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Two-strategy evolutionary games on graphs have been extensively studied in the literature. A
variety of graph structures, degrees of graph dynamics, and behaviours of replicators have been
explored. These models have primarily been studied in the framework of facilitation of cooperation,
and much excellent work has shed light on this field of study. However, there has been little
attention to truncation selection as most models employ proportional selection (reminiscent of the
replicator equation) or “imitate the best.” Here we systematically explore truncation selection
on random graphs, where replicators below a fitness threshold are culled and the reproduction
probabilities are equal for all survivors. We employ two variations of this method: independent
truncation, where the threshold is fixed; and dependent truncation, which is a generalization of
“imitate the best.” Further, we explore the effects of diffusion in our networks in the following
orders of operation: diffusion-combat-offspring (DCO), and combat-diffusion-offspring (CDO). For
independent truncation, we find three regimes determined by the fitness threshold: cooperation
decreases as we raise the threshold; cooperation initially rises as we raise the threshold and there
exists an optimal threshold for facilitating cooperation; and the entire population goes extinct. We
find that dependent truncation affects games differently; lower levels reduce cooperation for the
hawk-dove game and increase it for the stag hunt, and higher levels produce the opposite effects.
DCO reduces cooperation in the static case. However, CDO has approximately as much or more

cooperation than the static case.
INTRODUCTION

The evolution of cooperation is frequently modelled
by the Prisoner’s Dilemma. However, this model faces a
tragedy of the commons in which defection is favoured
over cooperation. The Prisoner’s Dilemma is a symmet-
ric game with two strategies: cooperate (c¢) and defect
(d) with payoff matrix

c d
i(F) o

where T' > R > P > S. Though the socially optimal
strategy profile is (¢, ¢), due to the temptation to cheat,
T, the suboptimal strategy profile (d, d) is an evolution-
arily stable state (ESS) ] This game and others are
frequently studied in the parameter space determined by:
R=1,-1<S8<1,P=0,and 0 <T < 2 [29]. Thus,
for -1 < S <0and 1< T <2, we have the Prisoner’s
Dilemma. 0 < S < 1land 1 < T < 2, we have the
Hawk-Dove game and a mixed ESS. For —1 < S < 0 and
0 <T <1, we have the Stag Hunt game and bistability.
And, for 0 < S <1and 0 <T < 1, we have the harmony
game where the ESS is socially optimal. Figure[Ildepicts
the frequency of cooperators at the interior equilibrium
(if there is one) or at the exterior ESS. For the area of pa-
rameter space that represents the Hawk-Dove game, this

is the ESS. For the area of the Stag Hunt, this represents
the size of the basin of attraction of cooperation.

A variety of evolutionary dynamics have been used to
explore these games ﬂﬁ, ] Here we will focus on an
extensively studied framework, evolutionary games on
graphs |23, @, @], where agents are represented by ver-
tices and interact with other vertices with which they
share edges , ] Each vertex has a specific strat-
egy that it follows. In many studies, including this one,
we assume that the players always play the same pure
strategy regardless of the strategies of their neighbours.
From these interactions, vertices earn payoffs — the av-
erage or sum of which is their fitness — that determine
survival by some selection method. Lattice models of this
kind can increase cooperation HE] or reduce cooperation
in the Snowdrift game ﬂﬁ], depending on the selection
method and games employed. A variety of different in-
vasion scenarios have been studied in this framework E],
and it has been shown that cooperators can successfully
invade [18].

Once payoffs have been assigned and fitnesses calcu-
lated, selection occurs. Each vertex compares its fitness
to those of its neighbours to determine what strategy will
occupy the vertex next turn. A common selection mech-
anism used in spatial games is proportional selection,
where a vertex will randomly choose one of its neigh-
bours, and adopt the neighbour’s strategy with proba-
bility proportional to the difference in their fitnesses B],
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FIG. 1. Interpolated heatmap of cooperation in parameter
space. White corresponds to defection and black to cooper-
ation. In the harmony (top left quadrant), Hawk-Dove (top
right quadrant), and Prisoner’s Dilemma (bottom right quad-
rant) areas of parameter space, the colour represents the equi-
librium frequency of cooperation (white is All Defect, black is
All Cooperate, and grey an intermediate amount of coopera-
tion). In the Stag Hunt area (bottom left quadrant), we have
bistability. Thus, the heatmap represents the magnitude of
the basin of attraction of cooperation.

which is equivalent to the replicator equation for an infi-
nite population [14]. Another common selection mecha-
nism is “imitate the best,” in which the focal vertex will
compare its fitness (the sum of all interactions with its
neighbours) to the fitnesses of neighbouring vertices [11].
Its strategy will then become the strategy of the vertex
with the greatest fitness. If there is a tie, it will be deter-
mined randomly from the maximal fitness neighbours.

Truncation selection occurs when a proportion of the
population is culled and the survivors reproduce to fill
the gap in the population. However, the reproduction
rate is equal amongst all survivors (it’s not scaled by
fitness). Two types of truncation selection are depen-
dent and independent [21]. In dependent truncation, the
top 7 proportion of the population survives and repro-
duces, while the bottom 1 — 7 is culled. For 7 = 1/n,
where n is the number of neighbours, we have the “im-
itate the best” rule. In independent truncation, repli-
cators with fitnesses greater than some fitness threshold
¢ survive and reproduce, and those below it are culled.
Note that reproduction is not dependent upon the degree
to which a replicator is above the threshold for survival.
This asymmetry in selection results in significant differ-
ences from the replicator equation, potentially displaying
chaos and significant levels of cooperation where none are
represented in the replicator equation employing identi-
cal games |58, 21]. A model that employs a degree of
independent truncation is studied in [37]. Vertices are
removed from the graph if their fitnesses are below a

threshold. Vertices created as replacements have prefer-
ential connections to vertices with high fitnesses. After
this process, there is proportional selection.

A variety of graphs have been explored, ranging from
lattices with periodic or aperiodic boundaries, to small
world graphs, and to random regular graphs [3]. Scale-
free networks with different levels of degree-degree cor-
relations and enhanced clustering have been shown to
facilitate cooperation |26]. Cooperators perform better
on random regular graphs than they do on regular small
world graphs, which perform better than square lattices
[13].

Dynamic graphs are graphs where the edges change
over time. By altering the degree of dynamism of the
graph, a variety of mechanisms (such as the Red Queen)
can lead to high levels of cooperation [32]. This pro-
cess can be random or determined by vertex behaviour
[34]. In the behavioural model, vertices may choose to
break edges by examining the payoffs earned from neigh-
bours with whom they share them [4, 24], breaking edges
with non-cooperating neighbours [27], or form edges with
those vertices that have high payoffs [35, 136]. Other
means to study this behaviour include models where the
agents move on a plane [2,[10]. They interact with those
within some Euclidean distance, which in some models is
heterogeneous [37]. After a certain time they reproduce.
Cooperation can be supported in such models, but only
when the agents’ velocities are low [20]. Scale-free graphs
are the most resilient to this effect [17].

Another method of graph dynamism is diffusion, where
vertices swap places in the graphs, or, equivalently, ver-
tices swap strategies with neighbouring vertices. The or-
der of the operations: contest, C; diffusion (graph dy-
namism), D; and offspring, O, heavily affects the results
130, 133]. CDO ordering of operations often inhibits the
effects of graph structure [30].

Here we systematically explore independent and de-
pendent truncation selection on random graphs, since it
has not been sufficiently studied in the literature. Ad-
ditionally, we study diffusion with both DCO and CDO
operations. We compare our results to models that use
proportional selection.

METHODS

Let G(V, E) be an undirected graph with vertex set V/
and edge set E. V; = {v; : {v;,v;} € E} is the set of
neighbours of vertex v;. We construct a random graph
using the Erdés-Rényi G(n, p) model with expected ver-
tex degree, E[|V;]] = 5, and population size, |V| = 500.
We assign to vertices the cooperator strategy with prob-
ability 0.5, and the remaining vertices are defectors. We
run the simulation for 200 turns and employ synchronous
combat and reproduction. The order of operations each
turn is: contest, offspring, and diffusion for CDO; and



diffusion, contest, and offspring for DCO.

During the combat phase, players interact with all
their neighbours, and earn payoffs from these interac-
tions. From this we calculate the fitness of v;, f; =
>v;ev; Tij/|Vil- The payoffs come from 7;; € IT (pay-
off matrix[M). We vary T and S with increments of 0.1.

Diffusion occurs by randomly selecting vertices to swap
strategies with their neighbours n times per turn. We run
simulations with mean diffusion rates, d = n/|V]| = 0 to
25. However, we present the results for d = 1, since
higher diffusion rates did not significantly affect our re-
sults.

During the offspring phase, we employ three different
selection/updating rules: proportional, dependent trun-
cation, and independent truncation. For each vertex, we
examine it and its neighbours’ fitnesses and employ our
selection method to determine what strategy will occupy
the vertex next turn. For proportional selection, v; with
strategy s; will randomly choose a neighbour, v;, and
adopt its strategy, s;, with probability P(s; — s;),

fi—fi
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if f; fz >0, @)
otherwise.

This method is identical to the replicator equation in the
limit ﬂﬂ] This selection mechanism is proportional to
the differences between the payoffs of the vertices.

For dependent truncation, we determine the top
[7(|Vi] + 1) 4+ 0.5] vertices from each v; and their neigh-
bours and set the strategy of v; to the strategy of a ran-
domly selected vertex from this set. For independent
truncation, for each v; we determine the set

V! ={v; € ViU{v;} : f; > ¢max{1,T}+(1—¢) min{0, S}}

(3)
where 0 < ¢ < 1, and select randomly from this set to up-
date the strategy of v;. Note that independent truncation
can result in V/ = 0, and thus we may have empty ver-
tices. These empty vertices hold no strategy and do not
compete with neighbours. However, they are still a part
of the graph and thus offspring may be born at them. We
ran simulations for 7 from 0.05 to 0.95 in increments of
0.05, and ¢ from —1 to 2 (the range of possible fitnesses)
in increments of 0.1. Finally, we averaged our results over
100 simulations for each parameter combination.

RESULTS

Proportional selection

To enable comparison with the truncation selection re-
sults, in Figure 2 we plot the interpolated heatmap for
proportional selection with no diffusion, and d = 1 for
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FIG. 2. Interpolated heatmap of average cooperation over 100
simulations for proportional selection with simulation length
of 200 turns and d =0 (a), DCO d=1 (b), and CDO d =1
(c). White corresponds to defection and black to cooperation.

DCO and CDO. Not shown here are results for d > 1,
because we did not observe an appreciable impact from
those rates. We observe less cooperation in these three
cases than in Figure [l This observation matches sim-
ilar results in the literature, where clustering in struc-
tured models facilitates cooperation in the Stag Hunt
game, and inhibits it in the Hawk-Dove game ﬂﬁ] We
observe less cooperation in Figure 2 than in Figure [
since the clustering coefficient, C' = p = 0.02, is low for
our graph @] Notice that the results for DCO do not
differ significantly from the no diffusion case. However,
CDO diffusion increases cooperation as observed in the
hawk-dove, stag hunt, and harmony domains of param-
eter space. Cooperators within a cluster of cooperators
will have a higher fitness than defectors in a defector
cluster. Thus, cooperators that diffuse into a defector
cluster will propagate, whilst defectors that diffuse into
a cooperator cluster will likely die. This effect has been
similarly observed in [30, 33)].

Independent truncation

We observe a variety of behaviours for independent
truncation that can be classified into three regimes that
are dependent upon the fitness threshold, ¢: ¢ € [-1,0),
¢ € [0,1), and ¢ € (1,2]. In the first, cooperation de-
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FIG. 3. Interpolated heatmap of average cooperation over 100
simulations for independent truncation with simulation length
of 200 turns. Black corresponds to the density of cooperators.
Note that unlike the proportional selection and dependent
truncation heatmaps, white corresponds to the density of de-
fectors and empty vertices (which do not occur in those other
models).

creases as we increase ¢. In the second, cooperation ini-
tially rises. And, in the third, no cooperation is present
as extinction occurs.

Figure [ portrays a variety of interesting heatmaps of
the independent truncation model. In panels (a)-(d) we
explore the effects of various values of ¢ for the no dif-
fusion case. These results are summarized in Figure @]
which plots the density of cooperators, p., in each game
region for various ¢.

For independent truncation, we may be able to alter
the nature of fixed points by altering ¢ |21]. The possible
fitness values range from —1 to 2, and from this we have

Independent truncation
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FIG. 4. Cooperator density, p., of each game for various ¢.

three regimes: ¢ € [—1,0), ¢ € [0,1), and ¢ € (1,2].
All players will make the threshold ¢ = —1, and thus
we would expect, and observe, p. = 1/2. As we increase
¢ to 0, we will only select against cooperators, since we
may have S < 0, but T' > 0. Therefore, we observe less
cooperation as ¢ rises to 0. Panel (a) of Figure Bl depicts
this case for ¢ = —1/2; we observe little cooperation
below the line S = —1/2.

For ¢ € [0,1), selection will occur on both strategies.
We observe more cooperation than in panels (b)-(d) of
Figure [3 than the ESS predicts (Figure [I) and than we
observe in the proportional selection model (Figure [I).
Cooperation increases for all games as ¢ is raised. Coop-
eration reaches a peak and then decreases (Figure 3.

For ¢ > 1, cooperators cannot survive, since their max-
imum fitness is 1. Therefore, populations could only exist
of defectors, which earn a payoff of 0 playing one another.
Therefore, they too will become extinct. Thus, we don’t
plot this parameter range.

When we incorporate diffusion into our models, we do
not observe significant effects for d > 1 than we do for
d = 1. The DCO results depicted in Figure[d are qualita-
tively similar to the no diffusion case in Figure 3l How-
ever, we have less cooperation in the regime ¢ € [0, 1) for
the DCO model. Diffusion permits defectors to invade
clusters of cooperators and thereby disrupt them, reduc-
ing cooperation. We can see this effect in the heatmaps of
panels (c) and (e) of Figure[8l The impact is greatest in
the prisoner’s dilemma region, but also affects parameter
space bordering it.

The CDO model bears many of the same phenomena
as the non diffusion and DCO cases: cooperation ini-
tially decreases as we increase ¢ from —1, and increases
for ¢ > 0. However, we observe far greater densities of
cooperators as we continue to increase ¢, and the rise
in cooperators does not decrease as it does in the other
models. Rather, the population is nearly entirely coop-
erating at ¢ = 1. This occurs because cooperators in
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FIG. 5. Cooperator density, p., of each game for various ¢.

a cooperator cluster earn good payoffs with their neigh-
bours, and then may disperse into defector regions, where
they will dominate the defectors due to their higher fit-
nesses. For ¢ > 1, extinction occurs for the previously
discussed reasons.

Dependent truncation

In general, we observe more cooperation in dependent
truncation than we do in proportional selection. Further,
the levels of truncation across the space of game param-
eters is roughly the same (as depicted in Figures [ and
[B). However, the proportion of replicators that survive,
7, affects each game differently.

Figure [6] depicts the heatmap results for dependent
truncation for a variety of interesting cases. By com-
paring the figures in the left column with those on the
right, we may observe the effects of low and high 7 upon
cooperation. There is no effect upon the harmony game;
all players cooperate. There is little effect upon the low
levels of cooperation for the prisoner’s dilemma. How-
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FIG. 6. Interpolated heatmap of average cooperation over 100
simulations for dependent truncation with simulation length
of 200 turns. White corresponds to defection and black to
cooperation.

ever, increasing 7 increases cooperation in the hawk dove
game and reduces it for the stag hunt. We can see this
summarized in Figures [7 and [8 for various values of 7.

Panels (c) - (f) of Figure [f display the effects of the
DCO vs CDO algorithms with d =1, 7 =1/4 and 7 =
3/4. We observe more cooperation for CDO than DCO,
which is true regardless of 7 as is summarized in Figure[8
Further, these figures contain the same phenomenon in
the case with no diffusion; as 7 increases, cooperation in
the hawk dove game increase while it decreases in the
stag hunt.
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FIG. 7. Cooperator density, p., of each game for various 7.

DISCUSSION

Here we have systematically explored diffusion and dif-
ferent selection mechanisms on a random graph of coop-
erators and defectors. We have expanded the analysis
of these selection mechanisms from proportional selec-
tion and “imitate the best” to incorporate two truncation
schemes and various levels of truncation.

We have uncovered two interesting regimes for inde-
pendent truncation: cooperation decreases as we increase
the threshold parameter, ¢; and cooperation increases for
¢ > 0 where it will peak in the diffusionless and DCO
cases and reach nearly 100% cooperation in the CDO case
before the whole population becomes extinct for ¢ > 1.

The impact of diffusion is most profound for one dif-
fusion event per player on average, d = 1. We ran simu-
lations up to d = 25 and observed only negligible effects
upon our results. The DCO algorithm permits the dis-
ruption of clusters of cooperators by allowing defectors
on the edge of the cluster to diffuse into it, where they
exploit and outcompete their cooperating neighbours. In
the CDO algorithm, however, players play their neigh-
bours and then diffuse. Thus, cooperators in clusters
earn good fitnesses and then may diffuse into defector
clusters, where fitnesses are low. Defectors that diffuse
into cooperative clusters will have low fitnesses earned
from their defector neighbours, and thus cannot become
established within the cooperative clusters and thereby
disrupt them.

Dependent truncation is an extension of “imitate the
best.” However, we vary how many of the best play-
ers from which we choose for reproduction (by choosing
7). For low 7, we select from the very best of the pop-
ulation. For high 7, the majority of the players may be
chosen to reproduce. 7 has different effects on the density
of cooperators for different games. While the harmony
and prisoner’s dilemma were not much affected, the hawk
dove and stag hunt were. As we raise 7, we increase co-
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FIG. 8. Cooperator density, p., of each game for various 7.

operation in the hawk dove game, but decrease it in the
stag hunt. This phenomenon occurs with and without
diffusion (and for both DCO and CDO).

We have a couple of suggestions for future work to ex-
pand on the ideas in this paper. For one, we should ex-
plore stochastic payoffs, which have been shown to have a
significant impact upon non-spatial models [, 121]. Fur-
ther, we believe that a systematic exploration of other
graphs would be a worthwhile endeavour.
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