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Abstract

Environmental statistics impact human behaviour. The more likely something is to occur, the 

faster and more accurate we are at detecting it. This probability effect has been studied in numerous 

forms. However, there is no clear account of the mechanisms driving the effect. While attention and 

decision-making has been implicated, these interpretations largely hinge on the task employed. Instead,

probability might have an earlier effect, one that is perceptual in nature. This thesis explores the idea 

that feature (e.g. orientation, color, etc.) probability shapes perception through selective tuning of the 

relevant neurons. Particularly, where orientation probability is involved, V1 neurons preferring the 

likely orientations are selectively sharpened. To test this hypothesis, a mixture of established tasks 

(Chapter 2) and novel behavioural paradigms (Chapters 3/4) were utilized. An electrophysiological 

examination specifically aimed at V1 was also carried out (Chapter 5). Neural modelling was then done

to link the behaviour to a concrete neural mechanism, which generated predictions that could be 

evaluated by additional behavioural data (Chapters 6/7). These diverse methods provide converging 

evidence for the tuning hypothesis of feature probability, and argue for an interdisciplinary approach in 

cognitive research.
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Chapter 1: Introduction

1.1. Probability Effects are Widespread

Objects that occur frequently, or that are likely to occur, are generally reacted to faster and/or 

more accurately, as compared to objects that are rarer. Such probability effects has been noted in a wide

variety of tasks ranging from simple detection of glyphs, i.e. letter and digits (Hon, Yap, & Jabar, 

20131; Laberge & Tweedy, 1964; Miller & Pachella, 1973) to more complex tasks like visual search 

(Rich et al., 2008; Wolfe et al., 2007). Probability effects are also easily and rapidly evoked (Hasher & 

Zacks, 1984). Because we are constantly inundated with environmental information, how an object’s 

implicit probability (or frequency of occurrence) affects behavioral outcomes and the mechanisms by 

which it does so is a fundamental cognitive process that we should try to get a grasp on.

Unfortunately, the mechanisms underlying probability effects are ill-understood. While some 

have attributed it to decisional criterion shifts (Menneer, Donnelly, Godwin, & Cave, 2010; Wolfe & 

Van Wert, 2010) or to attentional mechanisms (Hon & Tan, 2013), others posit a perceptual locus 

(Dykes & Pascal, 1981). Lack of agreement on what probability does is particularly disconcerting when

one considers how probability manipulations have been used for the express purpose of studying the 

effects of attention (e.g. Schwartz & Kirsner, 1982; MacLeod et al., 2002; Mounts & Tomaselli, 2005; 

Iarocci et al., 2006). Supporting the idea that probability effects are due to low-level perceptual changes

rather than due to attention are studies that utilise perceptual estimation tasks. By manipulating the 

orientation probability of spatial gratings, the precision with which participants make their orientation 

estimation can be modulated (Anderson, 2014; Jabar & Anderson, 20152). 

1Letter-based probability effects was something I researched when I was an undergraduate.
2Jabar & Anderson (2015) was comprised of the studies that were done for my Master’s thesis. While 
the findings are referenced in this PhD thesis, they are not part of the experimental chapters.
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1.2. Probability and V1

In Jabar & Anderson (2015), it was further observed that probability effects were particularly 

pronounced for the cardinal orientations, specifically the near-vertical tilts. Orientation anisotropy, 

referring to the phenomena where cardinal orientations are better perceived than oblique ones, is well-

studied (Appelle, 1972), and is likely due to differences in orientation tuning properties across the 

primary visual cortex (V1). 

V1 gets majority of its input from the lateral geniculate nucleus (LGN) in the thalamus, and 

represents the initial site of visual cortical processing. V1 is responsible for simple feature processing 

such as color and orientation (Johnson, Hawken & Shapley, 2008). Within any localized patch of V1 

cortex, orientation-selective neurons that are arranged in a columnar fashion based on their stimulus 

preference. Neurons that preferentially fire to 45 degree stimuli are found in proximity to neurons that 

prefer a 44 degree stimulus. V1 firing also tapers off gradually: A neuron that maximally prefers 45 

degrees will fire to a 44 degree stimulus, but to a smaller extent. It will fire even less to a 42 degree 

stimulus, and so on. A tuning curve is a useful illustration of how much a neuron will fire given a range

of possible stimuli. The more broadly-tuned a neuron is, the greater the range of possible stimuli it is 

responsive to, and the less selective it is. Figure 1.1 shows example tuning curves for a V1 population 

that does not have anisotropy.
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Figure 1.1. Depiction of gain vs. tuning. (a) The default tuning curves of a population of orientation-
selective neurons. Y-axis: firing rate, X-axis: orientation shown within the population’s receptive field. 
The bold line represents the tuning curve of a vertical-preferring neuron. (b) Tuning curves if the 
vertical-preferring neuron is selectively tuned. (c) Tuning curves after a baseline increase due to gain. 
Note that no orientation is particularly privileged in this instance.
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In actuality, there are more V1 neurons coding for cardinal (vertical/horizontal) than oblique 

orientations, with vertical-preferring neurons being more broadly tuned than the oblique and horizontal 

preferring neurons (Li, Peterson, & Freeman, 2003). If probability interacts with anisotropy, it is an 

indication that orientation probability effects might have a similar locus: Perhaps the frequency of 

occurrence of stimuli affects the tuning properties of the V1 orientation-selective neurons that prefer it. 

If the neural mechanism behind how probability impacts V1 activity can be mapped, it would 

provide some insight as to why probability effects are difficult to eliminate or counteract with 

instructions  (Lau & Huang, 2010) or reward (Wolfe et al., 2007). Changes in decision-making could 

simply be a downstream effect of earlier changes in perceptual tuning (Eckstein, Peterson, Pham, & 

Droll, 2009), rather than a cause of the probability effects.

1.3. Effects of Attention on V1

Can ‘attention’ provide an account for how orientation probability affects perception?

While the core notion of attention is that it is a selection process of competing representations (Allport, 

1993), this is a nebulous definition (Anderson, 2011), particularly since there are different types of 

‘attentional’ manipulations which may elicit different effects (Carrasco, 2011). Of importance is that 

while attentional manipulations might typically be thought of as involving the frontal and parietal 

cortices, these regions can modulate perceptual processing areas in a ‘top-down’ manner (e.g. Bressler 

et al., 2008). 

Attentional cuing demonstrably modulates V1 in both human functional imaging (e.g. 

Brefczynski & DeYoe, 1999; Gandhi, Heeger & Boynton, 1999; Tootell et al., 1998), and in monkey 

single-cell recording (e.g. Sharma et al., 2015;  Wang, Chen, Yan, Zhaoping, & Li, 2015) studies. The 

basis for these perceptual effects of attention are broadly of two types. While space-based attention is 
4



thought to involve a gain-based process (Figure 1.1c), feature-based attention is thought to additionally

involve a tuning-process (Figure 1.1b) (Martinez-Trujillo & Treue, 2004; Ling, Liu, & Carrasco, 2009; 

Carrasco, 2011).

For current purposes, ‘features’ refer to non-spatial dimensions such as orientation or color. 

Supporting this feature/spatial distinction is the direction of V1 modulation in fMRI studies: Cuing a 

space results in an increase of activation in V1 (Gandhi, Heeger, & Boynton, 1999), which would be 

line with a gain-based account, since neurons would fire more. Cuing orientations decreases V1 

activation (Kok et al., 2012), in line with a neural tuning/sharpening account, since neurons fire less.

1.4. Effects of Perceptual Learning on V1

While the attention literature offers some insights as to how perceptual tuning in V1 might 

occur, neural tuning can also be observed without the use of explicit ‘attentional’ cues. By showing 

monkeys the same oriented stimulus repeatedly, V1 neurons preferring that orientation are selectively 

‘sharpened’ in their tuning width (Ringach, Hawken, & Shapley, 1997; Schoups, Vogels, Qian, & 

Orban, 2001). While V1 primarily receives its input from the LGN, there exist inhibitory and excitatory

connections that allow for interactions local to the visual cortex (Tsumoto, Eckart, & Creutzfeldt, 1979;

Sillito, Kemp, Milson, & Berardi, 1980; Ahmed, Anderson, Douglas, Martin, & Nelson, 1994; Sato et 

al., 2016). In contrast to the idea that V1 is modulated ‘top-down’ by the fronto-parietal cortices (e.g. 

Bressler et al., 2008), mechanistic accounts of orientation training posit that these local cortical circuits 

are responsible for differences in tuning (Carandini & Ringach, 1997; Teich & Qian, 2003). 

Given that probability-effects have also been suggested to be experience-dependent rather than 

due to top-down influence (Lau & Huang, 2010), and that a ‘trained’ stimulus is axiomatically an 
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extremely probable stimulus, orientation probability effects could operate in a manner similar to 

orientation training in monkeys.

 

1.5. Event-related potentials and feedback

Is it possible to distinguish between V1 tuning due to top-down attention, from V1 tuning due to

a more bottom-up, experience-dependent process? One method is to look at the time-course of when 

the V1 modulation occurs. Neural firing creates an electrical potential which is conducted through the 

brain matter, skull and scalp. While electroencephalography (EEG) offers great temporal resolution, 

spatial resolution is lacking. Because measurements are made on the scalp, inferences have to be made 

about how shape/volume of the head distorts these electrical potentials. Because event-related 

potentials (ERPs) are a particularly valuable way to look at perception and attention (Woodman, 2010), 

there are studies on the cortical sources of these potentials that we can leverage on. 

C1 is an early ERP component that has been source localized to the banks of the calcarine 

sulcus, where V1 is located (Di Russo, Martínez, Sereno, Pitzalis, & Hillyard, 2002). This component 

is modulated by low-level stimulus characteristics (brightness, eccentricity, etc.), and occurs too early 

for significant top-down trial-specific ‘attentional’ modulation, unlike the P1, a later visual ERP (Clark 

& Hillyard, 1996; Di Russo, Martinez, & Hillyard, 2003). These studies also source-localized P1 to the 

extrastriate cortex rather than to the striate cortex. While Chapter 5 goes into more detail, the 

hypothesis we can derive from these ERP studies is that while experience-dependent tuning should 

cause sharpening in V1 and hence a decrease in C1 amplitudes (e.g. Pourtois, Rauss, Vuilleumier, & 

Schwartz, 2008), top-down attention to a feature would likely feedback via the extrastriate cortex, 

causing an increase in P1 amplitudes (e.g. Zhang & Luck, 2009).
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1.6. Thesis Outline

Through converging behavioural, electrophysiological and computational methodologies, this 

thesis explores the hypothesis that feature probability (e.g. orientation or color probability) can result in

an experience-dependent tuning of neurons involved in perceptual processing. Since there is 

information to be gained from ruling out competing hypotheses, the behavioural experiments in 

Chapters 2-4 pitted orientation probability against manipulations with better understood underlying 

mechanisms. Chapter 2 used an orientation probability manipulation concurrently with a traditional 

‘attentional’ manipulation: spatial exogenous cuing/ peripheral cuing. While the two manipulations 

created similar effects, these effects were non-interactive, suggesting that separate mechanisms are 

involved. Chapters 3 contrasted orientation probability against spatial probability in perceptual 

estimation tasks, with the main finding that only orientation probability affected perceptual precision. 

This idea was expanded in 2-alternative forced choice (2AFC) tasks in Chapter 4, which demonstrated 

clear differences between feature (orientation/color) probability and spatial probability both in when the

effects occur and what the effects are. These chapters suggest that the mechanisms involved with 

feature probabilities are necessarily distinct from those involved in spatial manipulations, such as 

neural gain (Carrasco, 2011; also see Figure 1.1c for an illustration).

With alternative mechanisms ruled out, Chapters 5 and 6 sought to provide evidence for the 

tuning hypothesis. Chapter 5 introduced an electrophysiological investigation to verify that early V1 

activity can be modulated by feature probability. The direction of the modulation was also consistent 

with the tuning hypothesis, but inconsistent with results looking at the same components with 

‘attentional’ manipulations. Chapter 6 used computational modelling to bridge between the 

neurophysiological and behavioural data. Not only is it demonstrated that probability effects can be 

produced with simple recurrent cortical circuits within V1 without additional assumptions on the role 
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of ‘attention’, but it is also demonstrated that this perceptual model accurately predicts new behavioral 

effects. Further demonstrating that probability effects can develop passively, Chapter 7 showed that 

probability effects develop without the need to attend to the relevant feature.

While varying in their approach, all the studies presented in this thesis support the tuning 

hypothesis. One important implication is that probability mechanisms can be independent of 

mechanisms involved in ‘attention’, and likely have distinct neural signatures as well, depending on 

how ‘attention’ is understood. For example, although both effects look similar on the surface, 

distinctions can be drawn between ‘top-down’ attention and ‘bottom-up’ expectations (Summerfield & 

Egner, 2009), and we should not equate one with the other. Chapter 2 replicates and contrasts the 

effects from two separate past studies. It will also directly highlight why it is more fruitful to think 

about the neural mechanisms involved than to have a semantic argument about whether a manipulation 

is ‘attentional’ or not.
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Chapter 2: Contrasting Orientation Probability and Spatial Exogenous Cuing3

2.1. Introduction

Probable stimuli are detected faster and more accurately than non-probable stimuli. These 

behavioural outcomes of probability manipulations resemble those of typical ‘attentional’ 

manipulation. With exogenous spatial cuing (e.g. Posner & Cohen, 1984), cued targets are reacted to 

more quickly and are reported more accurately than non-cued targets. As such, probability and spatial 

cuing might be suspected to reflect a common ‘attentional‘ locus (e.g. Hon & Tan, 2013). However, 

that might not say much about the actual mechanisms involved as ‘attention’ refers to a class of effects, 

not a single unitary construct (Anderson, 2011).

While attentional cues and probability biases both result in response facilitation, there are 

differences. For example, Wyart, Nobre, & Summerfield (2012) and Cheadle, Egner, Wyart, Wu, & 

Summerfield (2015) showed that they could distinguish probability-cuing of target identity from trial-

by-trial attentional cuing when using a reverse correlation procedure. One possibly important 

methodological detail is that in these studies the probability information was explicitly provided to 

participants, as opposed to previous orientation probability experiments (e.g. Anderson, 2014; Jabar & 

Anderson, 2015) where participants were naive to the manipulation and remained so throughout the 

experiment, as verified by post-experiment questionnaires. It could be that on-line, implicit probability 

learning leads to faster and more precise estimates of the orientation of probable stimuli by the same 

mechanisms as spatial cuing (Anderson & Druker, 2013), but that additional and distinct mechanisms 

contribute to behavioral benefits when information is explicitly provided.

3 A version of this chapter has been published as Jabar, S. B. & Anderson, B. (2017). Orientation 
probability and spatial exogenous cuing improve perceptual precision and response speed by different 
mechanisms. Frontiers in psychology, 8. https://doi.org/10.3389/fpsyg.2017.00183 
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On the other hand, it could also be the case that while the effects of probability and cuing are 

similar, they arise due to different mechanisms. What might these mechanisms be? In Chapter 1, it was 

hypothesized that exposure to orientation probability results in neural tuning, i.e., changes in the range 

of orientations to which a neuron responds (refer to Figure 1.1). Tuning changes occur when features 

are cued (Çukur, Nishimoto, Huth, & Gallant, 2013; David, Hayden, Mazer, & Gallant, 2008; Ling, 

Jehee, & Pestilli, 2015; Paltoglou & Neri, 2012). Tuning changes also occur when there is no explicit 

cue. Ringach, Hawken & Shapley (1997) and Schoups et al. (2001) showed that when monkeys receive

orientation training, the tuning width of V1 neurons selective for the trained orientations are 

‘sharpened’. This is consistent with the suggestion that learnt likelihoods are reflected in the early 

phase of sensory processing (Summerfield & Egner, 2009).

Although V1 neural responses to the subsequent target are also modulated by exogenous spatial 

cues (Wang, Chen, Yan, Zhaoping, & Li, 2015), spatial manipulations are thought to recruit a gain 

rather than a tuning mechanism (Carrasco, 2011; Ling, Liu, & Carrasco, 2009; Figure 1.1). Spatial 

manipulations are necessarily non-selective for features. Unlike with orientation probability (Ringach, 

Hawken & Shapley, 1997) or feature-based cues (Martinez-Trujillo & Treue, 2004) where the feature-

relevant neurons are facilitated, spatial cues provide no information about the features of the upcoming 

target stimuli.

Concurrently examining the effects of orientation probability and spatial exogenous cuing 

within a single perceptual estimation task would provide us with information as to the possible 

mechanisms involved. The current study therefore combined the designs of Anderson (2014) and 

Anderson & Druker (2013). If the two manipulations interact, as is the case with attentional and 

memory manipulations (Haskell & Anderson, 2015; Liu & Becker, 2013), they likely share the same 
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mechanism. If they create additive, independent effects (Sternberg, 1969), that provides support for the 

idea that underlying mechanisms of orientation probability and spatial exogenous cuing are separable.

2.2. Experiment 2.1: Methods

Participants

For all the studies reported in this thesis, participants were recruited from the University of 

Waterloo, approved by the University's Office of Research Ethics. Each participant only took part in 

one experiment. These participants took part in exchange for course credits, unless otherwise specified 

(e.g. Chapter 5).

In this study twenty participants (median age = 19 years) were recruited (16 females, 4 males), 

in exchange for course credits. Nineteen reported themselves right-handed. All participants had normal 

or corrected-to-normal vision.

Stimuli

Gabors, oriented grayscale sine-wave gratings with a circular Gaussian mask (Figure 2.1a), 

were used as the target stimuli in this experiment4. These Gabors were shown at 50% maximum 

contrast with an average measured luminance of 39cd/m2. The Gabors had a spatial frequency of 4 

cycles per degree of visual angle, and were presented on a gray background with a similar luminance of

40cd/m2.  When viewed from a distance of 60cm, the Gabors subtended approximately 4 degrees of 

visual angle both vertically and horizontally. Gabors appeared either left or right of the black fixation 

cross, with a distance of 4 degrees from the center of the cross to the center of the Gabor. Lines, used as

feedback and for participants to report their estimations, had a length of 4 visual degrees and always 

4 Experiments in this thesis were programmed in Python (version 2), using the PsychoPy library 
(Peirce, 2008), on a Linux system. Luminance was measured using a ColorCAL MKII colorimeter. All 
the programming and data analyses were done by me.
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occurred in the same location as the Gabor for that trial. Response lines always started with a  

horizontal orientation.

Gabors were equally likely to appear at each location. Only one Gabor was presented on each 

trial. Collapsed across these two locations, all orientations were equally likely. The critical 

manipulation was the occurrence-rate of the  probability-location conjunctions. Half the participants 

saw the conjunction depicted in Figure 2.1b: When a Gabor appeared on their left, its orientation was 

more likely to be left-tilting, and this was reversed on the right. Tilts were uniformly distributed across 

each quadrant. High-probability orientations accounted for 80% of the trials. The lines in Figure 2.1b 

depict the distribution observed by the first participant. The location-orientation conjunctions were 

counterbalanced across participants. The use of color in the figures is illustrative, blue is used for for 

high-probability trials and plots and red for low-probability. This color scheme is consistent across all 

experiments in this thesis.

Probability distributions were maintained throughout the experiment. For every set of 20 trials, 

there were 8 left-tilting Gabors on the left, 8 right-tilting Gabor on the right, etc. Participants were not 

informed about these probability distributions. Practice trials had uniformly distributed orientations. 

Spatial exogenous cuing was done by having a white (72cd/m2) box surround the Gabor location. These

cues were uninformative (50% congruent with Gabor location, 50% incongruent), and there was always

one cue on each trial. A gamma-corrected CRT monitor that refreshed at 89Hz was used, and stimulus 

timings were programmed as numbers of frames (mean refresh = 11.27ms, SD = 0.07ms).
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Figure 2.1. Experiment paradigm. a) Participants fixated onscreen for 500ms. The left or right location 
was spatially cued for 60ms, then a Gabor appeared in one of the two locations. The (uninformative) 
cue and Gabor offset following an additional 60ms. After a delay of 500ms, a response line appeared 
for participants to make their estimations. b) Gabor orientations were manipulated based on location. 
For example, when the Gabor appeared on the left, it was more likely (80%) to be left-tilting. This was 
reversed on the right. The location-orientation conjunction was counterbalanced across participants.
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Auditory feedback was given after each response to maintain motivation. A high pitched sound 

indicated an error of less than 12 degrees. A lower pitch indicated an error greater than 12 degrees. 

Participants were not informed of the exact error threshold.

Procedure

Prior to the task, participants were instructed to make their estimations of the Gabor orientations

as accurately as possible. They were not told that they needed to be fast. Responses were made with a 

QWERTY keyboard using their dominant hand. Participants were also instructed to fixate on the 

central fixation symbol at the start of each trial. This fixation phase lasted 500ms. A spatial cue then 

appeared at either the left or right location for approximately 60ms (5 screen refreshes), after which a 

Gabor appeared. The cue and the Gabor disappeared together approximately 60ms later (again 5 

frames). After a delay of 500ms a response line appeared. Participants made their orientation 

estimations by rotating this line counter-clockwise or clockwise by pressing “Z” or “C” on the 

keyboard. This rotation was at a maximum of 1 angular degree per frame refresh of the monitor. 

Participants pressed the “X” key to confirm their estimations. The auditory feedback was then given. 

There were 40 practice trials where a white feedback line with the actual orientation was displayed 

after the participant’s response. For the main 400 trials, visual feedback was not given. The task was 

separated into two blocks, with a break in-between. A post-experiment open-ended questionnaire was 

given to each participant that probed with increasing specificity whether they had been aware of or 

could report the probability by location manipulation.

Post-experiment Questionnaire

The questionnaire consisting of the following four open-ended questions:

1. Did anything about the experimental task stand out to you?
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2. Please describe any strategies you may have used.

3. Did you feel that you perceived some stimuli better or differently than others, or in certain 
cases? Did you notice any change over time in your experience?

4. Do you think that some orientations are more likely at certain times? If yes, please elaborate.

Analysis

All analyses, unless otherwise stated (e.g. Chapter 5), were done using the R statistical software

package. Bayesian inference testing was conducted using the BayesFactor R package (Morey, Rouder, 

& Jamil, 2015). Initiation time (IT) was taken as the time from the appearance of the response line to 

when the  participants’ first adjusted the orientation of response line. This measure was used because it 

has proven in the past to be robust (Jabar & Anderson, 2015), and since it is uncontaminated by the 

amount of movement required to report the orientation that is a function of the angle of the stimulus. 

Vacillations, the number of times that participants changed directions when generating their reports, 

were also analyzed. Vacillations might be linked to the confidence of the decision, which could be post-

decisional (e.g. Hilgenstock, Weiss, & Witte, 2014), and is not tightly coupled to perceptual precision 

(Jabar & Anderson, 2015; Samaha, Barrett, Sheldon, LaRocque, & Postle, 2016).

Angular error was measured as the difference (in degrees) between what was presented and 

what was estimated. The possible range of angular errors occupied an axial (half-circular) space 

ranging from -90 (anti-clockwise error) to +89 degrees (clockwise error), after which the report wraps 

back as an an error of -90 degrees. The median of the absolute magnitude of these errors is the primary 

dependent variable (see Gorard, 2005; Prinzmetal, Amiri, Allen, & Edwards, 1998).

The kurtosis of the (signed) angular error distribution was also looked at. The kurtosis of a 

distribution is a function of the fourth moment of the data (DeCarlo, 1997). By definition, normal 
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distributions have zero excess5 kurtosis. In previous studies, orientation probability affected kurtosis, 

leading to non-normal error distributions (see Anderson, 2014; Jabar & Anderson, 2015).  Higher 

probability orientations shift the weight from the ‘shoulders’ of the distribution to the ‘tails’ and/or the 

‘peak’ of the distribution. This results in a higher computed kurtosis (Figure 2.2). Changes in kurtosis 

therefore reflect changes in the shape of the error distribution, with different kurtoses suggestive of 

different types of perceptual errors. For example, if an effect only works to reduce the number of small 

errors, we should see the shoulders move into the peaks, while the tails (large errors) might stay 

relatively intact. This should reduce both median absolute error and increase kurtosis. However, if an 

effect acts uniformly across the whole range of errors, we expect a reduction in the median absolute 

angular error without a change in the ‘shape’ (kurtosis) of the distribution.

5 Mathematically,  ,

where n is the number of samples in the distribution, Xi are the individual observations, and X is the 
sample mean (DeCarlo, 1997). Because normal (Gaussian) distributions always have a kurtosis of 
three, excess kurtosis is taken as kurtosis – 3. This thesis uses the excess measure.
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Figure 2.2. Kurtosis as a description of the shape of a distribution. The two generated error 
distributions have the same median absolute value (10.8 degrees) while having significantly different 
excess kurtoses (darker curve = 1.85; lighter (normal) curve = 0.0). Note how the distribution with the 
increased kurtosis has a higher peak, narrower shoulders, and broader tails.
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2.3. Experiment 2.1: Results

Data from one participant was removed because the participant failed to respond to most trials. 

For the remaining nineteen participants, two-way repeated measure ANOVAs were computed for 

median angular error, angular error kurtosis, mean vacillations, and median ITs. Across the thesis, alpha

cut-offs were taken at p=.05. A summary of the raw results are shown in Table 2.1.
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Table 2.1. Summary of Means

19

Spatial Cuing
Congruent Incongruent

Orientation Probability High: 80% Low: 20% High: 80% Low: 20%

Vacillations 0.093 (0.071) 0.105 (0.078) 0.088 (0.073) 0.178 (0.091)
Initiation Time (ms) 189 (116) 243 (120) 216 (127) 278 (125)

Median Angular Error (deg) 8.02 (2.49) 8.74 (2.69) 8.63 (2.09) 9.53 (3.00)
Kurtosis 0.84 (1.25) 1.61 (1.96)-0.08 (0.72) -0.18 (1.01)

Note. Values given are means across participants (± 1 SD)



Vacillations and initiation times

There was a significant main effect of orientation probability on vacillations (F(1,18) = 9.73, 

MSE < 0.01, p = .006). Lower probability led to more vacillations. There was also a significant main 

effect of spatial cuing (F(1,18) = 13.19, MSE < 0.01, p = .002). Invalid spatial cues led to more 

vacillations. A significant interaction effect (see Figure 2.3) was also noted (F(1,18) = 21.48, MSE < 

0.01, p = .001). Post-hoc tests suggested no effect of spatial cuing on vacillations for high probability 

orientations (t(18) = 0.64, p = .532), but there was one with low-probability orientations (t(18) = 4.70, 

p < .001). Chiefly, congruently cued trials (M = 0.11) had less vacillations than incongruent ones (M = 

0.18).
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Figure 2.3. Effects on vacillations (change in the direction of motion) as a function of spatial cuing (x-
axis) and orientation probability (blue = high-probability, red = low-probability).
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 A significant main effect of spatial cuing on IT, (F(1,18) = 19.62, MSE = 938, p < .001), a 

significant main effect of orientation probability (F(1,18) = 73.48, MSE = 855, p < .001), and no 

interaction (F(1,18) = 0.6, MSE = 578, p = .433) was observed (Figure 2.4). There was no effect of 

cuing on the size of the orientation probability effect (t(18) = 0.80, p = .433). Bayesian hypothesis 

testing returned a Bayes Factor (BF) of 0.32 (±0.01%), which is moderate evidence in favour of the 

null hypothesis that the effects of spatial cuing and stimulus probability are independent. The same 

trends remained even if trials where participants had vacillated in making their responses were 

removed.
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Figure 2.4. Initiation time (ms) as a function of spatial cuing and orientation probability (blue = high-
probability, red = low-probability).
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Median angular errors and kurtosis

The trends are identical for angular errors (Figure 2.5b). There was a significant main effect of 

spatial cuing on angular precision, (F(1,18) = 5.2, MSE = 1.8, p = .035), a significant main effect of 

orientation probability (F(1,18) = 4.9, MSE = 2.5, p = .039), and no significant interaction (F(1,18) = 

0.1, MSE = 1.5, p = .744). As before, there was no effect of cuing on the size of the orientation 

probability effect (t(18) = 0.33, p = .744), with a corresponding BF of 0.25 (±0.02%). This is moderate 

evidence in favour of the null hypothesis. In short, while both spatial cuing and orientation probability 

significantly impacted ITs and perceptual precision, these effects were strictly additive.

For kurtosis, there was a significant main effect of orientation probability (F(1,18) = 19.9, MSE 

= 1.7, p < .001) without an effect for spatial cuing (F(1,18) = 0.3, MSE = 1.6, p = .260), nor a 

significant interaction effect (F(1,18) = 2.2, MSE = 1.6, p = .155). Trials that were spatially cued 

congruent and incongruent to the Gabor location were compared separately for each probability 

condition, with Bayesian testing again revealing evidence for the null hypothesis (high-probability BF 

= 0.60 (±1%); low-probability BF = 0.25 (±2%) ). In contrast, high and low-probability trials were 

compared separately for both congruent and incongruently cued trials, (congruent BF = 7.0 (±1%); 

incongruent BF = 15.4 (±1%) ): Strong evidence in favour of the alternative hypothesis. These results 

suggest that while orientation probability causes a change in the shape (kurtosis) of the error 

distributions, spatial cuing does not.

One potential issue is that there were four times as many high probability trials as there were 

low-probability ones. As with previous studies (e.g. Jabar & Anderson, 2015), sub-sampling and 

bootstrapping with matched numbers of trials was conducted, yet the kurtosis effects remained (ps < .

05). Kurtosis effects by orientation probability were not an artifact of an uneven number of trials.
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Figure 2.5. Measurements of perceptual precision. a) Sample distribution of signed angular errors for 
one participant. Left plot: Congruently- cued locations. Right plot: Incongruently-cued locations. b) 
Median angular error (degrees) as a function of spatial cuing (x-axis) and orientation probability. c) 
Kurtosis as a function of spatial cuing (x-axis) and orientation probability. (Blue = high-probability, red
= low-probability).

25



Post-experiment questionnaire

For the post-experiment questionnaire, no participant reported that probability was being 

manipulated, even when directly asked “Do you think that some orientations are more likely at certain 

times? If yes, please elaborate.” This was the same as our previous experiments using these 

probabilities for orientation estimation tasks. Some participants volunteered that they found the task 

more difficult when ‘incorrectly’ cued.

2.4. Experiment 2.1: Discussion

Probability and spatial cuing manipulations generally result in similar behavioural effects, even 

within orientation estimation tasks: Speed and accuracy are facilitated (Anderson, 2014; Jabar & 

Anderson, 2015; Anderson & Druker, 2013). As both these effects resemble what might traditionally be

labelled as ‘attentional’, one could surmise a common mechanism.

 Both orientation probability and spatial cuing were conjointly manipulated within a single 

perceptual estimation task. Effects from previous reports where either one or the other manipulation 

was done were replicated. Both manipulations improved initiation times and perceptual precision. 

However, the manipulations act independently: There were additive effects in both initiation times and 

perceptual precision. If these two manipulations share the same ‘attentional’ mechanism, one would 

expect only high-probability orientations in the cued space to benefit. Instead, the size of the 

orientation probability effect was unaffected by the spatial cue. Further, spatial cuing did not affect the 

shape (kurtosis) of the angular error distribution while orientation probability did (and as has been 

shown previously Anderson, 2014; Jabar & Anderson, 2015). In addition, a report that predated our 

discovery of kurtosis effects (Anderson & Druker, 2013) had used spatial cues. Although that study did 

26



not look at kurtosis, a simple reanalysis of that data (not reported here) suggests that spatial cuing alone

does not affect kurtosis. This is consistent with the findings from Experiment 2.1.

Had the the same perceptual mechanisms been invoked by both spatial cuing and orientation 

probability, there should have been common effects on error distribution shape. Instead the results 

suggest that spatial cuing and orientation probability affect perceptual precision and speed of response 

via different mechanisms. This is concordant with the argument made in the introduction, that while 

orientation probability affects precision through selectivity tuning neurons preferring the probable 

orientations, exogenous spatial cuing recruits a non-selective gain process. This gain process might 

increase apparent contrast either by increasing the input baseline of neural responses (Cutrone, Heeger, 

& Carrasco, 2014) or by speeding up information accrual (Carrasco, Giordano, & McElree, 2004; 

Carrasco & McElree, 2001).

If the two cue-types modulate perceptual precision through separate perceptual mechanisms, 

how can we understand the interaction on vacillations? It might be important to note that there could be

multiple processing stages (Sternberg, 1969) involved in perceptual discrimination (e.g. Sun & Landy, 

2016), and what we might be observing are additive effects of exogenous spatial cuing and orientation 

probability in the stimulus processing stage, but interactions in the downstream response or decision-

making stage. If vacillations are indicative of the confidence associated with the decision-making 

process (e.g. Petrusic & Baranski, 2009), then they are not necessarily tied to the quality of perceptual 

processing. Precision-based probability effects were seen even across trials equated for self-reported 

confidence (Jabar & Anderson, 2015). Perhaps in the congruently-cued case, participants were 

explicitly expecting targets in the ‘cued’ location, which reduced the impact that probability had on 

their confidence? It could be that repeats in orientation are driving confidence more than probability 
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per se. It is important that future studies seeking to understand the differences between the two 

mechanisms not simply equate perception with detection, since the act of decision-making involves 

additional factors.

If orientation probability effects are distinct from other attentional manipulations, should they 

still be called ‘attentional’? If attention is understood as a class of effects (Anderson, 2011), then that 

label still applies. Where confusion arises is when attention is understood as a general causal 

mechanism. Orientation probability mechanisms are distinct from spatial exogenous cuing 

mechanisms. They lead to independent effects, and we suggest that this is due to orientation probability

causing neural tuning differences. Whether that also applies for other attentional manipulations is an 

open question. It is worth keeping in mind that effects that look behaviorally similar are not necessarily

indicative of common neural and psychological mechanisms.

Still, orientation probability differs from spatial cuing across multiple dimensions. The latter is 

explicit and occurs trial-by-trial, whereas the former is implicit and necessarily has to be learnt via an 

accumulation of experience. The information they provide is also different: One pertains to spatial 

information, while the other pertains to feature-based information. If instead, feature probability was 

contrasted with spatial probability, would there be dissociable behavioural effects? Since distinctions 

have been drawn between spatial and feature-based attention (Carrasco, 2011), a hypothesis is that this 

distinction might hold true for probability as well, and this was explored in Chapter 3.
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Chapter 3: Feature and Spatial Probabilities are not Equivalent6

3.1. Introduction

Chapter 2 demonstrated that probability effects can be independent of attentional mechanisms. 

If probability effects are simply due to participants ‘attending’ to the probable object, we might expect 

that when they learn about the probability of a target, all aspects of their perceptions and judgments 

regarding that target are affected similarly. For example, one should get better at both perceiving the 

orientation of the probable object, and at spatially locating that object. However, one common 

dissociation in attentional paradigms is between spatial and feature-based attention (Carrasco, 2011; 

Fink, Dolan, Halligan, Marshall, & Frith, 1997; Ling et al., 2015; Yantis & Serences, 2003), such as 

having different time courses (Liu, Stevens, & Carrasco, 2007). Given the dissociation between feature 

and spatial-based attention, and that feature probability and spatial attention are seemingly independent,

one could extend the argument and hypothesize that feature and spatial-based probability effects should

also be distinct.

 

On the surface, performance benefits from manipulations of spatial probability mirror that of 

orientation probability. When the probability that a target will appear at a particular location is adjusted,

reaction times change (Gekas, Seitz, & Seriès, 2015; Geng & Behrmann, 2005; Vincent, 2011; Walthew

& Gilchrist, 2006). Jiang, Sha, & Remington (2015) used a T-among-L search display with the target 

appearing 3 times more likely in one particular quadrant. The targets in the probable location were 

detected significantly faster. Spatial probability effects are also obtainable when the probability 

distribution is made more complex, and varies across space continuously (Druker & Anderson, 2010).  

6 A version of this chapter is published as Jabar, S. B. & Anderson, B. (2017). Not all probabilities are 
equivalent: Evidence from orientation versus spatial probability learning. Journal of Experimental 
Psychology. Human Perception and Performance, 43, 853-867. https://doi.org/10.1037/xhp0000354 
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However, while the hypothesis for orientation probability is that it affects neural tuning, spatial 

manipulations have been suggested to be gain-based (Carrasco, 2011). If this is true, orientation and 

spatial probability might lead to dissociable outcomes, since it has been suggested that optimal tuning 

functions of sensory neurons are context and environmental-specific rather than being universal (e.g. 

Dean, Harper, & McAlpine, 2005; Hosoya, Baccus, & Meister, 2005), and therefore that adaptive-

tuning (e.g. Figure 1.1b) is required for optimal performance of the sensory system (Yaeli & Meir, 

2010). If feature probability affects V1 tuning, then it potentially explains why orientation precision 

could be improved by orientation probability (Anderson, 2014;  Jabar & Anderson, 2015): The 

probable (trained) orientations are simply better perceptually encoded, due to the relevant neurons now 

being more optimally tuned (Summerfield & Egner, 2009). By contrast, an additive gain without 

associated tuning (e.g. Figure 1.1c) might not lead to optimal perceptual encoding since the signal-to-

noise ratio remains constant. If spatial probability is gain-based, orientation precision should remain 

unaffected across high and low-probability locales. However, the ability to detect target occurrences 

might improve, since average firing of the neural population would be increased. While spatial 

exogenous cuing apparently also increases orientation precision, this might be because the presence of 

an explicit cue increased V1 firing of neurons selective to the space prior to the target onset (Wang et 

al., 2015).

  To reiterate, the crux of this chapter is to understand how manipulations of spatial and 

orientation probabilities affect their joint reporting, measured by both speed and accuracy. Experiment 

3.1 begins by testing if previous findings that orientation probability increases orientation precision are 

robust to the change in procedure that required each participant to report location and orientation on 

every trial, and where participants used a mouse instead of a computer keyboard (Anderson, 2014; 

Jabar & Anderson, 2015; Figure 2.1). Experiment 3.2 was similar, but manipulated spatial probability. 
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Experiment 3.3 was a defence against ceiling effects for spatial localization, and used a preliminary 

staircase procedure to find a stimulus contrast that made locating the stimulus challenging. The upshot 

of these experiments is primarily that the two probability manipulations decompose, as they do for 

attention, and that spatial probability affects primarily target detection while orientation probability 

primarily mediates changes in discrimination precision.

3.2. Experiment 3.1: Methods

Experiment 1 served to test if the probability effects on orientation judgments reported in Jabar 

& Anderson (2015) and in Chapter 2 could be replicated when the response method was changed. 

Rather than the keyboard based response used before, a novel mouse-based paradigm was developed. 

Participants reported both a location and an orientation on every trial using a mouse. After a brief 

presentation of a single oriented grating, participants first localized where they perceived the center of 

the grating to have been by clicking on it with a computer mouse. They then moved the mouse away 

from this anchor point to ‘draw’ an orientation (finalized with another mouse click).

Participants

Twenty-one participants (13 females, 8 males) took part in the study. 18 participants were right-

handed. The 3 left-handed participants were told that they could move the mouse to their left hand if 

they wanted, but they opted to use their right hand. All participants had normal or corrected-to-normal 

vision, and did not declare any auditory deficits.

Stimuli

The centre of the display was marked by a black fixation symbol subtending approximately 1.2 

degrees in both axes.  Spatial gratings were presented to participants on each trial. Unlike Chapter 2, 
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these were oriented grayscale sine-wave gratings with a circular hard-edge7 mask (Figure 3.1a), with 

an average measured luminance of 39 cd/m2. They had a spatial frequency of 3.16 cycles per degree of 

visual angle, and were presented on a grey background with a similar luminance of 40 cd/m2. When 

viewed from a distance of 60 cm, the gratings subtended approximately 2 and a half degrees of visual 

angle. The center of the grating was displaced 4 degrees either to the left or right of the centre of the 

display and four degrees up or down, thus they fell at the corners of a virtual square. The center of the 

grating was marked with a small black dot to aid participants in their location reports. Lines, used as 

feedback, always occurred in the same location as the grating for that trial and matched its diameter.

Because the effects of repetition are a possible confound when examining probability effects 

(e.g. Hale, 1969), the occurrence-rate of the various probability-location conjunctions was 

manipulated. Collapsed across the four equiprobable locations, all orientations were equally likely. 

Repeats of orientation are therefore as likely to occur for 'low-probability tilts' as they are for 'high-

probability' ones. Further, the possible orientations were continuous, reducing the odds of an exact 

repeat. Half the participants saw the conjunction depicted in Figure 3.1d: When a grating appeared on 

the top-left or bottom-left, its orientation was more likely to be left-tilting, but this high-probability tilt 

was reversed if the grating appeared on the top-right or bottom-right.

Probability distributions were maintained throughout the experiment. In every set of 20 trials, 

all 4 locations appeared 5 times each, and there were 4 occurrences of one set of orientations (high-

probability: 80%), and 1 occurrence of the other set (low-probability: 20%). The lines in Figure 3.1d 

depict an example distribution. The location-orientation conjunctions were counterbalanced across 

participants. Participants were not informed about these probability distributions.

7 Gabors have a Gaussian mask (edges are blurred out). When stimulus contrast is decreased, the edges 
are harder to perceive, making Gabors appear smaller. Since Experiment 3.3 adjusted contrast, hard 
edges were for the gratings to minimize this apparent size change.
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Figure 3.1. Paradigm and precision measurements. (a) General paradigm used for all experiments 
reported. Participants initiated trials by clicking on the central fixation symbol. After a delay of 500ms, 
a spatial grating (with a central dark spot) appeared for a brief 60ms. Participants then moved the 
mouse to click on where they thought the center of the grating was. After this click they moved the 
mouse a way to draw a line that best represented the orientation of the grating, then gave a second click
to confirm the orientation estimate. Visual and auditory feedback was then provided. (b) Example of 
how orientation angular errors are calculated. White lines: Actual orientation. Black lines: Estimated 
orientation. Note that between the example trials, the bias will be zero, but the median absolute error 
would be 23 degrees. (c) Example of how spatial eccentricity and bearing errors are calculated. White 
marker: Actual location. Black marker: Estimated location. (d) Orientation probability distribution used
in Experiment 1. Note all blue lines/symbols will correspond to high probability trials, red for low-
probability trials.
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Auditory feedback was given after each trial to maintain motivation. A high pitched sound 

indicated an orientation error of less than 12 degrees and a spatial (Euclidean) error within 0.5 degrees. 

The spatial error threshold was chosen after pilots tests, such that participants crossed the spatial 

threshold about as often as they did the orientation threshold (about 85% of the time). Any error beyond

these cut-offs caused a lower pitch sound to be played. Participants were not explicitly informed of the 

error threshold.

Procedure

Participants sat approximately 60 cm from a 32 cm x 24 cm gamma-corrected CRT monitor that

refreshed at 89 Hz. Responses were made with an optical mouse. The position of the on-screen mouse 

cursor was recorded every frame of the experiment. Participants were instructed to fixate at the center 

of the screen.

Prior to the task, participants were instructed to make their estimations of the location and then 

the orientation of the gratings as precisely as they could. They were not told that they needed to be fast.

Participants were given 40 practice trials in which the orientations occurred uniformly. These data were

not included in the analysis. The main task consisted of 400 trials, which were sectioned into two 

blocks. Participants were given the option to take a break in-between the blocks. At the end of the 

computerized task, participants were given a short, open-ended, questionnaire to examine whether they 

could explicitly report the spatial and orientation distribution of the gratings that they had seen. The 

experiment took approximately 20-25 minutes to complete.

Participants initiated each trial by clicking on the central fixation symbol, which changed from 

an “x” to “+” to indicate that the trial had started. Participants were shown the “+” fixation symbol for 
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500ms after this initial click. The grating then appeared in one of the four locations for 60ms (5 frame 

refreshes). Participants were then free to move the mouse. They first had to click at the center of the 

location where they perceived the grating to have appeared. After this, participants could move the 

mouse away from the location of the grating in any direction and a line would appear that followed the 

mouse and grew to the diameter of the grating. After the participant had drawn a line that reproduced 

the orientation of the grating, they made another click. The auditory feedback was then given, along 

with a white feedback line representing the actual grating displayed.

Post-experiment Questionnaire

After the 400 trials and before participants were debriefed, participants were given a short 

questionnaire. This was the same as the one given in Experiment 2.1, with the addition of a fifth 

question: Do you think that some locations are more likely at certain times? If yes, please elaborate.

Analysis Procedure

As with Chapter 2, angular errors were calculated for each trial in an axial space. These data 

were also used to get a measure of bias on the cardinal axes. Vertical-biased estimations, when 

participants estimated the orientation more vertically then it should have been, were coded as negative. 

Horizontal biases were coded as positive (Figure 3.1b).

Angular error analyses were done on both the bias and the mean error measures. The bias 

measurement gives the average of these signed errors across trials, such that a non-biased participant 

should approach a mean of ‘0’ bias. To look at the mean error made, the median of the absolute values 

of the estimation errors were taken. As an example of these calculations, there would be a ‘0 degree’ 

bias and ’23 degree’ magnitude of angular error across the trials depicted in Figure 3.1b.
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Spatial error was broken down into the two polar axes: Eccentricity and bearing (Figure 3.1c). 

Since the targets were always equidistant from the fixation, people were highly precise for this 

measure, and no manipulation affected it. Therefore, spatial bearing error was the main measure of 

spatial precision, and was calculated in an analogous way to how orientation errors were measured. 

Spatial bearing errors occupied a circular instead of an axial space.

Reaction time (RT) for each trial was decomposed into three components. Initiation time (IT) 

was the time taken from the grating onset to when a participant first moved the mouse. The time 

between initiation and the click indicating location was labelled the sRT. Time from this click to the 

click indicating orientation was labelled the oRT. Total distance moved in both the spatial estimation 

and orientation estimation phases were also recorded.

Responses were quick and fluid, and appeared “automatic”. Therefore, trials in which 

participants reacted very slowly (IT > 1000ms: 0.2% of trials) were excluded. Also excluded were trials

where the Euclidean distance between the response and the central fixation was less than 2 degrees (2%

of trials). This was so that precision metrics did not include trials where participants either accidentally 

clicked again on the fixation symbol, or where participants purposely clicked the central location again 

because they did not know the actual location.

3.3. Experiment 3.1: Results

Effects of orientation probability on RT, on orientation precision, and on spatial precision were 

examined. Only slight effects on RT were observed. More importantly, orientation probability affected 

orientation precision, and these effects manifested quickly. Orientation probability did not affect spatial

precision.
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RT Analyses

The 400 trials were binned into 50-trial blocks to look at effects of time on the experiment. A 

two-way fully-within ANOVA was carried on these data. For the IT measure (Figure 3.2b), there was a 

main effect of probability, (F(1, 19) = 5.74, MSE = 381,  p = .027), a main effect of trial bin, (F(7,139) 

= 18.86, MSE = 1330, p < .001), but no significant two-way interaction, (F(7, 139) = 0.50, MSE = 546, 

p = .830). In general, the difference in IT between high (M = 246ms) and low-probability (M = 249ms) 

was small, although quite consistent across the trial blocks. These initiations are not only fast, but also 

tended to be accurate, with 77% of them falling within a 45 degree bearing of the actual stimulus 

bearing (see Figure 3.2a for example mouse movements).

The same analysis on sRT (Figure 3.2c) suggested no main effect of probability, (F(1, 19) = 

0.18, MSE = 14152,  p = .680), no main effect of trial bin, (F(7,139) = 1.09, MSE = 48924, p = .376), 

and no significant two-way interaction, (F(7, 139) = 0.95, MSE = 27287, p = .473). The analysis on 

oRT (Figure 3d) suggested a marginal main effect of probability, (F(1, 19) = 4.04, MSE = 5348,  p = .

059), a main effect of trial bin, (F(7,139) = 16.73, MSE = 32568, p < .001), but no significant two-way 

interaction, (F(7, 139) = 0.39, MSE = 8903, p = .905).

In sum, the IT measures proved to be the most robust. Initiating movements to gratings with a 

probable orientation were made slightly faster. Drawing the orientation was also marginally faster. 

Orientation probability had no apparent effect on the time taken to complete the spatial localization 

post-initiation.
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Figure 3.2. Reaction time data from Experiment 3.1. (a) Sample mouse movement during the initiation 
and spatial estimation phase. Note how initial movements from centre are ballistic, and then they slow 
down (spacing between markers indicates 1 frame: 11ms) as the mouse is adjusted towards the stimulus
locations. (b) Initiation time (IT) across experimental trials (each bin represents 50 trials). (c) Time 
from initiation to spatial localization (sRT) across experimental trials. (d) Time from spatial localization
to completion of orientation estimate (oRT). Note: Blue markers represent high-probability trials, red 
for low-probability. 
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Orientation (Angular) Error Analysis

Paired two-tailed t-tests were run on the bias measure. This revealed that the high-probability 

tilts were significantly vertically-biased (t(20) = 2.47 , p = .023), whereas low-probability tilts were 

not, (t(20) = 0.56, p =  .58). Compared against each other, there was a significant effect of probability 

on bias, (t(20) = 3.44, p = .003), with high-probability tilts being more vertically-biased (M = -1.13, SD

= 2.09) than low-probability tilts (M = 0.32, SD = 2.59). Bias was not affected by stimulus location: 

Across possible comparisons, all ps> .05.

The error distributions from high versus low-probability trials also differ (Figure 3.3a): The 

median absolute error measure suggests a significant effect of probability, (t(20) = 5.44, p < .001), with 

high-probability tilts associated with an error of smaller magnitude (M = 7.07 deg, SD = 1.99 deg) than 

low-probability tilts (M = 8.09 deg, SD = 1.73 deg). Of the 21 participants, 19 showed this trend, with 

the 2 showing the opposite trend also being the worst performers (Figure 3.3b). This strong trend also 

remains if the error distributions are bias-corrected, (t(20) = 6.03, p < .001). Partitioning this data into 

50-trial bins also suggest demonstrates that precision effects are observable even within the 1st bin, 

(t(20) = 2.61, p = .017). Although the significance fluctuates in later bins, high-probability orientations 

were always more precisely estimated (Figure 3.3c). Taken individually, this orientation probability 

effect on precision is also significant in all four locations (all ps < .05).

Orientation anisotropy analysis

Possible orientations were binned into 20-degree segments and angular error was looked at for 

each bin (Figure 3.3d). A two-way ANOVA revealed that there was a significant main effect of 

probability, (F(1,20) = 24.39, MSE = 6.10, p < .001). There was a main effect of orientation bin, 

(F(8,160) = 3.59, MSE = 17.06, p < .001). There was also a significant interaction, (F(8,160) = 2.45, 

39



MSE = 7.18, p = .016). Size of the orientation probability effect (low-high probability) in the bin 

containing the near verticals was greater than in the ones containing the 45-degree and 135-degree 

obliques (ps < .05), but not the one containing the near-horizontals (p >.05). The mean absolute angular

error was smallest in the vertical bin as compared to the oblique and horizontal bins (ps < .05). In sum, 

probability effects were largest at the cardinals, but vertical orientations were most precisely 

represented overall.
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Figure 3.3. Experiment 3.1 orientation precision. (a) Orientation error distribution. Negative indicates 
an anti-clockwise error, positive is a clockwise error. (b) By-subject median absolute errors across 
probability. Note that 19/21 cases show a decrease in error (increase in precision) for the high-
probability trials. (c) Median absolute errors as a function of experiment trials. Each bin represents 50-
trials. (d) Median absolute errors by orientation segments, indicated by figures on the x-axis. Note: 
Blue represent high-probability trials, red for low-probability.
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Standard Deviation and Kurtosis

As mentioned in Chapter 2, a mixture of perceptual and non-perceptual effects of probability 

would lead to changes in error distribution shapes (e.g. Figure 3.3a) that could be quantified by the 

kurtosis.

 While there is a trend for kurtosis to be higher for high-probability tilts (M = 3.73, SD = 4.37) 

than for low-probability tilts (M = 2.44, SD = 4.26), the difference is not significant (t(20) = 1.33, p = .

197). However, the kurtoses are significantly above zero for high, (t(20) = 3.91, p < .001), and low 

probability orientations (t(20) = 2.62, p = .016). Since normal distributions have an excess kurtosis of 

zero, these data confirm that the error distributions are not normally distributed.

Repetition Effects analysis

Repetition effects are possible sources of confounds in probability-related studies since high-

probability targets are more likely to be repeated (Hale, 1969), while rare targets are not. If repetitions 

or sequences are driving performance benefits for the high-probability orientation estimations (e.g. 

Fischer & Whitney, 2014), then we might observe a significant correlation between absolute inter-trial 

differences in orientation and estimation performance (small changes lead to small errors; large 

changes lead to large errors). In fact the correlation is negligible (r < .01, p = .507). Comparing the 

extremes, e.g. trials where the inter-trial difference was 10 degrees or less (mean angular error = 9.6 

deg) versus those that were 80 degrees or larger (mean = 9.3 deg), also reveals no significant effect (t < 

1, p = .541). Lastly, ignoring trials with small (10 degrees) inter-trial differences, the effect of 

orientation probability on orientation precision still holds (t(20) = 3.25, p = .004). The effect of 

repeating locations (approximately 25% of the trials) versus non repeats was not found to significantly 

affect either orientation precision or the size of the orientation probability effect (ps > .05).
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Spatial error analysis

Participants demonstrated precise bearing reports: 77% of the estimates were made within 3 

degrees of the actual bearing (Figure 3.4a). This spatial bearing error was not significantly different 

between high (M = 2.79, SD = 0.59) and low (M = 2.84, SD = 0.63) probability orientations, (t(20) = 

0.39, p = .702). These was also no significant linear correlation between bearing error and orientation 

error for either high probability trials (r = .41, p = .065) or low-probability trials (r = .08, p = .722).
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Figure 3.4. Experiment 3.1 spatial precision. (a) Distribution of spatial bearing error. Negative 
indicates an anti-clockwise error, positive is a clockwise error. (b) Median absolute spatial bearing 
errors by-subject. (c) Scatter plot of spatial bearing error versus orientation angular errors. Straight 
lines indicate best fit line, the curved lines indicate the best fit quadratic. Note: Blue represent high-
probability trials, red for low-probability.
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As mentioned in the Methods section, because targets always appeared equidistant from the 

central fixation, the spatial eccentricity error was at floor (High-probability: 0.55 deg; Low-Probability:

0.54 deg). Neither this measure, nor the mean Euclidean distance between estimated and actual 

location, were significant across orientation probability (both ps > .05). As with orientation probability, 

repeating versus non-repeats of locations was not found to significantly affect spatial precision (t(20) = 

0.51, p=.615).

Post experiment questionnaire

While a majority of participants demonstrated behavioural differences contingent on orientation

probability, consistent with Chapter 2, none correctly indicated the orientation probability distribution.

3.4. Experiment 3.1: Discussion

Experiment 3.1 largely replicated previous findings. Probable orientations were estimated more 

precisely, despite participants showing no signs of explicit awareness of the distribution. The 

orientation anisotropy seen previously (Jabar & Anderson, 2015) was also replicated: Near-vertical tilts

were most precisely represented, especially when they were probable (Figure 3.3c). It is important to 

note that in prior versions of this task, the response line was always presented at a static fixed 

orientation, but in this experiment there was no response line until participants initiated their response. 

Thus, these effects are not due to anchoring. As mentioned in Chapter 1, anisotropy represents an 

innate perceptual bias (Appelle, 1972), possibly due to V1 neurons’ tuning (Li, Peterson & Freeman, 

2003).

Compared with the previous paradigm using the keyboard responses (e.g. Jabar & Anderson,

2015; Experiment 2.1), participants in this experiment were more precise in their orientation estimation
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while the size of the orientation probability effect was similar. This is despite having to process the

spatial dimension and report it before making the orientation estimation. Having to process the spatial

information does not seem to impede the orientation reports, implying some separability of the two

estimation processes.

Kurtosis did not seem to capture the differences in orientation error distribution between high

and low-probability conditions here (Figure 3.3a) as well as it did in Jabar & Anderson (2015) or in

Experiment 2.1, although the trend was still here. This was most likely due to the change in response

method: Whereas the previous experiments had participants use a keyboard to rotate a response line,

participants in this set of experiments had to draw the orientations. While the distributions are still non-

normal  –  excess  kurtoses  are  above  zero  –  reduced  non-perceptual  error  might  have  led  to  less

deviations from normality. For these reasons, the median absolute error was still used as the metric for

precision here.

In  addition  to  being  reported  more  precisely,  responses  to  high  probability  tilts  were  also

initiated more quickly. Spatial RT did not vary as a function of probability, perhaps because it reflects

time required to make precise motor movements rather than reflect time to detect. While orientation

probability affected orientation precision it did not influence spatial precision. This is consistent with

the hypothesis that spatial and orientation effects are separable similar to spatial and feature attentional

effects.

Results from Experiment 3.1 are in line with the suggestion that feature probability, similar to

feature-based  ‘attention’,  affects  neural  tuning.  The  second  part  of  the  hypothesis  is  that  spatial

probability, like spatial attention, is linked to neural gain. If true, there should be no spatial probability
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effects  on  orientation  precision,  because  a  gain  mechanism  (e.g.  Figure  1.1c)  would  predict  that

orientation-selective neurons would be stable over the range of orientations.

3.5. Experiment 3.2: Methods

Using the same paradigm as  Experiment 3.1, Experiment 3.2 examined the effects of spatial

probability instead of orientation probability. If the gain hypothesis is true, orientation precision should

not be affected by spatial probability. If the dimension-specific hypothesis is true, unlike in Experiment

3.1, we should also expect to observe spatial probability effects on spatial precision.

Participants

Two additional sets of participants were recruited. Twenty undergraduate students (18 females, 

2 males) took part in Experiment 3.2a. 19 participants were right-handed. Twenty undergraduate (11 

females, 9 males) took part in Experiment 3.2b. 17 participants were right-handed. All participants used

their right hand, and had normal or corrected-to-normal vision, and did not declare any auditory 

deficits.

Stimuli and Procedure

The procedure  for  Experiment  3.2a was  the  same as  before.  The  only  difference  was  that

orientation  was  kept  equiprobable  at  each  location,  and spatial  probability  was  manipulated.  Two

locations on opposite  corners  were made more probable than the other  two.  These locations were

counterbalanced across participants. Probabilities were maintained in 20-trial blocks. In each set of 20

trials, 8 appeared in one location and another 8 appeared in the opposing corner (high-probability:

80%).  The remaining 4 were split  across  the other  2  locations  (low-probability:  20%).  As before,
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participants were not informed about these distributions. They were only instructed to be as precise as

they could for both the orientation and spatial estimations.

In Experiment 3.2b, instead of having 4 discrete locations, the gratings appeared anywhere in a

ring around the central fixation, with the same eccentricity as the other experiments. Instead of biasing

two  locations,  two  quadrants  were  biased.  Figure  3.5 depicts  a  sample  distribution  of  where

participants end up locating the gratings, for both Experiment 3.2a and 3.2b.
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Figure 3.5. Experiment 3.2 spatial probability distribution. (a) For Experiment 3.2a, targets appear in
only 1 of 4 discrete locations on any given trial. The markers indicate where the first participant ended
up  clicking  in  response  to  these  four  locations.  Blue  markers  indicates  target  in  high-probability
locales. Two discrete locations are biased. (b) For Experiment 3.2b, targets appear in any bearing, with
the same eccentricity from the fixation. Two quadrants are biased. Note that the probable locations
were counterbalanced across subjects for both experiments.
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3.6. Experiment 3.2: Results

RT analysis

As with Experiment 3.1, the RT data from both sets of Experiment 3.2 was split into IT, sRT and

oRT. None of these showed significant effects of spatial probability, in either experiment, (all ps > .05).

Orientation error analysis

For Experiment 3.2a, in both high (M = -1.25, SD = 2.24) and low-probability locales (M = 

-1.11, SD = 2.23), there was a significant vertical bias (both ps <.05) in orientation estimation. 

However, probability did not modulate this bias (t(19) = 0,33, p = .742). For Experiment 3.2b, although

both high (M = -0.48, SD = 1.90) and low-probability (M = -0.35, SD = 1.91) had the same trend 

towards vertical bias, this was not significant (ps >.05), and there was no significant difference across 

the probability conditions (t(19) = 0.47, p = .641).

The median absolute angular error measure was not significantly different across high (M = 

7.75, SD = 2.12) and low-probability (M = 7.96, SD = 2.46) locales in Experiment 3.2a (Figure 3.6a), 

(t(19) = 0.81, p = .426). This was the same in Experiment 3.2b (Figure 3.6b): There was no significant 

different across high (M = 7.63, SD = 1.38) and low-probability (M = 7.35, SD = 1.33) locales in 

orientation precision, (t(19) = 1.14, p = .270). There was also no significant difference in orientation 

precision across the experiments, for both probability conditions (ps> .05).

50



Figure 3.6. Experiment 3.2 error distributions. (a) Orientation errors for Experiment 3.2a. (b) 
Orientation errors for Experiment 3.2b. (c) Spatial errors for Experiment 3.2a. (d) Spatial errors for 
Experiment 3.2b. Note that in each panel, there were two distributions: high (blue) and low-probability 
(red). There is a very high level of overlap between the two in all cases.
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Spatial error analysis

The median absolute spatial bearing error was also not significantly different across high (M = 

2.91, SD = 0.93) and low-probability (M = 3.05, SD = 0.92) locales in Experiment 3.2a (Figure 3.6c), 

(t(19) = 0.70, p = .491). This was the same in Experiment 3.2b (Figure 3.6d): There was no significant 

difference across high (M = 2.93, SD = 0.69) and low-probability (M = 3.04, SD = 0.81) locales in 

orientation precision, (t(19) = 0.79, p = .439). There was also no significant difference in orientation 

precision across the experiments, for both probability conditions (ps > .05), even if comparing to 

Experiment 3.1 (all ps > .05). As with Experiment 3.1, repeating versus non-repeats of locations was 

not found to significantly affect spatial precision (t(20) = 0.86, p=.400) in Experiment 3.2a. Since 

locations were continuously distributed in Experiment 3.2b, quadrants of space were compared. There 

are two high probability location quadrants for each participant. Trials where there was a switch from 

one high-probability quadrant to another (40% of trials) were compared to when there was a repeat in 

the same quadrant (40%). There was no effect of repeated quadrants in either orientation or spatial 

precision (both ps > .05).

Post experiment questionnaire

Three of the participants in each experiment correctly indicated the spatial probability 

distribution.

3.7. Experiment 3.2: Discussion

Experiment 3.2 suggested that the effects of spatial probability are different from the effects of 

orientation probability (e.g. Experiment 3.1). When some orientations are more probable (Experiment 

3.1; Anderson, 2014; Jabar & Anderson 2015) orientation judgments were more precise, but when 

some locations were more probable the precision of orientation estimations at the probable locations 
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was unchanged. In addition, spatial probability did not affect spatial precision. The spatial precision in 

both Experiment 3.2a & 3.2b matched that from Experiment 3.1: The findings are incompatible with 

the idea of probability causing a domain-general “attentional” effect. The findings also pose trouble for 

domain-specificity hypothesis as that would have predicted that spatial probability would have 

improved spatial precision.

Perhaps the spatial estimation task was too easy? This is not the case for  Experiment 3.2b,

where spatial uncertainty was substantial. However, to further probe this account Experiment 3.3 was

run, where contrast was reduced to make the estimation task harder. Since spatial probability has been

shown to affect detection (e.g. Walthew & Gilchrist, 2006; Vincent, 2011; Jiang, Sha & Remington,

2015),  Experiment  3.3 was also designed to obtain a  measurement of detection rate  in addition to

precision. This was specifically to show that the effects of spatial probability are on detection, but not

on precision.

3.8. Experiment 3.3: Methods

Experiment 3.3 introduced two main modifications. First, a ‘3 down, 1 up’ staircase procedure

was employed to bring detection down to approximately 80% (Leek, 2001) and remove the possibility

of a ceiling effect on performance. The second modification was the inclusion of a confidence report at

the end of each trial. If participants fail to detect the target they will guess, and they will report lower

confidence. Guessing results in uniformly distributed errors. Using the combination of confidence self-

reports  and behavioural  precision,  we can separate  guess trials  from the detected trials,  and better

decompose measured imprecision: How much of spatial probability effect is in the change in perceptual

estimation precision per se, and how much is in the change in the proportion of trials the target is

undetected and participants guess?
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Participants

Twenty-one additional participants (13 females, 8 males) took part in Experiment 3.3. 19 

participants were right-handed. All participants used their right hand, and had normal or corrected-to-

normal vision, and did not declare any auditory deficits.

Stimuli and Procedure

Prior  to  the  main  task,  a  “3 down,  1 up” staircase procedure was done to  determine what

contrast  led  to  an  80% detection  rate  (absolute  bearing  error  <  22.5  degrees).  These  trials  were

qualitatively similar to those used later, but spatial and orientation probabilities were uniform. The first

10 trials were designated as practice and contrast was not altered regardless of performance. Average

luminance of the grating was not affected by the contrast reductions (always maintained at 39 cd/m2).

There were 400 test trials. Spatial probability was manipulated as in Experiment 3.2b. After the

spatial  and  orientation  estimations,  but  before  the  feedback,  participants  were  asked  to  indicate  a

response to the question “How confident are you that you  saw the stimulus?”. The continuous scale

ranged from 0-100, but had descriptive labels at 3 points: 0 (Definitely did not see), 50 (Maybe I saw),

100 (Definitely saw). Specifically, this measure was aimed at figuring out when participants perceived

or did not perceive the stimulus, and not whether the participant was confident about their responses.

3.9. Experiment 3.3: Results

Staircase and Confidence

Sample staircase results are shown in Figure 3.7a. There was a spread of values participants 

ended up with, but it was mostly in the 4% to 8% range (median = 6%, Figure 3.7b).
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Figure 3.7. Experiment 3.3 staircase procedure. (a) Sample stair-casing of stimulus contrast using the 
spatial bearing error via a ‘3 down, 1 up procedure’. Each panel represents data from one participant. 
Light markers represents the points where participants crossed the error threshold. The first 10 trials 
were for practice and were not stair-cased. (b) Distribution of threshold contrasts found by the staircase 
procedure. Contrast was calculated as the luminance difference between the brightest and darkest 
‘band’ of the grating divided by the sum.  
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There was a significant effect of spatial probability on reported confidence, (t(20) = 2.97, p = .

008). Participants reported being more confident of detecting the grating in high-probability locales (M 

= 60.2, SD = 17.1) than in low-probability locales (M = 57.6, SD = 17.9). Separating the data into 50-

trial bins, high-probability locales were associated with higher confidence reports at all bins.

Samples of the distributions of confidence reports given by the participants are shown in Figure

3.8a. There is bimodality: Most of the reports tend to be high, but some are near zero. Since 

participants were asked to rate how confident they are that they saw the stimulus, the peaks could 

correspond to detected (high confidence) versus non-detected (low-confidence) trials. What is clear is 

that different participants use the confidence scale differently: Using arbitrary cut-offs on the raw 

values to classify the detected trials would be problematic.

Expectation-Maximization Clustering

Instead of using raw confidence values as cut-offs, 2-dimensional distribution of spatial errors

and confidence were examined. Because the confidence scale was explicitly related to participants'

ability  to  detect the  stimulus,  when  reported  confidence  is  high,  participants  should  have

detected/perceived  the  stimulus  and  therefore  should  have  high  spatial  precision  (smaller  bearing

errors).  When  reported  confidence  was  low,  participants  likely  failed  to  detect  the  stimulus  and

therefore made random guesses, leading to a fairly uniform distribution of spatial errors. Essentially,

the 2-dimensional distribution of spatial errors and confidence should end up as an inverted ‘T’ shape

(Figure 3.8b). We can cluster these points into guesses versus detection. These expected clusters were

used as  starting parameters to cluster participants’ data, although the proportions, centres and size of

the clusters were free to vary. This expectation-maximization clustering was done using the EMCluster

R package (Chen & Maitra, 2015).
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Figure 3.8. Experiment 3.3 guesses vs. detections. (a) Sample distribution of confidence reports by
probability  condition.  Each  panel  represents  data  from  one  participant.  (b)  Expected  error  by
confidence  distribution.  At  low-confidence,  participants  should  make  uniform  errors  (indicating
guessing) while at high-confidence, the same participant should make precise spatial estimations. (c)
Sample  of  clustering  using  the  expectation-maximization  (EM)  technique.  The  darker  markers
represent trials that were most likely detected/perceived. (d) Guess rates by subject, based on the results
of the EM clustering. Note: Blue represent high-probability trials, red for low-probability.
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Sample  participants’ 2-dimensional  distributions  are  depicted  in  Figure  3.8c.  The  expected

inverted ‘T’ shape is apparent, and the clustering fits as expected. After clustering each participants’

full dataset, they were separated into high and low-probability trials, the proportion of trials in each

condition  that  belongs  in  the  ‘guess’ (low reported  confidence  with  random spatial  error)  cluster

(Figure 3.8d) were examined. Out of the 21 participants, 15 showed decreased guessing rates, i.e. better

detection, for high (mean = 20.5%) versus low probability (mean = 23.7%) locales. This difference was

significant across participants, (t(20) = 2.19, p = .041). Note that the exact initial/expected values used

for the clustering (Figure 3.8b) had slight effects on the exact values of the guessing rates. To confirm

that the results were not dependent on starting values for the optimization, each clustering procedure

was run 1000 times, slightly jittering the expected clusters. All tests consistently indicated that there

was a significant 3% to 4% difference in guessing rate between probability conditions. The guessing

rates also hovered around the 20% to 25% range, which expected given the use of the ‘3 down, 1 up’

procedure (Leek, 2001). The EM clustering also gave similar results to visually (manually) clustered

data.

As  a  check  of  the  clustering  method,  a  mixture  model  was  also  used  to  to  estimate  the

proportion of perceived vs. guessed trials. Similar to the method used by Zhang & Luck (2008), the

spatial bearing error data from each participant was fitted with a mix of uniform and Gaussian, where

the three parameters – proportion (lambda), mean and variance mean of the Gaussian component –

were  free  to  vary.  Proportion  of  the  uniform was  just  1  minus  lambda and  thus  was  not  a  free

parameter. The idea here is that the uniform distribution represents the guessed trials, and therefore the

lambda parameter should match the results of the clustering analysis. The mixture model suggested that

participants perceived the grating (lambda) 84.2% (SD = 4.7%) of the time in the high probability

trials, but only 80.5% of the time (SD = 6.1%) in the low-probability condition, with there being a

58



significant (t(20) = 2.20,  p = .034) difference between the two. However, there was no difference in

either the mean or variance of the mixture models across high and low spatial-probability trials (ps

>.05).  Both  the  clustering  and  mixture  models  therefore  are  in  agreement  that  spatial  probability

modulate guess/detection rates, but  not the precision with which estimations are made. The guess rates

(high= 15.8%, low= 19.5%) estimated from the mixture model also significantly correlated (ps <.05)

with the guess rates from the clustering model, for both high (r = .771) and low (r=.723) probability

data, further suggesting convergence between the two methodologies at the level of individual subjects.

RT analysis

 The IT was faster for perceived (M = 387ms) than for guessed (M = 685ms) trials, (t(20) = 7.06,

p < .001). The sRT was not different between perceived (M = 1564ms) and guessed (M = 1686ms) 

trials, (t(20) = 0.94, p = .353). However, the oRT was slower for perceived (M = 866ms) than for 

guessed (M = 669ms) trials, (t(20)= 2.29, p = .028). It is possible that participants were caught off 

guard during the spatial localization phase of the experiment if they did not detect the stimuli, leading 

to longer ITs, but clicked randomly for their orientation judgments leading to faster oRTs.

Looking only at perceived trials, there was still an effect of spatial probability on IT: Targets 

appearing in high probability locales (M = 386ms, SD = 57ms) were reacted to faster than for those 

appearing in low-probability locales (M = 393ms, SD = 63ms), (t(20) = 2.60, p = .017).

Precision analyses

Orientation errors were much larger for the guess trials (M = 34.4) than the perceived ones (M =

10.1), (t(20) = 13.4, p <.001). This amount of error highlights that we should only take into account 

trials that were clustered as ‘detected’ or ‘perceived’, when we are interested in perceptual precision.
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Orientation error for the perceived trials was not any better for the high (M = 7.75, SD = 1.52) 

versus the low-probability (M = 7.56, SD = 2.12) conditions, (t(20) = 0.72, p = .482). The orientation 

bias was not significantly different from zero for either probability condition (ps > .05).

Spatial error for the perceived trials was also not any better for the high (M = 3.91, SD = 0.90) 

versus the low-probability (M = 3.95, SD = 1.20) conditions, (t(20) = 0.72, p = .482). However, 

compared to Experiment 3.2b, where stimuli were displayed with higher contrast, spatial error in 

Experiment 3.3 was increased (t(20) = 4.70, p < .001), which is an indication that spatial precision can 

be affected  by contrast manipulations. In comparison, orientation precision was not affected across 

these experiments, (t(20) = 0.466, p = .642).

To address a lack of statistical power as a potential concern over the lack of precision effects in 

the spatial probability tasks, the data from Experiment 3.2a, 3.2b, and the perceived trials of 

Experiment 3.3 were pulled and placed into a Bayesian comparison (high vs. low spatial probability) 

treating the 61 participants as a random factor. The Bayes Factor (BF) obtained from comparing the 

spatial bearing error was 0.063  (±1.31%). The BF obtained from comparing the orientation error was 

0.029  (±2.28%). These numbers support the hypothesis that spatial probability has no effect on either 

spatial or orientation precision.

As comparison, data from the 21 participants from Experiment 3.1 was also looked at. The BF 

from comparing the spatial error was 0.116 (±22.86%), while the BF obtained from comparing the 

orientation error was 378.755 (±0.81%). These numbers support the hypothesis that while orientation 

probability does not affect spatial precision, it very clearly affects orientation precision.
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Repetition analysis

Since there was an effect of spatial probability on detection rates, the effects of repeated 

locations were looked at for the guessed or non-perceived trials. Particularly, for the high-probability 

locales the proportion of trials from repeated location (mean  = 40.2%) compared to trials followed by 

the other high-probability quadrant (mean = 40.1%), was not significantly different, (t(20) =  0.065, p =

.949), suggesting that repetitions are not driving the probability effect on guess rates.

Post experiment questionnaire

Of the 21 participants, 3 correctly indicated the spatial probability distributions.

3.10. Experiment 3.3: Discussion

Experiment 3.3 replicated Experiment 3.2. For trials where the grating was perceived, spatial 

probability affected neither spatial nor orientation precision, but initiation times were faster for the 

high-probability locales.

Reducing contrast did reduce spatial precision, and precludes the possibility that the absence of

an effect in Experiments 3.2a and 3.2b were due to a ceiling effect. While spatial probability did not

affect spatial precision, it did affect detection: While detection rates on average were about 80% – a

rate  predicted by the type of staircase procedure employed – detection rates were lower when the

grating appeared in the low-probability locale, as compared to the high-probability locales. This lower

guess rate for high probability locales was not due to repeats in location (Geng & Behrmann, 2005),

suggesting  that  spatial  probability  effects  in  this  case  is  not  due  to  sequential  dependencies  (c.f.

Walthew & Gilchrist, 2006), perhaps because locations were continuously distributed. In addition, even

for trials where the stimulus was perceived, the IT was still significantly faster for high-probability
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locales,  consistent  with  the  idea  that  spatial  probability  affects  detection.  Given  the  size  of  these

detection effects, is difficult to get an estimate of how quickly the changes in detection due to spatial

probability occurs. However, reported confidence was higher (trend-wise) for high-probability locales

throughout the experiment, even within the first fifty trials. It is likely that spatial probability learning,

like orientation probability learning, occurs very quickly.  

In sum, the three experiments outlined in this chapter consistently indicate that while orientation

probability affects orientation precision, spatial probability only affects target detection. The following

section discusses the implications of these findings.

3.11. Discussion

The goal of these experiments was to evaluate how generic the effects of probability 

manipulations are. Does manipulating the probability of where a target will appear (or whether it bears 

a probable feature) affect the speed and accuracy with which the target can be located, and does it also 

affect the fineness with which features can be discriminated? A second goal was to infer whether 

probability effects and attentional effects are likely to index common underlying psychological 

processes or neural bases.

The principal result was that probability cues, whether spatial or featural, shorten reaction time, 

just as do conventional cues in spatial and feature attention experiments. Because of the experimental 

procedure, these speed effects could be decomposed into initiation and movement components. The 

speed-up was most apparent for movement initiation. This was true for both orientation (Experiment 

3.1) and spatial probability (Experiment 3.3). This effect was larger for spatial probability, but perhaps 

this was due to the increased difficulty associated with a reduction in contrast. The most obvious reason
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for this improvement was better target detection (Rich et al., 2008; Wolfe et al., 2007; Walthew & 

Gilchrist, 2006; Vincent, 2011; Jiang et al., 2015; Fecteau, Korjoukov & Roelfsema, 2009; Geng & 

Behrmann, 2005).

In Jabar & Anderson (2015) and in Chapter 2, participants were shown a dial after each grating, 

and asked to rotate it using keyboard buttons, to best represent the orientation they saw. By 

manipulating feature (orientation) probability, it was found that the initiation time (time taken to initiate

an anticlockwise or clockwise dial rotation) required was decreased for probable tilts. Orientation 

precision was also improved. These results were replicated in Experiment 3.1 of the current study, 

despite the changes to the response method. As with feature probability, initiation time (time taken to 

move the mouse away from central fixation) was also affected by spatial probability. However, in 

neither Experiment 3.2a, 3.2b or 3.3 did spatial probability affect orientation precision, even when 

spatial probability improved detection (Experiment 3.3). Consistent with the studies outlined in this 

chapter’s introduction, both spatial and feature probability manipulations create effects that are 

‘attention-like’. However, this chapter also clearly indicates a difference between the two.

Instead of a general ‘probability effect’, we should be concerned with probability effects 

(plural). Given that the task is not one of forced choice, there is less opportunity for probability effects 

to be mediated at the level of a decision process (Wolfe & Van Wert, 2010) and one might think that 

decision effects would more likely affect judgment time than initiation time. Motor (or response) biases

are also unlikely to explain the results as the effects of feature probability were location-contingent 

(this will be explicitly shown in Chapter 4). All movements were equiprobable and all angles were 

shown equally often. Thus, the most parsimonious explanation is that the basis for the orientation 

probability effect is perceptual (Dykes & Pascal, 1981), perhaps at the level of orientation tuning in 
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early visual areas. On the other hand, spatial probability affected neither the precision of spatial errors 

nor orientation estimation errors. This decomposition of spatial and orientation probability effects maps

on nicely to the decomposition of attention into spatial and feature specific varieties (e.g. Carrasco, 

2011).

A plausible locus for the shared effects of spatial and feature probability and spatial and feature 

attention is on the primary visual cortex, where attention has been noted to have consistent effects 

(Brefczynski & DeYoe, 1999; Gandhi, Heeger & Boynton, 1999; Sharma et al., 2015; Tootell et al., 

1998). The basis for these effects are broadly of two types (Martinez-Trujillo & Treue, 2004; Ling, Liu,

& Carrasco, 2009): first, sharpening of neuronal tuning function in early sensory neurons, and second 

increasing the gain of neuronal firing curves for early sensory neurons.  

Feature attention has been suggested to be primarily due to the first mechanism, changes in 

neuronal tuning curve width (Paltoglou & Neri, 2012). V1 neurons show changes in tuning functions 

with an increased experience of particular orientations (Ringach, Hawken & Shapley, 1997; Schoups et 

al., 2001). By contrast, spatial attention's effects are primarily accompanied by increases in neuron 

firing generally, a phenomenon referred to as response gain (Kastner & Ungerleider, 2000; Ling et al., 

2009; Figure 1.1c). Our suggestion that feature probability effects are also mediated by neuronal tuning

effects is consistent with recent work on statistical decision theory (Eckstein et al., 2009). Probabilistic 

information for features might tune relevant perceptual channels, which then affects decision-making.

The analogy between categories of attentional cues and probability manipulations is 

provisional. There are differences as well. Chief among them is the temporal dynamics. Probability 

learning is acquired across trials while spatial cuing is typically a brief trial-specific signal. In addition, 

64



cues provide a non-specific preparatory signal that is absent in pure probability learning, resulting in 

different effects. For example, explicit spatial cues cause increased V1 firing of neurons selective to the

location prior to the target onset (Wang et al., 2015). This might explain why spatial cuing affects 

orientation estimation (Anderson & Druker, 2013; Chapter 2), while spatial probability (Chapter 3) 

might not.

In summary, the main empirical result in this chapter is that probability effects, like attention, 

can dissociate between feature and spatial biases. Feature probability affects precision, while spatial 

probability only affects detection. Based on these findings, and previous work on the mechanisms 

underlying attentional cuing, there likely are conceptual and mechanistic links between probability and 

attention, chiefly that they may both affect perceptual processing by similar neural mechanisms. Cues 

and probability provide participants with information about what stimuli might appear, and where they 

might appear (Anderson, 2011). This information leads to biases in early perceptual systems that show 

a common reliance on adjusting the gain and tuning of sensory neuronal populations. This hypothesis 

does predict further dissociations between feature and spatial probability, such as the domains under 

which they operate. This issue is explored in Chapter 4.
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Chapter 4: Feature and spatial probability effects occupy different domains8

4.1. Introduction

The experiments in Chapter 3 found that while orientation probability increased the precision of

orientation estimations, spatial probability did not. Instead, spatial probability improved the ability to 

perceive the gratings detected as a decrease in guessing events but it did not change the precision of 

orientation reports for the perceived proportion of trials. The objective of the present set of experiments

is to further explore the similarities and differences between spatial and feature probability. Of 

particular interest are two questions: 1) Do these effects manifest under the same situations? 2) When 

they do manifest, do they affect responses the same way?

Feature-specific versus domain-general effects

If orientation probability has its effect by selective tuning of orientation-sensitive V1 neurons, 

akin to what occurs with orientation training in monkeys (Ringach, Shapley Hawken, 1997; Schoups et 

al, 2001), one would expect that the probability benefits should not extend to other features that are not 

processed by that pool of neurons. For example, colour-selective neurons also exist in V1 (Hanazawa, 

Komatsu & Murakami, 2000). While there are sub-populations of color selective V1 neurons that are 

also selective for orientation, color and orientation selectivity (Johnson, Hawken & Shapley, 2008) 

neurons are, for the most part, different pools. If blue objects are probable, under the current 

hypothesis, V1 neurons selective for blue might be sharpened and perceptual sensitivity to blue features

improved. But this might not necessarily improve sensitivity to the orientations of objects presented in 

blue, depending on which neuronal sub-population is being tuned by the probability manipulation.

8 A version of this chapter has been published as Jabar, S. B., Filipowicz, A. & Anderson, B. (2017). 
Knowing where is different from knowing what. Distinct response time profiles and accuracy effects 
for target location, orientation, and color probability. Attention, Perception & Performance, 79(8), 
2338-2353. https://doi.org/10.3758/s13414-017-1412-8
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An alternative argument could be made regarding feature-probability as a form of feature-based 

attention, which has also been suggested to result in neural tuning (Carrasco, 2011; David et al., 2008; 

Paltoglou & Neri, 2012; Çukur et al., 2013; Ling, Jehee, & Pestilli, 2015). However, this makes the 

same prediction about the independence of feature probability effects. Both accounts, which rely on 

domain specific tuning mechanisms, lead to the conclusion that feature probability effects should be 

specific to the feature whose probability is being manipulated. This is opposed to an object-based 

attentional account (e.g. Egly, Driver, & Rafal, 1994). If attention is deployed to the object containing 

the probable feature, then that object-based attention should affect the processing of multiple features.

In contrast to feature-based manipulations which are linked to neural tuning, space-based 

manipulations are more related to gain-mechanisms (Carrasco, 2011), such as increasing the input 

baseline of neural responses (Cutrone, Heeger, & Carrasco, 2014). If these baseline increases occur for 

all neurons coding for that space, it accounts for how spatial probability has general effects. Spatial 

probability helps in locating objects in search tasks (Jiang et al., 2015), in improving color detection 

(Druker & Anderson, 2010), and in speeding up orientation judgments (Chapter 3).

If feature probability results in feature-specific tuning changes while spatial probability results 

in general baseline changes, differences across these manipulations should generalize beyond 

estimation tasks. For example, in a 2-alternative forced choice (2AFC) task, participants can be asked 

to report whether a target stimulus has a left (\) or right-tilting (/) orientation. If spatial probability 

results in domain-global effects, it should facilitate discrimination of orientations. However, since 

orientation probability also improves perceptual precision where spatial probability does not (Chapter 

3), orientation probability should show bigger effects on discrimination accuracy than spatial 

probability, especially when the discrimination task is perceptually difficult. In addition, if feature 

67



probability only results in feature-specific effects, one might expect that while manipulations of 

orientation probability might aid in orientation discrimination, manipulations of color probability 

should not. If this specificity versus generality hypothesis is true, the reverse situation must also hold: 

While both spatial and color probability should aid in color discrimination, orientation probability 

should not.

Initiation versus Movement times

While 2AFC tasks can provide much information about the effect of spatial/featural 

manipulations on perception across a series of trials (Cutrone et al., 2014; Ling et al., 2009), on any 

single trial it typically leads to binary data –  either one or the other button is pushed. Such binary 

classifications can miss important details. Prior data from estimation tasks suggest that initiation times 

(ITs) are more closely linked to perceptual precision while movement times (MTs) are more closely 

linked to confidence (Jabar & Anderson, 2015). However, standard keyboards only register a button 

press when the key travel reaches some threshold, and not when the key has started to move. Therefore 

it would be impossible to distinguish how much time was required to initiate the button press from the 

time used in the actual motion of the button press. Decomposing of RTs into ITs and MTs can instead 

be achieved through the use of levers or triggers (e.g. Smeets, Wijdenes, & Brenner, 2016), which can 

report the state of the response in a continuous fashion.

Experiments in this chapter implemented a novel method for 2AFC tasks that uses the triggers 

on an Xbox controller to enrich the measuring of the dynamics that goes into making a ‘choice’. Each 

of the two options is tied to a separate trigger. IT can be taken as the period from the time of stimulus 

onset to the moment a trigger pull is initiated. MT is taken from the moment the initiation occurs to the 

time the trigger state reaches a pre-determined threshold value. If both feature and spatial probability 
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affect the time taken to perceive targets, both should affect ITs. MTs on the other hand might be more 

indicative of confidence than accuracy (Jabar & Anderson, 2015). MT is dependent on other aspects of 

the response profile, such as the baseline level of preparation, the force of the response, and whether 

the participant vacillates between the two options. Pre-stimulus baseline levels of preparation should be

constant if the probability of either response is kept the same. However, response force has been 

suggested to be affected by stimulus probability, even when response probability is controlled for 

(Mattes, Ulrich, & Miller, 2002), suggesting that probability also has non-perceptual effects. By 

looking at which component(s) of RT is affected by our manipulations, we can have a better idea of the 

potential mechanisms involved.

In summary, the aim was to examine differences between feature and spatial probability across 

two dimensions. Do the two manipulations differ in how domain general they are? Do they have 

similar response profiles? The current chapter outlines a series of modified 2AFC experiments that are 

procedurally similar to allow for comparisons. Experiments 4.1-ori and 4.1-col looked at the effects of 

orientation and color probability when that feature whose probability was manipulated was relevant for 

the detection task. Experiments 4.2-ori and 4.2-col performed identical probability manipulations but 

the task depended on detecting the feature whose probability was not manipulated. In each experiment 

there was also a block where spatial probability was manipulated. Despite always being ‘irrelevant’, 

spatial probability had a consistent effect on ITs and accuracy. In contrast, feature probability effects 

manifested only when the probable feature was relevant for the discrimination (Experiment 4.1), but 

not when irrelevant (Experiment 4.2). In addition, only feature probability affected MTs. Experiment 

4.3 looked at orientation and spatial probability with a more difficult orientation discrimination task, 

with the result that orientation probability showed an increased effect on task accuracy.
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4.2. Experiment 4.1: Methods

Participants

For Experiment 4.1-ori, sixteen participants (median age = 21 years) were recruited (8 females, 

8 males). All reported themselves right-handed. For Experiment 4.1-col, eighteen additional 

participants (median age = 20 years) were recruited (9 females, 9 males). Seventeen reported 

themselves right-handed. All participants had normal or corrected-to-normal vision, and were not 

colorblind.

Stimuli

Oriented square-wave gratings with a circular mask were the target stimuli for the current series

of experiments. These were shown at 50% maximum contrast and colored either blue or green (Figure 

4.1). These green and blue patches were isoluminant at 40cd/m2. The gratings had a spatial frequency 

of 4 cycles per degree of visual angle, and were presented on a gray background with a similar 

luminance. When viewed from a distance of 60cm, the gratings subtended approximately 4 degrees of 

visual angle both vertically and horizontally. Targets were presented either above or below a black 

fixation cross, at an eccentricity of 4 degrees.

Only one grating was presented on each trial. These gratings always had a spatial attribute (top 

or bottom), a color attribute (green or blue) and an orientation attribute (right-titling or left-tilting). 

Both Experiment 4.1-ori and 4.1-col had a feature probability block and a spatial probability block. In 

the spatial block, gratings occurred in one of the two locations 80% of the time (counterbalanced across

participants), and the features (color and orientation) was equiprobable for each location (see Figure 

4.1b for sample sequences). The practice block had uniformly distributed elements (location, color, 

orientations).

70



Figure 4.1. General Paradigm. a) All experiments followed the same basic outline, and there were only 
two possible stimulus locations and colors. In Experiment 4.1 and 4.2, there were only two possible 
orientations, but in Experiment 4.3, orientations followed a continuous distribution. The grating on the 
left example is what is referenced as having a 45-degree tilt. In this case, the participant was 
responding to orientation with one trigger being assigned to each of 45 and 135 degrees. Note how the 
two triggers can be operated independently and simultaneously. b) Trial distribution for Experiment 
4.1-ori for the feature (orientation) and spatial block. The asterisks indicate a low-probability trial for 
that block. The probable orientation/space was counterbalanced across participants.
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For Experiment 4.1-ori, the feature block had equiprobable locations and color, but orientation 

probability was manipulated. Feature probability was manipulated in a location-contingent manner. 

When the grating occurred in one location, it was 80% likely to be right-tilting ( / : 45 degrees). In the 

other location, the left-tilt ( \ : 135 degrees) was 80% likely. Note how the distribution for the feature 

block differs from that of the spatial block (see Figure 4.1b). The location-orientation contingencies 

were counterbalanced across participants. The participants’ task was to report the tilt. Trigger 

assignments were also counterbalanced across participants. Because of the location-contingent 

probability mapping, the probability of response was always equal across the two triggers. This 

location-contingent probability mapping also made the feature probability uniform if space is ignored.

For Experiment 4.1-col, the feature block had equiprobable locations and orientations, but color 

probability was manipulated, again in a location-contingent manner. When the grating occurred in one 

location, it was 80% likely to be blue. In the other location, green was 80% likely. This was 

counterbalanced across participants. Participants were told to detect color and were assigned one 

trigger for green and the other for blue. Trigger assignment was counterbalanced across participants.

Within a block, probability distributions were maintained. For example, in the spatial block, for 

every set of 20 trials, there were 16 gratings on the top, 4 gratings the bottom, etc. Participants were 

not informed about these probability distributions. While the probability type was changed across 

blocks, this was unannounced, and the task from a participant’s view remains the same: In Experiment 

4.1-col, the task was always to detect color; in Experiment 4.1-ori, the task was always to detect 

orientation. Auditory feedback was given after each response to maintain motivation. A high pitched 

sound indicated a correct response. A lower pitch indicated an error.
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Equipment

Stimuli were displayed on a gamma-corrected CRT monitor that refreshed at 89Hz (mean 

refresh = 11.27ms, SD = 0.07ms). An Xbox controller was connected via USB and the xboxdrv package

(https://aur.archlinux.org/packages/xboxdrv/) allowed access to the controller for recording trigger 

force and excursion. Responses were made using the two back triggers of the Xbox 360 wired 

controller. Participants were instructed to hold the triggers half-depressed with their index fingers. This 

allowed us to detect small changes in force at baseline or preceding responses. A continuous measure of

trigger depression (recorded at 2000Hz) was obtained for each trigger. The output scaled from -1 (no 

pressure) to +1 (fully depressed). A value of +0.7 was fixed as the detection threshold and a value of 

-0.7 or less caused the motors in the handles of the controller to rumble giving the participant haptic 

feedback indicating to increase their pressure on the trigger. Stimuli were only displayed when both 

triggers values were within the -0.7 to +0.7 range, i.e. the next trial began only after the participant 

relaxed their response from the previous trial. See Figure 4.2 for example response profiles.

Eye-tracking used an Eyelink1000 recording the dominant eye at 2000Hz and using both pupil 

and corneal signals. Participant head position was stabilized using a chin and forehead rest. Drift 

corrections were done every 100 trials (approximately every 2-4 minutes). A re-calibration was done if 

the fixation was lost. Re-calibrations were also done in between blocks (at approximately the 12 minute

mark). The next trial began only when the participant fixated on the fixation cross, within a radius 

threshold of 0.5 degrees visual angle. This was set-up so that stimuli in the same on-screen locations 

were presented at roughly the same peripheral location retinotopically. This also prevented anticipatory 

saccades prior to a trial.
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Procedure

Prior to the task, participants were instructed as to the trigger assignment, and to maintain 

pressure at about a halfway point unless making a response, in which case they were to pull the 

appropriate trigger as fast as possible. Regardless of whether participants were in the practice, spatial, 

or feature block the task was always the same. Either report orientation in Experiment 4.1-ori, or color 

in Experiment 4.1-col. Participants were not informed of the probability manipulations.

The experiment began with 20 practice trials. The next 800 trials were split into two blocks. The

first block was either the spatial or feature block, and after a short break the other block type was 

administered. Trials began with a fixation phase, where only the black fixation cross was shown. If 

there was central fixation (0.5 degree radius) and the appropriate trigger levels (between -0.7 and +0.7) 

were detected, the grating appeared between 250 and 500ms (uniform distribution) later. The stimulus 

remained on-screen until a response was made, at which point auditory feedback was given, and the 

stimulus disappeared (after 500ms). Participants were asked to minimize blinking when the gratings 

were on the screen, preferably blinking during the feedback period.

During the drift correction (every 100 trials), participants were told to let go of the controller 

and to relax their hands and blink a few times. This was to minimize fatigue. During the break (after 

400 trials), participants were free to remove their head from the chin-rest. The experiment lasted 

approximately 20-25 minutes, after which a questionnaire was administered.

Post-experiment Questionnaire

Before debriefing, participants were given a short questionnaire consisting of the following six 

open-ended questions. This questionnaire was modified from the one used in Chapter 3 to include a 
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question on color, e.g. “Do you think that some colors are more likely at certain times? If yes, please 

elaborate.”

Analysis

Analysis was done using the R statistical software package. With the exception of comparisons 

across experiments, all statistical tests were done within-subjects. Processing was done by running a 

smoothing spline (Figure 4.2a). Response baselines were taken as the median trigger value between 

50ms prior and after stimulus onset. Velocity profiles were taken as a first derivative, and acceleration 

as the second. Trigger acceleration was taken as an indication of force, since Force = Mass x 

Acceleration, and mass can be assumed constant (the units of the force/ acceleration is therefore in 

trigger distance per millisecond squared). Vacillations were identified from the points where 

acceleration goes from positive to zero to negative (the point where the trigger is released). A trial 

could have multiple initiations, either within or across triggers. Initiation times (IT) were back-

calculated from these vacillations/turning points (e.g. where there is a +0.05 increase over the baseline 

within 100ms prior to the turning point). Reaction times (RT) were taken as when a trigger crossed the 

+0.7 threshold. Note that participants could have tried to correct their responses either unsuccessfully 

(Figure 4.2b) or successfully (Figure 4.2c). Number of initiations takes into account these 

‘unsuccessful corrections’. Movement times (MT) were taken as the difference between the RT and the 

first IT.

Accuracy measures were taken at two points. Initial accuracy was taken at first initiation 

(whether or not the participant started by pulling the correct trigger). Final accuracy was taken at the 

point one of the triggers crossed the threshold, where participants were given feedback on their 

response. Change in accuracy due to vacillations was taken as a difference between these two points.

75



Figure 4.2. Trigger profiles of actual sample trials from one participant. a) Typical trial with only one 
response. b) Trial with a vacillation in responses that was too late. c) Trial with a vacillation in 
responses that was in time. The two lines indicate the 2 possible response options (left trigger = blue 
(dotted) line; right trigger = green (solid) line). The upper black line indicate the detection threshold, 
the bottom black line indicates the pressure threshold (the controller rumbles below this value). Note 
how the time required to cross the detection threshold (RT) might be affected by the vacillations. The 
two vertical lines represent the initiation time and RT respectively.
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4.3. Experiment 4.1: Results

Response baselines (M = 0.0, SD = 0.3), as per instructions, were halfway between a complete 

pull (+1) and a complete release (-1), with some variability across participants. Importantly, these 

baselines were equivalent across all blocks of all experiments (all ps >.05). This was likely because in 

all cases, the probability of the left and right response was 50/50, suggesting that there was no pre-

stimulus response preparation. It is conceivable that participants could have been inclined to respond 

with the probable trigger once the stimulus has been shown. To rule out a post-stimulus response-bias 

account, for each trial, the trigger states just (10ms) prior to the point of response initiation were also 

noted and compared against the response baselines for that trial. For both the initiated and non-initiated

triggers, and in all blocks of all the experiments, there was no change in response states between the 

time of stimulus presentation and the time of initiation (all ps >.05).

There was also no clear bias towards the left or right trigger (ps >.05), despite most participants 

being right-handed. Handedness is unlikely to affect the results because all stimuli-to-response 

associations were counterbalanced across participants. Potential order effects (e.g. whether the spatial 

or feature block was first) were examined, and the data were found to be independent of order (ps > .

05).

Experiment 4.1-ori (spatial  + orientation probability, orientation detection)

Reaction Time

For Experiment 4.1-ori, in the block where spatial probability was unequal there was an effect 

of spatial probability on RT (Figure 4.3). Orientations at the high-probability location were reported 

faster (M = 564ms, SD = 96ms), than at the low-probability location (M = 631ms, SD = 112ms), (t(15) 

= 9.45 , p < .001). Breaking down RT into the IT and MT components revealed that ITs were 
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significantly affected by spatial probability, with orientations in the high-probability location being 

initiated faster (M = 451ms, SD = 86ms), than at the low-probability location (M = 510ms, SD = 88ms),

(t(15) = 10.07 , p < .001). However, there was no effect of spatial probability on MTs. MTs at high-

probability locations (M = 114ms, SD = 55ms) were not significantly different from the low-probability

location (M = 121ms, SD = 63ms), (t(15) = 1.48 , p = .160). Force of the trigger pull was not affected 

across high (M = 0.002) and low (M = 0.002) probability locations (t(15) = 1.62 , p = .126).

For the feature (orientation) probability block there was also an effect of probability on RT. 

High-probability orientations were detected faster (M = 546ms, SD = 64ms), than the low-probability 

orientations (M = 614ms, SD = 67ms), (t(15) = 10.93 , p < .001). ITs were significantly affected by 

feature probability, with responses to high-probability orientations being initiated faster (M = 438ms, 

SD = 74ms), than low-probability orientations (M = 485ms, SD = 84ms), (t(15) = 7.55 , p < .001). 

Unlike with spatial probability, there was a significant effect of feature probability on MTs. MTs 

associated with high-probability orientations (M = 108ms, SD = 47ms) were significantly faster than 

for low-probability orientations (M = 129ms, SD = 56ms), (t(15) = 3.58 , p = .003). Force of the trigger 

pull was not affected across high (M = 0.003) and low (M = 0.002) probability orientations (t(15) = 

1.38 , p = .188).

For comparison, the effect of spatial probability on RT (M = 67ms, SD = 28ms) and the effect of

feature probability on RT (M = 68ms, SD = 25ms) were not significantly different from one another, 

(t(15) = 0.17 , p = .870). Bayesian testing (BF = .259 [± <0.01%] ) supports the null hypothesis: The 

effect of spatial and feature probability on total RT was equivalent, even though the effect on the ITs 

and MTs components differed.
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Figure 4.3. Mean reaction time, and trends for each participant. Blue (dark) = High-probability; Red 
(light) = Low-probability. Panel rows refer to a different experiment, panel columns refer to either the 
spatial or feature block within the experiment.
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Accuracy and Vacillations

For Experiment 4.1-ori, in the spatial block there was an effect of spatial probability on final 

accuracy (Figure 4.4), with orientations in the high-probability locations being responded to more 

accurately (M = 96.7%, SD = 2.3%), than in the low-probability locations (M = 95.0%, SD = 2.9%), 

(t(15) = 3.37 , p = .004). There was no effect of spatial probability on the amount of vacillations, with 

orientations in the high-probability locations being as directly responded to (M = 0.174, SD = 0.250), as

in the low-probability locations (M = 0.174, SD = 0.241), (t(15) = 0.02 , p = .987). Bayesian testing 

(BF = .255 [± <0.01%] ) supports the null hypothesis. Vacillations improved initial to final accuracy (ps

< .05), this improvement was marginally different across high (M = 4.4%) and low (M = 5.1%) 

probability locations, (t(15) = 1.96 , p = .069). Bayesian testing (BF = 1.17 [± 0.01%]) suggests that 

this trend is of minimal impact.

In the feature block there was an effect of orientation probability on final accuracy, with high-

probability orientations being responded to more accurately (M = 97.7%, SD = 2.0%), than in the low-

probability orientations (M = 89.3%, SD = 6.6%), (t(15) = 6.08 , p < .001). There was no significant 

effect of orientation probability on the amount of vacillations, with high-probability orientations being 

responded to more directly (M = 0.169, SD = 0.263), than in the low-probability orientations (M = 

0.199, SD = 0.260), (t(15) = 1.74 , p = .102). Bayesian testing (BF = 0.875 [± 0.01%]) supports the null

hypothesis. Again, vacillations improved initial to final accuracy (ps < .05), this improvement was 

marginally different across high (M = 4.0%) and low (M = 7.0%) probability orientations, (t(15) = 

2.06 , p = .057). Bayesian testing (BF = 1.36 [± 0.01%]) suggests that this trend is of minimal impact.

For comparison, the effect of spatial probability on final accuracy (M = 1.7%, SD = 2.0%) was 

significantly smaller than the effect of orientation probability on final accuracy (M = 8.4%, SD = 
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5.5%), (t(15) = 4.94 , p < .001). The increase in accuracy due to vacillations was lower in the spatial 

probability block (M = 0.7%) than in the orientation probability block (M = 3.1%), although this was 

statistically insignificant (t(15) = 1.70, p = .110).
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Figure 4.4. Mean accuracy, and trends for each participant. Blue (dark) = High-probability; Red (light) 
= Low-probability. Panel rows refer to a different experiment, panel columns refer to either the spatial 
or feature block within the experiment.
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Experiment 4.1-col (spatial + color probability, color detection)

Reaction Time

For Experiment 4.1-col, in the spatial block there was an effect of spatial probability on RT, 

with colors at the high-probability location being detected faster (M = 500ms, SD = 58ms), than at the 

low-probability location (M = 518ms, SD = 58ms), (t(17) = 3.63 , p = .002). ITs were significantly 

affected by spatial probability, with responses to colors in the high-probability locations being initiated 

faster (M = 400ms, SD = 68ms), than at the low-probability locations (M = 414ms, SD = 77ms), (t(17) 

= 2.87 , p = .011). However, there was no effect of spatial probability on MTs, with MTs associated 

with high-probability locations (M = 99ms, SD = 26ms) not significantly different from low-probability

locations (M = 104ms, SD = 33ms), (t(15) = 1.06 , p = .304). Force of the trigger pull was not affected 

across high (M = 0.002) and low (M = 0.001) probability locations, (t(17) = 1.02 , p = .321).

For the feature (color) probability block there was an effect of probability on RT, with high-

probability colors being detected faster (M = 474ms, SD = 59ms), than low-probability colors (M = 

527ms, SD = 56ms), (t(17) = 8.89 , p < .001). ITs were significantly affected by color probability, with 

response to high-probability colors being initiated faster (M = 380ms, SD = 66ms), than low-

probability colors (M = 416ms, SD = 74ms), (t(17) = 8.10 , p < .001). Unlike with spatial probability, 

there was a significant effect of color probability on MTs, with movement times associated with high-

probability colors (M = 95ms, SD = 25ms) being significantly faster than for low-probability colors (M 

= 111ms, SD = 33ms), (t(17) = 3.20 , p = .005). Force of the trigger pull was not affected across high 

(M = 0.002) and low (M = 0.002) probability colors (t(17) = 0.54 , p = .596).

For comparison, the effect of spatial probability on RT (M = 18ms, SD = 21ms) and the effect of

color probability on RT (M = 52ms, SD = 25ms) were significantly different from one another, (t(17) = 
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4.48 , p < .001). Across the two experiments, it was also evident that discriminating of orientations 

(Experiment 4.1-ori) was associated with a larger overall RT than the discrimination of colors 

(Experiment 4.1-col), for the spatial and feature blocks (both ps < .001).

Accuracy and Vacillations

For Experiment 4.1-col, in the spatial block there was an effect of spatial probability on final 

accuracy, with colors in the high-probability locations being responded to more accurately (M = 95.6%,

SD = 3.3%), than in the low-probability locations (M = 93.2%, SD = 4.5%), (t(17) = 2.60 , p = .019). 

There was no effect of spatial probability on the amount of vacillations, with colors in the high-

probability locations being as directly responded to (M = 0.143, SD = 0.147), as in the low-probability 

locations (M = 0.155, SD = 0.188), (t(17) = 0.83 , p = .420). Bayesian testing (BF = .328 [± 0.01%] ) 

supports the null hypothesis. Vacillations improved initial to final accuracy (ps < .05), this 

improvement was marginally different across high (M = 4.8%) and low (M = 5.4%) probability 

locations, (t(17) = 0.80 , p = .434). Bayesian testing (BF = 0.323 [± 0.01%] ) supports the null 

hypothesis.

In the feature block there was an effect of color probability on final accuracy, with high-

probability colors being responded to more accurately (M = 97.5%, SD = 2.2%), than in the low-

probability colors (M = 89.1%, SD = 6.5%), (t(17) = 6.23 , p < .001). There was a marginally 

significant effect of color probability on the amount of vacillations, with high-probability color being 

responded to more directly (M = 0.143, SD = 0.174), than the low-probability colors (M = 0.177, SD = 

0.160), (t(17) = 2.04 , p = .057). Bayesian testing (BF = 1.31 [± <0.01%] ) suggests that this trend is of 

minimal impact. Again, vacillations improved initial to final accuracy (ps < .05), and this improvement 
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was smaller for the high (M = 4.0%) than for low (M = 8.3%) probability colors, (t(17) = 4.48, p < .

001). Bayesian testing (BF = 98.5 [± 0.01%] ) suggests that this trend is of moderate to strong impact.

For comparison, the effect of spatial probability on final accuracy (M = 2.4%, SD = 3.9%) was 

significantly smaller than the effect of color probability on final accuracy (M = 8.4%, SD = 5.7%), 

(t(17) = 4.21 , p < .001). The increase in accuracy after vacillations was also lower in the spatial 

probability block (M = 0.5%) than in the color probability block (2.9%), (t(17) = 3.05, p = .007). 

Across the two experiments, discriminating of orientations (Experiment 4.1-ori) was not overall 

significantly more or less accurate than the discrimination of colors (Experiment 4.1-col), for either the 

spatial or the feature blocks (both ps > .05).

Post-experiment questionnaires

Consistent with the previous studies (Chapter 2 and 3), most of the participants did not realize 

that there were probability manipulations. Of the ones that did report something about the probability 

of a stimulus (7 out of 34 participants), only the spatial probability manipulation was accurate (e.g. ‘the

top was more likely’). Comments on the orientation or color probability were limited to ‘things that 

look like ‘‘/’’ were more frequent’ or ‘blue felt more likely’. Neither of these were true, since the 

feature probability was spatially-contingent in all cases: If “/” was more likely when the grating 

appeared at the top location, “\” was more likely when the grating appeared at the bottom location. The 

same trends in the questionnaire responses were seen in the later experiments as well.

4.4. Experiment 4.1: Discussion

As with most studies on probability, participants were faster and more accurate when 

responding to probable objects than to improbable ones. Orientation, color and spatial probability 
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appear to have affected RT in a similar manner if one ignores the breakdown into MTs and ITs. (Figure 

4.3). While both spatial and feature probability affected ITs, only the latter had an impact on MTs, 

perhaps indicating increased confidence in responses. This logically should be tied down to the number

of vacillations made or to response force, but those measures are likely too insensitive given a scenario 

where accuracies are high: Participants tend to initiate the correct trigger in the current experiment (see 

Experiment 4.3 for comparison with a more difficult task).

In addition to MT, both forms of feature probability (orientation/color) also seem to have an 

exaggerated impact on discrimination accuracy as compared to spatial probability, by a factor of 3 or 4.

One possible reason is that space in this context is uninformative to the response, whereas learning of 

the feature probabilities is informative. The other possibility is that feature probability is helping to 

shape perceptual precision. We return to this issue in Experiment 4.3.

Spatial and feature probability were non-equivalent manipulations in Experiment 4.1. The 

feature was directly informative to the response choice, but space was not. What happens when an 

irrelevant feature is made probable? Is the color of a grating with a probable orientation better 

discriminated than the color of a grating with an improbable orientation? Likewise, is the orientation of

a grating with a probable color better detected than the orientation of a grating with an improbable 

color? A feature-tuning hypothesis might predict that only tuning the relevant feature is going to result 

in an effect. On the other hand, an object-based attentional hypothesis (e.g. Egly, Driver, & Rafal, 

1994) might predict that instances of objects with the probable feature might be attended to more than 

if the feature is improbable.
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Experiment 4.2 examined this idea. By looking at irrelevant feature probabilities and comparing

the results to Experiment 4.1 we can determine what the impact of feature-relevance (if any) might be 

on the probability effect, and to address whether feature probability is as domain-general as spatial 

probability appears to be.

4.5. Experiment 4.2: Methods

Experiment 4.2 was largely similar to Experiment 4.1. As before, both experiments consisted of 

a spatial block and a feature block, not necessarily in that order. However, for the feature blocks the 

discrimination task was on a feature that was not the feature that had its probability manipulated. 

Experiment 4.2-col examined the orientation probability manipulation from Experiment 4.1-ori, but 

with the color detection task of Experiment 4.1-col. Experiment 4.2-ori examined the color probability 

manipulation from Experiment 4.1-col, but with the orientation detection task of Experiment 4.1-ori. 

The spatial blocks were identical.

Participants

For Experiment 4.2-col, sixteen additional participants (median age = 21 years) were recruited 

(11 females, 5 males), in exchange for course credits. All reported themselves right-handed. For 

Experiment 4.2-ori, fifteen additional participants (median age = 21 years) were recruited (11 females, 

4 males). Fourteen reported themselves right-handed.

Apart from flipping the task instructions, all aspects of Experiment 4.2 were equivalent to 

Experiment 4.1.
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4.6. Experiment 4.2: Results

Experiment 4.2-col (spatial  + orientation probability, color detection)

Reaction Time

For Experiment 4.2-col, in the spatial block there was an effect of spatial probability on RT, 

with colors in the high-probability locations being detected faster (M = 482ms, SD = 71ms), than in the 

low-probability locations (M = 501ms, SD = 67ms), (t(15) = 5.14 , p < .001). ITs were significantly 

affected by spatial probability, with responses to colors in the high-probability locations being initiated 

faster (M = 392ms, SD = 71ms), than at the low-probability locations (M = 407ms, SD = 71ms), (t(15) 

= 4.61 , p < .001). However, there was no effect of spatial probability on MTs, with movement times 

associated with high-probability locations (M = 89ms, SD = 31ms) not being significantly different 

from low-probability locations (M = 95ms, SD = 30ms), (t(15) = 1.34 , p = .201). Force of the trigger 

pull was also not affected across high (M = 0.002) and low (M = 0.003) probability locations, (t(15) = 

0.97 , p = .349).

For the feature (orientation) probability block there was no significant effect of probability on 

RT, with the color of high-probability orientations (M = 478ms, SD = 52ms), taking as long as the low-

probability orientations (M = 478ms, SD = 58ms) to detect, (t(15) = 0.14 , p = .887). Unsurprisingly, 

neither IT nor MT nor force was affected by orientation probability (all ps > .05). The Bayesian tests of

orientation probability on RT in Experiment 4.1-ori (BF = 798183 [± <0.01%] ) and Experiment 4.2-

col (BF = .258 [± <0.01%]) clearly support opposing hypotheses.

Accuracy and Vacillations

For Experiment 4.2-col, in the spatial block there was an effect of spatial probability on final 

accuracy, with colors in the high-probability locations being responded to more accurately (M = 95.7%,
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SD = 2.9%), than in the low-probability locations (M = 93.0%, SD = 5.2%), (t(15) = 3.57 , p = .003). 

There was no effect of spatial probability on the amount of vacillations, with colors in the high-

probability locations being as directly responded to (M = 0.136, SD = 0.203), as in the low-probability 

locations (M = 0.153, SD = 0.214), (t(15) = 1.53 , p = .148). Vacillations improved initial to final 

accuracy (ps < .05), this improvement was not significantly different across high (M = 4.7%) and low 

(M = 5.2%) probability locations, (t(15) = .55 , p = .589).

In the feature block there was no effect of orientation probability on final color accuracy, with 

colors of high-probability orientations being responded to as accurately (M = 95.2%, SD = 2.6%), as 

the low-probability orientations (M = 95.5%, SD = 2.9%), (t(15) = 0.49 , p = .626). As with RT, the 

Bayesian tests of orientation probability on color accuracy in Experiment 4.1-ori (BF = 1141 [± 

<0.01%] ) and Experiment 4.2-col (BF = .284 [± <0.01%]) clearly support opposing hypotheses. There 

was no significant effect of orientation probability on the amount of vacillations, or on the 

improvement of initial to final accuracy (all ps > .05).

Experiment 4.2-ori (spatial  + color probability, orientation detection)

Reaction Time

For Experiment 4.2-ori, there was an effect of spatial probability on RT, with orientations in the 

high-probability locations being detected faster (M = 590ms, SD = 67ms), than in the low-probability 

locations (M = 655ms, SD = 82ms), (t(14) = 4.70 , p < .001). ITs were significantly affected by spatial 

probability, with responses to orientations at the high-probability locations being initiated to faster (M =

479ms, SD = 92ms), than at the low-probability locations (M = 538ms, SD = 105ms), (t(14) = 4.49, p 

< .001). However, there was no effect of spatial probability on MTs, with movement times associated 

with high-probability locations (M = 111ms, SD = 54ms) not being significantly different from low-
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probability locations (M = 117ms, SD = 54ms), (t(14) = 1.51 , p = .154). Force of the trigger pull was 

also not affected across high (M = 0.002) and low (M = 0.001) probability locations, (t(14) = 1.05, p = .

308).

For the feature (color) probability block there was no significant effect of probability on RT, 

with the orientation of high-probability colors (M = 105ms, SD = 47ms), taking as long as the low-

probability colors (M = 111ms, SD = 52ms) to detect, (t(14) = 1.71 , p = .109). Unsurprisingly, neither 

IT nor MT nor force was affected by color probability (all ps > .05). The Bayesian tests of color 

probability on RT in Experiment 4.1-col (BF = 9.06 [± <0.01%] ) and Experiment  4.2-col (BF = 0.85 

[± 0.01%]) clearly support opposing hypotheses. As with Experiment 4.1, it was again evident that 

discriminating of orientations (Experiment 4.2-ori) was in general associated with a larger RT than the 

discrimination of colors (Experiment 4.2-col), for the spatial and feature blocks (both ps < .001).

Accuracy and Vacillations

For Experiment 4.2-ori, there was an effect of spatial probability on final accuracy, with 

orientations at the high-probability location being responded to more accurately (M = 94.9%, SD = 

3.3%), than at the low-probability location (M = 92.2%, SD = 6.5%), (t(14) = 2.28 , p = .039). There 

was no effect of spatial probability on the amount of vacillations, with orientations in the high-

probability locations being as directly responded to (M = 0.202, SD = 0.295), as at the low-probability 

locations (M = 0.206, SD = 0.267), (t(14) = 0.27 , p = .790). Vacillations improved initial to final 

accuracy (ps < .05), this improvement was not significantly different across high (M = 5.7%) and low 

(M = 6.2%) probability locations, (t(14) = .77 , p = .453).
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In the feature block there was no effect of color probability on final orientation accuracy, with 

orientations of high-probability color being responded to as accurately (M = 92.5%, SD = 6.6%), as the 

low-probability colors (M = 93.8%, SD = 5.1%), (t(14) = 1.00 , p = .336). As with RT, the Bayesian 

tests of color probability on orientation accuracy in Experiment 4.1-col (BF = 2399 [± <0.01%] ) and 

Experiment 4.2-ori (BF = .402 [± 0.01%]) clearly support opposing hypotheses. There was no 

significant effect of color probability on the amount of vacillations, or on the improvement of initial to 

final accuracy (all ps > .05). As with Experiment 4.1, discriminating of orientations (Experiment 4.2-

ori) was overall not significantly more or less accurate than the discrimination of colors (Experiment 

4.2-col), for either the spatial or the feature blocks (both ps > .05).

Post-experiment questionnaires

As with Experiment 4.1, most of the participants did not realize that there were probability 

manipulations. Of the ones that did (6 out of 31 participants), they only described the spatial probability

manipulation accurately.

4.7. Experiment 4.2: Discussion

The spatial probability effects from Experiment 4.1 were replicated. Even though the location 

was not the dimension that participants had to report, spatial probability effects on RT and accuracy 

were robust. The effects of spatial probability stem from modulations in IT rather than MT. The same 

does not hold true for either form of feature probability. When relevant for the task, the effects of 

orientation or color probability on RT and accuracy are robust (Experiment 4.1). When irrelevant to the 

task, their effects are completely eliminated (Experiment 4.2). This pattern of results is inconsistent 

with an object-based attention account (e.g. Egly, Driver, & Rafal, 1994). For example, in Experiment 

4.1, the contingency of location and color has an apparent effect on color detection. If this is because 
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blue objects, being the expected color for that location, are ‘attended’ to, orientations shown in blue 

should also be better detected as well. Instead, Experiment 4.2 suggests that color probability creates no

advantage in orientation detection of colored stimuli.

At first glance, the findings from Experiment 4.2 seem counter to that demonstrated in the 

visual search literature. For example, colour probability affects search RT even if the response is about 

orientation (Sha, Remington, & Jiang, 2017). However, colour probability is known to affect search 

efficiency (Cort & Anderson, 2013): If the target is likely to possess a certain colour, the RT advantage 

might be due to participants prioritizing the stimuli possessing that colour in the search, rather than 

focusing on the stimuli that have non-probable colours. With the current task, stimuli are only 

presented one at a time, and therefore color probability is irrelevant to orientation discrimination.

Perhaps a feature-based attention account can explain the differences between Experiments 4.1 

and 4.2? If orientation probability is irrelevant to color discrimination, there is no need to attend to 

orientations, explaining the null result in Experiment 4.2-col. However, this argument cannot apply to 

Experiment 4.2-ori. The stimuli used were spatial gratings, and while color can be deciphered without 

having to process orientation information, the reverse is not true: Orientations can be deciphered only 

by processing (and attending to) the color-bands. This idea that orientation perception is more involved 

than color processing is supported by the finding that orientation discrimination consistently took 

longer than color discrimination. Yet, color probability did not affect orientation discrimination on any 

of the metrics.

While spatial probability creates object-general effects, feature probability creates feature-

specific effects. This comports with the hypothesis that orientation probability shares some mechanisms
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with orientation training effects (such as that that has been demonstrated in monkeys). The tuning 

functions of orientation selective neurons in V1 that prefer trained orientations are ‘sharpened’ 

(Ringach, Hawken & Shapley, 1997; Schoups et al., 2001). A similar mechanism could also occur for 

other feature dimensions. Color-selective neurons also exist in V1 (Hanazawa, Komatsu, & Murakami, 

2000; Johnson, Hawken, & Shapley, 2008), and the tuning process for color-probability could 

mechanistically work in the same way as for orientation-probability, only that a different pool of V1 

neurons might be involved.

The non-selective benefits of spatial bias can be understood as a gain mechanism (e.g. Carrasco,

2011; Ling, Liu & Carrasco, 2009). Unlike with orientation probability (Ringach, Hawken & Shapley, 

1997) where only the feature-relevant neurons are facilitated, spatial cues provide no information about

the features of the upcoming target stimuli. These are the likely reasons why spatial probability 

improves detection, but not orientation precision (Chapter 3), particularly since it has been argued that 

tuning changes are required for perceptual precision to change (Yaeli & Meir, 2010).

If spatial probability affects detection rather than precision, an extension of the current task that 

emphasizes discrimination over detection should further differentiate spatial and feature probability 

effects. In Experiment 4.3, a restricted 41 degree range of orientations that bounded a 45 degree 

orientation was used. The task was to discriminate the more vertical and more horizontal orientations 

using the same triggers used in the earlier experiments. In addition, this manipulation allowed us to 

assess perceptual difficulty on a continuous scale by looking at accuracy rates for orientations nearer or

further away from the 45 degree boundary. For example, in response to a 44 degree grating, spatial 

probability might increase the firing rate not just of neurons that prefer a 44 degree stimulus, but all 

neurons coding for that space. Given that the neurons preferring the 44 and 46 degree tilts likely have 
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similar firings to begin with, non-selective gain process should not be expected to help the discriminate

between the two tilts, since both might be equally gained, resulting in poor performance in this task. In 

contrast, neural tuning that result from perceptual learning is selective (Ringach, Hawken & Shapley, 

1997; Schoups et al. 2001), and can lead to better perceptual discrimination (Gilbert, 1994; Yaeli & 

Meir, 2010). As a result, one might expect that orientation probability improves orientation 

discrimination even in cases where spatial probability cannot.

4.8. Experiment 4.3: Methods

Experiment 4.3 largely followed the design of Experiment 4.1-ori. Orientation and spatial 

probability were examined with an orientation discrimination task. The stimuli were shown in the same

two locations as in the previous experiments, and in the same two colors. The main difference was that 

instead of having just two discrete possible orientations (45 or 135 degrees), orientations occupied the 

limited span of 25 to 65 degrees (any integer value, except for the middle 45 degree tilt was possible). 

Using the two triggers, participants were asked to discriminate clockwise and anti-clockwise from 45 

degrees. Orientation probability was manipulated by making either the anti-clockwise (25-44 degrees) 

or clockwise (46-65 degrees) orientations more probable (80% occurrence). As before, this was 

counterbalanced by location.

Participants

Thirty-four additional participants (median age = 19 years) were recruited (26 females, 8 

males), in exchange for course credits. Thirty-three reported themselves right-handed. The sample size 

was doubled for this experiment because we wanted to better examine the effect of probability across 

the different possible orientations. Data from one participant was dropped because of chance-level 

accuracy (beyond 2.5 SDs of the mean of other participants).
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4.9. Experiment 4.3: Results

Reaction Time

In both the spatial and feature probability blocks, RTs and ITs were much longer (ps < .05) than 

in previous experiments, while MTs were not (ps > .05). The response force was also only about 10% 

of those from previous experiments (ps <.05).

There was an effect of spatial probability on RT, with responses to orientations at the high-

probability locations being faster (M = 851ms, SD = 136ms), than at the low-probability location (M = 

955ms, SD = 140ms), (t(32) = 9.45 , p < .001). ITs were significantly affected by spatial probability, 

with responses to orientations at the high-probability locations initiated faster (M = 740ms, SD = 

133ms), than at the low-probability locations (M = 840ms, SD = 149ms), (t(32) = 9.25, p < .001). 

However, there was no effect of spatial probability on MTs, with movement times associated with high-

probability locations (M = 110ms, SD = 36ms) not being significantly different from low-probability 

locations (M = 115ms, SD = 55ms), (t(32) = 0.81, p = .422). Force of the trigger pull was affected, with

high probability locations being responded to more forcefully (M = 0.00018) than low probability 

locations (M = 0.00016), (t(32) = 6.63 , p < .001).

There was also an effect of feature (orientation) probability on RT, with high-probability 

orientations being detected faster (M = 839ms, SD = 133ms), than low-probability orientations (M = 

881ms, SD = 140ms), (t(32) = 4.04 , p < .001). ITs were significantly affected by orientation 

probability, with responses to high-probability orientations being initiated faster (M = 730ms, SD = 

121ms), than at the low-probability orientations (M = 767ms, SD = 140ms), (t(32) = 3.77, p < .001). 

However, there was no effect of orientation probability on MTs, with movement times associated with 

high-probability orientations (M = 110ms, SD = 44ms) not significantly different from low-probability 
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orientations (M = 114ms, SD = 56ms), (t(32) = 0.89 , p = .379). Force of the trigger pull was also 

affected, with high probability orientations being responded to more forcefully (M = 0.00019) than low 

probability orientations (M = 0.00017), (t(32) = 4.09, p < .001).

96



Figure 4.5. Experiment 4.3 performance as a function of orientation and probability. a) Reaction Time 
and b) Accuracy across orientations in Experiment 4.3. Blue (dark) = High-probability; Red (light) = 
Low-probability. Error bars represent one standard error. The middle bins correspond to the orientations
near the discrimination boundary (45 degrees).
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Accuracy and Vacillations

In both the spatial and feature probability blocks, accuracy was reduced from previous 

experiments, as one would predict with a more difficult task (ps < .05). Both vacillations and the 

improvements from initial to final accuracy were also reduced (ps <.05).

There was a marginal effect of spatial probability on final accuracy, with orientations in the 

high-probability locations being responded to slightly more accurately (M = 77.6%, SD = 10.3%), than 

in the low-probability locations (M = 75.5%, SD = 12.5%), (t(32) = 1.80 , p = .082). There was no 

effect of spatial probability on the amount of vacillations (M (high) = 0.091, SD = 0.079; M (low) = 

0.093, SD = 0.08), t(32) = 0.38 , p = .706). Vacillations improved initial to final accuracy (ps < .05), but

this improvement was not significantly different across high (M = 1.3%) and low (M = 0.8%) 

probability locations, (t(32) = 1.48 , p = .148).

In contrast, there was a significant effect of feature (orientation) probability on final accuracy, 

high-probability orientations being responded to more accurately (M = 82.0%, SD = 7.5%), than the 

low-probability orientations (M = 72.6%, SD = 15.2%), (t(32) = 4.89 , p < .001). This accuracy increase

was larger than in other experiments (ps < .05). There was no effect of orientation probability on the 

amount of vacillations, with high-probability orientations being as directly responded to (M = 0.096, 

SD = 0.078), as the low-probability orientations (M = 0.099, SD = 0.088), (t(32) = 0.38 , p = .705). 

Vacillations improved initial to final accuracy (ps < .05), but this improvement was not significantly 

different across high (M = 0.9%) and low (M = 1.2%) probability orientations, (t(32) = 0.81 , p = .423).
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Orientation Binning

As a final set of analyses, the different sets of orientations were binned. In the RTs for the 

feature (orientation) block (Figure 4.5a), there was a significant main effect of probability (F(1,30) = 

17.4, MSE = 17766, p < .001), a significant main effect of orientation bin (F(7,223) = 9.25, MSE = 

21124, p < .001), and no significant interaction effect (F(7,222) = 0.296, MSE = 13368, p = .955). On 

the accuracy scores (Figure 4.5b) there was a significant main effect of probability (F(1,32) = 26.9, 

MSE = 0.046, p < .001), a significant main effect of orientation bin (F(7,224) = 45.32, MSE = 0.022, p 

< .001), and no significant interaction effect (F(7,224) = 1.22, MSE = 0.011, p = .292).

For the spatial block there was a significant main effect of probability (F(1,31) = 91.5, MSE = 

19640, p < .001), significant main effect of orientation bin (F(7,223) = 17.1, MSE = 17092, p < .001), 

and a significant interaction effect (F(7,222) = 2.2, MSE = 16079, p = .018). To qualify this interaction, 

the maximum effect of bins was looked at for each of the four experimental conditions. This change in 

RT due to orientation bins was significantly larger for the low-probability locations (mean of 250ms), 

and opposed to the changes in RT due to orientation bins for the high-probability locations (120ms), for

low probability orientations (140ms), and for high-probability orientations (130ms), (all ps < .05). 

Changes in RT due to orientation bins among the latter 3 conditions were not significantly different 

from each other (ps > .05).

On the accuracy scores  while there was a significant main effect of orientation bin (F(7,224) = 

51.09, MSE = 0.021, p < .001), there was no significant main effect of probability (F(1,32) = 2.8, MSE 

= 0.017, p = .103), and no significant interaction effect (F(7,224) = 1.84, MSE = 0.014, p = .080).
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Post-experiment questionnaires

Again, most of the participants did not realize that there were probability manipulations. Of the 

ones that did (4 out of 33 participants), they only described the spatial probability manipulation 

accurately.

4.10. Experiment 4.3: Discussion

Experiment 4.3 was essentially a more difficult version of Experiment 4.1-ori. Accuracy scores 

confirmed the increased difficulty. RTs and ITs also increased. The increased difficulty may have also 

caused participants to be more deliberate as responses were made less forcefully, and with fewer 

vacillations. This is likely what caused differences in response force between high and low-probability 

locations/orientations to manifest. Binning the orientations suggests that the difficulty of the 

discrimination was maximal near the classification boundary, where RTs were longest and accuracy 

poorest.

As with Experiment 4.1-ori, RTs were faster for both the probable orientations and the probable 

locations. However, with the more difficult experiment, the effect on accuracy was wiped out for 

spatial probability, but magnified for orientation probability. Given the hypothesis that only orientation 

probability should improve perceptual precision when perceptual discrimination is difficult, it would 

seem puzzling why there would be an interaction between spatial probability and the orientation bins 

on RT. However, what should be noted is that the accuracy for the orientation discrimination 

approaches 50% (i.e. guessing) for the most difficult bin. Additionally, the effect of bins is much larger 

for the low-probability locations than for the high-probability locations or high/low orientation 

probability. Together these would suggest that there is a RT cost for guessing at low-probability 

locations rather than a benefit of perception for high-probability locations. These results match that of 
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Chapter 3, where orientation probability was found to affect perceptual precision, while spatial 

probability was only found to affect guessing.

4.11. Discussion

Probable objects are detected better (Miller & Pachella, 1973; Laberge & Tweedy, 1964; Hon, 

Yap & Jabar, 2013), as are objects in probable locations (Druker & Anderson, 2010; Fecteau, 

Korjoukov, & Roelfsema, 2009; Geng & Behrmann, 2005; Jiang et al., 2015; Rich et al., 2008; Vincent,

2011; Walthew & Gilchrist, 2006; Wolfe et al., 2007). However, using an orientation estimation task, it 

was previously demonstrated that manipulations of the orientation of a grating leads to effects distinct 

from spatial probability manipulations (Chapter 3). While both feature and location probabilities 

shortened reaction time, only feature (orientation) probability increased perceptual precision. Spatial 

probability affected detection/guess rates, with the precision of estimates of detected objects 

unchanged.

The current study provides additional support for the hypothesis that feature and spatial 

probability effects are distinct, similar to how feature and spatial attention effects are distinct (Carrasco,

2011). While the RT benefits as a whole seem superficially similar, breakdown of the RTs revealed that 

spatial probability consistently affected only the initiation times. In contrast, feature (orientation/color) 

probability also modulated the movement times associated with the trigger presses, at least when the 

detection task was easy (Experiment 4.1). These data highlight that participant ‘choices’ are often 

compressions of perceptual and response processes into binary (on/off) button responses. This can 

create problems when attempting to infer mechanisms from the shape of the RT distributions when a 

standard keyboard response is used, since it would be indecipherable whether the changes in RT 

derived from changes in perceptual or in response processes.
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As a behavioral measure, initiation times might better capture the perceptual component of 

‘detection’ time (Smeets, Wijdenes, & Brenner, 2016). On the other hand movement time may more 

closely track confidence (Jabar & Anderson, 2015). Shorter movement times suggest that feature 

probability affects both perception and confidence, the latter of which is diluted when the task is very 

difficult and confidence generally low (Experiment 4.3). Increased confidence is not due to pre-

stimulus response preparation since probable features were spatially-contingent, and as spatial locations

in the feature block was equiprobable, there was no opportunity to prepare a particular response prior 

to a stimulus onset. In addition, we found that there were no changes to response preparation prior to 

the point of response initiation, at which point the initial accuracy and IT already demonstrated effects 

of spatial and feature-probability.

Differences between the probability types extend beyond RT. In Experiment 4.1, feature 

probability had a pronounced effect on accuracy. This was amplified when the task was made more 

perceptually difficult. In Experiment 4.3, only feature probability affected accuracy. This is likely 

related to the idea that feature probability improves perceptual precision, while spatial probability does 

not (Chapter 3). While spatial probability might help with detection on a coarse level (Experiments 4.1 

and 4.2), it does not aid in discriminating between similar orientations. This suggests separate 

mechanisms, particularly as spatial probability effects readily manifest when the response is not 

dependent on location. Feature probability only seems to manifest when the probable feature is the 

basis for the perceptual judgment.

What are these mechanisms? Space-based attentional manipulations are thought to invoke gain-

mechanisms (Carrasco, 2011), such as increasing the input baseline levels of neural activity (Cutrone, 

Heeger, & Carrasco, 2014). Spatial probability has been found to modulate the posterior parietal cortex,
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a component of the dorsal attention network, as well as the frontal eye fields (FEF; Tseng et al., 2013). 

Spatial cues also activate the FEF, and the activity lingers even after the cue disappears, suggesting a 

role in spatial attention and the maintenance of spatial information (Armstrong, Chang, & Moore, 

2009). Because spatial probability and spatial cuing share these higher-order regions, it is likely that 

spatial probability also modulates the perceptual processing regions like V1 in a 'top-down' and 

domain-general manner.

Feature probability, on the other hand, improves perceptual precision and is relevance-specific. 

In visual search, target color probability has been shown to affect the speed of judging the targets 

orientation (Sha, Remington & Jiang, 2017), presumably by helping in discriminating or prioritizing 

the target from distractors. However, in our Experiment 4.2 color probability was not relevant to the 

orientation of the stimulus, since only the target was on-screen.  Not only is this relevance-specificity 

opposing the trends seen with spatial probability, it is also in contradiction to an object-based attention 

account (e.g. Egly, Driver, & Rafal, 1994), since attending to the object with the probable feature 

should facilitate detection of its other features. An alternative to object-based attention is feature-based 

attention, which has been suggested to result in neural tuning (Carrasco, 2011; David et al., 2008; 

Paltoglou & Neri, 2012; Çukur et al., 2013; Ling, Jehee, & Pestilli, 2015), which could explain why 

perceptual precision is heightened in this (Experiment 4.3) and previous studies (Chapters 2 and 3). It 

has been suggested that neural tuning is necessary to increase perceptual precision (Yaeli & Meir, 

2010). However, it has also been suggested that feature-based attention may additionally employ a gain

mechanism, in addition to neural tuning (Ling, Liu & Carrasco, 2009). The contributions of top-down 

and bottom-up processes to tuning changes are presently an open question. Arguing that bottom-up 

changes may be sufficient are models of orientation training that do not have an ‘attentional’ 
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component (e.g. Carandini & Ringach, 1997; Teich & Qian, 2003), and prior experiments where spatial

attention and orientation probability had independent effects (Chapter 2).

Rather than an attentional account, the feature probability effects observed here can be 

parsimoniously explained as experience-dependent neural tuning. This would be similar to how 

orientation training in monkeys results in the ‘sharpening’ of the orientation selective neurons in V1 

that prefer the trained orientations (Ringach, Hawken & Shapley, 1997; Schoups et al. 2001). This idea 

is also consistent with the suggestion that learnt likelihoods are reflected in the early phase of sensory 

processing (Summerfield & Egner, 2009), and that the site of plasticity must involve early cortical 

processing regions with narrow neural tuning (Gilbert, 1994).

As an alternative explanation, with feature probabilities in the current task, a participant could 

be reinforced over time to respond with the probable trigger given the location in which the stimulus 

was presented. While it is clear from the data that there was no physical or motor response preparation 

associated with feature probabilities, target prevalence has been suggested to affect a decision criterion 

(Wolfe & Van Wert, 2010), and perhaps this is true for probabilities associated with individual features 

as well. However this does not rule out a perceptual locus, since feature probability has also been 

shown to affect perceptual precision in non-2AFC tasks (e.g. Chapters 2 and 3). It could also be the 

case that probabilistic information for features might tune relevant perceptual channels, which then 

affect decision-making (Eckstein et al., 2009). Chapter 5 sought to provide electrophysiological 

evidence for the perceptual hypothesis, and provides a hint that there might be a relation between 

perceptual and decisional modulation.

104



Chapter 5: An Electrophysiological Investigation of Orientation Probability9

5.1. Introduction

The previous chapters have suggested that orientation probability effects are unlikely to occur 

through the same mechanisms as those involved in spatial cuing or spatial probability, likely gain-

mechanisms (Carrasco, 2011), such as increasing the input baseline of neural responses (Cutrone, 

Heeger, & Carrasco, 2014). Instead, the suggested mechanism driving orientation-probability effects is 

the selective tuning of orientation-selective neurons in V1. This would be similar to how training 

monkeys with specific orientations affects the tuning width of V1 neurons preferring the trained 

orientation (Ringach, Hawken & Shapley, 1997; Schoups et al., 2001). Axiomatically, selective 

orientation training is a manipulation of orientation-probability. This idea is also consistent with the 

suggestion that learnt likelihoods are reflected in the early phase of sensory processing (Summerfield &

Egner, 2009), and that the site of plasticity must involve early cortical processing regions with narrow 

neural tuning (Gilbert, 1994).

An alternative account is that orientation probability is due to feature-based attention, although 

this is also thought to result in neural tuning (David et al., 2008; Paltoglou & Neri, 2012; Çukur et al., 

2013; Ling, Jehee, & Pestilli, 2015). For example, the pairing of an auditory cue with a particular 

orientation leads to both a decrease in fMRI activation and a concurrent increase in the sensory 

representation demonstrable by multi-voxel pattern analysis (Kok, Jehee & de Lange, 2012). 

Presumably, even in the absence of an explicit cue, orientation probability could yield a similar pattern 

if it also produced neural sharpening.

9 A version of this chapter has been published as Jabar, S. B., Filipowicz, A. & Anderson, B. (2017). 
Tuned by experience: How orientation probability modulates early perceptual processing. Vision 
Research, 138, 86-96. https://doi.org/10.1016/j.visres.2017.07.008 
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If orientation probability affects perception via sharpening the response profiles of neurons in 

early visual cortex, we should see both physiological changes in the early sensory systems tracking 

stimulus probability and in behavioural measures of perceptual precision. By employing spatial 

gratings in varying visual field locations we can study the effects of orientation probability on early 

visual processing via the ‘C1’ ERP component. The C1 is an early visual evoked component that has a 

unique visual field-dependent phase reversal. For this reason it has often been proposed as an ERP 

reflecting V1 activity, and Di Russo et al. (2002) used source localization methods to localize the C1 to 

the banks of the calcarine cortex. While a V1 source for the C1 has been traditional, some groups have 

more recently suggested that the C1 is less specific than V1 because forward-modelling suggests that 

either V2 and V3 might also result in the phase reversal property (Ales, Yates, & Norcia, 2010). 

However, the assumptions required for a V2/V3 C1 locus has been questioned, and also does not 

account for why there is a C1-V1 relation in primate neurophysiology (see Kelly, Schroeder, & Lalor, 

2013).

Another interesting feature of the C1 component is the suggestion that it indicates feed-forward 

processing only. With a peak latency between 90-110ms the C1 has been felt to occur too early for 

significant top-down trial-specific modulation, unlike the P1, a later visual ERP (Di Russo, Martinez, &

Hillyard, 2003). In addition, endogenous manipulations of spatial attention affect the P1 but not the C1 

(Clark & Hillyard, 1996; Di Russo et al., 2003; Gonzalez, Clark, Fan, Luck, & Hillyard, 1994). 

However, the feed-forward only claim for the C1 is not universally accepted, and some recent data 

challenge this claim (for a review see Rauss, Schwartz, & Pourtois, 2011). For example, Kelly, Gomez-

Ramirez, & Foxe (2008) found that endogenous manipulation of spatial attention did effect both the C1

and P1. Studies on the effects of feature-attention on these ERP components are considerably scarcer, 

although it seems that at least the P1 is affected. For example, when participants are instructed to attend
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to red instead of green stimuli, P1 is amplified, even if the stimuli appeared in an unattended location 

(Zhang & Luck, 2009).

There is also some disagreement about the direction of the effects different manipulations may 

have on the C1 potential. Kelly et al. (2008) reported that endogenous spatial attention increased C1 

amplitude, consistent with a spatial gain mechanism (Figure 1.1c). Also consistent with a gain 

mechanism, Bao, Yang, Rios, He, & Engel (2010) and Zhang (2015) found increases in C1 amplitude 

for learned orientations in perceptual learning tasks. However, data from other perceptual learning 

experiments have shown decreased early visual activity to learned orientations. Gratton (1997) 

demonstrated this with optical imaging, and Pourtois, Rauss, Vuilleumier, & Schwartz (2008) found 

reduced C1 amplitudes. This direction is predicted by a neural sharpening mechanism similar to that 

seen in monkeys undergoing long term orientation discrimination training (Figure 1.1b, Ringach, 

Hawken & Shapley, 1997; Schoups et al., 2001). These mixed results emphasize the need to consider 

both the type of training and the experimental paradigm when interpreting effects (Hung & Seitz, 

2014).

While the hypothesis that orientation probability effects are due to V1 sharpening is inspired by 

the perceptual learning studies done in monkeys (where direct neural recordings were possible; 

Ringach, Hawken & Shapley, 1997; Schoups, et al. 2001), it is important to note that the tasks explored

in this thesis are probability manipulations, which is procedurally distinct in many ways from 

traditional perceptual learning paradigms. In typical perceptual learning paradigms either a single 

orientation is shown repeatedly in a predictable fashion (e.g. Ringach, Hawken & Shapley, 1997; 

Schoups et al., 2001) or only a pair of distinct orientations are possible, one of which has the higher 

exposure rate (Bao et al., 2010; Zhang et al., 2015). Perceptual learning studies also usually involve a 

107



training period that spans several sessions and may go on for days or even weeks. In the probability 

tasks explored in the previous chapters the orientations were not ‘trained’, but rather a subset of 

possible orientations were biased, and this was generally undetectable by participants. These 

probability effects develop quickly, within a single behavioral session, faster than the typical perceptual

learning experience.

Probability effects also persist despite orientations being biased in a location-contingent 

manner. In contrast, retinotopic transfer has been noted with perceptual learning, suggesting a top-down

influence on the visual cortices (Zhang, Xiao, Klein, Levi, & Yu, 2010). Therefore, while the 

hypotheses regarding the direction of the C1 effect were motivated by results from the perceptual 

learning literature, the specific interest of the present study was to examine the C1 effects associated 

with a probabilistic paradigm, a paradigm where orientations are biased rather than ‘trained’.

In summary, the behavioral results of manipulating orientation probability suggest perceptual 

effects. This raises the possibility of an early visual locus for the effect of orientation probability.  

While the principal electrophysiological focus of stimulus probability has most often been the decision-

related P300 (Bledowski et al., 2004; Polich, 1990; Rohrbaugh, Donchin, & Eriksen, 1974), it is 

hypothesized that early visual cortical potentials could also show orientation probability effects and that

based on orientation training experiments in monkeys that the nature of the effects would be decreases 

in waveform amplitudes.
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5.2. Experiment 5.1: Methods

Since the ‘C1’ ERP component is the key variable of interest, the current study broadly 

replicated the design of Di Russo and colleagues (2002) while introducing the probability manipulation

and estimation task outlined in Chapter 2.

Participants

Twenty paid participants were recruited from the University of Waterloo (10 females, 10 

males). 18 were right-handed and 2 were left-handed. Participant ages ranged from 19 to 49 (median = 

24). All participants had normal or corrected-to-normal vision, and did not declare any auditory deficits

or any past neurological conditions/concussions. Informed consent was obtained. Participants came in 

for two sessions (first behavioral; second behavioral and EEG). Both sessions were always completed 

in the same week (Monday-Friday), with the majority having 2 or 3 days between sessions. Participants

were asked to refrain from alcohol consumption for 24 hours prior to the 2nd (EEG) session, and to 

maintain their regular caffeine habits. Participants were paid 25 dollars for their involvement (one 30 

minute session and one 2 hour session).

Stimuli

Stimulus locations and timings resembled those used in the Di Russo et al. (2002) study. Instead

of checkerboard patterns, Gabors were used to allow for the orientation manipulation. The Gabors were

oriented grayscale sine-wave gratings with a circular Gaussian mask (Figure 5.1a), at 50% contrast, 

with an average measured luminance of 22cd/m2. They had a spatial frequency of 4 cycles per degree 

of visual angle, and were presented on a grey background with a similar luminance of 23cd/m2. When 

viewed from a distance of 60cm, the Gabors subtended approximately 4 degrees of visual angle both 

vertically and horizontally. On any given trial, the centre of the Gabor was located 4 degrees away from
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the center of the display, which was marked by a black fixation symbol. As with Di Russo et al. (2002),

the four stimulus positions were centered along an arc that was located at a polar angles of 25° above 

and 45° below the horizontal meridian (see Figure 5.1c). Lines, used as feedback and for participants to

rotate to report their estimations, had a length of 4 visual degrees and always occurred in the same 

location as the Gabor for that trial.

Spatial Gabors were equally likely to appear in any one of the four locations surrounding the 

fixation symbol. Collapsed across these four locations, any orientation was equally likely. The critical 

manipulation was the occurrence-rate of the various probability-location conjunctions. Half the 

participants saw the conjunction depicted in Figure 5.1c: When a Gabor appeared on the top or bottom 

left, its orientation was more likely to be left-tilting, but this high-probability orientation was reversed 

if the Gabor appeared on the top or bottom right. Orientations were uniformly distributed across each 

quadrant, and were not shown at the exact cardinal orientations (0/90 degrees). High-probability 

orientations accounted for 80% of the trials. The lines in Figure 5.1c depicts an example distribution. 

The location-orientation conjunctions were counterbalanced across participants.

Probability distributions were counterbalanced across participants and maintained within 

participants for both experimental sessions. For example, in every set of 20 trials there were 5 Gabors 

that appeared in the top-left location. Of these, 4 might be left-tilting while one was right-tilting (or 

vice-versa). Participants were not informed about these probability distributions, and observed the same

distribution across their two sessions. The first 20 trials of the first session, and the first 60 trials in the 

second session were practice trials which had uniformly distributed orientations.
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Figure 5.1. Experiment paradigm. a) Behavioural session. A Gabor stimulus was shown in one of four 
equiprobable locations for 50ms, followed by black screen for 500ms, followed by an estimation 
response. Training session trials (400 in total) always required this response. There was a variable ISI 
of 250-500ms to the next Gabor. b) EEG session was similar to the training session, except only 5% of 
the trials (3600 in total) required a response. Most of the time it was a 50ms Gabor presentation with an
ISI of 250-500ms. c) Orientation probability distribution. In two locations orientations occurred in one 
quadrant four times more likely (high-probability: blue) than in the other (low-probability: red). The 
orientation probability was reversed in the other two locations. This location-orientation conjunction 
was counterbalanced across participants.
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Auditory feedback was given after each response. A high pitched sound was played if the 

participant made an angular error less than 12 degrees. A lower pitch indicated an error greater than 12 

degrees. Participants were not explicitly informed that 12 degrees was the error threshold.

Equipment

In both sessions, eye-tracking was done using an Eyelink1000 recording the dominant eye at 

2000Hz and tracking both the pupil and corneal reflections. Participant head position was stabilized 

using a chin rest. Participants were instructed to fixate at the center of the screen and to avoid excessive

blinking during stimulus presentations, but were free to blink or move their eyes prior to confirming the

drift correction, during breaks or during responses. The task was gaze-contingent in that stimuli were 

not flashed until a central fixation (radius 0.5 visual angle) was detected. This was set-up so that all 

stimulus locations were always presented in roughly the same peripheral location retinotopically, and 

presumably involved a consistent pool of V1 neurons.  

In the 2nd session, a BioSemi Active II system (64 channel) was used for the EEG recording. 

The electrode cap was placed according to the International 10-20 placement system. Additional 

electrodes were placed on the lateral side of each eye, inferior to each eye, and on each mastoid. EEG 

recording was done at 1024Hz.

Participants sat approximately 60 cm from a 32 cm x 24 cm gamma-corrected CRT monitor that

refreshed at 85Hz (mean refresh time = 11.8ms, SD = 0.5ms). Prior to the task, participants were 

instructed to make their estimations of the Gabor orientations as accurately as they could. They were 

not told that they needed to be fast. Responses were made with a computer keyboard using their 

dominant hand.
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Procedure

In the behavioral session (Figure 5.1a), every trial consisted of a Gabor flash and a response. 

Participants were first given 20 practice trials in which the orientations occurred uniformly in 

orientation. These data were not included in the analyses. The behavioral session had 400 probability-

manipulated trials, which were sectioned into two blocks with a break in-between. Drift corrections 

were done every 20 trials (approx. 1-2 min), and an eye-tracker re-calibration was done after the break. 

This session took approximately 30 minutes.

In the EEG session (Figure 5.1b), there were 60 practice trials with uniform orientations. This 

was followed by 3600 actual trials, which were sectioned into three blocks with breaks in-between. For 

this session, responses were required on only 5% of the trials (i.e. randomly chosen out of every 20-

trial segment). This was done to maximize the number of stimulus presentations (and corresponding 

evoked potentials), and also to maintain parity with the Di Russo et al. (2002) study, where infrequent 

detection responses were required. Drift corrections were done after every 6th response (approx. 2-3 

min), and an eye-tracker re-calibration was done after each break. At the end of the main task, 

participants were given a questionnaire (same as the one used in Chapter 2). While the whole session 

lasted approximately two hours, the experimental task only took approximately 50-60 minutes, the rest 

of the time taken for electrode placement/removal.

Each spatial Gabor flashed for approximately 50ms (4 screen refreshes). If there was no 

response required, the next Gabor appeared between 250-500ms after (contingent on participants’ 

fixation still being centred). On response trials, following a 500ms delay, a response line was drawn in 

the same spatial location as the last Gabor that had appeared. Participants made their estimations by 

rotating this line counter-clockwise or clockwise by pressing “Z” or “C” on a QWERTY keyboard. This
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rotation was at a maximum of 1 angular degree per frame refresh of the monitor. Participants pressed 

the “X” key to confirm their estimations. Once confirmed, the auditory feedback was given. On 

practice trials, a white feedback line with the actual orientation was displayed on top of the 

participant’s response. This visual feedback was not given during the main trials. This response 

procedure was the same as used in Chapter 2.

Analysis

Behavioral and eye data were analyzed using R. EEG data was processed using EEGLAB 

(Delorme & Makeig, 2004). As with Chapters 2 and 3, angular errors occupied an axial space, and the 

median absolute error was the primary measure. Reaction time (RT) for each trial was taken as the time

from when the response line appeared to when the orientation was confirmed. Time taken to initiate 

movement (IT), time taken to make movements after initiation (MT), initial rotation direction and 

number of direction switches (vacillations) per trial were also recorded. The analyses reported used the 

median timings across trials (timings are positively skewed), although using the mean gave the same 

results.

EEG recordings used a linked-mastoid reference, and a 50ms window surrounding the onset of 

the stimulus (mean of -25ms to 25ms) was taken as the baseline voltage. Noisy electrodes, where the z-

scored kurtosis across trials was 5 SD or greater (where most of the variance in the signal was the result

of random large deviations), were removed and replaced by interpolation. Blink-contaminated trials 

were removed from analysis, as were trials where the electrode data had an average voltage that was 

greater than the mean +/- 2.5 SD of all trials. For the EEG analyses a low pass filter of 80Hz was used. 

There was some contamination at 85Hz, likely due to the refresh of the CRT monitor, and this was 
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removed by an additional notch filter (a 1Hz high pass with a 30Hz low pass filter was also tried, led to

the same results, and as such are not reported here). This pre-processing preserved 85% of the trials.

For the C1 ERP component, presumed to originate in V1, and therefore reflecting the anatomy 

of striate cortex, upper-field stimuli should show a negative deflection while lower-field stimuli should 

show a positive deflection (see Figure 5.4a here, and Figure 5 and 6 in Di Russo et al., 2002). The 

electrode used for calculating C1 amplitude was the electrode showing the maximal (or minimal) 

amplitude of all the electrodes posterior to Cz [i.e., CP, P, PO and O], within the 50-150ms post-

stimulus window. This was determined separately for each participant and for each of the four stimulus 

locations. This was done prior to the separation of high and low-orientation probability trials. The 

maximum amplitude of the trial-averaged waveform within that 50-150ms time window was used to 

determine the C1 amplitude for each trial-type. P300 amplitudes were determined similarly, but 

constrained to parieto-central electrodes [i.e. FC, C, CP, P and PO] with a positive deflection within the

post-stimulus window of 250-500ms.

5.3. Experiment 5.1: Results

The first section reports the behavioural probability effects seen in the first session. Following 

that are the behavioral effects in the second (EEG) session, and then the effects of orientation 

probability on visual-evoked potentials.

Behavioral Session

There was a significant effect of probability on RT, with high-probability orientations (M = 

2027ms, SD = 356ms) being confirmed faster than low-probability orientations (M = 2083ms, SD = 

381ms), (t(19) = 2.27 , p = .035). This RT effect could either be due to the time required to initiate 
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movements (IT) or the time required to complete moving the dial once movement had started (MT). ITs

were significantly affected by probability (Figure 5.2a), with high-probability orientations (M = 746ms,

SD = 107ms) initiated more quickly than low-probability orientations (M = 766ms, SD = 112ms), (t(19)

= 4.57 , p < .001). Of the 20 participants, 17 showed this effect (Figure 5.2a). There was no effect on 

MT between high-probability (M = 1281ms, SD = 292ms) and low-probability orientations (M = 

1317ms, SD = 318ms), (t(19) = 1.56 , p = .135). Vacillations, that is the average number of direction 

switches participants made in their response in a trial, was also not significantly different between high-

probability (M = 0.11, SD = 0.08) and low-probability tilts (M = 0.13, SD = 0.10), (t(19) = 1.37 , p = .

187).

For average (absolute) angular errors (Figure 5.2b) participants showed smaller errors in the 

behavioral session when compared to the behaviour measured in the EEG task. For the behavioral 

session alone, there was a marginal effect of orientation probability on precision (Figure 5.2b), with 

high-probability orientations (M = 8.90 deg, SD = 3.91 deg) being associated with smaller errors than 

low-probability orientations (M = 9.39 deg, SD = 4.19 deg), (t(19) = 2.04 , p = .055).
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Figure 5.2. Behavioural results. a) Initiation times in the first session across subjects (separate lines).  
The solid black line represents the mean across subjects. b) Median absolute angular errors in the first 
session. c) Initiation times in the second session. d) Median absolute angular errors in the second 
session. High-probability orientations: blue; low-probability ones : red.
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Behavioral effects in the EEG session

Two participants’ data were removed because of noisy EEG signals. These participants’ data 

were left out from the behavioural analysis to show that the trends observed were due to the remaining 

18 participants that contributed to the EEG data. Unlike in the 1st session, there was no demonstrable 

effect of orientation probability on any aspect of reaction time (all ps >.05). Of interest is that the ITs 

(Figure 5.2c) for the high (M = 1554ms, SD = 199ms) and low-probability orientations (M = 1564ms, 

SD = 198ms) were significantly longer than in the behavioral session, (both ps < .001). This suggests 

that participants found the unpredictable, irregular behavioral assessments in the EEG session to be 

more difficult than the consistent behavioral probes used in the 1st session. This is supported by the 

precision differences (Figure 5.2d). Error magnitude was greater in the EEG session (both ps < .05) 

than in the 1st session. However, in the EEG session the benefit of probability on precision was 

significant with high-probability orientations (M = 17.2, SD = 6.40) being more precisely-estimated 

than low-probability orientations (M = 25.2, SD = 10.24), (t(17) = 4.13, p < .001), and 15/18 

participants showing this direction of benefit.

Participants completed an open-ended post-experiment questionnaire after the second session 

(the one outlined in Chapter 2). Two participants mentioned being aware of a probability manipulation, 

neither of whom described it accurately. One participant mentioned that things that looked like ‘/’ were 

more likely (which was incorrect, because they did not note the location-contingency). When 

participants were directly asked whether they noticed that some orientations were more likely in certain

locations, they expressed either surprise or confusion. This lack of explicit awareness was also seen in 

the previous studies.
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Effects of orientation probability on early visual-evoked potentials

An overview of the electrode data and the visual-evoked potentials at each stimulus location is 

given in Figure 5.3. The ‘C1’ component was identified based on a visual field location dependent 

phase reversal (Figure 5.4a) that matched the findings of Di Russo and colleagues (2002). Latencies 

were also comparable (Figure 5.3; M = 109ms) with that study, which is not surprising given the 

procedural similarities. Similar to the Di Russo et al. (2002) study, this component was maximally 

located at PO3/PO4, ipsilateral for the upper field stimuli and contralateral for the lower field stimuli 

(reflected in the topographies in Figure 5.4a). This was mostly consistent across participants. Two 

participants demonstrated a slight shift in how far lateralized the target electrodes were, PO7/PO8 were 

the maximal electrodes instead of PO3/PO4. Two other participants showed a slightly more posterior 

distribution, O1/O2 instead of PO3/PO4.
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Figure 5.3. Averaged waveforms across trials for each visual field. Lines indicate different electrodes. 
The top-left panel represents the top-left visual field, etc. Labels indicate where the components of 
interest are.
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Figure 5.4. Scalp topographies. a) C1 distribution. Because the visual field in which the stimuli 
appears affects the direction of the C1, depicted is the average topography at 109ms post-stimulus at 
the corresponding location (top-left panel represents stimuli presented in the top-left, etc). b) P1 
distribution at 165ms. Note that for the P1 in the lower fields, the positive peak was occluded by the 
concurrent N1, see Figure 5.3. c) N1 distribution at 200ms. d) P300 distribution at 295ms. Red = 
positive, blue = negative. 
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Having replicated the key behavioral effects of orientation probability, we turn to the key issue 

of the effects of orientation probability on early perceptual processing. There was a significant effect of

orientation probability on the C1 amplitude that was consistent across participants (Figure 5.5b/c). The 

absolute amplitude of the C1 was significantly larger for the low-probability orientations than for the 

high probability orientations in both the upper-visual field stimuli (-2.95 vs. -2.35, t(17) = 3.89 , p = .

001) and the lower-field stimuli  (2.35 vs. 2.01, t(17) = 3.84 , p = .001).

Because there are four times as many high-probability trials as there were low-probability ones, 

sub-sampling was carried out to rule out the C1 effects as being simply due to differences in the 

volume of data. Because each participant only did 720 low probability trials across the four locations, 

in each run an equivalent number of high probability trials were randomly selected for comparison 

instead of the full 2880 trials. EEG analysis was otherwise the same as before (the same electrodes 

were used to measure the C1 amplitude, etc). This sampling was done 10000 times and in most cases, 

there was a significant (p<.05) difference in amplitudes between high and low probability trials. For the

upper field, the mean t-value across these comparisons was 3.91 (SD = 0.72), with only 58 out of 

10000 cases failing the p<.05 cutoff. For the lower field, the mean t-value across this sub-sampling was

3.80 (SD = 0.77), with only 82 out of 10000 cases failing the p<.05 cutoff.
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Figure 5.5. C1 analysis. C1s were calculated at the posterior electrodes that showed the maximum 
deflection at the 50-150ms time window, at each stimulus location. Left/right visual fields were 
collapsed. Defections (at about 100ms) are positive for upper-field stimuli (solid lines) and negative for
lower-field stimuli (dotted lines), and split across high (blue) and low (red) probabilities. a) Average C1
wave across subjects. b) C1 amplitudes across subjects (separate lines) by probability, for upper-field 
stimuli. The solid line reflects the means across subjects. c) Same as previous panel, but for lower-field 
stimuli. C1 probability effects were consistent in both fields, with the amplitude of the low-probability 
trials being larger (direction is flipped due to the field-dependent nature of C1).
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Repetition Suppression

To address the possibility of repetition suppression being a factor, repeats of high-probability 

orientations were examined. Trials of repeated high-probability orientations, but at different locations, 

had the same C1 amplitudes as when high probability orientations repeated at the same visual field 

location (ps > .05). Furthermore, when stimuli that repeated locations and were of similar orientations 

(within 20 degrees) were removed from the analyses (approximately 10% of trials), the C1 probability-

based modulation remained, and was significant, in both the upper and lower visual fields (ps < .001).

Effects of orientation probability on P1 and N1

Because the P1 and N1 are modulated in spatial cuing tasks (e.g. Clark & Hillyard, 1996), it is 

of interest whether the probability manipulations affected these ‘attentional’ components in the same 

way.

There was a positive peak for both upper/lower visual fields in the 140-180ms time range 

(Figure 5.3 & Figure 5.4b). We looked at the electrodes showing maximal activity in this range, and 

found that this ‘P1’ was not significantly modulated by orientation probability in either the upper field 

(high: 1.17 vs. low: 2.19, t(17) = 1.50, p = .152) or the lower field (high: 1.38 vs. low: 1.65, t(17) = 

1.61, p = .125). Removing ‘repeats’ did not change the outcome of the analyses. Also, note that the 

trend for the data is in the opposite direction to that found by Clark and Hillyard (1996) for attended 

stimuli.

A negative dip for both upper/lower visual fields occurred in the 170-230ms time range 

(Figures 5.3 & 5.4c). We looked at the electrodes showing maximal (negative) activity in this range, 

and found that this ‘N1’ was not significantly modulated by orientation probability in either the upper 
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field (high: -1.09 vs. low: -0.58,  t(17) = 1.10 , p = .288) or the lower field (high: -0.93 vs. low: -1.02,  

t(17) = 1.09 , p = .293). For neither the N1 (mean = 200ms) nor the P1 (mean = 165ms) was the peak 

latency modulated by orientation probability (all ps >.05).

Time course of the C1 effect

Since the probability effect has to be acquired during the exposure to the trials, it was of interest

to look at how quickly the C1 effect might occur. The 3600 trials were separated into 6 bins of 600 

trials. Each bin therefore had 120 low-probability trials, with 30 in each of the four locations. Left/right

amplitudes were averaged to obtain the mean amplitude for the upper and lower visual fields. Paired t-

tests revealed a significant C1 probability effect (high - low probability) for the 2nd to 6th bins for lower 

visual field and all bins for the upper visual field (ps<.05, see Figure 5.6). The 1st bin in the lower field 

had a marginal probability effect, t(17) = 1.92, p = .071.
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Figure 5.6. Time course analysis. The 3600 trials each participant went through was segmented into 6 
bins, and the average C1 evoked potential per condition for each bin was calculated. The top panel 
depicts the lower visual field, and the bottom panel depicts the upper visual field. High-probability = 
blue, low-probability shown in red.
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In the lower visual field, the C1 amplitudes for the low-probability trials was consistent and not 

significantly different across any bins (ps> .05). This was the same in the upper visual field as well, 

suggesting that C1 amplitudes relating to the low-probability events are unchanging. This was a 

different case for the high-probability trials. The C1 in the 1st bin for the lower field was significantly 

more positive (M = 2.47, SD = 0.80) than in the 2nd bin (M = 2.19, SD = 0.94) , t(17) = 2.52, p = .022. 

There was no difference across the 2nd to 6th bins (all pairwise comparisons, ps >.05). This trend was 

repeated in the upper field, where the 1st bin had a significantly more negative C1 (M = -2.46, SD = 

0.81) than the 2nd bin (M = -2.06, SD = 0.95), t(17) = 4.49, p < .001. Again, there was no difference 

across the 2nd to 6th bins (all pairwise comparisons, ps >.05).

Effects of orientation probability on P300

The P300 is a late parieto-central component (Figure 5.3 & Figure 5.4d) that shows a greater 

magnitude when targets are unexpected (Bledowski et al., 2004). I explored whether the orientation 

probability manipulation affected this component. This late positive component was maximal over the 

Pz electrode for most participants. The effect of orientation probability on P300 magnitude was not 

significant for the upper visual field (t(17) = 0.46, p = .649), but was significant (Figure 5.7c) for the 

lower visual field (t(17) = 2.63, p = .018), with low-probability orientations having the larger P300 

(Low probability: M = 3.29, SD = 1.59; High probability: M = 2.96, SD = 1.69). There was no 

significant probability effect on (peak) latency (M = 295ms) in either field (ps >.05).
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Figure 5.7. P300 analysis. P300s were calculated at the parieto-central electrodes showing maximum 
deflection at the 300-500ms time window, at each stimulus location. a) Average P300 wave across 
subjects for upper (solid) and lower-field (dotted) stimuli, across high (blue) and low (red) orientation 
probability. b) P300 amplitudes across subjects (separate lines) by probability, for upper-field stimuli. 
Sold line reflects the means across subjects. c) Same as previous panel, but for lower-field stimuli.
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Lastly, it was examined whether the C1 and P300 amplitudes were related. The data presented 

in Figures 5.5b/c and 5.7b/c were recast into a separate analysis, which revealed that the C1-P300 

correlation was significant for both the upper (r = -.55, p < .001) and lower visual fields (r = .52, p = .

001). The direction of the correlation is reversed because the phase of the C1 reverses for lower and 

upper visual field stimulus presentations (Figure 5.8).
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Figure 5.8. C1-P300 correlations. Amplitudes shown in Figure 5.5b/c and Figure 5.7b/c were recast as 
scatter plots. Significant correlations were found in both the a) upper and b) lower visual fields. Note 
that directions are reversed due to C1 directions depending on the field location. High-probability = 
blue, low-probability shown in red.
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5.4. Experiment 5.1: Discussion

Probability effects were apparent in behaviour and were similar to the findings from the 

previous chapters. In the behavioral session, initiation times (IT) were consistently shorter for high-

probability tilts. The probability effect on IT was probably not seen in the EEG session as that task was 

significantly harder with continuous rapid flashing of stimuli, and had unpredictable, irregular 

behavioral probes. Most likely the probability effect showed up more strongly in IT as compared to 

precision in the 1st session because, it being the easier task, participants managed to encode the 

stimulus fully in most instances. The time to fully encode was affected by probability in this case. 

Importantly though, there was a behavioural effect for trials in the EEG session with a clear probability 

effect on the angular errors: high-probability orientations were estimated more precisely.  

To evaluate early visual processes as a locus of this benefit, the analyses focused on the ‘C1’ 

ERP component that has been source-localized to the primary visual cortex (Di Russo et al., 2002). In 

the current study, the early C1 component was topographically centred on the posterior 

parietal/occipital scalp area. In addition to replicating Di Russo and colleagues’ findings it was also 

shown that the C1 component was modulated by orientation probability: C1 amplitudes were smaller 

for the high-probability orientations as compared to the low-probability ones. Further, the time-course 

analysis (Figure 5.6.) would suggest that this effect is due to a quick reduction in the C1 amplitudes for

the high probability trials, detectable within about 600 trial exposures (approximately 7-8 minutes in-

task), and possibly plateauing within about 1200 trial exposures. This matches data from previous 

studies suggesting that perceptual effects due to probabilistic manipulations arise quickly.

The current study neither cued nor biased space. All locations were equiprobable but it was the 

orientation-location conjunction that was biased. Effects from this manipulation have been 

131



demonstrated to be distinct from spatial cuing (Chapter 2) and from spatial probability (Chapters 3 and 

4). This is likely why the effects observed in this study are in contrast to those found with spatial 

attention, which either find no effect of spatial probability on C1 (Clark & Hillyard, 1996; Di Russo, 

Martinez, Hillyard, 2003), or that the cued space has a greater C1 (Kelly et al., 2008).

One account of our orientation probability effects would be to regard them as a form of 

expectation or top-down attention. But if this account is adopted, then it would imply that attentional 

effects for features are based on neural tuning (David et al., 2008; Paltoglou & Neri, 2012; Çukur et al.,

2013; Ling, Jehee, & Pestilli, 2015), whereas feature-based attention has been suggested to involve  

both gain and tuning mechanisms (Ling, Liu, & Carrasco, 2009). While cuing of orientations do lead to

reduced activity and sharper representations in V1 (Kok, Jehee & de Lange, 2012), attending to 

features has also been demonstrated to increase P1 ERPs (Zhang & Luck, 2009), which was not found 

in the current study. In contrast, spatial probability results in an increase of C1 and P1 ERP potentials 

(Slagter, Alilovic, Timmermans & Reteig, 2016). Fronto-parietal right brain damage also 

disproportionately affects the ability to benefit from spatial repetitions, as opposed to color repetitions 

(Shaqiri & Anderson, 2013) and this would make sense if spatial probability modulations rely on a 

‘top-down’ mechanism more so than does feature probability modulations.

As an alternative to a top-down feature-based attention account of feature probability, the 

hypothesis in this thesis is that more frequent presentations of some orientations result in changes to the

tuning widths of orientation-selective neurons in V1, similar to how orientation training in macaques 

leads to adaptive-tuning (e.g. Ringach, Hawken & Shapley, 1997), but on a much shorter time scale. 

While the source of the C1 potential could be V2/V3 (Ales et al., 2010), it is known that both cuing of 

orientations (Kok, Jehee & de Lange, 2012) and perceptual training (Ringach, Hawken & Shapley, 
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1997; Schoups et al., 2001) affect V1, making that the more likely locus in our opinion. Perhaps this 

modulation in V1 is mediated by recurrent local connections such as are the basis for the learning and 

adaptation effects seen in the Teich and Qian (2003) computational model of V1. Probable stimuli 

could “train” neurons with the result that tuning curves sharpen. Sensory neural tuning would offer a 

dynamic mechanism for our adaptations to uncertain and statistically non-stationary environments 

(Yaeli & Meir, 2010, also explored in Chapter 6). Such arguments have been also made before for the 

auditory domain (Dean et al., 2005) and visual (retina) domains (Hosoya et al., 2005).

Although the data from this study provides strong evidence for an early visual locus of the 

probability effect, it is possible that there might be other effects in addition to what was demonstrated 

here. Ghose, Yang, & Maunsell (2002), found that perceptual learning only produced weak reductions 

in V1 activity, and other studies, while confirming V1 effects for perceptual learning, have found V1 

effects to be smaller than changes in V4 (Raiguel, Vogels, Mysore, & Orban, 2006; Yang & Maunsell, 

2004). It could be that V4 modulations are downstream effects from initial changes in V1. 

Alternatively, V4 involvement could be taken as evidence for top-down control which trickles down to 

V1. The presence of retinotopic transfer in perceptual learning tasks (Zhang et al., 2010; Hung et al., 

2014) supports a top-down account. Perhaps a combination of prolonged training and predictable 

stimuli enables participants to explicitly expect the stimuli, which does not occur here.

Probability effects could also go beyond visual processing. The other component examined was 

the late parieto-central positive component, the ‘P300’, which traditionally has been studied in the 

context of oddball paradigms. Although the component has been more studied in the auditory domain 

(Polich, 1990; Sutton, Braren, Zubin, & John, 1965), it has also been linked to the detection of rare 

visual events. Source-modelling suggests a source of either parietal and inferior temporal cortices or 
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the insula/frontal cortices, depending on the specific sub-component (P3a/P3b; Bledowski et al. 2004). 

Although one might therefore expect the P300 to be modulated by our probability manipulations, this 

effect was weak compared to the C1. One potential reason is that P300s seem to be more susceptible to 

modulation when stimulus intervals are long (Strüber & Polich, 2002), and the ISIs in the current task 

were very short. It could also be that P300s are more clearly modulated by ‘oddballs’ which are not 

simply low-probability, but explicitly surprising events (Mars et al., 2008; Teigen & Keren, 2003). In 

the current case, low-probability orientations were less frequent, but not necessarily “surprising”.

Could repetition suppression or habituation be the explanation for probability effects on 

precision and C1 modulation? While it is generally true that more probable events will result in more 

repetitions, true repeats were rare in the current study because there were four equiprobable target 

locations, and the high-probability orientations was counterbalanced across them. Across locations, a 

high-probability tilt of 45 degrees is as likely to be followed by a high-probability tilt of 135 degrees as

being followed by another 45 degree tilt. Comparing high-probability orientations that repeated 

location to those that those did not revealed no differences between C1 amplitudes. This may be 

because trials of repeated high probability are usually different angles as the range of possible 

orientations for the high probability quadrant spans 90 degrees. Even when ‘repeats’ of similar 

orientations were left out of the analysis, there was still a significant probability-based modulation of 

the C1 component: In prior studies, when repeats were left out of the analyses, effects on perceptual 

precision still remain (e.g. Jabar & Anderson, 2015). From an electrophysiological perspective, one 

would also think that if repetition-based habituation was the reason for the C1 differences, the same 

difference should be present in the P300 components (Ravden & Polich, 1998); however, the upper 

visual field P300s failed to show a difference between high and low probability orientations. The more 
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likely explanation for orientation probability effect is the adaptive-tuning observed in primate training 

studies (e.g. Ringach, Hawken & Shapley, 1997; Schoups et al., 2001; Yaeli & Meir, 2010).

What has been demonstrated is that probability effects are accompanied by processing changes 

in early visual cortices. This is not to say that other processing levels are not also affected by stimulus 

probability. With conditions as complex as acquired badminton experience affecting C1 amplitudes (Jin

et al., 2010), it seems likely that probability effects are mediated at multiple levels all working to link 

neural tuning to decisions. Probabilistic information for features might tune relevant perceptual 

channels, which then affects decision-making (Eckstein et al., 2009). 

Assuming that the P300 also reflects decision-making processes (Rohrbaugh et al., 1974; Wang,

Zheng, Huang, & Sun, 2015), the finding of a C1-P300 correlation can link early perceptual 

modulation to later decision-making processes. Alternatively, the causal direction might be reversed: 

The C1 might be the result of a top-down modulation that acts across the experimental block (e.g. 

Zhang et al. 2015). However, ERP amplitudes were variable across individuals, and while this C1-P300

relation leads to interesting hypotheses, the current study is not able to test this idea. The next chapter, 

however, will demonstrate that neither decision-making nor traditional attentional mechanisms are 

required to computationally model the neural and behavioral effects of probability manipulations.
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Chapter 6: Probability Learning as a Passive V1 Circuit

6.1. Introduction

Chapters 2-4 provided behavioural support for the claim that orientation probability affects 

perception. Chapter 5, in showing that probable orientations dampen the amplitude of the C1 ERP 

component, provided neurophysiological support for the hypothesis that this perceptual effect occurs 

through the ‘sharpening’ of  V1 neurons. This mechanism is similar to the one proposed for perceptual 

learning. Monkeys trained with an orientation demonstrate a sharpening of the V1 neuron preferring 

that orientation, relative to other neurons (Ringach et al., 1997; Schoups et al., 2001). 

Whether sharpening or broadening would lead to encoding precision are contingent on the 

assumptions made about the nature of the neural population (Pouget, Deneve, Ducom, & Latham, 

1999). For instance, the optimal direction depends on the dimensionality of the neuron. If a neuron is 

uni-dimensional (i.e., codes for one feature), the optimal would be to narrow in tuning, whereas the 

opposite might hold if the dimensionality is above two (Zhang, & Sejnowski, 1999). For orientation-

selective V1 populations, this optimal half-width half-height in tuning has been estimated to be in the 

range of 12 degrees (Seung & Sompolinsky, 1993). V1 feed-forward layer (layer 4) are weakly 

selective and broad in tuning to begin with (Ringach et al., 1997), and the sharpening seen with 

orientation training improves discrimination performance (Schoups et al., 2001). 

Models have been built that try to explain these V1 sharpening dynamics and how they lead to 

improved perceptual discrimination. V1 not only has the lateral geniculate nucleus (LGN) as its major 

input (Hubel & Wiesel, 1962), but also has intra-layer inhibitory and excitatory cortical interactions 

(Tsumoto, Eckart, & Creutzfeldt, 1979; Sillito, Kemp, Milson, & Berardi, 1980; Ahmed, Anderson, 

Douglas, Martin, & Nelson, 1994; Sato et al., 2016). It is only by taking both of these into account that 
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crucial aspects of visual processing, e.g. that V1 tuning width is relatively independent of the contrast 

of the visual stimulus, is possible (Ben-Yishai, Bar-Or, & Sompolinsky, 1995). V1 sharpening in the 

Schoups et al. (2001) study was only observed in the supragranular (2/3) and infragranular (5/6) layers 

of the V1 cortex, and not in layer 4, where the thalamic input is received. This suggests that the 

changes were unlikely to have occurred pre-V1. Because V1 neurons are initially only weakly 

orientation-selective to feed-forward LGN input, recurrent intracortical inhibitory/excitatory feedback 

is required for the neurons to demonstrate their full orientation-selectivity (Teich & Qian, 2010). V1 

neurons have a columnar organization, i.e. neurons preferring similar orientations are grouped together.

It therefore is likely that cortical interactions also occur in an orientation-selective manner, i.e., a 

neuron preferring a 45-degree stimulus is more likely to interact with a neuron preferring a 44-degree 

stimulus, rather than one preferring a 10 degree stimulus (e.g. Jurjut, Georgieva, Busse & Katzner, 

2017). By setting the neurons preferring the ‘trained’ orientation to have a a decreased excitation (or an 

increased inhibition) on neighbouring neurons, the Schoups et al. (2001) data could be modelled 

(Carandini & Ringach, 1997; Teich & Qian, 2003).

Given the hypothesis that orientation probability acts through neural tuning in V1, similar to 

how orientation training in monkeys occur (e.g., Ringach et al., 1997; Schoups et al., 2001), then a 

model that attempts to mechanistically describe the effects in those studies (i.e., Carandini & Ringach, 

1997; Teich & Qian, 2003) should also be able to explain orientation probability effects. 

A dynamic model

There are two issues with using Teich and Qian’s model for modelling probability effects. First, 

previous versions of the model compared two static states: baseline, and trained. There was no dynamic

modulation that autonomously led from baseline to trained. For probability effects the question is not 
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only whether decreased intracortical excitation replicates probability effects (as it did for perceptual 

learning), but how this change in intracortical excitation comes about. The second issue is time-span. 

Probability effects occur within a much shorter time-span than perceptual learning. Perceptual learning 

tasks in humans typically involve a limited set of stimuli and weeks of training (Zhang, Xiao, Klein, 

Levi, & Yu, 2010). In monkey studies (e.g. Ringach, Hawken & Shapley, 1997; Schoups et al., 2001) 

this process might take months. In contrast, for the probability studies described in Chapters 2-5, 

behavioural effects developed within a single session. That probability effects occur quickly was also 

demonstrated electrophysiologically, with C1 amplitudes for high probability orientations being 

dampened within the first 15 minutes or so of the estimation task (Figure 5.6.). Furthermore, instead of 

just having one ‘trained’ stimulus, the experiments presented in this thesis biased a range of 

orientations. Could the same mechanism of regulating intracortical excitatory connectivity explain both

perceptual learning in monkeys and probability effects in humans?

By having the recurrent model adaptively modulate intracortical excitatory connectivity on a 

trial-by-trial basis both issues can be addressed. This is the idea explored in this chapter: Whether 

probability effects can be explained by a dynamic perceptual-only model where the lateral excitation of

a neuron on its neighbours is dependent on the current rate of firing of that neuron and the similarity of 

their tuning preferences. This lateral excitation not only decreases if the neuron has been firing often, 

but also increases back to baseline if there has not been activity. This excitation can also change non-

linearly: The smaller the current excitation is the more neuron firing is required to drive it down further.

Conversely, the impetus for to increase connectivity back to baseline is greater the more connectivity 

has reduced from baseline (see Model Instantiation for details). This dynamic also allows for relatively 

recent information to be weighted more heavily than past information, which is a feature of both the 

visual and auditory cortices (Singer et al., 2017).

138



Sequential dependencies

A dynamic version of the Carandini & Ringach (1997) and Teich & Qian (2003) model will not 

only yield an ultimate sharpening of probable orientation tuning curves, it will also be sensitive to the 

sequence of stimuli presented. This also provides a greatly enhanced opportunity to test the model’s 

ability to capture performance. If the effects from the stimulus sequences that the model is shown 

predict how participants respond to the same sequences, it provides strong evidence for the hypothesis 

that the probability effect operates through the modelled mechanisms. Sections 6.2 and 6.3 describe 

and provides test runs of the model to show that it accurately reflects the predicted probability effects. 

Sections 6.4 and 6.5 validate how participant performance tracks the model predictions.

6.2. Model Instantiation

This model is based on existing perceptual learning models (Carandini & Ringach, 1997; Teich 

& Qian, 2003) and therefore shares most of the same parameters and functions. Where possible, the 

same values (e.g. baseline Je/Ji and intracortical connection exponents ae/ai) were used. The 

modifications and additional parameters added to the model allow for the model to respond to the 

stimulus sequence in a dynamic manner, without having to assume a Bayesian optimization process 

(e.g. Wei & Stocker, 2015). Table 6.1 gives an overview of the parameters and their initial values. 

Table 6.2 provides the equations that will be referred to in the next paragraphs. Appendix A provides 

the code implementation of the model.
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Table 6.1. Model Parameters

140

N Number of ‘V1 neurons’ (128)
τ Membrane time constant (15ms)
α Gain of spike encoder (10 spike/s/mV)
R

Strength of intracortical excitation (baseline = 1.1 mV/spikes/s)

Strength of intracortical inhibition (baseline = 1.1 mV/spikes/s)

Strength of feed-forward excitation (0.5 mV/spikes/s)

Gaussian width of feed-forward orientation bias (45°)

Exponent for the excitatory connection distribution (2.2)

Exponent for the inhibitory connection distribution (1.4)

λ
V Membrane potential (units = mV)
θ A neurons’ preferred orientation (range of -90° to +90°)
Φ A stimulus orientation (range of -90° to +90°)

Note: Number in brackets are the values used in the presented simulations

Firing rate of the neurons (Hz) = α max(V, 0)
J

e
°

J
i
°

J
f
°

σ
f

a
e

a
i

A
e

Maximum fractional reduction of J
e
° (0.010)

A
i

Maximum fractional reduction of J
i
° (0.000, i.e. not reduced)

Fractional decay rate of J
e
°/J

i
° towards baseline (0.010)



Table 6.2. Model Computations
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1

2

3

4

5

6

7

8

9

V(θ, t+τ) = V
f 
(θ,t) + V

e
(θ,t) – V

i
(θ,t) + ε

V
f
 (θ, Φ) =  J

f
°exp[ -(θ-Φ)2/(2σ

f
 2) ] 

V
e
(θ, t) = J

e
° sum[E(θ – θ’)R(θ’,t)]

V
i
(θ, t) = J

i
° sum[I(θ – θ’)R(θ’,t)]

E(θ) = c
e
 [cos(2θ) + 1] ae , where c

e 
is a normalization factor

I(θ) = c
i
 [cos(2θ) + 1] ai , where c

i
 is a normalization factor

R(θ)
norm

 = R(θ)/sum(R)

J(θ)
reduced

 = J(θ)
 
[1 –

 
(R(θ)

norm
 * A)] 

 

J(θ)
new

 = J(θ)
reduced  

+ λ(J
baseline

 – J(θ)
reduced 

) 
 

Note: θ’ indicates the preference of the other neurons that do not prefer θ  



The implementation of the model is for a single receptive field location, and includes neurons 

with orientation preferences equally spaced across the possible range of orientations (-90 to 90 

degrees). Note that because of the axial (half-circular) nature of orientations 90 degrees wraps back as 

-90 degrees. A ‘trial’ is defined as a single stimulus input. Following such a presentation the membrane 

potential of responsive neurons increase up until a plateau (Figure 6.1a). In all simulations, 1 second 

was the cutoff for determining firing rates. Computing neuronal activity uses equations 1 to 4. The 

membrane potential of a given neuron (V) at the next cycle (t + τ) is the sum of the feed-forward 

membrane potential (Vf), the summed potentials of the intracortical excitatory connections (Ve), and the

summed potentials of the intracortical inhibitory connections (Vi) at a given point in time (t). This is 

combined on each cycle by random noise (ε) which is scaled by the mean voltage of the feed-forward 

input across the neurons. The intracortical connections are governed by connection probabilities (E/I, 

equations 5/6) and the Je/Ji parameters. The connection probabilities across V1 neurons, and Ji values 

are the same as for Teich & Qian (2003), and remain fixed throughout the simulations. However, the Je 

values were permitted to change across trials (Figure 6.1b). 

The Je values start off at a baseline. What is novel in this adaptation of the model is that on each

trial, Je is reduced by a factor given by the normalized firing rate at the end of the trial (equation 8). 

Divisive normalization (equation 7) seems to be a computation that is made across the cortices 

(Carandini & Heeger, 2012), and it seems logical that the reductions in connection strengths would take

this into account. Before the start of the next trial, the reduced Je value is allowed to ‘decay’ or relax 

back to its baseline (equation 9). The net effect of this leaky integration is that neurons which fire often,

e.g. those preferring probable orientations, get a gradual reduction in Je, while neurons that prefer 

improbable orientations have Je values that remain closer to the baseline. While Ji is also governed by 

equations 8/9, Ai was set to zero, which has the effect that Ji does not adapt. This is justified by noting 
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that a decrease in Je is computationally equivalent to an increase in Ji . One could also view our 

modulation of Je as a modulation of the ratio of Je to Ji .

It could be argued that a more biologically-realistic implementation of changes in each neuron’s

lateral connection strength (Je) would have to be dependent on the current firing rate at that time step. 

Instead, equations 8 and 9 were only adjusted at the end of each trial. This was primarily because this 

required less modifications to the Teich and Qian (2003) model. Lengths of stimulus presentation and 

inter-stimulus intervals were also not of particular concern for the current simulation as presentation 

times were fixed in the reported experiments, and orientation probability effects have been documented

in studies with either long (Chapter 3) or short (Chapter 5) inter-stimulus intervals.
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Figure 6.1. System evolution across a sample sequence. a) Example evolution of the firing rate of two 
neurons within a trial. For early trials, all neurons fire the same way. For later trials, maximum firing 
rate is attenuated as a function of neuron preference and stimulus probability. Neuron preferring high-
probability orientations = blue, low-probability shown in red. b) Example change of the Je parameter 
across trials for these two identified neurons. c) Neural tuning curves at the start of the sequence. d) 
Neural tuning curves for the same neurons at the end of the sequence. Note: Noise (ε in equation 1 of 
Table 6.2) was set to zero to produce these graphs. Noise was introduced for actual testing.
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The model ‘estimate’ of the stimulus on each trial was taken as the population vector decoding 

of the firing rates (Georgopoulos, Schwartz, & Kettner, 1986; Pouget et al., 2000) at the end of the trial.

For each trial the preferred orientation of each neuron was weighted by the firing rate, summed, and the

reported angle was taken to the direction of this resultant vector. From this the angular error for that 

trial was taken as the difference between the input orientation and this estimate. 

While the current implementation uses a standard decoding technique, there are optimal 

decoding methods such as Bayesian or Maximum-likelihood inference that in comparison would have 

smaller root-mean square errors between the actual and estimated stimuli (Dayan & Abbot, 2001). 

However, the advantage for these alternative decoding schemes is primarily in circumstances where 

neural preferences are unevenly distributed. In all the current simulations the distribution of orientation 

preferences was uniformly distributed. These optimal decoding techniques also assume the 

minimization of error or cost, and it is unclear what is the best cost function to apply to the visual 

cortex beyond accuracy of the classification. By having the decoded estimate be a linear sum of firing 

rates our model necessitated fewer assumptions.
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6.3. Model Testing

Replicating our experiments with human participants, model simulations consisted of sequences

of trials where 80% of the orientations were biased to one side (between 0 and 90 degrees) while 20% 

of stimuli consisted of the other orientation band (between -90 and 0 degrees). Also reproducing the 

psychophysical experiments, local probability was maintained in blocks of 20 trials (e.g. 16 left-tilting, 

and 4 right-tilting). This was counterbalanced across model runs. Each run had a randomized biased 

sequence that consisted of 400 orientations. One thousand runs were carried out. Every run began with 

the same initial parameters.

Since a neurons’ firing rate (R) is directly proportional to its membrane potential (V), which in 

turn depends on Je (equation 3), changes in Je can modulate a neural response (compare Figure 6.1a 

Early vs. Late). Because Je reduction is dependent on the stimulus, orientation probability causes the 

neurons that prefer probable orientations to get ‘sharpened’ (i.e., have narrower tuning), relative to 

other neurons. This similar to what happens with orientation training in monkeys (Figure 1.1). Figures 

6.1c and 6.1d depict the initial and final neural tuning for one example run. This is also the same effect 

that the Teich & Qian (2003) model enforced, but which is now observed emerging via dynamic 

adjustment. While the orientation biasing was binary (either left or right-tilting was probable), the Je 

values showed a smooth sinusoidal pattern, which was seen in other runs as well. This smoothing is 

likely due to the columnar organization of V1 neurons. A neuron preferring the low-probability -1 

degree orientation still fires to nearby high-probability orientations (e.g. a 1 degree stimulus), whereas 

a neuron preferring the low-probability -45 degree orientation fires little to any high-probability 

orientation. These differences in firing frequency led to smooth differences in tuning within each 

probability set. 
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Reproducing participant data, the median absolute error (Figure 6.2b) and the distribution of 

angular errors (Figure 6.2a) showed a significant difference in absolute (median) angular error between

the high (M = 3.07 deg, SD = 0.26 deg) and low (M = 3.49 deg, SD = 0.50 deg) probability orientations,

(t(999) = 21.7, p < .001). There was also a significant difference in kurtosis (refer to Figure 2.2 for 

details on this metric) of the error distribution between the high (M = -0.48, SD = 0.19) and low (M = 

-0.75, SD = 0.28) probability orientations, (t(999) = 24.3, p < .001). Although this trend occurred in 

majority of the cases (approx. 76%), other cases showed either no probability effects, and some runs 

even showed a reversed probability effect. 

While the size of the angular errors made by the model can be made similar to human data by 

parameter twiddling, the kurtosis of the error distribution cannot. This is likely because some of the 

errors in participant data are due to non-perceptual phenomena (e.g. motor-based errors, the participant 

missing the stimuli due to blinks, etc.), which adds to the ‘tails’ of the error distribution, inflating the 

kurtosis value. Therefore, further analyses of the  model will focus on the median absolute errors.
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Figure 6.2. Modelled probability effects. a) Distribution of angular errors. b) Median absolute angular 
errors across random runs. The two runs highlighted were the runs with the most extreme results in 
each direction. c) Median absolute angular errors with just the two sequences highlighted in b). High-
probability = blue, low-probability shown in red.
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Reversed/Null Probability Effects

The cases where the expected probability effect had a reversed trend could have been due to 

random noise. But a more interesting possibility is that the learning differences were functions of the 

varying sequences of input stimuli. To examine the effect of noise on stimuli sequences, the model 

simulation sequences were fixed by selecting the run that led to greatest probability effect (i.e. a ‘good’ 

run), and the run that led to the maximally reversed probability effect (i.e. a ‘bad’ run10) and repeated 

these 100 times each with varying random noise inputs. The model parameters were otherwise 

identical. If the random noise was the reason behind the reversed probability effects, then the good and 

bad sequences should produce similar distributions of effects across runs. If the reversal was stimulus-

driven, the ‘bad’ sequence should consistently produce reversed probability effects.

Under this repeated testing the ‘bad’ sequence consistently led to model estimates where the 

low-probability orientations were more precise (smaller error) than that of the high-probability 

orientations (Figure 6.3c). The ‘good’ run yielded a consistent probability effect (M = -1.82 deg, SD = 

0.38 deg) that was significantly above zero, (t(99) = 47.4, p < .001). The ‘bad’ run produced a reversed 

probability effect (high – low, M = 1.12, SD = 0.33) that was significantly below zero, (t(99) = 34.2, p 

< .001). This suggests that differences in the probability effects are systematically affected by the 

sequence input into the model, above and beyond what can be explained by random noise.

10 The labels used here simply relate to the fact that the occasional reversed/null probability effects 
were unanticipated by me.
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Figure 6.3. Probabilistic sequences. a) The example ‘good’ [probability effect in the predicted 
direction] and ‘bad’ [probability effect in the reversed direction] sequences. b) Overall trial distribution 
in the two example sequences. High-probability = blue, low-probability shown in red.  c) Median 
absolute angular errors across the two sequences (light purple = ‘bad’; dark purple = ‘good’), as a 
function of what the change in stimulus orientation across trials was.
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Figure 6.3a depicts the two sequences that were identified. A two-sample Kolmogorov-Smirnov

(KS) test was used to compared orientation distributions (Figure 6.3b) of the two stimuli sequences, 

which suggested that they were drawn from a single distribution rather than from distinct ones (D = 

0.045, p = .813). Rather than the global distribution of trials, it could be that the change between 

successive stimuli determined the pattern of results. The 1000 random stimuli sequences (the same 

sequences for the data in Figure 6.2b) were re-examined. For each stimulus sequence the orientation 

difference between consecutive trials was computed. For example, if trial 1 was 45 degrees and the 

next trial was 67 degrees, that would be an angular change of 22 degrees (the absolute change was 

taken here). The distributions of angular change for the ‘good’ and ‘bad’ sequences were compared 

with a KS test, which failed to reject the null hypothesis of different distributions (D = 0.003, p = .38).

In a further effort to probe for diagnostic differences in what constituted a ‘good’ or ‘bad’ 

sequence other than the end effect on probability learning, the angular error for bins of trials (Figure 

6.3c) was assessed. While it is clear that angular change affects the extent of the angular errors, it also 

appeared that the ‘bad’ and ‘good’ sequences seem to systematically differ. For low-probability 

orientations, the errors made in the ‘bad’ sequences were consistently smaller than the ones made in the

‘good’ sequences. This reversed for the high-probability orientations, except for when the change in 

orientations was very large (85 degree bin). Given how little these surface characteristics of orientation 

sequences explained differences in model performance, more complex interactions are likely at play. 

For example, take the case where the first two stimuli are a 45 degree grating followed by 70 

degree grating. At the end of the first trial, the neurons preferring 45 degree stimuli will be the neurons 

with the lowest Je value. After the next (70 degree) trial, the neurons with the lowest Je value prefer 

orientations between 45 and 70 degrees, tending towards the latter. With more trials, the gradual 
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accumulation of Je reductions end up creating complex population tuning patterns. The precise 

population tuning would be difficult (if not impossible) to predict if the sequence of trials was 

disregarded.

Parameter space

Because the possibility of the complexity of the interactions between the sequence and the 

population representation, further steps were taken to identify the critical feature of good and bad 

sequences and how they depended on the specific parameter values chosen. The two previously 

identified sequences (see Figure 6.3a/b) were again fed into the model for another 500 simulated runs. 

Unlike prior simulations, Ae (fractional reduction of Je) and λ (decay rate) were varied between 0.002 

and 0.020 (at a resolution of 0.002). 

Plotted in Figure 6.4 are the means for each orientation probability (red = low prob, blue = 

high-prob), for each sequence (‘good’ = solid line, ‘bad’ = dotted line), for each value of Ae (across the 

panels lengthwise), for each value of λ (across the panels height-wise). Larger Aes and smaller λs lead 

to larger probability effects for the ‘good’ sequence. This makes sense given that bigger fractional 

reductions are going to drive more extreme shifts in Je  and will yield a larger effect on tuning. A 

smaller decay will slow the rate at which Je relaxes to baseline. The ‘bad’ probability effects due to the 

parameters are negatively correlated with the size of the ‘good’ probability effects (Pearson’s r = - .92, 

p < .001; see Figure 6.5). Another noteworthy observation is that the change in the probability effect 

seemed to be due more to the low-probability orientations than the high-probability orientations.
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fractional reduction of Je (Ae)

Figure 6.4. Effect of the model parameters on the probability effect, given the ‘good’ (solid lines) and 
‘bad’ (dotted lined) sequences. Panels in the y-direction indicates the value of the decay rate (λ) and the
x-direction indicates the fractional reduction of Je (Ae) . High-probability = blue, low-probability shown 
in red.
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Figure 6.5. Relationship between the size (and direction) of the probability effect across the different 
runs with different parameters. Positive values indicate a bigger median (absolute) angular error for 
low-probability trials than high-probability trials.
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While the model implementation is relatively simple, it makes very specific (and therefore 

testable) predictions about probability effects. If the orientation probability effect is indeed simply a 

low-level perceptual phenomena, we might expect participants to react to different sequences in a 

manner similar to the model. To test this prediction, a modified version of orientation estimation task 

outlined in Chapter 2 (Figure 2.1) was run. Using the exact same ‘good’ and ‘bad’ sequences tested 

with the model, participants were tested for orientation probability effects.

6.4. Experiment 6.1: Methods

Participants

22 participants were recruited (14 females, 8 males). 20 were right-handed and 2 were left-

handed. Participant ages ranged from 17 to 28 (median = 21). All participants had normal or corrected-

to-normal vision, and did not declare any auditory deficits.

Equipment & Stimuli

Participants sat approximately 60 cm from a 32 cm x 24 cm gamma-corrected CRT monitor that

refreshed at 85Hz (mean refresh time = 11.8ms, SD = 0.5ms). Prior to the task, participants were 

instructed to make their estimations of the Gabor orientations as accurately as they could. They were 

not told that they needed to be fast. Responses were made with a computer keyboard using their 

dominant hand. As with the experiment in Chapter 2, stimuli were oriented grayscale sine-wave 

gratings with a circular Gaussian mask, at 50% contrast, with an average measured luminance of 40 

cd/m2. They had a spatial frequency of 4 cycles per degree of visual angle, and were presented on a 

grey background with a similar luminance of 40cd/m2. When viewed from a distance of 60cm, the 

Gabors subtended approximately 4 degrees of visual angle both vertically and horizontally. Unlike the 

experiment in Chapter 2, no cues were used, and Gabors were always centrally located. Lines, for 
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participants to rotate to report their estimations, had a length of 4 visual degrees and also always 

occurred at central fixation. As with Chapter 2, the response line started off horizontal (90 degrees) by 

default.

Procedure

Trials began with a 1000ms presentation of a black fixation cross, followed by a 500ms of a 

blank screen. A Gabor flashed for approximately 60ms, and after a 500ms blank screen, a response line 

was drawn in the same spatial location as where the Gabor had appeared. Participants made their 

estimations by rotating the response line counter-clockwise or clockwise by pressing “Z” or “C” on a 

QWERTY keyboard. This rotation was at a maximum of 1 angular degree per frame refresh of the 

monitor. Participants pressed the “X” key to confirm their estimations. Once confirmed, auditory 

feedback was given. On practice trials, a white feedback line with the actual orientation was displayed 

on top of the participant’s response. This visual feedback was not given during the main trials. This 

response procedure was the same as in Chapter 2.

Participants started with 20 practice trials of uniformly distributed orientations. The main task 

consisted of 800 trials. This was either the 400 trials of the ‘good’ or ‘bad’ run predicted by the model, 

followed by the other 400-trial sequence. Participants were given a break every 200 trials. After the 

experiment, participants were given a modified version of the previous questionnaires, which consisted 

of the following questions, in order:

1. Did anything about the experimental task stand out to you?

2. Please describe any strategies you may have used.

3. Did you feel that you perceived some stimuli better or differently than others, or in certain 
cases? Did you notice any change over time in your experience?
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4. Do you think that some orientations were more likely? If yes, please elaborate.

5. Which of these do you think was more likely? Circle one of the choices.
[They were given a left and a right-tilting Gabor to choose from]

6. Was the first half of the experiment easier or more difficult, as compared to the second half?

7. Did you notice any differences in the first half of the experiment, as compared to the second 
half?

8. Did you think there were more repeats in one half of the experiment? E.g. (/) followed by 
another (/).

Questions 1-4 were standard questions used across all the experiments reported in the thesis. 

Questions 5-8 were new questions, and printed on the other side of the page. The idea here was that 

participants would be given the open-ended question first (Q4) before being forced to make a choice 

(Q5).

6.5. Experiment 6.1: Results

Data from the participants who did the ‘good’ sequence first, followed by the ‘bad’ (n = 11) was

initially looked at separately from those that did the reverse. Because all the trends were identical 

across these two groups, the data were collapsed across the two sequence orders. 

The median (absolute) angular error, kurtosis, initiation time (IT), and vacillation measures 

were computed in the same way as in Chapter 2. An overview of the data is depicted in Figure 6.6. For 

the angular error measure of precision (Figure 6.6a), a two-way (repeated measures) ANOVA revealed 

that there was a marginally significant main effect of probability, (F(1, 21) = 4.31, MSE = 6.10, p = .

050). There was no main effect of sequence, (F(1, 21) = 3.12, MSE = 1.46, p = .092). Crucially, there 

was a significant interaction between these two factors, (F(1, 21) = 6.77, MSE = 1.05, p = .017). To 

analyze the interaction the probability effects in the ‘good’ and ‘bad’ sequences were looked at with 
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separate t-tests. While there was the typical probability effect for the ‘good’ run (t(21) = 3.13, p = .005),

with high-probability orientations being more precisely estimated (M = 5.16 deg, SD = 1.80 deg) than 

low-probability orientations (M = 6.32 deg, SD = 2.38 deg), the ‘bad’ run did not demonstrate a 

significant probability effect (t(21) = 0.07, p = .949), with high-probability orientations (M = 5.27 deg, 

SD = 1.88 deg) being estimated with similar precision to low-probability orientations (M = 5.29 deg, 

SD = 1.59 deg). To determine whether the stimulus sequence had a greater effect for high or low 

probability orientation, magnitude of angular error for high (or low) probability orientation trials across

the two sequences was compared. There was no significant effect for high-probability orientations 

(t(21) = 0.45, p = .660), but there was an increase in the precision for low-probability orientations in 

the ‘bad’ sequence (t(21) = 2.53, p = .019)

The other three measures (kurtosis, IT, vacillations) did not show any interactions between 

sequence and probability (ps > .05). All revealed the established probability effects (ps < .05), but no 

sequence effects (ps > .05). While the low-probability precision (as measured by angular errors) was 

decreased when comparing the ‘bad’ to the ‘good’ run, this was not accompanied by a change in the 

kurtosis of the error distribution (t(21) = 0.97, p = .341). Instead, it was the standard deviation that was 

changed (t(21) = 2.99, p = .007), suggesting that the effect of the sequence on the low-probability trials 

was somewhat unlike the effect of probability. 
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Figure 6.6. Probability effects in participants given the two sequences tested by the model. a) Median 
absolute angular errors. b) Kurtosis of the error distributions. c) Initiation time (ms). d) Number of 
vacillations. ‘Good’ and ‘bad’ sequences given to participants were identical to the ones depicted in
Figure 6.3a. High-probability = blue, low-probability shown in red.
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For the post-experiment questionnaire, the forced-choice post-experiment question (Q5) and the

open-ended question that proceeded it was of particular interest. 16 participants chose the ‘45 degree’ 

option, which was correct. The others chose the wrong option. Of the 16 that did the forced-choice 

correctly, only 8 answered the previous open-ended question correctly. Given that only one stimulus 

location was used in this study, it is not surprising that some participants might explicitly learn the 

distribution used (as compared to previous chapters, which used a location-contingent orientation 

distribution). Even then, there was no clear pattern on whether the awareness of the probability 

manipulation was related to the sequence order, or to the size of the probability effects that the 

participant showed. It does not seem as if awareness (or attention) is a necessary condition of showing 

probability effects. This issue will be returned to in Chapter 7.

6.6. Discussion

While the model presented is a strictly low-level perceptual one, it nevertheless successfully 

replicates several facets of the orientation probability effect. High probability orientations are on 

average more precisely represented by the model, and this is the result of a sharpening process, which 

should result in less net activity in the system overall when the high-probability orientation is shown. 

This corroborates the direction of the effect demonstrated by the C1 ERP data in Chapter 5. This 

process can also occur quickly, within the time-scales of the experiments outlined in the previous 

chapters. The model is not only descriptive of probability effects, but also predictive. 

The model suggested that sequences can affect the size, and perhaps the direction of the 

probability effect (Figure 6.2), even when there is nothing significantly different about the overall 

distribution of the trials that make up the sequences (Figure 6.3). Specifically, with the sequences that 

the participants were tested with, the model predicted that better performance for low-probability 
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orientations in the ‘bad’ sequence, as compared to the ‘good’ sequence (Figure 6.4). When looking at 

the angular errors, participants showed exactly this trend (Figure 6.6). Because the model does not 

have a response component, angular errors are the important measure here, especially since the interest 

here is in the effects of probability on perception (via V1 tuning). 

While it is interesting why there were probability effects in IT and in vacillations for the ‘bad’ 

sequence even while there was none for in angular error measure, this was likely because in an effort to

make the task as close to the model data as possible, only a single stimulus location was used. Because 

one set of orientations was biased, this also created the possibility for response biases (previous 

experiments did not have this issue since probability was location-contingent). Future iterations of the 

model could introduce this spatial encoding, which would also allow us to model spatial probability. 

Note that this might require taking into account on/off-center neurons in the upstream LGN to 

determine how the orientation columns in V1 are related to spatial receptive fields (e.g. Miller, 1994).

While the angular error trends in the data were not reversed, they were different: A null effect 

for the “bad” sequence, and the standard probability effect for the “good” sequence. Further 

modifications of the model, for example, including orientation anisotropy - the common finding that 

cardinal (vertical/horizontal) orientations are more precisely represented than oblique orientations 

(Appelle, 1972) - could be modelled as differences in the tuning of cardinal-preferring neurons (Li et 

al., 2003), which can in-turn be implemented as pre-existing baseline differences in Je or Ji values, and 

might lead to a better match between simulated and human data. Alternatively, orientation anisotropy 

could also be modelled as neuron stimulus preferences being unequally distributed across the possible 

range of orientations. Either way, this should have an effect on the model predictions, although on 

average the two sequences should show discernible differences in probability effects. 
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The perceptual model used to reproduce and predict human participant performance is simple, 

autonomous, and has no response or ‘attentional’ components. As a result the model offers a 

mechanistic account of how orientation probability effects can be acquired on-line through cortical 

interactions local to V1 cortex and as a function of environmental experience. 

While the present model does a reasonable job of accounting for the data other models are 

available that also decrease in V1 activity and increase in perceptual precision (Chapter 5). Predictive 

coding models operate on recurrent prediction/error signal loops (Clark, 2013). Sensory signals from 

V1 could enable the downstream regions to make predictions about upcoming signals. The downstream

regions would then send prediction signals back to V1 resulting in an error signal (the difference 

between incoming sensory input and the prediction signal). While computationally tractable, neural 

evidence for such mechanisms in the visual cortex is lacking. While studies have not shown clear 

evidence or reciprocal prediction signals nor error signals, they have shown that predictable stimuli 

decrease V1 responses (e.g. Alink et al., 2010). Kok, Jehee & de Lange (2012) demonstrated that 

predictive cuing of an orientation caused a decrease in V1 activation, and multi-voxel pattern analysis 

suggestied a strengthening/increasing coherence of the V1 signal in response to this predictive cue. If 

V1 is sending error signals rather than sensory signals then as predictions improve one would expect 

decoherence of the error signal. These data are arguably more simply accounted for by positing a V1 

encoding of a sensory signal that gets sharpened with predictability.

While there remains ample room for expansions to the model or for comparisons with other 

models, what should be clear at this juncture is not only that the perceptual tuning hypothesis of 

orientation probability is supported by the available neurophysiological and behavioural data, but that 

the mechanisms that lead from one to the other can be computationally modelled without requiring 
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abstract assumptions on the role of ‘attention’. The next experiment further examines the necessity for 

‘attention’ in establishing (orientation) probability effects.
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Chapter 7: Orientation Probability is Attention-free

7.1. Introduction

Chapter 6 suggested that orientation probability effects can be modelled through the use of a 

local recurrent V1 circuit, without having to make any assumptions about the role of top-down 

‘attention’. Attending to the feature of an object, e.g. its colour, increases the P1 evoked visual potential

elicited by that object, even if that object appears in an unattended location (Zhang & Luck, 2009). This

P1 increase was not observed with the electrophysiological experiment on orientation probability 

discussed in Chapter 5. Instead, the C1 potential, which is thought index V1 activity (Di Russo et al., 

2002) decreased in amplitude. While feature-based cuing of orientations can modulate V1 activity 

(Kok, Jehee & de Lange, 2012), it is conceivable that it does so through feedback from a more 

downstream region, hence the modulation of P1, which has been source-localized to the extrastriate 

cortex (Clark & Hillyard, 1996; Di Russo, Martinez, Hillyard, 2003). More recent MEG studies on 

feature-based attention (to colour) further demonstrate that downstream, anterior visual processing 

areas have changes that precedes the changes in upstream, posterior sections, implying a top-down 

feedback process (Bartsch et al., 2017). 

In contrast, the argument for orientation probability is that V1 activity is locally modulated as a 

result of stimulus exposure, rather than via top-down feedback. This predicts that tuning of the 

orientation selective V1 neurons would occur even if orientation probability is irrelevant to the task, 

e.g. if ‘attention’ was directed to colour rather than orientation. This chapter explicitly examines this by

biasing orientation probability only on trials where orientation is irrelevant and colour is relevant. From

the results of Chapter 4, orientation probability was not anticipated to impact colour detection 

performance. 
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However, if orientation-selective V1 neurons are tuned by the biased orientation distribution 

despite the task demands, then participants would have passively ‘learnt’ the orientation probability 

anyway. This notion of implicit learning can be assessed by intermixing occasional orientation 

estimation trials, where orientation probability was not biased. Finding a probability effect in such a 

situation would suggest that probability learning is a constant ongoing process driven by the 

distribution of sensory events, and could occur without ‘attention’ being directed to the probable 

feature.

7.2. Experiment 7.1: Methods

Participants

Twenty participants were recruited from the University of Waterloo (median age = 19 years; 15 

females, 5 males), in exchange for course credit. 18 reported themselves right-handed. All participants 

had normal or corrected-to-normal vision and audition, and were not colour-blind.

Stimuli

Sine-wave gratings with a hard circular mask were used as the target stimuli in this experiment. 

These gratings were shown at 50% maximum contrast, and either appeared in grayscale, or were 

colored green, or colored blue. These colored stimuli had a similar appearance to the ones used in 

Chapter 4 (Figure 4.1), except the gratings were now sine waves instead of square waves. Regardless 

of color, the gratings always had a luminance of 40cd/m2. These gratings had a spatial frequency of 4 

cycles per degree of visual angle, and were presented on a gray background with a similar luminance of

40cd/m2. When viewed from a distance of 60cm, the gratings subtended approximately 4 degrees of 

visual angle both vertically and horizontally. Gratings appeared either left or right of the fixation cross, 

with a distance of 4 degrees from the center of the cross to the center of the grating. The fixation cross 
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either appeared in red or dark grey both having a luminance of 34cd/m2. Lines, used for feedback and 

for participants to report their estimations, had a length of 4 visual degrees, and always occurred in the 

same location as the grating for that trial. Response lines always started off oriented horizontally.

Gratings were equally likely to appear at each of the two locations. Orientation probability 

distributions were maintained throughout the experiment. For every set of 24 trials, there were 20 color 

judgment trials, and 4 orientation judgment trials. The trials within each set were randomly shuffled to 

occur in any order. The rational for this uneven number of trials was to ensure that participants 

prioritised color over orientation information. On these 20 color trials, an orientation probability 

manipulation was done in a location-contingent manner. There were 8 left-tilting gratings on the left, 8 

right-tilting grating on the right, etc. As in Chapter 6, orientations were uniformly distributed within 

each quadrant. Collapsed across the two possible locations, all orientations were equally likely. Color 

probability was always kept uniform. The final distribution of trials seen across participants is 

illustrated in Figure 7.1. There were two counterbalanced versions of the task (a/b), differing in their 

location-orientation mapping for the color discrimination trials (top panels). The orientation estimation 

trials (bottom panels) were rare, uniformly distributed in orientation, and mixed in with the biased 

trials.

The purpose of this design was to ensure that any orientation probability learning had to occur 

within the color discrimination trials, where ‘attention’ was directed to color rather than to orientation. 

To further support this, the fixation cross which preceded the stimulus explicitly (and accurately) cued 

participants to the type of upcoming stimulus (red for color trial, grey for orientation trial). While 

participants were explicitly informed what these cues meant, they were not informed about the 

probability distributions used.
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Figure 7.1. Stimulus distribution and performance in the color judgment trials. a) Distribution of 
stimulus orientations (x-axis) across the color and orientation trials, for one of the counterbalanced 
versions of the task. b) Distributions for the other version. Note: numbers refer to the total number of 
trials seen across all participants. High-probability = blue, low-probability shown in red.
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Practice trials (40 in total) had uniformly distributed orientations and an equal split between 

color and orientation judgment trials. A gamma-corrected CRT monitor that refreshed at 89Hz was 

used, and stimulus timings were programmed as numbers of frames.

Auditory feedback was given after each response to maintain motivation. On orientation 

judgment trials, a high pitched sound indicated an error of less than 12 degrees, while a lower pitch 

indicated an error greater than 12 degrees. Color judgment was done in a binary way (either 

participants responded with the correct key, or they did not), and the same type of auditory feedback 

was given.

Procedure

Prior to the task, participants were instructed to be as accurate as they could be. They were not 

told that they needed to be fast. Responses were made with a QWERTY keyboard, specifically with the

four direction keys (right hand), and the “X” key (left hand). Participants were also instructed to fixate 

on the central fixation symbol at the start of each trial. This fixation phase lasted 500ms, and the cross 

either appeared in red or grey to explicitly signal participants to the upcoming trial type. A grating then 

appeared for approximately 60ms (5 frames). After a delay of 500ms, either color patches or a response

line appeared, depending on the task. The blue/green color patches were displayed as a reminder to 

participants as to the key assignments (the green patch was above the blue patch, because “UP” was the

choice for green, and “DOWN“ was the choice for blue).

For the orientation estimation trials, participants made their orientation judgments by rotating 

the response line counter-clockwise or clockwise by pressing “LEFT” or “RIGHT” on the keyboard. 

This rotation was at a maximum of 1 angular degree per frame refresh of the monitor. Participants 
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pressed the “X” key to confirm their estimations. The auditory feedback was then given. Following the 

40 practice trials, there were 960 main trials (40 sets of 24 trials). These trials were separated into four 

blocks, with breaks in-between. A post-experiment open-ended questionnaire was given to each 

participant that probed with increasing specificity whether they had been aware of or could report the 

probability by location manipulation.

Post-experiment Questionnaire

The questionnaire consisting of the following seven questions:

1. Did anything about the experimental task stand out to you?

2. Please describe any strategies you may have used.

3. Did you feel that you perceived some stimuli better or differently than others, or in certain 
cases? Did you notice any change over time in your experience?

4. Do you think that some orientations were more likely? If yes, please elaborate.

5. Which of these do you think was more likely to occur on the left side? Circle one of the 
choices [They were given a left and a right-tilting grating to choose from].

6. Which of these do you think was more likely to occur on the right side? Circle one of the 
choices [They were given a left and a right-tilting grating to choose from].

7. Apart from the color, do you think there was a difference in the gratings used for the color 
task, as compared to the orientation task?

7.3. Experiment 7.1: Results

For the color discrimination trials, there was no difference between the blue and green gratings 

for either RT or accuracy (ps < .05, see Figure 7.2). The data also replicates the findings from Chapter 

4, in that orientation probability had no effect on color discrimination. There was no difference between

the time taken to judge the color of gratings with high (M = 663ms, SD = 135ms)  or low (M = 660ms, 

SD = 138ms) probability orientations, (t(39) = 0.85, p = .399). There was also no difference between 
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the accuracy in judging the color of gratings with high (M = .969, SD = 0.027)  or low (M = .969, SD = 

0.031) probability orientations, (t(39) = 0.13, p = .900).
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Figure 7.2. Color task data. a) Color choice reaction time (ms) associated with the stimulus color and 
orientation. b) Color choice accuracy associated with the stimulus color and orientation. Note, 
probability here is defined by the stimulus orientations shown during the color trials. High-probability 
= blue, low-probability shown in red.
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Since orientation estimation trials had uniformly distributed orientations, these trials were 

divided based on the probability of those orientations from the color judgment trials. Comparisons 

between these ‘high’ and ‘low’ probability orientations yielded robust effects (Figure 7.3). Median 

absolute angular error  for high-probability orientations were smaller (M = 6.68 deg, SD = 2.81 deg 

versus M = 7.88 deg, SD = 3.12 deg; t(19) = 4.66, p < .001). The same was true for the kurtosis of the 

angular error distribution. High-probability orientations had increased kurtosis (M = 3.85, SD = 4.93), 

as compared to low-probability orientations (M = 0.93, SD = 1.94), (t(19) = 2.88, p = .010). 

Initiation times (IT; time taken for participant to start moving the response line) were unaffected

by orientation probability. High-probability orientations (M = 726ms, SD = 124ms) were not 

significantly responded to faster than low-probability orientations (M = 720ms, SD = 126ms), (t(19) = 

0.53, p = .600). This was the same when looking at movement times or reaction times as a whole (ps > .

05). Vacillations in movement of the response line was marginally significantly predicted by 

probability, with high-probability orientations (M = .144, SD = 0.117) showing fewer vacillations 

compared to the low-probability orientations (M = .120, SD = 0.114), (t(19) = 2.00, p = .060).

Sometimes participants used the color response buttons for the orientation task (color trials 

were four times as likely). Less often they used the orientation buttons for the colored stimuli. 

Participants made these ‘false-initiations’ on a greater proportion of the orientation judgment trials 

(about 2.7% of the those trials) than the color judgment trials (about 0.4% of those trials), (t(19) = 3.14,

p = .005). This suggests that participants were biased to responding towards the more common feature 

and indicates a prioritization of color over orientation. 
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Figure 7.3. Performance metrics for the the orientation judgment trials. a) Distribution of angular 
errors. b) Median (absolute) angular errors. c) Initiation time (ms) associated with the orientation 
estimation. d) Kurtosis of the angular error distribution. Note, probability here is defined by the 
stimulus orientations shown during the color trials. High-probability = blue, low-probability shown in 
red.
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For the post-experiment questionnaires, participants were at chance for the forced-choice 

questions (Q6/Q7) regarding orientation and color. Of the nine participants that circled the correct 

option in both questions, none were able to explicitly describe the distribution in the preceding open-

ended question (Q5). Some participants spontaneously shared being aware that color trials were more 

likely, with some of them explicitly stating that using the fixation colors helped them to focus on the 

relevant feature. 

7.4. Experiment 7.1: Discussion

Participants were explicitly clued to the type of judgment a trial would require. Because these 

cues were 100% valid, participants had every reason to attend to color for the color discrimination 

trials. This type of trial was also more probable (occurring 83.3% of the time). Any implicit attentional 

bias should have been towards color. This presumption is consistent with the ‘false initiation’ data 

where participants made color responses to orientation trials more often than color responses to 

orientation trials. Reaction times did not show orientation probability effects. But this task was 

procedurally more complex. Orientation responses were required infrequently and unpredictably, just 

as in the EEG session of Chapter 5, the other protocol where RT effects of probability were not found.

A clear orientation probability effect was observed  median absolute angular error and  

kurtosis11. Participants were more precise for the probable orientation, and this orientation bias could 

only have been learnt during the color discrimination trials. This result aligns perfectly with the idea 

that orientation-selective V1 neurons are incrementally tuned by exposure to stimulus orientation, 

regardless of whether orientation estimations are explicitly required. This autonomous process obviates

11 That even kurtosis was affected by probability in this experiment, where the two conditions have 
equal numbers of trials, further suggests that kurtosis changes seen in previous experiments were 
unlikely due to uneven sampling. 
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the need for any top-down attentional deployment and is consistent with modulation of local recurrent 

connectivity tested in the model of Chapter 6.  

Complementary to the findings in Chapter 4, Chapter 7 demonstrated that orientation 

probability does not affect color discrimination performance. This is despite the same experiment also 

demonstrating that orientation information was encoded in the color discrimination trials, even though 

it was an irrelevant feature. This finding is problematic for object-based attention accounts (e.g. Egly, 

Driver, & Rafal, 1994). If the orientation probability was due to a ‘whole object’ selection, it would 

have implied better color judgment for gratings with the probable orientations. This was not the case. In

Chapter 2, it was reported that spatial attention created effects that were independent from the effects of

orientation probability. Combining all these findings, and the fact that a model that has no attentional 

component nevertheless successfully predicts when/how probability effects will manifest (Chapter 6), it

is exceedingly difficult to posit any role of ‘top-down attention’ as the basis for  probability learning. In

fact, attentional accounts predict the wrong outcomes.

The next chapter ties in all the findings from this thesis, and explores why the V1 tuning 

mechanism posited is a better alternative explanation of probability effects, as compared with the use of

‘attention’ as a causal explanation.
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Chapter 8: General Discussion

8.1. Probability Shapes Perception

Manipulations of probability typically cause one set of stimuli to be perceived more often than 

others. Training a monkey with the same orientations over an extended period of time selectively tunes 

the V1 neurons preferring that orientation (Ringach et al., 1997; Schoups et al., 2001). The question of 

interest here is whether probability can modulate perception in a similar way.

Chapter 2 demonstrated that while orientation probability manipulations cause effects on 

perceptual precision that is similar to the effects of an ‘attentional’ manipulation (peripheral spatial 

cuing), these effects were independent, suggesting that the underlying mechanisms are distinct. Chapter

3 examined how there could be different forms of probability with a different response method. 

Whereas orientation probability again affected perceptual precision, clustering analyses illustrated that 

spatial probability only affected detection/guess rates. This finding was corroborated with a novel 

approach to 2-alternative forced choice tasks in Chapter 4. An additional finding was that unlike spatial

probability, feature-probability was domain-specific. Exposure to orientation probability was required 

for orientation discrimination to be affected, and exposure to color probability was required for color 

discrimination to be affected. This suggests a congruence with perceptual learning in monkeys, where 

selective tuning occurs as a consequence of exposure to the stimuli (Carandini & Ringach, 1997; Teich 

& Qian, 2003).

The tuning hypothesis was examined in Chapter 5 using electrophysiology. The C1 ERP 

component is thought to reflect early V1 activity (Di Russo et al., 2002). Consistent with a tuning-

based account, high probability orientations dampened V1 activity while increasing perceptual 

precision. Chapter 6 demonstrated that simple modifications to computational models (Carandini & 
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Ringach, 1997; Teich & Qian, 2003) for perceptual learning (Ringach et al., 1997; Schoups et al., 2001)

can be made to account for how V1 tuning occurs over time simply as a function of stimulus exposure. 

This model not only provided a mechanistic account of probability, but also made novel and apriori 

predictions about the impact of stimulus sequences, which was later verified by human data. This 

mechanism purports that probability learning is passive and automatic. Chapter 7 examined this by 

having orientation probability be exposed to participants while they were making color discriminations.

Intermittent orientation estimation trials demonstrated that this probability information was acquired, 

even when the main color task did not benefit from this learning.

The evidence from psychophysical, electrophysiological and computational methods detailed in

this thesis converge not only in indicating that probability shapes perception, but in indicating that the 

mechanism of feature probability is a selective tuning of the relevant feature processing units, as a 

result of exposure to that feature. While the ‘attentional’ (e.g. Hon & Tan, 2013) and ‘decisional’ (e.g. 

Menneer et al., 2010; Wolfe & Van Wert, 2010) accounts of probability are not necessarily incorrect, 

they are definitely incomplete since they do not describe how probability achieves its perceptual 

effects. 

8.2. Why not attention?

The idea of ‘attention’ is associated with the idea of a ‘selection process of competing 

representations’ (Allport, 1993). While attentional manipulations might typically be thought of as 

involving the frontal and parietal cortices, these regions can modulate perceptual processing areas in a 

‘top-down’ manner (e.g. Bressler et al., 2008). Cuing demonstrably modulates V1 in both human 

functional imaging (e.g. Brefczynski & DeYoe, 1999; Gandhi, Heeger & Boynton, 1999; Tootell et al., 
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1998), and in monkey single-cell recording (e.g. Sharma et al., 2015;  Wang, Chen, Yan, Zhaoping, & 

Li, 2015) studies. 

If ‘attention’ were a singular cause that links cuing and probability manipulations, the prediction

for Chapter 2 would be that the two effects would interact, since they share the same stage of 

processing (Sternberg, 1969). Attention is not a unitary construct. The attention label can be (and has 

been) applied to a host of phenomena varying across multiple dimensions, e.g. spatial vs. feature-based 

cues, and these effects have distinctions which set them apart from each other (Carrasco, 2011). Is 

spatial probability equivalent to spatial attention? Chapters 3 and 4 suggest that, unlike orientation 

probability and spatial cuing, spatial probability does not affect perceptual precision. Further 

distinctions would have to be made between peripheral spatial cues and symbolic spatial cues, which 

are known to have differing temporal properties (Eimer, 2000). Peripheral cues can also affect the 

baseline firing of neurons (Cutrone et al., 2014; Wang et al., 2015), which would interact with the 

stimulus response. Explicit cues result in pre-frontal acetylcholine release (Parikh, Kozak, Martinez & 

Sarter, 2007), and cholinergic input affects the intracortical connections within the V1 cortex (Chen, 

Sugihara & Sur, 2015), which tunes V1 populations. Explicit spatial cuing might have different effects 

from (implicit) spatial probability due to any of these factors.

Is feature probability equivalent to feature attention? Similar to how orientation probability 

modulates V1 (Chapter 5), feature-based cuing of orientation modulates V1 activity (Kok, Jehee & de 

Lange, 2012). Feature-based attention modulates the P1 ERP component (Zhang & Luck, 2009) which 

has been source-localized to the extrastriate cortex (Clark & Hillyard, 1996; Di Russo, Martinez, 

Hillyard, 2003). Feature-based attention is characterized by changes to the anterior visual processing 

areas that precede the changes in upstream, posterior sections (Bartsch et al., 2017). P1 modulations 
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were not observed in the electrophysiological investigation of orientation probability, and reflects a 

lack of top-down feedback processes. Chapter 7 demonstrates that orientation probability information 

is reliably acquired in a passive, automatic manner, with attention diverted to prioritize color instead of 

orientation information. It is unclear how top-down feature-based attention could account for this, since

feature-based attention would predict a lack of probability effects.

Probability effects could fall under the umbrella of ‘attention effects’, in the sense that they all 

stem from some sort of a selection process of possible representations. However, appeals to attention as

a causal explanation affords little-to-no predictive power, if the neural mechanisms involved are not 

explicitly specified.

8.3. Generalisability and Future Directions

This thesis has focused on the use of gratings as stimuli because they enable measurements of 

perceptual precision. Probability effects are known to affect other types of stimuli, and this section is 

meant to offer speculations on whether and how the mechanisms explored thus far might account for 

situations that do not involve gratings.

Probability effects obtained from manipulating the likelihood of certain glyphs (letters, digits, 

symbols, etc.) resemble probability effects obtained from manipulating gratings. Probable glyphs are 

detected faster and more accurately (Laberge & Tweedy, 1964; Miller & Pachella, 1973). These effects 

are also rapidly evoked (Hon et al., 2013) and can occur without explicit awareness (Hasher & Zacks, 

1984). The experience-dependent neural tuning postulated for feature probability in this thesis could 

account for probability effects for such complex objects. Tuning can occur in the object-processing 

areas, e.g., in the inferior temporal (IT) or fusiform cortices. Similar to orientation columns in V1, the 
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IT cortex does have a columnar grouping of similar object-features (Tanaka, 2003; Tsunoda, Yamane, 

Nishizaki, & Tanifuji, 2001). Unsupervised visual experience rapidly affects the tuning of IT neurons in

monkeys (e.g. Li & DiCarlo, 2010). Given the similarity in layout between V1 and IT cortices, the 

model presented in Chapter 6 can be adapted to other processing levels (e.g. object-representations in 

the IT cortex), to represent more complex probability effects. Experience-dependent neural tuning has 

also been postulated for other modalities, e.g. audition (Hanazawa et al., 2000), and changes in the 

primary auditory cortex could be modelled in a similar fashion to how V1 neurons change (e.g. Singer 

et al, 2017).

 This thesis has focused on neural mechanisms relating to perception. This is not to exclude the 

possible role of decision-making (e.g. Menneer et al., 2010; Wolfe & Van Wert, 2010). Theoretical 

models demonstrate how early changes in perception, specifically with neural tuning, can affect later 

decision making stages (Eckstein et al., 2009; Summerfield & Egner, 2009; Yaeli & Meir, 2010). 

Exploratory analyses of evoked-related potentials in Chapter 5 revealed a C1-P300 correlation, 

providing support for this hypothesis. The idea that V1 changes precede behavioural changes was also 

recently demonstrated in mice (Jurjut, Georgieva, Busse & Katzner, 2017), which potentially explains 

why probability effects are hard to get rid of through instructions (Lau & Huang, 2010) or rewards 

(Wolfe et al., 2007): The underlying perceptual representations are still affected and not-countered.

In real-world searches or detection tasks, the target object is not only perceptually rare, but is 

also rarely responded to. High miss rates for rare targets might therefore not be strictly due to 

perception (Fleck & Mitroff, 2007). Given that normalization by synaptic inhibition/excitation is a 

computation that is not just apparent within the visual cortex (Sato et al.. 2016), but across other 

cortices as well (Carandini & Heeger, 2012), any manipulation that causes one subset of a population 
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of neurons to fire more often than others would cause the type of modulation explored in Chapter 6. 

This suggests the possibility of local modulation in the motor cortices as a function of response 

probability. Alternatively, response probability, like spatial probability, could be due to an entirely 

distinct mechanism. While response probability was controlled for in this thesis, future research could 

examine what the relation between response and feature and/or spatial probability is.

8.4. Conclusion

There are facets of probability that remain to be explored (e.g. how perceptual changes relate to 

decision-making, what the role of response probability is, etc.). What is clear at this juncture is that 

when stimulus probability is manipulated, perception is affected. There are some forms of probability 

(e.g. spatial probability) that might recruit top-down mechanisms in a manner similar – but not 

identical – to ‘attentional’ cuing manipulations. However, certain probability effects can also be due to 

low-level changes occurring local to perceptual processing regions. For orientation probability (and 

perhaps color probability), this region is V1, but it is likely that similar synaptic mechanisms would be 

in play for cortical regions coding for other types of features/objects as well. Any theoretical account of

probability going forward should consider the possibility for such mechanisms. Any practical use of 

probability manipulations should be mindful that probability is not synonymous with ‘attention’.
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Appendix A: Python implementation of sequence-driven recurrent V1 tuning

Note: This code uses Python version 2. The code is also accessible at 
https://github.com/syaheed/public-code/blob/master/V1model.py
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### Import libraries
import numpy as np
import random

### Build functions 
def readSeq(filename):  #function read in a sequence (e.g. to test a fixed sequence)
    f = open(filename)
    content = f.readlines()
    num_stim = len(content)-1
    stims = np.zeros(num_stim)
    for t in range(0,num_stim):
        line = content[t+1]
        trial,stim = line.split(',')
        stims[t] = stim.strip()
    return(stims)

def degDiff(a,b): #function to calculate distance in circular space
    diff =  a - b
    diff[diff > 90.0] = diff[diff > 90.0] - 180
    diff[diff < -90.0] = 180 + diff[diff < -90.0]
    return(diff)

def memPotential(Jf,pref,stim,sigf): # formulae from Teich and Qian (2003)
    diffs = degDiff(pref,stim)
    return(Jf * np.exp( (-(diffs)**2)/(2*sigf**2)    )  )

def rand(items): # to generate a noise vector
    return( np.array([(random.random()-0.5)*2 for r in range(items)]) )

def cosd(d): # just a degree form of cosine for convenience
    return np.cos(np.radians(d))

def conn(theta,a): # connection formulae (for E and I)
    c  = (cosd(2*(theta))+1)**a
    return(c/sum(c))

def even_spread(N): # function to evenly spread stimulus/neurons across the possible orientations
    interval = 180.0/N
    return(np.linspace(interval/2.0 - 90.0,90.0 - interval/2.0,num = N))

https://github.com/syaheed/public-code/blob/master/V1model.py
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def V_calc1(c,J,R): # calculate Ve/Vi for one neuron
    return(np.dot(c*J,R))

def V_calc2(clist,Jlist,R): # calculate Ve/Vi across the whole set of neurons
    V = np.empty(N, dtype=float)
    for n in range(N):
        V[n] = V_calc1(clist[n,:],Jlist[n],R)
    return(V)

def R_calc1(V_init,e_list,i_list,Je_list, Ji_list, R): # calculate R for one time point
        Ve = V_calc2(e_list,Je_list,R)
        Vi = V_calc2(i_list,Ji_list,R)
        V =  Ve - Vi + V_init 
        noise = rand(N) * np.mean(V) * noise_level
        R = (V+noise) * alpha
        R[R<0.0] = 0.0
        return(R)
    
def R_calc2(V_init,e_list,i_list,Je_list, Ji_list, R): # calculate R across time points
    for t in range(0,1000,tau):
        R = R_calc1(V_init,e_list,i_list,Je_list, Ji_list, R)
    return(R)

def make_stim(num_trials,prob): # make a probability sequence
    high_N = int(round(prob*num_trials))
    low_N = num_trials - high_N
    high_prob = np.round(np.random.uniform(low=-90, high=0, size=high_N))
    low_prob = np.round(np.random.uniform(low=0, high=90, size=low_N))
    stim = np.concatenate((high_prob,low_prob),axis = 0)
    return(np.random.permutation(stim))
    
def decode(fire): # for vector decoding
    fireX = np.dot(xvect,fire)/N
    fireY = np.dot(yvect,fire)/N
    return( np.degrees(np.arctan2(fireX, fireY))/2 ) # convert doubled (circular) space to axial space

def normalised_firing(R): #Normalization response of an individual neuron given summed activity 
    return(R/sum(R))

def J_update(J_orig,J,A,R,decay_rate):
    reduction = normalised_firing(R) * A # excitation reduction is based on normalised firing on trial
    J = J * (1- reduction) # excitation reduction is also scaled on what current excitation is
    decay = (J_orig-J) * decay_rate # Assuming that there is also an x% loss of reduction per trial
    J = J + decay
    J[J<0] = 0
    return(J)
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# Parameters to change
num_runs  = 1000 # number of times to run the model
Ai = 0.000 # reduction of Ji
Ae = 0.010 # maximum reduction of Je
decay_rate = 0.010  # proportion decay of Je towards its original value
noise_level = 2.50 # multiplier for the noise added to the membrane potential at each time step

# Parameters that are fixed (inherited from Teich & Qian,2003)
N = 128 # number of neurons
Je_orig = 1.1 # strength of intracortical excitation 
Ji_orig = 1.1 # strength of intracortical inhibition 
Jf = 0.5 # feedforward strength 
sigf = 45.0 # feedforward tuning
ae = 2.2
ai = 1.4
tau = 15 # membrane time constant (ms)
alpha = 10.0 # spikes/s/mV

# initialize vectors
pref_list = even_spread(N) # neurons are evenly distributed
zero_index = np.argmin(abs(pref_list-(0)))
zero_pref = pref_list[zero_index]

diffs = degDiff(pref_list,zero_pref)
e  = conn(diffs,ae)
i  = conn(diffs,ai)

e_list = np.zeros(shape=(N,N))
i_list = np.zeros(shape=(N,N))
for n in range(N):
    e_list[n,:] = np.roll(e,n-zero_index) # to circle shift the numbers
    i_list[n,:] = np.roll(i,n-zero_index)
    
yvect = cosd(2*pref_list) # yaxis in double (circular) space
xvect = cosd(2*pref_list-90)  # xaxis in double (circular) space
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# build a set of input stimuli with a probability distribution
for run in range(1,num_runs+1):
    side_type = random.choice([1,-1]) # decide which set of orientations is probable
    Je = [Je_orig]*N
    Ji = [Ji_orig]*N

    stims = side_type * make_stim(20,0.8) # to constrain probability in 20 trial chunks
    for i in range(20-1): # to get 400 trials in total (20 sets of 20)
        temp = side_type * make_stim(20,0.8)
        stims = np.concatenate((stims,temp),axis = 0) 

    num_trials = len(stims)  
    final_Je = np.zeros(shape=(N,len(stims)))
    final_R = np.zeros(shape=(N,len(stims)))
    decoded = np.zeros(len(stims))
    error = np.zeros(len(stims))

    ### This is the main loop where the tuning occurs
    for s in range(num_trials):
        stim = stims[s] 
        V_init = memPotential(Jf,pref_list,stim,sigf)
        noise = rand(N) * np.mean(V_init) * noise_level
        R = (V_init + noise) * alpha
        R[R<0.0] = 0.0 # floor all negative firing rates due to noise
        R = R_calc2(V_init,e_list,i_list,Je, Ji, R)
        Je = J_update(Je_orig,Je,Ae,R,decay_rate) # update Je for next trial
        Ji = J_update(Ji_orig,Ji,Ai,R,decay_rate) # no need to update Ji
        final_R[:,s] = R
        final_Je[:,s] = Je
        decoded[s] = decode(R)
        error[s] =  decoded[s] - stim

    ### Save the data of each run
    cwd = '/home/syaheed/RecurV1' # change to intended path of data output
    fname = cwd + '/output/firingRate_' + str(run) + '_' + '.csv' # this is the main output
    fname2 = cwd + '/output/Je_' + str(run) + '_' + '.csv'  # Je value for every neuron at each trial

    run_c = np.ones(len(stims)) * run
    side_c = np.ones(len(stims)) * side_type
    Ae_c = np.ones(len(stims)) * Ae
    decay_c = np.ones(len(stims)) * decay_rate

    data = np.array([run_c, side_c, Ae_c, decay_c, stims, decoded, error])
    np.savetxt(fname, np.transpose(data), delimiter=',')   
    np.savetxt(fname2, np.transpose(final_Je), delimiter=',')


