*** NO -0.0316*** -0.0238***

(0.0008) (0.0009) (0.0009)

Avg. Rel. Hum. NO 0.0049*** NO 0.0109*** 0.0094***

(0.0008) (0.0008) (0.0008)

Exchange Rate NO YES NO YES YES

Unemployment Rate NO YES NO YES YES

Hour NO NO YES YES YES

Day of Week NO NO YES YES YES

Month NO NO YES NO NO

Year NO NO YES YES YES

Constant 3.7293*** 6.0568*** 5.2006*** 5.4243*** 4.4690***

(0.0821) (0.1512) (0.1327) (0.2456) (0.2405)

Observation 49579 49579 49579 49579 49579

Adjusted R2 0.3369 0.3542 0.3739 0.3714 0.3772

Note: Robust standard errors are in parentheses. ***, ** and * indicate statistical significance level at 1 percent, 5

percent and 10 percent, respectively. The omitted category for fuel type is “hydro”. Regressions are based on the data

from January 2009 to August 2014 , however, Exchange rate and the Unemployment rate vary monthly.
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Table 2.6: Time-Series Regression of Natural Log of HOEP (2010-2011)

Summary Reg(1) Reg(2) Reg(3) Reg(4) Reg (5) Reg (6)

Coal 5.1641 0.0002 -0.0055*** -0.0052** -0.0021 -0.0103*** -0.3205***

5.4041 (0.0017) (0.0019) (0.0025) (0.0024) (0.0027) (0.0819)

Gas 13.6716 0.0001 -0.0025 -0.0077*** -0.0006 -0.0061** -0.2782***

(5.3630) (0.0016) (0.0019) (0.0025) (0.0023) (0.0024) (0.0657)

Nuclear 56.8615 -0.0266*** -0.03*** -0.0351*** -0.0247*** -0.026*** -0.6298***

(7.9598) (0.0015) (0.0017) (0.0030) (0.0027) (0.0027) (0.0603)

Other 0.8201 -0.0403*** -0.0457*** -0.0148 -0.0275** -0.0354*** 3.2327***

(0.3537) (0.0105) (0.0112) (0.0116) (0.0120) (0.0117) (0.6845)

Wind 2.2689 -0.06428*** -0.0714*** -0.0661*** -0.0651*** -0.0678*** -1.3931***

(1.9480) (0.0051) (0.0051) (0.0051) (0.0053) (0.0054) (0.0947)

Total NO NO NO NO 0.00002*** 0.0017***

(3.32e-06) (0.0001)

Lag2HOEP 0.3247*** 0.3219*** 0.3214*** 0.3227*** 0.322*** 0.23***

Lag3HOEP -0.0008 -0.0011 0.0035 0.0029 0.0034 0.0238

Lag4HOEP 0.0444* 0.0442* 0.0485* 0.0482* 0.0485* 0.0296

Lag5HOEP 0.0342 0.0342 0.0377* 0.0375* 0.0379* 0.0182

Lag6HOEP -0.0043 -0.0041 -0.0005 -0.0007 -0.0001 -0.0087

Lag7HOEP -0.0419*** -0.0416*** -0.039** -0.0392** -0.0384** -0.0109

Lag8HOEP -0.0412*** -0.0412*** -0.0388*** -0.0388*** -0.0381*** -0.0185*

Lag9HOEP 0.0199* 0.0189* 0.0203* 0.0209* 0.022** 0.0112

Lag24AvgHOEP 0.0723*** 0.0709*** 0.0615*** 0.0675*** 0.0668*** 0.1207***

Lag48AvgHOEP 0.0247* 0.0230 0.0202 0.0254* 0.0265* 0.0217

Avg. Temp. NO -0.0031*** -0.0174*** -0.0045*** 0.0016 0.517***

(0.0012) (0.0045) (0.0013) (0.0016) (0.0589)

Avg. Rel. Hum. NO 0.0009 0.0018 0.0018 0.0003 -0.0234

(0.0011) (0.0013) (0.0012) (0.0012) (0.0278)

Exchange Rate NO YES NO YES YES YES

Unemployment Rate NO YES NO YES YES YES

Hour NO NO YES YES YES YES

Day of Week NO NO YES YES YES YES

Month NO NO YES NO NO NO

Year NO NO YES YES YES YES

Constant 3.598*** 2.1074*** 4.1323*** 2.1889*** 1.1295*** -24.1296***

(0.1427) (0.2725) (0.2349) (0.3409) (0.3638) (7.9513)

Observation 17520 17520 17520 17520 17520 17520 17520

Adjusted R2 0.317 0.3199 0.3272 0.3238 0.3254 0.3357

Note: Robust standard errors are in parentheses. ***, ** and * indicate statistical significance level at 1 percent, 5

percent and 10 percent, respectively. The omitted category for fuel type is “hydro”. Regressions are based on the hourly

data from January 2010 to December 2011, however, Exchange rate and the Unemployment rate vary monthly.
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Table 2.7: Time-Series Regression of Natural Log of HOEP (2012-2013)

Summary Reg (1) Reg (2) Reg (3) Reg (4) Reg (5) Reg (6)

Coal 2.2566 -0.0036 -0.0035 -0.0101*** -0.0007 -0.0468*** -0.8069***

(2.2683) (0.0025) (0.0028) (0.0039) (0.0028) (0.0032) (0.1249)

Gas 12.5979 -0.0285*** -0.0332*** -0.0327*** -0.0253*** -0.049*** -0.8347***

(5.8860) (0.0021) (0.0023) (0.0036) (0.0024) (0.0024) (0.062)

Nuclear 58.6631 -0.0542*** -0.058*** -0.0576*** -0.0443*** -0.0492*** -0.8857***

(7.3083) (0.0023) (0.0026) (0.0047) (0.0031) (0.0027) (0.059)

Other 0.9487 -0.0012 -0.0090 -0.0066 0.0061 0.0033 6.8072***

(0.2932) (0.0172) (0.0178) (0.0182) (0.0177) (0.0162) (0.9124)

Wind 3.2664 -0.0852*** -0.0923*** -0.0844*** -0.0809*** -0.0997*** -1.8041***

(2.4470) (0.0042) (0.0044) (0.0047) (0.0044) (0.0044) (0.0849)

Total NO NO NO NO 0.0001*** 0.0033***

(6.21e-06) (0.0001)

Lag2HOEP 0.4322*** 0.4272*** 0.4242*** 0.4222*** 0.4076*** 0.193***

Lag3HOEP 0.0018 0.0011 0.0095 0.0074 0.007 0.00002

Lag4HOEP -0.0203 -0.0207 -0.0110 -0.0124 -0.0119 0.05**

Lag5HOEP 0.0121 0.0113 0.0222 0.0209 0.021 0.009

Lag6HOEP 0.0128 0.0119 0.0219 0.0206 0.0219 0.0136

Lag7HOEP -0.0128 -0.0138 -0.0055 -0.0066 -0.0043 0.018

Lag8HOEP -0.0066 -0.0088 -0.0036 -0.0047 -0.0029 -0.0065

Lag9HOEP 0.0206** 0.0126 0.0117 0.0089 0.012 0.0048

Lag24AvgHOEP 0.1141*** 0.1152*** 0.096*** 0.0993*** 0.0906*** 0.1709***

Lag48AvgHOEP 0.0645*** 0.0599*** 0.0452*** 0.0454*** 0.0474*** 0.0075

Avg. Temp. NO -0.0034** -0.0125*** -0.0033** 0.0055*** 0.2316***

(0.0014) (0.0044) (0.0016) (0.0016) (0.0617)

Avg. Rel. Hum. NO 0.007*** 0.0054*** 0.0078*** 0.0058*** 0.0552

(0.0013) (0.0014) (0.0013) (0.0013) (0.0315)

Exchange Rate NO YES NO YES YES YES

Unemployment Rate NO YES NO YES YES YES

Hour NO NO YES YES YES YES

Day of Week NO NO YES YES YES YES

Month NO NO YES NO NO NO

Year NO NO YES YES YES YES

Constant 4.9302*** 1.3603** 4.9466*** 1.3131** 2.0624*** 11.558

(0.1760) (0.5476) (0.3263) (0.5511) (0.5388) (14.0392)

Observation 17544 17506 17506 17506 17506 17506 17544

Adjusted R2 0.4083 0.4127 0.4253 0.4245 0.4381 0.3094

Note: Robust standard errors are in parentheses. ***, ** and * indicate statistical significance level at 1 percent, 5

percent and 10 percent, respectively. The omitted category for fuel type is “hydro”. Regressions are based on the hourly

data from January 2012 to December 2013, however, Exchange rate and the Unemployment rate vary monthly.
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Table 2.8: Time-Series Regressions of Natural Log of HOEP (Seasons of 2010-2011)

W (%) Reg (W) Sp (%) Reg (Sp) Su (%) Reg (Su) F (%) Reg (F)

Coal 6.1078 -0.0482*** 5.0290 -0.0539*** 7.2127 -0.0419*** 2.3261 -0.0245***

(5.4192) (0.0065) (5.7269) (0.0081) (6.1665) (0.0062) (1.8825) (0.0074)

Gas 12.3320 -0.0454*** 12.5653 -0.018*** 15.3114 -0.0524*** 14.4366 -0.0475***

(5.1770) (0.0059) (5.0027) (0.0068) (5.7855) (0.0054) (4.8417) (0.0079)

Nuclear 55.9495 -0.0678*** 55.7601 -0.0535*** 57.7164 -0.071*** 57.9883 -0.0597***

(5.9961) (0.0065) (7.5851) (0.0081) (10.1295) (0.0078) (7.2599) (0.0074)

Other 0.8040 -0.1175*** 0.8715 -0.0256 0.7406 -0.0326* 0.8644 -0.1912

(0.1708) (0.0272) (0.3677) (0.0215) (0.5238) (0.0192) (0.2203) (0.0522)

Wind 2.1981 -0.0671*** 2.2051 -0.106*** 1.4402 -0.1058*** 3.2297 -0.1087***

(1.7485) (0.0086) (1.8258) (0.0136) (1.2798) (0.0142) (2.3478) (0.0112)

Total 0.00002** 0.00005*** -6.55e-06 0.00001

(9.85e-06) (0.00001) (0.00001) (0.00001)

Lag2HOEP 0.3481*** 0.2878*** 0.3356*** 0.2885

Lag3HOEP 0.031 -0.0029 0.0839 -0.0364

Lag4HOEP 0.0456 0.041 0.0392 0.0446

Lag5HOEP 0.0273 0.1001** -0.0173 -0.0284

Lag6HOEP 0.0006 -0.0051 -0.0299 0.0032

Lag7HOEP -0.0405 -0.0643** -0.0406 0.0023

Lag8HOEP -0.0249 -0.0394 -0.0331 -0.0413***

Lag9HOEP 0.0419* 0.0173 0.0429 0.0001

Lag24AvgHOEP 0.0644* 0.0572** 0.0382 0.1341**

Lag48AvgHOEP -0.0133** 0.0801*** 0.014 -0.1603**

Avg. Temp. -0.0375*** -0.0524*** 0.0709*** -0.0266***

(0.0093) (0.01) (0.0178) (0.0087)

Avg. Rel. Hum. 0.0026* 0.0063* 0.0027 -0.0024

(0.0014) (0.0032) (0.0022) (0.0030)

Exchange Rate YES YES YES YES

Unemployment Rate YES YES YES YES

Hour YES YES YES YES

Day of Week YES YES YES YES

Year YES YES YES YES

Constant 7.1806*** 10.6473 -4.6944*** 11.6985**

(1.1681) (2.2846) (0.746) (5.9788)

Observation 4320 4320 4368 4368 4416 4416 4416 4416

Adjusted R2 0.425 0.3264 0.4339 0.2718

Note: Robust standard errors are in parentheses. ***, ** and * indicate statistical significance level at 1 percent, 5

percent and 10 percent, respectively. The omitted category for fuel type is “hydro”. Regressions are based on the hourly

data from January 2010 to December 2011, however, Exchange rate and the Unemployment rate vary monthly. “W”,

“Sp”, “Su” and “F” represent Winter (January, February and March), Spring (April, May and June), Summer (July,

August and September) and Fall (October, November and December)
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Table 2.9: Time-Series Regressions of Natural Log of HOEP (Seasons of 2012-2013)

W (%) Reg (W) Sp (%) Reg (Sp) Su (%) Reg (Su) F (%) Reg (F)

Coal 2.9244 -0.0776*** 1.6412 0.0111 2.8780 -0.1142*** 1.5869 -0.1066***

(1.9733) (0.0113) (1.9885) (0.0087) (2.7819) (0.009) (1.8210) (0.0118)

Gas 15.3944 -0.1167*** 11.1827 -0.0383*** 13.8667 -0.1124*** 9.9781 -0.0948***

(5.3722) (0.0126) (5.1984) (0.0056) (7.0614) (0.0077) (3.8114) (0.0076)

Nuclear 54.15 -0.1063*** 58.4359 -0.0487*** 60.5982 -0.1079*** 61.3899 -0.078***

(6.2150) (0.0122) 6.1674 (0.0070) (8.1042) (0.009) (5.8297) (0.0111)

Other 0.9122 0.0534 0.9276 -0.1396** 0.9764 -0.0749*** 0.9779 -0.2094***

(0.1618) (0.0975) (0.3001) (0.0345) (0.4314) (0.0233) (0.1933) (0.0699)

Wind 3.9143 -0.14*** 3.1983 -0.0707*** 1.9058 -0.1841*** 4.0572 -0.1405***

(2.5313) (0.0138) (2.2477) (0.0075) (1.5077) (0.0146) (2.7063) (0.0096)

Total 0.0001*** 0.0001*** 0.0001*** 0.0002***

(0.00002) (0.00001) (0.00001) (0.00002)

Lag2HOEP 0.3624*** 0.4249*** 0.3846 0.3595

Lag3HOEP -0.0446 -0.038 0.0134 0.0813

Lag4HOEP -0.0614 -0.0465 0.0012 0.0517

Lag5HOEP 0.0098 0.0619* 0.0156 -0.0056

Lag6HOEP 0.088** -0.0059 -0.0198 0.0188

Lag7HOEP 0.022 -0.0182 -0.0265 -0.0143

Lag8HOEP -0.0028 0.0201 -0.0092 -0.0355**

Lag9HOEP 0.012 0.0198** 0.0155 -0.0073

Lag24AvgHOEP 0.0297 0.0629** 0.3403 0.0698***

Lag48AvgHOEP 0.0125 0.0408 0.0117 -0.0022

Avg. Temp. -0.045*** -0.0395*** 0.053*** -0.0145*

(0.0111) (0.0078) (0.0156) (0.0076)

Avg. Rel. Hum. 0.006 0.0009 0.0142*** 0.0073**

(0.0043) (0.0022) (0.0028) (0.0028)

Exchange Rate YES YES YES YES

Unemployment Rate YES YES YES YES

Hour YES YES YES YES

Day of Week YES YES YES YES

Year YES YES YES YES

Constant -2.8786* -3.5755* 11.7755*** 13.3926***

(1.5242) (1.8787) (1.7939) (1.9939)

Observation 4344 4344 4368 4368 4416 4416 4416 4378

Adjusted R2 0.3956 0.3643 0.5336 0.5285

Note: Robust standard errors are in parentheses. ***, ** and * indicate statistical significance level at 1 percent, 5

percent and 10 percent, respectively. The omitted category for fuel type is “hydro”. Regressions are based on the hourly

data from January 2012 to December 2013, however, Exchange rate and the Unemployment rate vary monthly. “W”,

“Sp”, “Su” and “F” represent Winter (January, February and March), Spring (April, May and June), Summer (July,

August and September) and Fall (October, November and December)
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Table 2.10: Time-Series Regressions of Natural Log of HOEP (Sensitivity Analysis)

2010-2011 2012-2013

Reg (1) Reg (2) Reg (3) Reg (4)

Coal -0.0103*** -0.0103*** -0.0468*** -0.0468***

(0.0034) (0.0032) (0.0056) (0.0039)

Gas -0.0061* -0.0061** -0.049*** -0.049***

(0.0031) (0.0028) (0.004) (0.0028)

Nuclear -0.026*** -0.026*** -0.0492*** -0.0492***

(0.0037) (0.0032) (0.0038) (0.0031)

Other -0.0354** -0.0354** 0.0033 0.0033

(0.0196) (0.0139) (0.0255) (0.0194)

Wind -0.0678*** -0.0678*** -0.0997*** -0.0997***

(0.0066) (0.0063) (0.0066) (0.0052)

Total 0.00002*** 0.00002*** 0.0001*** 0.0001***

(4.88e-06) (3.97e-06) (0.00001) (7.32e-06 )

Lag2HOEP 0.322*** 0.322*** 0.4076*** 0.4076***

Lag3HOEP 0.0034 0.0034 0.007 0.007

Lag4HOEP 0.0485** 0.0485* -0.0119 -0.0119

Lag5HOEP 0.0379* 0.0379* 0.021 0.021

Lag6HOEP -0.0001 -0.0001 0.0219 0.0219

Lag7HOEP -0.0384** -0.0384** -0.0043 -0.0043

Lag8HOEP -0.0381** -0.0381** -0.0029 -0.0029

Lag9HOEP 0.022** 0.022** 0.012 0.012

Lag24AvgHOEP 0.0668** 0.0668** 0.0906*** 0.0906***

Lag48AvgHOEP 0.0265 0.0265 0.0474* 0.0474**

Avg. Temp. 0.0016 0.0016 0.0055** 0.0055**

(0.0021) (0.0019) (0.0026) (0.0026)

Avg. Rel. Hum. 0.0003 0.0003 0.0058*** 0.0058***

(0.0018) (0.0015) (0.002) (0.002)

Exchange Rate YES YES YES YES

Unemployment Rate YES YES YES YES

Hour YES YES YES YES

Day of Week YES YES YES YES

Month NO NO NO NO

Year YES YES YES YES

Constant 1.1295** 1.1295** 2.0624*** 2.0624***

(0.4838) (0.4343) (0.7624) (0.7624)

Observation 17520 17520 17506 17506

Adjusted-R2 0.3254 0.3254 0.4381 0.4381

Note: Standard errors are in parentheses and clustered at the day level in Reg (1) and Reg (3). Reg (2) and Reg (4) consider Newey-West

standard error structure. ***, ** and * indicate statistical significance level at 1 percent, 5 percent and 10 percent, respectively. The

omitted category for fuel type is “hydro”. Regressions are based on the hourly data, however, Exchange rate and the Unemployment rate

vary monthly.
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Table 2.11: Monthly OLS Regressions of Natural Log of GA

Summary Reg (1) Reg (2) Reg (3) Reg (4)

Coal 3.7177 -0.1342*** -0.1097*** -0.1192*** -0.1251***

(3.6863) (0.0311) (0.0279) (0.0352) (0.0401)

Gas 12.2491 -0.0234 -0.0809*** -0.0764** -0.0728*

(3.209) (0.0248) (0.0261) (0.0309) (0.0363)

Nuclear 57.8359 -0.0136 -0.0362 -0.0557 -0.0523

(3.8472) (0.0285) (0.0299) (0.0366) (0.0461)

Other 0.8864 0.2039 0.1784 -0.6502 -0.5359

0.1487 (0.5145) (0.4604) (0.5341) (0.5833)

Wind 2.7116 -0.1181* -0.0008 -0.0615 -0.1244

(1.2724) (0.0708) (0.0875) (0.0995) (0.1172)

Total NO NO NO -0.00001

(0.0001)

Avg. Temp. NO 0.0562** 0.0556 0.3951***

(0.0274) (0.0462) (0.1311)

Avg. Rel. Hum. NO 0.018 -0.012 -0.0044

(0.0378) (0.0452) (0.0606)

Exchange Rate NO -0.0483*** -0.0145 -0.0108

(0.0116) (0.0199) (0.0201)

Unemployment Rate NO 0.1373 0.4517* 0.4657*

(0.1361) (0.2406) (0.2424)

Season NO NO YES YES

Month NO NO YES YES

Year NO NO YES YES

Constant 5.3099** 10.2712*** 6.7999* 7.0177

(2.1722) (2.8418) (3.8122) (4.5674)

Observation 68 68 68 68

R2 0.3101 0.5056 0.5513 0.5809

Note: Robust standard errors are in parentheses. ***, ** and * indicate statistical significance level at 1 percent, 5

percent and 10 percent, respectively. The omitted category for fuel type is “hydro”. Regressions are based on the

monthly data from January 2009 to August 2014.
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Table 2.12: Monthly Time-Series Regressions of Natural Log of GA

Summary Reg (1) Reg (2) Reg (3) Reg (4)

Coal 3.7177 -0.0559** -0.067** -0.0719* -0.0657**

(3.6863) (0.0208) (0.0262) (0.0276) (0.0293)

Gas 12.2491 -0.0417*** -0.0754*** -0.0729*** -0.0683**

(3.209) (0.0133) (0.0265) (0.0248) (0.0258)

Nuclear 57.8359 -0.0046 -0.0305 -0.028 -0.0276

(3.8472) (0.0181) (0.0313) (0.0364) (0.0371)

Other 0.8864 0.1327 0.1938 -0.3712 -0.4503

0.1487 (0.3175) (0.3433) (0.5577) (0.5576)

Wind 2.7116 -0.0541 -0.0524 -0.0391 -0.0549

(1.2724) (0.0716) (0.0812) (0.0806) (0.0851)

Total NO NO NO -0.00003

(0.00004)

Lag1GA 0.3768** 0.2543* 0.1793 0.1819

(0.1469) (0.1416) (0.1445) (0.1443)

Avg. Temp. NO 0.0269 0.0249 0.0151

(0.0263) (0.023) (0.0275)

Avg. Rel. Hum. NO 0.0329 0.0164 0.0168

(0.0325) (0.0319) (0.0319)

Exchange Rate NO -0.0212* -0.0053 -0.004

(0.0124) (0.0154) (0.0154)

Unemployment Rate NO -0.0496 -0.0883 -0.0946

(0.0629) (0.1293) (0.13)

Season NO NO YES YES

Year NO NO YES YES

Constant 3.3038** 7.3908** 6.5723** 7.1849**

(1.3492) (2.8508) (2.5981) (2.7647)

Observation 67 67 67 67

Adjusted R2 0.4506 0.4775 0.5291 0.5214

Note: Robust standard errors are in parentheses. ***, ** and * indicate statistical significance level at 1 percent, 5

percent and 10 percent, respectively. The omitted category for fuel type is “hydro”. Regressions are based on the

monthly data from January 2009 to August 2014.
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2.9 Figures

Figure 2.1: Average Monthly Hourly Ontario Energy Price (2009-2016)
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Source: Authors’ own calculation.

Note: The graph is based on the average monthly HOEP data and it excludes September 2014 to December 2014.
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Figure 2.2: Monthly Global Adjustment (2009-2016)
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Source: Authors’ own calculation.

Note: The graph is based on the monthly GA data and it excludes September 2014 to December 2014.
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Figure 2.3: Average Monthly Electricity Production by Coal-fired Generators (2009-2016)
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Source: Authors’ own calculation.

Note: The graph is based on the monthly average of coal-fired generations and it excludes September 2014 to

December 2014.
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Chapter 3

Estimating the Effects of Eliminating

Coal-Fired Electricity Generation on

Air Quality: Evidence from Ontario’s

Green Energy Act
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3.1 Introduction

The Green Energy and Green Economy Act enacted by the Ontario government in 2009

was an ambitious policy aimed at shifting the province’s electricity power generation to

cleaner sources of energy. As a result, the government gave significant subsidies to dif-

ferent generators of renewable energy, such as wind and solar, and also committed to the

elimination of coal-fired generating plants. This policy was motivated by research find-

ings, which suggested that coal-fired plants in Ontario were emitting significant amounts

of pollution. Perrotta (2002) notes results from previous studies, suggesting that in 2002,

coal-fired plants in Ontario were responsible for: 23% of sulphur dioxide (SO2) emissions

and 14% of nitrogen oxide (NOx) emissions that contributed to air pollution and acid rain;

and 20% of the province’s greenhouse gases emissions1.

However, recent research has been critical of the Green Act. McKitrick and Aliakbari

(2017) find small improvements in air quality that could be associated with the closure

of coal-fired plants. They conclude that the same improvements in air quality could also

have been achieved through the installation of new pollution control systems rather than

the actual closure of the plants. Trebilcock (2017) notes that the policies associated with

the Act have resulted in significant increases in electricity costs to consumers, with very

limited environmental benefits and negligible economic growth. He also points to the large

gap between fixed prices, which were promised to renewable energy producers through 20

year feed-in-tariff contracts, and actual wholesale prices2.

As a result, it is unsurprising that electricity costs to consumers have increased quite

significantly, As documented by Trebilcock (2017), in November 2016 the off-peak price

of 8.7 cents per kwh was roughly double the corresponding price of 4.4 cents per kWh.

1“Ontarios Coal Plant Phase-out Produced Many Health and Environmental Ben-
efits”, by Kim Perrotta (2017), Executive Director, Canadian Association of Physi-
cians for the Environment and available at, http://www.cela.ca/blog/2017-01-19/

ontario-coal-plant-phase-out-produced-many-health-and-environmental-benefits.
2Trebilcock (2017) documents that the price for power from wind in 2009 was set at 13.5 cents per kwh

and solar power producers could receive up to 80 cents per kilowatt hour through similar contracts. In
contrast, the average total wholesale cost of electricity in the same year was around 6 cents per kilowatt
hour.
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Similarly, on-peak prices roughly doubled from 9.3 cents per kWh to 18 cents per kWh over

the same time period, with mid peak prices also jumping from 8 cents per kWh to 13.2 cents

per kWh. From another perspective, Dachis, Jacobs, and Muthukumaran (2016) find that

electricity in Ontario in 2006 was 40% cheaper than in western New York State. However,

by 2015, Ontarios electricity prices became 5% higher than those prevailing in western New

York (State). The upward trend in electricity prices will persist. The Ontario government’s

recent decision to reduce electricity bills through the elimination of the Harmonized Sales

Tax will simply shift the financial burden to future generations as the policy has been

financed through increased government debt and will therefore also add significant interest

costs (Trebilcock [2017]).

There are other contributing factors towards higher electricity bills in Ontario. Sen

[2015] points to the costs of nuclear plant refurbishment, new transmission and distribution

infrastructure, the impacts of new peak-period-supplying power plants coming online, as

well as the legacy costs of Ontario Hydros debt. While it is true that electricity rates

charged to consumers on a per kWh basis have significantly increased and resulted in

higher bills for consumers with rising consumption, overall electricity demand in Ontario

have in fact declined. Much of the above costs have also been covered through increases

in the Global Adjustment, which is a charge passed directly onto retail consumers, and is

the difference between market driven wholesale prices and guaranteed prices to generators.

Sen [2015] finds that from 2006 to 2014, total GA charges in Ontario increased from $654

million to $7 billion, while in comparison, total HOEP costs to all customers over the same

time period have correspondingly declined from over $7 billion to roughly $5 billion .

The appropriate policy question is whether the increase in total Global Adjustment

charges driven by subsidies to renewables, have to some extent been offset by better air

quality from the phase out of coal-fired plants and increased reliance on cleaner sources

of energy. Answering this question is of relevance to Canadian public policy and to other

jurisdictions as well. Specifically, the Federal Government recently announced a plan to
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eliminate all remaining coal-fired plants by 2030 3 4. From a more global viewpoint, coal

provides roughly 40% of the world’s electricity, with much higher proportions in developing

countries. Emissions from coal-fired plants contains significant pollutants that have been

linked to adverse health outcomes. Therefore, additional evidence in this respect, is of

obvious value. Ontario is the first North American jurisdiction to phase out coal-fired

plants from its electricity system. This is all the more remarkable, given Ontarios prior

reliance on coal electricity. In 2003, almost 25% of Ontarios electricity came from coal and

the Nanticoke plant was North Americas largest coal-fired plant. Hence, the Green Act

is a unique policy experiment offers credible identification and provides an opportunity to

study empirically the significance of corresponding environmental benefits.

This study matches hourly level data on the fuel mix of electricity supply in the province

to corresponding measures of air quality in the cities of Toronto, Hamilton, Ottawa, and

Sarnia from 2009 to 2016, which allows us to estimate the effects of the declining share

of coal power generation over a period in which coal generated power was slowly but

completely eliminated. Employing data across different cities is an important sensitivity

analysis which allows an assessment on whether any regression results reflect the effects of

unobserved city specific characteristics. This study focuses specifically on changes in fuel

mix on city levels of Ozone (O3), Nitrogen Oxide (NOx), and Particulate Matter (PM2.5) -

all of which have been linked to emissions from coal-fired plants. The paper also estimates

the impacts of fuel mix on the probability of smog days.

Broadly speaking, there are similarities in regression results across cities. On average,

increases in nuclear and wind powered generation (relative to lower coal) are significantly

correlated with lower levels of Nitrogen Oxide (NOx), and Particulate Matter (PM2.5) in

most cities. Higher levels of gas and hydro power are sometimes associated with lower levels

of these pollutants, but their coefficient estimates are not consistently significant across

3For further information please refer to:
https://beta.theglobeandmail.com/report-on-business/industry-news/energy-and-resources/

ottawa-to-announce-coal-phase-out-aims-for-virtual-elimination-by-2030/

article32953930/?ref=http://www.theglobeandmail.com&
4For further information please refer to: http://www.cela.ca/blog/2017-01-19/

ontario-coal-plant-phase-out-produced-many-health-and-environmental-benefits.
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specifications. More nuclear power is correlated with lower Ozone (O3) but increases in

wind generated energy are counter-intuitively associated with more Ozone (O3) in all cities.

3.2 Literature Review

Unfortunately, the relevant literature is thin. No other jurisdiction has completely phased

out coal-fired plants in an attempt to reduce harmful emissions. There has been some

research, which has looked at the effects of alternative strategies to mitigate carbon emis-

sions. For example, the past few years have witnessed an increasing interest in the use of

carbon capture and storage (CCS) facilities that can be coupled to coal-fired power plants.

These facilities enable the continued use of fossil fuels while reducing carbon dioxide (CO2)

emissions, specifically by capturing harmful emissions and transporting them to a storage

facility where they will be deposited and not released to the atmosphere. However, a 2013

consultation by the European Commission suggests that such technology has not evolved

to a stage where it is a cost-effective solution to mitigating fossil fuel emissions5. Another

example is the study done by Brown et al. [2017] on Alberta’s electricity market. They

investigate the effects of different forms of carbon pricing on wholesale electricity prices,

output, and emissions in the short-run in Alberta and discuss how these effects depend on

the market structure. The authors find that regardless of the degree of market competition,

the output-based subsidy has a larger effect on prices and emissions than increasing the

per tonne carbon price.

Chan et al. [2017] study the effects of restructuring of wholesale and retail electricity

markets in the U.S. that began from the mid nineteen-nineties onwards, by using a panel

data of coal-fired generating plants from 1991− 2005. While there are studies, which have

investigated the effects of industry restructuring on different types of electricity plants (for

example, Douglas [2006], Fabrizio et al. [2007], and Zhang [2007]), this paper is unique

given the long time period of the sample, exclusive focus on coal-fired plants, and attempt

5The results of the consultation are available at, https://ec.europa.eu/energy/en/topics/

oil-gas-and-coal/carbon-capture-and-storage. For further details please refer to Hammond and
Spargo (2014).
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to quantify unintended environmental effects. The authors find that deregulation induced

efficiency improvements and reductions in coal costs, resulted in combined cost savings of

nearly 15 percent of an average plants operating expenses. Further, these changes resulted

in emissions reductions of 7.5%. However, this paper does not investigate the effects on

local air quality. Linn et al. [2014] also focus on efficiencies by employing a unique panel

data set of coal-fired generation units for the years 1985−2009. Their data includes monthly

fuel input, generation, and coal prices by generation unit for nearly all U.S. coal plants.

Their identification strategy is based on changes in coal prices. Their results indicate that

a 10% increase in coal prices causes a 0.1% − 0.4% improvement in efficiency (electricity

production per ton of coal). As is the case with Chan et al. [2017] this study does not

estimate the corresponding effects on environmental quality.

Some recent studies estimate environmental benefits generated from cheaper natural

gas that can be attributed to increased fracking. These papers are comparable to this study

as they exploit changes in fuel mix. Holladay et al. [2016] build an hourly panel of fuel

type, electricity output, and pollution emissions for every generator in the five boroughs

of NYC from 2005-2010 and use the identification offered by the switch from oil to natural

gas fired generators to estimate the corresponding effects on pollution emissions of New

York City power plants. Their results suggest that the switch to cheaper natural gas can be

associated with roughly a 2/3 reduction in SO2 emissions. Holladay and LaRiviere [2017]

estimate marginal CO2 emissions for eight regions across the U.S. from 2006-2011. Their

results suggest significant heterogeneity in reductions in CO2 emissions across regions. In

terms of research that has investigated the environmental benefits of renewable sources of

energy, Cullen [2013] uses data on output from wind based (and other) generators for every

15 minutes from April of 2005 through April of 2007. The results showed that one MWh of

wind power production offsets less than half a ton of CO2, almost one pound of NOx, and

no discernible amount of SO2. In summary, the results imply that the value of emissions

offset by wind power exceed the cost of renewable energy only when the social costs of

pollution are very high. Novan [2015] also employs data from Texas (from January 1,

2007 through December 31, 2011) and finds that while nontrivial amounts of emissions are

avoided through the use of more wind, the marginal external benefits from wind powered
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generation are very different from other renewable sources, such as solar energy. This

heterogeneity in marginal external benefits implies that policies that fail to acknowledge

such differences result in less than first best outcomes.

In summary, while there are papers that have either looked at the effects of emissions

reductions from generators as a result of increased reliance on natural gas or wind power,

we have been unable to find a peer reviewed published study that has econometrically

identified the effects of a reduced reliance on coal, or alternatively, an increased dependence

on cleaner sources of electricity on local city level air quality. The only paper we are aware

of that has specifically estimated the environmental effects of reduced reliance on coal-

fired generation is McKitrick and Aliakbari (2017)6. They employ month level data from

May 2004 to December 2014 for Hamilton, Toronto, and Ottawa and study the effects of

reduced coal reliance on city levels of particulates (PM2.5, or particulate matter smaller

than 2.5 microns), nitrogen oxides (NOx) and ground-level ozone (O3). Their results

suggest that the elimination of coal was associated with some reduction in average urban

PM2.5 levels but not in Toronto or Hamilton. The results with respect to other pollutants

is not conclusive. The problem with this approach is that relying on monthly data hides a

significant amount of the identifying variation available from hourly changes in fuel mix.

Further, the study does not attempt to assess the effects of other types of fuel mix (such

as nuclear energy) that also benefited from long term guaranteed contracts. Our paper

attempts to contribute to the literature by exploiting hourly changes in fuel mix over time,

which allow us to investigate the relative impacts of coal-fired, nuclear, and gas generated

electricity on local city level pollution. This is a departure from most U.S. based studies

that have focused on emissions emitted from specific generators.

3.3 Data

The dataset for this study contains hourly air pollutant data associated with downtown

Toronto, Hamilton, Ottawa and Sarnia. The pollution data are obtained from the Ontario

6Available online at, https://www.fraserinstitute.org/studies/

did-the-coal-phase-out-reduce-ontario-air-pollution
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Ministry of the Environment and Climate Change for the period of 2009 − 20167. This

study is based on three type of air pollutants: (1) NOx, (2) O3 and (3) PM2.5. In chemistry,

NOx refers to nitrogen dioxide (NO2) and nitric oxide (NO) gases that can cause smog and

acid rain. Furthermore, under specific weather conditions such as high temperature and

reactions with other chemicals such as sulfur dioxide, NOx can form ground level ozone

(O3) and particulate matter (PM)8. In addition, NOx has the potential of burning lung

tissue, exacerbating asthma, and rendering people more susceptible to chronic respiratory

diseases9. Particulate matter (PM2.5) can cause chronic bronchitis, aggravated asthma,

and premature death, as well as resulting in reduced visibility. Therefore the focus of this

study is on the three pollutants of NOx, O3 and PM2.5. Table 3.3 gives a detailed summary

statistics of pollutants, temperature and relative humidity in each year and each city over

the sample period.

Figure 3.1 to 3.12 give some idea of the monthly average of each pollutant over 2009−
2016 in the four cities of Toronto, Hamilton, Ottawa and Sarnia. With the exception of

Ottawa, NOx emissions (Figure 3.1, 3.4, 3.7 and 3.10) are generally declining through the

sample period in all cities. However, NOx emissions are clearly lower after the elimination

of coal in 2014. O3 emissions trend (Figure 3.2, 3.5 and 3.11) are mainly constant over

the sample period in most cities. However, they do seem to dip in 2016. There is a clear

upward trend in PM2.5 (3.3 and 3.6) until 2014 in Toronto and Hamilton, after which there

is a perceptible downwards shift. In Sarnia, however, The PM2.5 is generally declining over

the sample period and shows a more sharp decline in 2014.

Data on hourly electricity generation from coal, gas, hydro, nuclear, wind and other

(solar and biofuel) type of power plants for the period of January 2009 to December 2016

were obtained from the Independent Electricity System Operator (IESO). By focusing on

2009 to 2016 we can estimate the effects of declining share of coal in electricity genera-

tion system on these specific measures of air quality. In addition, monthly exchange and

7Available online at, http://www.airqualityontario.com/history/
8For further details please refer to: http://www.icopal-noxite.co.uk/nox-problem/

nox-pollution.aspx
9This description of pollution effects are taken from http://www.ucsusa.org/clean-energy/

coal-and-other-fossil-fuels/coal-air-pollution#.Wce9f2hSzcs
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unemployment rate were also downloaded form Statistics Canada website and used in our

analysis to reflect general economic activity in Ontario.

In 2003, coal constituted roughly 25% of total Ontario power mix10. However, the

proportion of coal in electricity fuel mix began to drop significantly after that. As can be

seen in Table 3.2, coal power was roughly 8% in 2010 before dropping to 0.89% in 2014

when the phase out was complete. Over the same time period, the proportion of nuclear

power rose from approximately 56% to 61.2% and wind grew from 1.9% to almost 4%.

This increase in wind and nuclear power was accompanied by a corresponding decline in

the other types of fuel (aside from coal). Table 3.111 gives the timeline in which coal was

phased out in terms of the specific plants and the corresponding loss in capacity (MW ).

The key identification for our study is the drop in coal generation from Nanticoke in

2011 and the complete phasing out of Nanticoke and Lambton by 2013. Nanticoke is 129

km from Toronto, while Lambton (Sarnia) is roughly 290 km west of Toronto. Lakeview

was powered down in 2012 and converted to North America’s largest purely biomass-

fueled power plant12. Thunder Bay was shut down in April 2014 and converted to run on

advanced biomass (wood pellets) and recommissioned on February 9, 201513. Nanticoke

and Lambton were decommissioned in 201314 15.

3.4 Empirical Model

The purpose of this study is to examine the effects of electricity supplied by different sources

of energy on three pollutants of ground-level ozone (O3), fine particulate matter (PM2.5)

10For further details please refer to: http://www.energy.gov.on.ca/en/archive/the-end-of-coal/
11Available at, http://www.energy.gov.on.ca/en/archive/the-end-of-coal/
12For more information please visit: http://www.ediweekly.com/

largest-biomass-power-plant-na-set-open-atikokan/
13For more information please visit: http://www.opg.com/generating-power/thermal/stations/

thunder-bay-station/Pages/thunder-bay-station.aspx
14For more information please visit: https://www.thespec.com/news-story/

5738344-power-plant-s-closure-spells-end-of-era-for-nanticoke/
15For more information please visit: http://www.theobserver.ca/2016/11/22/

lambton-generation-station-to-be-decommissioned.
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and nitrogen oxide (NOx) for the duration from January 2009 to December 2016. The

nature of the data in this study enables us to adopt two approaches in order to evaluate

the magnitude of such effects. In the first approach, we structure the data in a Panel

format and run the Generalized Least Square (GLS) estimation in which the random effect

of hours is captured. Random effects of hours is used to consider both the within and

between variations in each hour. In our second approach, we estimate the model when we

focus on the Time-Series nature of the data. The results of a Dickey-Fuller test for unit

roots are presented in the appendix of this paper (Table C.1 to C.9). Upon rejection of the

null hypothesis that the series contain a unit root, we consider the third and sixth lagged

values of each dependent variable. This helps us to investigate the short-term effects of

previous values on current values of air pollution. Considering the same set of independent

variables in both approaches, we were able to compare the ability of the proposed models

in explaining the relationship between different types of generations and each considered

pollutant. Thus, the first model reads as follow:

NOxit
= β0+β1Git+β2Hit+β3Nit+β4Oit+β5Wit+β6Totalit+β7Tempit+β8Rel.Humit+

Y + S +DW +H + εit

O3it = β0+β1Git+β2Hit+β3Nit+β4Oit+β5Wit+β6Totalit+β7Tempit+β8Rel.Humit+

Y + S +DW +H + εit

PM2.5it = β0 + β1Git + β2Hit + β3Nit + β4Oit + β5Wit + β6Totalit + β7Tempit +

β8Rel.Humit + Y + S +DW +H + εit

(3.1)

In the Panel dataset:

i = The Panel ID or Panel Variable which are the 24 hours of a day (i.e., 1,...,24);

t = The Panel’s Time Variable for duration from 1st of January 2009 to 31st of December

2016 (i.e., date);

NOxit
, O3it and PM2.5it are the amount of nitrogen oxide (in parts per billion (ppb)),

ground-level ozone (in parts per billion (ppb)) and fine particulate matter (in microgram

per cubic metre (mg/m3)) in the air in hour i at time t, respectively;
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Git,Hit,Nit,Oit and Wit are the percentage of electricity generated by gas, hydro, nuclear,

other (such as solar and biofuel) and wind energy in hour i at time t respectively;

Totalit is the total electricity produced (in megawatts (MW )) in hour i at time t;

Tempit and Rel.Humit are the average temperature (in degrees Celsius ◦C) and relative

humidity (in percentage) in hour i at time t.

Y , S, DW and H are dummy variables that capture the fixed effect of year, season, day

of week and hour16;

εt is an idiosyncratic error term.

Since we estimate the three above mentioned equations when the fuel mix are reported

as percentages of total electricity supplied each hour, we have to omit one of the fuels to

avoid collinearity. We drop coal from all regressions. Therefore, the coefficient estimates

of different types of fuel reflect either the parts per billion (ppb) or microgram per cubic

metre (mg/m3) change in pollutants in response to a one percentage point increase in

electricity generated by different sources of energy relative to coal. We also consider the

total amount of electricity generated in each hour (in MW ) to capture the overall hourly

effect of electricity production on hourly pollution levels.

Using the GLS model when we consider the fixed effects of year, season, day of week

and hour, it is possible to control for characteristics within each group that might affect

the left-hand side variable (pollutant). Year fixed-effects are relevant to consider since un-

der different situations such as uncontrolled weather conditions (wind speed or amount of

precipitation17) in each year, the fuel mix would vary. The evidence of season fixed-effect

is obvious from figures 3.1 to 3.12 18. Also, the possible differences between weekday and

weekends air pollution due to low volume of business and different commuting pattern on

weekends rationalizes the need for considering the day of week fixed-effect in this model.

In addition, we controlled for the fixed effect of daily fluctuations in pollutants by consid-

ered quarter day dummies in our analysis. Hourly temperature and relative humidity are

16We divided the 24 hours of a day into 4 time intervals: 1) from midnight to 6AM, 2) 6AM to noon,
3) noon to 6PM, 4) 6PM to midnight. Therefore we considered 4 hour dummies rather than 24.

17The data for hourly precipitation and wind speed in these four cities are not available.
18Although the effect of season is more apparent in the O3 and NOx, we controlled for season fixed-effects

in all regressions.
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considered to control for the effect of weather condition on the production of electricity by

different types of energy such as wind, hydro and other (like solar).

In the second model we focus on Time-Series nature of the dataset. We evaluate the

effect of electricity produced by each source of energy on pollutants through the following

reduced form specification:

NOxt = β0 + β1Gt + β2Ht + β3Nt + β4Ot + β5Wt + β6Totalt + β7NOxt−3 + β8NOxt−6 +

β9Tempt + β10Rel.Humt + Y + S +DW +H + εt

O3t = β0 +β1Gt+β2Ht+β3Nt+β4Ot+β5Wt+β6Totalt+β7O3t−3 +β8O3t−6 +β9Tempt+

β10Rel.Humt + Y + S +DW +H + εt

PM2.5t = β0 +β1Gt+β2Ht+β3Nt+β4Ot+β5Wt+β6Totalt+β7PM2.5t−3 +β8PM2.5t−6 +

β9Tempt + β10Rel.Humt + Y + S +DW +H + εt

(3.2)

Where:

t represents hours of the day from 1st of January 2009 to 31st of December 2016.

The focus of this study is on estimating β1 to β5 which yields the amount of change in air

pollution (either in terms of ppb or mg/m3) in response to a one percentage change in the

electricity produced by different types of energy sources (relative to coal) in each hour. We

run both regressions when we consider the dependent (air pollutants) and weather variables

(temperature and relative humidity) in the four cities of Toronto, Hamilton, Ottawa and

Sarnia.

Further, we look at the air quality in Ontario based on the smog advisories that are

issued since 2009. In particular, we are interested to match the likelihood of smog advisory

issued in Ontario to the production of electricity by different sources of energy. In this

regressions we averaged the data at the daily level and then we estimated the following

probit regression:

Tempt and Rel.Humt are the average temperature and relative humidity in day t

respectively.
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ExchangeRate is the Canadian monthly cents per United States dollar spot rate.

UnemploymentRate the unemployment rate in Ontario that is seasonally adjusted for

prime aged adults.

Y and M are sets of dummy variables for year and month respectively.

εt is an idiosyncratic error term.

In this model we consider Exchange and Unemployment rate to account for economic

activities that might impacted the business, change the supply and increase the likelihood of

smog days. We do not consider the Exchange and Unemployment rate with month dummies

in the same regression. This is because both Exchange rate and Unemployment rate vary

monthly and incorporating them with month dummies would lead to over-specification in

month effects.

Before controlling for time-invariant variables that might affect the model (i.e., using

time-specific fixed-effects), it was important to run the basic regression model within each

defined model without considering any dummy variables on the pooled data for comparison

purposes. The following section discusses the results of both the GLS and Time-series

model in addition to the proposed Probit model.

This study is limited by the lack of information on the amount of electricity generated

from different types of fuel mix in each city. In addition, there are many other variables

that contributes to air pollution such as fumes from car exhausts and emissions from

industries and manufacturing activities. Therefore, we might have an endogeneity problem

which arises from the omitted variables. In this regard, we acknowledge the fact that the

calculated coefficients might be upward biased.

3.5 Empirical Results

3.5.1 The effects of changing fuel mix on pollution

This section presents the findings of the research. Our study estimates the effects of hourly

changes in fuel mix on Nitrogen Oxide (NOx), Particulate Matter (PM2.5), and ground
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level Ozone (O3). Table 3.4 to 3.27 contain regression results of the effects of changes in

the proportion of fuel mix with respect to each pollutant that are based on hourly data

in Toronto, Hamilton, Ottawa and Sarnia. The benefits of hourly data are the availability

of more identifying variation that is otherwise supressed through monthly averages. Each

of these tables are organized similarly with estimates in all columns based on the GLS

model (equation 3.1) except the last column which represents the result from the time-

series model (equation 3.2). Columns (1) consists of results obtained after employing a

wide array of covariates and after that each column consists of results further conditioned

on different time fixed effects.

The estimates in Tables 3.4 to 3.9 show the results that are based on hourly data

in Toronto. With respect to NOx (Table 3.4), coefficient estimates of the proportion of

nuclear and wind (whenever significant) are all negative. In contrast, coefficient estimates

of gas, hydro and other fuel sources are positive and sometimes significant. Estimates in

column (4) when we control for different time fixed effects, indicates that a one percentage

point increase in wind (gas) relative to coal is associated with roughly a 0.97 (0.13) drop

(increase) in NOx. Coefficient estimate of temperature (relative humidity) in all columns

are negative (positive) and statistically significant.

Coefficient estimates of fuel mix are statistically significant with respect to O3, in Table

3.5. However, there are differences in signs as well as the magnitude of coefficient estimates.

Coefficient estimates of nuclear power are negative and statistically significant at the 1%

level, ranging from −0.37 to −0.06. Coefficient estimates of gas and hydro are also negative

and statistically significant at the 1% level across all columns, with values from −0.34 to

−0.03 and −0.19 to −0.04, respectively. Wind power is also statistically significant (at the

1% level), but with positive coefficients. An increase in the proportion of other power is also

significantly associated (at varying levels of significance) with higher levels of O3. Higher

temperature is associated with higher ozone levels (at the 1% level), while an increase in

relative humidity is correlated with lower ozone levels (at the 1% level).

Table 3.6 contains estimates with respect to PM2.5. With the exception of other sources,

an increase in the proportion of all other sources of electricity relative to coal (when

statistically significant) is associated with a decline in PM2.5 levels when we started to
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account for the fixed effects of time (column (2) to (5)). Coefficient estimates of nuclear

energy are negative and significant (at 1%) in column (1) to (4) with coefficient estimates

from −0.07 to −0.03 (from column (2) to (4)). A one percentage point increase in the

proportion of wind generated energy is associated with roughly a 0.15 mg/m3 decline

in PM2.5 levels (column (4)). A one percentage point rise in hydro power generation is

associated (at the 1% level) with roughly a 0.04 mg/m3 decline in PM2.5 (column (4)). An

increase in temperature and relative humidity is associated with increased levels of PM2.5.

In summary, the empirical results do indicate that an increase in nuclear and wind

generated power at the expense of coal is consistently associated with lower overall pollu-

tion levels. More wind generated power is associated with increased levels of ozone, but

are correlated with significantly lower levels of NOx and somewhat reduced PM2.5. The

coefficient estimates and summary statistics can be used to understand the magnitude of

marginal effects. Take the case of NOx. Coefficient estimates from column (4) imply that a

one percentage point increase in nuclear power relative to coal is associated with a roughly

0.01 ppb decline in NOx. Therefore, a 5.6 percentage point rise in the proportion of nuclear

power is linked with a 0.056 drop in NOx, controlling for all else. With a NOx sample

mean of 17.71 ppb, this is equivalent to a 0.32% decline in NOx. However, the marginal

effects of an increase in wind power are much larger. On average, a one percentage point

increase in wind power generation is associated with a 0.97 ppb reduction in NOx. This is

a substantial 24.61% reduction in NOx levels given its sample mean of 17.71 ppb. This is

important given 4.5 percentage point increase in the proportion of wind powered generation

over the sample period (from 1.55% in 2009 to 6.10% in 2016).

In contrast to NOx, an increase in nuclear powered energy at the expense of coal is

associated with larger marginal impacts with respect to reductions in O3 levels (Table 3.5).

A one percentage point rise in nuclear power is significantly associated with roughly a 0.16

ppb drop in O3 levels. Hence, a 5.6 percentage point increase in nuclear power is correlated

with an almost 0.9 ppb reduction in O3 levels. Given that the sample mean of O3 is roughly

26 ppb, this works out to a 3.46% decline in O3 levels.

The effects of changes in fuel mix from 2009−2016 on PM2.5 (Table 3.6) have also been

pronounced. A one percentage point increase in nuclear power is significantly associated
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with an approximately 0.03 drop in PM2.5. Therefore, a 5.6 percentage point rise in nuclear

power generation corresponds to a 0.16 PM2.5 reduction. Based on a PM2.5 sample mean

of roughly 7, this is equivalent to an almost 2.39% decline in hourly PM2.5 levels. The

largest impact comes from wind power with a coefficient estimate of almost −0.15. The

4.5 percentage point increase in wind power over the sample period is then equivalent to a

0.67 mg/m3 reduction in PM2.5, which is equivalent to an almost 9.5% decline in PM2.5

levels.

While Tables 3.4 to 3.6 use the whole dataset for the Toronto city, Tables 3.7 to 3.9

consider the summer months (May to August). Comparing the results of Table 3.4 with 3.7,

we see that the coefficient of nuclear and wind power are both negative and statistically

significant at 1% level across all columns. However, in Table 3.7 the magnitude of the

coefficient of nuclear (wind) is higher (lower) than the results in Table 3.4. In addition,

whenever significant, the coefficient of hydro and gas are still positive. However, the effect

of gas declined slightly in summer (from 0.23 in column (2)-Table 3.4 to 0.14 in column

(2)-Table 3.7.)

The sign of the coefficient estimates of fuel mix with respect to O3 in Table 3.8 are

the same as what the result shows in Table 3.5 except for gas and hydro. In general,

gas does not show a consistent pattern and hydro shows to have a positive effect on O3

in summer. We can use the coefficient estimates along with the summary statistics for

summer to calculate the marginal effects of these fuel changes in summer. The results

in Table 3.8 suggest that on average, a one percentage point increase in the proportion

of hydro and wind power is associated with 0.84 ppb and 1.14 ppb increase in O3 levels.

Given that over the summer months the percentage change in hydro and wind power are

−4 and 3.29, respectively; plus the fact that the mean of O3 over the summer in Toronto is

31.45 ppb 19, these work out to a 10.64% decline and a 11.92% increase in O3, controlling

for all else. On the other hand, a one percentage point increase in the nuclear power is

associated with a 0.20 ppb decrease in O3 in summer. Therefore, a 4.45 percentage point

19Based on the authors’ calculations, in summer of 2009 (2016) the proportion of nuclear, wind and
hydro power are 55.46 (59.91), 1.20 (4.49) and 27.91 (23.91), respectively. On the other hand, the mean
of NOx, O3 and PM2.5 are 14.005 ppb, 31.45 ppb and 8.02 mg/m3 in Toronto, respectively.
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rise in nuclear power corresponds to a 0.89 O3 reduction. Based on a O3 sample mean of

31.45 ppb, this is equivalent to a 2.82% further decline in O3. Hence, the overall marginal

effect of fuel mix on O3 is an almost 1.5% O3 reduction during summer in Toronto.

Table 3.9 summarizes the regression results of the effects of changes in fuel mix with

respect to PM2.5 in summer. The sign of the coefficient estimates are consistent with the

results shown in Table 3.6. Furthermore, with the exception of hydro, the magnitude of

the coefficient of all types of fuel have increased in summer. Given the negative coefficient

of wind and nuclear, and positive coefficient of hydro we can conclude that the marginal

effects of fuel mix on PM2.5 are negative. Based on a PM2.5 sample mean of roughly 8

mg/m3 in summer, the overall marginal effect of a 3.29 and 4.5 percentage point increase in

wind and nuclear and a 4 percentage point decrease in hydro is equivalent to a significant

23.5% decline in PM2.5.

Tables 3.10 to 3.15 contain regression results of the effects of changes in proportion of

fuel mix with respect to each pollutant in Hamilton. Estimates in Table 3.10 to 3.12 are

based on the whole dataset and Tables 3.13 to 3.15 focus on the summer months (May to

August). With respect to NOx, coefficient estimates of all sources of energy except wind

are positive. However, the magnitude of the wind coefficient is large enough to cancel out

the positive effect of nuclear on pollution. In particular, the coefficient estimate of wind

in column (4) is −0.71 which implies that a one percentage point increase in wind power

relative to coal is associated with 0.71 ppb decrease in NOx in Hamilton. Therefore a 4.5

percentage point rise in the proportion of wind power is linked with a 3.19 ppb drop in

NOx, controlling for all else. With the NOx sample mean of 11.13 ppb, this is equivalent

to a 28.70% decline in NOx. The positive effect of nuclear (ranging form 0.02 to 0.08)

on NOx is not as large as wind (ranging from −0.71 to −0.41). We calculated that the

marginal effect of nuclear on NOx to be almost 2.5%.

Table 3.11 summarizes the regression results of the effect of each type of fuel mix on

O3. There are major differences both in terms of sign and magnitude of the coefficient

when we compare the results of Table 3.10 with Table 3.11. In particular, the coefficient

estimates of nuclear power in Table 3.10 is positive and ranging from 0.02 to 0.08, while in

Table 3.11 it is negative and ranging (in absolute value) from 0.15 to 0.37. Therefore, not
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only the sign of nuclear coefficient has changed, but also its magnitude. A similar trend

can be seen in the coefficient of wind. In Table 3.10, the coefficient of wind is negative

and larger in absolute value, however in Table 3.11, it is positively correlated with O3 and

ranging from 0.21 to 0.49. Therefore, in contrast to NOx, an increase in nuclear and wind

power have a negative effect on O3. A 4.5 percentage point increase in wind is associated

with 2.20 (4.5∗0.49) ppb increase in O3. Given that the sample mean for O3 is 29.37 ppb in

Hamilton, this is equivalent to 7.49% increase in O3. On the other hand, the negative effect

of nuclear on O3 is lower in magnitude and the marginal effect of a 5.6 percentage point

increase in nuclear (which is linked to 0.89 = 5.6 ∗ 0.16 ppb decrease in O3) is equivalent to

an almost 3% decrease in O3. The larger positive marginal effect of wind (7.49%) cancels

out the smaller negative marginal effect of nuclear (3%). Therefore, the overall marginal

effect of fuel mix on O3 is positive, controlling for all else.

Coefficient estimates of fuel mix are also statistically significant with respect to PM2.5,

in Table 3.12. Although the sign of coefficients do not follow a consistent pattern across

all columns, whenever significant, they are mostly negative (except other sources). In

particular, when we control for different time fixed effects, the coefficients of all fuel types

except “other”, becomes negative. Since the coefficient of both nuclear and wind are

negative and statistically significant (column (4)), we conclude that the overall effect of

increase in these two types of power generations on declining PM2.5 is positive. The

results show that a one percentage point increase in wind (nuclear) is associated with

0.25 (0.07) mg/m3 decrease in PM2.5. Therefore, a 4.5 (5.6) percentage point increase in

the proportion of wind (nuclear) during the sample period, is correlated with a 1.12 (0.4)

mg/m3 decrease in PM2.5. Given the sample mean of PM2.5 is 7.52 mg/m3, this works

out to a 14.98% (5.21%) decline in PM2.5 level.

The reported coefficients in Table 3.13 to 3.15 summarize the regression results when we

narrow down the analysis to the summer months (May to August) in Hamilton. In Table

3.13, the sign of the coefficients mostly follow the same pattern as in Table 3.10, with the

exception of nuclear, which turns its sign from positive to negative as we control for time

fixed effects (Column (3) to (4)). In addition, as we compare the results of these two tables,

we find that the magnitude of wind and hydro are lower in summer and ranging from −0.58
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to −0.31 and from 0.07 to 0.27 (whenever statistically significant), respectively. However,

the magnitude of nuclear is slightly higher in absolute value (from 0.02 to 0.09). This

results reinforce the negative impact of an increase in nuclear and wind power generations

on NOx in Hamilton.

In Table 3.14, the coefficient of gas is mostly insignificant; however, the coefficient of

all other types of fuel are statistically significant at different levels. In addition,with the

exception of hydro, all other coefficients show a consistent pattern as in Table 3.11 in terms

of sign. The magnitude of hydro, nuclear and wind coefficients are increased in summer

and in contrast, the magnitude of coefficient of other type is decreased in absolute value.

The coefficient estimates in Table 3.11 and summary statistics help us to evaluate the

overall marginal effect of an increase in nuclear and wind on O3 levels over the sample

period. The results from Table 3.11 and Table 3.3 show that the overall effect of 4.5

and 5.6 percentage point increase in wind and nuclear power on O3 is positive during

2009 − 2016. Calculating the summary statistics for summer of 2009 − 2016, however,

shows that although the proportion of nuclear and wind have increased by 4.45 and 3.29,

respectively, the proportion of hydro power decreased from 23.91 to 27.91. This is a 4

percentage point drop in hydro and makes the overall effect of the change in fuel mix on

O3 to be negative and slightly less than 1% (0.71%) 20.

Table 3.15 contains the results of the effects of changes in fuel mix on PM2.5 in Hamilton

over the summer of 2009− 2016. The coefficient estimates are consistent in terms of sign

and magnitude with the results in Table 3.12; the only exceptions are hydro that is not

statistically significant across columns (2) to (4) and the coefficient of other type of energy

which is significant in summer.

Table 3.16 to 3.21 contain regression results of the effects of changes in proportion of

fuel mix with respect to each pollutant in Ottawa. Estimates in Table 3.16 to 3.18 are

based on the whole dataset and Tables 3.19 to 3.21 focus on the summer months (May

to August). With respect to NOx, coefficient estimates of all sources of energy (whenever

significant) except wind are positive. However, the magnitude of the wind coefficient is

20Based on authors’ calculations, during the summer of 2009− 2016 in Hamilton, the mean of NOx, O3

and PM2.5 are 8.96 ppb, 34.63 ppb and 8.86 mg/m3, respectively.
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large enough to cancel out the positive effect of nuclear on pollution (Column (1)). Table

3.17 summarizes the regression results of the effect of each type of fuel mix on O3. There are

major differences both in terms of sign and magnitude of the coefficient when we compare

the result of Table 3.16 with Table 3.17. In particular, the coefficient estimates of nuclear

power in Table 3.16 are positive and generally not statistically significant, while in Table

3.17 are negative and ranging (in absolute value) from 0.04 to 0.28. Therefore, not only

the sign of nuclear coefficient has changed, but also its magnitude. A similar trend can be

seen in the coefficient of wind. In Table 3.16, the coefficient of wind is negative and smaller

in absolute value, however in Table 3.17, it is positively correlated with O3 and ranging

from 0.24 to 0.46. Therefore, a 4.5 percentage point increase in wind is associated with

2.07 (4.5 ∗ 0.0.46) ppb increase in O3. Given that the sample mean for O3 is 26.14 ppb in

Ottawa, this is equivalent to a 7.91% increase in O3. On the other hand, the negative effect

of nuclear on O3 is lower in magnitude and the marginal effect of a 5.6 percentage point

increase in nuclear (which is linked to 0.56 = 5.6 ∗ 0.10 ppb decrease in O3) is equivalent

to an almost 2.14% decrease in O3. The larger positive marginal effect of wind (7.91%)

cancels out the lower negative marginal effect of nuclear (2.14%). Therefore, the overall

marginal effect of fuel mix on O3 is positive, controlling for all else.

Coefficient estimates of fuel mix are also statistically significant with respect to PM2.5,

in Table 3.18. Although the sign of coefficients do not follow a consistent pattern across all

columns, whenever significant, they are mostly positive (except other sources and hydro).

In particular, when we control for different time fixed effects, the coefficients of all fuel types

except hydro, becomes positive. Since the coefficient of both nuclear and wind are positive

and statistically significant (column (4)), we conclude that the overall effect of increase in

these two types of power generations on increasing PM2.5 is positive. The results show that

a one percentage point increase in wind (nuclear) is associated with 0.09 (0.02) mg/m3

increase in PM2.5. Therefore, a 4.5 (5.6) percentage point increase in the proportion of

wind (nuclear) during the sample period, is correlated with 0.40 (0.11) mg/m3 increase in

PM2.5. Given the sample mean of PM2.5 is 5.53 mg/m3, this works out to a 7.32% (2.02%)

increase in PM2.5 level.

The reported coefficients in Table 3.19 to 3.21 summarize the regression results when
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we narrow down the analysis to the summer months (May to August) in Ottawa. In Table

3.19, the sign of the coefficients mostly follow the same pattern as in Table 3.16, with the

exception of hydro, which becomes negative and slightly more significant as we control for

time fixed effects (Column (4)). In addition, as we compare the results of these two tables,

we find that the magnitude of gas, hydro and wind are lower in summer; However, the

magnitude of nuclear is slightly higher in absolute value (from 0.02 to 0.08). This results

reinforce the negative impact of an increase in nuclear and wind power generations on NOx

in Ottawa.

In Table 3.20, the coefficient of gas is mostly insignificant; however, the coefficient of

all other types of fuel are statistically significant at different levels. In addition, with the

exception of hydro and total, all other coefficients show a consistent pattern as in Table

3.17 in terms of sign. The magnitude of hydro, nuclear and wind coefficients are increased

in summer and in contrast, the magnitude of coefficient of other type is decreased in

absolute value. The coefficient estimates in Table 3.20 and summary statistics help us to

evaluate the overall marginal effect of an increase in nuclear and wind on O3 levels over the

sample period. Calculating the summary statistics for summer of 2009− 2016, shows that

although the proportion of nuclear and wind have increased by 4.45 and 3.29, respectively,

the proportion of hydro power decreased from 23.91 to 27.91. This is a 4 percentage point

drop in hydro and makes the overall effect of the change in fuel mix on O3 to be negative

and slightly more than 1% (1.17%) 21.

Table 3.21 contains the results of the effects of changes in fuel mix on PM2.5 in Ottawa

over the summer of 2009− 2016. The coefficient estimates are consistent in terms of sign

and magnitude with the results in Table 3.18. The only exceptions are gas and nuclear that

are negative statistically significant across all columns in summer. Based in the summary

statistics of fuel mix in summer, the overall effect of the change in fuel mix on PM2.5 is

negative and more than 6% (6.8%)

The effect of fuel mix on NOx in Sarnia over the period of 2009 − 2016 is shown in

Table 3.22. Whenever statistically significant, the coefficient estimates of gas and hydro

21Based on authors’ calculations, during the summer of 2009 − 2016 in Ottawa, the mean of NOx, O3

and PM2.5 are 4.44 ppb, 28.16 ppb and 5.71 mg/m3, respectively.
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are positive. On the other hand, the coefficient for nuclear energy changes its sign from

positive (column (1))to negative (column (3) and (4)) as we control for more time fixed

effects. Coefficients of other fuel sources do not show a consistent pattern. However,

the coefficient of wind is both large in magnitude (relative to other fuel coefficients) and

negative across all columns. We focus on the results in column (4), in which we include all

time dummy variables, to find the marginal effect of a 5.6% increase in nuclear and 4.5%

increase in wind over the sample period on NOx in Sarnia. Coefficient estimates imply

that a one percentage point increase in nuclear power relative to coal is associated with a

roughly 0.02 ppb decline in NOx. Therefore, a 5.6 percentage point rise in the proportion

of nuclear power is linked with a 0.11 drop in NOx, controlling for all else. With a NOx

sample mean of 10.77 ppb, this is equivalent to a 1.03% decline in NOx. In addition, the

marginal effects of an increase in wind power are much larger. On average, a one percentage

point increase in wind power generation is associated with 0.40 ppb reduction in NOx. This

is a substantial 16.71% reduction in NOx level given its sample mean of 10.77 ppb.

Coefficient estimates of fuel mix are statistically significant with respect to O3, in

Table 3.23. However, there are differences in signs as well as the magnitude of coefficient

estimates. Coefficient estimates of nuclear power are negative and statistically significant

at the 1% level, ranging from −0.52 to −0.13. Coefficient estimates of gas are also negative

and statistically significant at the 1% level across all columns, with values from −0.32 to

−0.05. Other fuel sources is also statistically significant but with positive coefficients. An

increase in the proportion of hydro power is also significantly associated (at varying levels

of significance) with lower levels of O3. On the other hand, a rise in the proportion of wind

generated power is correlated (at either 5% or 10%) with higher levels of O3 (column (3)

and (4) and (5)), ranging from 0.09 to 0.25. In contrast to NOx, an increase in nuclear

powered energy at the expense of coal is associated with larger marginal impacts with

respect to reduction in O3. A one percentage point rise in nuclear power is significantly

associated with a 0.25 ppb reduction in O3 levels. Hence, a 5.6 percentage point increase

in nuclear power is correlated with a 1.4 ppb reduction in O3 levels. Given that the sample

mean of O3 is 28.86 ppb, this works out to a 4.85% decline in O3 level. On the other

hand, the corresponding marginal impact for wind power are a bit lower and works in an
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opposite way. A one percentage point rise in hydro power generation is associated with a

0.18 ppb increase in O3, which is equivalent to a 2.80% increase in O3 level. However, taken

together, the overall marginal impact of a 4.5 and 5.6 percentage point increase in wind

and nuclear power on O3 pollution is negative (2.05%) and smaller than what we find with

respect to NOx.

Table 3.24 contains estimate with respect to PM2.5 in Sarnia. An increase in the propor-

tion of all sources of electricity relative to coal is associated with a decline in PM2.5 levels in

Sarnia. Coefficient estimates of nuclear and wind energy are negative and significant at 1%

level across all columns with coefficient estimates from −0.34 to −0.10 mg/m3 and −0.02

to −0.12 mg/m3, respectively. A one percentage point increase in the proportion of gas

power is associated 0.07 mg/m3 decline in PM2.5 (column (4)). A one percentage level rise

in hydro power generation is associated (at the 1% level) with a roughly 0.2 mg/m3 decline

in PM2.5 (column (4)). Therefore, the effects of changes in fuel mix from 2009− 2016 on

PM2.5 in Sarnia have also been pronounced. A one percentage point rise in nuclear power

is associated with a −0.12 mg/m3 drop in PM2.5 (column (4)). Therefore, a 5.6 percentage

point rise in nuclear power generated corresponds to a 0.67 mg/m3 reduction. Based on

PM2.5 sample mean of 9.31 mg/m3, this is equivalent to an almost 7.20% decline in hourly

PM2.5 levels. The coefficient estimates of wind is larger at −0.25 (column (4)). The 4.5

percentage point increase in wind power over the sample period in then equivalent to a

1.12 mg/m3 reduction in PM2.5 , which is equivalent to an almost 12% decline in PM2.5

levels.

Table 3.25 to 3.27 contain regression result of the effects of changes in the proportion

of fuel mix with respect to each pollutant in summer months (May-August) of 2009−2016

in Sarnia. The estimates in Table 3.25 offer a rather contrary picture relative to estimates

in Table 3.22. Estimates in column (2) to (4) in Table 3.25 indicate that a one percentage

point increase in all sources of energy (relative to coal) are associated with a decrease in

NOX pollution in summer over the sample period. On the other hand, the electricity

generated by hydro power generation decreased a 4 percentage point over the sample

period in summer. Given the sample mean of NOX in Sarnia is 9.03 in summer over the

sample period, this works out to a 3.54% increase in NOX level. However, the coefficient
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estimates of wind and nuclear are larger in absolute value at 0.30 and 0.16. The 4.45 and

3.29 percentage point increase in nuclear and wind over the sample period is then equivalent

to a 0.71 and 0.98 ppb reduction in NOX , which corresponds to an almost 8% and 11%

decline in NOX levels, respectively. Therefore, the overall marginal effect of changes in

fuel mix in summer in Sarnia is a decline in NOX levels.

The sign and magnitude of the coefficient estimates of fuel mix with respect to ozone

in Table 3.26 are the same as the coefficient estimates in Table 3.23 except for wind and

hydro. Coefficient estimates of hydro power are not only positive whenever significant

(column (2) to (4)), but also larger in magnitude, ranging from 0.33 to 0.51. On the other

hand, the coefficient estimates of wind are positive, larger in magnitude and significant at

1% level across all columns. Given that the sample mean of ozone is roughly 33.5 ppb,

a 4.45 and 3.29 percentage point increase in nuclear and wind and a 4 percentage point

decline in hydro power generation over the sample period, works out to an overall 3.92%

decline in ozone levels.

Table 3.27 contains estimates with respect to PM2.5. Similar to Table 3.24, an increase

in the proportion of all fuel mix relative to coal is associated with a decline in PM2.5 level.

In addition, with the exception of other sources, the coefficient estimate of all sources of

energy are slightly larger than the coefficients in Table 3.24. Based on the PM2.5 sample

mean of 9.96 mg/m3, the marginal effect of a 4.45 and 3.29 percentage point increase

in nuclear and wind are equivalent to a 11.61% and 9.57% decline in PM2.5 levels. On

the other hand, a 4 percentage point decline in hydro power generations over the sample

period, works out to a 12.44% decrease in PM2.5 level. Therefore, the overall marginal

effect of fuel mix change on PM2.5 over the sample period is still negative.

An increase in the total electricity produced over the sample period is mostly associated

(at varying levels of significance) with higher levels of pollution in all the cities; However,

over the summer months, the coefficient of total does not show a consistent pattern both

in terms of sign and level of statistical significance. Further, the results show that higher

temperature is associated with higher O3 and PM2.5 levels in all cities. On the other hand,

temperature is correlated with lower NOx levels in Toronto and Hamilton, and it does not

show to have a conclusive effect on NOx pollution in Sarnia. In addition, relative humidity
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is positively associated with NOx and PM2.5, while it is negatively correlated with O3

levels in all four cities.

In all four cities, wind has a negative effect on NOx and a positive effect on O3 pollution.

This is mainly due to the intermittent nature of wind power generators. In Ontario, the

production of electricity by wind power plants is supported by the natural gas power

generators. Therefore, while wind is dispersing the NOx, the production of the electricity

by gas power plants generates NOx pollution, which in turn contributes to the formation

of O3. Therefore, wind decreases the level of NOx and increases the level of O3 in all cases.

To enhance the credibility of the empirical results, we run a sensitivity analysis. Ta-

bles 3.28, 3.29, 3.30 and 3.31 show the results from GLS analysis in which the cluster-

standard errors at the day level and Newey-West standard errors are considered. Based

on the Newey-West standard error, the structure of the error term is considered to be

heteroskedastic and autocorrelated up to lag 622 We specifically focus on the fully-specified

GLS model in all regressions. Reg (1) in Tables 3.28, 3.29, 3.30 and 3.31 shows the results

of the regressions when the standard errors are clustered at the day level over the period

from January 2009 to December 201623. Reg (2) considers the Newey-West standard error

structure.

Overall, Reg (2) in which we consider Newey-West standard error structure, shows the

same or higher significance level for all of the coefficient estimates, with the exception of

nuclear power in NOx and temperature in O3 regressions in Sarnia. On the other hand,

coefficient estimates in Reg (1) for all fuel types in the four cities, shows the same or a lower

significance level. Although some of the coefficients in Reg (1) are at a lower significant

level, the statistical significance level of the two important coefficients of nuclear and wind

have not changed much. The only exceptions are the nuclear coefficient in PM2.5 analysis

in Toronto and NOx analysis in Hamilton and Sarnia that are not significant anymore;

However, the coefficient of wind in all three situations is still negative and statistically

22We allow for the possibility of autocorrelation in the error terms up to lag 6 in each regression since lag 3
and lag 6 of the dependent variable is considered in the time-series analysis. In addition, we considered the
Newey-West error terms to be autocorrelated up to lag 1 to 6 and the results did not change significantly.

23This period excludes the data from September 2014 to December 2014 since the fuel mix data for these
four months are not available.
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significant at the 1% level. This shows that the the change in fuel mix can still be associated

to a decline in PM2.5 level in Toronto and NOx level in Hamilton and Sarnia (through a

rise in wind power).

3.5.2 The effects of changing fuel mix on smog days

Tables 3.32 and 3.33 contain the results of probit analysis detailing the effects of changes in

fuel mix on the likelihood of smog days, with the dependent variable being 1 in the event

of a smog day and 0 otherwise. In both tables, column (1) contains estimates without

the addition of any dummy, economic or weather variables. In column (2) we add the

total electricity produced and weather to the set of independent variables. Column (3)

contains estimates conditioned on month and year dummies. Column (4) evaluates the

sensitivity of findings through the addition of monthly exchange and unemployment rates,

total electricity produced and year dummies. Unlike the previous tables, the results in these

tables are based on daily averages. Table 3.32 is based on the dataset that contains fuel

mix from March to October of 2009-2014 (8 months in each year). During these months

58 smog days are reported. In Table 3.33, we focus on summer months (June-August)

in which 38 smog days are reported. In both tables we reported the marginal effects of

independent variables.

In Table 3.32, results show that the marginal effects of gas power are not statistically

significant across columns. The marginal effect of hydro power is statistically significant at

the 1% level in column (1), and becomes both positive and reduced in statistical precision

in column (3), specifically to the 10% level. On the other hand, the marginal effect of wind,

although small, is negative across all columns. The marginal effect of nuclear is positive,

very small in magnitude and statistically significant is column (3).

In contrast to Table 3.32, in Table 3.33 when we focus on summer months, the marginal

effect of gas becomes negative across columns, however it is not statistically significant.

The marginal effect of hydro power is negative and statistically significant at the 1% level

in column (1). This suggests that on average, higher electricity generation by hydro power

are correlated with lower incidence of smog day. However, the marginal effect of hydro
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is not statistically significant across all other columns and changes its sign from negative

to positive in column (3) and (4). The marginal effect of wind power is still negative

across columns and statistically significant at 10% level in column (1) and (2). Similar to

Table 3.32, the coefficient of nuclear power is positive whenever significant; Furthermore,

in contrast to Table 3.32 adding the time dummy variables does not increase its statistical

precision. The marginal effect of the daily average temperature are statistically significant

at 1% level in column (2) only, and suggests that on average, higher temperatures are

correlated with a higher incidence of smog days.

3.6 Summary of Findings and Policy Implications

Relying on coal-fired energy is not conducive to a cleaner air quality. This is a fact that

has been established by numerous scientific papers. Ontario is the first North American

jurisdiction to completely eliminate coal-fired electricity generation, and is therefore offers

unique identifying variation in order to evaluate corresponding environmental benefits.

The study employs data across four Ontario cities from 2009-2016, a time period, which

contains observations for years after which coal had been eliminated (in 2014).

The empirical estimates offer support to the notion that cleaner sources of energy

are significantly associated with cleaner air quality. There are instances where coefficient

estimates of gas and hydro powered generation possess positive coefficients (with respect

to higher levels of pollutants) and more wind energy is correlated with increased levels of

O3. However, the vast majority of results do suggest that more nuclear and wind energy,

at the expense of coal, is correlated with decreased levels of NOx and PM2.5. An increase

in nuclear powered generation is associated with reduced O3 levels. On the other hand,

the results do not suggest a statistically significant correlation between different types of

fuel mix and the elimination of smog days.

This study has not addressed from a cost-benefit perspective, whether the benefits

from these improvements in air quality outweigh the costs incurred by the government

in subsidies given to renewable sources of energy as well as guaranteed rate contracts to
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nuclear and gas plants. Possible next steps involve quantifying the health benefits from

these reductions in pollutants and the costs which associated with eliminating coal and this

will be challenging. The question that needs to be answered is how many fewer premature

deaths have been avoided because of the reduction in pollution as well as reductions in

morbidity. A report by the Ontario Public Health Association (2002) was particularly

influential in motivating policymakers to eliminate coal, and might be useful 24. Such health

benefits need to be compared against the Global Adjustment payments that electricity

consumers in Ontario are charged to finance long term guaranteed payments to generators

that produce renewable sources of energy. This is a non-trivial undertaking and will be

addressed in future research.

24Available at, https://cape.ca/wpcontent/uploads/2015/10/Beyond_Coal_-_Power_Public_

Health_and_the_Environment.pdf
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3.7 Tables

Table 3.1: Phasing out coal-fired generators

Plant (Capacity (MW)) 2003 2005 2010 2011 2012 2013 2014

Lakeview 1150

Nanticoke 3940 3940 2960 1980 1980

Lambton 1980 1980 1010 1010 1010

Thunder Bay 306 306 306 306 306 306 (April)

Atikokan 211 211 211 211

Total 7587 6437 4487 3507 3296 306 0

Source: Ontario Ministry of Energy.

Table 3.2: Summary Statistics

2009 2010 2011 2012 2013 2014 2015 2016

(%) (MW/hour) (%) (MW/hour) (%) (MW/hour) (%) (MW/hour) (%) (MW/hour) (%) (MW/hour) (%) (MW/hour) (%) (MW/hour)

Coal 6.16 1123.60 7.82 1435.09 2.48 466.86 2.66 490.36 1.82 354.75 0.89 16.23 0 0 0 0

(5.08) (1012.02) (5.93) (1201.94) (2.98) (622.86) (2.32) (475.02) (2.12) (441.46) (0.17) ( 33.18) (0) (0) (0) (0)

Gas 10.18 1763.89 13.16 2341.38 14.08 2510.95 14.38 2545.97 10.7 1978.86 9.96 1827.76 9.95 1788.03 8.34 1481.14

(3.76) (794.97) (5.17) (1175.53) (5.46) (1227.48) (5.71) (1269.84) (5.53) ( 1227.07) (5.73) (1258.68) (6.04) (1228.23) (5.34) (1105.92)

Hydro 25.21 4255.44 20.3 3505.69 22.15 3801.08 21.51 3693.55 23.1 4019.18 23.77 4131.18 23.38 4065.10 23.44 3982.66

(5.08) (953.02) (4.51) ( 983.18) (4.31) (911.18) (4.21) (881.71) (3.58) (777.66) (3.66) (723.56) (3.60) 9801.65) (4.15) (821.66)

Nuclear 55.98 9360.79 55.97 9458.59 57.84 9741.37 57.31 9693.95 60 10347.62 61.23 10561.68 60.55 10480.03 61.60 10395.71

(8.98) (1354.38) (8.32) (984) (7.43) (753.68) (7.52) (797.92) (6.86) (783.98) (6.21) (802.63) (6.96) (1436.9) (6.39) (994.16)

Other 0.9 150.53 0.83 144.61 0.8 136.44 1 173.19 0.89 155.28 0.88 153.37 0.33 58.66 0.50 87.28

(0.44) (78.16) (0.41) (95.91) (0.27) ( 56.76) (0.34) (76.33) (0.22) (47.7) (0.53) (106.06) (0.32) (57.76) (0.510 (88.24)

Wind 1.55 259.92 1.89 318.43 2.63 441.36 3.1 526.53 3.4 592.73 4.05 712.65 5.76 996.02 6.10 1053.53

(1.27) (209.23) (1.51) (254.05) (2.22) (362.17) (2.39) (404) (2.47) (436.42) (3.12) (558.47) (4.24) (734.36) (4.33) (789.66)

Total 16914.2 17203.81 17098.09 17123.58 17448.45 17402.9 17387.87 17000.34

(2466.31) (2645.82) (2304.25) (2223.75) (2118.95) (1948.96) (2273.9) (2000.56)

Observations 8760 8760 8760 8784 8760 5832 8760 8784

Exchange 114.1535 103.01 98.92 99.93 103.01 109.35 127.89 132.55

(7.9) (1.63) (2.44) (1.40) (1.88) (1.18) (4.88) (3.89)

Unemployment 9.10 8.68 7.9 7.92 7.58 7.38 6.74 6.55

(0.41) (0.36) (0.2) (0.2) (0.16) (0.11) (0.13) (0.20)

Observations 12 12 12 12 12 8 12 12

Source: Authors’ own calculation.

Note: Standard errors are in parentheses.
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Table 3.3: Summary Statistics of the mean of different type of pollutants and weather
condition

2009 2010 2011 2012 2013 2014 2015 2016 2009-2016

Toronto:

NOx (ppb) 21.648 20.34 18.51 16.31 16.06 16.29 16.045 15.92 17.71

(15.25) (16.11) (13.91) (12.49) (11.99) (13.24) (12.13) (12.09) (13.66)

O3 (ppb) 24.64 26.02 25.4 26.55 26.3 28.63 25.67 25.52 25.97

(13.01) (13.93) (13.21) (14.71) (12.57) (11.90) (13.12) (12.01) (13.17)

PM2.5 (mg/m3) 5.54 6.01 6.24 6.42 8.25 9.13 8.36 6.96 7.02

(5.13) (6.12) (5.57) (5.80) (6.47) (6.89) (6.24) (4.70) (5.97)

Temperature (◦C) 9.11 10.34 10.13 11.29 9.56 8.20 9.39 10.71 9.91

-9.99 (10.41) (10.60) (9.69) (10.41) (12.34) (11.24) (10.63) (10.64)

Rel. Humidity (%) 72.35 71.88 74.97 73.27 68.64 64.95 67.02 64.61 69.93

-16.98 (16.48) (15.67) (16.21) (16.01) (15.96) (15.81) (17.15) (16.70)

Observation 8696 8613 8566 8566 8497 5605 8699 8585 65827

Hamilton:

NOx (ppb) 12.41 11.21 12.21 10.59 11.05 11.77 10.88 9.15 11.13

(12.50) (12.74) (11.8) (11.07) (12.40) (11.33) (10.30) (9.28) (11.53)

O3 (ppb) 27.10 29.65 28.82 30.13 29.41 31.88 29.41 29.41 29.37

(13.57) (13.93) (13.82) (15.28) (12.64) (12.41) (13.23) (12.27) (13.52)

PM2.5 (mg/m3) 6.34 6.19 6.65 6.52 9.23 9.89 9.046 7.20 7.52

(5.39) (6.55) (6.27) (6.21) (7.54) (7.23) (7.04) (5.39) (6.60)

Temperature (◦C) 8.37 9.49 9.13 10.54 8.07 7.53 8.70 10.12 9.06

(10.16) (10.59) (10.85) (9.91) (10.38) (12.66) (11.55) (10.80) (10.85)

Rel. Humidity (%) 73.11 71.05 73.09 74.29 74.33 70.99 70.92 70.07 72.27

(18.38) (17.36) (17.03) (18.68) (15.87) (16.93) (17.26) (18.47) (17.62)

Observation 8504 8673 8635 8559 8260 5755 8552 8633 65571

Ottawa:

NOx (ppb) 8.2326 7.5523 8.1555 8.6888 9.4505 7.6233 7.5467 7.2533 8.0852

(12.9730) (10.6207) (11.4129) (13.1307) (13.5236) (9.7599) (11.4265) (9.2693) (11.7152)

O3 (ppb) 24.6322 26.5670 24.8577 25.6062 26.5918 29.2084 26.9629 25.7880 26.1439

(12.6641) (12.4750) (11.8660) (12.9815) (12.0229) (11.7024) (12.2711) (11.6847) (12.3034)

PM2.5 (mg/m3) 4.3699 4.3110 4.4862 5.0190 7.0886 6.9698 6.8752 5.6414 5.5308

(4.3544) (5.3969) (4.1523) (4.6109) (6.1247) (5.2893) (4.9515) (4.6552) (5.0937)

Temperature (◦C) 6.5521 8.1949 7.3307 8.1401 6.5349 6.4192 6.9755 7.6809 7.2674

(11.7232) (11.2017) (12.0457) (11.9284) (12.5068) (14.1799) (13.2521) (12.4524) (12.3705)

Rel. Humidity (%) 73.8603 72.0302 72.7506 71.2845 73.3489 69.1989 70.1657 69.3791 71.6135

(18.6322) (18.9589) (18.4725) (19.4934) (17.2962) (17.2513) (17.6723) (19.2100) (18.5140)

Observation 8568 8677 8401 8616 8583 5507 8545 8418 65315

Sarnia:

NOx (ppb) 10.92 10.19 11.68 10.72 9.79 10.63 11.62 10.64 10.77

(10.21) (11.65) (10.82) (9.55) (9.07) (11.43) (10.47) (11.51) (10.61)

O3 (ppb) 26.55 30.66 29.57 29.7 28.48 29.97 27.74 28.49 28.86

(12.54) (13.53) (13.41) (15.05) (12.51) (12.52) (11.94) (12.05) (13.07)

PM2.5 (mg/m3) 9.76 10.42 10.44 10.21 8.42 9.32 8.51 7.29 9.31

(6.41) (7.68) (6.77) (6.27) (5.92) (7.35) (6.83) ( 5.25) (6.66)

Temperature (◦C) 9.13 9.17 9.35 9.32 9.36 9.05 9.71 9.18 9.29

(10.85) (10.82) (11) (11.11) (11.04) (11.19) (10.87) (10.77) (10.95)

Rel. Humidity (%) 74.06 73.37 72.94 73.71 73.30 71.62 72.19 72.99 73.09

(15.35) (16.24) (16.68) (16.16) (15.69) (15.64) (16.23) (15.21) (15.93)

Observation 8573 8699 8642 8505 8380 5693 7930 8564 64981

Source: Authors’ own calculation.

Note: Standard errors are in parentheses.
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Table 3.4: GLS & Time-Series Estimates of Fuel Mix on NOx (Toronto)

Dependent Var:

NOx (Toronto) Reg (1) Reg (2) Reg (3) Reg (4) Reg (5)

Independent Var:

Gas 0.0535 0.2306*** 0.2155*** 0.1384*** 0.0767***

(0.0380) (0.0418) (0.0418) (0.0410) (0.0184)

Hydro 0.1242*** 0.1641*** 0.1006*** 0.008 0.1142***

(0.039) (0.0303) (0.0396) (0.038) (0.0174)

Nuclear -0.1357*** 0.0012 -0.0077 -0.0103 -0.0283*

(0.0139) (0.0248) (0.0255) (0.021) (0.0155)

Other 0.097 1.3353*** 1.094*** 0.2552 -0.0022

(0.121) (0.1975) (0.1857) (0.1797) (0.1087)

Wind -0.8482*** -0.7743*** -0.9278*** -0.9733*** -0.5381***

(0.0673) (0.0624) (0.0731) (0.0723) (0.0104)

Total 0.0005*** 0.0005*** 0.0005*** 0.0001 0.0001***

(0.0001) (0.00009) (0.00009) (0.00008) (0.00002)

Lag3-NOx NA NA NA NA 0.4755***

(0.0104)

Lag6-NOx NA NA NA NA 0.0453***

(0.0059)

Temperature -0.2897*** -0.3088*** -0.0863*** -0.1176*** -0.1768***

(0.01) (0.01) (0.02) (0.02) (0.0062)

Relative Humidity 0.0754*** 0.0957*** 0.079*** 0.0845*** 0.1275***

(0.0131) (0.0132) (0.0131) (0.0031) (0.0026)

Constant 12.2039*** 2.4712*** 5.7538*** 18.7167*** 0.1913

(3.0213) (1.1946) (1.7061) (2.2553) (1.6772)

Year NO YES YES YES YES

Season NO NO YES YES YES

Day of Week NO NO NO YES YES

Hour NO NO NO YES NO

Observation 66614 66614 66614 66614 66054

R2 0.1252 0.1477 0.1493 0.2218 0.4027

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

January 2009 to December 2016 (excluding August 2014 to December 2014).
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Table 3.5: GLS & Time-Series Estimates of Fuel Mix on O3 (Toronto)

Dependent Var:

O3 (Toronto) Reg (1) Reg (2) Reg (3) Reg (4) Reg (5)

Independent Var:

Gas -0.2868*** -0.346*** -0.1449*** -0.062*** -0.0394***

(0.0251) (0.0178) (0.017) (0.0266) (0.0127)

Hydro -0.0892*** -0.0419 -0.1934*** -0.1324*** -0.1498***

(0.0334) (0.0254) (0.0269) (0.0275) (0.0129)

Nuclear -0.3644*** -0.3779*** -0.1629*** -0.1628*** -0.0648***

(0.0126) (0.0159) (0.015) (0.0146) (0.0113)

Other 1.4205*** 0.3689* 0.6283*** 1.5162*** 1.1589***

(0.3045) (0.2056) (0.2003) (0.0984) (0.0946)

Wind 0.3467*** 0.4304*** 0.6637*** 0.7074*** 0.2592***

(0.0559) (0.0805) (0.0694) (0.069) (0.0146)

Total 0.0007*** 0.0008*** 0.0007*** 0.0011*** 0.0004***

(0.00008) (0.00009) (0.00009) (0.00009) (0.00002)

Lag3-O3 NA NA NA NA 0.5871***

(0.0047)

Lag6-O3 NA NA NA NA -0.0321***

(0.0045)

Temperature 0.4526*** 0.4666*** 0.4579*** 0.4966*** 0.2898***

(0.0276) (0.0244) (0.0325) (0.0267) (0.0049)

Relative Humidity -0.2426*** -0.2571*** -0.2097*** -0.2175*** -0.1753***

(0.0118) (0.0118) (0.0119) (0.0126) (0.001)

Constant 50.2931*** 48.7024*** 30.515*** 21.1209*** 17.4922***

(2.0323) (2.2511) (1.4847) (2.311) (1.213)

Year NO YES YES YES YES

Season NO NO YES YES YES

Day of Week NO NO NO YES YES

Hour NO NO NO YES NO

Observation 66885 66885 66885 66885 66385

R2 0.3311 0.3426 0.4076 0.4682 0.6702

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

January 2009 to December 2016 (excluding August 2014 to December 2014).
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Table 3.6: GLS & Time-Series Estimates of Fuel Mix on PM2.5 (Toronto)

Dependent Var:

PM2.5 (Toronto) Reg (1) Reg (2) Reg (3) Reg (4) Reg (5)

Independent Var:

Gas 0.0895*** -0.0544*** -0.0191* 0.005 0.0135*

(0.0095) (0.0101) (0.0105) (0.0086) (0.0060)

Hydro 0.1178*** -0.0887*** -0.1053*** -0.0486*** 0.0059

(0.0091) (0.0104) (0.0094) (0.0153) (0.0065)

Nuclear 0.147*** -0.0721*** -0.0393*** -0.0348*** -0.0045

(0.0087) (0.0067) (0.0075) (0.0066) (0.0054)

Other 0.0619 0.2085 0.2253* 0.3716*** -0.0375

(0.2083) (0.1339) (0.1319) (0.1227) (0.0468)

Wind 0.0927*** -0.1844*** -0.1862*** -0.1573*** -0.066***

(0.0086) (0.0123) (0.0113) (0.0103) (0.0072)

Total 0.0007*** 0.0004*** 0.0004*** 0.0005*** 0.0001***

(0.00002) (0.00002) (0.00002) (0.00003) (0.00001)

Lag3-PM2.5 NO NO NO NO 0.5864***

(0.0078)

Lag6-PM2.5 NO NO NO NO 0.1519***

(0.0073)

Temperature 0.1457*** 0.1385*** 0.2544*** 0.2717*** 0.0603***

(0.0036) (0.0032) (0.0037) (0.0032) (0.0027)

Relative Humidity 0.0636*** 0.0784*** 0.0803*** 0.0738*** 0.026***

(0.0021) (0.0018) (0.0021) (0.0015) (0.0009)

Constant -24.3862 -2.2545** -4.2879*** -8.9507*** -3.8656***

(1.2445) (1.094) (1.1070) (1.1742) (0.6)

Year NO YES YES YES YES

Season NO NO YES YES YES

Day of Week NO NO NO YES YES

Hour NO NO NO YES NO

Observation 66288 66288 66288 66288 65291

R2 0.1142 0.1601 00.1854 0.1936 0.5814

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

January 2009 to December 2016 (excluding August 2014 to December 2014).
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Table 3.7: GLS & Time-Series Estimates of Fuel Mix on NOx (Toronto)

Dependent Var:

NOx (Toronto) Reg (1) Reg (2) Reg (3) Reg (4)

Independent Var:

Gas 0.1774*** 0.1444*** 0.0473 0.0241

(0.0247) (0.0392) (0.0273) (0.0254)

Hydro 0.1857*** 0.1414*** 0.0002 0.0146

(0.0394) (0.0447) (0.048) (0.0263)

Nuclear -0.0752*** -0.1006*** -0.1483*** -0.0842***

(0.0163) (0.0143) (0.0228) (0.022)

Other 0.3795 0.5907*** -0.1254 -0.4607***

(0.1277) (0.1599) (0.1861) (0.1215)

Wind -0.638*** -0.785*** -0.7721*** -0.5678***

(0.0657) (0.0658) (0.0637) (0.0307)

Total 0.0001 0.0002** -0.0006*** -0.0003***

(0.0001) (0.00009) (0.0001) (0.00005)

Lag3-NOx NA NA NA 0.4467***

(0.0119)

Lag6-NOx NA NA NA 0.0453***

(0.009)

Temperature -0.1627*** -0.1933*** -0.0333 -0.1051***

(0.0394) (0.0398) (0.0503) (0.0175)

Relative Humidity 0.0122 0.0269** 0.0507*** 0.0695***

(0.0142) (0.0143) (0.0143) (0.0039)

Constant 12.6527*** 14.8698*** 33.6235*** 16.1152***

(3.4949) (3.0713) (4.8981) (2.6167)

Year NO YES YES YES

Day of Week NO NO YES YES

Hour NO NO YES NO

Observation 23292 23292 23292 23057

R2 0.0419 0.057 0.1827 0.3097

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

May to August of 2009 to 2016.
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Table 3.8: GLS & Time-Series Estimates of Fuel Mix on O3 (Toronto)

Dependent Var:

O3 (Toronto) Reg (1) Reg (2) Reg (3) Reg (4)

Independent Var:

Gas -0.1785*** 0.001 0.0806** 0.0652**

(0.0326) (0.039) (0.0351) (0.0291)

Hydro 0.1661*** 0.7744*** 0.8444*** 0.3525***

(0.0441) (0.0663) (0.0662) (0.029)

Nuclear -0.5157*** -0.2141*** -0.2012*** -0.079***

(0.0197) (0.0288) (0.0369) (0.0227)

Other 1.8834*** 1.3958*** 2.1549*** 1.6283***

(0.3011) (0.1997) (0.1502) (0.1517)

Wind 0.9975*** 1.4517*** 1.4148*** 0.6487***

(0.1058) (0.1042) (0.1117) (0.0345)

Total -0.00009 0.0002*** 0.0009*** 0.0001***

(0.00008) (0.00007) (0.0001) (0.00005)

Lag3-O3 NA NA NA 0.5611***

(0.0077)

Lag6-O3 NA NA NA -0.0391***

(0.0072)

Temperature 1.0636*** 1.2609*** 1.1146*** 0.5948***

(0.0246) (0.0544) (0.0543) (0.0184)

Relative Humidity -0.0983*** -0.1138*** -0.1125*** -0.1163***

(0.0051) (0.0073) (0.01) (0.0043)

Constant 41.8238*** -4.6243 -18.1635*** -0.3814

(3.3123) (3.9897) (4.9629) (2.6181)

Year NO YES YES YES

Day of Week NO NO YES YES

Hour NO NO YES NO

Observation 23486 23486 23486 23296

R2 0.3829 0.4299 0.4944 0.6558

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

May to August of 2009 to 2016.
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Table 3.9: GLS & Time-Series Estimates of Fuel Mix on PM2.5 (Toronto)

Dependent Var:

PM2.5 (Toronto) Reg (1) Reg (2) Reg (3) Reg (4)

Independent Var:

Gas -0.1564*** -0.2493*** -0.2196*** -0.0534***

(0.0176) (0.0105) (0.0113) (0.0148)

Hydro 0.0173 -0.0877*** 0.0496 -0.00041

(0.0113) (0.0204) (0.0315) (0.0148)

Nuclear -0.0917*** -0.2713*** -0.2355*** -0.0684***

(0.0106) (0.0158) (0.0157) (0.0117)

Other 0.6529*** 0.4619*** 0.5545*** -0.1165**

(0.1582) (0.1542) (0.1454) (0.0744)

Wind -0.0491*** -0.2521*** -0.2174*** -0.10***

(0.0192) (0.0139) (0.015) (0.0177)

Total 0.00007** -0.0002*** -0.000009 -0.00008***

(0.00004) (0.00006) (0.00008) (0.00002)

Lag3-PM2.5 NA NA NA 0.5421***

(0.0119)

Lag6-PM2.5 NA NA NA 0.1747***

(0.0107)

Temperature 0.56498*** 0.5965*** 0.6188*** 0.1627***

(0.0117) (0.0118) (0.0122) (0.0095)

Relative Humidity 0.0806*** 0.1054*** 0.0952*** 0.0291***

(0.0055) (0.0056) (0.0056) (0.0022)

Constant -3.4971** 13.1064*** 2.3971 2.7084

(2.196) (2.8577) (3.3151) (1.3673)

Year NO YES YES YES

Day of Week NO NO YES YES

Hour NO NO YES NO

Observation 23318 23318 23318 22941

R2 0.1940 0.2379 0.251 0.5645

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

May to August of 2009 to 2016.
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Table 3.10: GLS & Time-Series Estimates of Fuel Mix on NOx (Hamilton)

Dependent Var:

NOx (Hamilton) Reg (1) Reg (2) Reg (3) Reg (4) Reg (5)

Independent Var:

Gas 0.2532*** 0.2176*** 0.2218*** 0.1716*** 0.1097***

(0.0146) (0.0471) (0.0173) (0.0371) (0.016)

Hydro 0.3998*** 0.3577*** 0.2661*** 0.1825*** 0.2085***

(0.0390) (0.0467) (0.0471) (0.0378) (0.0149)

Nuclear 0.0814*** 0.0213* 0.0577*** 0.0597*** 0.0181

(0.0118) (0.0148) (0.015) (0.0147) (0.0129)

Other 0.2994** 1.0308*** 0.84*** 0.2641*** -0.0202

(0.1276) (0.0718) (0.066) (0.0776) (0.0728)

Wind -0.5174*** -0.6321*** -0.7045*** -0.7152*** -0.4137***

(0.0356) (0.0401) (0.0407) (0.0404) (0.0175)

Total 0.0001** 0.00006 0.0002*** -0.00005 0.0001***

(0.00005) (0.00006) (0.00006) (0.00005) (0.00002)

Lag3-NOx NA NA NA NA 0.4639***

(0.0113)

Lag6-NOx NA NA NA NA 0.0639***

(0.0071)

Temperature -0.2403*** -0.2473*** -0.2121*** -0.2454*** -0.1892***

(0.001) (0.001) (0.003) (0.0329) (0.005)

Relative Humidity 0.1813*** 0.188*** 0.1903*** 0.1954*** 0.135***

(0.007) (0.009) (0.009) (0.0067) (0.0024)

Constant -17.5935*** -12.9075*** -14.1968*** -2.8265** -10.4945***

(2.6109) (3.1465) (3.0914) (1.9181) (1.4303)

Year NO YES YES YES YES

Season NO NO YES YES YES

Day of Week NO NO NO YES YES

Hour NO NO NO YES NO

Observation 66265 66265 66265 66265 65575

R2 0.1780 0.1836 0.1895 0.22 0.4219

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

January 2009 to December 2016 (excluding August 2014 to December 2014).
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Table 3.11: GLS & Time-Series Estimates of Fuel Mix on O3 (Hamilton)

Dependent Var:

O3 (Hamilton) Reg (1) Reg (2) Reg (3) Reg (4) Reg (5)

Independent Var:

Gas -0.1756*** -0.3463*** -0.1364*** -0.0571** -0.0494***

(0.0142) (0.0167) (0.0360) (0.0255) (0.0119)

Hydro -0.1045** -0.2893*** -0.3298*** -0.2326*** -0.1949***

(0.0535) (0.0462) (0.0157) (0.0461) (0.0121)

Nuclear -0.2277*** -0.3745*** -0.1517*** -0.1645*** -0.0601***

(0.0115) (0.0144) (0.0139) (0.0133) (0.0106)

Other 0.9375*** -0.1417 0.1545 0.9447*** 1.0079***

(0.1055) (0.2254) (0.2193) (0.1666) (0.0759)

Wind 0.3374*** 0.2146*** 0.4845*** 0.4964*** 0.2549***

(0.0152) (0.0496) (0.0491) (0.0385) (0.0141)

Total 0.00008 0.0006*** 0.0007*** 0.0011*** 0.0004***

(0.00006) (0.00006) (0.00008) (0.00009) (0.00001)

Lag3-O3 NA NA NA NA 0.5501***

(0.005)

Lag6-O3 NA NA NA NA -0.0056

(0.0045)

Temperature 0.4313*** 0.4337*** 0.5051*** 0.5174*** 0.3321***

(0.0041) (0.0042) (0.0219) (0.0161) (0.0047)

Relative Humidity -0.3299*** -0.3347*** -0.3005*** -0.3002*** -0.2105***

(0.0026) (0.0026) (0.0125) (0.0075) (0.0012)

Constant 50.9307*** 69.3374*** 42.9863*** 30.9167*** 23.2347***

(4.1415) (3.5683) (4.2262) (3.7588) (1.1533)

Year NO YES YES YES YES

Season NO NO YES YES YES

Day of Week NO NO NO YES YES

Hour NO NO NO YES NO

Observation 66599 66599 66599 66599 65928

R2 0.4171 0.4223 0.4861 0.5244 0.7173

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

January 2009 to December 2016 (excluding August 2014 to December 2014).
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Table 3.12: GLS & Time-Series Estimates of Fuel Mix on PM2.5 (Hamilton)

Dependent Var:

PM2.5 (Hamilton) Reg (1) Reg (2) Reg (3) Reg (4) Reg (5)

Independent Var:

Gas 0.0388*** -0.1213*** -0.0652*** -0.0476*** -0.007

(0.01) (0.0098) (0.0088) (0.0088) (0.0072)

Hydro 0.1722*** -0.0619*** -0.1088*** -0.0763*** 0.001

(0.0180) (0.01) (0.0096) (0.0102) (0.0077)

Nuclear 0.1077*** -0.1367*** -0.0716*** -0.0797*** -0.0218***

(0.0097) (0.0064) (0.0075) (0.0064) (0.0065)

Other -0.0774 0.0482 0.0558 0.2049* 0.0324

(0.1725) (0.1374) (0.0667) (0.1276) (0.0463)

Wind 0.0076 -0.2898*** -0.2673*** -0.254*** -0.1184***

(0.013) (0.0114) (0.0117) (0.0117) (0.0087)

Total 0.0006*** 0.0003*** 0.0003*** 0.0004*** 0.0001***

(0.00002) (0.00001) (0.00001) (0.00002) (0.00001)

Lag3-PM2.5 NA NA NA NA 0.5459***

(0.0099)

Lag6-PM2.5 NA NA NA NA 0.1348***

(0.0099)

Temperature 0.1348*** 0.1245*** 0.2087*** 0.2182*** 0.053***

(0.0034) (0.0034) (0.0037) (0.0038) (0.0029)

Relative Humidity 0.1091*** 0.1002*** 0.1217*** 0.1173*** 0.052***

(0.0025) (0.0025) (0.0015) (0.0026) (0.0012)

Constant -22.5678*** 3.1503*** -3.1841*** -6.1897*** -4.2463***

(1.4293) (1.6002) (1.066) (1.0972) (0.7192)

Year NO YES YES YES YES

Season NO NO YES YES YES

Day of Week NO NO NO YES YES

Hour NO NO NO YES NO

Observation 66186 66186 66186 66186 65281

R2 0.10 0.1421 0.1761 0.1767 0.5193

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

January 2009 to December 2016 (excluding August 2014 to December 2014).
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Table 3.13: GLS & Time-Series Estimates of Fuel Mix on NOx (Hamilton)

Dependent Var:

NOx (Hamilton) Reg (1) Reg (2) Reg (3) Reg (4)

Independent Var:

Gas 0.2465*** 0.119*** 0.0682** 0.0629***

(0.0304) (0.0349) (0.0343) (0.0205)

Hydro 0.2779*** 0.1334*** 0.0465 0.0732***

(0.0261) (0.0266) (0.0388) (0.0218)

Nuclear 0.0998*** -0.0769** -0.0989*** -0.0281*

(0.0221) (0.0105) (0.0102) (0.0165)

Other 0.1274 0.3964*** 0.0429 -0.1478

(0.1774) (0.1049) (0.0965) (0.0871)

Wind -0.3126*** -0.5813*** -0.574*** -0.361***

(0.0411) (0.067) (0.0699) (0.0257)

Total 0.0006*** 0.0003 0.00008 0.0003***

(0.00005) (0.00006) (0.00009) (0.00004)

Lag3-NOx NA NA NA 0.4461***

(0.0175)

Lag6-NOx NA NA NA 0.0791***

(0.0125)

Temperature -0.602*** -0.5884*** -0.5872*** -0.3805***

(0.0295) (0.0266) (0.037) (0.0138)

Relative Humidity 0.0857*** 0.0919*** 0.1094*** 0.0674***

(0.0088) (0.007) (0.007) (0.0034)

Constant -9.5421*** 5.900** 15.7913*** 0.4812

(1.776) (2.8328) (3.2014) (2.0319)

Year NO YES YES YES

Day of Week NO NO YES YES

Hour NO NO YES NO

Observation 23286 23286 23286 23035

R2 0.1823 0.1929 0.2448 0.4214

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

May to August of 2009 to 2016.
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Table 3.14: GLS & Time-Series Estimates of Fuel Mix on O3 (Hamilton)

Dependent Var:

O3 (Hamilton) Reg (1) Reg (2) Reg (3) Reg (4)

Independent Var:

Gas -0.1643*** -0.0673 0.006 0.002

(0.0412) (0.0479) (0.0467) (0.0247)

Hydro 0.1077* 0.5366*** 0.6506*** 0.3224***

(0.0605) (0.0883) (0.0792) (0.0266)

Nuclear -0.4459*** -0.2555*** -0.2239*** -0.0991***

(0.0188) (0.0203) (0.0193) (0.0203)

Other 1.5479*** 0.9424*** 1.51544*** 1.2248***

(0.2057) (0.2331) (0.1587) (0.1244)

Wind 0.7115*** 1.0163*** 1.0174*** 0.546***

(0.0669) (0.0765) (0.0753) (0.0307)

Total -0.0003*** -0.0008 0.0003** -0.0002***

(0.0001) (0.0001) (0.0001) (0.00004)

Lag3-O3 NA NA NA 0.5538***

(0.0078)

Lag6-O3 NA NA NA -0.0128*

(0.0072)

Temperature 1.2224*** 1.3143*** 1.2929*** 0.8419***

(0.0262) (0.02353) (0.024) (0.0173)

Relative Humidity -0.1598*** -0.1595*** -0.1897*** -0.1489***

(0.0102) (0.0123) (0.0158) (0.0037)

Constant 50.7081*** 20.12** 4.5863 9.0494***

(4.9277) (6.7835) (5.3805) (2.3806)

Year NO YES YES YES

Day of Week NO NO YES YES

Hour NO NO YES NO

Observation 23282 23282 23282 23013

R2 0.4672 0.4943 0.5554 0.7244

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

May to August of 2009 to 2016.
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Table 3.15: GLS & Time-Series Estimates of Fuel Mix on PM2.5 (Hamilton)

Dependent Var:

PM2.5 (Hamilton) Reg (1) Reg (2) Reg (3) Reg (4)

Independent Var:

Gas -0.1745*** -0.2438*** -0.2185*** -0.0973***

(0.0293) (0.0224) (0.0223) (0.0166)

Hydro 0.0554** -0.0124 0.0365 0.0092

(0.0245) (0.0335) (0.0428) (0.0178)

Nuclear -0.1201*** -0.2603*** -0.2455*** -0.0962***

(0.0114) (0.0173) (0.0273) (0.0135)

Other 0.4748*** 0.4643** 0.6495*** 0.2092**

(0.1755) (0.1955) (0.1708) (0.0701)

Wind -0.0328 -0.2119*** -0.2029*** -0.1115***

(0.0241) (0.0265) (0.0265) (0.0207)

Total 0.0003*** 0.000006 0.0001*** 0.0002***

(0.00004) (0.00005) (0.00007) (0.00003)

Lag3-PM2.5 NA NA NA 0.4973***

(0.0168)

Lag6-PM2.5 NA NA NA 0.1579***

(0.0128)

Temperature 0.2867*** 0.3207*** 0.3009*** 0.0415***

(0.0128) (0.013) (0.0134) (0.0119)

Relative Humidity 0.1477*** 0.1546*** 0.1476*** 0.0608***

(0.0051) (0.0073) (0.0064) (0.0029)

Constant -5.012*** 7.6445*** 3.5166*** -0.7851

(2.48) (3.4938) (3.9928) (1.6253)

Year NO YES YES YES

Day of Week NO NO YES YES

Hour NO NO YES NO

Observation 22929 22929 22929 22506

R2 0.1116 0.14 0.1410 0.4571

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

May to August of 2009 to 2016.
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Table 3.16: GLS & Time-Series Estimates of Fuel Mix on NOx (Ottawa)

Dependent Var:

NOx (Ottawa) Reg (1) Reg (2) Reg (3) Reg (4) Reg (5)

Independent Var:

Gas 0.1849*** 0.1456*** 0.1481*** 0.1059*** 0.0701***

(0.0269) (0.0278) (0.0289) (0.0249) (0.0155)

Hydro 0.1608*** 0.1187*** 0.0828*** 0.0523** 0.1342***

(0.0230) (0.0268) (0.0266) (0.0266) (0.0139)

Nuclear 0.0351*** -0.0124 -0.0076 -0.0069 -0.0217*

(0.0118) (0.0108) (0.0117) (0.0118) (0.0117)

Other 0.5832*** 0.4940*** 0.3635*** -0.0445 -0.3338***

(0.0892) (0.0654) (0.0686) (0.1271) (0.0793)

Wind -0.0707*** -0.1376*** -0.1936*** -0.2061*** -0.1329

(0.0259) (0.0312) (0.0311) (0.0353) (0.0166)

Total 0.0003*** 0.0002*** 0.0002*** 0.00008*** 0.0001***

(0.00007) (0.00008) (0.00006) (0.00006) (0.00002)

Lag3-NOx NA NA NA NA 0.5130***

(0.0121)

Lag6-NOx NA NA NA NA 0.0545***

(0.0082)

Temperature -0.2611*** -0.2633*** -0.2078*** -0.2170*** -0.1609***

(0.0214) (0.0221) (0.0324) (0.0353) (0.0059)

Relative Humidity 0.1302*** 0.1308*** 0.1355*** 0.1320*** 0.0948***

(0.0067) (0.0070) (0.0071) (0.0079) (0.0019)

Constant -13.1733*** -8.2599*** -6.9303** -2.7445 -6.8149***

(2.5254) (2.8086) (2.7666) (2.6106) (1.3200)

Year NO YES YES YES YES

Season NO NO YES YES YES

Day of Week NO NO NO YES YES

Hour NO NO NO YES NO

Observation 66241 66241 66241 66241 65283

R2 0.1591 0.1610 0.1634 0.1755 0.4296

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

January 2009 to December 2016 (excluding August 2014 to December 2014).

138



Table 3.17: GLS & Time-Series Estimates of Fuel Mix on O3 (Ottawa)

Dependent Var:

O3 (Ottawa) Reg (1) Reg (2) Reg (3) Reg (4) Reg (5)

Independent Var:

Gas -0.3082*** -0.3347*** -0.1372*** -0.1030*** -0.0689***

(0.0175) (0.0149) (0.0213) (0.0207) (0.0113)

Hydro 0.0362 0.0514** -0.0674*** -0.0470* -0.0877***

(0.0346) (0.0220) (0.0216) (0.0251) (0.0116)

Nuclear -0.2670*** -0.2883*** -0.1006*** -0.1040*** -0.0427***

(0.0150) (0.0108) (0.0102) (0.0104) (0.0100)

Other 0.1591 -0.5237*** -0.2461*** 0.1955** 0.5659***

(0.2029) (0.0796) (0.0775) (0.0867) (0.0790)

Wind 0.2623*** 0.2953*** 0.4562*** 0.4654*** 0.2433***

(0.0179) (0.0309) (0.0217) (0.0231) (0.0134)

Total 0.0007*** 0.0007*** 0.0006*** 0.0008*** 0.0003***

(0.00005) (0.00005) (0.00004) (0.00007) (0.00001)

Lag3-O3 NA NA NA NA 0.5972***

(0.0049)

Lag6-O3 NA NA NA NA -.0337***

(0.0044)

Temperature 0.1227*** 0.1258*** 0.2527*** 0.2619*** 0.1845***

(0.0181) (0.0178) (0.0162) (0.0150) (0.0040)

Relative Humidity -0.3403*** -0.3413*** -0.3090*** -0.3065*** -0.1945***

(0.0073) (0.0078) (0.0089) (0.0102) (0.0017)

Constant 53.5449*** 54.8932*** 39.2870*** 35.5441*** 20.3373***

(3.0154) (2.0905) (2.4833) (2.3074) (1.0984)

Year NO YES YES YES YES

Season NO NO YES YES YES

Day of Week NO NO NO YES YES

Hour NO NO NO YES NO

Observation 66380 66380 66380 66380 65421

R2 0.3766 0.3855 0.4512 0.4659 0.6900

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

January 2009 to December 2016 (excluding August 2014 to December 2014).
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Table 3.18: GLS & Time-Series Estimates of Fuel Mix on PM2.5 (Ottawa)

Dependent Var:

PM2.5 (Ottawa) Reg (1) Reg (2) Reg (3) Reg (4) Reg (5)

Independent Var:

Gas 0.0646*** 0.0358*** 0.0628*** 0.0775*** 0.0098*

(0.0054) (0.0067) (0.0065) (0.0055) (0.0052)

Hydro 0.0582*** -0.0403*** -0.0678*** -0.0310** 0.0069

(0.0056) (0.0065) (0.0064) (0.0150) (0.0057)

Nuclear 0.0847*** 0.0081 0.0275*** 0.0288*** -0.0146***

(0.0066) (0.0070) (0.0070) (0.0071) (0.0047)

Other -0.1526 -0.0629 -0.0546 0.1041 -0.1602***

(0.1326) (0.1293) (0.1219) (0.1234) (0.0373)

Wind 0.1770*** 0.0847*** 0.0775*** 0.0955*** 0.0045

(0.0083) (0.0094) (0.0094) (0.0085) (0.0062)

Total 0.0004*** 0.0003*** 0.0003*** 0.0004*** 0.0001***

(0.00001) (0.00001) (0.00001) (0.00003) (8.17e-06)

Lag3-PM2.5 NA NA NA NA 0.6521***

(0.0110)

Lag6-PM2.5 NA NA NA NA 0.1072***

(0.0095)

Temperature 0.0493*** 0.0464*** 0.1147*** 0.1282*** 0.0142***

(0.0040) (0.0038) (0.0055) (0.0058) (0.0019)

Relative Humidity 0.0687*** 0.0684*** 0.0756*** 0.0686*** 0.0293***

(0.0020) (0.0021) (0.0021) (0.0021) (0.0008)

Constant -15.5207*** -5.6888*** -7.1423*** -10.5370*** -2.5757***

(0.8431) (0.9196) (0.8728) (1.2932) (0.5271)

Year NO YES YES YES YES

Season NO NO YES YES YES

Day of Week NO NO NO YES YES

Hour NO NO NO YES NO

Observation 65944 65944 65944 65944 65133

R2 0.0887 0.1144 0.1361 0.1466 0.6129

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

January 2009 to December 2016 (excluding August 2014 to December 2014).
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Table 3.19: GLS & Time-Series Estimates of Fuel Mix on NOx (Ottawa)

Dependent Var:

NOx (Ottawa) Reg (1) Reg (2) Reg (3) Reg (4)

Independent Var:

Gas 0.0689*** 0.0471*** 0.0161 0.0225*

(0.0084) (0.0148) (0.0132) (0.0118)

Hydro -0.0122 -0.0102 -0.0540* -0.0063

(0.0126) (0.0222) (0.0281) (0.0117)

Nuclear -0.0274*** -0.0690*** -0.0800*** -0.0420***

(0.0087) (0.0096) (0.0116) (0.0101)

Other 0.0035 -0.0254 -0.2448** -0.3718***

(0.1069) (0.0820) (0.1029) (0.0566)

Wind 0.0345 -0.0584** -0.0571** -0.0627***

(0.0226) (0.0227) (0.0237) (0.0147)

Total -0.00006** -0.0001*** -0.0003*** -0.00006***

(0.00002) (0.00002) (0.00006) (0.00002)

Lag3-NOx NA NA NA 0.4012***

(0.0137)

Lag6-NOx NA NA NA 0.0410***

(0.0097)

Temperature -0.1809*** -0.1708*** -0.1320*** -0.1511***

(0.0290) (0.0284) (0.0357) (0.0085)

Relative Humidity 0.0171*** 0.0235*** 0.0296*** 0.0300***

(0.0044) (0.0043) (0.0051) (0.0016)

Constant 8.8258*** 10.8809*** 15.5923*** 6.5144***

(1.5067) (1.9568) (2.6090) (1.1528)

Year NO YES YES YES

Day of Week NO NO YES YES

Hour NO NO YES NO

Observation 23220 23220 23220 22866

R2 0.0895 0.1036 0.1420 0.2889

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

May to August of 2009 to 2016.
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Table 3.20: GLS & Time-Series Estimates of Fuel Mix on O3 (Ottawa)

Dependent Var:

O3 (Ottawa) Reg (1) Reg (2) Reg (3) Reg (4)

Independent Var:

Gas -0.1815*** -0.0445 -0.0054 -0.0090

(0.0227) (0.0324) (0.0280) (0.0220)

Hydro 0.1950*** 0.4866*** 0.6255*** 0.3059***

(0.0284) (0.0476) (0.0444) (0.0216)

Nuclear -0.4083*** -0.2614*** -0.2259*** -0.0933***

(0.0163) (0.0179) (0.0240) (0.0175)

Other 0.3835 -0.0697 0.2400** 0.3829***

(0.2497) (0.0638) (0.1125) (0.1187)

Wind 0.8592*** 1.1575*** 1.1588*** 0.6243***

(0.0458) (0.0457) (0.0447) (0.0266)

Total -0.0002** -0.00018*** 0.0001 -0.0001***

(0.00009) (0.0001) (0.0001) (0.00003)

Lag3-O3 NA NA NA 0.5507***

(0.0080)

Lag6-O3 NA NA NA -0.0324***

(0.0071)

Temperature 0.7984*** 0.8750*** 0.8836*** 0.5963***

(0.0328) (0.0345) (0.0388) (0.0144)

Relative Humidity -0.2064*** -0.1973*** -0.2090*** -0.1454***

(0.0118) (0.0127) (0.0142) (0.0029)

Constant 50.3886 29.2003*** 16.1560*** 11.1037***

(2.2088) (3.6286) (3.2890) (2.0113)

Year NO YES YES YES

Day of Week NO NO YES YES

Hour NO NO YES NO

Observation 23410 23410 23410 23076

R2 0.4738 0.4982 0.5159 0.7099

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

May to August of 2009 to 2016.
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Table 3.21: GLS & Time-Series Estimates of Fuel Mix on PM2.5 (Ottawa)

Dependent Var:

PM2.5 (Ottawa) Reg (1) Reg (2) Reg (3) Reg (4)

Independent Var:

Gas -0.1443*** -0.1363*** -0.1096*** -0.0278**

(0.0093) (0.0143) (0.0126) (0.0114)

Hydro -0.0941*** -0.1035*** 0.0174 -0.0092

(0.0094) (0.0195) (0.0312) (0.0105)

Nuclear -0.1181*** -0.1704*** -0.1315*** -0.0367***

(0.0114) (0.0142) (0.0143) (0.0092)

Other 0.0023 -0.1333 0.0238 -0.2191***

(0.1219) (0.1729) (0.1536) (0.0641)

Wind 0.0678*** 0.0387*** 0.0763*** 0.0338***

(0.0198) (0.0147) (0.0158) (0.0120)

Total -0.0001*** -0.0003*** -0.00005 -0.00007***

(0.00002) (0.00003) (0.00007) (0.00001)

Lag3-PM2.5 NA NA NA 0.6536***

(0.0246)

Lag6-PM2.5 NA NA NA 0.0865***

(0.0203)

Temperature 0.3430*** 0.3677*** 0.3960*** 0.0937***

(0.0149) (0.0141) (0.0175) (0.0087)

Relative Humidity 0.0699*** 0.0746*** 0.0616*** 0.0242***

(0.0055) (0.0062) (0.0067) (0.0019)

Constant 7.4568*** 12.2777*** 1.5844 1.6768*

(1.6130) (2.3652) (3.1374) (1.0143)

Year NO YES YES YES

Day of Week NO NO YES YES

Hour NO NO YES NO

Observation 23095 23095 23095 22786

R2 0.1143 0.1383 0.1699 0.5828

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

May to August of 2009 to 2016.
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Table 3.22: GLS & Time-Series Estimates of Fuel Mix on NOx (Sarnia)

Dependent Var:

NOx (Sarnia) Reg (1) Reg (2) Reg (3) Reg (4) Reg (5)

Independent Var:

Gas 0.114*** 0.0462 0.0403* 0.0388 0.0385**

(0.0343) (0.037) (0.0305) (0.0317) (0.0151)

Hydro 0.1359*** 0.0366 -0.0787 0.008 0.0034**

(0.0337) (0.0387) (0.0468) (0.0356) (0.0146)

Nuclear 0.0685*** 0.0082 -0.023* -0.019** 0.0025

(0.0117) (0.0166) (0.0148) (0.0126) (0.0125)

Other -0.3687** 0.0583 0.0383 -0.1557 -0.4335***

(0.1575) (0.1336) (0.1166) (0.1016) (0.0718)

Wind -0.1271** -0.2231*** -0.4342*** -0.4027*** -0.2436***

(0.0555) (0.0702) (0.0604) (0.0603) (0.0175)

Total 0.0005*** 0.0004*** 0.0001** 0.0002*** 0.00003*

(0.00006) (0.00007) (0.00007) (0.00007) (0.00002)

Lag3-NOx NA NA NA NA 0.4533***

(0.0172)

Lag6-NOx NA NA NA NA 0.0667***

(0.0082)

Temperature 0.0155*** 0.0132*** 0.0009 0.0060 -0.0052*

(0.004) (0.0037) (0.0038) (0.0047) (0.0030)

Relative Humidity 0.0753*** 0.0868*** 0.0622*** 0.0438*** 0.0524***

(0.0070) (0.0087) (0.0098) (0.0088) (0.0022)

Constant -11.732*** -4.4345 8.4922*** 6.675*** 1.9094

(2.3866) (2.9931) (2.2648) (1.8053) (1.3901)

Year NO YES YES YES YES

Season NO NO YES YES YES

Day of Week NO NO NO YES YES

Hour NO NO NO YES NO

Observation 65654 65654 65654 65654 63255

R2 0.0216 0.0281 0.0557 0.0781 0.2945

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

January 2009 to December 2016 (excluding August 2014 to December 2014).
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Table 3.23: GLS & Time-Series Estimates of Fuel Mix on O3 (Sarnia)

Dependent Var:

O3 (Sarnia) Reg (1) Reg (2) Reg (3) Reg (4) Reg (5)

Independent Var:

Gas -0.1111*** -0.3202*** -0.129*** -0.1073*** -0.0595***

(0.0368) (0.0398) (0.0384) (0.0277) (0.0129)

Hydro -0.0305 -0.0711* -0.0288 -0.1948*** -0.0391***

(0.033) (0.0452) (0.0481) (0.0484) (0.0132)

Nuclear -0.3237*** -0.5238*** -0.2414*** -0.2530*** -0.1343***

(0.0137) (0.0371) (0.0159) (0.0152) (0.0115)

Other 1.5098*** 1.7106*** 1.7648*** 2.0814*** 1.8194***

(0.2753) (0.3559) (0.3049) (0.2415) (0.1008)

Wind -0.0616 -0.3071** 0.2559** 0.1816* 0.097***

(0.0881) (0.143) (0.092) (0.1029) (0.0151)

Total 0.0002* 0.0002** 0.0011*** 0.0007*** 0.0005***

(0.00001) (0.00001) (0.0001) (0.0001) (0.00002)

Lag3-O3 NA NA NA NA 0.7286***

(0.005)

Lag6-O3 NA NA NA NA -0.1424***

(0.0047)

Temperature -0.0098* -0.0006 0.0241*** 0.0104*** 0.0287***

(0.0056) (0.006) (0.003) (0.0032) (0.0031)

Relative Humidity -0.141*** -0.1741*** -0.1182*** -0.0617*** -0.0787***

(0.0063) (0.011) (0.0130) (0.011) (0.0021)

Constant 56.1362*** 68.1397*** 24.4753*** 28.5888*** 10.8127***

(3.1432) (5.6431) (2.5044) (3.6390) ( 1.3340)

Year NO YES YES YES YES

Season NO NO YES YES YES

Day of Week NO NO NO YES YES

Hour NO NO NO YES NO

Observation 66500 66500 66500 66500 65365

R2 0.1272 0.1463 0.273 0.3367 0.6049

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

January 2009 to December 2016 (excluding August 2014 to December 2014).
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Table 3.24: GLS & Time-Series Estimates of Fuel Mix on PM2.5 (Sarnia)

Dependent Var:

PM2.5 (Sarnia) Reg (1) Reg (2) Reg (3) Reg (4) Reg (5)

Independent Var:

Gas -0.0744*** -0.1084*** -0.1011*** -0.0748*** -0.0146**

(0.0141) (0.0104) (0.0106) (0.0106) (0.0078)

Hydro -0.2728*** -0.2775*** -0.2527*** -0.1959*** -0.0468***

(0.0148) (0.0101) (0.0104) (0.011) (0.0081)

Nuclear -0.127*** -0.1326*** -0.1262*** -0.1264*** -0.0279***

(0.0122) (0.008) (0.0092) (0.0091) (0.007)

Other -0.2122* -0.4347*** -0.3914*** -0.1114 -0.3303***

(0.1291) (0.1321) (0.1323) (0.1331) (0.0569)

Wind -0.3472*** -0.3216*** -0.2812*** -0.2552*** -0.1071***

(0.0117) (0.0121) (0.0126) (0.0126) (0.0088)

Total 0.00006*** 0.0001*** 0.0001*** 0.0003*** 0.00005***

(0.00001) (0.00002) (0.00002) (0.00005) (0.00001)

Lag3-PM2.5 NA NA NA NA 0.6046***

(0.0086)

Lag6-PM2.5 NA NA NA NA 0.1464***

(0.0068)

Temperature 0.0024* 0.0029** 0.0024* 0.0077*** -0.0011

(0.0013) (0.0013) (0.0013) (0.0018) (0.0017)

Relative Humidity 0.0235*** 0.0206*** 0.0264*** 0.014*** 0.0178***

(0.0024) (0.0024) (0.0028) (0.0031) (0.0011)

Constant 22.48*** 22.7993*** 20.8755*** 16.0541*** 3.4813***

(1.0374) (0.9502) (1.0397) (1.3282) (0.7618)

Year NO YES YES YES YES

Season NO NO YES YES YES

Day of Week NO NO NO YES YES

Hour NO NO NO YES NO

Observation 66276 66276 66276 66276 65605

R2 0.0477 0.0558 0.0581 0.0714 0.5409

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

January 2009 to December 2016 (excluding August 2014 to December 2014).
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Table 3.25: OLS & Time-Series Estimates of Fuel Mix on NOx (Sarnia)

Dependent Var:

NOx (Sarnia) Reg (1) Reg (2) Reg (3) Reg (4)

Independent Var:

Gas 0.0724*** -0.0748*** -0.0599*** -0.0693***

(0.0285) (0.0135) (0.013) (0.0209)

Hydro 0.0764*** -0.0632*** -0.0868* -0.1467***

(0.0237) (0.0234) (0.0453) (0.0226)

Nuclear -0.0124 -0.1705*** -0.1687*** -0.1149***

(0.0126) (0.0213) (0.0211) (0.0191)

Other -0.3105*** -0.2182*** -0.3363** -0.6142***

(0.1571) (0.1065) (0.1572) (0.1016)

Wind -0.158*** -0.3317*** -0.3033*** -0.2675***

(0.0532) (0.0818) (0.0796) (0.0256)

Total 0.00005 -0.0001 -0.0002 -0.0004***

(0.00005) (0.00008) (0.0001) (0.00003)

Lag3-NOx NA NA NA 0.3958***

(0.0157)

Lag6-NOx NA NA NA 0.0656***

(0.0114)

Temperature 0.0069** 0.0062* 0.0051 -0.004***

(0.0033) (0.0034) (0.0035) (0.0038)

Relative Humidity 0.0348*** 0.0322*** 0.0372*** 0.0423***

(0.0043) (0.0043) (0.0077) (0.0029)

Constant 4.4489*** 21.2696*** 22.9265*** 20.6748***

(1.5350) (3.1382) (4.7203) (2.1532)

Year NO YES YES YES

Day of Week NO NO YES YES

Hour NO NO YES NO

Observation 22976 22976 22976 22610

R2 0.0062 0.0204 0.0740 0.2278

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

May to August of 2009 to 2016.
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Table 3.26: GLS & Time-Series Estimates of Fuel Mix on O3 (Sarnia)

Dependent Var:

O3 (Sarnia) Reg (1) Reg (2) Reg (3) Reg (4)

Independent Var:

Gas -0.0657** -0.1751*** -0.1222*** -0.0407

(0.0238) (0.0388) (0.0375) (0.0294)

Hydro -0.0084 0.513*** 0.4691*** 0.3328***

(0.039) (0.0667) (0.0773) (0.0298)

Nuclear -0.4107*** -0.2132*** -0.2519*** -0.1002***

(0.0109) (0.031) (0.0396) (0.0233)

Other 1.9199*** 1.3734*** 2.2147*** 1.8491***

(0.1761) (0.1892) (0.2501) (0.1514)

Wind 0.4601*** 0.5835*** 0.5046*** 0.2764***

(0.1000) (0.1567) (0.145) (0.0358)

Total 0.0013*** 0.0026*** 0.0023*** 0.0015***

(0.0001) (0.0001) (0.0001) (0.00005)

Lag3-O3 NA NA NA 0.6448***

(0.0071)

Lag6-O3 NA NA NA -0.1377***

(0.0074)

Temperature 0.0188** 0.0151*** 0.0108** 0.0213***

(0.0047) (0.0048) (0.0051) (0.005)

Relative Humidity -0.0414*** -0.058*** -0.0419*** -0.0695***

(0.0072) (0.008) (0.0002) (0.0044)

Constant 35.6549*** -5.9547*** -5.4177* -11.2565

(2.3764) (5.5151) (3.8846) (2.8373)

Year NO YES YES YES

Day of Week NO NO YES YES

Hour NO NO YES NO

Observation 23336 23336 23336 22957

R2 0.2922 0.3309 0.3967 0.6013

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

May to August of 2009 to 2016.
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Table 3.27: GLS & Time-Series Estimates of Fuel Mix on PM2.5 (Sarnia)

Dependent Var:

PM2.5 (Sarnia) Reg (1) Reg (2) Reg (3) Reg (4)

Independent Var:

Gas -0.2352*** -0.2844*** -0.1944*** -0.0928***

(0.0199) (0.0237) (0.0234) (0.0172)

Hydro -0.4961*** -0.4881*** -0.3181*** -0.1451***

(0.0153) (0.0325) (0.0538) (0.0172)

Nuclear -0.3312*** -0.3052*** -0.2693*** -0.0985***

(0.00926) (0.0293) (0.0291) (0.0141)

Other -0.0233 -0.3249* 0.1867 -0.4019***

(0.1809) (0.1716) (0.1579) (0.0809)

Wind -0.4943*** -0.3472*** -0.2992*** -0.1443***

(0.0196) (0.0265) (0.0265) (0.019)

Total -0.00006 0.00007*** 0.0005*** 0.000001

(0.00004) (0.00006) (0.0001) (0.00002)

Lag3-PM2.5 NA NA NA 0.5751***

(0.0141)

Lag6-PM2.5 NA NA NA 0.1437***

(0.0117)

Temperature 0.0016 0.0016 0.0044 -0.0034

(0.0022) (0.0022) (0.0026) (0.0027)

Relative Humidity 0.0384*** 0.0291*** 0.0204*** 0.0123***

(0.0026) (0.0026) (0.0054) (0.0024)

Constant 43.6627*** 41.3153*** 23.7450*** 12.7765***

(1.5077) (3.5898) (4.9936) (1.6104)

Year NO YES YES YES

Day of Week NO NO YES YES

Hour NO NO YES NO

Observation 23268 23268 23268 22988

R2 0.1299 0.1582 0.1913 0.5575

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5 percent

and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from

May to August of 2009 to 2016.
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Table 3.28: GLS Regressions of Pollutants in Toronto (Sensitivity Analysis)

Dependent Var: NOX O3 PM2.5

(Toronto) Reg (1) Reg (2) Reg (1) Reg (2) Reg (1) Reg (2)

Independent Var:
Gas 0.1384** 0.1384*** -0.062 -0.062*** 0.005 0.005

(0.0574) (0.0248) (0.048) (0.0219) (0.0294) (0.0114)
Hydro 0.008 0.008 -0.1324*** -0.1324*** -0.0486* -0.0486***

(0.0555) (0.0247) (0.0495) (0.0228) (0.0291) (0.0117)
Nuclear -0.0103 -0.0103 -0.1628*** -0.1628*** -0.0348 -0.0348***

(0.0486) (0.0206) (0.0442) (0.0194) (0.0258) (0.0101)
Other 0.2552 0.2552* 1.5162*** 1.5162*** 0.3716** 0.3716***

(0.2864) (0.1343) (0.3092) (0.1500) (0.1601) (0.0731)
Wind -0.9733*** -0.9733*** 0.7074*** 0.7074*** -0.1573*** -0.1573***

(0.0610) (0.0257) (0.0560) (0.0234) (0.0329) (0.0120)
Total 0.0001 0.0001** 0.0011*** 0.0011*** 0.0005*** 0.0005***

(0.00008) (0.00004) (0.00008) (0.00004) (0.00004) (0.00002)
Temperature -0.1176*** -0.1176*** 0.4966*** 0.4966*** 0.2717*** 0.2717***

(0.0236) (0.0096) (0.0205) (0.0089) (0.0115) (0.0043)
Relative Humidity 0.0845*** 0.0845*** -0.2175*** -0.2175*** 0.0738*** 0.0738***

(0.0080) (0.0034) (0.0072) (0.0030) (0.0043) (0.0015)
Constant 18.7149*** 18.7149*** 21.1235*** 21.1235*** -8.1645*** -8.1645***

(5.1392) (2.2040) (4.8619) (2.1444) (2.7704) (1.1220)
Year YES YES YES YES YES YES
Season YES YES YES YES YES YES
Day of Week YES YES YES YES YES YES
Hour YES YES YES YES YES YES
Observation 66614 66614 66885 66885 66288 66288
R2 0.2218 0.2218 0.4682 0.4682 0.1936 0.1936

Note: Standard errors are in parentheses and clustered at the day level in Reg (1). Reg (2) considers Newey-West
standard error structure. ***,** and * indicate statistical significance level at 1 percent, 5 percent and 10 percent,
respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from January 2009
to December 2016 (excluding August 2014 to December 2014).
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Table 3.29: GLS Regressions of Pollutants in Hamilton (Sensitivity Analysis)

Dependent Var: NOX O3 PM2.5

(Hamilton) Reg (1) Reg (2) Reg (1) Reg (2) Reg (1) Reg (2)

Independent Var:

Gas 0.1716*** 0.1716*** -0.0571 -0.0571*** -0.0476 -0.0476***

(0.0502) (0.0218) (0.0469) (0.0199) (0.0305) (0.0123)

Hydro 0.1825*** 0.1825*** -0.2326*** -0.2326*** -0.0763** -0.0763***

(0.0481) (0.0210) (0.0490) (0.0217) (0.0311) (0.0131)

Nuclear 0.0597 0.0597*** -0.1645*** -0.1645*** -0.0797*** -0.0797***

(0.0422) (0.0175) (0.0436) (0.0178) (0.0271) (0.0109)

Other 0.2641 0.2641*** 0.9447*** 0.9447*** 0.2049 0.2049***

(0.2323) (0.1005) (0.2540) (0.1193) (0.1614) (0.0731)

Wind -0.7152*** -0.7152*** 0.4964*** 0.4964*** -0.254*** -0.254***

(0.0514) (0.0214) (0.0552) (0.0219) (0.0341) (0.0129)

Total -0.00005 -0.00005* 0.0011*** 0.0011*** 0.0004*** 0.0004***

(0.00007) (0.00003) (0.00009) (0.00004) (0.00004) (0.00002)

Temperature -0.2454*** -0.2454*** 0.5174*** 0.5174*** 0.2182*** 0.2182***

(0.0198) (0.0081) (0.0192) (0.0078) (0.0114) (0.0043)

Relative Humidity 0.1954*** 0.1954*** -0.3002*** -0.3002*** 0.1172*** 0.1173***

(0.0077) (0.0032) (0.0073) (0.0029) (0.0047) (0.0018)

Constant -6.1098 -6.1098 35.2043*** 35.2043*** -5.2842* -5.2842***

(4.5905) (1.9348) (4.8609) (2.0494) (2.9378) (1.2191)

Year YES YES YES YES YES YES

Season YES YES YES YES YES YES

Day of Week YES YES YES YES YES YES

Hour YES YES YES YES YES YES

Observation 66256 66256 66599 66599 66186 66186

R2 0.2200 0.2200 0.5279 0.5279 0.1767 0.1767

Note: Standard errors are in parentheses and clustered at the day level in Reg (1). Reg (2) considers Newey-West

standard error structure. ***,** and * indicate statistical significance level at 1 percent, 5 percent and 10 percent,

respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from January 2009

to December 2016 (excluding August 2014 to December 2014).
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Table 3.30: GLS Regressions of Pollutants in Ottawa (Sensitivity Analysis)

Dependent Var: NOX O3 PM2.5

(Ottawa) Reg (1) Reg(2) Reg (1) Reg (2) Reg (1) Reg (2)

Independent Var:

Gas 0.1059* 0.1059*** -0.1030** -0.1030*** 0.0775*** 0.0775***

(0.0568) (0.0220) (0.0481) (0.0194) (0.0264) (0.0102)

Hydro 0.0523 0.0523** -0.0470 -0.0470** -0.0310 -0.0310**

(0.0501) (0.0204) (0.0489) (0.0210) (0.0290) (0.0113)

Nuclear -0.0069 -0.0069 -0.1040** -0.1040*** 0.0288 0.0288***

(0.0410) (0.0156) (0.0435) (0.0173) (0.0225) (0.0088)

Other -0.0445 -0.0445 0.1955 0.1955* 0.1041 0.1041*

(0.1839) (0) (0.2519) (0.1072) (0.1306) (0.0593)

Wind -0.2061*** -0.2061*** 0.4654*** 0.4654*** 0.0955*** 0.0955***

(0.0565) (0.0210) (0.0561) (0.0215) (0.0294) (0)

Total 0.00008 0.00008** 0.0008*** 0.0008*** 0.0004*** 0.0004***

(0.00007) (0.00003) (0.00008) (0.00003) (0.00004) (0.0593)

Temperature -0.2170*** -0.2170*** 0.2619*** 0.2619*** 0.1282*** 0.1282***

(0.0210) (0.0082) (0.0185) (0.0074) (0.0092) (0.0032)

Relative Humidity 0.1320*** 0.1320*** -0.3065*** -0.3065*** 0.0686*** 0.0686***

(0.0064) (0.0028) (0.0065) (0.0026) (0.0037) (0.0013)

Constant -2.7445 -2.7445 35.5441*** 35.5441*** -10.5370*** -10.5370***

(4.6128) (1.8127) (4.7596) (1.9485) (2.5479) (1.0274)

Year YES YES YES YES YES YES

Season YES YES YES YES YES YES

Day of Week YES YES YES YES YES YES

Hour YES YES YES YES YES YES

Observation 66241 66241 66380 66380 65944 65944

R2 0.1755 0.1755 0.4659 0.4659 0.1466 0.1466

Note: Standard errors are in parentheses and clustered at the day level in Reg (1). Reg (2) considers Newey-West

standard error structure. ***,** and * indicate statistical significance level at 1 percent, 5 percent and 10 percent,

respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from January 2009

to December 2016 (excluding August 2014 to December 2014).
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Table 3.31: GLS Regressions of Pollutants in Sarnia (Sensitivity Analysis)

Dependent Var: NOX O3 PM2.5

(Sarnia) Reg (1) Reg (2) Reg (1) Reg (2) Reg (1) Reg (2)

Independent Var:
Gas 0.0388 0.0388* -0.1073** -0.1073*** -0.0748* -0.0748***

(0.0458) (0.0204) (0.0539) (0.0253) (0.0382) (0.0149)
Hydro 0.008 0.008 -0.1948*** -0.1948*** -0.1959*** -0.1959***

(0.0425) (0.0201) (0.0536) (0.0262) (0.0386) (0.0158)
Nuclear -0.019 -0.019 -0.2530*** -0.2530*** -0.1264*** -0.1264***

(0.0369) (0.0171) (0.0462) (0.0220) (0.0340) (0.0136)
Other -0.1557 -0.1557 2.0814*** 2.0814*** -0.1114 -0.1114

(0.2752) (0.1125) (0.3535) (0.1580) (0.1951) (0.0798)
Wind -0.4027*** -0.4027*** 0.1816*** 0.1816*** -0.2552*** -0.2552***

(0.0526) (0.0221) (0.0599) (0.0266) (0.0413) (0.0156)
Total 0.0002*** 0.0002*** 0.0007*** 0.0007*** 0.0003*** 0.0003***

(0.00007) (0.00003) (0.00009) (0.00004) (0.00005) (0.00002)
Temperature 0.006 0.006 0.0104 0.0104** 0.0077 0.0077***

(0.0103) (0.0038) (0.0129) (0.0051) (0.0089) (0.0027)
Relative Humidity 0.0438*** 0.0438*** -0.0617*** -0.0617*** 0.0146*** 0.0146***

(0.0071) (0.0032) (0.0085) (0.0033) (0.0054) (0.0019)
Constant 6.675 6.675*** 28.5888*** 28.5888*** 17.3329*** 17.3329***

(4.1506) (1.9093) (5.1093) (2.4349) (3.6516) (1.4841)
Year YES YES YES YES YES YES
Season YES YES YES YES YES YES
Day of Week YES YES YES YES YES YES
Hour YES YES YES YES YES YES
Observation 65654 65654 66500 66500 66276 66276
R2 0.0781 0.0781 0.3367 0.3367 0.0714 0.0714

Note: Standard errors are in parentheses and clustered at the day level in Reg (1). Reg (2) considers Newey-West
standard error structure. ***,** and * indicate statistical significance level at 1 percent, 5 percent and 10 percent,
respectively. The omitted category for fuel type is “coal”. Regressions are based on the hourly data from January 2009
to December 2016 (excluding August 2014 to December 2014).
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Table 3.32: Marginal Effects from Probit Regressions of Fuel Mix on the Likelihood of
Smog days (March- October)

Dependent Var:
Smog (58 Days) Reg (1) Reg (2) Reg (3) Reg (4)

Independent Var:
Gas 0.0014 0.00004 -6.02e-08 -3.86e-06

(0.0014) (0.00009) (0.00000) (0.00001)
Hydro -0.0048*** -0.00001 1.93e-07* 7.12e-06

(0.0011) (0.00006) (0.00000) (0.00001)
Nuclear -0.0004 0.00004 1.67e-07** 3.83e-06

(0.0009) (0.00007) (0.00000) (0.00001)
Other 0.0269*** 0.0013 7.05e-07 0.00002

(0.0091) (0.0017) (0.00000) (0.00006)
Wind -0.0054** -1.27e-07 -1.02e-07 -1.33e-06

(0.0021) (0.0001) (0.00000) (0.00000)
Total NO -3.14e-07* 2.05e-10 9.76e-09

(0.00000) (0.00000) (0.00000)
Temperature NO 0.0016 2.22e-06 0.00005

(0.0017) (0.00000) (0.0001)
Rel. Humidity NO -0.00007 -3.26e-08 -2.52e-07

(0.00009) (0.00000) (0.00000)
Exchange Rate NO NO NO YES
Unemployment Rate NO NO NO YES
Month NO NO YES NO
Year NO NO YES YES
Constant -0.0531 -5.5269** -27.6736*** -33.5714***

(1.4906) ( 2.2871) (4.9350) (9.1168)
Observation 1409 1409 1409 1409

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5
percent and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the daily
data from March to October of 2009 to 2014.
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Table 3.33: Marginal Effects from Probit Regressions of Fuel Mix on the Likelihood of
Smog days (June-August)

Dependent Var:
Smog (38 Days) Reg (1) Reg (2) Reg (3) Reg (4)

Independent Var:
Gas -0.0031 -0.0011 -0.0005 -0.0004

(0.003) (0.0012) (0.0005) (0.0004)
Hydro -0.0094*** -0.0023 0.0002 0.0002

(0.0035) (0.0014) (0.0003) (0.0003)
Nuclear -0.0033 0.0015* 0.0002 0.0001

(0.002) (0.001) (0.0001) (0.0001)
Other 0.091*** 0.0217** 0.0012 0.001

(0.0273) (0.014) (0.0014) (0.0012)
Wind -0.0136* -0.0056* -0.0005 -0.0004

(0.0073) (0.0032) (0.0006) (0.0004)
Total NO -6.38e-06 4.46e-07 3.82e-07

(0..00000) (0.00000) (0..00000)
Daily Avg. Temperature NO 0.0374*** 0.0041 0.0034

(0.0123) (0.0032) (0.0027)
Daily Avg rel. Humidity NO -0.0002 0.0001 0.0001

(0.0011) (0.0001) (0.0001)
Exchange Rate NO NO NO YES
Unemployment Rate NO NO NO YES
Month NO NO YES NO
Year NO NO YES YES
Constant 2.0038 -8.1565** -25.7162*** -35.4007**

(2.098) (3.8729) (7.9552) (14.4523)
Observation 522 522 522 522

Note: Robust standard errors are in parentheses. ***,** and * indicate statistical significance level at 1 percent, 5
percent and 10 percent, respectively. The omitted category for fuel type is “coal”. Regressions are based on the daily
data from June to August of 2009 to 2014.
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3.8 Figures

Figure 3.1: Average Monthly NOx in Toronto (2009-2016)
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Source: Author’s own calculations.

Figure 3.2: Average Monthly O3 in Toronto (2009-2016)
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Source: Author’s own calculations.
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Figure 3.3: Average Monthly PM2.5 in Toronto (2009-2016)
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Source: Author’s own calculations.

Figure 3.4: Average Monthly NOx in Hamilton (2009-2016)
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Source: Author’s own calculations.
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Figure 3.5: Average Monthly O3 in Hamilton (2009-2016)
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Source: Author’s own calculations.

Figure 3.6: Average Monthly PM2.5 in Hamilton (2009-2016)
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Source: Author’s own calculations.
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Figure 3.7: Average Monthly NOx in Ottawa (2009-2016)

Source: Author’s own calculations.

Figure 3.8: Average Monthly O3 in Ottawa (2009-2016)

Source: Author’s own calculations.
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Figure 3.9: Average Monthly PM2.5 in Ottawa (2009-2016)

Source: Author’s own calculations.

Figure 3.10: Average Monthly NOx in Sarnia (2009-2016)
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Source: Author’s own calculations.
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Figure 3.11: Average Monthly O3 in Sarnia (2009-2016)
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Source: Author’s own calculations.

Figure 3.12: Average Monthly PM2.5 in Sarnia (2009-2016)
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Source: Author’s own calculations.
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Appendix A

Appendices of Chapter 1

Figure A.1: Map of the Tri-Cities including CTs and DAs within boundaries of each.
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Figure A.2: Distribution of houses in the Tri-Cities, CTs and DAs.
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Figure A.3: Distribution of houses in CTs and DAs of Cambridge.
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Figure A.4: Distribution of houses in CTs and DAs of Kitchener.
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Figure A.5: Distribution of houses in CTs and DAs of Waterloo.
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Appendix B

Appendices of Chapter 2

Table B.1: Studies on the impact of smart-metering on household electricity consumption

Author Data Term Dep. Var Ind. Var Method Main Findings Critique

McCoy and Lyons [2014] CER 2010 1.Binary Adoption of 1.Logit HH decresead Short

adopter energy 2.Neg. electricity time-scale

2.Count of efficient binomial consumption

in trial measures as informed

adoption about TOU

tarrifs &

usages.

Gilbert and Zivin [2014] 1.SGDE&E 2009- Daily 1.CDH OLS HHs reduces Short

2.Weather 2010 electricity 2.HDH energy time-scale

station in consumption 3.HH consumption

Escondid specific by 6% to 1%

temperature in a week

responses after receiving

the bills.

Jack et al. [2015] Admin. 2012 electrivity 1.Property OLS Pre-paid Electricity

records of Purchasing Value electricity purchase

Cape-town Pattern 2.Month meters adds pattern

fixed flexibility in rather than

effects how & when electricity

3. year fixed poor HHs consumption

effects purchase pattern

electricity. is observed.

Kavousian et al. [2013] 10-min 2010 Min, max 1. House size WLS Weather & 1. Short

interval and range 2. House age physcal time scale

smart meter electricity 3. Type of characteristics 2.Targeted

data for consumption building are most specific HH

1628 HHs 4.CDD important whose income

5.HDD determinants are over

6.Various of electricity $150,000.00

consumption consumption.

appliances
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Table B.2: Studies on the impact of sub-metering in multi-unit residential buildings

Author Data Term Dep. Var Ind. Var Method Main Findings Critique

Dewees and Tombe [2011] 1. Environ. 2001- Log of 1. HDD OLS 1.Sub metering 1.Relied on

canada 2010 electricity 2. CDD reduces electricity short-time

2. Sample consumption 3. Sub-met. usage by 15% to 25% sub-met.

condo dummy in the selected apt. data

building in 2.Social net benefit 2.Selected

Toronto depends on factors sample

such as design of is small.

apt. & value

assigned to

externalities from

generators.

Munley et al. [1990] Controlled 1978- Box-cox 1. HH income MLE if installing 1.Short

experiment 1980 trans. 2.Number of GLS sub-metering cost time-scale

of a large on HH children is ignored, 2.Generator

garden apt. electricity under 18 sub-metering is externality

in Wash. consumption 3. Number of profitable and is ignored

KWH provides in welfare

consumed non-negligable analysis.

4.Top floor net gain in

apt. welfare.

5.CD &HD

6.Lagged

price of

electricity

Table B.3: Dickey-Fuller Test for Unit Root in Natural Log of HOEP

Test 1% Critical 5% Critical 10% Critical

Statistics Value Value Value

-7.813 -3.96 -3.41 -3.12

P-value = 0.0000

Note: Test is performed on the Log of HOEP data for the period from January 2009 to August 2014.
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Appendix C

Appendices of Chapter 3

Table C.1: Dickey-Fuller Test for Unit Root in NOx Pollution in Toronto

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

-77.92 -3.43 -2.86 -2.57

p-value for Z(t) = 0.0000

Note: Test is performed on the NOx data of Toronto for the period from January 2009 to December 2016.

Table C.2: Dickey-Fuller Test for Unit Root in O3 Pollution in Toronto

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

-57.526 -3.43 -2.86 -2.57

p-value for Z(t) = 0.0000

Note: Test is performed on the O3 data of Toronto for the period from January 2009 to December 2016.
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Table C.3: Dickey-Fuller Test for Unit Root in PM2.5 Pollution in Toronto

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

-67.182 -3.43 -2.86 -2.57

p-value for Z(t) = 0.0000

Note: Test is performed on the PM2.5 data of Toronto for the period from January 2009 to December 2016.

Table C.4: Dickey-Fuller Test for Unit Root in NOx Pollution in Hamilton

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

-78.147 -3.43 -2.86 -2.57

p-value for Z(t) = 0.0000

Note: Test is performed on the NOx data of Hamilton for the period from January 2009 to December 2016.

Table C.5: Dickey-Fuller Test for Unit Root in O3 Pollution in Hamilton

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

-55.456 -3.43 -2.86 -2.57

p-value for Z(t) = 0.0000

Note: Test is performed on the O3 data of Hamilton for the period from January 2009 to December 2016.
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Table C.6: Dickey-Fuller Test for Unit Root in PM2.5 Pollution in Hamilton

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

-72.121 -3.43 -2.86 -2.57

p-value for Z(t) = 0.0000

Note: Test is performed on the PM2.5 data of Hamilton for the period from January 2009 to December 2016.

Table C.7: Dickey-Fuller Test for Unit Root in NOx Pollution in Sarnia

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

-89.514 -3.43 -2.86 -2.57

p-value for Z(t) = 0.0000

Note: Test is performed on the NOx data of Sarnia for the period from January 2009 to December 2016.

Table C.8: Dickey-Fuller Test for Unit Root in O3 Pollution in Sarnia

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

-70.22 -3.43 -2.86 -2.57

p-value for Z(t) = 0.0000

Note: Test is performed on the O3 data of Sarnia for the period from January 2009 to December 2016.
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Table C.9: Dickey-Fuller Test for Unit Root in PM2.5 Pollution in Sarnia

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

-57.306 -3.43 -2.86 -2.57

p-value for Z(t) = 0.0000

Note: Test is performed on the PM2.5 data of Sarnia for the period from January 2009 to December 2016.
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