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Abstract

Let G = (V,E) be a graph and let T be a spanning tree of G. The thinness parameter
of T denoted by ρ(T ) is the maximum over all cuts of the proportion of the edges of T
in the cut. Thin trees play an important role in some recent papers on the Asymmetric
Traveling Salesman Problem (ATSP). Goddyn conjectured that every graph of sufficiently
large edge-connectivity has a spanning tree T such that ρ(T ) ≤ ε.

In this thesis, we study the problem of finding thin spanning trees in two families of
graphs, namely, (1) distance-regular graphs (DRGs), and (2) planar graphs.

For some families of DRGs such as strongly regular graphs, Johnson graphs, Crown
graphs, and Hamming graphs, we give a polynomial-time construction of spanning trees T
of maximum degree ≤ 3 such that ρ(T ) is determined by the parameters of the graph.

For planar graphs, we improve the analysis of Merker and Postle ("Bounded Diameter
Arboricity", arXiv:1608.05352v1) and show that every 6-edge-connected planar graph has
two edge-disjoint spanning trees T, T ′ such that ρ(T ), ρ(T ′) ≤ 14

15
. For 8-edge-connected

planar graphs G, we present a simplified version of the techniques of Merker and Postle
and show that G has two edge-disjoint spanning trees T, T ′ such that ρ(T ), ρ(T ′) ≤ 12

13
.
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Chapter 1

Introduction

1.1 Thin Trees

In this thesis, we study a special kind of spanning tree known as a thin tree. We often use
the term thin tree to mean a thin spanning tree. First, we review some standard notation
from graph theory. Let G = (V,E) be a graph; G may have multiedges, but G has no loops.
We use n to denote the number of vertices, thus n = |V |. For F ⊆ E and ∅ 6= S ( V ,
we use δF (S) to denote the set of all edges in F with one endpoint in S, and the other
endpoint in the complement of S. If |V | = n > 1 and G′ = (V,E \ F ) is connected for
every set F ⊆ E of fewer than k edges, then G is called k-edge-connected. Notice that a
graph G is k-edge-connected if and only if |δG(S)| ≥ k for all ∅ 6= S ( V . For S ⊆ V , we
use E[S] to denote the set of all edges with both endpoints in S. For F ⊆ E, let dF (v) be
the number of edges of F incident to the vertex v. We denote the maximum degree of F
by ∆(F ) := max

v∈V
dF (v). A subset of edges M ⊆ E is a matching if no two edges of M are

incident to the same vertex. For i, j ∈ V and i 6= j let wij be the number of edges in E
with endpoints i and j. Note that if there is no edge with endpoints i and j, then wij = 0.
The adjacency matrix A = (aij)n×n of G is defined by

aij =

{
wij, if i 6= j,

0, otherwise.
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Let di denote the degree of vertex i in G, i.e., di =
∑

j∈V \{i}
wij. The Laplacian matrix

LG = (lij)n×n of G is defined by:

lij =

{
−wij, if i 6= j,

di, if i = j.

Now, we define a thinness parameter of a subset of edges F ⊆ E. The thinness pa-
rameter of F is the maximum over all cuts of the proportion of the edges of F in the
cut.

Definition 1.1.1. Let G = (V,E) be a connected graph, and let F be a subset of E. We
define the thinness parameter of F to be

ρ(F ) := max
∀S(V,S 6=∅

|δF (S)|
|δG(S)|

.

Notice that 0 ≤ ρ(F ) ≤ 1. We say a spanning tree T is ε-thin if ρ(T ) ≤ ε. By a thin
spanning tree, we mean a spanning tree T such that 0 < ρ(T ) < 1. In Example 1.2.4, we
determine the thinness parameter of a particular spanning tree of the Octahedral graph.

Given a connected graph G, we are interested in constructing a thin tree in G with
thinness parameter as small as possible. Thin trees play an important role in some re-
cent papers on the Asymmetric Traveling Salesman Problem (ATSP), see [AG15], [GS11],
and [AGM+10]. Goddyn [God] conjectured that every graph of sufficiently large edge-
connectivity has an ε-thin spanning tree. Here is the precise statement of the conjecture.

Conjecture 1.1.2 (Goddyn [God]). There exists a function f such that, for any 0 < ε < 1,
every f(ε)-edge-connected graph has an ε-thin spanning tree.

Now, we discuss some recent developments on this conjecture. Asadpour et al. [AGM+10]
showed that there is a polynomial-time algorithm that finds a 1

k
·O( logn

log logn
)-thin spanning

tree of a given k-edge-connected graph. Later, Oveis Gharan and Saberi [GS11] designed a
polynomial-time algorithm that given a connected graph embedded on an orientable surface
with genus γ and dual-girth g∗ finds a 2·α

g∗
-thin spanning tree where α := 4+b2 log (γ + 3

2
)c.

Thus, in order to show the existence of a thin tree T (with ρ(T ) < 1) in a planar graph,
[GS11] requires the edge-connectivity to be ≥ 11. Very recently, Merker and Postle [MP]
showed that every 6-edge-connected planar graph has two edge-disjoint 18

19
-thin spanning

trees (see Theorem 3.1.1).

Notational remark: We use numbers in parentheses just after a theorem, lemma, etc.,
to indicate the part that is being referenced, e.g., Theorem 1.2.5(2) refers to part (2) of
Theorem 1.2.5.
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1.2 Spectrally Thin Trees

We define a strengthening of thin trees called spectrally thin trees. After we state the
definition we discuss why this notion is stronger than the notion of (combinatorially) thin
trees. Let G = (V,E) be a graph with n vertices. For any edge e = {u, v} ∈ E (assume u
precedes v in our ordering of V ), the signed incidence vector be ∈ Rn is the vector that has
precisely two nonzero entries, namely, the entry corresponding to bu is −1, and the entry
corresponding to bv is +1. Observe that LG =

∑
e∈E

beb
T
e .

Definition 1.2.1. Let G be a graph on n vertices. We say a spanning tree T of G is
α-spectrally thin if LT � α · LG, i.e., for all x ∈ Rn, xTLTx ≤ α · xTLGx.

As before, we are interested in α-spectrally thin spanning trees where 0 < α < 1. Let
G = (V,E) be a connected graph, and let T be a spanning tree of G. If T is α-spectrally
thin, then ρ(T ) ≤ α. This can be seen as follows: For each set S ⊆ V , let χS be the
characteristic vector of the set S, i.e., the vector in Rn whose i-th entry is 1 if i ∈ S and
is 0 otherwise. It can be seen that |δT (S)| = χTSLTχS and |δG(S)| = χTSLGχS (since for
any edge e, (χTSbe)(b

T
e χS) is 1 if e ∈ δ(S) and is 0 otherwise). Hence, if T is α-spectrally

thin, then we have |δT (S)| = χTSLTχS ≤ αχTSLGχS = α|δG(S)|. But the converse may not
hold (see Example 1.2.4 and note that the spanning tree T is α-spectrally thin for some
0.77 ≤ α ≤ 0.78 but ρ(T ) = 0.66).

The results that will be discussed in this section are based on the notion of effective
resistance that is defined below.

Definition 1.2.2. Let G = (V,E) be a graph, and let e = {u, v} be an edge of G. We
define the effective resistance of e to be

Reff(e) := bTe L
†
Gbe, (1.1)

where L†G is the pseudoinverse of LG, and be is the signed incidence vector of e.

See Example 1.2.4 for an illustration of the effective resistance of an edge in a graph.
There is a relation between edge-connectivity and effective resistance. In particular, we
have the following observation:

Remark 1.2.3 (Anari and Oveis Gharan [AG15]). Let e = {u, v} be an edge of G = (V,E)
such that Reff(e) ≤ 1

k
, where k is a positive integer. Then, G has at least k edge-disjoint

paths between u and v. However, the converse may not hold.

3



S

T

Figure 1.1: Octahedral graph G. The spanning tree T is indicated by the green-colored
lines. The set S is indicated by the red-colored circle.

Let us give an example to illustrate the notions that we have introduced so far.

Example 1.2.4. Let G be the Octahedral graph shown in Figure 1.1. Notice that G is
edge-transitive (meaning, for any pair of edges e, f ∈ E, there is an automorphism of G
that maps e to f). Hence, by symmetry, the effective resistances of all edges are the same.
The effective resistance of each edge in this graph is 0.41. Let T be the spanning tree of
G indicated by the green-colored lines, and let S be the subset of vertices indicated by the
red-colored circle in Figure 1.1. Then, we have ρ(T ) ≥ |δT (S)|

|δG(S)|
= 4

6
= 0.66. By checking

all 25 − 1 cuts, it can be seen that ρ(T ) = 2
3
. We can compute the largest eigenvalue λ1 of

L
− 1

2
G LTL

− 1
2

G . It turns out that λ1 ≤ 0.78. Furthermore, let x = (0, 1, 0, 1,−1,−1)T . Then,
xTLT x
xTLGx

≥ 0.77. Therefore, T is α-spectrally thin for some 0.77 ≤ α ≤ 0.78.

Harvey and Olver [HO14] were able to show the following result by making a stronger
assumption than k-edge-connectivity:

Theorem 1.2.5 (Theorem 4.11 & 4.12 in [HO14]). Let G be a graph with n vertices such
that Reff(e) ≤ 1

k
for every edge e, where k is a positive integer. Then, (1) there is a

polynomial-time algorithm to construct a 1
k
· O( logn

log logn
)-spectrally thin spanning tree in G,

and (2) there exists an O(1)
k

-spectrally thin spanning tree in G.

Notice that by Remark 1.2.3, the assumption in the above theorem is stronger than
k-edge-connectivity.

Finally, in very recent work, Anari and Oveis Gharan [AG15] gave an existential result
on thin trees in k-edge-connected graphs.
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Theorem 1.2.6 (Corollary 1.8 in [AG15]). Any k-edge-connected graph has a poly(log logn)
k

-
thin spanning tree, where n denotes the number of vertices.

1.3 Contributions of This Thesis

We mainly focus on constructing thin trees for two families of graphs, namely, (1) distance-
regular graphs (defined in Section 2.4), and (2) planar graphs.

Chapter 2 addresses distance-regular graphs (DRGs). We know that the effective re-
sistance of each edge in a DRG G of degree d is O(1)

d
, see Corollary 1 in [KMP13]. So we

can apply Theorem 1.2.5(2) to G, and conclude that there exists a spanning tree T in G
with ρ(T ) = O(1)

d
. Unfortunately, no efficient algorithm is known for Theorem 1.2.5(2).

Moreover, Theorem 1.2.5 is an asymptotic result. In particular, for d = O(1), Theorem
1.2.5(2) could well be useless since the implied value of ρ(T ) could be ≥ 1. In Chapter
2, we give a polynomial-time construction of thin trees T with ρ(T ) < 1 (we determine
the value of ρ(T ) based on the parameters of the graph) in some families of DRGs such
as strongly regular graphs (SRGs), Johnson graphs, Crown graphs, and Hamming graphs
(see Section 2.4 for the definitions of these graphs). Our methods have two advantages: (1)
there is an efficient algorithm for finding a thin spanning tree T , and (2) there are precise
bounds on ρ(T ) (see Table 2.1) that allow us to certify any spanning tree with maximum
degree ≤ 3 to be a thin tree.

Chapters 3 and 4 deal with planar graphs. In [MP] it is shown that a 6-edge-connected
planar graph has two edge-disjoint 18

19
-thin spanning trees. The main technique in the paper

is to find a particular edge-coloring of the graph. To this end, they start with a particular
vertex-coloring of the graph and then they extend the vertex-coloring to an edge-coloring.
In Chapter 3, we present a simplified version of the methods of [MP]. Given an 8-edge-
connected planar graph, we directly find an edge-coloring and we use it to prove that there
exist two edge-disjoint 12

13
-thin spanning trees. In Chapter 4, we use the same methods as

in the paper [MP] but we present a tighter analysis to show that a 6-edge-connected planar
graph has two edge-disjoint 14

15
-thin spanning trees.

5



Chapter 2

Thin Trees in Distance-Regular Graphs

2.1 Introduction

In this chapter, we study thin trees in distance-regular graphs (DRGs). Let G = (V,E) be
a graph; multiedges are allowed; let n = |V |. Recall that ρ(F ) is the thinness parameter of
an edge set F . As we discussed in the introductory chapter, if G is a DRG with degree d,
then by Theorem 1.2.5(2), there exists an O(1)

d
-thin spanning tree in G. Unfortunately, no

efficient algorithm is known for finding such a spanning tree. Moreover, Theorem 1.2.5 is
an asymptotic result. In particular, for d = O(1), Theorem 1.2.5(2) could well be useless
since the implied value of ρ(T ) could be ≥ 1. In this chapter, we give a polynomial-time
construction for thin trees T in some families of DRGs such that ρ(T ) is upper bounded
by the parameters of the graph.

This chapter is organized as follows: In Section 2, we provide some certificates for giving
an upper bound on ρ(F ) for an edge set F . Then, in Section 3, given a DRG, we give
a candidate for a thin tree in the graph. In fact, we find in polynomial time a spanning
tree of maximum degree ≤ 3. Finally, in the last section, we provide upper bounds for
the thinness parameter of our candidate in some families of DRGs, see table 2.1 for more
information. The DRGs that we are considering in this chapter are strongly regular graphs,
Johnson graphs, Crown graphs, and Hamming graphs.
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2.2 Certificates for the Thinness Parameter

In this section, we provide two certificates for giving upper bounds on ρ(F ) for an edge set
F . We start with a certificate given in [Gha].

Lemma 2.2.1. Let G = (V,E) be a graph, and let F be a subset of E. Suppose C =
{C1, ...Cl} is a set of cycles in G that has the following properties:

1. Each cycle in C has exactly one edge from F .

2. Each edge in F is in at least β cycles in C.

3. Each edge not in F is in at most α cycles in C.

Then, we have ρ(F ) ≤ α
β
.

Proof. We call any cycle in C a good cycle. Take an arbitrary subset of vertices ∅ 6= S ( V .
By property (2), for each e ∈ δF (S), there are at least β good cycles that each contains e.
So by property (1) there are at least β · |δF (S)| good cycles such that each has at least one
edge in δG(S) \ F . By property (3), we conclude that |δG(S) \ F | ≥ β

α
|δF (S)|. Therefore,

we have ρ(F ) ≤ |δF (S)|
β
α
·|δF (S)|

= α
β
, as desired. �

The next lemma provides the second certificate. This certificate is based on Cheeger’s
inequality which is a well-known inequality in spectral graph theory.

Lemma 2.2.2. Let G = (V,E) be a d-regular graph, and let F be a subset of E such that
dF (v) ≤ α for all v ∈ V . Let λ2 be the second largest eigenvalue of the adjacency matrix
A(G). Then, ρ(F ) ≤ 2·α

d−λ2 .

Proof. Recall Cheeger’s inequality, i.e., for every set ∅ 6= S ( V , where |S| ≤ |V |
2

we have

d− λ2
2
≤ |δG(S)|

|S|
. (2.1)

Now, suppose ∅ 6= S ( V . Since δG(S) = δG(S̄) and |S|+ |S̄| = |V |, wlog, we can assume
that |S| ≤ |V |

2
. Since dF (v) ≤ α for all v ∈ V , we get

|δF (S)| ≤ α · |S|. (2.2)

From (2.1) and (2.2), we have
|δF (S)|
|δG(S)|

≤ 2 · α
d− λ2

. (2.3)

Since S was an arbitrary subset of V , from (2.3) we conclude that ρ(F ) ≤ 2·α
d−λ2 . �
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2.3 A Candidate for a Thin Tree in a DRG

Let G = (V,E) be a d-regular graph, and let T be a spanning tree in G. Suppose ∆(T )
is much smaller than d. Then, intuitively the chance of a vertex v ∈ S ( V to contribute
a non-tree edge to δ(S) increases. In fact, this is our main idea for finding thin trees in
DRGs. In this section, we give a polynomial-time construction for spanning trees with
small maximum degree. Then, we show that by considering bounded-degree spanning
trees in some d-regular graphs with edge-connectivity d, each vertex in a subset of vertices
S ( V contributes at least a constant number of non-tree edges to δ(S). This constant
number can be used to give upper bounds on the thinness parameter of the tree, see
Theorems 2.3.4 & 2.3.5.

The next theorem is due to Singh and Lau [SL15]; it gives an algorithm for finding a
bounded-degree spanning tree.

Theorem 2.3.1 (Theorem 1.2 of [SL15]). Let G = (V,E) be a graph, and let Bv ∈ N+ be
a degree bound for each vertex v ∈ V . If the following LP is feasible, then we can find in
polynomial time a spanning tree T in G such that dT (v) ≤ Bv + 1 for all v ∈ V .

min
∑
e∈E

xe

s.t.
∑
e∈E

xe = n− 1∑
e∈E[S]

xe ≤ |S| − 1 ∀S ( V, S 6= ∅∑
e∈δ(v)

xe ≤ Bv ∀v ∈ V

xe ≥ 0 ∀e ∈ E

(2.4)

Note that the LP in (2.4) is bounded. If the LP is feasible, then by fundamental
theorem of linear programming, we know that the LP has an optimal solution. So the
above theorem is equivalent to Theorem 1.2 of [SL15].

The next lemma shows that Theorem 2.3.1 can be applied to any d-regular graph with
edge-connectivity d to find a spanning tree with maximum degree ≤ 3.

Lemma 2.3.2. Let G = (V,E) be a d-regular graph on n vertices with edge-connectivity
d. Set Bv := 2 for all v ∈ V . Let x̄ ∈ R|E| be a vector such that x̄e := 2

d
· n−1

n
for all e ∈ E.

Then, x̄ is feasible for the LP in (2.4).
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Proof. From the value of x̄e for each e, we have
∑
e∈E

x̄e = (nd
2

)(2
d
)(n−1

n
) = n− 1. So the first

constraint of the LP holds.

Since G is d-regular, we have
∑

e∈δ(v)
x̄e = d(2

d
)(n−1

n
) ≤ 2. Hence, the last constraint of

the LP holds too.

It remains to show that the middle constraint of the LP holds for x̄.

Let ∅ 6= S ( V . Since G is d-edge-connected, we have |δ(S)| ≥ d; hence, |E[S]| ≤
d(|S|−1)

2
. So we can write∑

e∈E[S]

x̄e ≤ (
d(|S| − 1)

2
)(

2

d
)(
n− 1

n
) ≤ |S| − 1,

as desired. So we proved that x̄ is a feasible solution for the LP. �

By combining Lemma 2.3.2 with Theorem 2.3.1, we conclude that there is a polynomial-
time algorithm that given a d-regular graph with edge-connectivity d finds a spanning tree
with maximum degree ≤ 3. This tree is our candidate for thin spanning trees in DRGs.
So we restate this fact in the following corollary:

Corollary 2.3.3. Let G = (V,E) be a d-regular graph with edge-connectivity d. Then, in
polynomial time, we can find a spanning tree T such that ∆(T ) ≤ 3.

Now, we are able to show that under some conditions on d-regular graphs with edge-
connectivity d, the spanning tree given by Corollary 2.3.3 is thin in the graph. We should
mention that these conditions may not seem natural on general d-regular graphs. However,
our goal is to find thin spanning trees in DRGs, and these conditions are related to the
parameters of a DRG. The next theorem uses the first certificate (Lemma 2.2.1) to give an
upper bound on the thinness factor of our bounded-degree spanning tree.

Theorem 2.3.4. Let G = (V,E) be a d-regular graph with edge-connectivity d. Suppose
each edge is incident to â ≥ 11 triangles. Then, in polynomial time, we can find a spanning
tree T in G such that ρ(T ) ≤ 6

â−4 .

Proof. By Corollary 2.3.3, in polynomial time, we can find a spanning tree T in G such
that ∆(T ) ≤ 3. For convenience, we call the edges of T the green edges, and the edges of
E \E(T ) the black edges. We construct a set of cycles C for Lemma 2.2.1 as follows: Let e
be an edge of T , then by our assumption, e is in â triangles. Notice that at most 4 of these
triangles have two green edges. See Figure 2.1. Therefore, each of the other â− 4 triangles

9



e

Figure 2.1: There are at most 4 triangles with two green edges incident to a green edge
(tree edge) such as e. See the proof of Theorem 2.3.4.

eb

Figure 2.2: A black (non-tree) edge eb is in at most 6 cycles of C. See the proof of
Theorem 2.3.4.

has exactly one green edge and that edge is e. So for each edge of T , we find â − 4 such
triangles and put them in C. Thus, the parameter β in Lemma 2.2.1 is â− 4.

Now, consider a black edge eb. Note that eb is in at most 6 cycles of C, because each
endpoint of eb is incident to at most three green edges, due to the degree bound on T . See
Figure 2.2. Therefore, the parameter α in Lemma 2.2.1 is 6.

By Lemma 2.2.1, we conclude that ρ(T ) ≤ 6
â−4 . Notice when â ≥ 11, we have 6

â−4 < 1
which is acceptable for the thinness parameter.

�

In the next theorem, we use the second certificate (Lemma 2.2.2) to give an upper
bound on the thinness parameter of our bounded-degree spanning tree.

10



Theorem 2.3.5. Let G be a d-regular graph with edge-connectivity d, and let λ2 be the
second largest eigenvalue of A(G). Then, in polynomial time, we can find a spanning tree
T in G such that ρ(T ) ≤ 6

d−λ2 .

Proof. By Corollary 2.3.3, in polynomial time, we can find a spanning tree T in G such
that ∆(T ) ≤ 3. The statement follows by applying Lemma 2.2.2 with α = 3. �

2.4 Thin Trees in Some Families of DRGs

In this section, we apply Theorems 2.3.4 & 2.3.5 to find thin spanning trees for some
families of DRGs.

A connected graph G with diameter D is called distance-regular if there are constants
ci, ai, and bi, the so called intersection numbers, such that for all i = 0, 1, ..., D, and all
vertices x, y at distance i, among the neighbors of y, there are ci at distance i− 1 from x,
ai at distance i from x, and bi at distance i+ 1 from x (the distance between two vertices
u, v is the minimum number of edges in a path between u and v). Notice that a1 is the
number of triangles incident to an edge. Let d be the degree of each vertex of G. Then,
the following equation holds: d = ai + bi + ci.

Brouwer and Haemers [BH05] proved the following result for DRGs:

Theorem 2.4.1 (Theorem 4.1 in [BH05]). A distance-regular graph with degree d is d-
edge-connected.

We start by constructing thin spanning trees in strongly regular graphs (SRGs); SRGs
are known to be distance-regular. Let G be a regular graph that is neither complete nor
empty. Then G is said to be strongly regular with parameters

(n, d, a, c)

if it is d-regular, every pair of adjacent vertices has a common neighbours, and every pair
of non-adjacent vertices has c common neighbours. Notice that the parameter a indicates
the number of triangles incident to an edge. For more background on SRGs, see Chapter
10 of [GR13].

Note that by Theorem 2.4.1, an SRG with degree d is d-edge-connected. The next
result is an immediate consequence of Theorem 2.3.4.

11



Corollary 2.4.2. Let G be an SRG with parameters (n, d, a, c), where a ≥ 11. Then, in
polynomial time, we can find a spanning tree T with ∆(T ) ≤ 3 such that ρ(T ) ≤ 6

a−4 .

Next, we provide a thin spanning tree in an SRG with parameters (n, d, a, c), where
a ≤ 10 and d ≥ 18.

Corollary 2.4.3. Let G be an SRG with parameters (n, d, a, c), where d ≥ 18 and a ≤ 10.
Then, in polynomial time, we can find a spanning tree T with ∆(T ) ≤ 3 such that ρ(T ) ≤

6
d−
√
d+25−5 .

Proof. We start by giving an upper bound on the second largest eigenvalue λ2 of A(G).

We know that λ2 =
(a−c)+

√
(a−c)2+4(d−c)
2

(see Section 10.2 of [GR13]). It is easy to see that
λ2 as a function of c is decreasing. Thus, we have

λ2 ≤
a+
√
a2 + 4d

2
. (2.5)

By the assumption of the lemma, i.e., a ≤ 10, we get

λ2 ≤
10 +

√
100 + 4d

2
. (2.6)

From (2.6), we have
2d− 10−

√
100 + 4d

2
≤ d− λ2. (2.7)

Now, by applying Theorem 2.3.5 to G where d − λ2 in the theorem satisfies (2.7), in
polynomial time, we can find a spanning tree T with ∆(T ) ≤ 3 such that ρ(T ) ≤ 6

d−
√
d+25−5 .

Notice that when d ≥ 18, we have 6
d−
√
d+25−5 < 1 which is acceptable for the thinness

parameter. �

Now, we focus on Johnson graphs J(n, k):

Let X be a set of size n. The vertex set of J(n, k) is the collection of all subsets of X
with k elements. Two such subsets u, v are adjacent whenever |u ∩ v| = k − 1. For more
background on Johnson graphs see Section 9.1 of [BCN89].

It is known that the number of vertices of J(n, k) is
(
n
k

)
, it is d-regular, where d =

k(n− k), and each edge is incident to n− 2 triangles. Thus, by applying Theorem 2.3.4 to
the Johnson graph G = J(n, k), in polynomial time, we can find a spanning tree T in G
with ∆(T ) ≤ 3 such that ρ(T ) ≤ 6

n−6 . In order to have ρ(T ) < 1, we must have n ≥ 13.

12



families of DRGs value of ρ(T )

SRG (n, d, a, c), a ≥ 11 6
a−4

SRG (n, d, a, c), d ≥ 18, a ≤ 10 6
d−
√
d+25−5

J(n, k), n ≥ 13 6
n−6

Crown(n), n ≥ 9 6
n−2

H(n, k), k ≥ 7 6
k

Table 2.1: The thinness parameter ρ(T ) of a spanning tree T with maximum degree ≤ 3
is indicated for some families of DRGs.

Next, we focus on Crown graphs Crown(n):

The vertex set of Crown(n) is {x1, ..., xn, y1, ..., yn}. Two vertices xi and yj are con-
nected whenever i 6= j for i, j ∈ {1, ..., n}.

It is known that Crown(n) is (n − 1)-regular. It is not hard to see that the second
largest eigenvalue of its adjacency matrix is λ2 = 1 (by using the fact that Crown(n) is the
complement of the Cartesian product ofK2 andKn). Therefore, by applying Theorem 2.3.5
to the Crown graph G = Crown(n), in polynomial time, we can find a spanning tree T in
G with ∆(T ) ≤ 3 such that ρ(T ) ≤ 6

n−2 . In order to have ρ(T ) < 1, we must have n ≥ 9.

Finally, we focus on Hamming graphs H(n, k):

Let X be a set of size k. The vertex set of H(n, k) is Xn (Xn is the Cartesian product
of n copies of X, i.e, the set of all n-tuples where each coordinate belongs to X). Two
n-tuples u, v are adjacent whenever u and v differ in precisely one coordinate. For more
background on Hamming graph see Section 9.2 of [BCN89].

It is known that H(n, k) is n(k − 1)-regular, and the second largest eigenvalue of its
adjacency matrix is λ2 = n(k − 1) − k. Therefore, by applying Theorem 2.3.5 to the
Hamming graph G = H(n, k), in polynomial time, we can find a spanning tree T in G with
∆(T ) ≤ 3 such that ρ(T ) ≤ 6

k
. In order to have ρ(T ) < 1, we must have k ≥ 7.

We summarize all the above results in Table 2.1.
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Chapter 3

Thin Trees in 8-Edge-Connected Planar
Graphs

3.1 Introduction

In this chapter, all graphs are considered to be simple (without multiedges and without
loops) unless stated otherwise. In particular, our decomposition result (Theorem 3.1.4)
works for simple planar graphs, and our thin tree result (Theorem 3.1.2) works for planar
graphs with multiedges (i.e., (multi)graphs). The goal of this chapter is to investigate thin
spanning trees for planar graphs. Merker and Postle [MP] showed the following result for
thin trees in this family of graphs:

Theorem 3.1.1 (Corollary 3.6 of [MP]). Every 6-edge-connected planar (multi)graph con-
tains two edge-disjoint 18

19
-thin spanning trees.

The above theorem is a byproduct of the main result in [MP]. So let us explain it
here. A decomposition of a graph G = (V,E) consists of edge-disjoint subgraphs on
the vertex set of G, H1 = (V,E1) and H2 = (V,E2) whose union is G, i.e., E = E1 ∪
E2. Kim et al. [KKW+13] showed that a connected planar graph of girth ≥ 6 has a
decomposition into a spanning tree and a star forest (a star forest is a forest in which every
component is a bipartite graph K1,t for some t ∈ Z, t ≥ 0), see Theorem 4.2.2. Merker and
Postle [MP] showed that for a graph G, if there is a decomposition of G into a spanning
tree and a star forest, then G can be decomposed into two forests with diameter at most
18. From this result they are able to prove Theorem 3.1.1.
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In this chapter, we present a simplified version of the techniques of [MP] to show that
if a graph G has a decomposition into a spanning tree and a matching, then G can be
decomposed into two forests with diameter at most 12. Montassier et al. [MdMRZ12]
showed that a connected planar graph of girth ≥ 8 has a decomposition into a spanning
tree and a matching, see Theorem 3.2.2. Based on this, for any 8-edge-connected planar
graph, we are able to give better thin trees than the thin trees given by Theorem 3.1.1. In
particular, we have the following result:

Theorem 3.1.2. Let G = (V,E) be an 8-edge-connected planar (multi)graph. Then, there
are two edge-disjoint spanning trees T, T ′ in G such that ρ(T ), ρ(T ′) ≤ 12

13
.

The connection between thin trees in a planar graph and a decomposition of the graph
into bounded diameter forests comes from the notion of dual of planar graphs. Consider
a planar graph G = (V,E) with a fixed planar embedding. We define a planar graph
G∗ = (V ∗, E∗) as follows. Corresponding to each face f of G there is a vertex f ∗ of G∗,
and corresponding to each edge e of G there is an edge e∗ of G∗. Two vertices f ∗ and g∗
are joined by the edge e∗ in G∗ if and only if the corresponding faces f and g are incident
to the edge e in G. The graph G∗ is called the dual of G.

In the following lemma, we state the connection between thin trees in a planar graph
and a decomposition of the graph into two bounded diameter forests. Recall that ρ(F ) is
the thinness parameter of a set F ⊆ E in G = (V,E).

Lemma 3.1.3 (Lemma 3.3 of [MP]). If G = (V,E) is a planar graph that can be de-
composed into two forests F1, F2 with diameter at most d, then G∗ has two edge-disjoint
spanning trees T, T ′ such that ρ(T ), ρ(T ′) ≤ d

d+1
.

Notice that in the above lemma, G is a simple graph and its dual could have multiedges,
i.e., G∗ is a (multi)graph.

Proof. This proof is essentially the same as the proof of [MP, Lemma 3.3] and it is included
for completeness.

Let us color the edges of F1 and F2 by colors 1 and 2, respectively. Then this col-
oring gives an edge-coloring of G such that there is no monochromatic cycle and every
monochromatic path has length at most d. In G∗, let F ∗1 be the subgraph corresponding
to F1. Similarly, we define F ∗2 . By the usual bijection E(G)→ E(G∗), this gives a 2-edge-
coloring of G∗. Notice that the edges of F ∗1 and F ∗2 are colored 1 and 2, respectively. We
want to prove that (V (G∗), F ∗1 ) and (V (G∗), F ∗2 ) are spanning connected subgraphs of G∗.
Furthermore, we have ρ(F ∗1 ), ρ(F ∗2 ) ≤ d

d+1
.
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Let ∅ 6= S ( V (G∗). The edges of δG∗(S) correspond to an edge-disjoint union of
cycles in G. Consider one such cycle C in the union. Since there is no monochromatic
cycle in G, both colors appear in C. Thus, both colors appear in δG∗(S). Hence, both
(V (G∗), F ∗1 ) and (V (G∗), F ∗2 ) are spanning connected subgraphs of G∗, i.e., for each i = 1, 2
and ∀S ( V, S 6= ∅ we have δF ∗i (S) 6= ∅. Furthermore, since each of F1 and F2 has diameter
at most d, every path in G of length at least d+1 contains at least one edge of color 1. This
implies that at least 1

d+1
|E(C)| edges of C are colored 1. Thus, at most d

d+1
|δG∗(S)| edges

of δG∗(S) are colored 2. Therefore, we have ρ(F ∗2 ) ≤ d
d+1

. Similarly, we have ρ(F ∗1 ) ≤ d
d+1

.

Now pick any spanning tree T2 in (V (G∗), F ∗2 ). Then, we have ρ(T2) ≤ d
d+1

. Similarly,
for any spanning tree T1 in (V (G∗), F ∗1 ), we have ρ(T1) ≤ d

d+1
. Since F ∗1 and F ∗2 are disjoint,

so are T1 and T2. �

As we discussed earlier, our main contribution in this chapter is the following result:

Theorem 3.1.4. Let G = (V,E) be a connected planar graph with girth at least 8. Then,
G can be decomposed into two forests with diameter at most 12.

Before we go into the details of the proof of the above theorem, let us combine this
theorem and Lemma 3.1.3 to prove Theorem 3.1.2.

Proof of Theorem 3.1.2: This proof is essentially the same as the proof of [MP, Corol-
lary 3.6] and it is included for completeness.

Since G is an 8-edge-connected planar (multi)graph, its dual G∗ = (V ∗, E∗) is a simple
planar graph with girth at least 8. By Theorem 3.1.4, we know that each connected com-
ponent G∗i = (V ∗i , E

∗
i ) of G∗ can be decomposed into two forests (V ∗i , F

1
i ) and (V ∗i , F

2
i ) such

that each has diameter at most 12. Let H1 := (
⋃
i V
∗
i ,
⋃
i F

1
i ) and H2 := (

⋃
i V
∗
i ,
⋃
i F

2
i ).

Notice that for each i = 1, 2, Hi is a forest with diameter at most 12. Thus, G∗ can be
decomposed into two forests with diameter at most 12. By applying Lemma 3.1.3 to G∗
we conclude that G has two edge-disjoint spanning trees T, T ′ such that ρ(T ), ρ(T ′) ≤ 12

13
.

In the next section, we will show that the decomposition of a graph into two bounded
diameter forests corresponds to a particular edge-coloring (good edge-coloring) of the graph.
Then, we construct an edge-coloring of the graph. Finally, in the last section, we will prove
that our edge-coloring is indeed a good edge-coloring and this implies Theorem 3.1.4.

16



3.2 A Good Edge-Coloring of the Graph

As we noted in the previous section, there is a correspondence between Theorem 3.1.4 and
a particular edge-coloring of planar graphs. We define this edge-coloring below.

Definition 3.2.1 (good edge-coloring). Let G = (V,E) be a graph, and let c : E(G) →
{1, 2} be an edge-coloring of G. We say c is a good edge-coloring if c satisfies the
following two conditions:

1. There is no edge-monochromatic cycle.

2. Any edge-monochromatic path has length at most 12.

To prove Theorem 3.1.4 we need the following result: Theorem 1 of [WZ11] or Corollary
2 of [MdMRZ12] states that every planar graph of girth at least 8 can be decomposed into
a forest F and a matching M . If G is connected, then we can convert F to a tree T by
adding as many matching edges as possible. So we have the following result:

Theorem 3.2.2 (Theorem 1 of [WZ11]). Every connected planar graph with girth at least
8 can be decomposed into a spanning tree and a matching.

We often use tree to mean a spanning tree. Let G = (V,E) be a graph that can be
decomposed into a tree T and a matching M . Then we denote this decomposition by
G = (V, T ·∪M). Starting with G = (V, T ·∪M), we obtain the directed graph

−→
G as follows:

Pick a vertex r, and make T a rooted tree with root r. We fix a planar embedding of
T with the root at the top and the leaves at the bottom; for each non-leaf vertex v of T ,
we place the children of v on a horizontal line below v. Then, orient each edge of the tree
away from the root. This directed tree is denoted by

−→
T .

For orienting the matching edges, we first define a labeling for the vertices of G based on
T . Set the label of the root equal to 1. We traverse T , and each time we visit a vertex for
the first time, we assign to it the smallest natural number that has not been used so far.
Our traverse on T is as follows: Start from the root. We always go to the rightmost child
that has not yet been visited. Once we could not go further, we backtrack until we find
a vertex v with at least one child that has not yet been visited, then we take u to be the
rightmost unvisited child of v, and we continue our traverse from u. See Figure 3.1 for an
example of this labeling of the vertices of a graph.
Now, we orient the matching edges as follows: For each matching edge orient the edge from
the lower label to the higher label. We denote this directed matching with

−→
M . So we have−→

G = (V,
−→
T ·∪
−→
M).
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Since G is simple, any (di)cycle in G or
−→
G has length at least 3. Also notice that any

(vertex)edge-coloring of
−→
G can be considered as an (vertex)edge-coloring of G, and vice

versa.

We say −→uv is an M -edge if −→uv ∈ E(
−→
M), and −→uv is a T -edge if −→uv ∈ E(

−→
T ). We say a

T -edge is in depth i if it is oriented from a vertex in depth i to a vertex in depth i+ 1. We
fix the depth of the root r to be 1. Define the parent of a T -edge −→uv of depth ≥ 2 to be
the T -edge −→wu.

For the rest of this chapter when we talk about a graph G we mean G = (V, T ·∪M)

where T is a spanning tree and M is a matching, and
−→
G is the digraph described above.

Notice that any edge in
−→
G is oriented from a vertex with lower label to a vertex with

higher label. Thus, there could not be a dicycle in
−→
G . We restate this fact in the following

lemma:

Lemma 3.2.3. There is no dicycle in
−→
G .

This lemma will help us to show that our edge-coloring satisfies the first condition of a
good edge-coloring, see the proof of Corollary 3.3.4.

From now on we work on
−→
G and try to give an edge-coloring of it such that every

monochromatic dipath in
−→
G has length at most 6 (we prove this fact in a series of lemmas,

see Lemmas 3.3.10-3.3.12). Once we show this property of our edge-coloring, then we
can easily show that it satisfies the second condition of a good edge-coloring of G, see
Corollary 3.3.13.

Example 3.2.4. Let G be the undirected graph underlying the digraph in Figure 3.1. The
decomposition of G is shown by two colors, i.e, green edges indicate the tree T , and black
edges indicate the matching M . The green edges are oriented away from the root. We
define a labeling for the vertices of G as discussed earlier in this section. These labels are
denoted by a number next to each vertex. Then, we orient the matching edges with respect
to this labeling. Notice that all the edges are oriented from a vertex with lower label to a
vertex with higher label (i.e., either downward or right-to-left in the planar embedding).

We color the edges of
−→
G with colors 1 and 2 such that any M -edge and any T -edge

that are oriented toward the same vertex have different colors. This way of coloring the
edges imposes the so-called indegree property (Fact 3.3.1) on the edge-coloring. We use
the indegree property to prove that our edge-coloring is a good edge-coloring.
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1

11 6 2

9 7
5 3

10 8 4

T -edge

M -edge

Figure 3.1: Directed graph
−→
G and the labeling of the vertices as described before. Notice

that each edge is oriented from a lower label to a higher label.

Initial Coloring:

We start by coloring the edges of the tree. We assign color 1 to all edges in depth 1.
Suppose we have colored all the edges in depth i. Then, for each edge in depth i + 1,
we color the edge by a different color than its parent. We denote this coloring of the
T -edges by c0. It remains to determine the color of the matching edges. Let −→uv be an
M -edge, then there exists a T -edge −→wv. Let c0(−→uv) := 3− c0(−→wv).
Notice that the color of the M -edges is determined uniquely based on the color of the

edges of T . We say c0 : E(
−→
G)→ {1, 2} is the initial coloring of

−→
G .

Example 3.2.5. Figure 3.2 illustrates the initial coloring that we discussed above; the
color of each edge is denoted by 1 or 2.

As the above example illustrates, in this coloring, we might have a long monochromatic
dipath. In Figure 3.3, this dipath is shown in blue. So to avoid such long monochromatic
dipaths, we need to update the coloring c0. The following definition will be used in the
updating process.

Definition 3.2.6. Let −→uv be a T -edge such that c0(−→uv) = i (where i = {1, 2}), and there
are two M-edges such that one is oriented toward u, and the other one is oriented away
from v. Furthermore, both matching edges have color i. Then, we say that −→uv falls into
pattern πi.

When we apply the above definition, the colors of the matching edges need not be the
same as their initial colors. Pattern π1 is shown in Figure 3.4. It is clear that the blue
dipath in Figure 3.3 is formed by "linking up" two copies of pattern π1.
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2
2

1 1

2 2
2

1 1 1
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1
1

1

T -edge

M -edge

Figure 3.2: Initial coloring of
−→
G .

1

2
2

1 1

2 2
2

1 1 1

2

1

1
1

1

T -edge

M -edge

Figure 3.3: The blue edges form a monochromatic dipath.

u

v

1

1

1

T -edge

M -edge

Figure 3.4: The edge −→uv falls into pattern π1.
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1

1

2
1

1

u

v

z

w

1

2

1
1

2

T -edge

M -edge

Figure 3.5: In the left subfigure, we see that −→uv falls into pattern π1 before the recoloring
process enters to the depth of −→uv. The right subfigure shows the final color of −→uv, one of
its children −→vz, and the M -edge −→wz that is oriented toward the head of −→vz.

To avoid such patterns, we update the coloring c0 to get a new coloring c′ as follows:

Recoloring Process:

We start from depth 1 of T and go downward. When we are in depth j, we apply
the following step to all T -edges in this depth. If −→uv is a T -edge in depth j falling into
pattern πi for i = 1 or 2, then we flip the color of −→uv and all of its children. Furthermore,
we flip the colors of the matching edges (if any) that are oriented toward the heads of the
children of −→uv (in order to maintain the indegree property, see Fact 3.3.1). Otherwise
the color of the edge does not change.
Then, we go to depth j + 1 and repeat the same procedure. See Figure 3.5 for an
example.

Let c′ be the edge-coloring of
−→
G after the recoloring process terminates; we refer to c′

as the final coloring of
−→
G . Obviously, the final color of each edge could be different than

its initial color or be the same as before.

Definition 3.2.7. We say an edge −→uv is a flipped edge if its color has been flipped, i.e.,
c0(
−→uv) = 3− c′(−→uv). If an edge is not a flipped edge then we call it a non-flipped edge.

We also use the terms flipped T -edge, flipped M -edge, etc. For example, in the graph
of Figure 3.5, edge −→uv is a flipped T -edge and −→wz is a flipped M -edge.
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Figure 3.6: The final coloring of
−→
G .

Example 3.2.8. Let
−→
G be the graph in Example 3.2.5, and let c0 be the initial coloring

of the graph; c0 is denoted by the red numbers. Figure 3.6 illustrates the final coloring of−→
G after applying the recoloring process. The final colors of some of the edges are different
from their initial colors; we show such changes by an arrow from the red numbers (initial
color) to the blue numbers (the final color).

3.3 Proof of Theorem 3.1.4

In this section, we prove c′ that is introduced in the previous section is a good edge-coloring
for G.

We state an important property of the edge-colorings c0 and c′ that was briefly men-
tioned in the previous section. Let indeg(v) be the indegree of a vertex v, i.e., the number
of edges that are oriented toward v, and let indegi(v) be the number of edges of color i
that are oriented toward v. Notice that indeg(v) ≤ 2 for all v ∈ V . Furthermore, we have
indeg(v) = 2 if and only if there is anM -edge −→uv and a T -edge −→wv that are oriented toward
v. But in both the initial coloring and the recoloring process we made sure that the color
of −→uv is always different than the color of −→wv. So we summarize this fact as follows:

Fact 3.3.1 (indegree property). The following holds for both coloring c0, c′: For any
vertex v ∈ V and i ∈ {1, 2}, we have indegi(v) ≤ 1.

The next lemma is an immediate consequence of the above fact. This lemma says that
in order to show c′ is a good edge-coloring for G, it is enough to show that there is no
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monochromatic (with respect to c′) dicycle in
−→
G , and every monochromatic (with respect

to c′) dipath has length at most 6. The following lemma is due to Merker and Postle [MP].

Lemma 3.3.2. Let c′ be the edge-coloring of both G and
−→
G . Then, we have:

1. Every monochromatic cycle in G is a dicycle in
−→
G .

2. Every monochromatic path in G is the union of at most two monochromatic dipaths
in
−→
G .

Proof. Let C be a monochromatic cycle in G. WLOG, we can assume that C has color 1 in
c′. Consider the subgraph of

−→
G corresponding to C, and denote it by

−→
C . Then, the sum of

the indegrees (with respect to the subgraph
−→
C ) of the vertices of

−→
C is |V (

−→
C )|. Either each

of the indegrees is 1, thus
−→
C is a dicycle, or else there exist vertices of indegrees zero and

two. The former case contradicts Lemma 3.2.3, and the latter case contradicts Fact 3.3.1.
Thus, there is no monochromatic cycle in G. So part (1) of the lemma holds.
Now suppose we have a monochromatic path P in G. In

−→
G , let

−→
P be the subgraph

corresponding to P ; observe that
−→
P is the union of k (inclusion) maximal dipaths

−→
P1, ...,

−→
Pk

such that
−→
Pi and

−−→
Pi+1 have exactly one vertex in common. Notice that either both

−→
Pi and−−→

Pi+1 are oriented toward their common vertex or they both are oriented away from their
common vertex. Suppose k ≥ 3. Then, either the end-vertices of

−→
P1 and

−→
P2, or the end-

vertices of
−→
P2 and

−→
P3 are the same. WLOG, assume that the former case holds. Let v

be the end-vertex of
−→
P1 and

−→
P2. Then, indeg1(v) ≥ 2, a contradiction with Fact 3.3.1.

Therefore, k ≤ 2, and this proves part (2) of the lemma. �

Remark 3.3.3. Notice that the above lemma holds for any graph G with any orientation
of its edges and any edge-coloring that satisfies Fact 3.3.1.

Now, we prove that c′ is a good edge-coloring. We start by showing that there is no
monochromatic cycle in G (i.e., the first condition of a good edge-coloring holds for c′).
By Lemma 3.2.3, there is no dicycle in

−→
G . On the other hand, by Lemma 3.3.2(1), every

monochromatic cycle in G is directed in
−→
G . So we have the following result:

Corollary 3.3.4. Let c′ be the edge-coloring of G. Then, there is no monochromatic cycle
in G.

For the rest of this section, we prove that the second property of a good edge-coloring
holds for c′ onG. Notice that by Lemma 3.3.2(2), it is enough to show that every monochro-
matic (with respect to c′) dipath in

−→
G has length at most 6. We start by highlighting some

important properties of c0 and c′ which will be used in the proofs of our lemmas.
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Since in the recoloring process we do the changes in depth i and we never come back to
this depth again, color of a T -edge flips at most once. Furthermore, the color of anM -edge
−→uv flips only if there is a T -edge −→wv whose color has been flipped. Therefore, color of an
M -edge flips at most once too.
Another simple observation is as follows: Let −→wv,−→vz be T -edges, and let −→uv be an M -edge.
Since the color of −→uv only can be flipped when the recoloring process is in the depth of −→wv;
together with the fact that −→wv is the parent of −→vz (in other words, −→wv is in a lower depth
than −→vz), we conclude that the color of −→uv is finalized before the recoloring process enters
the depth of −→vz. We summarize these observations below.

Property 3.3.5. The color of an edge flips at most once. Furthermore, let −→uv be an M-
edge, and let −→vz be a T -edge. The color of −→uv is finalized before the recoloring process enters
the depth of −→vz.

Suppose −→uv is an M -edge. Then, there is a T -edge −→wv such that c0(−→wv) = 3− c0(−→uv).
Thus, all the children of −→wv have the same initial color as −→uv. So, we have the following
observation:

Property 3.3.6. Let −→uv be an M-edge, and let −→wv be a T -edge. Then, for any child −→vz of
−→wv we have c0(−→vz) = c0(

−→uv).

Notice that the recoloring process can flip the color of a T -edge in two ways. These
two ways are as follows:

Property 3.3.7. Let −→uv be a T -edge. Then, we have c′(−→uv) = 3− c0(−→uv) if and only if one
of the following cases happens:

Case 1. when the recoloring process is in the depth of −→uv, there are matching edges of
color c0(−→uv) such that one is oriented toward u, and the other one is oriented away
from v.

Case 2. the parent of −→uv falls into Case 1.

Now, we show that any monochromatic dipath in
−→
G has length at most 6 based on

two preliminary lemmas (Lemma 3.3.8 and Lemma 3.3.9). We apply these two lemmas
extensively in our overall proofs (see Lemmas 3.3.10-3.3.12).

Lemma 3.3.8. Let
−→
P be a monochromatic dipath that contains a flipped T -edge −→uv, and

a non-flipped edge −→vz. Then, −→uv is the start-edge of
−→
P .
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Proof. WLOG, suppose
−→
P has color 1 in c′. Since −→uv is a flipped T -edge, −→uv must fall into

one of the cases of Property 3.3.7. We prove that −→uv could only fall into case (2). We show
this fact by considering two cases, i.e., when −→vz is an M -edge, and when −→vz is a T -edge.

Case 1 (when −→vz is an M -edge).

Since −→uv is a flipped edge, and
−→
P is in color 1, we have c0(−→uv) = 2. On the other hand,

−→vz is a non-flippedM -edge (assumption of the lemma). So, we have c0(−→vz) = c′(−→vz) =
1. Hence, the color of −→vz is always 1. Thus, −→uv could not fall into Property 3.3.7(1).

Case 2 (when −→vz is a T -edge).

Suppose −→uv falls into Property 3.3.7(1). Then, all of its children, including −→vz are
flipped edges, a contradiction with the assumption of the lemma.

In both cases, we showed that −→uv could not fall into Property 3.3.7(1). So it must be
the case that −→uv falls into Property 3.3.7(2); hence, the parent of −→uv has color 2 in c′, and
there is an M -edge that is oriented away from u. Thus, there cannot be an edge of

−→
P

whose head is u which implies that −→uv is the start-edge of
−→
P . �

Lemma 3.3.9. Let
−→
P be a monochromatic dipath that contains a flippedM-edge −→uv. Then,

−→uv is the end-edge of
−→
P .

Proof. WLOG, assume that
−→
P has color 1 in c′. By contradiction, suppose −→uv is not the

end-edge of
−→
P . So there is a T -edge (since −→uv is an M -edge) −→vz such that c′(−→vz) = 1

(because the color of
−→
P is 1 in c′). Since −→uv is a flipped edge and

−→
P has color 1 in c′,

the initial color of −→uv is 2, i.e., c0(−→uv) = 2; together with Property 3.3.6, we conclude
that c0(−→vz) = 2. Therefore, −→vz is a flipped T -edge. However, by Property 3.3.5, when the
recoloring process is in the depth of −→vz, the color of the M -edge −→uv is 1 and it is finalized.
So −→vz does not fall into Property 3.3.7(1). Furthermore, since −→uv is an M -edge oriented
toward v, −→vz could not fall into Property 3.3.7(2). Thus, −→vz is not a flipped T -edge, a
contradiction. See Figure 3.7 for an example.

�

A monochromatic dipath
−→
P falls into one of the following types: (1)

−→
P contains no

M -edge, (2)
−→
P does not have a non-flipped M -edge, and (3)

−→
P contains at least one non-

flipped M -edge. We give upper bounds for the length of monochromatic dipaths of each
type. We start by monochromatic dipaths with no M -edge.
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Figure 3.7: The left subfigure shows the initial color of −→uv, −→wv, and −→vz. The right subfigure
shows that the color of −→wv flips, consequently, the color of −→uv flips too. Therefore, −→vz falls
into neither of the cases in Property 3.3.7, showing that −→vz is not a flipped edge.

Lemma 3.3.10. Let
−→
P be a monochromatic dipath that contains no M-edge. Then, the

length of
−→
P is at most 3.

Proof. WLOG, suppose
−→
P has color 1 in c′. Let dipath v1, v2, v3, v4 be a sub-dipath of−→

P . There are two cases based on the initial color of −−→v1v2, i.e., either c0(−−→v1v2) = 1, or else
c0(
−−→v1v2) = 2. We show that the first case could not happen, and in the second case, we

prove that the dipath v1, v2, v3, v4 is indeed equal to the whole dipath
−→
P which implies

that the length of
−→
P is at most 3.

Case 1 (when c0(−−→v1v2) = 1).

Since c0(−−→v1v2) = 1, we have c0(−−→v2v3) = 2 and c0(
−−→v3v4) = 1. So −−→v1v2,−−→v3v4 are non-

flipped T -edges (because of the color of
−→
P ), and −−→v2v3 is a flipped T -edge. If −−→v2v3 falls

into Property 3.3.7(1), then −−→v3v4 is a flipped T -edge which is impossible. If −−→v2v3 falls
into Property 3.3.7(2), then −−→v1v2 is a flipped T -edge again it is impossible. Therefore,
−−→v2v3 could not be a flipped edge; hence, the final color of −−→v2v3 is 2. Thus, −−→v2v3 is not
in
−→
P , a contradiction.

Case 2 (when c0(−−→v1v2) = 2).

Since c0(−−→v1v2) = 2, we have c0(−−→v2v3) = 1 and c0(−−→v3v4) = 2. Therefore, −−→v1v2,−−→v3v4 are
flipped T -edges, and −−→v2v3 is a non-flipped T -edge. By Lemma 3.3.8, we conclude that
−−→v1v2 is the start-edge of

−→
P . Furthermore, −−→v3v4 could only fall into Property 3.3.7(1)

(otherwise, −−→v3v4 falls into Property 3.3.7(2) which implies −−→v2v3 is a flipped T -edge, a
contradiction). Therefore, all the children of −−→v3v4 are flipped T -edges; together with
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the fact that c0(−−→v3v4) = 2, we conclude that the final color of the children of −−→v3v4 is
2 which implies that −−→v3v4 is the end-edge of

−→
P .

�

Now we give an upper bound on the lengths of the dipaths in the second family of
monochromatic dipaths.

Lemma 3.3.11. Let
−→
P be a monochromatic dipath that does not have a non-flipped M-

edge. Then, the length of
−→
P is at most 4.

Proof. By the assumption of the lemma, we know that
−→
P does not have a non-flipped

M -edge. If
−→
P does not have a flipped M -edge, then

−→
P consists of only T -edges. Thus, by

Lemma 3.3.10, the length of
−→
P is at most 3.

Now suppose
−→
P contains a flipped M -edge −→uv. Then by Lemma 3.3.9, we know that −→uv is

the end-edge of
−→
P . Furthermore, all the edges in

−→
P before −→uv must be T -edges. Therefore,

by Lemma 3.3.10 we conclude that the length of
−→
P is at most 3 + 1 = 4. �

The next lemma gives an upper bound on the lengths of the dipaths in the last family
of monochromatic dipaths.

Lemma 3.3.12. Let
−→
P be a monochromatic dipath that contains at least one non-flipped

M-edge −→uv. Then, the length of
−→
P is at most 6.

Proof. WLOG, we assume that
−→
P has color 1 in c′. Let

−→
Pu be the sub-dipath of

−→
P that

has the same initial-vertex as
−→
P and its end-vertex is u. Let

−→
Pv be the sub-dipath of

−→
P

whose initial-vertex is v and its end-vertex is the same end-vertex as
−→
P . We show that the

length of
−→
Pu is at most 2 and the length of

−→
Pv is at most 3. Therefore, the length of

−→
P is

at most 2 + 1 + 3 = 6, as desired.

Length of
−→
Pu is at most 2:

Let v1, ..., vk = u be the vertices of
−→
Pu. Notice that −−−−→vk−1vk could only be a T -edge,

because there is an M -edge −→uv incident to vk = u. Depends on the initial color of −−−−→vk−1vk,
there are two cases to check. When c0(−−−−→vk−1vk) = 2, we prove that the length of

−→
Pu is at

most 1, and when c0(−−−−→vk−1vk) = 1, we show that the length of
−→
Pu is at most 2.
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Case 1 (when c0(−−−−→vk−1vk) = 2).

In this case, −−−−→vk−1vk must be a flipped T -edge (because the final color of the edges
of
−→
P is 1). Notice that −→uv is a non-flipped edge (assumption of the lemma). So by

Lemma 3.3.8, we conclude that −−−−→vk−1vk is the start-edge of
−→
P which means that the

length of
−→
Pu is at most 1. We depict this case in Figure 3.8(a).

Case 2 (when c0(−−−−→vk−1vk) = 1).

In this case, −−−−→vk−1vk is a non-flipped edge. Suppose −−−−−→vk−2vk−1 is an M -edge. We know
that its final color is 1. By Property 3.3.5, we conclude that when the recoloring
process enters the depth of −−−−→vk−1vk, the color of −−−−−→vk−2vk−1 is 1; together with the fact
that the color of −→uv always is 1, we conclude that −−−−→vk−1vk falls into Property 3.3.7(1)
which implies that −−−−→vk−1vk is a flipped edge, a contradiction. Thus, −−−−−→vk−2vk−1 can-
not be an M -edge, so we conclude that −−−−−→vk−2vk−1 is a T -edge. Therefore, we have
c0(
−−−−−→vk−2vk−1) = 2 (since c0(−−−−→vk−1vk) = 1) and this implies that −−−−−→vk−2vk−1 is a flipped

T -edge. By Lemma 3.3.8, −−−−−→vk−2vk−1 is the start-edge of
−→
Pu, which means that the

length of
−→
Pu is at most 2. See Figure 3.8(b).

In both cases we proved that the length of
−→
Pu is at most 2.

Length of
−→
Pv is at most 3:

Let v = v1, ..., vk be the vertices of
−→
Pv. Since −→uv is an M -edge, −−→v1v2 must be a T -edge.

Furthermore, by Property 3.3.6, we have c0(−−→v1v2) = 1 which implies −−→v1v2 is a non-flipped
T -edge. We consider two cases: (1) when −−→v2v3 is anM -edge, and (2) when −−→v2v3 is a T -edge.
In the former case, we prove that the length of

−→
Pv is at most 2, and in the latter case, we

prove that the length of
−→
Pv is at most 3.

Case 1 (−−→v2v3 is an M -edge).

Note that c′(−−→v2v3) = 1 (because −−→v2v3 is in
−→
Pv). If c0(−−→v2v3) = 1, it means that the

color of −−→v2v3 is always 1. Thus, −−→v1v2 falls into Property 3.3.7(1), a contradiction with
the fact that −−→v1v2 is a non-flipped edge. Let us assume that c0(−−→v2v3) = 2. Thus, −−→v2v3
is a flipped M -edge. By Lemma 3.3.9, we conclude that −−→v2v3 is the end-edge of

−→
Pv.

Thus, the length of
−→
Pv is at most 2. This case is shown in Figure 3.9(a).

Case 2 (−−→v2v3 is a T -edge).

Recall that c0(−−→v1v2) = 1 which implies −−→v1v2 is a non-flipped T -edge and c0(−−→v2v3) = 2.
So −−→v2v3 must be a flipped T -edge. However, −−→v2v3 does not fall into property 3.3.7(2)
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Figure 3.8: (a) When c0(
−−−−→vk−1vk) = 2, then the parent of −−−−→vk−1vk has color 2 in c′. Fur-

thermore, there is an M -edge that is oriented away from vk−1. Thus, k ≤ 2. (b) When
c0(
−−−−→vk−1vk) = 1, then the parent of −−−−−→vk−2vk−1 has color 2 in c′. Furthermore, there is an

M -edge that is oriented away from vk−2; hence, k ≤ 3. Thus, the length of
−→
Pu is at most

2. See the proof of Lemma 3.3.12.

(because its parent −−→v1v2 is a non-flipped edge). So it is the case that, −−→v2v3 falls into
Property 3.3.7(1). Therefore, the color of the children of −−→v2v3 is 2 in c′, and there
is an M -edge −−→v3w such that when the recoloring process is in the depth of −−→v2v3, the
color of −−→v3w is 2. Therefore, the only possibility for −−→v3v4 of

−→
Pv is −−→v3w. Therefore, if

−−→v3w is not in
−→
Pv, then we are done. So suppose that −−→v3w is in

−→
Pv. Thus, c′(−−→v3w) = 1

which implies that −−→v3w is a flipped M -edge (remember that the color of −−→v3w was 2
when the recoloring process was in the depth of −−→v2v3). By Lemma 3.3.9, we conclude
that −−→v3w = −−→v3v4 is the end-edge of

−→
Pv. So the length of

−→
Pv is at most 3. This case is

shown in Figure 3.9(b).

We proved that in both cases, the length of
−→
Pv is at most 3.

�

We put together Lemma 3.3.10, Lemma 3.3.11, and Lemma 3.3.12 to give a bound on
the length of a monochromatic path in G.

Corollary 3.3.13. Let c′ be the edge-coloring of G. Then, any monochromatic path in G
has length at most 12.
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Figure 3.9: (a) When −−→v2v3 is an M -edge, then c0(
−−→v2v3) = 2. So by Lemma 3.3.9, we

conclude that −−→v2v3 is the end-edge of
−→
Pv; hence, k ≤ 3. (b) When −−→v2v3 is a T -edge, then

all the children of −−→v2v3 have color 2 in c′. So −−→v3v4 of
−→
Pv could be only an M -edge; hence,

k ≤ 4. Thus, The length of
−→
Pv is at most 3. See the proof of Lemma 3.3.12.

Proof. Let P be a path in G, and let
−→
P be the subgraph of

−→
G corresponding to P . By

Lemma 3.3.2, either
−→
P is a dipath, or

−→
P is the union of two maximal dipaths

−→
P1,
−→
P2. By

Lemma 3.3.10, Lemma 3.3.11, and Lemma 3.3.12, we conclude that the length of each
maximal dipaths of

−→
P is at most 6. Thus, the length of P is at most 12. �

By Corollary 3.3.4, together with the above corollary, we conclude that c′ is a good
edge-coloring of G.

Corollary 3.3.14. Suppose G = (V, T ·∪M) where T and M are a tree and a matching,
respectively. Then, G has a good edge-coloring.

Now Theorem 3.1.4 follows easily.

Proof of Theorem 3.1.4: By Theorem 3.2.2, we know that there exist a tree T and a
matching M such that G = (V, T ·∪ M). So we can apply Corollary 3.3.14 to G, i.e.,
G has a good edge-coloring. Let F1 and F2 be the subgraphs induced by colors 1 and 2,
respectively. By the first condition of the good edge-coloring, we know that F1 and F2 are
acyclic. Furthermore, by the second condition of the good edge-coloring, we conclude that
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the diameter of Fi for i = 1, 2 is at most 12. Therefore, F1 and F2 are forests with diameter
at most 12, as desired.
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Chapter 4

Thin Trees in 6-Edge-Connected Planar
Graphs

4.1 Introduction

We continue our study of thin trees in planar graphs. Recall from Chapter 3 that a
decomposition of a graph G = (V,E) consists of edge-disjoint subgraphs H1 = (V,E1) and
H2 = (V,E2) whose union is G, i.e., E = E1∪E2. All graphs in this chapter are considered
to be simple (without multiedges and without loops) unless stated otherwise. In particular,
our decomposition result (Theorem 4.1.1) works for simple planar graphs, and our thin tree
result (Theorem 4.1.2) works for planar graphs with multiedges (i.e., (multi)graphs). In
Chapter 3, we proved that any 8-edge-connected planar (multi)graph has two edge-disjoint
12
13
-thin spanning trees. Now it is natural to consider thin trees in planar graphs with edge-

connectivity < 8. In this chapter, we prove that a 6-edge-connected planar (multi)graph
has two edge-disjoint 14

15
-thin spanning trees. For planar graphs with edge-connectivity ≤ 4

it was proved in [MP] that for any 0 < ε < 1 there is a 4-edge-connected planar graph with
no ε-thin spanning tree. This leaves us with the family of 5-edge-connected planar graphs.
Unfortunately, we are not aware of any result about thin trees in this family of graphs.

As in the previous chapter, the main technique in this chapter is to color the edges of
the graph subject to some criteria. We cannot use the procedure of Chapter 3 to obtain
our desired edge-coloring on a connected planar graph with girth 6 because there exist
such graphs that do not have a decomposition into a spanning tree and a matching, see
[MdMRZ12] for examples of these graphs. However, Kim et al. [KKW+13] showed that
any connected planar graph with girth 6 can be decomposed into a spanning tree and a
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star forest (a star forest is a forest in which every component is a bipartite graph K1,t for
some t ∈ Z, t ≥ 0), see Theorem 4.2.2. Merker and Postle [MP] showed that if a graph G
has a decomposition into a spanning tree and a star forest, then there is a decomposition
of G into two forests with diameter at most 18. A consequence of this result is that any
6-edge-connected planar (multi)graph has two edge-disjoint 18

19
-thin spanning trees (see

Theorem 3.1.1).

In this chapter by using the same techniques as in [MP] but with a more careful analysis,
we are able to show that if a graph G has a decomposition into a spanning tree and a star
forest, then G can be decomposed into two forests with diameter at most 14; this result
implies that there are two edge-disjoint 14

15
-thin spanning trees in any 6-edge-connected

planar (multi)graph (see Theorem 4.1.2). The main theorem that we prove in this chapter
is as follows:

Theorem 4.1.1. Let G = (V,E) be a connected planar graph with girth at least 6. Then,
G can be decomposed into two forests with diameter at most 14.

Before we go into the details of the proof of Theorem 4.1.1, let us combine Lemma 3.1.3
and Theorem 4.1.1 to give our result about thin trees.

Theorem 4.1.2. Suppose G is a 6-edge-connected planar (multi)graph. Then, G has two
edge-disjoint spanning trees T, T ′ such that ρ(T ), ρ(T ′) ≤ 14

15
.

Proof. This proof is essentially the same as the proof of [MP, Corollary 3.6] and it is
included for completeness.

Since G is a 6-edge-connected planar (multi)graph, its dual G∗ = (V ∗, E∗) is a simple
planar graph with girth at least 6. By Theorem 4.1.1, we know that each connected com-
ponent G∗i = (V ∗i , E

∗
i ) of G∗ can be decomposed into two forests (V ∗i , F

1
i ) and (V ∗i , F

2
i ) such

that each has diameter at most 14. Let H1 := (
⋃
i V
∗
i ,
⋃
i F

1
i ) and H2 := (

⋃
i V
∗
i ,
⋃
i F

2
i ).

Notice that for each i = 1, 2, Hi is a forest with diameter at most 14. Thus, G∗ can be
decomposed into two forests with diameter at most 14. By applying Lemma 3.1.3 to G∗
we conclude that G has two edge-disjoint spanning trees T, T ′ such that ρ(T ), ρ(T ′) ≤ 14

15
.

By Theorem 4.1.1, we know that G∗ can be decomposed into two forests with diameter
at most 14. So we can apply Lemma 3.1.3 to G∗ and derive the desired result. �

The rest of this chapter is organized as follows: In Section 2, we will show that the
decomposition of a graph into two bounded diameter forests corresponds to a particular
edge-coloring (good edge-coloring) of the graph. Then, we will construct an edge-coloring
for the graph. Finally, in Section 3, we will prove that our edge-coloring given in Section
2 is indeed a good edge-coloring and this implies Theorem 4.1.1.
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4.2 A Good Edge-Coloring of the Graph

In this chapter, we use the following modified definition of a good edge-coloring (see Chap-
ter 3).

Definition 4.2.1 (good edge-coloring). Let G = (V,E) be a graph, and let c : E(G) →
{1, 2} be an edge-coloring of G. We say that c is a good edge-coloring if it satisfies the
following two conditions:

1. There is no edge-monochromatic cycle.

2. Any edge-monochromatic path has length at most 14.

Our proof of Theorem 4.1.1 relies on Theorem 4.2.2 below. The maximum average
degree of a graph G, denoted by Mad(G), is maxH⊆G

2|E(H)|
|V (H)| where H is a subgraph of G.

Kim et al. [KKW+13] showed that a planar graph G of girth at least 6 has Mad(G) < 3.
From this fact and Theorem 7.1 of [KKW+13] it follows that a planar graph of girth ≥ 6
has a decomposition into a forest and star forest. (Theorem 7.1 of [KKW+13] states the
following: "If a graph G is (1, 2)-sparse, then G has a decomposition (F, S) such that both
F, S are forests and every component of S has ≤ 2 edges." The same paper shows that
a graph G is (1, 2)-sparse if and only if Mad(G) < 3; we refer the reader to [KKW+13],
Section 1, for the definition of (1, 2)-sparse.)

Let G be a connected planar graph with girth ≥ 6. Then, by Kim et al. [KKW+13]
result, G has a decomposition into a forest F and a star forest S. Since G is connected,
we can convert F to a spanning tree T by adding as many star edges as possible. We state
this result in the following theorem:

Theorem 4.2.2. Every connected planar graph of girth at least 6 has a decomposition into
a spanning tree and a star forest.

Now, we can sketch the proof of Theorem 4.1.1.
Let G = (V,E) be a connected planar graph with girth at least 6. By Theorem 4.2.2,
G can be decomposed into a spanning tree T and a star forest S. Then, we will show
that any graph that can be decomposed into a spanning tree and a star forest has a good
edge-coloring, see Corollary 4.3.9. Now, Theorem 4.1.1 follows easily. Let F1 and F2 be
the subgraphs induced by colors 1 and 2, respectively. It is clear that Fi for i = 1, 2 is a
forest with diameter at most 14.

We often use tree to mean a spanning tree. Let G = (V,E) be a graph that can be
decomposed into a tree T and a star forest S. We denote this decomposition by G =
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(V, T ·∪ S). In a star graph, we call a vertex with the highest degree the center, and the
rest of the vertices the leaves. If a star has no edge, i.e., it consists of an isolated vertex,
then we call this vertex the center. If a star has one edge, then we arbitrarily pick one
vertex to be the center and the other one to be the leaf.

Now we obtain a directed graph
−→
G by orienting the edges of G as follows:

Pick a vertex r, and make T a rooted tree with root r. Each edge of the tree is oriented
away from the root. Call this directed tree

−→
T . For the star forest, in each component, we

orient the edges from the center to the leaves. We denote this directed star forest by
−→
S .

Clearly,
−→
G = (V,

−→
T ·∪
−→
S ).

Let C(
−→
S ) be the set of all centers of

−→
S , and L(

−→
S ) be the set of all leaves of

−→
S . We

say that an edge −→uv is a T -edge if −→uv ∈ E(
−→
T ), and an S-edge if −→uv ∈ E(

−→
S ).

Since G is simple, any (di)cycle in G or
−→
G has length at least 3. Also notice that any

(vertex)edge-coloring of
−→
G can be considered as an (vertex)edge-coloring of G, and vice

versa.

For constructing our good edge-coloring, first we give a vertex-coloring c : V (
−→
G) →

{1, 2} and then extend it to an edge-coloring c′ such that indegi(v) ≤ 1 (recall from
Chapter 3 that indegi(v) is the number of edges of color i that are oriented toward v), see
Fact 4.2.6. In particular, for any vertex v such that −→uv is an S-edge and −→wv is a T -edge, we
have c′(−→uv) = c(v) 6= 3−c(v) = c′(−→wv). Before we define this extension of a vertex-coloring
to an edge-coloring, we need some definitions. At the end of this section, we provide some
motivation for these definitions (see Examples 4.2.11 & 4.2.12).

From now on, by a graph G = (V,E) we mean G = (V, T ·∪ S), and
−→
G is the digraph

described above.

Definition 4.2.3. We say an S-edge −→uv is rebellious if c(u) 6= c(v). We also call v ∈ V (G)
rebellious if it is the head of a rebellious edge.

Definition 4.2.4. We say a vertex-coloring c is tame, if for every T -edge −→uv where v is
rebellious, we have c(u) 6= c(v) and u is not rebellious.

Let x ∈ {1, 2}, then define x to be x := 3−x. Now, we define the extension of a vertex
coloring to the edges of the graph.

Definition 4.2.5. Let c : V (
−→
G) → {1, 2} be a vertex-coloring of

−→
G . The extension of c,

denoted by Ext(c), is the edge-coloring c′ : E(
−→
G)→ {1, 2} where:

i. For all S-edges −→uv, we have c′(−→uv) = c(v).
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ii. For all T -edges −→uv, we have

c′(−→uv) =

{
c(v), if v ∈ C(

−→
S ), c(u) = c(v), and u is not rebellious,

c(v), otherwise.

Notice that for any v ∈ C(
−→
S ) we have indeg(v) ≤ 1, and for any v ∈ L(

−→
S ) we have

indeg(v) ≤ 2. Furthermore, for a leaf v ∈ L(
−→
S ), we have indeg(v) = 2 if and only if there

is an S-edge −→uv and a T -edge −→wv. By Definition 4.2.5, we know that c′(−→uv) = c(v) and
c′(−→wv) = c(v). So we can summarize this property in the following fact:

Fact 4.2.6 (indegree property). Suppose c is a vertex-coloring of
−→
G . Let c′ := Ext(c).

Then, for any v ∈ V (
−→
G) and i = {1, 2}, we have indegi(v) ≤ 1.

The high level idea of our vertex-coloring is as follows: First we color the vertices in
C(
−→
S ). To do this, we construct a digraph called the center graph with respect to

−→
G (see

the definition below). Then, we extend the coloring of vertices in C(
−→
S ) to L(

−→
S ) such that

the resulting coloring is tame.

Definition 4.2.7. The center graph Center(
−→
G) of a digraph

−→
G = (V,

−→
T ·∪
−→
S ) is a digraph

whose vertex set is C(
−→
S ) and for every pair u, v ∈ C(

−→
S ) with u 6= v, there is an edge −→uv

if −→uv is a T -edge, or if there is a vertex w such that −→uw is an S-edge and −→wv is a T -edge.

The next lemma provides a coloring for the vertices in C(
−→
S ) such that there is no

vertex-monochromatic dicycle in Center(
−→
G).

Lemma 4.2.8. The vertices of Center(
−→
G) can be colored with colors 1 and 2 such that the

color 1 vertices form an independent set, and the color 2 vertices induce a subgraph with
diameter at most 1.

Proof. This proof is essentially the same as the proof of [MP, Lemma 2.10] and it is included
for completeness.

Let H be the undirected graph obtained by removing the direction of the edges of
Center(

−→
G). We will prove each connected component of H has at most one cycle. For

now, suppose this holds. If a component does not have an odd cycle, then it is bipartite so
we can choose a proper 2-coloring of its vertices. If a component H ′ has an odd cycle C,
then this is the only cycle of H ′. Pick an edge uv in E(C). By removing uv from H ′, we
get a bipartite graph H ′′; hence, we can choose a proper 2-coloring of the vertices of H ′′
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such that the color of u is 2. Thus, the resulting coloring of V (H) = V (
−→
G) satisfies the

statement of the lemma.

It remains to show that each component of H has at most one cycle.
Suppose C and C ′ are two cycles in a connected component of H. Let

−→
C and

−→
C ′ be the

subgraphs in Center(
−→
G) corresponding to C and C ′, respectively. Since C and C ′ are in the

same component, there is a path P such that ∃u ∈ V (P ) ∩ V (C) and ∃v ∈ V (P ) ∩ V (C ′).
Let
−→
P be the subgraph in Center(

−→
G) corresponding to P . Notice that the indegree of

each vertex in the center graph is at most 1 (this follows from Definition 4.2.7); hence,
−→
C

and
−→
C ′ are dicycles which implies that there is an edge in

−→
C oriented toward u, and there

is an edge in
−→
C ′ oriented toward v. Therefore,

−→
P must be oriented away from u and v

(otherwise, the indegree of u and v is ≥ 2, a contradiction). Notice that the sum of the
indegrees (with respect to

−→
P ) of vertices in V (

−→
P ) is |V (

−→
P )|−1. Since the indegrees (with

respect to
−→
P ) of u, v are zero, there is a vertex in V (

−→
P ) with indegree 2, a contradiction

with the fact that the indegree of any vertex in Center(
−→
G) is at most 1. �

Now, we extend this vertex-coloring of Center(
−→
G) given by the previous lemma to all

vertices of
−→
G such that the resulting vertex-coloring is tame.

Lemma 4.2.9. Let c0 be the vertex-coloring of Center(
−→
G) described in Lemma 4.2.8. We

can extend this coloring to the leaves such that the resulting coloring is a tame vertex-
coloring of

−→
G . Furthermore, the length of a vertex-monochromatic dipath consisting of

only leaves is at most 1.

Proof. This proof is essentially the same as the proof of [MP, Lemma 2.10] and it is included
for completeness.

If the root of T is in L(
−→
S ), color it arbitrarily with color 1 or 2. Suppose we have

colored all the leaves at depth i. Let v be a leaf at depth i + 1, and let −→wv be an S-edge.
Let u be the parent of v, i.e., −→uv is a T -edge. We color v as follows:

c0(v) =

{
c0(u), if u is rebellious and c0(u) = c0(w),
c0(u), otherwise.

(4.1)

Claim: the vertex-coloring c0 is tame.

Proof of the claim: Suppose −→uv is a T -edge, v is a leaf, and w & −→wv are as above. Suppose
v is rebellious, i.e, c0(v) = c0(w). Then, c0(u) = c0(v) and u is not rebellious. The reasons
are as follows:
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First suppose that c0(u) = c0(v) = c0(w). Hence, the first case of (4.1) does not hold
which implies that c0(v) = c0(u), a contradiction.

Notice that in the previous paragraph, we proved that c0(u) = c0(v) = c0(w). Now
if u is rebellious, then the first case of (4.1) holds which implies that c0(u) = c0(v), a
contradiction. It follows that c0 is a tame vertex-coloring.

Proof of the "furthermore" part: Let
−→
P be a vertex-monochromatic dipath of length at

least 2 whose vertices are leaves. Let dipath u, v, z be a sub-dipath of
−→
P . Notice that

−→uv,−→vz are T -edges (since u, v, z ∈ L(
−→
S )). Since c0(u) = c0(v), the first case of (4.1)

implies that u is rebellious. On the other hand, since c0(v) = c0(z), the first case of
(4.1) implies that v is rebellious. Thus, we have a T -edge −→uv such that both u and v are
rebellious, a contradiction with the above claim (i.e., c0 is a tame vertex-coloring). �

The above proof, gives us an important fact that will be used later in Lemmas 4.3.5 & 4.3.7.

Claim 4.2.10. Let c0 be the vertex-coloring given by Lemma 4.2.9, and let −→uv be a T -edge
where u, v ∈ L(

−→
S ). If c0(u) = c0(v), then u is rebellious and v is not.

Proof. Let w be a center such that −→wv is an S-edge. Since c0(v) = c0(u), the first case of
(4.1) must have applied. Thus, we know that u is rebellious. Furthermore, c0(v) = c0(u) =
c0(w); hence, v is not rebellious. �

Let c0 be the vertex-coloring of Center(
−→
G) given by Lemma 4.2.9. In the next section,

we prove that ĉ := Ext(c0) is a good edge-coloring of G.

In the next two examples, we provide some intuition behind the tame property of a
vertex-coloring.
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2
u

2

R
v

2
w

1 1
L(
−→
S ) :

C(
−→
S ) :

T -edge

S-edge

Figure 4.1: Bottom vertices are in C(
−→
S ), and top vertices are in L(

−→
S ). The number (1

or 2) next to a vertex v or an edge −→uv denotes c(v) or c′(−→uv). Label R next to a vertex
denotes Rebellious. T -edges are shown with green color and S-edges are shown with black
color.

Example 4.2.11. Suppose G = (V,E) is a graph that has a decomposition into a tree
and a star forest. Let

−→
G be the directed graph obtained from G as described earlier in this

section. Let dipath u, v, w be a subgraph of
−→
G , where u,w are centers, v is a leaf, and

−→uv,−→vw are T -edges. See Figure 4.1 for an illustration. Let c be a vertex-coloring of
−→
G

such that c(v) = c(w) = 2. Furthermore, assume v is rebellious. Let c′ := Ext(c) be an
edge-coloring of

−→
G . Then, by Definition 4.2.5, we have c′(−→uv) = c(v) = 1 = c(w) = c′(−→vw).

Suppose c does not satisfy the first condition of tame coloring. In particular, suppose we
have c(u) = 2 (notice that −→uv is a T -edge where c(u) = c(v) = 2 and v is rebellious; hence,
c does not satisfy the first condition of tame coloring).

Since c(u) = c(w) = 2 and u,w are both centers, by "linking up" many copies of
the dipath u, v, w, we can create an arbitrarily long edge-monochromatic dipath. On the
other hand, if c is tame, then c(u) = 1 6= 2 = c(w). Thus, we cannot get a long edge-
monochromatic dipath by "linking up" copies of the dipath u, v, w.
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2
x

1

R
u

2

R
v

2
y

1

1

1
L(
−→
S ) :

C(
−→
S ) :

T -edge

S-edge

Figure 4.2: Bottom vertices are in C(
−→
S ), and top vertices are in L(

−→
S ). The number (1

or 2) next to a vertex v or an edge −→uv denotes c(v) or c′(−→uv). Label R next to a vertex
stands for Rebellious. T -edges are shown with green color and S-edges are shown with
black color.

Example 4.2.12. Suppose G = (V,E) is a graph that has a decomposition into a tree
and a star forest. Let

−→
G be the directed graph obtained from G as described earlier in this

section. Let dipath x, u, v, y be a subgraph of
−→
G , where x, y are centers, u, v are leaves,

−→xu is an S-edge, and −→uv,−→vy are T -edges. See Figure 4.2 for an illustration. Let c be a
vertex-coloring of

−→
G such that c(v) = c(y) = 2 and c(u) = 1. Furthermore, assume v is

rebellious. Let c′ := Ext(c) be an edge-coloring of
−→
G . Then, by Definition 4.2.5, we have

c′(−→xu) = c(u) = 1, c′(−→uv) = c(v) = 1, and c′(−→vy) = c(y) = 1.

Suppose c does not satisfy the second condition of tame coloring. In particular, suppose
u is rebellious, i.e., c(x) = 2 6= 1 = c(u). Thus, there is a T -edge −→uv whose endpoints
are rebellious. Since c(x) = c(y) = 2 and x, y are both centers, by "linking up" many
copies of the dipath x, u, v, y, we can create an arbitrarily long edge-monochromatic dipath.
On the other hand, if c is tame, then c(x) = 1 6= 2 = c(y). Thus, we cannot get a long
edge-monochromatic dipath by "linking up" copies of the dipath x, u, v, y.

4.3 Proof of Theorem 4.1.1

We fix c0 : V (
−→
G) → {1, 2} as given by Lemma 4.2.9 for the vertex-coloring of

−→
G =

(V,
−→
T ·∪
−→
S ), and ĉ is the extension of c0 to the edges of

−→
G , i.e., ĉ = Ext(c0). The goal of

this section is to show two properties of ĉ on
−→
G , i.e., (1) there is no monochromatic dicycle

(Lemma 4.3.3) and (2) every monochromatic dipath has length at most 7 (Lemma 4.3.5
and Lemma 4.3.7). At the end, these properties will show that ĉ is a good edge-coloring
for G, see Corollary 4.3.9.

We start by characterizing edge-monochromatic dipaths of color 1 where the initial-
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Assumptions Conclusion
−−−−−→vk−3vk−2 is T -edge, ĉ(−−−−−→vk−3vk−2) = 1,
vk−2 ∈ L(

−→
S )

c0(vk−2) = 2

−−−−−→vk−2vk−1 is T -edge, ĉ(−−−−−→vk−2vk−1) = 1,
vk−1 ∈ L(

−→
S )

c0(vk−1) = 2

−−−−→vk−1vk is T -edge, ĉ(−−−−→vk−1vk) = 1, vk−1 ∈
L(
−→
S ), vk ∈ C(

−→
S ), c0(vk−1) = 2

c0(vk) = 2, vk−1 is rebellious

Table 4.1: This table is used in the proof of k ≤ 3 in Lemma 4.3.1.

vertex and the end-vertex of the dipath are in C(
−→
S ), and the interior vertices are in L(

−→
S ).

Lemma 4.3.1 (Lemma 2.7 of [MP]). Let
−→
P = v0, v1, ..., vk be a dipath in

−→
G whose edges

are colored 1. Suppose v0, vk ∈ C(
−→
S ) and vi ∈ L(

−→
S ) for 1 ≤ i ≤ k − 1. Then we have

k ≤ 3. Furthermore,

i. If c0(v0) = c0(vk), then −−→v0vk ∈ E(Center(
−→
G)).

ii. If c0(v0) 6= c0(vk), then c0(v0) = 1 and c0(vk) = 2.

Proof. This proof is essentially the same as the proof of [MP, Lemma 2.7] and it is included
for completeness.

For the proof of this lemma we use tables where each row can be verified independently,
i.e., by using only the assumptions in the row and Definition 4.2.5.

We start by showing that k ≤ 3. Suppose k > 3, then we have vk−3, vk−2, vk−1 ∈ L(
−→
S )

and −−−−−→vk−3vk−2,
−−−−−→vk−2vk−1 ∈ E(

−→
T ). Also notice that the edges of

−→
P are colored 1. From

Table 4.1, we have c0(vk−2) = c0(vk−1) = 2 (row 1 and row 2). Now since c0(vk−1) = 2
and vk is a center (assumption of the lemma), we could apply row 3 of the table. So we
conclude that vk−1 is rebellious. Therefore, we have a T -edge −−−−−→vk−2vk−1 whose endpoints
are colored 2, and vk−1 is rebellious, a contradiction because c0 is tame. Thus, we have
k ≤ 3.

Now we prove the "furthermore" part of the lemma. We are not going to use any fact
from the previous paragraph or Table 4.1 for the rest of the proof.

We consider k = 1, 2, and 3 separately. In each case, we show that part (i) and part
(ii) of the lemma hold. We start with k = 1.
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Assumptions Conclusion
−−→v0v1 is T -edge, ĉ(−−→v0v1) = 1, v0, v1 ∈
C(
−→
S ), c0(v1) = 1

c0(v0) = 1

−−→v0v1 is T -edge, ĉ(−−→v0v1) = 1, v0, v1 ∈
C(
−→
S ), c0(v1) = 2

c0(v0) = 1

Table 4.2: This table is used in the case that k = 1 in Lemma 4.3.1.

Assumptions Conclusion
−−→v1v2 is T -edge, ĉ(−−→v1v2) = 1, v1 ∈ L(

−→
S ),

v2 ∈ C(
−→
S ), c0(v2) = 1

c0(v1) = 1, v1 is not rebel-
lious

ĉ(−−→v0v1) = 1, v1 ∈ L(
−→
S ), c0(v1) = 1 −−→v0v1 is S-edge

Table 4.3: This table is used in the case that k = 2 in Lemma 4.3.1.

k = 1: Since v0, v1 ∈ C(
−→
S ), we know that −−→v0v1 is a T -edge. So −−→v0v1 ∈ E(Center(

−→
G));

hence, part (i) holds. Let us determine the color of v0 based on the color of v1. From
Table 4.2, regardless of the color of v1, we always have c0(v0) = 1. Hence, part (ii)
holds too.

k = 2: Here we have
−→
P = v0, v1, v2 where v1 is a leaf and v0, v2 are centers. So −−→v1v2

must be a T -edge.

First, we show that part (i) holds when c0(v0) = c0(v2) = 1. From the first row
of Table 4.3, we have c0(v1) = 1. So we can apply the second row of the table.
Thus, −−→v0v1 is an S-edge; together with the fact that −−→v1v2 is a T -edge, we have −−→v0v2 ∈
E(Center(

−→
G)). So part (i) holds when the centers are colored 1.

Now suppose centers are colored 2, i.e., c0(v0) = c0(v2) = 2. Then, from Table 4.4, we
see that if c0(v1) = 2, then−−→v0v1 is a T -edge (the first row of Table 4.4) whose endpoints
are colored 2, and v1 is rebellious (the second row of Table 4.4), contradicting the
tame property of c0. So we proved that if c0(v0) = c0(v2) = 2, then c0(v1) = 1; hence,
−−→v0v1 is an S-edge (otherwise ĉ(−−→v0v1) = 2 because v1 ∈ L(

−→
S ), a contradiction with

the coloring of
−→
P ). Recall that −−→v1v2 is a T -edge; hence, −−→v0v2 ∈ E(Center(

−→
G)). Thus,

part (i) holds when the centers are colored 2.
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Assumptions Conclusion

ĉ(−−→v0v1) = 1, v1 ∈ L(
−→
S ), c0(v1) = 2 −−→v0v1 is T -edge

−−→v1v2 is T -edge, ĉ(−−→v1v2) = 1, v1 ∈ L(
−→
S ),

v2 ∈ C(
−→
S ), c0(v2) = 2, c0(v1) = 2

v1 is rebellious

Table 4.4: This table is used in the case that k = 2 in Lemma 4.3.1.

Assumptions Conclusion
−−→v1v2 is T -edge, ĉ(−−→v1v2) = 1, v1 ∈ L(

−→
S ),

v2 ∈ C(
−→
S ), c0(v2) = 1

c0(v1) = 1, v1 is not rebel-
lious

ĉ(−−→v0v1) = 1, v1 ∈ L(
−→
S ), c0(v1) = 1 −−→v0v1 is S-edge

−−→v0v1 is S-edge, 2 = c0(v0) 6= c0(v1) = 1 v1 is rebellious

Table 4.5: This table is used in the case that k = 2 in Lemma 4.3.1.

Now, we show part (ii) of the lemma holds. So we are assuming c0(v0) 6= c0(v2).
Suppose part (ii) does not hold, i.e., c0(v0) = 2 and c0(v2) = 1. Notice that since v1
is a leaf, −−→v1v2 is a T -edge. Then, from the first row of Table 4.5, we have c0(v1) = 1
and v1 is not rebellious. Since c0(v1) = 1, we can apply the second row of the table
and conclude that −−→v0v1 is an S-edge. Thus, we can apply the third row of the table
which implies that v1 is rebellious, a contradiction. Therefore, if c0(v0) 6= c0(v2), then
c0(v0) = 1 and c0(v2) = 2, so part (ii) holds.

Now we consider the last case, i.e., the length of
−→
P is 3.

k = 3: Here we have
−→
P = v0, v1, v2, v3. In this case we show that always we have

1 = c0(v0) 6= c0(v3) = 2 which implies part (ii). Since v1, v2 are leaves, we conclude
that −−→v1v2,−−→v2v3 are T -edges. Furthermore, since the edges of

−→
P are colored 1, we

could apply the first row of Table 4.6. So we have c0(v2) = 2. Then, from the second
row, we conclude that c0(v3) = 2 and v2 is rebellious. Since −−→v1v2 is a T -edge and
c0(v2) = 2, v1 is not rebellious and c0(v1) = 1 (tame property of c0). By applying
the third row of the table we conclude that −−→v0v1 is an S-edge; together with the fact
that v1 is not rebellious, we have c0(v0) = c0(v1) = 1. Hence, if k = 3, then we have
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Assumptions Conclusion
−−→v1v2 is T -edge, ĉ(−−→v1v2) = 1, v1, v2 ∈
L(
−→
S ),

c0(v2) = 2

−−→v2v3 is T -edge, ĉ(−−→v2v3) = 1, v2 ∈ L(
−→
S ),

v3 ∈ C(
−→
S ), c0(v2) = 2

c0(v3) = 2, v2 is rebellious

ĉ(−−→v0v1) = 1, v0 ∈ C(
−→
S ), v1 ∈ L(

−→
S ),

c0(v1) = 1,
−−→v0v1 is S-edge

Table 4.6: This table is used in the case that k = 3 in Lemma 4.3.1.

1 = c0(v0) 6= c0(v1) = 2, so (ii) holds, and (i) vacuously holds.

�

Similarly to the previous lemma, we have the following characterization of edge-monochromatic
dipaths of color 2 where the initial-vertex and the end-vertex are in C(

−→
S ), and the interior

vertices are in L(
−→
S ). The proof of the following lemma is omitted since it is similar to the

proof of the previous lemma.

Lemma 4.3.2. Let
−→
P = v0, v1, ..., vk be a dipath in

−→
G whose edges are colored 2. Suppose

v0, vk ∈ C(
−→
S ) and vi ∈ L(

−→
S ) for 1 ≤ i ≤ k − 1. Then we have k ≤ 3. Furthermore,

i. If c0(v0) = c0(vk), then −−→v0vk ∈ E(Center(
−→
G)).

ii. If c0(v0) 6= c0(vk), then c0(v0) = 2 and c0(vk) = 1.

The next lemma proves that there is no edge-monochromatic dicycle in
−→
G . To show

this, we use the fact that there is no vertex-monochromatic dicycle in Center(
−→
G) (see

Lemma 4.2.8).

Lemma 4.3.3. There is no edge-monochromatic dicycle in
−→
G .

Proof. This proof is essentially the same as the proof of [MP, Lemma 2.8] and it is included
for completeness.
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Suppose not. Let
−→
Q be an edge-monochromatic dicycle in

−→
G . WLOG, assume the

edges of
−→
Q are colored 1. We set QC = V (

−→
Q)∩C(

−→
S ) and QL = V (

−→
Q)∩L(

−→
S ). Both QC

and QL are non-empty because
−→
Q must contain an S-edge as

−→
T is a tree. Let v0 ∈ QC

and label the remaining vertices of QC by v1, ..., vk as they appear in
−→
Q starting from v0.

First suppose that not all the vertices in QC are colored the same. Then, there exists
i ∈ {0, ..., n} such that c0(vi) = 2 and c0(vi+1) = 1 (indices are considered modulo k + 1),
a contradiction with Lemma 4.3.1(ii). Therefore, all the vertices in QC are colored the
same. By Lemma 4.3.1(i), we have −−−→vivi+1 ∈ E(Center(

−→
G)) for all i ∈ {0, ..., k}. Therefore,

v0, ..., vk, v0 correspond to a vertex-monochromatic dicycle in Center(
−→
G), a contradiction

with Lemma 4.2.8 (i.e., there is no vertex-monochromatic dicycle in Center(
−→
G)). �

We need the following fact which is the immediate consequence of the furthermore part
of Lemma 4.2.9.

Corollary 4.3.4. Let
−→
P be an edge-monochromatic dipath whose vertices are in L(

−→
S ).

Then, the length of
−→
P is at most 2.

Proof. Suppose
−→
P = v0, v1, ..., vk is a dipath in

−→
G . WLOG, assume the edges of

−→
P are

colored 1. Since vi ∈ L(
−→
S ) for 0 ≤ i ≤ k, we have c0(vi) = 2 for i ≥ 1 (possibly, c0(v0) = 1).

Hence, by the furthermore part of Lemma 4.2.9, the length of the dipath v1, v2, ..., vk is at
most 1. Thus, the length of

−→
P is at most 1 + 1 = 2. �

It remains to prove that every monochromatic dipath in
−→
G has length at most 7. The

next lemma proves this fact for monochromatic dipaths whose edges are colored 1, and
Lemma 4.3.7 deals with color 2.

Lemma 4.3.5. Let
−→
P be a dipath whose edges are colored 1. Then, the length of

−→
P is at

most 7.

Proof. For the proof of this lemma we use tables where each row can be verified indepen-
dently, i.e., by using only the assumptions in the row and Definition 4.2.5.

The sketch of the proof is as follows: First we show that the length of any edge-
monochromatic dipath whose initial-vertex is a center of color 2 is at most 4 (Claim 4.3.6).
Then, we show the number of centers of color 1 in

−→
P is at most one. Finally, with case

analysis (depending on whether
−→
P contains a center of color 1 or not), we finish the proof.

We start by giving an upper bound on the length of an edge-monochromatic dipath
whose edges are colored 1 and the initial-vertex is a center of color 2.
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Claim 4.3.6. Let
−→
Pu = u, u1, ..., uk be a dipath whose edges are colored 1, and let u be a

center of color 2. Then, the length of
−→
Pu is at most 4.

Proof of Claim 4.3.6: Notice that if u is the only center in
−→
Pu, then we have ui ∈ L(

−→
S ) for

i ≥ 1. Thus, by Corollary 4.3.4, we conclude that the length of dipath u1, ..., uk is at most
2 which implies the length of

−→
Pu is at most 1 + 2 = 3.

Now suppose
−→
Pu contains a center different than u. Assume w 6= u is the center with the

smallest index in {u1, ..., uk}. So there is no center in
−→
Pu between u and w. Furthermore,

the edges of
−→
Pu are colored 1 and c0(u) = 2. Thus, Lemma 4.3.1(ii) could not be applied.

So by Lemma 4.3.1(i), we have c0(w) = 2 and w is adjacent to u in Center(
−→
G); hence,

either w = u1, or w = u2. We consider only the worst case, i.e., w = u2. In the other
case (i.e., w = u1), using similar arguments, we can prove the same upper bound on the
length of

−→
Pu. Suppose there is a center ui for i ≥ 3 in

−→
Pu. Let z be the center with the

smallest index in {u3, ..., uk}. So there is no center in
−→
Pu between w and z. Again, by

Lemma 4.3.1(i), we conclude that −→wz ∈ E(Center(
−→
G)), and c0(z) = 2. Now the dipath

u,w, z has length 2 in Center(
−→
G) such that its vertices are colored 2, a contradiction with

Lemma 4.2.8. So we can assume that ui ∈ L(
−→
S ) for i ≥ 3.

Suppose c0(u3) = 2. Then by the first row of Table 4.7, we conclude −−→u2u3 is a T -edge.
Since c0 is tame, u3 is not rebellious (note that c0(u2) = c0(u3) = 2). We prove that u3 is
the end-vertex of

−→
Pu. Suppose not. So there is a leaf u4 in

−→
Pu (recall that ui’s are leaves

for i ≥ 3) and c0(u4) = 2 (in order to have ĉ(−−→u3u4) = 1). Therefore, we have a T -edge −−→u3u4
such that c0(u3) = c0(u4) = 2 and u3 is not rebellious, a contradiction with Claim 4.2.10.
Thus u3 is the end-vertex of

−→
Pu which implies that the length of

−→
Pu is at most 3.

Suppose c0(u3) = 1. Then from the second row of Table 4.7, we know −−→u2u3 is an S-edge.
Therefore, u3 is rebellious (note that 2 = c0(u2) 6= c0(u3) = 1). If u3 is the end-vertex of
−→
Pu, then we are done. So suppose there is a leaf u4 in

−→
P . Note that −−→u3u4 is a T -edge, and

u3 is rebellious. So u4 is not rebellious (tame property). We prove that u4 is the end-vertex
of
−→
Pu. Suppose not. Then, there is a leaf u5 in

−→
P such that −−→u4u5 is a T -edge. Hence, there

is a T -edge −−→u4u5 such that u4 is not rebellious and c0(u4) = 2 = c0(u5) (in order to have
ĉ(−−→u3u4) = 1 = ĉ(−−→u4u5)), a contradiction with Claim 4.2.10. So u4 is the end-vertex of

−→
Pu

which implies that the length of
−→
Pu is at most 4. Figure 4.3 depicts

−→
Pu when it achieves

the maximum possible length.

Now we prove the lemma. Notice there could be at most one center of color 1 in
−→
P .

Suppose there are at least two such centers. Let u,w be two centers of color 1 in
−→
P such

46



Assumptions Conclusion

ĉ(−−→u2u3) = 1, u2 ∈ C(
−→
S ), u3 ∈ L(

−→
S ),

c0(u3) = 2
−−→u2u3 is T -edge

ĉ(−−→u2u3) = 1, u2 ∈ C(
−→
S ), u3 ∈ L(

−→
S ),

c0(u3) = 1
−−→u2u3 is S-edge

Table 4.7: This table is used in the proof of Claim 4.3.6.

2
u

1

R

2

w = u2

1

R

2

NR1 1 1

1
L(
−→
S ) :

C(
−→
S ) :

T -edge

S-edge

Figure 4.3: The length of
−→
Pu reaches its maximum when w = u2 and c0(u3) = 1.

that there is no center of color 1 in
−→
P between u and w.

If there is no center of color 2 in
−→
P between u and w, then Lemma 4.3.1(i) implies that u

and w are adjacent in Center(
−→
G). However, Lemma 4.2.8 implies vertices of color 1 form

an independent set in Center(
−→
G), a contradiction.

If there is a center of color 2 between u and w, then we have a dipath whose edges are
colored 1 from a center of color 2 to a center of color 1 such that its interior vertices are
leaves, a contradiction with Lemma 4.3.1(ii). Therefore,

−→
P has at most one center of color

1. So we only need to consider two cases: (1)
−→
P does not contain a center of color 1, and

(2)
−→
P has a center of color 1. Let

−→
P = v0, v1, ..., vk.

Case (1) (when
−→
P does not contain a center of color 1).

If
−→
P does not contain a center of color 2, together with our assumption that

−→
P

does not contain a center of color 1, we conclude that
−→
P consists of only leaves. By

Corollary 4.3.4, the length of
−→
P is at most 2 and we are done.

Suppose u is the first center of color 2 that appears in {u0, ..., uk}. Let
−→
Pu be the

sub-dipath of
−→
P whose initial-vertex and end-vertex are u and vk, respectively. Then,

by Claim 4.3.6, we know the length of
−→
Pu is at most 4. Since we are assuming u is
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vi−1, vi ∈ L(
−→
S ), c0(vi) = 1 ĉ(−−−→vi−1vi) = 2

ĉ(−→viu) = 1, u ∈ C(
−→
S ), vi ∈ L(

−→
S ),

c0(u) = c0(vi) = 2
vi is rebellious

vi−2, vi−1 ∈ L(
−→
S ), c0(vi−1) = 1 ĉ(−−−−−→vi−2vi−1) = 2

Table 4.8: This table is used in the proof of Lemma 4.3.5 for Case (1).

1
v0

2

R
v1

2

u = v2

1

R

2

2

R

2

NR1 1 1

11

1

L(
−→
S ) :

C(
−→
S ) :

T -edge

S-edge

Figure 4.4: There is no center of color 1 in
−→
P . Suppose

−→
P contains a center u of color 2,

then the number of edges between u and the end-vertex of
−→
P is at most 4 (Claim 4.3.6).

Let vi be a leaf of color 2 before u in
−→
P . Then c0(vi−1) = 1 and this implies that vi−1 is

the initial-vertex of the dipath.

the first center of color 2, and
−→
P does not contain a center of color 1, all the vertices

before u are leaves. Suppose there is a leaf vi such that −→viu is in
−→
P .

If c0(vi) = 1, then by the first row of Table 4.8, there could not be a leaf in
−→
P before

vi (if there exists such leaf vi−1, then the color of edge −−−→vi−1vi is 2, a contradiction
with the coloring of

−→
P ). Hence, vi = v0 and the length of

−→
P is at most 1 + 4 = 5.

If c0(vi) = 2, then by the second row of Table 4.8, we know that vi is rebellious. Since
c0 is tame, c0(vi−1) = 1 (if vi−1 exists). From the last row of the table, we conclude
that there could not be a leaf before vi−1 in

−→
P (if vi−2 exists, then c0(−−−−−→vi−2vi−1) = 2,

a contradiction with the coloring of
−→
P ). So the length of

−→
P is at most 2 + 4 = 6.

Figure 4.4 shows
−→
P when it achieves its maximum possible length 6.

Case (2) (when
−→
P contains a center of color 1).

Let u be the center of color 1, then u = v0. Otherwise, there is −→viu such that ĉ(−→viu) =
1. Thus, vi is either a center of color 1, or vi is a leaf of color 1 that is not rebellious.
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1

u = v0

1

2

R

2

w = v3

1

R

2

2

R

2

NR1 1 11

11

1
L(
−→
S ) :

C(
−→
S ) :

T -edge

S-edge

Figure 4.5: There is a center u of color 1 in
−→
P . Then u is the initial-vertex of the dipath.

If there is a center w of color 2 in the dipath, then the number of edges between u and
w is at most 3. Furthermore, the longest monochromatic dipath that we could have with
initial-vertex w has length 4 (Claim 4.3.6).

Both cases imply there are two centers of color 1 adjacent to each other which is a
contradiction with Lemma 4.2.8 (notice that in the latter case, since vi ∈ L(

−→
S ), there

is a center z such that −→zvi is an S-edge. Therefore, −→zu ∈ E(Center(
−→
G)). Furthermore,

Since vi is not rebellious, we have c0(z) = c0(vi) = 1; hence, two centers of color 1
are adjacent in the center graph). So we proved that u = v0 is the initial-vertex of
−→
P . Recall the fact from the beginning of the proof that

−→
P has at most one center

of color 1; hence, there is no center of color 1 in {v1, ..., vk}.

If v1, ..., vk ∈ L(
−→
S ), then by Corollary 4.3.4, the length of the dipath v1, ..., vk is at

most 2 which implies that the length of
−→
P is at most 1 + 2 = 3.

Now, suppose there is a center of color 2 in {v1, ..., vk}. Let w be the center of color
2 with smallest index in {v1, ..., vk}. Then, by Lemma 4.3.1, the number of edges of
−→
P between u = v0 and w is at most 3. On the other hand, since w is a center of
color 2, by Claim 4.3.6 we conclude that the number of edges of

−→
P between w and

vk is at most 4. Therefore, the length of
−→
P is at most 3 + 4 = 7. This case is shown

in Figure 4.5.

�

The next lemma provides an upper bound on the length of a dipath whose edges are
colored 2 by the edge-coloring ĉ. Although the main idea of the proof of this lemma is the
same as the main idea of the proof of Lemma 4.3.5, in details they are different. This is
due to difference in the induced subgraphs by color 1 and color 2 in the center graph.

Lemma 4.3.7. Let
−→
P be a dipath whose edges are colored 2. Then, the length of

−→
P is at

most 7.
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ĉ(−→uu1) = 2, u ∈ C(
−→
S ), u1 ∈ L(

−→
S ),

c0(u1) = 1
−→uu1 is T -edge

−−→u1u2 is T -edge, ĉ(−−→u1u2) = 2, u1, u2 ∈
L(
−→
S )

c0(u2) = 1

Table 4.9: This table is used in Claim 4.3.8.

Proof. For the proof of this lemma we use tables where each row can be verified indepen-
dently, i.e., by using only the assumptions in the row and Definition 4.2.5.

The sketch of the proof is as follows: First we show that the length of any dipath whose
initial-vertex is a center of color 1 is at most 2 (Claim 4.3.8). Then, we prove that the
number of centers of color 1 in

−→
P is at most one. Furthermore, the number of centers of

color 2 in
−→
P is at most two. We finish the proof with case analysis.

Claim 4.3.8. Let
−→
Pu = u, u1, ..., uk be a dipath whose edges are colored 2. Suppose u is a

center of color 1. Then, the length of
−→
Pu is at most 2.

Proof of Claim 4.3.8: Suppose
−→
Pu contains a center different than u. Assume w 6= u is

the center with the smallest index in {u1, ..., uk}. So there is no center in
−→
Pu between u

and w. Since the edges of
−→
Pu are colored 2 and c0(u) = 1, Lemma 4.3.2(ii) could not be

applied. Thus, by Lemma 4.3.2(i), we have c0(w) = 1 and w is adjacent to u in Center(
−→
G),

a contradiction with Lemma 4.2.8 (i.e., the vertices of color 1 form an independent set in
Center(

−→
G)). So far we have proved that u is the only center of

−→
Pu, i.e., ui ∈ L(

−→
S ) for

i ≥ 1.

If c0(u1) = 1, then by the first row of Table 4.9 we conclude that −→uu1 is a T -edge.
Since c0(u) = c0(u1) and the coloring is tame, we conclude that u1 is not rebellious. If u1
is not the end-vertex of

−→
Pu, then there is a leaf u2 such that −−→u1u2 is a T -edge; hence, by

the second row of Table 4.9 we have c0(u2) = 1. Thus, we have a T -edge −−→u1u2 such that
c0(u1) = c0(u2) = 1 and u1 is not rebellious, a contradiction with Claim 4.2.10. Hence,
u1 is the end-vertex of

−→
Pu which implies that the length of

−→
Pu is at most 1. Figure 4.6(a)

shows
−→
Pu when c0(u1) = 1.

Now if c0(u1) = 2, then by the first row of Table 4.10 we know −→uu1 is an S-edge. Since
c0(u) = 1 6= 2 = c0(u1), u1 is rebellious. Thus, if u1 is not the end-vertex of

−→
Pu, then
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ĉ(−→uu1) = 2, u ∈ C(
−→
S ), u1 ∈ L(

−→
S ),

c0(u1) = 2
−→uu1 is S-edge

−−→u1u2 is T -edge, ĉ(−−→u1u2) = 2, u1, u2 ∈
L(
−→
S )

c0(u2) = 1

−−→u2u3 is T -edge, ĉ(−−→u2u3) = 2, u2, u3 ∈
L(
−→
S )

c0(u3) = 1

Table 4.10: This table is used in Claim 4.3.8.

1
u

1

NR
u1
2

L(
−→
S ) :

C(
−→
S ) :

T -edge

S-edge

(a)

1
u

2

R
u1

1

NR
u2

2

2

(b)

Figure 4.6: (a)
−→
Pu when −→uu1 is a T -edge. (b)

−→
Pu when −→uu1 is an S-edge. See the proof of

Claim 4.3.8.

there is a leaf u2 such that u2 is not rebellious (tame property). From the second row of
Table 4.10, we have c0(u2) = 1. We will prove that u2 is the end-vertex of

−→
Pu which implies

that the length of
−→
Pu is at most 2.

So suppose u2 is not the end-vertex of
−→
Pu. Then, there is a leaf u3 in

−→
Pu such that −−→u2u3

is a T -edge. By the third row of Table 4.10, we conclude that c0(u3) = 1. Now we have a
T -edge −−→u2u3 such that c0(u2) = c0(u3) = 1 and u2 is not rebellious, a contradiction with
Claim 4.2.10. Figure 4.6(b) shows

−→
Pu when c0(u1) = 2.

Now, we prove the lemma. Notice that there could be at most one center of color 1 in−→
P . Suppose there are at least two such centers. Let u,w be two centers of color 1 in

−→
P .

WLOG, assume there is no center of color 1 in
−→
P between u and w.

If there is no center of color 2 between u and w, then Lemma 4.3.2(i) implies that u and w
are adjacent in Center(

−→
G), a contradiction with Lemma 4.2.8 (i.e., the vertices of color 1

form an independent set in Center(
−→
G)). If there is a center of color 2 in

−→
P between u and
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w, then we have a dipath whose edges are colored 2 from a center of color 1 to a center
of color 2 such that its interior vertices are leaves, a contradiction with Lemma 4.3.2(ii).
Therefore, there is at most one center of color 1 in

−→
P .

Now we show that there are at most two centers of color 2 in
−→
P . Suppose there are

at least three centers u, v, and w of color 2 in
−→
P such that v is between u and w in

−→
P .

WLOG, assume there is no center of color 2 in
−→
P between u and v, and there is no center

of color 2 in
−→
P between v and w.

If there is a center of color 1 either between u and v or between v and w, then we have a
dipath whose edges are colored 2 from a center of color 1 to a center of color 2 such that
its interior vertices are leaves, a contradiction with Lemma 4.3.2(ii).
If there is no center of color 1 in

−→
P between u and w, then by Lemma 4.3.2(i) we have

−→uv,−→vw ∈ E(Center(
−→
G)), a contradiction with Lemma 4.2.8 (i.e., the vertices of color 2

induce a subgraph with diameter at most 1 in Center(
−→
G)).

So we proved there is at most one center of color 1 and there are at most two centers
of color 2 in

−→
P . Notice that if

−→
P does not have a center, then by Lemma 4.3.4 the length

of
−→
P is at most 2 and we are done. So we consider three cases such that in each case

−→
P

has at least one center. Let
−→
P = v0, v1, ..., vk.

Case (1) (
−→
P contains one center of color 1 but no center of color 2).

Let vi be the center of color 1. So {v0, ..., vk} \ {vi} ∈ L(
−→
S ). By Corollary 4.3.4, the

length of dipath v0, v1, ..., vi−1, and the length of dipath vi+1, vi+2, ..., vk are at most
2. Therefore, the length of

−→
P is at most 2 + 2 + 2 = 6.

Case (2) (
−→
P contains one center of color 2).

Let vi for some 0 ≤ i ≤ k be the center of color 2. Suppose there is a center w in
{v0, ..., vi−1}. Since we are assuming vi is the only center of color 2 in the dipath,
we conclude that c0(w) = 1. Therefore, there is a dipath whose edges are colored 2
from a center of color 1 to a center of color 2 such that its interior vertices are leaves,
a contradiction with Lemma 4.3.2(ii). Therefore, {v0, ..., vi−1} ⊆ L(

−→
S ). From the

first row of Table 4.11, we conclude that c0(vi−1) = 2. If vi−1 is not the initial-vertex
of the dipath, then from the second row of Table 4.11, we get that ĉ(−−−−−→vi−2vi−1) = 1,
a contradiction with the coloring of

−→
P . Therefore, vi−1 is the initial-vertex of the

dipath; hence i ≤ 1. We consider only the worst case, i.e., i = 1 and v1 is a center
of color 2. In the other case (i.e., i = 0 and v0 is a center of color 2), using similar
arguments, we can prove the same upper bound on the length of

−→
P .
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Assumptions Conclusion

ĉ(−−−→vi−1vi) = 2, vi−1 ∈ L(
−→
S ), vi ∈ C(

−→
S ),

c0(vi) = 2
c0(vi−1) = 2, vi−1 is not re-
bellious

vi−2, vi−1 ∈ L(
−→
S ), c0(vi−1) = 2 ĉ(−−−−−→vi−2vi−1) = 1

Table 4.11: This table is used in the proof Lemma 4.3.7 for Case (2) & (3).

2
v0
NR

2

v1

2 1

R

1
u

2

R

1

NR2 2

2

2 2

2
L(
−→
S ) :

C(
−→
S ) :

T -edge

S-edge

Figure 4.7: When
−→
P contains one center of color 2 and one center of color 1, the maximum

length of
−→
P is 6.

If there is no center of color 1 in {v2, ..., vk}, then v2, ..., vk are leaves. By Lemma 4.3.4,
we know that the length of dipath v2, ..., vk is at most 2. Therefore, the length of

−→
P

is at most 1 + 1 + 2 = 4.

Suppose there is a center of color 1 in {v2, ..., vk}. Let u be the center of color 1
with smallest index in {v2, ..., vk}. Then, by Lemma 4.3.2, the number of edges of
−→
P between v1 and u is at most 3. On the other hand, by Claim 4.3.8 the number
of edges of

−→
P between u and vk is at most 2. Therefore, the length of

−→
P is at most

1 + 3 + 2 = 6. This case is shown in Figure 4.7.

Case (3) (
−→
P contains two centers of color 2).

Let vi for some 0 ≤ i ≤ k be the center of color 2 with smallest index and vj 6= vi is the
second center of color 2 in

−→
P . Notice that if there is a center of color 1 in

−→
P between

vi and vj, then there is a dipath whose edges are colored 2 from a center of color 1
to a center of color 2 such that its interior vertices are leaves, a contradiction with
Lemma 4.3.2(ii). Thus, there is no center in

−→
P between vi and vj. By Lemma 4.3.2,

we conclude that vi and vj are adjacent in Center(
−→
G). Therefore, either j = i+ 1 or

j = i+ 2. We consider only the worst case, i.e., vj = vi+2 is the center of color 2. In
the other case (i.e., vj = vi+1 is the center of color 2), using similar arguments, we
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2
L(
−→
S ) :

C(
−→
S ) :

T -edge

S-edge

Figure 4.8: When
−→
P contains two centers of color 2 and one center of color 1, then its

length is at most 7.

can prove the same upper bound on the length of
−→
P .

Notice that there is no center in {v0, ..., vi−1} because if there is any, it must be a
center of color 1 (we know that

−→
P contains at most two centers of color 2, i.e., vi and

vi+2). Therefore, there is a dipath whose edges are colored 2 from a center of color
1 to a center of color 2 such that its interior vertices are leaves, a contradiction with
Lemma 4.3.2(ii). So we can assume that {v0, ..., vi−1} ⊆ L(

−→
S ).

Since vi−1 is a leaf, there is a center w such that −−−→wvi−1 is an S-edge. On the other
hand, by the first row of Table 4.11, we conclude that c0(vi−1) = 2 and vi−1 is not
rebellious. Therefore, c0(w) = c0(vi−1) = 2 and −→wvi ∈ E(Center(

−→
G)). So dipath

w, vi, vi+2 is in the center graph whose vertices are colored 2, a contradiction with
Lemma 4.2.8 (i.e., color 2 vertices in Center(

−→
G) induce a subgraph with diameter

at most 1). Thus, there is no leaf before vi, i.e., i = 0. So far we have proved that
v0 and v2 are the only centers of color 2 in

−→
P . Note that v1 is a leaf (otherwise,

there is a dipath from a center of color 1 to a center of color 2, a contradiction with
Lemma 4.3.2(ii)).

If there is no center of color 1 in {v3, ..., vk}, then v3, ..., vk are leaves. So by Corol-
lary 4.3.4, dipath v3, ..., vk has length at most 2. Thus, the length of

−→
P is at most

2 + 1 + 2 = 5.

If there is a center u of color 1 in {v3, ..., vk}, then by Lemma 4.3.2, the number of
edges of

−→
P between v2 and u is at most 3. On the other hand, by Claim 4.3.8, the

number of edges of
−→
P between u and vk is at most 2. Thus, the length of

−→
P is at

most 2 + 3 + 2 = 7. This case is shown in Figure 4.8.

�

Now it is easy to see that G has a good edge-coloring.
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Corollary 4.3.9. Let G = (V, T ·∪ S) where T and S are a tree and a star forest, respec-
tively. Then, G has a good edge-coloring.

Proof. Let c0 be the vertex-coloring of both G and
−→
G given by Lemma 4.2.9, and let

ĉ = Ext(c0) be the edge-coloring for G and
−→
G . Notice that by Fact 4.2.6, together with

Remark 3.3.3, we conclude that Lemma 3.3.2 holds for ĉ, i.e., (1) every edge-monochromatic
cycle in G is an edge-monochromatic dicycle in

−→
G , and (2) every edge-monochromatic path

in G is the union of at most two edge-monochromatic dipaths in
−→
G .

Since there is no edge-monochromatic dicycle in
−→
G (Lemma 4.3.3), by (1) there is no

edge-monochromatic cycle in G. Furthermore, let P be an edge-monochromatic path in
G. From (2), we know P is the union of at most two edge-monochromatic dipaths

−→
P ′,
−→
P
′′ .

By Lemmas 4.3.5 & 4.3.7, both
−→
P ′ and

−→
P
′′ have length at most 7. Thus, the length of P

is at most 14. �

Now Theorem 4.1.1 follows easily.

Proof of Theorem 4.1.1: By Theorem 4.2.2, G can be decomposed into a tree T and a
star forest S, i.e, G = (V, T ·∪ S). By Corollary 4.3.9, G has a good edge-coloring. Let
F1 and F2 be the subgraphs induced by colors 1 and 2, respectively. Since there is no
edge-monochromatic cycle in the graph, F1 and F2 are forests. Furthermore, any edge-
monochromatic path has length at most 14, so the diameter of F1 and F2 is at most 14.
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