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Bounded rationality alters 
the dynamics of paediatric 
immunization acceptance
Tamer Oraby1 & Chris T. Bauch2

Interactions between disease dynamics and vaccinating behavior have been explored in many 
coupled behavior-disease models. Cognitive effects such as risk perception, framing, and subjective 
probabilities of adverse events can be important determinants of the vaccinating behaviour, and 
represent departures from the pure “rational” decision model that are often described as “bounded 
rationality”. However, the impact of such cognitive effects in the context of paediatric infectious 
disease vaccines has received relatively little attention. Here, we develop a disease-behavior 
model that accounts for bounded rationality through prospect theory. We analyze the model and 
compare its predictions to a reduced model that lacks bounded rationality. We find that, in general, 
introducing bounded rationality increases the dynamical richness of the model and makes it harder 
to eliminate a paediatric infectious disease. In contrast, in other cases, a low cost, highly efficacious 
vaccine can be refused, even when the rational decision model predicts acceptance. Injunctive social 
norms can prevent vaccine refusal, if vaccine acceptance is sufficiently high in the beginning of the 
vaccination campaign. Cognitive processes can have major impacts on the predictions of behaviour-
disease models, and further study of such processes in the context of vaccination is thus warranted.

Processing imperfect information in limited time with bounded cognition affects individual 
decision-making. Risk aversion and ambiguity aversion render the rational decision model of classi-
cal utility theory more of a prescriptive model than a descriptive model1. Cognitive psychologists and 
behavioral economists have demonstrated such ramifications through numerous experiments, e.g.1,2, 
corroborated by the St. Petersburg, Allais, and Ellsburg paradoxes3. In the 1970s and 80s, H.A. Simon 
introduced the concept of bounded rationality to explain deviations from the rational decision model4–6. 
In the meantime, Kahneman and Tversky7 developed Prospect Theory (PT) through experimental psy-
chology to explain and describe how individuals make decisions. According to PT, individuals measure 
their utility of each possible outcome based on how it is framed and on the perception/weight of the 
probabilities of its occurrence. Prospect theory has received significant attention in the decision-making 
community1,2,8, behavioral economics9–11, health12,13 and many other fields14–17.

Prospect theory attempts to explain how multitudinous everyday decisions are influenced by risk (mis)
perception, range effect, loss aversion, diminishing sensitivity and framing effect. The decision whether 
or not to vaccinate should also be subject to these effects. While vaccination is a very efficient control 
measure for many paediatric infectious diseases18–20, some parents do not vaccinate their children. That 
appears to be due to the underestimation of disease risks and/or overestimation of vaccine risks, and 
vaccine-generated herd immunity21–27. According to the Health Belief Model (HBM), parents decide 
about childhood vaccination according to two types of variables: personal and social22,28–31. Personal 
variables include parental perceived risk of infection in terms of susceptibility and severity, perceived 
risk of vaccination, vaccine efficacy, vaccine cost, and its accessibility. For instance, low perceived vaccine 
efficacy can be detrimental to vaccination campaigns32. Social variables include injunctive social norms 
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(group pressure) experienced through peers and health care providers. For instance, injunctive social 
norms affect vaccine uptake in different ways that depend on the initial size of the vaccinator group33. 
Other research has pointed to the ubiquitous role of social learning in vaccine decision-making, where 
individuals rely upon information provided by their broad social environment—peers, health care pro-
viders, and the media—to make their decisions34.

Many mathematical models of the interaction between vaccinating behavior and disease incidence 
predict that vaccination is not an effective method of disease elimination, because herd immunity makes 
vaccine refusal attractive to parents25,32,33,35–42. Refusal can emerge with or without a rational decision 
model. For example, behavioral economic models that incorporate bounded rationality can replicate 
the low acceptance rate of influenza vaccination in the United States43. Another behavioral economy 
framework found that subjective risks, efficacy, and cost of vaccination can also explain low acceptance 
rates44. The final size of epidemics and vaccine uptake were shown to be sensitive to strategic decisions 
towards vaccination in the case of imperfect information about disease risk in the presence of discount 
rate bias45, and when disease risk perception is based on partial recall of historical prevalence46. A similar 
conclusion is reached in the case where decisions are made to reduce contact rates, when disease risk 
perception depends on recalling the number of symptomatic cases over a certain past period of time47. 
Moreover, the clustering of opinions on networks itself (i.e. without feedback from disease dynamics) can 
also affect the herd immunity threshold in ways that make it harder to eliminate infection48. In contrast, 
other approaches observe that pediatric vaccine coverage is often higher than predicted by the conven-
tional free-rider framework, and show that adding injunctive social norms or public health information 
to models can reconcile the models to this observation33,41. These and other “behavior-disease” models 
have begun moving away from the rational decision model in various ways25,32,33,35–42,49.

In this paper, we incorporate prospect theory into a behavior-disease model to investigate the 
dynamical behavior of parental acceptance of paediatric infectious disease vaccines under the bounded 
rationality paradigm. To our knowledge, this is the first paper that incorporates prospect theory into 
a behaviour-disease modelling framework that also includes parameters governing costs, effecacy and 
social norms. It thus allows us to capture how changes in individual cognitive processes described by 
prospect theory can affect population-level vaccine coverage and disease dynamics. Also, in contrast to 
how injunctive social norms are modelled in33, we allow injunctive social norms (group pressure) to 
differ between vaccinator and non-vaccinator groups, since in reality those two groups might impose 
pressures of different magnitudes. We study the dynamical behavior of the model and identify different 
regions with different long-term states, comparing them to outcomes in a special case of the model that 
lacks bounded rationality (i.e. a model that is closer to a rational decision model). We show how changes 
in the perceived risks of vaccine and disease can translate into different equilibria. Vaccine efficacy32 and 
cost of vaccination are also shown to affect the equilibrium at the same levels of risk perceptions. After 
analyzing the model to identify its dynamical regimes, we will then use some published parameter values 
to investigate the effect of the new parameters on the dynamical behavior of vaccine uptake/acceptance.

Methods
Modeling Decision-Making via Prospect Theory.  A decision made according to prospect theory 
starts by editing the prospects via combining, segregating, canceling and simplifying the prospects14. A 
prospect Φ  =  (z1,p1; z2,p2; …; zk,pk), given after the editing phase, is defined by possible outcomes zi 
(z i ∈ ) and their corresponding probabilities pi (0 <  pi <  1). A prospect Φ  =  (z1,p1; z2,p2; …; zk,pk) has 
a utility given by

p u z
i

k

i i
1
∑π ω(Φ) = ( ) ( )
=

c.f.50. (Specifications of the two functions ω and u are given below.) However, in the case of a prospect of 
only two possible outcomes with the same sign, an adjustment is needed; that is, if Φ  =  (z1,p1; z2,p2) with 
p1 +  p2 =  1 and either 0 <  z1 <  z2 or z2 <  z1 <  0, then the utility would be given by π(Φ ) =  u(z1) +  ω(p2)
[u(z2) −  u(z1)].

The decision-maker prefers a prospect Φ 1 to another prospect Φ 2 if π(Φ 1) >  π(Φ 2) and is indifferent if 
π(Φ 1) =  π(Φ 2). Prospect theory, however, violates the stochastic dominance axiom, because prospect Φ 1 
may be preferred to Φ 2, even though outputs of prospect Φ 2 stochastically dominate prospect Φ 1 c.f.50. 
That violation was fixed later in cumulative prospect theory (CPT)2, but we use here the classical prospect 
theory as a tractable approximation to CPT (see Appendix III).

The subjective utility function is defined by u(x) =  uG(x)I+(x) +  uL(x)(1 −  I+(x)) where I+(x) is the 
indicator function that equals one if x is positive and zero otherwise, uG(x) =  xα, and uL(x) =  − λ (− x)α 
such that 1 >  α >  0 and λ  >  1 is the loss aversion index2,14. The concavity of uG and convexity of uL reflect 
the different behaviors, either averting or seeking risk, when the object is framed in terms of gain or 
loss, respectively, with respect to some reference point (Fig. 1(a)). It also reflects the bias in sensitivity 
due to framing, to lose some amount rather than to gain the same amount, as a result of the inclusion 
of the loss aversion index λ .
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The weighing of the likelihood of an event happens in a two-stage process51. First the decision maker 
estimates the probability of the event (p), and second he/she assigns a weight to it (ω(p)). The weight func-
tion should reflect the compression effect for the objective or true probabilities. That compression results 
in an overestimation of low probabilities and underestimation of high probabilities. The weight function 
ω has a number of other properties: sub-certainty or ω(p) +  ω(1 −  p) <  1, and the pseudo-certainty fea-
ture of human cognition: people value a decrease in probability from 0.1 to 0 more than they value a 
decrease from 0.2 to 0.1, for example. An example of the weight function ω of a probability p is depicted 
in Fig. 1(b), and the function is given by

p
p

p p1 1
1ω ( ) =

( + ( − ) ) ( )

η

η η η

where 0 <  η <  1 2,52. The case η ≃ 0 corresponds to complete denial of the event unless it is certain. We 
will call the parameters α, λ, and η the cognitive parameters.

Behavior-disease model.  We build a behavior-disease model that couples disease transmission 
dynamics to vaccinating behavior dynamics (see e.g.25,35), in which susceptible babies are born at a rate 
of μ (1 −  xe) where μ is the birth/death rate, x is the proportion of vaccinators (and rate of vaccination) 
and e is the vaccine efficacy. The model is intended to apply to paediatric infectious diseases such as 
measles, pertussis, and chicken pox. The model is given by
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where S and I are the proportions of susceptible and infected individuals in the population, β is the 
disease transmission rate, and γ is the recovery rate. (The differential equation for the proportion of 
recovered individuals R is redundant and so does not appear.) A parent is either a vaccinator V or 
non-vaccinator N. In the behavior equation of the model, parents sample one another at a rate of κ and 
compare their payoff to the sampled parent’s payoff; then they pick up the other parent’s strategy with 
a probability given by a function in the difference of the payoffs. A non-vaccinator parent perceives a 
difference between vaccination and non-vaccination strategies of πV|N =  πN(V) −  πN(N) and a vaccinator 
parent perceives a difference between non-vaccination and vaccination strategies of πN|V =  πV(N) −  πV(V) 
(see below for their definitions). Both are dependent on the disease prevalence I and the rate of vacci-
nation x.

Figure 1.  Utility function and probability perception/weight. (a) The gain and loss utilities of the 
objective/actual value measured with respect to a reference point. The plot corresponds to the parameters 
α =  .5 and λ =  2.5. (b) The perception/weighting function ω of actual probabilities at parameter value η =  .5, 
see equation (1).
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The probability function P is defined by P z
c z

1
1 exp

( ) =
+ (− )

 for some constant c >  0 (see32) so that 
the larger the value of z is, the closer the value of the function P(z) is to one. P(πV|N) is the probability 
that a parent switches from non-vaccinator to vaccinator strategy and P(πN|V) is the probability that a 
parent switches from vaccinator to non-vaccinator strategy.

Within each of the two groups V and N, it is expected that due to the omission bias53 (harms of 
commission exceeds the harms of omission) parents might show different loss aversion parameters λ 
when considering risk of vaccination versus risk of non-vaccination. Let the subscripts c and o be used 
to emphasize the commission and omission of actions. While the relationship between values of the 
loss aversion parameters λc and λo is unclear in the case of vaccination decision-making, it is valid to 
postulate that the loss aversion parameter of commission is greater than that of omission. That is, if two 
prospects of omission and commission are of the same outcomes and probabilities then the utility of 
the prospect due to commission would be greater than of the prospect due to omission if and only if 
λc >  λo. While the values of the loss parameters will not be restricted to that inequality, as it seems that 
the omission bias in the underlying problem is complicated by the values of the prospect.

We assume that all babies are born healthy and their parents’ goal is to maintain the healthy status 
of their children. When an individual encounters some information about vaccination or disease, he/she 
reflects upon it from his/her own perspective (or current strategy). Then, the utilities will be given by
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Here, B =  1 is the utility of the healthy status (the reference point); J0, J1, J2, J3 are the utilities of mild, 
moderate, morbid, and death due to disease that occur with probabilities p0, p1, p2, p3 to an infected child 
such that 1 =  B ≥  J0 >  J1 >  J2 >  J3 ≥  0. The quantities V0, V1, V2, V3 are the utilities of no-side-effect, mild, 
morbid, and death due to adverse reaction to vaccination that occur with probabilities q0, q1, q2, q3 to a 
vaccinated child such that 1 =  B ≥  V0 >  V1 >  V2 >  V3 ≥  0. The quantity m is the utility (normalized and 
given in utils) of cost and effort to access vaccination. (We assume that all of the utilities are in units 
of ‘utils’.) The parental perception of the probability of getting infected is proportional to the current 
prevalence I offset by a small probability 0 <  ε < <  1 making a total of I +  ε to account for that at zero 
prevalence there might be a very faint fear of infection due to immigration. (The quantity ε is also math-
ematically important in the analysis of the model.) The quantity (1 −  e)(I +  ε)pj is the probability that a 
vaccinated child gets a disease reaction of type Jj after getting infected by internal or external sources of 
infection as the vaccine fails to work. The vaccine efficacy will always affect the disease incidence. It will, 
however, have effect on vaccination behavior in the bounded rational case only (see results).

Social norms and peer group pressure are important factors in immunization uptake33,54. Therefore we 
postulate the following: each group adopting a strategy Θ  imposes a social group pressure given by δΘ 
on the population. Thus an individual adopting strategy Θ  experiences an average social pressure given 
by pΘ δΘ, where pΘ is the proportion of strategy Θ ′ s adopters/supporters. The group pressures δV and δN 
are normalized to be between 0 and 1 and are given in ‘utils’. Hence,

I x V x N x1V N N V N Nπ π δ π δ( , ) = ( ( ) + ) − ( ( ) + ( − ))

V N x 7N N V N Nπ π δ δ δ= ( ) − ( ) + ( + ) − ( )

I x N x V x1N V V N V Vπ π δ π δ( , ) = ( ( ) + ( − )) − ( ( ) + )

N V x 8V V N V Nπ π δ δ δ= ( ) − ( ) + − ( + ) ( )

where πN(V), πN(N), πV(N), and πV(V) are given by equations (3)-(6). This means that the utility of the 
vaccination prospect πΘ(V) is augmented by the amount of the vaccinators’ group pressure δV x and the 
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utility of the non-vaccination prospect πΘ(N) is augmented by the non-vaccinators’ group pressure δN 
(1 −  x).

Results
The “rational decision model” is recovered as a special case of the full cognitive behavior-disease model, 
in which the cognitive parameters, αΘ, ηΘ, and λΘ, for Θ  =  V,N and c o= ,  are set equal to one (see 
Table 1 in Appendix I). However, we point out that even the “rational decision model” is not a pure 
rational decision model since it allows for processes of social learning and social norms. Therefore our 
use of the term is relative. The rational decision model is identical to the model in33 in case of perfect 
vaccine efficacy and equal group pressure. When the parameters αΘ, ηΘ, and λΘ, are not equal to one, 
we refer to the model as a “bounded-rational decision model”.

In our analysis, we explore what happens as the parameters αΘ, ηΘ, and λΘ, move away from the 
rational decision model to the bounded rational decision model. This results in a plethora of dynamical 
behaviors of vaccine acceptance, giving rise to new model equilibria relative to the rational case33. We 
explore how dynamics depend on vaccine efficacy, vaccine cost, and social norms.

The model (equation (2)) has six fixed points. Three fixed points are disease-free equilibria: 
 S I x e1 0 11 = ( , , ) = ( − , , ) (pure vaccinator, disease-free),  1 0 02 = ( , , ) (non-vaccinator, 
disease-free), and  e x x1 03 3 3≡ ( − , , ) (partial vaccinator, disease-free; x3 is a function of various 
model parameters, and its full expression appears in Appendix II).

The remaining three fixed points are disease-endemic equilibria that depend on the quantity 
 x : xe

0
1

( ) =
β
μ γ
( − )

+
.  x0( ) is an effective reproduction number in the presence of a partially immune 

population. Hence, the basic reproduction number R0 is given by R : 00 0= ( ). The three endemic equi-
libria are: E R 1
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1 1 1
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0
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0
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0
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( ) −  (partial vaccinator, disease-endemic; 

see Appendix II for a definition of x6).
Details about the existence of the equilibrium points and their stability conditions appear in Appendix 

II, but we summarize the findings in this and the following paragraphs. The dependence of the equilibria 
on model parameters is generally intuitive. The pure vaccinator, disease-free equilibrium (1) is stable if 
the disease is not highly contagious and the vaccine is not very scary compared to the strength of the 
vaccinator group pressure (the average vaccine risk with immigration (see Appendix II) is less than the 
vaccinator group pressure). In contrast, the non-vaccinator, disease-free equilibrium ( 2) is stable when 
the disease cannot sustain its spread and non-vaccinator pressure is considerable. The partial vaccinator, 
disease-free equilibrium ( 3) is not stable whenever it exists, because in the absence of disease, social 
norms will always move vaccine coverage up or down from an intermediate vaccine coverage, hence the 
steady state is unstable.

The pure vaccinator, disease-endemic equilibrium ( 4) is stable if and only if vaccinator pressure is 
sufficiently large and the vaccine efficacy is not too large (otherwise, the disease would be eliminated). 
That is, under the appropriate vaccinator pressure, the vaccine can be used to mitigate or completely 
eliminate a disease depending on its efficacy. The non-vaccinator, disease-endemic equilibrium ( 5) is 
stable if and only if the non-vaccinator pressure is sufficiently large. Finally, the partial vaccinator, 
disease-endemic equilibrium ( 6) is stable under some highly specific technical conditions (see Appendix 
II).

The vaccine should be supported by a vaccinator social pressure larger than the average vaccine risk 
with immigration (see Appendix II). This was also found by Oraby et al.33, but for the rational decision 
model and a completely efficacious vaccine. However, in the current model, the average vaccine risk 
depends on the cognition of the parents and in many cases, the (perceived) vaccine risk is increas-
ing as the cognitive parameters move away from the rational decision model (Appendix IV, Figures 
A1-A6). Additionally, in the current model, incorporating vaccine efficacy as a parameter resulted in 
the emergence of a new equilibrium point (pure vaccinator, disease-endemic)33. This new equilibrium 
can be maintained if the average vaccine risk at the disease-endemic prevalence is less than the social 
pressure of vaccinators. Again, the vaccine risk depends on the cognitive parameters and in many cases 
it increases as the cognitive parameters move away from the rational decision model (see Appendix IV 
Figures A1-A6). If the vaccine is sufficiently efficacious, full vaccine coverage can eliminate the infection.

Simulation results.  Numerical simulations presented via parameter planes that show the various 
dynamical regimes of the model provide a clearer picture of the impact of introducing bounded cognitive 
processes. For baseline parameter values of the numerical simulation, we use a basic reproduction num-
ber R0 =  17, a birth/death rate of μ =  1/50 year−1, and a recovery rate of γ  =  365/22 year−1 from published 
estimates of pertussis25. According to the Centers for Disease Control and Prevention, approximately 1 
in 8 of children infected by pertussis suffers from pneumonia, 1 in 20 suffers from encephalitis, and 1 in 
1,500 dies55. We assume that only the severest disease outcomes was reported (so the events were mutu-
ally exclusive); then we take p1 =  1/8, p2 =  1/20, p3 =  1/1500 and p0 =  1 −  (p1 +  p2 +  p3). The diphtheria, 
tetanus, and pertussis acellular vaccine (DTaP) can cause side effects from mild reactions to acute 
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encephalopathy. No death has been proven from DTaP vaccination so far. It can, however, cause contin-
uous crying followed by full recovery for 1 in 1,000 vaccinated children, convulsions or shock followed 
by full recovery for 1 in 14,000, and acute encephalopathy for 0-10.5 in 1,000,000 55. We assume that 
q1 =  1/1000, q2 =  1/14000, q3 =  10.5/1000000 (the worst case) and q0 =  1 −  (q1 +  q2 +  q3). Since there is no 
documented objective measure of the quality of life of repercussions for the disease and vaccination, we 
assume that V0 =  .99, V1 =  .7, V2 =  .3, and V3 =  .1; whereas J0 =  .9, J1 =  .5, J2 =  .1, and J3 =  0. We choose 
a negligible ε of value 10−20. These parameter values are summarized in Appendix I, Table 1. The cogni-
tive parameters, αΘ, ηΘ, and λΘ, for Θ  =  V,N and c o= , , see Table 1 in Appendix I, are assigned 
different sets of values to showcase the different dynamical behaviors of the vaccination rates and inci-
dence.

Under the rational decision model, at baseline parameter values, there are three parameter regimes 
in the m −  e parameter value (Fig.  2(a)), meaning that three different types of dynamics can emerge 
depending on parameter values. A sufficiently costly vaccine (large m, as might apply at times of war, 
for example, when the vaccine cost and accessibility are large) will always result in zero vaccine cov-
erage. However, if the vaccine is less expensive, then two regions of bistability (regions II and III) are 
encountered, where the outcome can either be no vaccination or full vaccination in each one of them, 
depending on the initial conditions (Fig. 2(a)). The bistability emerges because social norms can drive 
vaccine coverage up or down, depending on whether vaccinators or non vaccinators are initially more 
numerous. Moreover, in the bistability region II, if vaccine efficacy is sufficiently small, then the disease 
can become endemic despite full vaccination, whereas if vaccine efficacy is sufficiently large (region III), 
then the disease can be eradicated in the presence of full vaccination (Fig. 2(a)). The cut-off point (M) in 
vaccine cost m that separates the region of no vaccination and the region of bistability (full or no vacci-
nation) depends on the amount of vaccinator pressure δV (Fig. 2(b)). At sufficiently large vaccine efficacy 
and sufficiently large initial acceptance of vaccine, the effect of larger costs can be offset by sufficiently 
large group pressure, resulting in disease eradication (Fig. 2(b)).

When the cognitive parameters αΘ, ηΘ, and λΘ, are changed such that the system moves from the 
rational decision model to the bounded rationality model (as depicted in Fig. 3; see explanation below), 
the model predictions change dramatically. This is visible upon a casual inspection of the parameter 
regimes for the bounded rational model case (Fig.  2(c)) versus the rational decision model case for a 
range of values of the vaccine cost m and efficacy e (Fig. 2(a)); we observe that the number of different 
possible dynamical behaviours has increased, and the boundaries between the different regions have 
become nonlinear (see also Figs. 2(d) and 4(e) for the bounded rational model). Hence, a wider range 
of population behaviours are possible, when individuals are subjected to bounded cognitive processes. 
The pure vaccinator, disease-free equilibrium is replaced by a region of limit cycles (region V in Fig. 2(c)), 
where vaccine coverage and the proportion of vaccinators in the population oscillate over time 
(Fig. 2(c) versus 2 (a), see also Fig. 2(d,e)). A stable region of partial vaccination (region III in Fig. 2(c)), 
which shares a bistability region (region II) with null vaccination, emerges as well. The region of full 
vaccination and endemic disease (region IV) shrinks. For another choice of cognitive parameters, the 
shape of the pure vaccinator, disease endemic stability region (region II in Fig. 4(e)) changes shape at a 
different vaccine cost. The vaccine may be fully accepted within a range of vaccine efficacy similar to that 
of DTaP vaccine (from 80% to 90%56) but at low cost of vaccination (see Fig. 2 (c) and 4(e)). The disease, 
however, cannot be eradicated because of insufficient vaccine efficacy. Introducing bounded cognitive 
processes in particular has, therefore, removed the possibility of disease eradication under voluntary 
vaccination, at least for the baseline parameter values (Appendix I Table 1).

Next, the relationship between the rational model and the bounded rational model is further explored, 
by determining what happens when the cognitive parameters αΘ, ηΘ, and λΘ, are changed gradually, 
starting from values corresponding to the rational model and moving to values corresponding to the 
bounded rational model. We plotted a series of parameter planes where all the cognitive parameters are 
fixed at unity, except for those which are being varied along the axes of the parameter planes across a 
range including the unitary values corresponding to the rational decision model (Fig. 3). In particular, 
stability regions of the αV–αN, λV,c–λN,c, and ηV–ηN planes are explored at vaccine cost m =  0 and vaccine 
efficacy e =  .95 (Fig.  3). In all of the figures, the non-vaccinator, disease-endemic equilibrium ( 5) is 
always stable, whatever was the group pressure, in contrast to the rational decision model in33 where it 
is stable in a limited region. The pure vaccinator, disease free equilibrium (1) appears as another stable 
equilibrium in a region containing the rational decision model, which is represented by the pair (1,1) in 
the parameter plane. That region depends on the amount of group pressure (Appendix IV for Figures 
A1, A2, and A3). In other words, given a fixed group pressure, shifting away enough from the pair (1,1) 
(the rational decision model) and into the bounded rational model, makes it impossible to achieve any 
vaccine acceptance. The size of that region is also dependent on the vaccine cost (see also Appendix IV 
for Figures A1, A2, and A3 for vaccine cost m =  0,.01, and .02). Similar conclusions follow when efficacy 
e =  .9 but then the pure vaccinator, disease endemic equilibrium ( 4) appears in lieu of 1 and so the 
disease cannot be eradicated at all (see Appendix IV for Figures A4, A5, and A6 when m =  0,.01, and 
.02). In general, introducing bounded rationality into the model makes it harder to eradicate the infec-
tion (compare the blue regions of endemic disease, which occur away from the rational (1,1) case, to the 
red regions containing (1,1) in Figures A1, A2, A4, A5), although there are exceptions (Figures A3 and 
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Figure 2.  Various dynamical behaviors of vaccine uptake emerge at different values of vaccine cost and 
efficacy in the rational decision model. (a,b) and the bounded-rationality model (c,d). e-m plane at 
δV =  0.02 of the rational decision model (a) and the bounded-rationality case (c,d) at cognitive parameters 
αV =  0.8271, αN =  0.9480, λV,o =  9.4515, λV,c =  1.7600, λN,o =  1.9011, λN,c =  1.7438, ηV =  0.2827, ηN =  0.5114. In 
(a) there are two bistability regions where the equilibrium points 1 and 5 are stable in region III, and the 
equilibrium points  4 and 5 are stable in region II. Besides, equilibrium point 5 is stable in region I and in 
an extremely narrow stripe between the two bistability regions II and III (bounded by e =  0.941159 and 
e =  0.941176). M =  .00975 is the cutoff vaccine cost in case δV =  0.02 in (a) (see also panel (b)). (b) A 
contour plot for values of M R

R
1 10

0
( )μ
μ γ+

( ) −  calculated at each pair of (e,m) in the rational decision model. 

The full vaccination equilibrium point  4 is stable in the regions where δV is larger than the value of 
M R

R
1 10

0
( )μ
μ γ+

( ) −  and equation (8) in Appendix II is valid, that is e <  0.941159. With deviation from the 

rational decision model, a different e—m plane emerges in (c). There, a bistability region (II) of the 
equilibrium points 5 and 6 transpires as well as other regions of stability for  4 in IV, 5 in I, and 6 in III. 
Limit cycles appear in region V. (d) e—δV plane of stability, at m =  0, in which the equilibrium point  4 is 
stable in region I and 6 in region II while limit cycles appear in region III. In both (c) and (d), the line 
between the regions where 6 is stable and the limit cycles is a supercritical Hopf bifurcation line whereas 
the rest of the lines are stability changing bifurcation lines. Limit cycles of vaccine coverage rate (e) and 
incidence (f) at δV =  0.02, m =  0, and e =  0.99. The rest of the parameters are κ =  1.69,c =  1.46,δN =  0.02 in all 
of the subpanels.
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Figure 3.  Deviations from the rational decision model influence the vaccine uptake levels. (a) αV—αN 
plane, (b) λV,c—λN,c plane with λV,o =  λV,c and λN,o =  λN,c, and (c) ηV—ηN plane at m =  0 and δV =  0.02. The 
equilibrium points 1 (pure vaccinator, disease-free) and 5 (no vaccinator, disease-endemic) are stable in 
the red region which includes the point (1,1)—corresponding to the rational decision model, given the 
values of the rest of the cognitive parameters equal to one–whereas in the blue region the only stable point 
is 5. The rest of the parameters are κ =  1.69, c =  1.46, e =  .95.
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Figure 4.  Vaccine acceptance rate and disease incidence depend on the initial vaccine coverage and its 
efficacy. Simulation of both vaccine coverage rate (a,c) and disease incidence (b,d) when initial vaccine 
coverage is 50% (a) and 99% (c) at vaccine efficacy e =  0.95 and cost m =  0 which lie in the extension of 
region III in subpanel (e) of the e—m plane of a bounded rational model. In (e) there are two bistability 
regions where the equilibrium points 1 and 5 are stable in region III, and the equilibrium points  4 and 5 
are stable in region II. Besides, equilibrium point 5 is stable in region I and in an extremely narrow stripe 
between the two bistability regions II and III. Compare subpanel (e) to Fig. 2(a). The lines in (e) are stability 
changing bifurcation lines. The rest of the parameters are κ =  1.69, c =  1.46, δV =  0.0725, δN =  0.02, 
αV =  0.9715, αN =  0.9379, λV,o =  6.9507, λV,c =  9.4554, λN,o =  5.8909, λN,c =  1.9230, ηV =  0.9882, ηN =  0.9362.
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A6). In the latter two figures the closer the value of ηV and/or ηN to zero, the more the denial of the 
adverse event, unless it is absolutely certain (has 100% likelihood to occur). That would make the value 
of the average perceived risk of vaccine ( 0 0( ) > , see Appendix II for definition) very small and so 
parents will accept the vaccine if there is a large initial proportion of vaccinators.

As noted above, under the bounded rationality model, in contrast to the rational decision model, 
increasing vaccine efficacy may lead to oscillations instead of eradication (see the e–m plane in Fig. 2(c) ver-
sus 2(a) and the e–δV plane in Fig. 2(d)). Moreover, within a range of vaccine efficacy similar to that of 
the DTaP, increasing vaccinator pressure can help in reaching full vaccine coverage, but it only reduces 
disease prevalence by a factor x e1 6( − )μ

μ γ+
 (which, here, is strictly less than 0012= .μ

μ γ+
) rather than 

leading to full elimination. On the other hand, at a different set of parameter values in which the vacci-
nator group pressure instead exceeds the non-vaccinator group pressure, it is sometimes impossible to 
achieve high level of vaccine acceptance if the size of vaccinator group was not initially large enough (see 
for example Fig. 4(a,b) when the initial vaccination rate is 50%). However, for a larger initial vaccinator 
group sizes, the disease may be eliminated for the same cognitive parameters (see for example Fig. 4(c,d) 
when the initial vaccination rate is 99%).

Discussion
Research in cognitive psychology shows that humans make conflicting decisions when the same problem 
is re-framed, not to mention the effect of other biases and fallacies on those decisions. Here, we introduce 
a model of vaccine decision-making that includes bounded rationality, social norms, vaccine efficacy 
and vaccine cost. In addition to social group pressure and the disease- specific parameters, the model 
includes three cognitive parameters for each group of vaccinators and non-vaccinators. The model gener-
alizes the model in33 by adding cognitive parameters and allowing vaccine efficacy to be less than perfect.

We find that richer dynamical behavior emerges from our model, in contrast to corresponding mod-
els that are closer to a pure “rational actor” model lacking bounded rationality and in which vaccine 
efficacy is 100% (33). Allowing vaccine efficacy to be less than 100% causes the appearance of a new 
equilibrium in which endemic disease with full vaccine acceptance becomes stable. It also transforms 
the possible vaccine coverage level to a range from anywhere from zero to full coverage. Moreover, 
generally speaking, introducing bounded rationality makes it more difficult to eliminate the infection 
under a non-mandatory vaccination policy. This echoes many previous findings that introducing indi-
vidual decision-making mechanisms could make it more difficult to eliminate an infection35,40,41,43,44,48. 
However, injunctive social norms can correct for the deleterious effects of cognitive processes on vaccine 
coverage. Combinations of cognitive parameters and group pressure can largely determine the vaccine 
uptake. Non-vaccinator group pressure, however, has almost no effect on the vaccination dynamics at 
some selected disease parameters. In addition, vaccine cost and efficacy have a significant effect on vac-
cine acceptance rates.

While full vaccine refusal is always a stable equilibrium in a rational decision model33,35, a bounded 
rationality model can change the parameter regime where it is stable. Bounded rationality also gives rise 
to stable limit cycles and partial vaccination levels. Parameter values close to those of a rational decision 
model in addition to high group pressure can lead to full vaccine acceptance if the initial size of vaccina-
tor group is large enough. Nonetheless, a very highly efficacious vaccine might be needed to eradicate the 
disease. Vaccine cost and accessibility can lead to low rates of vaccine acceptance if vaccinator pressure 
is not large enough.

The model introduced here has some challenges and limitations. First, the model has many cognitive 
parameters, which hinders their estimation with the currently available data on vaccinating behaviour for 
common paediatric infectious diseases. This also affects our understanding of the relative importance of 
social versus cognitive components in parental vaccination decisions. Our simulations, however, suggest 
that injunctive social norms can counteract the effect of (mis)perception of risks, high vaccination cost, 
and low vaccine efficacy. The model did not also include age structure to differentiate between contact 
rates between children and between adults57. Age structure could be important for certain research ques-
tions. Also, the model does not account for social network structure, and/or stochastic, small population 
processes that may emerge close to the eradication threshold due to unanticipated interactions between 
social structure, decision-making, and stochastic disease dynamics. Finally, previous experience with 
vaccination or infection influences individual decision-making but we have not included such effects 
here58. These and other effects could be best explored in future work using a individual-based network 
simulation model.

The role of omission bias in vaccine acceptance and its representation in mathematical models merits 
further investigation. Here, we tried to address omission bias by using different loss aversion parameters 
for omission and commission. However, this is a simplification of omission bias. It would be also inter-
esting to explore whether declining vaccination for the non-vaccinator group is considered an omission 
or, from their point of view, it is a “commission” of the right thing. This kind of argument follows from 
some early results finding that omission bias is not a driver of vaccine exemption59.

There has always been a need to understand how social and cognitive components affect parental 
decisions towards vaccination. Our results show how combinations of both sets of parameters—along 
with the vaccine efficacy, cost and the rates of vaccine acceptance at the beginning of the vaccination 
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campaign—can determine the fate of vaccine acceptance. Empirical validation of such models devel-
oped for specific paediatric infectious diseases could help health authorities identify vaccine programs 
that might be more prone to vaccine refusal in the future, and thus help authorities determine how to 
prioritize risk messaging in light of knowledge of how individuals can sometimes mis-perceive risks.

References
1.	 Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. Am. Econ. Rev. 93, 1449–1475 (2003).
2.	 Tversky, A. & Kahneman, D. Advances in prospect theory: Cumulative representation of uncertainty. J. Risk Uncertainty 5, 

297–323 (1992).
3.	 Gigerenzer, G. & Selten, R. [Rethinking rationality] Bounded rationality: The adaptive toolbox [Gigerenzer, G. & Selten, R. (eds.)] 

[1–11] (MIT Press, Cambridge, MA, 1999).
4.	 Simon, H. A. [Bounded rationality] The new Palgrave: Utility and probability [Eatwell, J., Milgate, M. & Newman, P. (eds.)] 

[15–18] (W. W. Norton, New York, 1987).
5.	 Simon, H. A. Theories of bounded rationality. Decision and Organization 1, 161–176 (1972).
6.	 Simon, H. A. Models of bounded rationality, Vol. 3: Empirically grounded economic reason (MIT press, Cambridge, MA, 1982).
7.	 Kahneman, D. & Tversky, A. Choices, values, and frames. Am. Psychol. 39, 341 (1984).
8.	 Whyte, G. Escalating commitment in individual and group decision making: A prospect theory approach. Organ. Behav. Hum. 

Dec. 54, 430–455 (1993).
9.	 Camerer, C. F. [Prospect theory in the wild: Evidence from the field] Advances in Behavioral Economics [Camerer, C. F., 

Loewenstein, G. & Rabin, M. (eds.)] [148–161] (Princeton University press, Princeton, NJ, 2004).
10.	 Fiegenbaum, A. Prospect theory and the risk-return association: An empirical examination in 85 industries. J. Econ. Behav. 

Organ. 14, 187–203 (1990).
11.	 Dhami, S. & Al-Nowaihi, A. Why do people pay taxes? Prospect theory versus expected utility theory. J. Econ. Behav. Organ. 64, 

171–192 (2007).
12.	 Treadwell, J. R. & Lenert, L. A. Health values and prospect theory. Med. Decis. Making 19, 344–352 (1999).
13.	 Latimer, A. E. et al. Promoting participation in physical activity using framed messages: An application of prospect theory. Brit. 

J. Health Psych. 13, 659–681 (2008).
14.	 Trepel, C., Fox, C. R. & Poldrack, R. A. Prospect theory on the brain? Toward a cognitive neuroscience of decision under risk. 

Cognitive Brain Res. 23, 34–50 (2005).
15.	 Levy, J. S. Prospect theory, rational choice, and international relations. Int. Stud. Quart. 41, 87–112 (1997).
16.	 Farnham, B. Avoiding Losses, Taking Risks: Prospect Theory and International Conflict (University of Michigan Press, Ann Arbor, 

MI, 1994).
17.	 Mercer, J. Prospect theory and political science. Annu. Rev. Polit. Sci. 8, 1–21 (2005).
18.	 Bloom, D. E., Canning, D. & Weston, M. The value of vaccination. World economics (Henley-on-Thames, England) 6, 15–39 

(2005).
19.	 Bloom, D. E. The value of vaccination. Hot Topics in Infection and Immunity in Children VII, 1–8 (2011).
20.	 Andre, F. et al. Vaccination greatly reduces disease, disability, death and inequity worldwide. B. World Health Organ. 86, 140–146 

(2008).
21.	 Brown, K. F. et al. Factors underlying parental decisions about combination childhood vaccinations including MMR: A systematic 

review. Vaccine 28, 4235–4248 (2010).
22.	 Smith, P. J. et al. Parental delay or refusal of vaccine doses, childhood vaccination coverage at 24 months of age, and the health 

belief model. Public Health Rep. 126 (Suppl 2) 135–146 (2011).
23.	 Bardenheier, B. et al. Are parental vaccine safety concerns associated with receipt of measles-mumps-rubella, diphtheria and 

tetanus toxoids with acellular pertussis, or hepatitis B vaccines by children? Arch. Pediat. Adol. Med. 158, 569 (2004).
24.	 Hershey, J. C., Asch, D. A., Thumasathit, T., Meszaros, J. & Waters, V. V. The roles of altruism, free riding, and bandwagoning in 

vaccination decisions. Organ. Behav. Hum. Dec. 59, 177–187 (1994).
25.	 Bauch, C. T. & Bhattacharyya, S. Evolutionary game theory and social learning can determine how vaccine scares unfold. PLoS 

Comput. Biol. 8, e1002452 (2012).
26.	 Gangarosa, E. J. et al. Impact of anti-vaccine movements on pertussis control: The untold story. Lancet 351, 356–361 (1998).
27.	 Sugerman, D. E. et al. Measles outbreak in a highly vaccinated population, San Diego, 2008: Role of the intentionally 

undervaccinated. Pediatrics 125, 747–755 (2010).
28.	 Meszaros, J. R. et al. Cognitive processes and the decisions of some parents to forego pertussis vaccination for their children. J. 

Clin. Epidemiol. 49, 697–703 (1996).
29.	 Serpell, L. & Green, J. Parental decision-making in childhood vaccination. Vaccine 24, 4041–4046 (2006).
30.	 Bond, L. & Nolan, T. Making sense of perceptions of risk of diseases and vaccinations: A qualitative study combining models of 

health beliefs, decision-making and risk perception. BMC Public Health 11, 943–956 (2011).
31.	 Poland, C. M. & Poland, G. A. Vaccine education spectrum disorder: The importance of incorporating psychological and 

cognitive models into vaccine education. Vaccine 29, 6145–6148 (2011).
32.	 Wu, B., Fu, F. & Wang, L. Imperfect vaccine aggravates the long-standing dilemma of voluntary vaccination. PloS ONE 6, e20577 

(2011).
33.	 Oraby, T., Thampi, V. & Bauch, C. T. The influence of social norms on the dynamics of vaccinating behaviour for paediatric 

infectious diseases. Proc. R. Soc. B: Behaviour 281, 20133172 (2014).
34.	 Chapman, G. B. & Coups, E. J. Predictors of influenza vaccine acceptance among healthy adults. Prev. Med. 29, 249–262 (1999).
35.	 Bauch, C. T. Imitation dynamics predict vaccinating behaviour. Proc. R. Soc. B: Biological Sciences 272, 1669–1675 (2005).
36.	 Bauch, C. T., Bhattacharyya, S. & Ball, R. F. Rapid emergence of free-riding behavior in new pediatric immunization programs. 

PloS ONE 5, e12594 (2010).
37.	 Reluga, T. C., Bauch, C. T. & Galvani, A. P. Evolving public perceptions and stability in vaccine uptake. Math. Biosci. 204, 

185–198 (2006).
38.	 Reluga, T. C. & Galvani, A. P. A general approach for population games with application to vaccination. Math. Biosci. 230, 67–78 

(2011).
39.	 Funk, S., Salathé, M. & Jansen, V. A. Modelling the influence of human behaviour on the spread of infectious diseases: A review. 

J. R. Soc. Interface 7, 1247–1256 (2010).
40.	 Brito, D. L., Sheshinski, E. & Intriligator, M. D. Externalities and compulsary vaccinations. J. Public Econ. 45, 69–90 (1991).
41.	 d’Onofrio, A., Manfredi, P. & Poletti, P. The interplay of public intervention and private choices in determining the outcome of 

vaccination programmes. PLoS ONE 7, e45653 (2012).
42.	 Fine, P. & Clarkson, J. A. Reflections on the efficacy of pertussis vaccines. Rev. Infect. Dis. 9, 866–883 (1987).
43.	 Tsutsui, Y., Benzion, U., Shahrabani, S. & Din, G. Y. A policy to promote influenza vaccination: a behavioral economic approach. 

Health policy 97, 238–249 (2010).



www.nature.com/scientificreports/

1 2Scientific Reports | 5:10724 | DOI: 10.1038/srep10724

44.	 Shahrabani, S., Gafni, A. & Ben-Zion, U. Low flu shot rates puzzle - some plausible behavioral explanations. Am. Econ. 52, 
66–72 (2008).

45.	 Zhang, H., Zhang, J., Li, P., Small, M. & Wang, B. Risk estimation of infectious diseases determines the effectiveness of the control 
strategy. Physica D: Nonlinear Phenomena 240, 943–948 (2011).

46.	 Zhang, H., Fu, F., Zhang, W. & Wang, B. Rational behavior is a ‘double-edged sword’ when considering voluntary vaccination. 
Physica A: Statistical Mechanics and its Applications 391, 4807–4815 (2012).

47.	 Poletti, P., Ajelli, M. & Merler, S. Risk perception and effectiveness of uncoordinated behavioral responses in an emerging 
epidemic. Math. Biosci. 238, 80–89 (2012).

48.	 Salathé, M. Bonhoeffer, S. The effect of opinion clustering on disease outbreaks J. R. Soc. Interface 5, 1505–1508 (2008).
49.	 Liò, P., Lucia, B., Nguyen, V. & Kitchovitch, S. [Risk perception, heuristics and epidemic spread] Modeling the Interplay Between 

Human Behavior and the Spread of Infectious Diseases [Piero, M. & d’Onofrio, A. (eds.)] [139–152] (Springer, 2013).
50.	 Fennema, H. & Wakker, P. P. Original and cumulative prospect theory: A discussion of empirical differences. J. Behav. Decis. 

Making 10, 53–64 (1997).
51.	 Lichtenstein, S., Slovic, P., Fischhoff, B., Layman, M. & Combs, B. Judged frequency of lethal events. J. Exp. Psychol.- Hum. L. 4, 

551 (1978).
52.	 Wu, G. & Gonzalez, R. Curvature of the probability weighting function. Manage. Sci. 42, 1676–1690 (1996).
53.	 Ritov, I. & Baron, J. Reluctance to vaccinate: Omission bias and ambiguity. J. Behav. Decis. Making 3, 263–277 (1990).
54.	 Sturm, L. A., Mays, R. M. & Zimet, G. D. Parental beliefs and decision making about child and adolescent immunization: From 

polio to sexually transmitted infections. J. Dev. Behav. Pediatr. 26, 441–452 (2005).
55.	 Centers for Disease Control and Prevention, Vaccines: Vac-Gen/Some Misconceptions - Risk from disease versus risk from 

vaccines. (2011) Available at: http://www.cdc.gov/vaccines/vac-gen/6mishome.htm. (Accessed: 15th March 2014)
56.	 Centers for Disease Control and Prevention, Pertussis frequently asked questions. (2013) Available at: http://www.cdc.gov/

pertussis/about/faqs.html. (Accessed: 15th March 2014)
57.	 Schenzle, D. An age-structured model of pre-and post-vaccination measles transmission Math. Med. Biol. 1, 169–191 (1984).
58.	 Wells, C. R. & Bauch, C. T. The impact of personal experiences with infection and vaccination on behaviour-incidence dynamics 

of seasonal influenza. Epidemics 4, 139–151 (2012).
59.	 Connolly, T. & Reb, J. Omission bias in vaccination decisions: Where’s the “omission”? Where’s the “bias”? Organ. Behav. Hum. 

Dec. 91, 186-202 (2003).

Author Contributions
T.O. and C.B. wrote the manuscript text and produced the figures. T.O. and C.B. reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Oraby, T. and Bauch, C. T. Bounded rationality alters the dynamics of 
paediatric immunization acceptance. Sci. Rep. 5, 10724; doi: 10.1038/srep10724 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.cdc.gov/vaccines/vac-gen/6mishome.htm
http://www.cdc.gov/pertussis/about/faqs.html
http://www.cdc.gov/pertussis/about/faqs.html
http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Bounded rationality alters the dynamics of paediatric immunization acceptance

	Methods

	Modeling Decision-Making via Prospect Theory. 
	Behavior-disease model. 

	Results

	Simulation results. 

	Discussion

	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Utility function and probability perception/weight.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Various dynamical behaviors of vaccine uptake emerge at different values of vaccine cost and efficacy in the rational decision model.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Deviations from the rational decision model influence the vaccine uptake levels.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Vaccine acceptance rate and disease incidence depend on the initial vaccine coverage and its efficacy.



 
    
       
          application/pdf
          
             
                Bounded rationality alters the dynamics of paediatric immunization acceptance
            
         
          
             
                srep ,  (2015). doi:10.1038/srep10724
            
         
          
             
                Tamer Oraby
                Chris T. Bauch
            
         
          doi:10.1038/srep10724
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep10724
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep10724
            
         
      
       
          
          
          
             
                doi:10.1038/srep10724
            
         
          
             
                srep ,  (2015). doi:10.1038/srep10724
            
         
          
          
      
       
       
          True
      
   




