
Building Scalable and Consistent
Distributed Databases Under

Conflicts

by

Hua Fan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2018

© Hua Fan 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Angela Demke Brown
Associate Professor, University of Toronto
Dept. of Computer Science

Supervisor(s): Wojciech Golab
Assistant Professor, University of Waterloo
Dept. of Electrical and Computer Engineering

Internal Member: Lin Tan
Associate Professor, University of Waterloo
Dept. of Electrical and Computer Engineering

Internal Member: Derek Rayside
Associate Professor, University of Waterloo
Dept. of Electrical and Computer Engineering

Internal-External Member: Bernard Wong
Associate Professor, University of Waterloo
David R. Cheriton School of Computer Science

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Distributed databases, which rely on redundant and distributed storage across multiple
servers, are able to provide mission-critical data management services at large scale. Paral-
lelism is the key to the scalability of distributed databases, but concurrent queries having
conflicts may block or abort each other when strong consistency is enforced using rigorous
concurrency control protocols. This thesis studies the techniques of building scalable dis-
tributed databases under strong consistency guarantees even in the face of high contention
workloads. The techniques proposed in this thesis share a common idea, conflict mitigation,
meaning mitigating conflicts by rescheduling operations in the concurrency control in the
first place instead of resolving contending conflicts. Using this idea, concurrent queries
under conflicts can be executed with high parallelism. This thesis explores this idea on
both databases that support serializable ACID (atomic, consistency, isolation, durability)
transactions, and eventually consistent NoSQL systems.

First, the epoch-based concurrency control (ECC) technique is proposed in ALOHA-KV,
a new distributed key-value store that supports high performance read-only and write-
only distributed transactions. ECC demonstrates that concurrent serializable distributed
transactions can be processed in parallel with low overhead even under high contention.
With ECC, a new atomic commitment protocol is developed that only requires amortized
one round trip for a distributed write-only transaction to commit in the absence of failures.

Second, a novel paradigm of serializable distributed transaction processing is developed
to extend ECC with read-write transaction processing support. This paradigm uses a
newly proposed database operator, functors, which is a placeholder for the value of a key,
which can be computed asynchronously in parallel with other functor computations of the
same or other transactions. Functor-enabled ECC achieves more fine-grained concurrency
control than transaction level concurrency control, and it never aborts transactions due
to read-write or write-write conflicts but allows transactions to fail due to logic errors or
constraint violations while guaranteeing serializability.

Lastly, this thesis explores consistency in the eventually consistent system, Apache
Cassandra, for an investigation of the consistency violation, referred to as “consistency
spikes”. This investigation shows that the consistency spikes exhibited by Cassandra are
strongly correlated with garbage collection, particularly the “stop-the-world” phase in the
Java virtual machine. Thus, delaying read operations artificially at servers immediately
after a garbage collection pause can virtually eliminate these spikes.

All together, these techniques allow distributed databases to provide scalable and
consistent storage service.

iv

Acknowledgements

I would like to thank my supervisor, Prof. Wojciech Golab, for his invaluable and
constant guidance throughout my Ph.D. studies. He has been the strongest influence in
shaping how I conduct research and teaching. Prof. Golab has always been supportive
and inspiring, encouraging me to think precise, logical, and sharp. I deeply appreciate
the remaining members of my examination committee for their comments and insightful
suggestions during the entire course of my study. They are Prof. Lin Tan (internal member),
Prof. Derek Rayside (internal member), Prof. Bernard Wong (internal-external member),
and Prof. Angela Demke Brown (external examiner).

I am also grateful to many individuals whom I had opportunities to collaborate with
and get inspiration from. Thanks to Dr. Jeff Pound of SAP labs, Waterloo, Dr. Chi Zhang
and Dr. Yong Wang of Google Inc., Mountain View, for hosting such wonderful internships
in their companies and inspiring me in my research. Thanks to Dr. Charles Brad Morrey III
and Dr. Xiaozhou Li of Google Inc., Mountain View, for their collaboration on my research
projects and pushing my research to a greater level of depth. Thanks to lab colleagues
and collaborators, Aditya Ramaraju, Marlon McKenzie, and Shankha Chatterjee for their
helpful suggestions and feedback.

Living and studying in Waterloo for nearly five years was a delightful and enriching
journey in my life. This thesis cannot be complete without the support of my family.
Special thanks to my parents, Heng Fan and Qiongying Yan, and my sister Dr. Yingjie
Fan, for their endless support and encouragement. Thanks to my son, Junmao Fan, for
bringing so many joyful days and nights, which motivated me to do great things.

v

Dedication

To my parents

Table of Contents

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Read-only and Write-only Distributed Transactions Under Conflicts 3

1.2 Serializable Read-Write Distributed Transaction Processing 5

1.3 Investigation of Consistency Anomalies in Apache Cassandra 7

1.4 Outline and Previously Published Work . 9

2 Background 10

2.1 Transactions in Databases . 10

2.1.1 Concurrency Control Techniques 11

2.1.2 Transaction Isolation Levels . 12

2.1.3 Serializability . 13

2.2 Distributed Transactions . 14

2.2.1 Atomic Commitment Protocols . 14

2.2.2 Combination of 2PL and 2PC . 15

2.2.3 RAMP: Read Atomic Multi-Partition Transaction 16

2.2.4 Calvin: Deterministic Databases . 17

2.3 Consistency in BASE Systems . 18

vii

2.3.1 CAP theorem . 19

2.3.2 Eventual Consistency . 20

2.3.3 Consistency Analysis . 20

2.4 Summary . 22

3 Epoch-based Concurrency Control and ALOHA-KV 23

3.1 Introduction . 23

3.2 System Model and Architecture . 24

3.2.1 System Model . 25

3.2.2 Architecture . 26

3.3 Epoch-based Concurrency Control Mechanism 27

3.3.1 Invariants and Rules . 28

3.3.2 Transaction Barriers . 29

3.3.3 Example . 29

3.4 Implementation . 31

3.4.1 Data Representation in Storage . 31

3.4.2 Transaction Protocol . 32

3.4.3 On the Side-Effects of Stragglers 34

3.5 Fault Tolerance . 35

3.5.1 Replication . 35

3.5.2 Cluster Membership . 36

3.5.3 Logging and Checkpointing . 37

3.6 Theoretical Analysis . 38

3.6.1 System Throughput . 38

3.6.2 Epoch Switch Scalability . 39

3.6.3 Analysis of Serializability . 42

3.7 Experimental Evaluation . 43

3.7.1 Experimental Setup . 43

viii

3.7.2 ALOHA-KV vs. RAMP Results . 44

3.7.3 Microbenchmark Experiments . 46

3.7.4 Scalability . 49

3.7.5 Fault Tolerance . 52

3.8 Summary . 53

4 Scalable Serializable Transaction Processing Using Functors 54

4.1 Introduction . 54

4.2 Architecture and Design of ALOHA-DB 56

4.2.1 Architecture . 56

4.2.2 Unified Epochs . 58

4.2.3 Avoiding the Side-Effects of Stragglers 59

4.2.4 Multi-version Storage . 60

4.3 Functors . 62

4.3.1 Transaction Lifecycle . 62

4.3.2 Functors for Read-Write Transactions 64

4.3.3 Transforming a transaction to functors 64

4.3.4 Functor Computing . 66

4.4 Implementation Details . 68

4.4.1 Functor Processing In ALOHA-DB 69

4.4.2 Dependent Transactions . 71

4.4.3 Serializability . 73

4.5 Evaluation . 74

4.5.1 Experimental Setup . 74

4.5.2 TPC-C Experiments . 77

4.5.3 Microbenchmark Experiments . 81

4.5.4 Discussion . 85

4.6 Summary . 87

ix

5 Understanding the Causes of Consistency Anomalies in Apache Cassan-
dra 88

5.1 Introduction . 88

5.2 Cassandra Consistency Levels . 89

5.3 Hypothesis . 90

5.4 Experiments . 91

5.4.1 Consistency metric . 91

5.4.2 Hardware and software environment 92

5.4.3 Inconsistency spikes versus STW pause 93

5.4.4 Smoothing the inconsistency spikes 95

5.5 Summary . 97

6 Related Work 99

7 Conclusion and Future Work 103

7.1 Conclusions . 103

7.2 Future Research Directions . 104

References 108

x

List of Tables

2.1 SQL-92 isolation levels defined in terms of the three phenomena. 13

4.1 Examples of some f-types and their f-argument representations in functors. 64

5.1 Comparison of consistency violation, throughput and read latency under
read delay in Apache Cassandra. 97

xi

List of Figures

1.1 Consistency spikes: when a constant workload is applied to Cassandra
deployed in a private cluster, the graph shows occasional abrupt inconsistency. 8

2.1 A non-linearizable history example. 21

2.2 A non-linearizable history example shows Γ metric. 22

3.1 Illustration of the system architecture of ALOHA-KV. 27

3.2 An example to illustrate the epochs in ECC. 30

3.3 Illustration of multiversion storage and insertion in ALOHA-KV. 32

3.4 Barrier synchronization. 40

3.5 Experiment results of throughput and latency: ALOHA-KV vs. RAMP under
20ms read/write epoch duration. Throughput and latency presented using
logarithmic scales. 45

3.6 Throughput and average latency experiment results of ALOHA-KV under
various epoch durations. 47

3.7 Throughput experiment results of ALOHA-KV under various transaction sizes. 48

3.8 Throughput under various experiment results of ALOHA-KV read/write
proportions. 49

3.9 Aggregate and per host throughput experiment results of ALOHA-KV using
transaction size 4000. 50

3.10 Epoch switch time for various numbers of FE instances in experiments of
ALOHA-KV. 51

3.11 Evaluation result of various fault tolerance strategies in experiments of
ALOHA-KV. 52

xii

4.1 Illustration of the system architecture of ALOHA-DB. 57

4.2 Illustration of unified epochs in ALOHA-DB. 59

4.3 Avoiding straggler side-effects by allowing transactions to start without
authorization in ALOHA-DB. This figure illustrates execution under two
different protocols: transactions started only with authorization (colored blue
in the example) and transactions started once the previous epoch completes
(colored orange in the example). 60

4.4 Illustration of the storage multi-versioning layout for one key in ALOHA-DB.
The linked arrays are used to store the versions of one key. 61

4.5 Example of three transactions executed using functors over two data items. 68

4.6 Throughput vs. latency: ALOHA-DB and Calvin experiments for NewOrder
transactions on eight m4.4xlarge instances. Logarithmic scale used for
horizontal axis. 1W or 10W denotes 1 or 10 warehouses per host in TPC-C
experiments; 1D or 10D denotes 1 or 10 districts per host in scaled TPC-C
experiments. 78

4.7 ALOHA-DB and Calvin throughput for NewOrder and Payment transactions
under various numbers of warehouses or districts per host. Logarithmic scale
used for vertical axis. 79

4.8 ALOHA-DB and Calvin scale-out performance for NewOrder transactions.
Logarithmic scales used for both axes. 80

4.9 ALOHA-DB and Calvin microbenchmark performance under various values
of the contention index. Logarithmic scales used for both axes. 81

4.10 Latency breakdown: latency of different stages of a transaction lifecycle in
ALOHA-DB and Calvin under low and high contentions. 83

4.11 Throughput of single-partition transactions under various transaction size. 84

4.12 ALOHA-DB and Calvin latency under various epoch durations. 85

5.1 Illustration of how STW causes severe staleness. 92

5.2 Time series of Γ score and GC pause time with five YCSB hosts and replica-
tion factor three. 94

5.3 Time series of Γ score and GC pause time with replication factor five. . . 95

5.4 Smoothing of inconsistency spikes by delaying reads artificially after a GC
STW pause. 96

xiii

Chapter 1

Introduction

It is commonly believed that we are already in the “data age”, where applications and their
users are producing and consuming much more data than that of years before. The prevalence
of faster computing devices and higher speed Internet further help build many “Big Data”
applications, that challenge the designs and operations of data management systems. Those
applications prefer distributed data management systems, which distribute workloads
to multiple servers, for performance, data safety, and availability reasons. Specifically,
distributed databases can scale out to more servers to add storage and processing capacity of
the system. Replication, a technique widely used in distributed systems for fault tolerance,
allows the whole system to retain all data even if some server fails. Replicas also help the
system to improve throughput by sharing the workload; clients may contact the closest
replica for better latency.

Scalable distributed database systems, however, are notoriously hard to design. Con-
current queries are executed using distributed protocols that ensure crucial correctness
properties in a highly concurrent, failure-prone environment. Violation of those correctness
properties may result in an inconsistent state of the system. The parallelism is crucial for
scalable performance, but coordination and synchronization overhead in those protocols
may hurt the parallelism of the system. Especially, distributed databases in high contention
workloads face scalability and consistency challenges from conflicts. Concurrent queries
have conflicts when they intend to access a common data item, and one of the queries
intends to update the data item. They may block or abort each other by the action of the
concurrency control mechanism, without which the systems may be subject to consistency
violations.

This thesis focuses on techniques for building scalable distributed databases that provide

1

critical consistency guarantees, even when the systems are under conflicts from concurrent
requests. In particular, read-write conflicts and write-write conflicts challenge the scalability
of distributed transactions with serializable isolation and atomicity guarantees, and read-
write conflicts may result in undesirable consistency anomalies in NoSQL storage systems
that only have a weakly consistent guarantee. This thesis presents 1) the design and
prototype of two systems that provide high performance distributed transactions with
serializability guarantees, and 2) the investigation and improvement of the consistency of a
scalable NoSQL storage system as follows:

1. ALOHA-KV is a distributed in-memory key-value store that supports high perfor-
mance read-only and write-only transactions, which are also known as multi-put and
multi-get operations. ALOHA-KV can process transactions in parallel even under
high contention cases using an epoch-based concurrency control protocol proposed
by this thesis. ALOHA-KV also uses a novel atomic commitment protocol that only
requires amortized one round trip for write-only transactions in failure-free cases.

2. ALOHA-DB is a transaction processing layer on top of ALOHA-KV, and it supports
high performance serializable distributed read-write transactions. ALOHA-DB allows
contended transactions to be processed in parallel using fine-grained concurrency
control. In experimental results, ALOHA-DB provides one to two orders of magnitude
higher performance compared to the deterministic database Calvin, which is the
current promising distributed transaction solution.

3. An investigation of the consistency anomalies in Apache Cassandra, an open source
distributed database, is presented in this thesis. The investigation explains the cause
of the phenomenon referred to as “consistency spikes”, and proposes an efficient way
to virtually eliminate the spikes.

The key idea behind these three works is conflict mitigation, which mitigates potential
conflicts by rescheduling operations for overall scalability and consistency. Conventionally,
concurrent operation requests may try their best to contend for some shared resource.
However, contention is the real hurdle for throughput, latency, and consistency for the
systems. For example, serializable distributed transactions are known to have scalability
problems [12, 14, 22, 19, 52, 101], because the concurrency controls and commitment
protocols for these transactions suffer under conflicts. On the other side of the consistency
spectrum, NoSQL systems can easily achieve linear scalability by trading off consistency
guarantees, but are vulnerable to consistency anomalies in the presence of conflicts [18, 67].

2

To build scalable and consistent databases, this thesis takes a simple but effective perspective:
reschedule the execution of potentially conflicting operations to avoid potential conflicts.
Figuratively, each concurrent operation may pay extra cost on latency for “politeness” —
avoiding potential conflicts in the first place, but the systems gain overall throughput and
consistency, and even latency, because operations can be processed highly in parallel and
optimistically without concerns about consistency.

1.1 Read-only and Write-only Distributed Transac-

tions Under Conflicts

To overcome the performance gap between traditional relational databases and web-scale
data requirements, many distributed storage systems have forsaken strong transactions
in favor of simplified but more scalable design in some mission-critical systems, including
shopping carts [32] and social network storage [97]. Although many of these NoSQL systems
do provide high-level query languages, they do not support the relational model fully and
instead offer a much narrower API paired with weak consistency. Several forces drive these
design choices: the need for a more flexible schema to accommodate a broader variety of
data sets, the inherent trade-off between consistency and availability during a network
partition [24], and the inherent trade-off between consistency and latency [6]. While NoSQL
systems attract intensive attention from researchers and are widely deployed in industry, an
alternative school of thought favors the continued use of transactions and strong consistency
in distributed storage systems [8, 9, 14, 29].

Transaction processing [21, 50] technology is the key to the coherent data management
and reliable information exploitation. Transactions in database systems must access or
update related data items together to correctly reflect the real-world phenomena and
activities. In each transaction, any interruption or interleaving of updates and accesses
from other transactions may make the data inconsistent. The ACID semantics: Atomicity,
C onsistency, I solation and Durability, are referred to as the golden standard of transactions
in database systems.

Concurrent transactions have conflicts when at least one of the transactions intends to
modify a common data item. Concurrency control mechanisms must be applied to resolve the
conflicts and to provide required transaction isolation levels. Concurrency control mechanism
designs play a key role in the consistency and scalability of the systems [20, 21, 52, 55]:
concurrency control mechanisms maintain consistent states of the databases systems by
providing an illusion of isolated execution, and they may impact the database system

3

performance by blocking the execution of conflicting transactions.

Recent research efforts have explored coordination avoidance in special cases [12, 82], as
well as the more general trade-off between transaction isolation and performance under the
following assumption: concurrent serializable transactions under read-write or write-write
conflicts require costly synchronization, and thus may incur a steep price in terms of
performance [12]. However, this assumption ignores the possibility that conflicting writes
need not block each other, or violate serializability if read-write conflicts are not present
at the same time. This thesis presents serializable read-only and write-only distributed
transactions as a counterexample to show that concurrent transactions can be processed in
parallel with low overhead despite conflicts.

Atomic read-only or write-only transactions, although less powerful than general ACID
transactions, have been debated intensely in recent research [30, 39, 65, 85]. They are
well suited to systems that process reads and writes in batches for efficiency, but also
require atomicity for each batch (i.e., two writes within one batch must both succeed
or both fail). For example, StoreAll with Express Query [54] is a scalable file metadata
system built on top of LazyBase, a distributed storage layer in which clients batch updates
together into self-contained units (SCUs) [26]. Write-only transactions naturally support
the atomic insertion of an SCU containing up to thousands of updates. For instance,
atomically moving a set of files from system A to system B, involves deleting metadata in
system A and inserting in system B. Another application of such transactions is distributed
system automatic reconfiguration [83] to achieve data migration and dynamic replication
factor adjustment [75, 88]. In addition, Chapter 4 discusses the possibility of using atomic
read-only or write-only transactions to support high-performance read-write transactions
processing.

While useful in practice, read-only or write-only transactions in distributed storage
systems are considered inherently costly. They require concurrency control for transaction
isolation since both read-write and write-write conflicts are possible, and they rely on
distributed commitment protocols to ensure atomicity in the presence of failures. Many
systems either bite the bullet and pay a performance penalty for serializable distributed
transactions [9, 29, 87], or sacrifice serializability while providing some alternative form of
strong consistency [14, 59]. The transactional solutions rely on costly atomic commitment
protocols in the sense that at least two network round trips are required to commit a trans-
action in the presence of contention. The high contention footprint of such protocols [70, 93]
easily becomes a performance bottleneck as contention increases, which triggers additional
protocol messages as conflicting transactions resolve their relative serialization order.

In search of a simpler and leaner protocol for read-only/write-only(ro/wo) transactions,

4

this thesis presents a system that draws inspiration from the slotted ALOHA network
protocol [81]. Specifically, this thesis proposes a scheme for supporting serializable multi-
partition read-only and write-only transactions by splitting time into read-only and write-
only epochs. This design relies on an epoch-based concurrency control (ECC) mechanism
that minimizes conflicts between multi-partition transactions while using minimal metadata,
thus enabling high throughput. To better understand the performance envelope of ECC,
this work incorporates it into a scalable distributed key-value store, called ALOHA-KV,
and compares it against RAMP [14], a scalable distributed transaction protocol that can
only provide a weak isolation level. The experimental results show that when transaction
size exceeds 10 key-value pairs, ALOHA-KV outperforms RAMP up to three orders of
magnitude in terms of both throughput and latency, at the same time providing stronger
transaction isolation.

1.2 Serializable Read-Write Distributed Transaction

Processing

Epoch-based concurrency control combines multi-versioning (MV) and timestamp ordering
(TSO), two non-blocking concurrency control techniques, and makes the effects of transac-
tions visible at epoch boundaries. It is presented in ALOHA-KV, a system that supports
high performance read-only and write-only transactions. It seeks to avoid most forms of
coordination between transactions by keeping reads and writes completely separated in
time. However, this idea has a clear difficulty to overcome: the common case of a single
transaction that does both reading and writing.

Unfortunately, the cost of serializable read-write transactions is high in a distributed
environment, where conventional techniques fare poorly especially for update-intensive
workloads [52, 80]. In particular, two-phase locking leads to aborts due to (suspected
or actual) deadlock, optimistic protocols suffer from aborts due to contention, and two-
phase commit increases the abort rate further by enlarging the “contention footprint” of a
transaction [70, 93]. These conventional techniques take a transaction as the basic unit of
concurrency control, meaning that a transaction can only commit keys after all conflicts
for these keys have been resolved by holding locks or completing backward validation in
optimistic protocols. This thesis refers to these techniques as transaction-level concurrency
control.

Recently, a few research works [80, 92, 93] aim to boost performance for serializable
distributed transactions under contention by enforcing deterministic transaction execution

5

scheduling on all partitions to prevent aborts, which avoids wasted work due to transaction
restarts but introduces its own overhead. By assuming all involved partitions will successfully
execute transactions according to the same deterministic scheduling, a transaction is able
to commit keys for one partition as long as all conflicts for these keys have been resolved,
irrespective of any unresolved conflict on other partitions. This thesis refers to these
methods as partition-level concurrency control, which gains more parallelism than the
transaction-level scheme under highly contended distributed transaction workloads.

This thesis proposes a novel paradigm of serializable transaction processing using
functors, which conceptually resemble futures [63] in modern programming languages. A
functor is a placeholder for the value of a key, and this value can be computed asynchronously
in the future in parallel with other functor computations. Functors enable more fine-grained
concurrency control than in partition-level or transaction-level schemes, and distribution
of work for a given transaction that tends to co-locate computation with storage. First,
functor computing only focuses on how to compute the value of a key, thus only requires
key-level concurrency control (i.e., resolve conflicts for generating the value of the functor’s
key) when ECC already guarantees transaction atomicity and resolves transaction orders.
Second, a functor is computed on the host where the functor’s key is stored. Thus the
transaction processing overhead can be distributed and offloaded to all the participant
partitions. The functor paradigm focuses on the transaction model of server-side stored
procedures, and introduces extra latency due to the nature of asynchronous processing.
However, as the experimental results in this thesis show, the benefit of conflict mitigation
using the functor paradigm surpasses the overhead of asynchronous processing, resulting in
overall lower latency.

Functors elevate epoch-based concurrency control to a new level: supporting serializable
distributed read-write transactions. In functor-enabled ECC, a read-write transaction is
executed in two phases: a write-only phase that uses a write-only transaction to store
a collection of functors under the low overhead of ECC, and a computing phase that
determines the outcomes of the functors asynchronously. With multi-versioning in ECC, the
functor computing only relies on accessing historical versions. Thus, the traditional locking
mechanism is not needed to read a historical version. This combination of techniques never
aborts transactions due to read-write or write-write conflicts and yet allows transactions to
fail due to logic errors or constraint violations while guaranteeing serializability.

The high-level idea of executing read-write transactions on top of a blind write layer
(write-only transactions) was previously explored in some scale-out distributed databases [19,
22, 46]. For example, Hyder [22] is a log-structured database that executes transactions
optimistically using a snapshot version, and appends writes as “intentions” atomically
to the log. Then, a centralized validation phase is needed to decide if the transaction

6

should be committed or aborted. The processing of functors in this thesis differs from
the “melding” procedure in Hyder [22] in several ways: functors are placeholders for values
whereas “intentions” in Hyder record concrete values; functors are evaluated using the
latest version of the data as opposed to a slightly stale snapshot; and the computation in
functor-enabled ECC is partitioned across servers.

The functor-enabled ECC is implemented and incorporated with ALOHA-KV into a
new scalable distributed transaction processing system called ALOHA-DB. On the TPC-
C benchmark for distributed read-write transactions and a YCSB-like microbenchmark,
ALOHA-DB outperforms Calvin [80, 92, 93] – a state-of-the-art high-performance distributed
transaction system that uses deterministic scheduling – in throughput, while also maintaining
lower latency. Furthermore, ALOHA-DB allows transactions to abort due to logic errors,
as required by the benchmark.

1.3 Investigation of Consistency Anomalies in Apache

Cassandra

Different from ALOHA-KV and ALOHA-DB, many NoSQL systems can easily achieve
linear scalability by giving up transactions and strong consistency support, which may have
high overhead as explained in Section 1.1. The justification of NoSQL systems is backed by
the wide acceptance of CAP theorem. The CAP theorem, conjectured by Brewer [24] in 2000,
and formally proved by Gilbert and Lynch [45] in 2002, states that any distributed system
cannot simultaneously provide: C onsistency, Availability and Partition tolerance. For large
scale systems, network partitions are inevitable, and those systems choose weak consistency
to support high availability. Compromising consistency in favor of availability, NoSQL
systems also adopt the simplicity of design and achieve scalability close to linear. These
systems [18, 32, 61, 97] often provide BASE (Basically Available, Soft state, Eventual
consistency) semantics [43].

An interesting phenomenon was observed on benchmarking an eventually consistent
system [77], Apache Cassandra: when a constant workload is applied on Cassandra, and an
inconsistency metric that measures the inconsistency in time unit is plotted in a time series
graph, the graph shows occasional abrupt inconsistency. Figure 1.1 is a copy of Figure 3
in [77]1. These spikes in the graph are referred to as consistency spikes (staleness spikes).
Similar anomalies have been observed by [18, 77, 98], leading to speculation regarding
possible causes including side effects of caching and Distributed Denial of Service (DDoS)

1Permission granted from the copyright holder.

7

Figure 1.1: Consistency spikes: when a constant workload is applied to Cassandra deployed
in a private cluster, the graph shows occasional abrupt inconsistency.

countermeasures, as well as network jitter. However, the experiments in [77] and some other
experiments that follow the same methodology, are run in a single private data center, which
isolates the storage system from the effects of caching layers, DDoS countermeasures, and
ambient network traffic. None of the network delay mechanisms suggested above account
adequately for staleness spikes in such a controlled environment.

Other than improving scalability for systems supporting strong consistency, this investi-
gation of the consistency spikes is motivated from a different angle: understanding cause
of the inconsistency, when the NoSQL system already has scalability. In particular, this
investigation works around these three questions:

� Are the consistency spikes reproducible in a given private cluster environment?

� Is the processing delay the cause of the spikes? Especially, it is interesting to explore
the garbage collection “stop-the-world” phase in Java virtual machine (JVM), which
will pause all application threads.

� Can the spikes be smoothed out, and if so then at what cost?

The experimental results show that the garbage collection in the JVM, in particular,
the “stop-the-world” phases which pause all application threads, has a high correlation
with the consistency spikes. Furthermore, delaying read operations artificially at server side
immediately after garbage collection, in order to avoid potential read-write conflicts, can

8

virtually eliminate the spikes. In the experiments, more than 98% of consistency anomalies
that exceed a minimum threshold of 5ms are removed with little impact on throughput and
latency.

1.4 Outline and Previously Published Work

The remainder of this thesis is organized as the follows: Chapter 2 presents the background
and literature survey of transaction concurrency control mechanism, eventual consistency,
and consistency analysis theories. The epoch-based concurrency control mechanism for
distributed read-only and write-only transactions is given in Chapter 3. The design
and implementation of ALOHA-KV is presented in the same chapter. In Chapter 4,
functor and functor-enabled ECC are discussed, for supporting scalable distributed read-
write transactions, and the high-performance transaction processing system ALOHA-DB is
proposed. Chapter 5 discusses the investigation of understanding and eliminating consistency
spikes. Related work of this thesis is discussed in Chapter 6. Finally, the thesis concludes
and highlights future work in Chapter 7.

Chapter 1 includes material from previous publications [39, 41, 42]. Chapter 3 is derived
material from [39, 41]. Chapter 4 is derived material from a paper co-authored with Dr.
Golab accepted by ICDCS 2018. Chapter 5 is derived material from [42].

9

Chapter 2

Background

This chapter presents the background and some prior works related to this thesis. Section 2.1
begins with the transaction concepts with ACID properties, then discusses concurrency con-
trol mechanisms and the transaction isolation. Section 2.2 discusses distributed transactions,
and describes various distributed transaction protocols. In Section 2.3, the background and
theory of analysis of eventual consistency is presented.

2.1 Transactions in Databases

The concept of transactions in database systems provides a very convenient and powerful
interface for application developers. In particular, transactions implement the ACID
properties, which denotes the following:

� Atomicity. The transaction takes effect in an “all or nothing” fashion. If part of the
transaction fails, the entire transaction fails, and the database is left unchanged.

� Consistency. The transaction must preserve the data integrity constraints of the
database, meaning the transaction brings the database from one valid state to another.

� Isolation. Transaction isolation provides the illusion as if the transaction accesses the
database alone, even in the presence of other transactions.

� Durability. Once a transaction is committed, the transaction’s actions must persist
across crashes.

10

Violation of either atomicity or isolation may leave the database in an inconsistent state.
This subsection will discuss the technique of concurrency control and transaction isolation,
which are crucial to the performance. Section 2.2.1 will present a protocol to provide
atomicity for distributed transactions.

2.1.1 Concurrency Control Techniques

Transaction execution parallelism is the key to the performance of database systems.
Concurrency control mechanisms are used to implement the transaction isolation requirement
in databases. How to resolve conflicts is the key to a concurrency control mechanism. The
following lists the common concurrency control techniques used in databases:

� Locking. These concurrency control mechanisms use locks to synchronize concurrent
transactions for accessing shared data items. Lock-based concurrency control mecha-
nisms vary in aspects such as locking durations [7], conflict resolution methods (e.g.,
blocking or aborting) and deadlock avoidance techniques, etc. Two-phase locking
(2PL) [35] is a standard concurrency control mechanism for serializable isolation
(detailed later in this section). Informally, using 2PL, a transaction must obtain any
locks it needs before it releases any locks. It includes two phases, the growing phase
when the transaction acquires all locks required for the transaction and never releases
any locks, and the shrinking phase when the transaction releases the acquired locks
and never acquires any locks. Thus in high contention workloads, 2PL may require a
transaction to wait a significant time for a lock. Lock-based concurrency control is a
pessimistic concurrency control method because it allows transaction execution only
after all conflicts have been resolved by locking.

� Optimistic Concurrency Control (OCC). OCC [60] executes transactions specu-
latively without the requirement of holding locks for any data item because it assumes
the conflicts are infrequent. However, concurrent transactions may have conflicts at
the time of execution. OCC can resolve the conflicts at transaction commit time using
backward validation to guarantee the required isolation level. If a transaction fails the
backward validation, OCC must abort the transaction. Thus, OCC leads to high abort
rates under high contention, which has relatively high overhead because the validation
is at the end of the execution when the failed transaction has already consumed the
resource (CPU, I/O, network, etc.) of the transaction processing systems.

� Multiversion Concurrency Control (MVCC). Multiversioning (MV) allows a
data item to keep more than one version in the concurrency control mechanism.

11

With MV, the committed versions are always available for reading, even if another
transaction is simultaneously writing the data (for another version). MVCC uses
MV for concurrency control, and the isolation level decides which version is visible
for each transaction. The most common isolation level implemented by MVCC is
snapshot isolation (SI), where the transactions are allowed to be executed based on a
committed version. MVCC never blocks read operations but requires extra overhead
to create and maintain the versions.

� Timestamp Ordering (TSO). The TSO [20] protocol is a non-blocking concurrency
control mechanism. In timestamp ordering, a transaction is assigned a unique
timestamp at the beginning of the transaction execution. The concurrency control
uses the timestamps to decide the transaction execution order. For example, in
a serializable system using TSO, if a transaction Ti has been assigned timestamp
TS(Ti), and a new transaction Tj enters the system, then TS(Ti) < TS(Tj). If both
transactions are committed, the system must ensure that transaction Ti appears to
be executed before transaction Tj.

2.1.2 Transaction Isolation Levels

If all transactions are executed one after another, the storage system can easily enforce
consistency and isolation properties. However, most current systems allow transaction
execution concurrently, for the following reasons:

� Improving throughput. For example, concurrent transactions can run on different
cores on the same server or different servers simultaneously, and one transaction can
use CPU resources while another transaction is blocked on I/O.

� Reducing waiting time. Consider a workload comprised of long transactions and short
transactions. If transactions run serially, a short transaction may need to wait until a
preceding long transaction completes.

However, the consistency of the system may be violated if transactions interleave with
each other. The transaction isolation property describes the level of how one transaction
can influence other transactions. The standard organization ANSI formally proposed an
SQL isolation level standard in 1992, which is referred to as SQL-92 [17, 69]. This standard
defined three phenomena which may lead to anomalous (non-serializable) behavior and the
SQL-92 isolation levels are defined by the absence of these three phenomena, as shown in
Table 2.1. The following is the definition of the phenomena and isolation level quoted from
reference [17]:

12

� P1 (Dirty Read): Transaction T1 modifies a data item. Another transaction T2
then reads that data item before T1 performs a COMMIT or ROLLBACK. If T1
then performs a ROLLBACK, T2 has read a data item that was never committed
and so never really existed.

� P2 (Non-repeatable or Fuzzy Read): Transaction T1 reads a data item. Another
transaction T2 then modifies or deletes that data item and commits. If T1 then
attempts to reread the data item, it receives a modified value or discovers that the
data item has been deleted.

� P3 (Phantom): Transaction T1 reads a set of data items satisfying some search
condition. Transaction T2 then creates data items that satisfy T1’s search condition
and commits. If T1 then repeats its read with the same search condition, it gets a set
of data items different from the first read.

Table 2.1: SQL-92 isolation levels defined in terms of the three phenomena.

Isolation Level Dirty Read Fuzzy Read Phantom

Read Uncommitted Allowed Allowed Allowed
Read Committed Not Allowed Allowed Allowed
Repeatable Read Not Allowed Not Allowed Allowed
Serializable Not Allowed Not Allowed Not Allowed

In SQL-92, serializability is the transaction isolation level that precludes all three types
of isolation anomalies: phantom reads, non-repeatable reads, and dirty reads. Even though
many database products refer to SQL-92 for their transaction isolation, the standard itself
has been criticized for the ambiguous definition of isolation anomalies and inability to cover
all possible anomalous behaviors [17]. Recently, many weaker isolation levels have been
proposed [14, 31, 64, 65], but serializability is regarded as a standard of strong consistency.

2.1.3 Serializability

Informally speaking, serializability requires that transactions appear to take effect in a
serial order even if they are executed concurrently. Serializability is widely regarded
as the gold standard of transaction isolation in conventional databases. However, the
overhead in concurrency control for providing serializability is commonly regarded as
costly [12, 14, 22, 19, 52, 101]. For example, a survey in [13] shows that many commercial

13

systems do not support serializability, or use weaker isolation as the default setting to
improve performance. Formal definitions of serializability are phrased in reference to histories
or schedules (defined later in this subsection), which record the actions of transactions, and
equivalence, which gives a precise meaning to the order in which transactions “appear to
take effect” [21]. Different interpretations of equivalence give rise to different correctness
properties, notably conflict-serializability and view-serializability.

An operation, such as read or write on a specific data item, may change the database
from one state to another state. A transaction comprises a sequence of operations as a
linear ordering of its actions. A history is a sequence of transactions. If a transaction
only has read and write operations, two operations conflict if at least one of them is a
write operation and they are performed by distinct transactions on the same data item.
Two histories are conflict-equivalent if they contain the same transactions and operations,
and they order conflicting operations of non-aborted transactions in the same way. A
history is conflict-serializable (CS) if it is conflict-equivalent to some serial history. The
View equivalence relation over histories is defined as follows: histories H and H ′ are view-
equivalent if (1) they contain the same transactions and operations, (2) they have the same
reads-from relationships (i.e., if T reads a value written by T ′ in H then the same holds for
the corresponding read of T in H ′), and (3) they have the same final writes (i.e., if T is the
last transaction to write a data item x in H then the same holds in H ′). A history is view
serializable if it is view-equivalent to some serial history.

Serializability takes on a slightly different consideration when a database implements
multi-version storage. A multi-version (MV) history of such a system records the specific
data item version accessed by each step. A serial MV history is called one-copy serial if for
all i, j, and x, if transaction Ti reads item x from transaction Tj, then i = j, or Tj is the
last transaction preceding Ti that writes into any version of x. Equivalence for two MV
histories H and H ′ is defined similarly to view-equivalence. Condition (3) follows trivially
because each version is written at most once and hence each write is final. An MV history
is one-copy serializable (1SR) if it is equivalent to a one-copy serial MV history, which
means that the system behaves as though it maintained only one version of each data item.

2.2 Distributed Transactions

2.2.1 Atomic Commitment Protocols

In a non-distributed system, a failure is an all-or-nothing affair (e.g., a process crashes).
However, in distributed systems, partial failures are possible. For example, some hosts are

14

working while others have failed. Thus, distributed databases, which may have transactions
across multiple hosts, need an atomic commitment protocol to guarantee the transaction
atomicity even in failure cases. In other words, all the participants of the transaction should
agree on the transaction decision — commit or abort, even if some of them fail.

The two-phase commit (2PC) protocol [21] is a common atomic commitment protocol
used in distributed systems. The 2PC protocol includes a prepare phase followed by a
commit phase.

� Prepare phase (also called voting phase). A coordinator attempts to prepare all the
transaction’s participating processes to take the necessary steps for either committing
or aborting the transaction. Participants have to vote to “commit” or “abort” the
transaction. 2PC assumes a synchronous model of computation by using timeouts to
detect failures.

� Commit phase. The coordinator decides on “commit” (only if all vote “commit”) or
“abort” (otherwise), and informs the result to all the participating processes.

Failure of the coordinator in 2PC may cause the protocol to stall—a problem addressed by
three-phase commit and Paxos commit at the cost of additional rounds of communication
or additional messages in the failure-free case [49, 84].

2.2.2 Combination of 2PL and 2PC

The concurrency control mechanism two-phase locking (2PL) and the atomic commitment
protocol two-phase commit (2PC) both need two phases. The combination of 2PL and 2PC
is a classic solution for the distributed transaction in which a transaction can be committed
in two round trips with both serializable isolation and atomicity. However, concurrency
control protocols have potentially higher deadlock avoidance overhead in distributed systems,
because the deadlock detection or prevention decisions may need to wait for responses from
remote hosts. Thus, this concurrency control technique must consider deadlock detection
and avoidance in the protocol design.

Sinfonia [9] uses the combination of 2PL and a two-phase protocol modified from 2PC
for serializability. In Sinfonia, a transaction acquires all the locks of needed items in the first
phase. In order to prevent deadlock, Sinfonia applies a simple deadlock avoidance method:
the locks are acquired by a specified order and the transaction will abort and release all locks
if attempting locking fails. In the second phase, the transaction will apply the commitment

15

decision (commit or abort), then release all the locks. Furthermore, Yesquel [8] uses similar
techniques but also incorporates timestamp ordering for multiversioning.

The atomic commitment protocol, 2PC, has an intrinsic overhead – requiring two rounds
of messages even for failure-free cases. It may further enlarge the performance bottleneck
of 2PL under contention: a transaction may need to wait longer for a lock when multiple
rounds of remote messages are involved.

2.2.3 RAMP: Read Atomic Multi-Partition Transaction

Some systems choose isolation levels that are weaker than serializability for better perfor-
mance because serializable distributed transactions have known scalability problems, which
is rare in weakly consistent systems. Bailis et al. [14] proposed the criteria for scalable
distributed transactions: a transaction protocol can provide scalability if it has the following
two properties:

� Synchronization independence. That is, one transaction cannot cause another trans-
action to stall or fail.

� Partition independence. A transaction only contacts the partitions referred to by the
transaction.

Recently, a weak isolation model Read Atomic (RA) is proposed in Read Atomic Multi-
Partition (RAMP) [14] transaction protocols, which provides both of these properties. RA
guarantees that either all or none of each transaction’s updates are observed by another
transaction. RAMP focuses on read-only write-only transactions, while other types of
transactions can be built on top of RAMP. It uses transaction meta-data to avoid RA
violations. RAMP provides an isolation level weaker than serializability. The RAMP
paper [14] introduces three variations of the RAMP protocol. The remaining material in
this subsection describes the basic RAMP protocol (RAMP-Fast), and gives a comparison
of different variations of the RAMP protocol.

RAMP-Fast. RAMP uses multiversioning in concurrency control and chooses the
largest version as the latest one. A write-only transaction will create a new version for
each object to write, and the version number is assigned by the client’s local clock. In the
protocol of RAMP, these versions are not required to be inserted in the order of the version
numbers, as RAMP does not provide serializability. Thus, inserting these versions will never
be blocked or aborted (synchronization independence). In order to provide RA isolation,

16

the write-only transaction needs two round trips in the protocol: one round trip to store
invisible data versions, the second round trip to commit these versions and make them
visible to other read transactions. The data versions include a transaction meta-data — the
information of the transaction that allows clients to detect RA violations. The meta-data of
RAMP-Fast includes the write-set of the transactions. A read-only transaction needs two
round trips in the presence of conflicts: one round to retrieve referred versions, the second
round of reading (called read repair) may be issued if a non-RA read result is detected. A
client can detect the RA violation by comparing version numbers from metadata that is
stored and retrieved with versions.

The three variations of RAMP protocols are RAMP-Fast, RAMP-Small, and RAMP-
Hybrid [14]. They all allow concurrent read-only and write-only operations to be executed
under the above two independence properties, thus achieving scalability. However, these
variations provide trade-offs between meta-data size and the number of round trips needed
in the protocols. The meta-data size impacts storage and message transferring overhead;
and the number of round-trips in the protocol impacts the system performance. RAMP-Fast
stores the whole write-set and the transaction version number as the metadata. A read
transaction can detect a RA violation when a transaction is only partially visible (e.g., data
exists in meta-data’s write-set, but has not been retrieved by the client). RAMP-Small
stores only a write transaction’s version number as metadata, but a read transaction requires
an extra round of messaging to detect and resolve RA violations. In particular, the read will
send all retrieved visible version numbers to all partitions participating in the transaction
in order to retrieve the version number that matches an invisible version. A third algorithm
is a hybrid of the above two, which also achieves performance between the other two in
various experimental scenarios.

2.2.4 Calvin: Deterministic Databases

Calvin [93, 92] is a transaction scheduling and data replication layer for transaction
processing in distributed databases. Calvin uses a deterministic transaction execution
ordering to reduce the cost of distributed transaction concurrency control. The deterministic
scheduling assumes all database partitions execute the transaction in the same order, thus
no transaction may be aborted due to contention, and so Calvin does not need atomic
commitment protocol (e.g., 2PC) to coordinate partitions participating in a transaction.

A transaction is duplicated to all participating partitions in Calvin. In each partition,
Calvin executes the transactions by the enforced deterministic order, thus the execution on
this partition does not require locking objects on a remote partition because the remote

17

partition has a duplicated execution with the same deterministic order. However, a partition
is not able to abort a transaction arbitrarily in the protocol, for example, when the partition
is overloaded or due to logic errors in the transaction.

The architecture of Calvin comprises shared-nothing partitions. Each partition is a server,
including a sequencer and a scheduler, which are crucial to the replicated and deterministic
scheduling. Each sequencer accepts transaction requests from clients and sends them to
schedulers in a batch. Each scheduler schedules all transactions received from sequencers to
a deterministic order for execution. In order to create the same transaction ordering across
all schedulers, Calvin enforces that each scheduler must collect all transactions created by
sequencers to form the transaction ordering in the pre-processing phase. This pre-processing
phase consumes significant time, thus increasing the overall transaction latencies.

The open source implementation of Calvin [79] uses multi-threading to increase execution
concurrency in each partition. However, each partition has a single-threaded lock manager
to synchronize these threads. Various evaluation results [52, 80] demonstrate that Calvin
surpasses both OCC or lock-based concurrency control on throughput in various high
contention distributed transaction experiments, because the deterministic transaction
execution simplifies the deadlock avoidance techniques and transaction commitment protocol,
and avoids the high overhead conflict resolution across all participant partitions. However,
a previous study [80] shows that, compared with non-deterministic databases, Calvin pays
the cost at extra overhead in latency in the pre-processing phase and inability to abort
transactions arbitrarily due to the deterministic execution.

2.3 Consistency in BASE Systems

Emerging Web services have introduced many challenges for distributed databases: (1) the
data are replicated and distributed across a network; (2) latency and availability are crucial
for websites’ revenue; (3) processing simple queries, such as read or write a data item, at
high speed is more crucial than processing complicated transactions. Many of the systems
designed for those applications give up the support of general ACID transactions, and
instead adopt BASE semantics [43] (Basically Available, Soft state, Eventual consistency).
In 1997, Fox et al. [43] defined BASE semantics as follows:

� Basically Available. Any non-failing server will respond to a request, even if the data
may be in an inconsistent or changing state.

� Soft states. The state of data can be regenerated at the expense of additional
computation, such as comparing versions.

18

� Eventual consistency. The definition given by Doug Terry et al. states “All replicas
eventually receive all writes (assuming sufficient network connectivity and reasonable
reconciliation schedules), and any two replicas that have received the same set of
writes have identical databases.” [90]

In particular, these systems use a weaker form of concurrency control for higher performance,
resulting in weaker consistency guarantees. This section will discuss these concepts and
focus on eventually consistent systems.

2.3.1 CAP theorem

The CAP theorem, conjectured by Brewer et al. [24] and formalized by Gilbert and
Lynch [45], targets distributed systems, such as web servers. Brewer’s conjecture states that
a distributed system cannot simultaneously provide all of the following three properties:

� Consistency. Informally, when operations are applied on a replicated object, the
operations should act as if the operations are applied on a single atomic data object [45].
For read and write operations, any reads that begin after a write operation completes,
shall return that value, or the result of a later write operation.

� Availability. Any non-failing server must respond with a result for every request.

� Partition tolerance. A network partition happens between two sets of hosts, when all
messages are lost between hosts in one set and hosts in another set. Partition-tolerant
and consistent systems (CP systems) guarantee that every response will return a
value that never breaks consistency, even if any message may be lost in the network.
Partition-tolerant and available systems (AP systems) guarantee that even if any
message may be lost in the network, every non-failing host can respond to requests.

Based on the CAP theorem, in the presence of network partition, distributed systems
need to choose between consistency and availability because at most two out of the three
properties can be held. However, in the absence of network partition, distributed systems
need to choose between consistency and (low) latency [6].

19

2.3.2 Eventual Consistency

The CAP theorem provides justification of weak consistency and asynchronous replication
for “Internet scale” applications where stronger consistency has undesirable high cost
and network partitions are possible. The preference of weaker consistency has gained
triumph in acceptance by the industry in recent years. For example, the distributed file
system GFS [44] provides atomic mutation on file namespace, but updates are applied
asynchronously, and clients may read stale values; Yahoo!’s PNUTS [27] only provides
per-key sequential consistency (record-level timeline consistency); COPS [64] provides
another weak consistency, causal consistency. HBase [3] implements a timeline consistency:
data is held on primary and replicas; updates can only be written to primary; either primary
or replicas can serve read requests; data in replicas may be stale, but all replicas receive
updates in the same order.

Eventual consistency is widely used in many systems, including Amazon’s Dynamo [32]
and its derivative versions Cassandra [61] and LinkedIn’s Voldemort [4]. The eventually
consistent systems allow read and write operations to continue even during network parti-
tions, and use asynchronous replication. The update conflicts are typically managed by
specialized conflict resolution procedures. The semantics provided by eventually consistent
systems are far different from ACID, and are referred to as BASE semantics.

Eventually consistent systems allow inconsistency when there is a network partition.
However, after the partition is healed, the system can converge to a consistent state by
additional communication and computation.

2.3.3 Consistency Analysis

Eventual Consistency only guarantees the data will eventually be updated to the latest
value if there are no new updates. However, it does not answer the questions of “how soon”
the data will be consistent and “how stale” the data is read. This subsection discusses the
consistency property linearizability and a recently proposed time-based metric Γ.

Consistency standard: Linearizability

To describe the consistency of shared memory, Lamport uses the notion of the atomic
register to capture the behavior of shared objects for reading and writing operations [62].
Herlihy and Wing defined the linearizability [53] property, which is a correctness property
for arbitrary object types. Linearizability provides the illusion that each operation applied

20

by concurrent processes takes effect instantaneously at some point in time between its
invocation and response. This point is referred to as a linearization point. A read operation
should return the value assigned by the most recent write, regardless of which process
issues the operation, and all subsequent read operations should return the same result
until the next write takes effect. The most recent operation and subsequent operations are
determined by the linearization point.

Herlihy and Wing formalize linearizability in terms of general histories of events. Fol-
lowing the previous work [48], this thesis only considers histories that are well defined as
in [48] for Γ metric computing. A history is a sequence of completed operations (already
finished operations), which includes operation type, operation parameter, operation result,
and operation start/finish timestamps. For a read/write operations history, if there is an
explanation of linearization points for each operation, this history is linearizable. Figure 2.1
shows an example of a history of four operations applied on one data item. The operation
type (read or write) is denoted by r or w, respectively; each line segment is an operation, the
start/finish point denotes the start/finish timestamp of the operation; for write operations,
the value to be written is given in brackets; for read operations, the return value is in
brackets. In this example, read operations r1, r2 begin after two write operations have
finished. If this history is linearizable, both read operations should return the same value,
which is the last updated value. However, r1, r2 return different values, indicating that this
history is not linearizable.

Time

w(0)

w(1)
r1(1) r2 (0)

Figure 2.1: A non-linearizable history example.

Time-based Metric Γ

To quantify the staleness of operations in a history, Golab et al. [48] defined a time-based
metric Γ. Γ quantifies the deviation from the given history to a linearizable history in
time unit. In other words, it denotes the degree of changing needed by the means of

21

Γ-relaxation (defined later in this paragraph) to make the given history to be a linearizable
one. The Γ-relaxation of a history is obtained by expanding each operation about its
midpoint, specifically shifting the invocation and response times by −Γ/2 and +Γ/2 time
units, respectively. The Γ-value of a history is the smallest Γ for which the Γ-relaxation of
the history is linearizable.

For example, the non-linearizable history in Figure 2.1 has the Γ value shown in
Figure 2.2. The Γ value equals to the duration from the finish time of w(1) to the start
time of r1(1). In other words, the history will be linearizable if we stretch the start time of
and the finish time of each operation by Γ/2.

Time

w(0)

w(1)
r1(1) r2 (0)

Γ

Figure 2.2: A non-linearizable history example shows Γ metric.

2.4 Summary

In this chapter, the concepts and theories related to this thesis were presented. Serializ-
able isolation is a golden standard of strong transaction isolation: it is useful and easily
understood because it provides the illusion of serial transaction execution. This chapter
also discussed the transaction isolation and concurrency control mechanisms. In addition,
distributed transactions require atomic commitment protocols to provide atomicity even in
the case of failures. Following that, three distributed transaction protocols were presented:
2PL combined with 2PC and Calvin provide serializability; RAMP only guarantees a
weak isolation – read atomicity. Eventually consistent systems, which provide availability
even in the case of a network partition, trade consistency for availability and performance.
Linearizability, a consistency standard for such systems, was covered. This chapter also
presented the time-based Γ metric, which can be used to measure staleness of reads observed
in eventually consistent systems.

22

Chapter 3

Epoch-based Concurrency Control
and ALOHA-KV

3.1 Introduction

As motivated in Section 1.1, this chapter presents a distributed transaction protocol for read-
only and write-only transactions as a counterexample against the long-standing assumption:
concurrent serializable transactions under read-write or write-write conflicts require costly
synchronization, and thus may incur a steep price in terms of performance [11, 12]. This
protocol for high performance distributed transactions relies on the epoch-based concurrency
control (ECC) mechanism, which is inspired by the slotted ALOHA network protocol [81].

ECC enables high parallelism for serializable read-only and write-only transactions. It
does so by enforcing the execution of read-only and write-only transactions in alternating
read-only and write-only epochs. Thus, read-write conflicts never occur in the execution.
Within each epoch, transactions are processed in parallel with the help of several concurrency
control techniques, such as multiversioning and timestamp ordering. The protocol requires
very little metadata to be stored or to be transferred for each transaction, and yet achieves
strong transaction isolation. The transaction execution in ECC uses a simplified atomic
commitment protocol that only requires one round trip to commit a transaction in the
absence of failures irrespective of contention, and uses a small number of additional messages
whose cost is amortized across many transactions. ALOHA-KV, a scalable distributed key-
value store for read-only write-only transactions, is built based on ECC and this transaction
commitment protocol. ALOHA-KV can process close to 15 million read/write operations

23

per second per server when each transaction batches together thousands of such operations.
The technical contributions presented in this chapter are as follows:

1. The chapter presents the epoch-based concurrency control for high performance
distributed read-only and write-only transactions. ECC guarantees high parallelism
in transaction processing even under high contention workloads that make many
conventional concurrency control mechanisms suffer from blocking or retrying. The
distributed transaction protocol and the theoretical analysis are presented in this
chapter.

2. This chapter proposes a simplified atomic commitment protocol used in the ECC
protocol. Different from 2PC, which requires two round trips for each write-only
transaction even if no failure occurs, the proposed protocol only requires amortized
one round trip.

3. The implementation and evaluation of a distributed key-value store with read-only and
write-only transaction support, called ALOHA-KV, are presented. The experimental
results show that when transaction size exceeds 10 key-value pairs, ALOHA-KV
outperforms RAMP in terms of both throughput and latency, at the same time
providing stronger transaction isolation.

The rest of this chapter is organized as follows. Section 3.2 introduces the architecture
and system model of ALOHA-KV. Section 3.3 provides the design of ECC. The transaction
protocol and implementation details are described in 3.4. Section 3.5 discusses the fault
tolerance design. The theoretical analysis of the performance of the system is discussed in
Section 3.6. Section 3.7 presents the performance evaluation of ALOHA-KV.

3.2 System Model and Architecture

ALOHA-KV is a scalable multi-version storage system that supports serializable read-only
and write-only transactions across multiple data partitions. The protocol design targets
throughput optimized systems. ALOHA-KV is therefore most suitable for applications that
tolerate larger latencies and latency variations, although as shown in Section 3.7, it can be
tuned to achieve a balance of latency and throughput that meets or exceeds a best-of-breed
system.

24

Internally, ALOHA-KV uses a distributed transaction protocol that combines epoch-
based concurrency control (ECC) for transaction isolation and an atomic commitment
mechanism whose amortized complexity is one network round trip per transaction.

3.2.1 System Model

This section presents the system model, on which the design of ECC is based. For simplicity
of presentation, replication and fault tolerance are not considered at this stage because
they will be addressed in Section 3.5.

In memory DB. All data can reside in main memory, although persistent storage is avail-
able for logging and checkpointing as discussed in fault tolerance design in Section 3.5. The
choice of in memory database is driven by several reasons: (1) hard disk/SSD performance
is still orders of magnitude slower than main memory, while the storage class memory
(SCM) has not been ready as a mainstream storage device [23]; (2) current commodity
servers can easily install hundreds of GB to several TB of main memory per machine 1,
and tens to hundreds of such servers are able to satisfy the storage capacity requirement
of most enterprise applications [86]; (3) the demand of avoiding data distribution is less
important because distributed transaction overhead is low in ALOHA-KV.

Horizontal partitioning. Each data item, identified by a key, has a single logical copy
in its hash partition.

Read-only and write-only transactions. The system exploits the special structure of
read-only and write-only transactions to minimize concurrency control overheads.

Multiversioning. Each write operation creates a new version of a data item, identified by
a distinct version number. The system leverages object versions for concurrency control,
but their main purpose is to support historical queries. The version number is therefore a
timestamp generated by the system at the beginning of transaction processing. Versions
older than a user-specified threshold can be removed by a garbage collector to free memory.

Timestamps and clocks. To generate a unique timestamp, a server combines its unique
server ID, a monotonically increasing number, and the time from its local clock. For example,
a unique timestamp uses the timestamp from the local clock for its most significant bits and
the unique server ID for the following bits, and the monotonically increasing number takes
the least significant bits. Tight clock synchronization across servers benefits performance

1The current generation of AWS EC2 x1e.8xlarge virtual machine instance is equipped with around 1
TB memory, an x1e.16xlarge instance has around 2 TB memory, and an x1e.32xlarge instance has around
4TB memory [10].

25

but is not required for correctness of ECC. Standard synchronization techniques suffice, such
as NTP executed over a low-latency network. Current mainstream network infrastructure
can easily provide round-trip time lower than hundreds of microseconds between two hosts
within a single private cluster. Using a cluster in AWS EC2, which synchronizes the clocks
to one of the hosts in the cluster, experiments presented in this chapter only observed
dozens of microseconds (usually < 20 us) clock offset. This decentralized unique timestamp
generation method may introduce a slight preference for writes performed by some servers
(e.g., a server has a local clock slightly ahead of that of other servers). However, the slight
preference can be counteracted by fairness policies, such as that clients should connect to
servers using a round robin manner.

Serializable isolation. Committed transactions are serialized according to their times-
tamps. Write-only transactions are physically isolated from read-only transactions by the
epoch-based concurrency control mechanism, which automatically deals with read-write
conflicts. Conflicting write-only transactions are permitted to execute in parallel since they
act on different versions of data. Read-only transactions that access old versions of data can
be executed during a write epoch without causing conflicts as long as the version accessed
precedes the start of the write epoch. Otherwise, such transactions must wait until the
next read epoch.

3.2.2 Architecture

The architecture of ALOHA-KV, illustrated in Figure 3.1, comprises a collection of server
backends (BEs), server frontends (FEs), and an epoch manager (EM).

FE: the transaction coordinator. An FE accepts transaction requests from clients, and
acts as a transaction coordinator: it starts transaction execution during the correct epoch,
generates a timestamp for each transaction, and communicates with the BEs to determine
the outcome of each transaction. Clients may connect to any FE, and each FE may contact
any BE where the required data items reside.

EM: decides epochs. The EM communicates with all FEs to control epoch changes,
and thus determines when the FEs are able to start executing a given transaction. The
durations of read and write epochs are either determined automatically by the EM, or
tuned manually.

BE: the data store. A BE stores the data items in one partition of the database, and
serves requests from FEs to read and write these items.

Deployment. The system is optimized for deployment in a private data center with
a high-speed network. BE/FE pairs can be co-located on the same host, denoted by a

26

Server-
backend

Server-
frontend

Server-
backend

Server-
frontend

Server-
backend

Server-
frontend

client client client

Epoch
Manager

network

Figure 3.1: Illustration of the system architecture of ALOHA-KV.

gray box in Figure 3.1. Each system component can be replicated for fault tolerance, as
discussed in Section 3.5. Furthermore, the epoch manager can be distributed for scalable
performance, as discussed in Section 3.6.2.

3.3 Epoch-based Concurrency Control Mechanism

ALOHA-KV achieves transaction isolation using Epoch-based Concurrency Control (ECC).
Conceptually, ECC is the combination of two techniques that maximize parallelism. First,
ECC schedules read-only transactions and write-only transactions into disjoint time slots,
called read-only and write-only epochs, to eliminate read-write conflicts. Note that ALOHA-
KV accepts both types of transactions at all times, and merely delays the start of transaction

27

execution as needed to ensure that each transaction runs during the correct epoch type.
For example, a write-only transaction accepted during a read epoch begins executing in the
next write epoch. Second, ECC uses multiversioning to resolve write-write conflicts, which
allows write-only transactions to proceed in parallel even when their write sets overlap.
Both techniques combined ensure that transactions never abort or deadlock due to conflicts,
which benefits throughput under contention.

In addition to dealing with conflicts efficiently, ECC minimizes communication overheads
by simplifying atomic transaction commitment. Specifically, ECC cannot have “reads-from”
dependencies among transactions executing within the same epoch, which means that the
effects of a partially committed transaction cannot be observed until the next epoch. This
enables one-phase commitment for write-only transactions, with a second phase required
only if the transaction must be rolled back, for example due to an abort on failure. Any
additional messages needed to orchestrate epoch switches are amortized over a large number
of transactions. In contrast, two-phase commit requires both phases even when a transaction
commits in the failure-free case. This section also describes the transaction barriers used to
implement the epoch switching mechanism.

3.3.1 Invariants and Rules

The performance benefits of ECC are contingent on tight synchronization of the epoch status
(read vs. write) across FEs. The synchronization mechanism records state information at
the EM and FEs and guarantees a number of invariants with respect to this state.

Authorization. An FE can start processing a transaction only if it holds appropriate
authorization, which is granted by the EM. An authorization comprises the epoch type
(read or write), as well as two timestamps indicating a finite validity period. Transaction
timestamps are always assigned within the validity period. An FE may hold at most one
authorization at a time, ensuring exclusion among read-only and write-only transactions.

Epoch duration. From the point of view of an FE, an epoch is the period of time from
when an authorization is granted by the EM to when the authorization is revoked, which is
always after the end of the validity period.

Timestamp generation. A write-only transaction is assigned a timestamp when it is
started by an FE. Recall that the timestamp is also the version number of the transaction.
The FE guarantees that the timestamp is within the epoch’s validity period to ensure that
the serialization order of transactions, which is determined by the timestamps, is consistent
with the order of epochs.

28

Transaction start policy. Write-only transactions can only be started under valid write
authorization. Similarly, read-only transactions retrieving the latest data version can only
be started under valid read authorization. However, read-only transactions accessing old
versions of data (i.e., historical queries) can be started either under valid read authorization,
or under valid write authorization if the version accessed precedes the start of the current
validity period.

Transaction completion policy. A transaction that begins in one epoch must complete
within the same epoch. Once the validity period of an epoch expires, an FE must wait for
all pending transactions to complete before acknowledging to the EM that authorization
has been revoked.

Total order of epochs. The EM must revoke all authorizations from FEs before granting
a new authorization, which is tagged with a monotonically increasing ID. Epochs and their
corresponding authorization validity periods are therefore disjoint.

Alternating epoch types. The EM drives the type of an epoch. In ALOHA-KV, the
EM chooses an alternating sequence of read and write epochs, meaning that the epoch type
changes each time an authorization is granted to the FEs. As discussed in Section 4.2.2,
the EM has other options for deciding epoch types.

3.3.2 Transaction Barriers

For clarity of presentation, the pseudo-code presented later on in Section 3.4 omits the
low-level details of the message passing protocol for epoch switching and instead uses a high-
level API called transaction barrier. The API comprises two primitives called Begin Barrier
and Finish Barrier. Begin Barrier checks the FE’s current epoch authorization and either
admits the transaction if the authorization is valid and has the correct type, or else blocks
the transaction until the correct authorization becomes valid. If the transaction is admitted,
the count of in-flight transactions is increased by 1. Finish Barrier retires transactions by
updating the count of in-flight transactions, which must reach zero before the revocation of
authorization.

3.3.3 Example

Figure 3.2 illustrates ECC using two FEs, each executing transactions in three worker
threads. The epoch switch procedure works as follows:

29

Time

FE

FE

EM

write txn read txn Epoch switch msg

write epoch read epochepoch switch

grant grantrevoke

Figure 3.2: An example to illustrate the epochs in ECC.

1. The EM grants the FEs write authorization. The start and end of the validity period
are indicated by vertical dashed lines in the figure. In practice, the validity period
should be long enough so that the cost of epoch switching is amortized over many
transactions.

2. In the write epoch, each worker thread executes write-only transactions until the
validity period expires. The BEs simply store all the writes as new versions regardless
of the order of the versions received, because these versions are not visible to reads
during the write epoch. Thus, no write-only transaction should be blocked or aborted
(unless it is aborted by transaction coordinator).

In the meantime, read-only transactions accessing the latest version are buffered but
historical queries can be admitted if they access sufficiently old versions.

3. Some pending transactions may continue to execute past the end of the validity period.
All such transactions must be run to completion in the current write epoch before
the next epoch begins.

4. Once all pending transactions are complete, the FE acknowledges to the EM that the
write authorization is revoked. The FE now awaits a read authorization.

5. After the EM receives acknowledgments from all the FEs, it grants a read authorization
for the next epoch.

30

3.4 Implementation

To evaluate the performance envelope of ECC, a key-value storage system is implemented,
called ALOHA-KV, supporting read-only write-only transactions. This section discusses an
atomic commitment protocol for read-only write-only transactions and some implementation
details of ALOHA-KV. ALOHA-KV achieves high throughput thanks to efficiency in the
transaction protocol and high parallelism enabled by ECC even under high contention.

3.4.1 Data Representation in Storage

ALOHA-KV stores key-value pairs in a hash-partitioned distributed table. The values
are versioned to support historical queries, as well as to enable multiversion concurrency
control for write-only transactions. In other words, each version of a value is represented as
a pair of the form 〈version, value〉. For each key, the versions are organized in a logical list
ordered by version, implemented as a linked list of arrays. Specifically, the data structure
is composed of blocks, each of which includes a fixed size array of versions, and each block
links to a block holding older versions. This data structure is a hybrid of linked list and
array to accommodate removing old versions and efficiently accessing recent versions.

Inserting a new version of a key-value pair during a write-only transaction entails adding
an entry to the array of the key, keeping the versions in sorted order. Since transactions
with different timestamps execute in parallel during a write epoch, it is not always the case
that the newly created version is the latest version. In other words, an older version may
need to be inserted when the latest version has already been written by another transaction.
Such an outdated version will not be visible to future read-only transactions that access
the latest data, but can still be requested by a historical query. This is in contrast to
conventional timestamp ordering with Thomas’ write rule [21], where an outdated value
need not be written at all. In practice, new versions tend to arrive in nearly sorted order
since the version numbers are derived from timestamps, and this enables efficient insertion.
Because all transaction timestamps are within the authorization validity period, there is no
insertion of versions that predate the start timestamp of the write-only epoch.

Retrieving a value begins with determining the correct data version with respect to the
transaction timestamp. This is either the latest version, if the transaction requests the
latest data, or the latest version not exceeding a given version number, if the transaction is
a historical query.

Deleting a version from the table occurs in two situations: when old versions are cleaned
up by the garbage collector to recover memory, or when a transaction aborts in a write

31

epoch. In general, deleting a version entails removing the corresponding items from the
array of the key. In the case of garbage collection, the deleted version must be older than
a threshold that is no longer needed by any reads. Garbage collection can be triggered
periodically, or when the system is low on memory.

versions for inserting in a write epoch

versions for retrieving, written in previous epochs

Key

…
125 V125

123 V123

110 V110

108 V108

107 V107

102 V102

99 V99

98 V98

96 V96

80 V80

75 V75

70 V70

69 V69

version: value

Insert 140:V140

Insert 129:V129

Insert 130:V130

incoming insertions
format: version:value

Figure 3.3: Illustration of multiversion storage and insertion in ALOHA-KV.

Figure 3.3 demonstrates an example of the key value store and some insertions. Insertions
can be accepted in arbitrary order in a write epoch, but inserted versions are kept in order.
The versions in green (darker) zone in the graph are historical versions written in previous
write epochs. The version numbers to be inserted in write epochs must be within the
validity period, so no version will be inserted to the green zone in this example (versions of
previous epochs).

3.4.2 Transaction Protocol

The transaction protocol executed by the FE and BE is presented in Algorithms 1 and 2,
respectively. The epoch switching mechanism and interaction with the EM is represented

32

implicitly in Algorithm 1 using transaction barriers, which were described earlier in Sec-
tion 3.3. The entire protocol is implemented in C++ using fbthrift—a popular open-source
RPC framework [36].

As presented in Algorithm 1, transaction execution begins with the invocation of
the PutAll, GetAllLatest, or GetAllHistorical procedure at an FE, which acts as a
coordinator. The FE executes a transaction barrier to ensure that it has appropriate
authorization for the given transaction type, and then accesses the relevant keys in one or
more partitions by invoking partition requests—calls to procedures Put and Get at BEs.
Abort is called to roll back a write-only transaction.

For a write-only transaction, the FE first generates a unique timestamp ts (as described
in Section 3.2) at line 3 of PutAll. It then builds a set of data versions at line 5, and
distributes these versions to different partitions at line 7 by calling Put on different BEs.
For simplicity, the pseudo-code shows separate calls to Put for each data item (similarly for
Abort and Get later on), but in practice requests destined for the same BE are batched
together. Each data version includes the key-value pair, transaction timestamp, epoch ID,
as well as the transaction size (used in recovery, see Section 3.5.3). The PutAll procedure
is regarded as successful if every call to Put has succeeded, otherwise if one or more calls
fail then the FE invokes Abort on each partition involved to roll back the transaction. This
is the second round of the atomic multi-write protocol.

A read-only transaction is executed similarly, but never needs a second round of
messaging to abort. This is because a read-only transaction does not alter the state of a
BE, and so there are no actions to roll back on failure. Procedure GetAllLatest returns
the latest data versions for the given set of keys by calling procedure Get on respective
partitions with a special timestamp value of ⊥. Procedure GetAllHistorical executes a
historical query and accepts a user-specified timestamp that defines the desired historical
data version, which must not exceed a current timestamp that may be generated by the
FE. Internally, the procedure behaves similarly to GetAllLatest but uses a transaction
barrier only during a write epoch if the requested timestamp exceeds the start of the current
validity period.

Procedures Get, Put, and Abort at BEs operate on the multiversion storage MV
described in Section 3.4.1 for insertions, lookups, and aborts of key-value pairs. Procedure
Put inserts versions and Get retrieves the latest version as of a given timestamp; Abort
deletes entries and marks that version as aborted. The aborted mark prevents any future
insertion for the same version, which may happen in the case that the Abort message is
delivered before the Put message.

33

Algorithm 1: Transaction protocol for FE.

1 Procedure PutAll(W: set of 〈key k, value v〉)
2 Begin Barrier Put
3 ts = generate new timestamp
4 eid = current epoch ID
5 V = {(w.k, w.v, ts, eid, |W |) | w ∈ W}
6 parallel-for v ∈ V do
7 invoke Put(v) on respective partition

8 if any call to Put fails then
9 parallel-for v ∈ V do

10 invoke Abort(v) on respective partition

11 Finish Barrier Put

12 Procedure GetAllLatest(K: set of keys)
13 Begin Barrier Get
14 ts = generate new timestamp
15 Finish Barrier Get
16 parallel-for k ∈ K do
17 invoke Get(k, ts) on respective partition

18 return union of responses from calls to Get

19 Procedure GetAllHistorical(K: set of keys, ts: timestamp)
20 if holding write authorization with validity period starting at or before ts then
21 Begin Barrier Get
22 Finish Barrier Get

23 parallel-for k ∈ K do
24 invoke Get(k, ts) on respective partition

25 return union of responses from calls to Get

3.4.3 On the Side-Effects of Stragglers

A straggler transaction is one that prevents an FE from revoking authorization for a long
time. It may delay the start of the next epoch for all FEs, and further degrade the overall
throughput. Stragglers may arise from resource limitations during transaction processing,
from long-running transactions, or from software/hardware anomalies.

In the absence of anomalies, long-delayed stragglers are unlikely to occur in ALOHA-
KV for the following reasons. First, the number of in-flight transactions (preventing
authorization revocation) decreases to zero after the epoch’s finish timestamp is reached.

34

Algorithm 2: Transaction Protocol for BE.

Data: MV : multiversion storage described in Section 3.4.1
txnsize: transaction size of the write-only transaction for recovery (See Section 3.5.3).

1 Procedure Put(v: 〈key, value, ts, eid, txnsize〉)
2 return MV [key].insert(ts, v)

3 Procedure Abort(v: 〈key, value, ts, eid, txnsize〉)
4 MV [key].abort(ts)
5 return

6 Procedure Get(k: key, ts: timestamp)
7 return MV [k].get(ts)

As a result, in the course of an epoch switch, the contention among in-flight transactions
tends to zero. Second, the ALOHA-KV system only handles one-shot transactions and is
able to process them quickly by reading and writing in-memory data within epochs. In
ALOHA-KV experiments presented in this chapter, long-running stragglers that stall the
system by more than one epoch duration were not observed even for transactions including
thousands of keys.

Another observation is that slow read-only transactions will not block revoking autho-
rization and delay starting of the next write epoch. This is because the read-only transaction
only accesses historical versions after it gets a timestamp at line 14 of Algorithm 1 and
then releases the barrier at line 15.

3.5 Fault Tolerance

ALOHA-KV relies on main memory storage for performance, and therefore depends crucially
on appropriate fault tolerance mechanisms to protect against data loss and maintain system
availability in the event of a server failure. This subsection explains how the strategies
of replication, logging, and checkpointing to persistent storage are applied to different
components of the system.

3.5.1 Replication

BE replication. Replication is essential for BE servers, which store key-value pairs. During
write epochs, the FE writes primary BEs as well as backup BEs. When the primary fails,

35

the backup can replace the failed primary server with a configuration update as described
in Section 3.5.2. Note that in ECC, write-only transactions can achieve both concurrency
control and replication in one round trip amortized if there are no aborts. In comparison,
traditional 2PL/2PC with primary-backup requires two rounds for 2PC plus an extra round
for replication. During read epochs, load balancing is possible between primary and backup
servers because they hold exactly the same data.

Fast epoch switch at FE/EM failure. Failures of FE servers do not lead to
loss of data, but may stall the ECC mechanism. This is because the EM must receive
acknowledgments of authorization revocation from the previous epoch before granting
authorization for the next epoch. The backup FE is therefore charged with completing
all pending transactions and reporting back to the EM if the primary FE fails during a
write epoch. This requires that the primary forwards each transaction to the backup at
the beginning of transaction execution, and confirms to the backup after execution. If
the primary FE fails, the backup acts temporarily as the coordinator, simply aborting all
in-flight transactions in the interest of a fast epoch switch. Once a BE is contacted by the
backup FE, it deems the primary is failed and rejects any further requests from the primary
FE within the epoch. This mechanism is similar to [16, 46] and deals with the anomaly
where both primary and backup believe they are the primary. As clients continue to send
requests to FEs, the failed FE is not allowed to participate in future epochs because it does
not have the latest cluster membership configuration (see Section 3.5.2). In the course of
an epoch switch the FEs become nearly idle and so aggressive failure detection (e.g., based
on a sub-second heartbeat) can be used.

Similarly, failure of the EM can lead to loss of synchronization among FEs, for example
with some servers starting a new epoch while others await authorization. When the primary
EM fails, the backup first polls the FEs to determine how many of them have not yet
acknowledged authorization revocation for the most recent epoch. When the outstanding
acknowledgments are received, the backup EM may resume ordinary execution by granting
the next authorization. EMs use a handover mechanism and aggressive failure detection
similarly to FEs.

3.5.2 Cluster Membership

Each server in ALOHA-KV relies on a configuration of cluster membership to discover and
to name other servers within the system. The membership design of ALOHA-KV is similar
to the membership configuration in Corfu [16, 46].

The configuration includes the information of all active servers, such as addresses and

36

roles (e.g., BE, BE backup). The configuration is versioned with an increasing version
number. A server can easily detect a peer server in communication that has an obsolete
version of configuration, because each sever of ALOHA-KV must tag requests with the
version number in communication messages. Thus, the anomaly that both the primary and
the backup believe they are the primary will never happen, because only the one having
latest configuration will be recognized by other servers. When a server which previously had
active status in the configuration fails, a configuration update is needed within the cluster,
which is usually initiated by the server which first detects the failure. The new configuration
contains all the active servers in the perspective of the proposer, and it must be accepted
by all the active servers in the new configuration via two-phase commit. To avoid the
“split-brain problem,” that is two set of servers maintain two separate memberships, the
active servers in the new configuration must be the majority of the initial membership
setting.

3.5.3 Logging and Checkpointing

To protect data against a system-wide failure, such as loss of power to an entire rack of
servers or data center, ALOHA-KV persists data by logging operations to secondary storage.
Specifically, the BEs log all the requests they receive from FEs during write epochs. To avoid
a performance bottleneck, this design opts for an asynchronous form of logging whereby
worker threads append log entries to an in-memory buffer that is flushed periodically by a
dedicated thread. It is ensured that all data are flushed to disk before the next epoch starts,
thus enabling the following guarantees: (1) a transaction executed in a failure-free write
epoch is never lost; (2) a write-only transaction whose effects are observed by a read-only
transaction is never lost; and (3) transaction recovery is atomic: either all or none of the
operations in a transaction are recovered.

A checkpoint is a persistent snapshot of the whole database. As a multiversion system,
ALOHA-KV can create a consistent checkpoint simply by dumping the versions of all
keys before a given timestamp. This design creates checkpoints only at an epoch finish
timestamp for easy recovery.

Recovery logs are organized into a collection of files, with one file per BE per write epoch.
Each log file is capped with a special record at the end of a write epoch to indicate that it is
complete. After a failure, the recovery procedure on each partition first reloads a checkpoint
and all completed log files. For atomicity of recovering committed transactions in the
uncompleted logs, logs from the most recent epoch are then sent to a recovery coordinator,
which checks for each transaction whether the number of operations present in the logs

37

matches the size of the write set, which is recorded in the partition requests (see line 5 in
Algorithm 1). For atomicity, any transactions having a full complement of operations are
replayed, and the remaining transactions found in incomplete logs are aborted.

3.6 Theoretical Analysis

The performance envelope of ALOHA-KV is substantially different from other systems
because ECC schedules transactions into epochs. This section discusses the factors affecting
the latency and throughput of the system. This section defines throughput as the number
of key-value pair operations per second, which in the experiments equals the number of
transactions executed per second times the (fixed) transaction size. This section also
sketches out a proof of serializability for ECC.

3.6.1 System Throughput

The ECC protocol in ALOHA-KV periodically switches between write epochs and read
epochs. Consider a unit of execution containing one write epoch followed by one read epoch.
Let P denote the overall throughput in the unit, PW the throughput of writes in the unit,
Pw the throughput of writes in the write epoch, PR and Pr denote analogous quantities
for reads. Let tw, ts, tr denote the duration of a write epoch, the epoch switch time, and
the duration of a read epoch, respectively. Let nw denote the number of write operations
executed in the write epoch. The overall write throughput is

PW =
nw

tw + 2ts + tr
(3.1)

which can be rewritten as

PW = Pw ×
tw

(tw + 2ts + tr)
(3.2)

since Pw = nw/tw. Using a similar equation for Pr, total throughput can be expressed as
follows:

P = Pw ×
tw

(tw + 2ts + tr)
+ Pr ×

tr
(tw + 2ts + tr)

(3.3)

Equation 3.3 suggests the following strategies to maximize throughput: increase Pw and
Pr, decrease the epoch switch time ts, and increase the epoch durations tw and tr.

For the first strategy, the main factors affecting Pw and Pr are as follows:

38

� Transaction size. Larger transactions benefit from better network and processing
efficiency due to batching, but they are more likely to overrun the validity period of
an epoch, which complicates epoch switching.

� Number of servers. On the one hand, adding servers increases I/O and processing
capacity. On the other hand, it increases the number of partitions and hence causes
transactions to be processed by BEs in smaller pieces, which counters the benefits of
batch processing.

For the second strategy, one can observe that epoch switch time ts roughly amounts to
the sum of one round of communication between the EM and FEs, and the time required to
complete any pending transactions. In particular, ts is highly dependent on the slowest FE
to acknowledge authorization revocation. The following strategies are proposed to reduce
ts:

� Minimize EM-FE communication latency. For example, use a separate execution path
for epoch switch messages versus transaction messages, such as using a dedicated and
prioritized thread for epoch switch.

� Handle stragglers individually. Some servers may be consistently slower than others
due to differences in hardware configuration or network connectivity, in which case
they can be authorized by the EM for shorter epoch durations.

On clock offset. The clock offset between any FE and the EM cannot violate the
serializability guarantee of ECC, because an FE must assign a transaction timestamp within
the validity period given by the EM. In other words, the timestamp lies in the intersection
of the time after when an FE receives the authorization and the FE’s interpretations of the
validity period according to its local clock. Thus, if an FE has a large clock offset relative to
the EM, the period during which an FE can generate timestamps and process transactions
may be small, but other FEs are not affected. Moreover, the clock offset among servers of a
private cluster (one of them is the time source) in the AWS EC2 environment using NTP
protocol, is usually dozens of microseconds, which is far less than 1% of the epoch duration
used in the experiments in this chapter.

3.6.2 Epoch Switch Scalability

The transaction barrier is one of the main factors affecting system performance, as explained
in Section 3.6.1, and therefore two design alternatives are considered: a centralized approach

39

FE EM

Centralized Approach Hierarchical Approach

Figure 3.4: Barrier synchronization.

and a tree-structured hierarchical approach. This subsection will develop performance
models for both alternatives.

Two criteria for scalability are identified in [14] as synchronization independence and
partition independence. Informally, synchronization independence means one client’s trans-
action will not cause another client’s transaction to stall or fail. Partition independence
means clients only need to contact partitions that store the data items in the transaction’s
read and write sets. Partition independence holds in the ECC protocol. Transactions within
one epoch will not stall or fail each other, and a distributed barrier synchronization pattern
is used to synchronize transactions from different epochs. Specifically, each FE reaches the
barrier when it finishes all transactions in the epoch and is revoked authorization by the
EM. After all FEs reach the barrier, the system will proceed to the next step (next epoch).

Barrier synchronization [51, 57, 99] is a synchronization mechanism used in hardware
and software parallel computing, such as shared memory multiprocessor parallel processing
or MPI (message passing interface) synchronization. A barrier mechanism allows massively
parallel processing systems to synchronize all processing elements in a short time. For
example, the prevalent Pregel [68] paradigm uses BSP (bulk synchronous parallel) model [96],
which splits processing into computation, communication and barrier synchronization phases.

Considering how to synchronize epoch status scalably, Figure 3.4 shows two patterns
of organization. The centralized approach allows messages to pass concurrently, but the
message processing is done by one host. The ECC protocol presented in the previous
section belongs to this pattern. In this pattern, all FEs are directly contacted by the EM
for barrier synchronization. The tree-structured hierarchical approach in the figure presents

40

a tree structure with degree d equal to 3, in which messages are passed by the paths from
leaves to root node, but each node only processes d messages. This pattern is similar to
combining tree barrier [51, 99], aiming to handle a larger scale system. In this pattern, the
EM is the root of the tree, the non-leaf non-root node can be either an FE or a special
entity combining and forwarding synchronization messages from the child nodes to the
parent node or vice versa. The remainder of this section will formally compare the two
patterns for epoch switching. Based on Section 3.6.1, it is desirable to minimize epoch
switch time for better performance.

In the centralized approach, the epoch switch phase entails both message passing over
the network and message processing to count how many FEs have reached the barrier. For
simplicity, it assumes the round-trip network latency between hosts is a constant Ln, and
that processing a message from one host also takes a constant time Lp. Assuming that all
FEs finish pending transactions at the same time, the epoch switch latency L of the barrier
can be written as

L = Ln + Lp × n (3.4)

where n denotes the number of FEs.

In the hierarchical approach, let d denote the degree of the tree. In this model, the tree
height is dlogd ne, denoting the number of network hops from an FE to the EM in the tree,
and each non-leaf node is expected to process d messages from child nodes. Thus, L in this
model is

L = (Ln + d× Lp)× dlogd ne (3.5)

Note that equation 3.4 is a special case of 3.5 when d = n.

Finally, if FEs finish pending transaction processing at different times, and the slowest
FE takes Lf time to finish pending transactions, the latency can be bounded as

L ≤ Lf + (Ln + d× Lp)× dlogd ne (3.6)

which is tight when the slowest FE is a leaf node in the tree topology.

Formula 3.6 suggests that when network latency is low and message processing is
expensive, a smaller d and larger tree height yield lower epoch switch latency L. Otherwise
a larger d is preferred, which in the extreme case d = n makes the hierarchical and centralized
alternatives equivalent. Asymptotically, a hierarchical barrier has better complexity in terms
of n (O(log n) in formula 3.5) than centralized (O(n) in formula 3.4), but experimentally
(see Section 3.7.4) the centralized approach yields very fast epoch switch times even with
hundreds of FE nodes.

41

3.6.3 Analysis of Serializability

Informally, serializability provides the illusion that transactions are processed in a serial
order [21, 73]. In particular, a history is one-copy serializable (1SR) if it is equivalent to a
one-copy serial MV history, by definition presented in Section 2.1.3. The following sketches
a proof that ALOHA-KV provides serializability.

Lemma 1. Every history of committed transactions generated by ECC is one-copy serializ-
able (1SR).

Proof sketch. Given a history H of committed transactions, assign a timestamp to each
transaction as follows: for a write-only or read-only transaction use the timestamp assigned
by the FE at line 3 and at line 14 of Algorithm 1, respectively; for a historical read-only
transaction use the timestamp passed by the client to the GetAllHistorical procedure.
Now arrange the transactions into a serial history S in increasing order of their timestamp,
breaking ties arbitrarily for read-only transactions. It follows easily that H and S have the
same committed transactions and operations.

This paragraph presents the proof thatH and S have the same “reads-from” relationships.
In H, each read-only transaction obtains the highest version of a key that does not exceed
its own timestamp, and this version is created by a unique write-only transaction. The
proof is by contradiction. Assume some read-only transaction T does not obtain the highest
version ts′ of a key that does not exceed its own timestamp ts, where ts′ < ts. Then this
transaction T is executed before the transaction T ′ that creates the version ts′. Let E ′ and
E denote the epochs in which the write-only transaction T ′ and the read-only transaction
T are executed. An epoch precedes another epoch when its authorization period finish
timestamp is before the authorization period start timestamp of the other epoch. If E ′

precedes E then T would have seen T ′, contrary to the earlier assumption, and so E precedes
E ′. The authorization periods for E and E ′ are disjoint no matter how badly skewed the
local clocks of servers are, because the EM enforces this when it assigns the authorization
period timestamps. Thus, E preceding E ′ implies that T has a lower timestamp than T ′

because ts′ must be within the authorization period of E ′ and ts must be smaller than the
authorization period finish timestamp of T . This implies that ts < ts′, which contradicts
with the earlier observation that ts′ < ts.

As a result, H and S have the same “reads-from” relationships, and moreover S is
one-copy serializable because S is a serial history. This implies that H is 1SR.

42

3.7 Experimental Evaluation

The experiments presented in this section demonstrate that ALOHA-KV performs favorably
compared to RAMP [14] in terms of both throughput and latency for large transaction
size (>6 for RAMP-S, >10 for RAMP-F). Micro-benchmark results show that although the
latency of transactions in ALOHA-KV grows linearly with the epoch duration, short epochs
(tens of ms) are sufficient to attain throughput levels close to the limit of the performance
envelope. ALOHA-KV is able to process around 230 million operations per second for large
transactions using fifteen servers. This section also shows that a single EM can orchestrate
epoch switches in a timely manner even when controlling hundreds of FEs.

3.7.1 Experimental Setup

The experiments were deployed in Amazon EC2, using c3.8xlarge virtual machine instances
in a single availability zone. Clocks across hosts were synchronized using NTP to a
double-digit microsecond clock offset (usually < 20µs).

The experiments use the following default settings: five client hosts and five server hosts
running a co-located BE/FE pair (different processes), with one server host running the EM.
Data items comprise eight-byte keys and values. This experiment varies the transaction
size, defined as the number of key/value pairs accessed per transaction. Keys are drawn
uniformly at random from a space of 1 million elements. The ratio of write-only to read-only
transactions is 1:1 to target both read-intensive and write-intensive workloads. ALOHA-KV
uses alternating read epochs and write epochs with an epoch duration of 20 ms. Replication
and logging (see Section 3.5) are disabled by default.

For comparison, a baseline system that represents an upper bound for performance
with respect to the chosen implementation language and RPC framework is implemented.
In the baseline, FEs and BEs process transactions without any concurrency control or
atomic commitment protocol, and there is no epoch switching. It also executes RAMP
on the same infrastructure with the same workload settings. Experimental measurements
focus on average latency and aggregate throughput of operations (transaction throughput
times transaction size), because it is more interesting to see the performance trade-offs of
batching operations into transactions. However, this section presents both the throughput
of operations and of transactions, both of which are used in the RAMP paper [14]. Each
data point represents the average of three runs, and is plotted with error bars indicating
the min and max measurements. In many cases, the error bars are imperceptibly small.

43

3.7.2 ALOHA-KV vs. RAMP Results

First, this section compares ALOHA-KV with the recently published transaction proto-
col RAMP, which supports weaker-than-serializable distributed read-only and write-only
transactions. This section does not include a 2PC/2PL baseline in the experiments because
RAMP exhibits significant performance gains over these techniques [14]. Published RAMP
experiments consider only small transaction size (default 4, maximum 128), whereas it is also
interesting to explore the performance of larger transactions, because smaller transactions
can be combined into larger ones for efficiency. For a fair comparison, the experiment uses
5000 synchronous RPC clients in total (same as [14]). Of the three protocol variations
in [14], this section tested RAMP-Fast and RAMP-Small only since the performance of
RAMP-Hybrid is known to be a compromise between the other two.

Figure 3.5 shows that ALOHA-KV outperforms RAMP in terms of both throughput
and latency for large transactions (around >6 for RAMP-S, >10 for RAMP-F). The
performance gaps grow as transaction size increases. For transaction size 1000, the system
achieves throughput roughly 20× greater than RAMP-S, and over three orders of magnitude
greater than RAMP-F. ALOHA-KV scales almost linearly with transaction size in terms of
throughput, which demonstrates the benefits of batching operations. It is observed that
ALOHA-KV performance follows closely the baseline implementation despite providing
atomic transaction commitment and serializable isolation.

As reported in the RAMP paper, RAMP-F performs worse than RAMP-S for larger
transactions, with the performance gap widening as transaction size increases. This is
because RAMP-F metadata stored in the storage system grows linearly with transaction
size for each key, and large metadata impact performance for both reads and writes. In the
worst case, a read-only transaction of size n may retrieve metadata referring to n2 keys if
each key in the transaction returns metadata containing n other keys. In comparison, the
latency of RAMP-S under various transaction sizes is much flatter because it uses constant
size metadata stored in the storage system. However, RAMP-S requires two round trips
for all read transactions and transmits metadata whose size is linear in the transaction
size in the second round of messaging, which explains the lower throughput relative to
ALOHA-KV.

For smaller transaction sizes, RAMP outperforms ALOHA-KV slightly, because the
metadata overhead in RAMP is small and because ALOHA-KV incurs overhead for epoch
switching. Furthermore, the RPC framework differences also account for performance
differences in small transaction size. For example at transaction size 1, the throughput
of RAMP-F and RAMP-S are 31% and 9.2% higher, respectively, than the baseline (no
concurrency control, no atomic commitment). However, the throughput of ALOHA-KV and

44

1,000

10,000

100,000

1e+06

1e+07

1e+08

1 10 100 1,000

T
h
ro

u
g

h
p

u
t

(o
p

/s
)

ALOHA-KV Baseline RAMP-S RAMP-F

1

10

100

1,000

10,000

100,000

1e+06

1 10 100 1,000

T
h
ro

u
g

h
p

u
t

(t
x
n
/s

)

1

10

100

1,000

10,000

1 10 100 1,000

La
te

n
cy

 (
m

s)

Txn size

Figure 3.5: Experiment results of throughput and latency: ALOHA-KV vs. RAMP under
20ms read/write epoch duration. Throughput and latency presented using logarithmic
scales.

45

RAMP-S for large transactions can indicate the performance of batch writing of small-size
transactions, because metadata size is irrelevant to transaction size in these algorithms.

In summary, even though the RAMP protocol provides both synchronization and
partition independence [14], the potential benefits of larger transactions are counteracted by
the overheads of large metadata in RAMP-F and large messages in RAMP-S. In contrast,
ALOHA-KV records minimal metadata stored in the storage system and transmitted in
the protocol messages.

3.7.3 Microbenchmark Experiments

To better understand the performance of ALOHA-KV under various scenarios, this section
presents the results of microbenchmark experiments. Unless otherwise specified, these
experiments use the same deployment as in Section 3.7.1. Clients use the fbthrift async-client
API, which allows issuing multiple requests without blocking on the response, and enables
potentially higher throughput than synchronous RPCs. The experiments use transaction
size 1000, 50% read-only transactions, and 100ms read and write epoch duration as default
settings, to simulate workloads of a batch processing system [26, 54] (i.e., large transaction
size, balanced reads and writes).

Epoch duration

Figure 3.6 shows results under various epoch durations. The experiments use 80 async
clients, which ensures that the ALOHA servers are not overloaded. The results confirm the
intuition that longer epochs yield both higher throughput by reducing the proportion of
time spent on epoch switching, and higher latency by making transactions wait longer for
authorization. Latency grows nearly linearly with epoch duration, whereas throughput is
fairly flat beyond about 50ms.

The experiment also shows that epoch switching has relatively little impact on per-
formance. In particular, there is only around 10% throughput difference between epoch
durations of 10ms and 100ms. Thus, most of the throughput benefits of ECC are realized
with fairly short epochs, and little penalty in terms of latency. It is noticed that under
large epoch duration (≥ 50), average latencies are less than half of epoch duration. This is
because transactions arriving during the correct epoch enjoy a low latency, and transactions
that arrive out-of-epoch must wait half of an epoch duration on average before they can
begin executing. The average of the two cases is less than half of the epoch duration when
the epoch duration is large.

46

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

10 20 30 40 50 60 70 80 90 100
0

10k

20k

30k

40k

50k

T
h
ro

u
g

h
p

u
t

(o
p

/s
)

T
h
ro

u
g

h
p

u
t

(t
x
n
/s

)

0
5

10
15
20
25
30
35

10 20 30 40 50 60 70 80 90 100

La
te

n
cy

 (
m

s)

Epoch duration (ms)

Figure 3.6: Throughput and average latency experiment results of ALOHA-KV under
various epoch durations.

Transaction size

Figure 3.7 illustrates the effect of transaction size on throughput, which increases rapidly
up to roughly 1000 operations per transaction. This is because batching boosts network
and processing efficiency. Beyond 2000 operations per transaction, the system exhibits
diminishing returns, and plateaus around 100 Mops/s. Since the transaction coordinator
chops transactions into fragments sent to different partitions, it is expected that a larger
transaction size is needed to saturate the throughput as the number of servers increases.

Proportion of read-only transactions

In experiments pertaining to the proportion of read-only vs. write-only transactions, the two
cases are considered: when the proportion is known, and when the proportion is unknown
and the default epoch durations are used. These cases are denoted as adaptive epochs and
fixed epochs in Figure 3.8. This section also presents the performance of the baseline, where
transactions execute without concurrency control and no atomic commitment protocol is

47

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

T
h
ro

u
g

h
p

u
t

(o
p

/s
)

Txn size

ALOHA-KV
Baseline

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

T
h
ro

u
g

h
p

u
t

(t
x
n
/s

)

Txn size

ALOHA-KV
Baseline

Figure 3.7: Throughput experiment results of ALOHA-KV under various transaction sizes.

used.

The results show that even without any prior knowledge of the read proportion, through-
put using fixed epochs is roughly half or more of the level observed using adaptive epochs.
The results for adaptive epochs are representative of cases when the workload exhibits a
steady read/write mixture that is either known a priori, can be predicted accurately, or
can be measured on-the-fly. The results also demonstrate low overhead for serializable
transactions in ALOHA-KV under various read ratios as compared with the baseline.

48

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

0 20 40 60 80 100
0

10k

20k

30k

40k

50k

60k

T
h
ro

u
g

h
p

u
t

(o
p

/s
)

T
h
ro

u
g

h
p

u
t

(t
x
n
/s

)

Reads Percentage

ALOHA-KV(adaptive epochs)
Baseline

ALOHA-KV(fixed epochs)

Figure 3.8: Throughput under various experiment results of ALOHA-KV read/write
proportions.

3.7.4 Scalability

The experiments evaluated the scalability of ALOHA-KV with respect to different numbers
of servers from two angles: (1) the scale-out throughput performance, (2) the overhead of
epoch switching. In the first case, the experiments run ALOHA-KV up to a throughput of
233 million ops/s, achieving close to linear throughput scalability. In the second case, the
result shows that a single EM can control hundreds of FEs with only single-digit-millisecond
overhead per epoch switch.

Scale-out

The experiments vary the number of servers hosting BE/FE pairs. The transaction size
is set to 4000 to allow batching a significant number of operations in messages sent to
each BE. Figure 3.9 shows that using up to 15 BE/FE servers, ALOHA-KV achieves
around 233 Mops/s. Since the probability of conflicts among write-only transactions grows
with the observed throughput, the results demonstrate that ECC sustains a high degree

49

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

0 2 4 6 8 10 12 14 16

12.5k

25k

37.5k

50k

T
h
ro

u
g
h
p
u
t

(o
p
/s

)

T
h
ro

u
g
h
p
u
t

(t
x
n
/s

)

ALOHA-KV
Baseline

0
5e+06
1e+07

1.5e+07
2e+07

2.5e+07
3e+07

0 2 4 6 8 10 12 14 16
0
1.25k
2.5k
3.75k
5k
6.75k

T
h
ro

u
g
h
p
u
t

p
e
r

h
o
st

 (
o
p
/s

)

T
h
ro

u
g
h
p
u
t

(t
x
n
/s

)

Number of servers

Figure 3.9: Aggregate and per host throughput experiment results of ALOHA-KV using
transaction size 4000.

of parallelism despite contention, because writes are stored to different versions using
multiversioning. Throughput per server drops slightly as the number of servers increases
due to less effective batching, leading to sub-linear scalability. In the extreme case of 1 or 2
servers, the per-server performance is slightly lower than that of 5 servers, due to the single
host network performance limit. However, when more servers are added to the system,
additional network resources are utilized by the servers.

Epoch switching overhead

As discussed in Section 3.6.2, epoch management can be implemented either using a
single EM, or by organizing the FEs in a scalable hierarchical structure. This experiment
investigates whether a single EM has enough processing capacity to control hundreds of FEs
centrally. To isolate the epoch switch time, the epoch duration is set to zero, meaning that
each FE responds immediately to an authorization grant by acknowledging authorization

50

revocation. Upon receiving responses from all FEs, the EM issues the next round of epoch
switch requests. Each FE instance is run on a distinct physical core, and there is no client
workload.

Figure 3.10 shows the average epoch switch time for up to 640 FEs. The epoch switch
time grows nearly linearly with the number of FEs, reaching 3.4ms at 640 FEs. As the
number of FEs increases, the EM needs more time to process epoch switch messages, whose
number grows linearly with the number of FEs. When the FEs are under load from clients,
it is expected that epoch switch times will be longer than in this experiment because each
FE must finish any in-flight transactions before responding to the EM at the end of an
epoch. However, in that case the EM will be more lightly loaded because it has more time
to process the same number of messages. Based on the experimental data, it is concluded
that a centralized EM is sufficient for controlling a cluster of hundreds of ALOHA-KV
servers.

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500 600 700

e
p

o
ch

 s
w

it
ch

 t
im

e
(m

s)

Number of FE instances

Figure 3.10: Epoch switch time for various numbers of FE instances in experiments of
ALOHA-KV.

51

 0

 10

 20

 30

 40

 50

 60

NoTolerance

+
log

+
FE

+
log+

FE

+
BE

+
log+

BE

+
FE+

BE

+
log+

FE+
BE

T
h
ro

u
g
h
p
u
t

(M
 o

p
/s

 o
r

K
 t

x
n
/s

)

Figure 3.11: Evaluation result of various fault tolerance strategies in experiments of
ALOHA-KV.

3.7.5 Fault Tolerance

Figure 3.11 shows the performance of various fault tolerance strategies. The system has five
partitions, and each partition has a primary server and a backup server in the experiments.
The SSD disks in the virtual machines are used for logging. In the table, “+log” denotes
turning on the logging strategy of BEs writing operation logs to disk; “+FE” denotes
turning on the FE replication that use backup FEs to take over the coordination when the
primary crashes; and “+BE” denotes turning on BE replication that uses backup BEs to
store a copy of the data held by the primary.

The results show that “+log”, “+FE”, and “+BE” lead to throughput penalties of
2–5%, 16–21%, and 20–25%, respectively. The asynchronously logging strategy “+log”
(described in Section 3.5.3) achieves low overhead because the cost of flushing at the end of
each epoch is hidden in the epoch switch costs. The “+log+FE” strategy has low overhead
and protects against data loss even if an FE or BE crashes (see Section 3.5). The most
expensive strategy is “+log+FE+BE”, which achieves 35.5 Mops/s—roughly 40% slower
than no fault tolerance. In comparison, RAMP performance in some cases is substantially
lower without any replication.

52

3.8 Summary

This chapter addressed the problem of supporting high-throughput multi-partition read-only
and write-only transactions, a.k.a multi-put and multi-get. This chapter proposed the ECC
mechanism for these transactions, which guarantees serializability. ECC avoids read-write
conflicts among transactions by partitioning transaction execution into disjoint read and
write epochs, and mitigates write-write conflicts by storing multiple versions of key-value
pairs. Thus, concurrent writes can be processed in parallel with low overhead, even when
their write sets overlap. Using ECC as the central building block, this chapter described a
distributed protocol for serializable read-only and write-only transactions, which requires
amortized one round trip to commit a transaction in the absence of failures even under
update intensive workload and large transaction size. The protocol has been implemented
in a key-value storage system called ALOHA-KV, and has been shown experimentally that
it can process around 233 million operations per second on 15 servers when transactions
contain thousands of operations. Compared to RAMP, ALOHA-KV achieved much higher
throughput for large transactions, despite guaranteeing stronger transaction isolation.

53

Chapter 4

Scalable Serializable Transaction
Processing Using Functors

4.1 Introduction

The previous chapter presents Epoch-based Concurrency Control (ECC) for high performance
serializable distributed read-only and write-only distributed transactions. ECC combines
multiversioning and timestamp ordering, and makes transactions visible at epoch boundaries.
It seeks to avoid most forms of coordination between transactions by keeping reads and writes
completely separated in time. ECC achieves high parallelism in distributed transaction
execution for this restricted transaction type (read-only and write-only). The protocol
never aborts transactions due to read-write or write-write conflicts but allows transactions
to fail due to logic errors or constraint violations. However, this idea has a clear difficulty
to overcome: the common case of a single transaction that does both reading and writing.

A read-write transaction allows the transaction execution for updates (writes to the
database) to be based on the states of the database (reads from the database). A read-only
or write-only transaction can be regarded as a special case of read-write transactions where
the write-set or read-set is empty. ALOHA-KV easily supports read-write transactions
with read atomicity (RA) isolation, providing superior performance than RAMP for large
transaction size. Using conventional methods, ALOHA-KV is able to support serializable
read-write transactions by adding a scheduling layer (e.g., lock managers) for concurrency
control. However, in that case, the scheduling layer may become a performance bottleneck
that hurts parallelism when transactions are under contention.

54

This chapter proposes a novel paradigm of serializable transaction processing using
functors, which conceptually resemble futures in modern programming languages. A functor
is a placeholder for the value of a key, which can be computed asynchronously in the
future in parallel with other functor computations of the same or other transactions. With
multiversioning in ECC, the functor computations only rely on accessing historical versions,
and so the traditional locking mechanism is not needed for concurrency control. Functors
elevate epoch-based concurrency control to a new level: supporting serializable distributed
read-write transactions. This combination of techniques keeps the desirable merit: never
aborts transactions due to read-write or write-write conflicts, but allows transactions to
fail due to logic errors or constraint violations. Using functor-enabled ECC, a read-write
transaction is executed in two phases: a write-only phase that uses a write-only transaction
to store a collection of functors, each of which represents the method for computing a
result for a key (e.g., overwriting or incrementing its value); and a computing phase that
determines the outcomes of the functors asynchronously. ALOHA-DB, a scalable distributed
transaction processing system, is implemented using functor-enabled ECC. Experimental
results demonstrate that the performance of the system on the TPC-C benchmark with
distributed read-write transactions is nearly 2 million transactions per second over 20 eight-
core virtual machines, which outperforms Calvin [80, 92, 93], a state-of-the-art transaction
processing and replication layer, by one to two orders of magnitude.

The technical contributions of this chapter are as follows:

� This chapter proposes functors, which can be used in transaction processing. This
chapter presents the structure of functors and the paradigm of transaction processing
based on functor computing, which allows a finer level of concurrency control than
transaction level.

� It presents an extension of ECC — functor-enabled ECC — for processing distributed
read-write transactions. Functor-enabled ECC achieves high parallelism in transaction
processing: no transactions are aborted due to conflicts. Using functor-enabled ECC,
the transaction execution does not fully rely on deterministic execution, but allows
transactions to fail due to logic errors or constraint violations.

� It describes ALOHA-DB, a scalable distributed transaction processing system imple-
menting functor-enabled ECC. This chapter also presents the evaluation that compares
the performance of ALOHA-DB relative to Calvin on the TPC-C benchmark and
a YCSB-like microbenchmark. ALOHA-DB fully implements the transaction abort
logic of TPC-C NewOrder transactions following the benchmark specification, which
is not supported in the open-source Calvin implementation [79]. The results show that

55

ALOHA-DB outperforms Calvin by 1-2 orders of magnitude in terms of throughput
in TPC-C experiments, while also maintaining lower latency.

The rest of the chapter is organized as follows. The ALOHA-DB architecture and
design are discussed in Section 4.2, which highlights the difference from the ALOHA-KV
presented in the previous chapter. Section 4.3 presents the design of functors, focusing on
how the functors are used in transaction processing. Then, the chapter presents the functor
processing in ALOHA-DB. The evaluation comparing ALOHA-DB and Calvin follows.

4.2 Architecture and Design of ALOHA-DB

ALOHA-DB is a scalable multi-version in-memory transaction processing system that
supports serializable distributed transactions across multiple data partitions. Using a
combination of ECC and functors (detailed in Section 4.3), the system avoids most forms
of conflicts among transactions. This section describes the system design of ALOHA-DB
and focuses on the novel design points as compared to ALOHA-KV [41], which does not
support read-write transactions.

First, this section presents the architectural and design changes required to support
read-write transactions in ECC. Second, to accommodate a generic transaction workloads
and simplify the epoch advancing design, this chapter proposes an optimization that unifies
epoch types to replace the two epoch types (read and write) used in ALOHA-KV. Next,
this section describes a method of mitigating the performance penalty due to stragglers.
The remainder of this section then presents the storage format for data items and functors.

4.2.1 Architecture

ALOHA-DB is optimized for deployment in a private data center with a high-speed network.
Although not necessary for correctness, good network performance and predictability (e.g.,
low jitter) help the system to achieve high throughput and low latency. Specifically, the
network latency helps to reduce the epoch switch time, during which no transaction can
be started, and benefits clock synchronization among servers when NTP protocol is used.
The architecture of ALOHA-DB, illustrated in Figure 4.1, comprises a collection of servers
and an epoch manager (EM). From the transaction processing perspective, the functor
computing layer is built on top of the read-only and write-only transaction processing layer,
which is derived from the ALOHA-KV. Each server performs the functions of both backends

56

Server-Backend

Server
(FE &BE)

Partition 1

Epoch
Manager

Partition 2

Client Application

Server-Backend

storage

processor

Epoch switch
msg

remote read/push valuequeue

Server-Backend

Server
(FE &BE)

processor

queue

storage

Server-Backend

Functorcomputing layer

Read-only/write-only layer

local read/write
local read/write

Figure 4.1: Illustration of the system architecture of ALOHA-DB.

(BEs) and frontends (FEs), as in ALOHA-KV. To facilitate understanding the relationship
between ALOHA-DB and ALOHA-KV, this chapter uses the terms FE and BE also while
describing the system, with the understanding that both terms refer to the same server
process.

The EM communicates with all the FEs to control epoch changes by granting and
revoking authorization, and thus determines when the FEs are able to start executing a
given transaction. An FE accepts transaction requests from clients, and acts as a transaction
coordinator: it starts transaction execution during the correct epoch, generates a timestamp
for each transaction, translates transactions to functors (described later in this chapter),
communicates with the partitions, and determines the outcome of the BEs. A BE stores the
data items in one partition of the database and serves requests from FEs to read and write
these items or functors. BEs also compute functors asynchronously using a component
called the processor. Whenever there is a functor that is ready to be computed, the BE will
push it to a queue that will be pulled by the processor. To compute the functors, processors
may need to read remotely from other BEs or push data to them. Further details of functor
computing are provided in Section 4.3.

ALOHA-DB relies on main memory storage for performance, and therefore depends

57

crucially on appropriate fault-tolerance mechanisms to protect against data loss and maintain
system availability in the event of a server failure. ALOHA-DB is able to leverage the fault
tolerance strategies of replication, logging, and checkpointing described in Section 3.5 to
achieve reliable epoch switching and to avoid data loss in the presence of a single crash
failure.

4.2.2 Unified Epochs

Taking advantage of the fact that reads of historical versions can be processed at any time
in ECC, ALOHA-DB unifies the two epoch types described in Chapter 3. In the unified
epochs (write epochs), write-only transactions and reads accessing old historical versions
can be processed at any time. For a read-only transaction requesting the latest version, this
work adopts an optimization that transforms the transaction to an equivalent read-only
transaction for a historical version.

In ALOHA-DB there are only a series of write epochs in the system. When an FE
receives a read-only transaction for the latest version, the FE assigns a timestamp t to the
transaction in the write epoch, and delays processing the transaction until the next write
epoch begins. Then, the read-only transaction is processed as a read of historical version
t. Informally speaking, the read-only transaction is processed as if it happens at t, but it
never conflicts with any write transaction within subsequent write epochs.

By eliminating read epochs, ALOHA-DB allows writes to execute faster because there is
no longer any read epoch that might block write transactions, while the latest version read
latencies may increase because an FE will always delay such read transactions. However, as
described in Section 4.3, a read-write transaction in ALOHA-DB begins reading keys in
the read set only after the epoch of the write-only phase completes, and so no additional
waiting is required in that case. Moreover, the penalty on read latency for this optimization
is bounded by the epoch duration length, which may be tolerable by users when a small
epoch duration is used.

Figure 4.2 illustrates an example of ECC with unified epochs. In this example, the
epoch switch mechanism is controlled by the EM, as in Section 3.3. The EM grants the
FEs authorizations, and the start and end of the validity period are indicated by vertical
dashed lines in the figure. It shows that transactions 1–3 proceed as follows:

� Transaction 1, a write-only transaction, can be executed during the validity period.

58

delay read

Time

EM

FE

write txn

read txn

Epoch switch msg
epoch 1 epoch 2

epoch switch

grant grantrevoke revoke

BE

read-write txn

txn1

txn2

functor
computing

write functor
txn3

all functors
from epoch1
are visible

Figure 4.2: Illustration of unified epochs in ALOHA-DB.

� Transaction 2, a read-only transaction accessing the latest version, is assigned a
timestamp indicating the current version of the data. In the next epoch, the read
transaction will be processed as a historical read for the assigned timestamp.

� Transaction 3, a read-write transaction, has a write-only phase similar to transaction
1 in which it writes the functors to the BEs, and a functor computing phase that may
include historical reads similar to transaction 2 using the timestamp assigned in the
write-only phase.

4.2.3 Avoiding the Side-Effects of Stragglers

A straggler may delay the epoch advancing and degrade the overall throughput, when
it prevents an FE from revoking an authorization for a long time. As discussed in Sec-
tion 3.4.3, the systems running ECC are unlikely to suffer from stragglers in the absence of
software/hardware anomalies. Though ALOHA-DB introduces an extra phase of functor
computing in transaction execution, functor computing occurs asynchronously outside of
the epochs.

Stragglers remain possible in anomalous cases, and for this reason this subsection presents
an optimization that avoids the situation where one straggler prevents all FEs from starting

59

Time

FE3

EM

FE2

txn started only with auth. Epoch switch msg

write epoch epoch switch

grant revoke

FE1

write epoch

A straggler delays
auth. revocation

txn started with/without auth.

ts1 ts2 ts3 ts4 ts5

Figure 4.3: Avoiding straggler side-effects by allowing transactions to start without au-
thorization in ALOHA-DB. This figure illustrates execution under two different protocols:
transactions started only with authorization (colored blue in the example) and transactions
started once the previous epoch completes (colored orange in the example).

the next epoch. It works as follows: FEs can start executing transactions immediately
after the authorization is revoked (even without any authorization), as illustrated using
the orange bricks (below FE lines) between ts2 and ts3 in Figure 4.3. These transactions
become visible together with transactions started in the following epoch (between ts3
and ts4). However, this optimization must guarantee that timestamps generated without
authorization are smaller than the finish timestamp of the next epoch (ts4), as otherwise
serializability may be violated. This can be guaranteed by requiring that a transaction
without authorization receives a timestamp not exceeding the sum of the previous epoch’s
finish timestamp (ts2) and the duration of the next epoch.

4.2.4 Multi-version Storage

ALOHA-DB stores key-functor pairs in a hash-partitioned distributed table. A concrete
value of a key is the final form of a functor (see details in the next section). The functors
are versioned to support historical queries, as well as to enable multi-version concurrency
control. Figure 4.4 shows the layout of the versions for one key. For each key, the functors

60

higher version to lower version

in-epoch : allow
inserting new
versions

out-epoch: historical read versions

value_watermark

versions lower than watermark
are the immutable values

Key …

version_num f-type f-argumentone version

functor

Figure 4.4: Illustration of the storage multi-versioning layout for one key in ALOHA-DB.
The linked arrays are used to store the versions of one key.

are organized in a logical list ordered by version, implemented as a linked list of arrays.
Each version record comprises a version number and a functor. The ordered versions
favor accessing the latest version not exceeding a given version number and computing
functors for a key in ascending order of versions. As explained in Section 4.2.2, the reads in
ALOHA-DB are all historical reads, and the writes are assigned a version equal to their
timestamp. As a result, the versions are inserted in nearly sorted order, and so ordered
versions are maintained easily.

The API functions Put and Get are used for accessing the storage layer. A Put invoked
on a new version of a functor requires the version number to be within the epoch validity
period. A Get returns the latest version of a key’s value not exceeding the requested version.
All reads in ALOHA-DB only access historical versions which are less than the epoch start
timestamp. Thus, the versions for each key are naturally divided into the in-epoch category
and the out-epoch category by the epoch start timestamp. Versions within the in-epoch
category are not visible for reading; versions in the out-epoch category are immutable
except that functor computing may replace the functor with its final value. Get triggers the

61

functor computing if the functor to be read is not a final value, and replaces this functor
with its final value.

Each key also maintains a special version number called the value watermark, below
which all the versions are the final value after the functor computing phase (detailed in the
next section). Accessing a version below the value watermark needs no synchronization
because these versions are immutable. In the implementation, the system uses a lock-free
data structure to allow multiple threads to read the storage concurrently.

4.3 Functors

The functor is the core contribution of this chapter that allows ECC to support read-write
transactions with low overhead. Functors resemble futures [63] in programming language
research, which are objects used to represent the future result of asynchronous computations.
With ECC, functors enable transactions to first write operator placeholders without any
contention in write epochs, and then compute the outcomes of the operators asynchronously
and in parallel after the write epoch when the order of transactions is fixed. Functor
computing only reads historical versions, thus no locking mechanism is needed on keys when
multi-version storage is used. In contrast to other mechanisms that use transaction-level
or partition-level concurrency control, functor-enabled ECC uses functors as placeholders
for values in the write set, and the functors of a transaction are computed independently
and in parallel. Thus, while the basic ECC mechanism provides transaction atomicity and
transaction ordering, functor-enabled ECC further allows a key-level concurrency control
scheme for read-write transactions that enables high parallelism even under contention.

The design of functors is detailed in the remainder of this section. First, the section
presents how a read-write transaction is handled in ALOHA-DB with the help of functors.
Then, this section presents how functors are represented and transformed from a transaction.
Last, the method to compute the value of functor is discussed.

4.3.1 Transaction Lifecycle

Transaction Model

From the client’s point of view, the transaction model is similar to Calvin [93]. This section
assumes that transactions are submitted “one-shot” (i.e., non-interactively) from clients
and processed by invoking stored procedures at servers. The model of stored procedures

62

is commonly used in previous works [56, 70, 86, 93, 95]. This model does not intend to
cover the interactive serializable distributed transactions, because interactions with clients
over the network may significantly increase transaction processing time and may slow down
overall throughput of the system, especially in contended cases.

A transaction is expressed as a read set and a write set (of keys), as well as a set of
arguments supplied by the client. The keys accessed by a transaction must be known
ahead of time, which is a restriction also present in Calvin. However, ALOHA-DB does not
have this restriction for read-only transactions for historical versions, which are common in
analytic workloads. Section 4.4.2 discusses extensions that can work around this restriction.
The transactions are executed by the stored procedure in the server side. Conceptually, a
transaction stored procedure is a function, in which the function signature (function name,
arguments, etc.) denotes the transaction type and the read values based on the read set
are provided as inputs.

Lifecycle

The lifecycle of a read-write transaction in functor-enabled ECC includes the following
phases:

1. The FE transforms the transaction received from clients (read set, write set, transaction
metadata and arguments) to key-functor pairs that are written to the storage system
in a write epoch. Each key in the transaction write set will have a functor representing
the value of the key after the transaction is executed. All the functors of a transaction
share the same transaction version (timestamp) which is assigned by FEs in the ECC
protocol described in Chapter 3.

2. In a write epoch, these functors are stored in the BEs as the placeholder for the values
of the transaction version. The functors are computed asynchronously after the write
epoch, or on-demand at the time of a read. Once computed, each functor is updated
with an immutable final value. Each functor can therefore be computed at most once.

3. Based on the client’s request, the FEs can acknowledge the transaction execution result
once the write-only phase completes, or when the functor computing phase completes.
The former acknowledgment option still allows clients to learn the transaction outcome
(commit or abort), even if the transaction may be aborted in the functor computing
phase. For example, the clients can issue a separate read request to retrieve the result
of any of the transaction’s functors, because any of the functors will return abort if
the transaction is aborted.

63

4.3.2 Functors for Read-Write Transactions

Interface

A functor is composed of an f-type and an f-argument. The f-type specifies which computing
handler to call to compute the functor. The f-argument is a blob whose interpretation
is based on the f-type. Table 4.1 shows some examples of f-types and their f-argument
representations.

f-type f-argument
VALUE the literal value of the key

ABORTED none
DELETED none

ADD/SUBTR numerical (e.g., increment value by 1)
MAX/MIN numerical (e.g., update the value if it is smaller)

user-defined ... read set and arguments

Table 4.1: Examples of some f-types and their f-argument representations in functors.

The f-type VALUE denotes that the f-argument itself is the value, hence no computing
is needed for this kind of functor. The f-type ABORTED means that this version of the
value is aborted, while the f-type DELETED is a tombstone of the key, denoting that this
key is deleted as of this version. The functors of other f-types require computation that
may replace the functor by the value of a key.

Programmers can also create user-defined f-types and the corresponding f-arguments.
The user-defined f-type indicates which handler to call for computing the functor. The
user-defined f-argument has a functor read set and arguments, which indicate the inputs
for the handler. In particular, the functor computing phase requires reading all keys in the
functor read set for the latest version not exceeding the functor version. The read set of
some functors comprises only the key to which the functor was written, in which case the
read set is omitted (e.g., ADD, SUBTR, MAX, MIN).

4.3.3 Transforming a transaction to functors

In general, to generate a functor for a key in the write set, one can generate the f-argument
by taking the transaction read set and any arguments that influence the result of the key.
The corresponding functor handler can be generated in a similar way based on the stored

64

procedure for processing the transaction. In the current implementation, transactions are
transformed to functors manually and automating this process is future work. The following
is an example to show the naive method of the transformation. It shows how the transaction
stored procedure (TransferMoney), which transfers money from one account to another,
can be represented by two functors (TransferFrom and TransferTo). For a given transaction
request from clients (assuming overdraft is allowed):

TransferMoney: read set {A, B}, write set {A, B}, argument $100

may be transformed to the following :

<key: A, functor: TransferFrom, read set {A}, 100>

<key: B, functor: TransferTo, read set {B}, 100>

or the equivalent functors:

<key: A, functor: SUBTR 100>

<key: B, functor: ADD 100>

The functor generation phase also may include an optimization to accelerate functor
computing: a functor also includes the recipient set, which is the set of keys whose functors’
read set includes this key in the transaction. For example, if functors of keys A, B and C
all need to read the value of key D, key D may have a functor with recipient set A,B,C.
The functor computing of D will send the value of D to the functors of keys A,B,C. This
optimization is used to achieve proactive remote reads for other functors, meaning that
the computing phase of this functor involves pushing the latest value of this key to other
functors. This design targets speeding up functor computation because it batches several
reads for the same version into one read, but it is not required for correctness. Furthermore,
the pseudocode and the implementation of the protocol in this chapter do not include this
optimization.

After a transaction is transformed to functors, these key-functor pairs are stored in
the BEs by a write-only transaction using ECC. This phase is the same as the write-only
transaction protocol shown in Chapter 3, and the functor is the “value” to be stored. Thus,
for each key in the write set of the original transaction, there is a functor in a BE associated
with the transaction version number, as shown in Figure 4.4.

65

4.3.4 Functor Computing

A transaction is transformed into a collection of functors, and the functors from the same
transaction can be computed independently and in parallel, because the functor computing
only relies on historical versions. More details of functor computing will be explained
shortly.

Computing handler

The functors are computed by handlers in the server backend based on their f-type. In
BE storage, a functor is associated with a version of a key (see Section 4.2.4). Functors
may be computed by a scheduled thread pool based processor in the BE, and may also
be computed on-demand at the time when the value is requested by a read, whichever
occurs first. Further details regarding functor computing in ALOHA-DB are presented in
Section 4.4.1.

Each functor is computed by the Func procedure shown in Algorithm 3, which calls the
functor computing handler determined by the f-type. Functors that are in their final states
with f-type VALUE, ABORTED or DELETED, do not need the computing phase. For
other types of functors, the computation begins with deciding the required version for
each key in the read set, which is the latest version lower than the version of the functor.
Reading is achieved by calling the Get function with a version number one less than the
version number of the functor, which retrieves data from the multi-version storage of the
corresponding partition. This is done only after the write epoch in which a functor was
written finishes. Thus, the functor computing phase is able to determine the outcome
of any transaction with a lower version number whenever a “reads-from” dependency
exists, without contention because the order of historical versions has been fixed and each
transaction writes a unique version. Furthermore, functor computing only accesses lower
versions (historical versions), which can be read without synchronization if they are final
values. If the lower version is a functor that requires computation, the reading thread will
compute that functor first, and then update the functor to its final value (line 21).

After reading the values of keys in the read set of the functor, the handler corresponding
to the f-type is called. The values read as well as the f-argument are used as inputs to the
handler procedure. The output of the handler is used to update the functor, and the functor
is updated with the final value at most once. However, in the case of failure recovery, the
final value of a functor is recovered by replaying the logs, which will compute the functor
again. Thus, the handlers must be deterministic and produce the same outcomes with the
same inputs.

66

Arbitrary Abort

In contrast to deterministic transaction scheduling that must ensure transactions never
abort, ECC allows a transaction to abort either in the in-epoch phase or the functor
computing phase. In the former case, the FE as the transaction coordinator can send
a second round of messages to abort the transaction if any partition fails. This case of
abort is enabled by the atomic commitment protocol that is discussed in Chapter 3. In
the latter case, the functor computing can decide to abort the transaction as the output,
for example, due to an error condition (e.g., insufficient funds for debit). In that case, any
keys that influence the abort decision must be in the read sets of all the functors, because
they influence the result of all functors of the transaction, and all functors must reflect
the same abort/commit decision. This case of aborting can be used to support dependent
transactions using OCC as detailed in Section 4.4.2.

Functor Computing Examples

The following presents examples of functor computing for three consecutive transactions in
Figure 4.5. The figure demonstrates the states before functor computing on the left side,
and the right side shows the states after functor computing.

� Transaction T1 atomically updates the value of A and B. The functors for these keys
are already the final values, and need no further computing.

� Transaction T2 is a read-write transaction that atomically deducts 100 from A and
adds 100 to B. The functors for key A and key B are ADD and SUBTR, in which
the read set is the key itself and thus is omitted. To compute the functor for A, the
computing process first reads the previous value of A, then updates the functor to a
final value using the new value. The computing for the other functor is similar.

� Transaction T3 is also a transfer transaction with the constraints that the final value
for both keys must be non-negative. Otherwise, the transaction should be aborted.
The abort happens if and only if the previous value of A is less than the argument —
100. Thus, the key A must be in the read set of both functors. Similarly to T2, for
simplicity of presentation the read set of a functor omits the key of itself in the figure.

67

T1: multi-write $150 to A, $100 to B

Before Functor Computation After Functor Computation

account A

version f-type f-arg.

10000 VALUE 150

T2: transfer $100 from A to B

T3: transfer $100 from A to B if remaining balance is non-negative

account A

version f-type f-arg.

10000 VALUE 150

15480 VALUE 50
19600 [abort condition:

A < f-arg.]
SUB

100

account B

version f-type f-arg.

10000 VALUE 100

account A

version f-type f-arg.

10000 VALUE 150

account B

version f-type f-arg.

10000 VALUE 100

functors already in final values

account A

version f-type f-arg.

10000 VALUE 150

15480 SUB 100

account B

version f-type f-arg.

10000 VALUE 100

15480 ADD 100

account A

version f-type f-arg.

10000 VALUE 150

15480 VALUE 50

account B

version f-type f-arg.

10000 VALUE 100

15480 VALUE 200

read-set is the key itself, local read the previous version

account B

version f-type f-arg.

10000 VALUE 100

15480 VALUE 200

19600
[read-set: A]

[abort condition:
A < f-arg.]

ADD

100

account A

version f-type f-arg.

10000 VALUE 150

15480 VALUE 50

19600 ABORT

account B

version f-type f-arg.

10000 VALUE 100

15480 VALUE 200

19600 ABORT

For A, read-set is the key itself, local read the previous version;
For B, read-set is {A}, remote read A.
The functor computing result is ABORT for both A and B.

read latest value

Figure 4.5: Example of three transactions executed using functors over two data items.

4.4 Implementation Details

This section provides more details of the ALOHA-DB implementation. It details the internal
functor computing procedure in the system, and presents an optimization that allows ECC
to support transactions in which the read sets are not known beforehand.

68

4.4.1 Functor Processing In ALOHA-DB

Algorithm 3: Functor computing for a specific key k.

– records[k]: array of ordered records for key k (initialized with an empty record as
version 0), each record is in the form < v : version, t : f -type, arg : f -arg >

– watermarks[k]: value watermark for key k (initial value is 0)
1 Procedure Compute(k: key, v: version)
2 w ← watermarks[k]
3 // compute functors from version w to version v for key k
4 foreach record r ∈ records[k] s.t. r.v ∈ [w, v] do
5 if r.t /∈ {VALUE, ABORT, DELETE} then
6 update r using the result of Func (k, r)

7 while w < v do
8 CmpAndSwap(watermarks[k], w, v)
9 w ← watermarks[k]

10 Procedure Func(k: key, r: record)
11 reads : container (map) for values read (initialized as empty)
12 for rk ∈ read set of functor in r do
13 reads[rk]← Get(rk, r.v - 1)

14 f : handler denoted by r.f
15 return f(reads, r)

16 Procedure Get(k: key, v: version)
17 r : the latest record for k not exceeding version v found by binary search
18 if r.t = DELETE then
19 return ⊥ // denotes deleted key

20 if r.t /∈ {VALUE, ABORT} then
21 Compute (k, r.v)

22 if r.t = ABORT then
23 return Get(k, v − 1)

24 return r.arg

Computing the result of a functor requires reading the previous version of any keys in
the read set of the f-argument, which means that a higher version functor may depend on
one or more lower version functors. If all functors will be computed in the ascending order
of versions, the lower versions are always available, but the ordered functor computing
scheduling may reduce computing parallelism and hurt performance. ALOHA-DB uses two

69

design principles to achieve high parallelism in functor processing.

� A greedy functor computing ordering that schedules functor computing in ascending
order on a per-key basis. Each key maintains a watermark, namely a version number
below which all versions of functors have already been computed. Whenever a functor
is computed in ALOHA-DB the watermark will also be updated to the version of the
functor by computing all lower versions of uncomputed functors together with this
functor.

� Lazily computing the needed lower version functors. When a version dependency
relation is found in the functor read set, the functor computing phase will guarantee
that the lower versions being depended upon are computed first. Reading a un-
computed functor will trigger the computation of the functor for its final value (see
the Get procedure in Algorithm 3, which resolves dependencies if applicable).

In the BE, ALOHA-DB uses a thread pool based processor to asynchronously compute
all uncomputed functors in roughly increasing order of version number. When a new epoch
begins, all functors inserted in previous epochs are ready to be processed, and so their
meta-data (key and version), which were buffered in the previous epoch, are pushed to a
queue for the processor to consume. The functors are pushed into the queue by the insertion
order of the write-only phase, which is nearly sorted because these write-only transactions
are assigned the version number by timestamp.

Algorithm 3 presents the pseudocode for functor computing. For simplicity, in the
pseudocode the processor always processes all uncomputed functors of a given key from the
watermark to the version obtained from the queue, and then updates the watermark. This
design choice is driven by the assumption that many of the functors rely on the previous
value of the same key, for example, ADD and SUBTR. In the implementation, the version
obtained from the queue will be processed first if it does not depend on the previous versions
of its key, for example, a functor that does not read its own key. This is done to boost
processing parallelism, as two of such functors (different versions of the same key) may be
computed in parallel when there is no read-from dependency between them.

Processors are also responsible for remote reading when the functor needs to read a
value from another partition, and for pushing values whereby the latest value of a key before
the functor version is sent to the functors of any keys in the recipient set (see Section 4.3.3).
Pushing a value is a proactive form of reading. As described in Section 4.2, reads may
also trigger functor computing on-demand if the value of a functor is not yet available. At
read time, computing a functor may involve recursively computing dependent functors with

70

lower versions. However, this only happens in the case when a read occurs for the functor
before the asynchronous processing for that functor has been completed.

4.4.2 Dependent Transactions

Transactions that must perform reads in order to determine the full read set and write set
are called dependent transactions [93]. This subsection presents two methods for extending
functor-enabled ECC to handle dependent transactions. Those two methods of extension do
not exclude each other, and dependent transactions can choose one or even both methods
(different functors use different methods) based on the transaction characteristic.

Optimistic Approach

ALOHA-DB allows transactions to abort in the functor computing phase. Thus, ALOHA-DB
can natively use an optimistic approach similar to Hyder [22], which executes transactions
by reading from a snapshot and then performs backward validation in the functor computing
phase. In particular, a transaction first reads all required keys for some timestamp (e.g., tsr),
determines the write set, and writes all functors with a timestamp (e.g., tsw). The functors
will check whether any values in the read set have changed between the two timestamps, tsr
and tsw in the example, abort the transaction if so, and commit the transaction otherwise.

In contrast to Hyder, where the validation procedure visits all data versions in the
log order whether or not they are relevant to a given transaction, ALOHA-DB functor
computing only requires keys in the transaction’s read set. This allows multiple transactions
to be validated in parallel. As discussed in Chapter 2, OCC has high overhead on retry
for high contention workloads, which is the workload targeted by this thesis. Hyder, the
same to the ordinary OCC, must abort a transaction that fails validation of any keys in
the read set, while in ALOHA-DB only the keys in read set that determinate the write set
may cause the backward validation to fail. A detailed performance comparison between
Hyder and ALOHA-DB is left as future work.

Key Dependency

For a dependent transaction, the transformation from a transaction to functors that
generates a functor for each key in the write set cannot be achieved until the functor
computing phase when the functors can read previous versions of keys. To solve the
problem without resorting to optimistic concurrency control (OCC), the design defers the

71

write-only phase for the keys that can only be determined as part of the write set during the
functor computing phase. These keys are called dependent keys, because they are decided
in the functor computing phase of functors belonging to other keys in the same transaction.
This chapter refers to these functors as determinate functors, and the keys that determinate
functors belong to are called determinate keys.

Algorithm 4: Functor computing for dependent transactions.

– determinate[k]: the set of determinate keys of key k
1 Procedure Compute kd(k: key, v: version)
2 if watermarks[k] > v then

return
3 for dk ∈ determinate[k] do
4 Compute kd(dk, v)

5 Compute(k, v)

6 Procedure Get kd(k: key, v: version)
7 Compute kd(k, v)
8 return Get (k, v)

For example, consider a transaction that will write key B only if the value of key A
satisfies some condition. This transaction will choose A as a determinate key, record a
determinate functor for A in the write-only phase that will write B (dependent key) in the
functor computing phase if the value of A satisfies the condition, and store no functor for
key B in write-only phase. If B is written, the version number applied to the dependent
key B will be the same as that of the determinate functor, because all the writes belong to
the same transaction. Thus, whenever calling Get on the dependent key B for a timestamp
ts, the value watermark of key A must be at least ts to guarantee that all “deferred writes”
on B have completed. In other words, for any given version, key A’s functors must be
computed first before reading the same version for key B, otherwise serializability may
be violated. Algorithm 4 shows how the design guarantees that the functor computing
phase always computes determinate functors before reading dependent keys for a given
timestamp. In particular, the design provides alternative implementations of the Compute

and Get functions. Each read (Get kd) will check the watermark of the determinate keys
(line 7), and if some determinate key’s watermark is lower than the given timestamp, the
determinate key will be computed first.

For performance reasons, the design imposes the restriction that the dependent keys
and determinate keys are in the same partition, which is satisfied by the workloads used
in this chapter. The design assumes the dependency relationship between keys (denoted

72

determinate[k] in Algorithm 4) can be obtained by static analysis of all the stored procedures.
This is also a restriction of the method of key dependency. Taking as a special case, one can
use a special key, namely ANY , as the determinate key for all other keys in the partition.
Each dependent transaction is transformed to a determinate functor for the key ANY ,
and the functor computing phase always computes functors of ANY first. In that case,
all the dependent transactions are processed serially in timestamp order before any other
transaction. This solution may be appealing when the dependent transactions are infrequent
in the workload.

The transactions used in the evaluation of chapter do not use the optimistic approach,
but use a determinate functor as described in the experiments setting in Section 4.5.1.

4.4.3 Serializability

This subsection extends the discussion of serializability of ECC in Section 3.6.3 to sketch
the proof that functor-enabled ECC also provides serializability.

Lemma 2. Every history of transactions processed by functor-enabled ECC is one-copy
serializable (1SR).

Proof sketch. Given a history H of committed transactions, which have completed the
functor computing phase of the functor-enabled ECC, assign a timestamp to each transaction
in the same way as Section 3.6.3 (a read-write transaction is assigned a timestamp as a
write-only transaction in the write-only phase). Now arrange the transactions into a serial
history S in increasing order of their timestamp, breaking ties arbitrarily for read-only
transactions. It follows easily that H and S have the same committed transactions and
operations.

This paragraph presents the proof thatH and S have the same “reads-from” relationships.
For simplicity, this paragraph only consider read-write transactions, and read-only or
write-only transactions can use similar proof as they can be treated as special read-write
transactions. The proof is by contradiction. Assume some transaction T does not read
the highest version ts′ of a key that does not exceed its own timestamp ts, where ts′ < ts.
Then this transaction T is executed before the transaction T ′ that creates the version
ts′, otherwise T should read T ′. Let E ′ denote the epoch in which the write-only phase
of transaction T ′ is executed. Let Ew denote the epoch in which the write-only phase
of transaction T is executed. Let Ec denote the epoch in which the functor computing
phase of transaction T begins to be executed. An epoch precedes another epoch when its
authorization period finish timestamp is before the authorization period start timestamps

73

of the other epoch. According to functor-enabled ECC, Ew precedes Ec. If E ′ precedes Ec

then T would have seen T ′, contrary to the earlier assumption, and so Ec precedes or is
equal to E ′. Thus, Ew precedes E ′. The authorization periods for Ew and E ′ are disjoint
no matter how badly skewed the local clocks of servers are according to ECC. Thus, Ew

preceding E ′ implies that T has a lower timestamp than T ′ because ts and ts′ must be
within the authorization period of Ew and E ′. This implies that ts < ts′, which contradicts
the earlier observation that ts′ < ts.

As a result, H and S have the same “reads-from” relationships, and moreover S is
one-copy serial because S is a serial history. This implies that H is 1SR.

4.5 Evaluation

To evaluate the performance envelope of functor-enabled ECC, ALOHA-DB is implemented
on top of the ALOHA-KV [41] codebase. It is programmed in C++ using the popular
open-source RPC framework fbthrift [36]. The experiments run both the TPC-C, the
scaled TPC-C (detailed in Section 4.5.1), and the YCSB-like microbenchmark on ALOHA-
DB and Calvin [80, 92, 93], a state-of-the-art high-performance transaction processing
system for distributed transactions. The experimental results show that ALOHA-DB
outperforms Calvin by one to two orders of magnitude in terms of throughput, and also
achieves lower latency. ALOHA-DB fully implements the aborting requirements for TPC-
C NewOrder transactions as required in the benchmark, in contrast to the open-source
implementation of Calvin. ALOHA-DB outperforms Calvin in terms of throughput under
various database partitioning strategies, indicating that the system has lower overhead for
distributed transactions even under high contention scenarios. Specifically, the results show
that ALOHA-DB achieves nearly 2 million distributed NewOrder transactions per second
across 20 servers, which is 13–112× faster than Calvin.

4.5.1 Experimental Setup

Workload

TPC-C [94] is a standard benchmark for online transaction processing (OLTP), which
simulates the activity of a wholesale supplier. The benchmark has 9 tables and 5 types of
transactions. Similarly to prior work [12, 52, 93], the experiments based on TPC-C perform
only NewOrder transactions and Payment transactions because the focus is on distributed

74

read-write transactions and TPC-C performance is dominated by these two transactions,
which comprise 88% of the total workload. The NewOrder transaction first reads its
warehouse, district, and customer records, then it updates the district record, new-order,
and order tables. Next, the transaction updates 5 to 15 items in the stock table. 1% of
NewOrder transactions must be rolled back as a result of an unknown item number. The
Payment transaction first updates the payment amounts for the associated warehouse and
district records, then it updates the customer table and inserts a new record into the history
table. The multi-partition Payment transaction should access two partitions, because the
customer will belong to a remote warehouse that is on another server. ALOHA-DB also
supports OLAP workloads in parallel with updates thanks to multi-version storage, but the
evaluation of mixed OLAP and OLTP workloads is outside the scope of this thesis.

Scaled TPC-C [70], modifies the partition-by-warehouse approach, where each server
holds all data related to one or more warehouses, by partitioning data within one warehouse.
This workload is more suitable for stress-testing the performance of distributed transactions.
The Scaled TPC-C treats the database as a single warehouse, partitions the database by
item and district, and simulates the behavior of a large warehouse that spans many servers.
For example, [70] reports that Amazon uses around 100 warehouses to serve more than
300 million global customers. That means a warehouse must handle a large number of
customers, which should be distributed on multiple servers. The experiments implement
and evaluate the scaled benchmark, denoted by scaled TPC-C, as well as the conventional
partition-by-warehouse benchmark that is used in Calvin papers [80, 93], denoted by TPC-C.
Payment transactions are only implemented in TPC-C, because the Scaled TPC-C partition
strategy in [70] removes the w ytd field from the warehouse table, which is needed for the
Payment transaction. For a fair comparison, (non-scaled) TPC-C transactions are generated
in the same way as in Calvin: a distributed transaction always accesses a second warehouse
that is not on the same server as the first.

YCSB [28], is a benchmark designed for Internet-scale storage systems. YCSB does
not include a standard read-write transaction workload. The YCSB-like microbenchmark
implemented in Calvin is chosen for the evaluation, because it has a tuning knob (contention
index) that can accurately specify the contention on a partition for a distributed transaction,
and it is the main workload used in previous Calvin evaluations [80, 93]. We reproduce the
microbenchmark implementation of Calvin [80] for experiments with ALOHA-DB. In the
microbenchmark, each server contains a database partition consisting of 1M keys. On each
partition, the data items are divided into “hot keys” and “cold keys”. Each transaction
reads 10 keys then updates the keys by increasing the value by 1, and accesses exactly one
hot key at each participant partition. A distributed transaction touches two partitions.
When each partition has K hot keys, the contention index (CI) is defined as 1/K. Thus,

75

two concurrent transactions executed on the same partition have a probability of 1/K
to collide. For example, a CI value of 0.01 denotes that each transaction executed on a
partition must access 1 of the 100 hot keys.

Unless specified otherwise, all transactions in the experiments are distributed transac-
tions, which update data items on more than one server.

Comparison of Systems

Unless specified otherwise, ALOHA-DB uses a 25ms unified epoch duration, which provides
a performance balance between write throughput and read latency in the experiment
environment presented in this section. As described in Section 4.2.2, unified epochs cause
all reads to be processed as reading a historical version, and to be executed in parallel
with write transactions. In comparison, Calvin’s sequencer batches requests in epochs of
20ms, because it is found that Calvin has no significant throughput improvement with 25ms
epochs but only longer latencies, and shorter epochs result in lower throughput under the
same configuration. Both systems are configured for in-memory storage, and fault tolerance
is disabled by default to follow the same convention as in the Calvin papers [80, 93].

ALOHA-DB fully implements the requirement that 1% of NewOrder transactions must
abort [94]. Specifically, the aborted transaction includes an item that cannot be found
in the corresponding partition, while other partitions process the transaction as usual
in the first phase of the transaction commitment protocol. The transaction coordinator
(FE) must issue the second round of messages to abort the transaction and roll back the
processing on the other partitions. In contrast, Calvin’s implementation does not support
aborted transactions because of its deterministic design [80]. As a result, Calvin is able
to pre-assign the order id efficiently for a NewOrder transaction, whereas ALOHA-DB
must assign the order id dynamically in the determinate functor processing phase (see
Section 4.4.2). Specifically, the next order id is the determinate key of the Order, NewOrder
and OrderLine tables.

For an apples-to-apples comparison, ALOHA-DB submits a batch of transaction requests
in each RPC call, similarly to Calvin. This ensures that neither system is bottlenecked on
the RPC layer. However, because ALOHA-DB workloads include 1% aborting transactions
which need the second round of messages to abort, the epochs complete only after all such
transactions finish the second round. This gives Calvin a potential latency advantage since
its open-source implementation does not support aborting transactions at all.

76

Environment

By default, the experiments use eight Amazon EC2 m4.4xlarge virtual machine instances
with hyper-threading disabled (8 cores total). The experiments choose such instances
because existing Calvin code is optimized for 8-core machines. However, it is believed
that ALOHA-DB has the potential for higher performance using more powerful machines,
as extra resources are provided. A BE/FE pair is co-located in one process at each host
and the EM process shares one of these hosts. The results presented are the aggregate
throughput and average latency. The transaction latency measurement in both systems is
made in the same way: from when the transaction is issued by the client until its functors
(ALOHA-DB) or replicated transactions (Calvin) have completed execution. Both systems
focus on server-side latency, and the latency results do not include the final response to the
client. There are three runs for each combination of parameters, and variation across runs
is indicated using vertical error bars representing the min and max measurement. In most
cases, the error bars are imperceptibly small.

4.5.2 TPC-C Experiments

Results: Throughput vs. Latency

This subsection first presents the results for throughput vs. latency of NewOrder transactions
in ALOHA-DB and Calvin under both TPC-C and scaled TPC-C in Figure 4.6. For TPC-C
experiments, two partition settings are used: 1 and 10 warehouses per host, denoted as 1W
and 10W respectively. Similarly, 1D and 10D denote 1 or 10 districts per host in scaled
TPC-C experiments.

In terms of peak throughput, ALOHA-DB performs around 13× (in TPC-C) and 61×
(in scaled TPC-C) greater than Calvin. The Calvin-10W peak throughput (close to 60k
tps) is comparable to the results in [80], though higher because the experiments presented
in this thesis use more powerful virtual machines. However, with fewer warehouses per host
or under a scaled TPC-C workload, Calvin suffers a significant throughput drop, while
ALOHA-DB’s performance under different settings is much more steady. Further comments
on this observation follow in Section 4.5.4.

The latency results show that Calvin has higher latency than ALOHA-DB in light
workloads, while sustaining much lower throughput. As explained in [80], preprocessing of
requests in the scheduling layer contributes to latency in Calvin. The latency in ALOHA-
DB also includes the time functors spend waiting for the epoch to finish before starting
computing, and so the average latency must be larger than half of the epoch duration.

77

 0

 50

 100

 150

 200

 1 10 100 1000

La
te

n
cy

 (
m

s)

Throughput (kilo-txn/s)

Aloha-1D
Aloha-10D
Aloha-1W

Aloha-10W
Calvin-1D

Calvin-10D
Calvin-1W

Calvin-10W

Figure 4.6: Throughput vs. latency: ALOHA-DB and Calvin experiments for NewOrder
transactions on eight m4.4xlarge instances. Logarithmic scale used for horizontal axis. 1W
or 10W denotes 1 or 10 warehouses per host in TPC-C experiments; 1D or 10D denotes 1
or 10 districts per host in scaled TPC-C experiments.

Database Partitioning

The database partition strategies affect transaction contention and distributed transaction
access patterns. Given the same workload in TPC-C experiments, having fewer warehouses at
one host creates more contention for each warehouse. In particular, the Payment transaction
has higher contention than the NewOrder transaction, as it updates the warehouse table
while the NewOrder transaction updates one of the ten districts within the warehouse. In
terms of distribution, a NewOrder transaction in the TPC-C experiments only contacts two
partitions, but likely contacts more than two partitions in scaled TPC-C where partitioning
is done by item.

Figure 4.7 shows the results for TPC-C NewOrder and Payment transactions with 1 to
10 warehouses per host, denoted by TPCC, and Scaled TPC-C NewOrder transactions with
1 to 10 districts per host, denoted by STPCC. Calvin has 2–4× lower throughput for scaled
TPC-C than for TPC-C because more partitions are involved in a transaction. At the same
time, there is no significant drop in ALOHA-DB scaled TPC-C throughput performance.

78

1

10

100

1,000

1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g

h
p

u
t

(k
ilo

-t
x
n
/s

)

Number of warehouses per host (TPC-C) or districts per host (scaled TPC-C)

Aloha STPCC NewOrder
Aloha TPCC NewOrder
Aloha TPCC Payment

Calvin STPCC NewOrder
Calvin TPCC NewOrder
Calvin TPCC Payment

Figure 4.7: ALOHA-DB and Calvin throughput for NewOrder and Payment transactions
under various numbers of warehouses or districts per host. Logarithmic scale used for
vertical axis.

In the write-only phase of ALOHA-DB, the write-only transactions are executed in batches,
and so the distribution of individual transactions across multiple partitions has little impact
on the aggregate throughput. Section 4.5.4 will further discuss the explanation regarding
the functor computing phase.

Considering various numbers of warehouses per host in TPC-C, Calvin exhibits a
performance drop when the number of warehouses decreases, and the drop is more severe
when the number of warehouses is small. For example, the throughput of NewOrder
transactions in Calvin drops from 40k to 28k when the number of warehouses changes from
3 to 1. The Payment transactions in Calvin begin to suffer a throughput penalty when the
number of warehouses is less than 5, because the contention increases on the warehouse table
when each host has fewer warehouses. Even though Calvin resolves conflicting transactions
by deterministic ordering, it is bottlenecked at accessing the contended data items under
high contention, which requires synchronization by the lock manager. Thanks to multi-
versioning and timestamp ordering, ALOHA-DB does not use locking for concurrency
control.

79

1

10

100

1,000

10,000

1 2 5 10 15 20

T
h
ro

u
g

h
p

u
t

(k
ilo

-t
x
n
/s

)

Number of Servers

Aloha-1D
Aloha-10D
Aloha-1W

Aloha-10W
Calvin-1D

Calvin-10D
Calvin-1W

Calvin-10W

Figure 4.8: ALOHA-DB and Calvin scale-out performance for NewOrder transactions.
Logarithmic scales used for both axes.

In comparison, the performance drop under high contention or high transaction distri-
bution is less than 5% in ALOHA-DB, even in the case of 1 warehouse per host or 1 district
per host experiments. ALOHA-DB supports a high-performance write-only phase thanks to
ECC (see the ALOHA-KV paper [41]), and the functor computing phase uses fine grained
(key-level) concurrency control to achieve high parallelism. In the high contention cases,
functor computing might also benefit from sequential memory access, when many functors
of the same key are processed together (see line 4 in Algorithm 3), while Calvin computes
keys belonging to the same transaction together.

Scale-Out

Figure 4.8 presents the NewOrder transaction throughput results using up to 20 servers.
Nearly linear scalability is observed with the exception of Calvin with Scaled TPC-C.
ALOHA-DB achieves up to around 2 million transactions per second in total, which is
13–112× faster than Calvin. For Scaled TPC-C, the Calvin does not scale well because
a transaction likely needs to contact more partitions as the number of servers increases,

80

10

100

1,000

0.0001 0.001 0.01 0.1

T
h
ro

u
g
h
p
u
t

(k
ilo

-t
x
n
/s

)

Contention Index

ALOHA
Calvin

Figure 4.9: ALOHA-DB and Calvin microbenchmark performance under various values of
the contention index. Logarithmic scales used for both axes.

while it only contacts two partitions in TPC-C. For the same reason, Calvin TPC-C result
is nearly linear. In contrast, ALOHA-DB’s functor processing overheads do not increase
significantly when a transaction needs to contact additional partitions, as explained in next
subsection.

4.5.3 Microbenchmark Experiments

Skewed Workload

Typically, distributed transaction processing using conventional transaction-level concur-
rency control suffers under a skewed workload, because transactions are forced to wait for
the contended keys and coordination involving remote servers (e.g., 2PC) is usually slow.
Previous works [52, 80] have already shown that Calvin, using partition-level concurrency
control, outperforms conventional transaction-level concurrency control for high contention
cases. However, Calvin still suffers under skewness within a partition when the lock manager
is contending for hot keys [80].

81

Figure 4.9 demonstrates the throughput of ALOHA-DB and Calvin under various
contention index settings. When the CI is less than 0.002 (600 hot keys per partition),
Calvin still performs around the peak throughput. However, the throughput begins to
drop with a more skewed workload. In contrast, ALOHA-DB does not suffer a significant
throughput drop in these settings. In the highly skewed case (CI is 0.1, 10 hot keys per
partition), each partition processes nearly 97k txn/s on average in ALOHA-DB.

Further experiments are conducted to break down the latency of low and high contention
cases (CI 0.0001 and 0.1), under a light workload (5% of peak throughput). Figure 4.10
shows the percentage of time used in different stages of a transaction lifecycle. In ALOHA-
DB, the Functor installing stage measures the duration from when a transaction is issued to
when a functor is installed in the BE (the epoch may be unfinished); Waiting for processing
describes the duration from when the functor is installed to when the functor is retrieved
by processors; Processing time denotes the stored procedure running time for the functor
computing. For Calvin, sequencing stage denotes the duration from when a transaction is
issued to when the partition scheduler begins to process the transaction (comparable to the
functor installing and waiting for processing in ALOHA-DB); locking and read duration
includes the time of locking all required locks and reading keys in the read set; Processing
denotes the stored procedure running time. Note that the Waiting for processing stage and
sequencing stage both needs to wait for the completion of the epoch, thus depend on the
epoch duration. In both systems, the processing stage takes the minimum time, and the
largest part is spent completing the epoch. However, the latency of Calvin is more sensitive
to high contention, as in the high contention case each transaction spends more time on
average in the locking phase.

Varying Transaction Size

To study the benefit of the key-level concurrency control under high and low contention,
the performance of single-partition transactions is measured, where Calvin does not have
the side-effect of redundant execution. For each server, the high contention setting uses 1K
keyspace and CI 0.01; the low contention setting uses 1M keyspace and CI 0.0001.

Figure 4.11 shows the throughput of ALOHA-DB and Calvin under various transaction
sizes. The figure presents the total throughput in units of operation per second, which
is calculated as transaction throughput times transaction size. The results demonstrate
that ALOHA-DB irrespective contention, and Calvin under low contention, have stable
throughput numbers while transaction size changes. In these cases, the throughput of
operations has saturated the storage systems, thus the transaction throughput is the
reciprocal of transaction size as the operation throughput is nearly flat, which is the

82

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0001 0.1 0.0001 0.1

%
 o

f
ti

m
e
 s

p
e
n
d

 i
n
 e

a
ch

 s
ta

g
e

Contention Index

Functor installing
Wait for processing
Processing

Sequencing
Locking and read
Processing

CalvinALOHA

Figure 4.10: Latency breakdown: latency of different stages of a transaction lifecycle in
ALOHA-DB and Calvin under low and high contentions.

product of transaction throughput and transaction size. It is noticeable that Calvin, with a
single-threaded locking mechanism, has slower throughput even in the low contention case
than ALOHA-DB, which uses decentralized timestamp generation for timestamp ordering.

Under high contention, Calvin’s throughput drops when large transaction size is used,
while ALOHA-DB does not. This occurs because Calvin holds locks for all keys of a
transaction during the transaction execution (larger transaction size increases the chance
of being blocked by some hot keys). ALOHA-DB uses a key-level concurrency control
approach that processes each key individually, thus permits more parallelism even in the
case of large transaction size.

Varying Epoch Durations

Figure 4.12 presents the latency of ALOHA-DB and Calvin for various epoch durations,
under medium contention (CI 0.001) and a light workload. In the results, the average
latency is nearly linear with respect to the epoch duration for both systems, although the
slopes are different. For ALOHA-DB, functors need to wait half of the epoch duration

83

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80 90 100

K
e
y
 T

h
ro

u
g
h
p
u
t

(m
e
g
a
-o

p
/s

)

Transaction Size

ALOHA
Calvin

(a) High contention experiments: using 1K keyspace and CI 0.01.

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80 90 100

K
e
y
 T

h
ro

u
g
h
p
u
t

(m
e
g
a
-o

p
/s

)

Transaction Size

ALOHA
Calvin

(b) Low contention experiments: using 1M keyspace and CI 0.0001.

Figure 4.11: Throughput of single-partition transactions under various transaction size.

84

0

50

100

150

200

250

20 40 60 80 100 120 140 160 180 200

La
te

n
cy

 (
m

s)

Epoch Duration (ms)

ALOHA
Calvin

Figure 4.12: ALOHA-DB and Calvin latency under various epoch durations.

on average after they are installed in the BE, thus the linear slope is close to 0.5. The
open-source Calvin implementation generates most of the transactions at the beginning of
the epoch, when the number of generated transactions quickly reaches the target threshold
of transaction number per epoch. This is a side-effect of the workload implementation
in Calvin when the target throughput is low, while workload generator in ALOHA-DB
considers both target throughput and epoch duration. Thus, in the figure we observe that
the linear slope is close to 1 for Calvin.

4.5.4 Discussion

This subsection summarizes some of the design characteristics of the two transaction process-
ing systems under consideration in the experiments, and their performance consequences,
to elucidate the experimental results.

� Calvin uses partition-level concurrency control. Calvin first replicates a transaction
to all involved partitions. Each of these partitions reads all the values in the read-set,
redundantly executes the same stored procedure on each partition, but only writes
the keys belonging to this partition. However, as all partitions read the same read

85

set, some remote reads result in wasted work for a partition where the key read has
no influence on the writes performed in this partition.

� The write-only phase in ALOHA-DB has concurrency control overhead close to
eventual consistency thanks to the low overhead ECC. This point was established
in [41] by showing that ALOHA-KV has performance close to the baseline of no
concurrency control. This is because write-only transactions in write epochs require
almost no concurrency control and the epoch switch only takes a small portion of the
execution time.

� The ALOHA-DB functor computing phase performs key-level concurrency control.
Multi-versioning allows functor computing to avoid the locking mechanism, but a
functor cannot be computed if a version to be read is not a final value. However, in
this case the thread will begin to compute that functor on which it depends, rather
than blocking until another thread computes this functor (see line 21 in Algorithm 3).
This resembles a rescheduling of the functor execution, and ensures that threads are
well-utilized.

In light of the decisions discussed above, the performance differences between ALOHA-
DB and Calvin can be explained as follows.

� Multi-versioning and key-level concurrency control in ALOHA-DB provide more
parallelism than the single versioned partition-level locking concurrency control in
Calvin. Thus, even in the extreme case of 1D or 1W where Calvin may execute
transactions one by one in a partition, ALOHA-DB still allows different threads to
compute different functors in parallel.

� Each functor is computed only once in ALOHA-DB which avoids the redundant
execution that happens in every participating partition in Calvin. This difference
becomes more pronounced in the scaled TPC-C experiments, where a transaction
may touch 15 partitions when the order includes 15 items on different partitions, in
which case the processing is repeated 15 times.

� Functor computing only reads the value it needs, thus avoids all unnecessary remote
reads in ALOHA-DB. In both TPC-C and Scaled TPC-C experiments presented in
this section, most of the functors only need to read the latest value of the same key, or
additional keys in the same partition. For example, in the scaled TPC-C experiment,
stock data is partitioned by item id. Using functors, when a partition only needs to
update some counters, such as quantity, order count, year to date, and so no remote

86

read is needed for this partition. However, in Calvin, the same partition must read all
keys in the read set, and most of these reads are remote. Thus, ALOHA-DB performs
similarly for both TPC-C and scaled TPC-C.

4.6 Summary

This chapter addressed the problem of supporting high-throughput multi-partition transac-
tions. In particular, it proposed a mechanism to support serializable distributed read-write
transactions by extending the epoch-based concurrency control (ECC) approach, introduced
in Chapter 3, that works on read-only and write-only transactions. The method described
in this chapter uses write epochs to record functors, which are objects that represent how
to evaluate the corresponding versions of values. A functor is processed either during
asynchronous batch processing or at read time, once all versions on which the functor
depends are settled. This chapter also presented the implementation of the protocol in a
transaction processing system called ALOHA-DB and has evaluated it using the TPC-C
benchmark and YCSB-like microbenchmark for read-write transactions. For the TPC-C
benchmark, ALOHA-DB was shown to achieve nearly 2 million transactions per second on
20 servers, which is 1 to 2 orders of magnitude faster than Calvin, while supporting lower
latency and also allowing transactions to abort due to logic errors.

87

Chapter 5

Understanding the Causes of
Consistency Anomalies in Apache
Cassandra

Chapter 3 and Chapter 4 both focus on improving scalability for systems that support
serializable transactions. This chapter investigates systems that are on the other side of
the consistency spectrum: NoSQL systems that can easily achieve linear scalability with
eventual consistency. Using a popular open source eventually consistent storage system,
Apache Cassandra [2], as the model, this study explores the possibility of achieving both
scalability and consistency by understanding and improving the consistency of NoSQL
systems.

5.1 Introduction

This study is motived by the observation of consistency spikes in the staleness time series
experiment of Rahman et al. [77]. As shown in Figure 1.1 in Chapter 1, the graph exhibits
occasional abrupt spikes of the staleness of values returned by read operations applied to
Cassandra—an open-source distributed storage system that supports eventual consistency.
Research on the cause of these spikes can help us to understand the service provided by
those eventually consistent systems, and further help the service providers to improve
customer satisfaction, e.g., targeting a consistency level that may be contracted by service
level agreements (SLAs) [91].

88

The investigation begins with reproducing the spikes observed in prior experiments
and then explores the low-level mechanisms that give rise to stale reads. A hypothesis
is formulated that the observed spikes are caused by the Java virtual machine’s garbage
collection (GC) “stop-the-world” (STW) phase, which pauses all application threads. The
hypothesis is experimentally tested by correlating the occurrence and duration of the GC
pause time against the occurrence and height of the spikes. The results show that the
garbage collection in the JVM, in particular the “stop-the-world” pause, has a strong
correlation with the consistency spikes. Furthermore, a method that can virtually eliminate
the spikes is proposed. This method entails delaying read operations artificially at server
side immediately after garbage collection. In the experiments shown in this chapter, more
than 98% of consistency anomalies that exceed a minimum threshold of 5ms are removed
with little impact on throughput and latency.

The remainder of the chapter is organized as follows: Section 5.2 presents the background
of Cassandra client-side consistency settings, the tuning knob of consistency-availability
trade-offs in the system; Section 5.3 shows the hypothesis of how the garbage collection
STW in JVM can cause the consistency spikes; the experiments to test the hypothesis and
the proposed spike elimination method are detailed in Section 5.4.

5.2 Cassandra Consistency Levels

Cassandra is an open-source distributed storage system that supports tunable consistency
among the consistency-availability trade-offs. Users can choose the client-side consistency
level for the operations, according to their requirement. This section will briefly explain
how Cassandra reads and writes data, and details some consistency levels supported by
Cassandra that are related to this study. The descriptions are based on the Cassan-
dra official online documentation [1], but are simplified for presentation. For example,
this section only uses the general QUORUM level over other quorum-based levels (e.g.,
EACH QUORUM, LOCAL QUORUM) because this study only focuses on single data
center cluster deployment.

In Cassandra, each logical partition of the system is composed of a group of replicas,
referred to as replication group. The size of the replication group is called replication factor.
A client can send a request to any server host, and the server will be the coordinator
of the operation, forwarding requests to the replica servers accordingly. A replica server
acknowledges a write request to the coordinator only after the write operation has been
appended to the commit log on disk and the update is stored in a memory structure

89

called memtable in that server. The following lists some of the consistency levels for write
operations supported in Cassandra:

� ALL. The operation succeeds when all replicas acknowledge the write. This provides
the highest consistency and lowest availability level.

� QUORUM. The operation succeeds when a quorum of replicas acknowledge the
write. This provides strong consistency in terms of Brewer’s CAP principle.

� ONE. The operation succeeds when at least one replica acknowledges the write. This
provides weak consistency.

� ANY. The operation succeeds when at least one node (not necessarily belonging
to the replication group) acknowledges the write. When all replicas of a partition
are unavailable, ANY allows a write to be temporarily stored on another server and
applied when that partition has healed. This mechanism is called hinted hand-off in
Cassandra, and such a write temporarily stored on another server is called a “hinted
write”. This level provides the lowest consistency and highest availability.

For read operations, Cassandra has defined similar consistency levels as follows:

� ALL. The operation succeeds when all replicas have responded, otherwise the read
operation fails. This provides the highest consistency and lowest availability level.

� QUORUM. The operation succeeds when a quorum of replicas have responded.
This provides strong consistency.

� ONE. The operation succeeds when the closest replica has responded. The distance
between nodes is determined by the snitch setting, which informs the Cassandra
about the network topology. This provides the highest availability, but may give rise
to stale values.

5.3 Hypothesis

The experiments in [77] used the consistency level “ONE” for both read and write operations.
This section uses this consistency level setting for eventual consistency and presents the
hypothesis that GC STW causes the consistency spikes, as shown in Figure 1.1 in Chapter 1.
The following discussion is under the assumption that the clocks are tightly synchronized

90

within the cluster, e.g., using network time protocol (NTP). In private clusters, the clock
offset under clock synchronization protocols is very small (e.g., offset to the local clock
stratum is less than one millisecond), thus the clock offset has little impact on the consistency
spikes, some of which are more than 200 milliseconds in Figure 1.1.

Recall that a value returned by a read is stale if that value is not the most recent value
that was written to Cassandra, meaning that a subset of the replicas did not receive the
last updated value in time for the read to see it. For example, a stale read happens when an
acknowledged write operation has succeeded on replica A and not on replica B, then replica
B serves a read request using the value it has which is stale compared to the one on A. The
staleness of the read operations should be less than the time difference between the times at
which the two replicas apply the write. The hypothesis is that this time difference among
replicas is enlarged when some replica is in the “stop-the-world” phase. When the JVM of
some replica experiences the GC STW pause, all application threads are stopped and that
delays the processing of updates at this replica, while the same updates may be applied
successfully at other replicas. After application threads resume from STW, any reads from
this replica return a stale value until the backlogged updates are applied. Depending on
how long it takes to clear the backlog, reads may in theory return values that are stale by
more than the duration of the STW pause time at a replica, but this case is rarely observed
in the experiments.

Figure 5.1 shows a hypothetical example of the garbage collection “stop-the-world”
pause causing a severely stale read. There are three replicas with value 0 initialized by
operation w(0). On applying a following write operation W(1), replica 2 is a little behind
replica 1 in time, because an eventually consistent system allows asynchronous updates.
Thus, there is a small window for an inconsistent read, such as the read R(0) happening on
replica 2. In case of garbage collection, as shown in replica 3, STW pauses all read and
write threads, resulting in a window of inconsistency which could be as large as the STW
duration.

5.4 Experiments

5.4.1 Consistency metric

The experiments presented herein use the Γ (gamma) metric for consistency [48], which
is similar theoretically to the metric used in [77] but in practice exhibits less noise in
environments where clock offset across hosts exceeds operation latencies. The Γ metric

91

time

Replica 2

Replica 1

W(0)

W(0) W(1)

R(0)

W(1)

R(1)
time

Staleness

Replica 3

W(0) R(0)

W(1)

R(1)
timeGC STW

Staleness

Figure 5.1: Illustration of how STW causes severe staleness.

quantifies how badly the consistency observed by clients deviates from linearizability [53],
which states (informally speaking) that each operation appears to take effect instantaneously
at some point between its start and finish times as measured from the perspective of the client
who applied the operation. The experiments in this chapter measure a fine-grained form of
the Γ metric called the per-value Γ score, which captures deviations from linearizability
associated with a collection of operations that access the same key and read or write the
same value. Positive Γ scores indicate consistency anomalies, which can be interpreted as
stale reads or as write operations that appear to take effect in a non-linearizable order. To
plot a time series graph, each Γ score is plotted against a point in time, defined relative to
the beginning of an experiment, which indicates approximately when the corresponding
consistency anomaly occurred. The time values are approximate since anomalies involve
the interaction of multiple storage operations that may start and finish at different times.

5.4.2 Hardware and software environment

The experiments are conducted in a private cluster of 11 Intel Xeon E5450 8-core commodity
machines with 8GB RAM, connected by Gigabit Ethernet. The hosts use a 64-bit Linux
kernel version 2.6.18 and provide Oracle Java 1.7.0u71. Cassandra version 2.0.9 is installed
and configured using default parameters except where noted otherwise. A modified version
of YCSB [28] 0.1.4 is used, similarly to [77], to collect logs of operations from which the
consistency metric is computed. One host is used as a coordinator to monitor the experiment

92

and collect logs, five hosts run Cassandra, and up to five other hosts run multi-threaded
YCSB clients.

The Oracle HotSpot JVM provides garbage collectors that pause the application threads
to evacuate the garbage objects. This pause time is also called the “stop-the-world” (STW)
time. Even concurrent garbage collectors such as Concurrent Mark Sweep (CMS) include a
STW pause in the mark and remark steps. To correlate the inconsistency spikes with GC
pause time, the experiments collect the STW start and finish timestamps by parsing the
garbage collection logs of the JVMs running Cassandra.

The YCSB workload is run against Cassandra for 120 seconds. Unless specified otherwise,
the workload settings are as follows: hotspot distribution with 80% of the load on 20%
of the keys, key space size of 500, 32 client threads per YCSB process, and 80%/20%
read/write operation mix. A skewed distribution is used to maximize the likelihood of
observing consistency anomalies, as in [48, 77]. Cassandra is configured with a replication
factor of 3 and consistency level “ONE” is used for both reads and writes, which means that
the client waits for only one replica to return an acknowledgment. For each experiment,
the graph presents the result of one run, but each setting is repeated five times to confirm
that the pattern observed is reproducible.

5.4.3 Inconsistency spikes versus STW pause

Figure 5.2 shows the result of reproducing the staleness time series experiment of Rahman
et al. (see Figure 3 in [77]) using the Γ metric, where the time and duration of the GC
STW pause are shown as vertical dotted lines in the same graph. The position of these
lines on the x-axis indicates the time of an STW pause, and the height of these lines on
the y-axis indicates the duration of the pause. Both GC STW pause times and Γ metric
values are aggregate results from all hosts. For the sake of clarity, STW times less than 5
ms are not plotted. The spike pattern in Figure 5.2 at around 40 seconds is very similar to
Figure 3 in [77] at around 55 seconds.

Informally speaking, the spikes demonstrate a strong correlation with the GC pause. In
terms of experiment time the spikes align precisely with the STW pauses indicated by the
dotted lines perpendicular to the x-axis. Furthermore, the height of the spikes corresponds
closely to the length of the GC pause, which is indicated by the height of the dotted lines.
In other words, nearly all consistency violations happen at a time near a GC STW pause,
and most of the observed Γ scores, which quantify the severity of a consistency violation,
are less than the duration of the pause.

93

Figure 5.2: Time series of Γ score and GC pause time with five YCSB hosts and replication
factor three.

To explore the internal cause of the inconsistency spikes, the experiments with a fixed
number of Cassandra hosts but a various number of YCSB hosts are conducted. In this
experiment the replication factor is set to 5 to allow each Cassandra host to hold one
replica. Figure 5.3 shows the results using 2 to 5 YCSB hosts and 5 Cassandra hosts. As
the number of YCSB hosts is varied, each YCSB host has similar throughput, and the
aggregate throughput is proportional to the number of YCSB hosts. It is observed that as
the number of YCSB hosts increases, the consistency violations become more severe but
generally do not exceed the length of the STW pause; this observation will be exploited later
on in Section 5.4.4. Furthermore, the number of spikes and the number of positive Γ scores
increases more than linearly with the number of YCSB hosts (e.g., compare Figure 5.3 (a)
with (c)). Thus, consistency anomalies occur readily as the offered load increases, and
may be of concern in practice even when the storage system is operating at less than full
throttle.

94

(a) 2 YCSB hosts (b) 3 YCSB hosts

(c) 4 YCSB hosts (d) 5 YCSB hosts

Figure 5.3: Time series of Γ score and GC pause time with replication factor five.

5.4.4 Smoothing the inconsistency spikes

This subsection investigates the technique of smoothing out the inconsistency spikes by
delaying reads artificially during a short interval of time following a GC STW pause,
which is referred to as the delay period. The delay period begins as soon as the GC STW
pause is detected, and lasts for a duration that depends on the method used to detect the
pause. Operation delays are governed by the following policy: inside the delay period, read
operations are stalled until the delay period is finished, whereas write operations follow

95

the usual execution path; outside the delay period reads and writes both follow the usual
execution path.

Two concurrent garbage collectors are tested in the experiments: ConcurrentMarkSweep
(CMS), the default GC, and Garbage First (G1), a newer GC provided by the HotSpot
JVM. The results for both garbage collectors are similar, and so only the results for CMS
are presented.

Two mechanisms to detect the GC STW pause are used: GC-notification and Free-
heapsize. Since Java 7 update 4, an API called GarbageCollectionNotificationInfo is available
for receiving notifications from the GarbageCollectorMXBean. It can provide the start time
and duration of the GC, which are used to define the delay period. Once a GC occurs,
the delay period is activated in the notification handler for the GC duration specified
by the management bean. This method is called as GC-notification. The Free-heapsize
method instead traces free heap size in the read operation routine. Once a large free
heap size increase (≥100MB in the setting) is detected, it is considered to be a sign of
garbage collection occurring. In that case, the delay period is activated for a fixed period
of 50ms—an empirically determined upper bound on the length of the STW pause in the
experiments. As noted earlier in Section 5.4.3 the length of the STW pause is, in turn, an
approximate upper bound on the Γ scores observed during inconsistency spikes.

(a) GC-notification method (b) Free-heapsize method

Figure 5.4: Smoothing of inconsistency spikes by delaying reads artificially after a GC STW
pause.

Figure 5.4 (a) shows the result of using the GC-notification method with a replication
factor of five and five YCSB hosts. In terms of the number of positive Γ scores and the height

96

#violations
(Γ > 5ms)

Aggregate
Throughput
(ops/s) ±

std err

Average
Latency

(ms) ± std
err

Max
Latency

(ms) ± std
err

95%-ile
Latency

(ms) ± std
err

No delay 133 8604 ± 10 9.23 ± 0.02 324 ± 11 25.0 ± 0
GC notification 31 8584 ± 21 9.33 ± 0.03 311 ± 4 25.6 ± 0.2
Free heapsize 2 8586 ± 15 9.38 ± 0.03 322 ± 13 25.8 ± 0.2

Table 5.1: Comparison of consistency violation, throughput and read latency under read
delay in Apache Cassandra.

of the spikes, the consistency anomalies are less severe than in Figure 5.3 (d), which uses
the same system and workload parameters. However, there are still three spikes in excess of
20ms in height. Thus, the smoothing is incomplete, possibly because the GarbageCollection
notification handler is not guaranteed to execute in a timely fashion. In other words, the
execution of the notification handler that activates the delay period may lag behind the
end of the STW pause.

Figure 5.4 (b) shows the results using the Free-heapsize method. It demonstrates that
the spikes are nearly removed and 98.5% Γ scores more than 5ms are also removed. With
the exception of one Γ score of around 6ms at the beginning of the experiment, and one Γ
score of around 15ms at the 108th second, all the remaining points are under 5ms.

Table 5.1 shows the throughput and read latency influence of the artificial read delays.
GC notification has no significant drop in throughput, 1% increase in average read latency,
no significant increase in max read latency, and 0.6ms increase in 95%-ile read latency. Free
heapsize has no significant drop in throughput, 1.6% increase in average read latency, no
significant increase in max read latency, and 0.8ms increase in 95%-ile read latency. Thus,
the results show that the spikes can be virtually eliminated with very little overhead in
terms of throughput and latency.

5.5 Summary

In this chapter, the inconsistency spikes observed in [77] were reproduced in experiments.
It was experimentally shown that the stop-the-world pause during garbage collection is
the cause of these spikes. Specifically, the results showed a strong correlation between the
GC pauses and inconsistency spikes in terms of both the time of occurrence and the GC
duration vs. spike magnitude. The explanation of GC STW causing updates to be applied

97

at different times at various replicas was formed. Furthermore, two methods of delaying
read operations artificially to smooth out the spikes were demonstrated: GC-notification
and Free-heapsize. Both methods incurred only a slight overhead in throughput and read
latency, and successfully removed up to 98% of the spikes.

98

Chapter 6

Related Work

The chapter discusses the related work in the area of scalable distributed databases, with
an emphasis on systems that favor consistency.

Distributed transactions. Distributed transactions have been studied since the
1980s when transaction processing began to involve multiple partitions [21]. Distributed
transactions are desirable and attract increasing attention [14, 20, 34, 52, 66, 70, 71,
85, 101, 104] in both industry and research, because data generation and transaction
processing exceed the capacity of a single partition in many use cases. In addition, it is
challenging to partition data so that transactions can only access a single partition [56, 74].
Prior distributed storage systems mostly either pay a performance penalty for serializable
distributed transaction or sacrifice serializability in favor of weaker isolation models. Sinfonia
[9] provides serializable minitransactions, which internally use lock-based concurrency control
and a two-phase transaction commitment protocol. Spanner [29], which accommodates a
broader class of transactions, uses a similar mechanism combined with optimistic concurrency
control, as well as data versioning to avoid locks for read-only transactions. In contrast,
VoltDB [87] executes transactions serially in each partition, which avoids the need for
concurrency control and enables high throughput for single-partition transactions but forces
centralized coordination for multi-partition transactions. MDCC [59] and RAMP [14]
use commitment protocols in which the number of network round trips depends on the
contention encountered. MDCC provides read committed isolation by default and RAMP
provides read atomicity, which is also weaker than serializability. None of the above systems
allow distributed write-only transactions to be committed in amortized one round trip in
the presence of write-write conflicts.

Concurrency control for serializability. Moreover, serializable distributed trans-

99

actions are inherently costly [12] as the transaction coordination over multiple partitions
across the network is coupled with the concurrency control mechanisms, which may force a
transaction to wait for others to complete. There are many efforts in the research community
to support serializable distributed transactions. Many of these use variants of traditional
concurrency control mechanisms that originally work well in single-partition transactions:
for example, Spanner [29] and Sinfonia [9] use two-phase locking, whereas Centiman [34],
Rococo [70], Tapir [104], Hyder [22], and Hekaton [33] implement OCC. However, these
concurrency control mechanisms do not scale well in the presence of conflicts, in particular
in update-intensive workloads. A recent evaluation [52] shows that for these conventional
concurrency control mechanisms (excluding deterministic scheduling in Calvin), the perfor-
mance of distributed transactions on a cluster only slightly exceeds that of a single machine
under a high contention read-write workload. That means the potential capacity of the
cluster is underutilized because of the concurrency control performance bottleneck.

Some recent systems propose architectures and concurrency control mechanisms that
are designed for distributed transactions. For example, some of them address distributed
transactions through deterministic scheduling [37, 38, 80, 87, 92, 93], by appending to a log
for atomic commitment [19, 22, 46], or by re-ordering conflicting transaction executions [70].
Calvin [80, 92, 93] processes transactions in a deterministic order, which makes it possible
to process write-only transactions in one round trip. However, as shown in the experiments
of Chapter 4, Calvin suffers from the latency overheads related to the scheduling phase,
and its open source implementation cannot abort transactions using a second round even if
some partition is overloaded or failed [80]. Faleiro et al. extends Calvin using a placeholder
approach [37, 38], but their systems cannot execute conflicting transactions in parallel using
key-level concurrency control. Hyder [19, 22] shares some similarities with ALOHA-DB in
terms of achieving atomic multi-write with low overhead without resorting to 2PC, using
multi-versioning instead of locking, and separating transaction execution into multiple stages
(i.e., recording the transaction first and then executing it). However, Hyder achieves atomic
multi-key writing by atomically writing a log entry in Corfu [16], which uses a centralized
sequencer 1 to guarantee a total order on the log entries. This sequencer can limit the peak
write throughput of Hyder to only sub-million transactions per second based on the current
generation of hardware [16]. ALOHA-DB instead orders transactions using the timestamps
assigned by distributed front-end (FE) servers. Furthermore, to read the values of some
keys, Hyder must “roll forward” all the sequential log entries, even if some of the entries do
not affect the keys of interest, whereas ALOHA-DB only needs to compute the functors that
are related to the keys of interest. Also, Hyder transactions are prone to aborting during the
“melding” phase under high contention, whereas ALOHA-DB never aborts transactions due

1The sequencer in Corfu and Hyder has different functionality from that in Calvin.

100

to conflicts. HANA SOE [46] proposes another log-structured scale-out database similar to
Hyder, but uses a transaction manager for concurrency control instead of the intention-meld
mechanism. ROCOCO [70] is a concurrency control mechanism for distributed transactions
that uses a two-round protocol to detect conflicts and re-order transaction execution. The
ALOHA-DB system determines the transaction order by the timestamps generated at the
start of transactions, and no conflict detection between transactions is needed. ALOHA-DB
has superior performance compared to published results for ROCOCO (around 55000
transactions per second across 100 single core machines) [70].

Using epochs to batch operations. Previous works use epochs to structure trans-
action processing in various ways [58, 72, 95, 76]. Silo [95] and its more scalable relative
FOEDUS [58] use epochs to ensure serializability on recovery from failures, to facilitate
garbage collection, and to provide read-only snapshots. Phase reconciliation [72] repeatedly
cycles split phases, epochs that only process commutative operations, and joined phases,
epochs that process other operations. Phase reconciliation resembles ECC on the first
impression, but isolation of reads from writes in our system is orthogonal to the isolation of
commutative and non-commutative operations in their system. For example, two writes on
the same key do not commute and thus cannot be processed concurrently in phase reconcili-
ation, but can be processed in parallel in ALOHA-KV and ALOHA-DB. Additionally, these
other systems target single machine transactions, whereas ALOHA-KV and ALOHA-DB
targets distributed transactions.

A recent paper on scale replay recovery logs on replica [76], referred to as replay
replication, shares some similarity with ALOHA-DB by using the techniques of epochs,
deterministic execution, multi-versioning, as well as a placeholder approach, but targets a
different purpose (replay recovery log). Functor-enabled ECC itself is a concurrency control
mechanism, while the replay replication paper addresses log replay in primary-backup
replication, which requires another concurrency control mechanism (on the primary server)
to decide transaction ordering and to create epochs for the backup server. Furthermore, the
replay replication paper proposes a technique designed for multi-core databases that do not
support distributed transactions, while ALOHA-DB is designed for distributed transactions.
Last but not the least, the placeholder in replay replication is only an empty value, and it
only achieves transaction-level parallelism; functors are placeholders and methods to get
the final values, and functors allow key-level parallelism in transaction processing.

Read-only and write-only transactions. Efficient read-only and write-only transac-
tion protocols are proposed in prior works, such as Eiger [65], Walter[85], and G-store [30],
and can be used in batch processing systems [26, 54]. For these transaction types, ALOHA-
KV also benefits from batching, and achieves throughput-optimized performance even under
high contention. However, Eiger [65] only supports causal consistency, and Walter [85]

101

provides parallel snapshot isolation, while ALOHA-KV provides serializable isolation. G-
store [30] only supports the multi-key access where the keys are in non-overlapping groups.
Thus, G-store can not efficiently handle the general case that two concurrent write-only
transactions contend for some common keys.

Quantifying eventual consistency. Recent research has been working on quantifying
eventual consistency, informally the staleness of data returned by reads relative to the latest
data that has been written. Wada [98] et al. evaluated the staleness of Amazon’s SimpleDB
using end-user stress-testing. Bermbach and Tai quantified various forms of non-serializable
behavior on S3 [18]. Zellag and Kemme [102, 103] analyzed consistency by building
dependency graphs similar to graphs that are used to characterize serializability. Bailis et
al. [15] developed a model to predict the expected staleness bound, called probabilistically
bounded staleness (PBS). Golab et al. developed the ∆ [47] (delta) and Γ [48] (gamma)
metrics to measure how far the operation history deviates from linearizability. The measured
staleness metrics can be used in various applications, such as consistency analysis tools for
storage systems [40] and systems that tune the consistency-latency tradeoff [25, 78].

102

Chapter 7

Conclusion and Future Work

7.1 Conclusions

This thesis addresses the fundamental question of building distributed databases: how to
improve performance and consistency under conflicts. Conflict mitigation, a new technique
that targets overall scalability and consistency in conflict resolution, is proposed. This
thesis includes research on high performance serializable distributed transactions and an
investigation of consistency spikes in eventually consistent systems. In particular, it has
the following contributions.

A concurrency control mechanism for distributed transactions. The main
contribution of this thesis is a suite of high performance distributed transaction protocols.
At the center of these protocols, a novel concurrency control mechanism for atomic read-only
write-only transactions is proposed, which is called epoch-based concurrency control (ECC).
ECC avoids read-write conflicts among transactions by partitioning transaction execution
into disjoint read and write epochs, and mitigates write-write conflicts by storing multiple
versions of key-value pairs. Thus, concurrent writes can be processed in parallel with
low overhead, even when their write sets overlap. Based on ECC, the high performance
distributed databases ALOHA-KV and ALOHA-DB are built, both of which guarantee
serializability.

An efficient atomic commitment protocol. Using ECC as the central building
block, this thesis describes a new atomic commitment protocol, which requires amortized
one round trip to commit a transaction in the absence of failures irrespective of contention.
In comparison, the widely used two-phase commit protocol requires two round trips even if

103

there is no failure. Different from deterministic database Calvin, which submits transactions
in one round trip and enforces the transaction execution by deterministic order, the
commitment protocol proposed in this thesis still has the ability to abort the transaction
using a second round of messages.

An asynchronous processing paradigm for serializable transactions. Functors,
proposed in this thesis, extend the ECC to support high performance read-write distributed
transactions. The functor-enabled ECC uses write epochs to record functors, which are
objects that represent how to evaluate the corresponding versions of values, and process the
functors either asynchronously or at read time, once all versions on which the functor depends
are settled. Functors allow a finer concurrency control level in transaction processing, while
enabling serializability.

An investigation of consistency spikes in an eventually consistent system.
Consistency spikes in a popular eventually consistent system are reproduced in the thesis.
A strong correlation between garbage collection “stop-the-world” pauses and consistency
spikes is demonstrated. Furthermore, the explanation of the correlation is formulated
theoretically and tested experimentally. In addition, this research proposes a solution to
smooth out the consistency spikes by artificially delaying read operations immediately after
garbage collection. The experimental evaluation of this technique shows that the spikes can
be virtually eliminated with little impact on throughput and latency.

7.2 Future Research Directions

A few promising directions for future work can be motivated based on this thesis. This
subsection presents the future work based on the directions.

Improving the performance of ECC

1. Epoch duration self-tuning. ECC introduces an interesting tuning knob for adaptivity
with respect to workload variations, such as changes between read-heavy and write-
heavy workloads, or large versus small transactions. However, an interesting future
work is an intelligent self-tuning mechanism that will adjust the epoch durations
dynamically in response to the workload. For example, (1) what metrics can be used
to represent the workload; (2) how to decide the new epoch duration based on the
metrics; (3) how the system adapts to the new epoch duration?

2. Reducing epoch switch time using low latency network. Reducing epoch switch time
will further reduce the overhead of ECC, which has positive impacts on both the

104

throughput and the latency of the system. It is an interesting research direction
to speed up epoch switch time using new network hardware, such as remote direct
memory access (RDMA), which currently achieves much smaller latency than TPC/IP
over Ethernet. In addition, implementing part of the network stack in hardware using
an FPGA is another possible solution for reducing the computational overhead of
epoch switching.

3. Exploring ECC in multi-core machines. Inspired by recent developments in transaction
processing on a single many-core machine [95, 100], further research may explore
whether the benefits of ECC demonstrated in a distributed message passing system
can be realized in shared memory as well.

Facilitating functor usage in transaction processing

1. Automating functor transformation. Even though Section 4.3.3 described a general
but naive method to transform the transaction stored procedure to functor handlers,
the current implementation of ALOHA-DB still uses the manually created functors
because no automated functor transformation program exists yet. There are several
interesting research questions regarding creating such a program. First, what do
the input and output for such an automated transformation look like? I.e., how to
represent a stored procedure and a functor handler in the course of the transformation?
Second, is there a transformation method that can generate more efficient functors
for transaction processing than the one described in Section 4.3.3? Third, how to
automatically evaluate which functor is more efficient if there exist multiple ways
of performing the transformation? For example, if some benchmark framework is
available, how to automatically decide what testing workloads will be applied to the
candidate functors?

2. Processing user-defined functors. In Chapter 4, functors are computed by stored
procedures, which are installed in the server side before transaction processing, and the
clients send the transactions to servers using the procedure IDs (f-types) to indicate
which procedures to call. Is it possible to eliminate the restriction that the functors
are computed by stored procedures and the clients must have prior knowledge of the
procedure IDs? This future work focuses on techniques that allow clients to send the
user-defined functors created at run time. One idea is that the functors are written
by a newly designed language (e.g., scripts or a SQL-like language) and this language
can be interpreted and be executed by a library running on the server side.

105

3. Building ALOHA-DB on top of storage class memory. The forthcoming generation of
storage media, such as the storage class memory (SCM), may raise more interesting
design questions regarding providing data durability in ALOHA-DB. For example,
the logging and checkpointing mechanism may be not necessary with SCM, because
the data in SCM will not be lost due to crashing. However, processes may crash and
leave an incomplete state in the SCM, which needs to be resolved in the recovery
program.

Supporting cross-datacenter transactions

This thesis currently focuses on clusters of servers that are in a single datacenter.
However, these techniques face challenges in the cross-datacenter environment, where the
network latency is much larger than in the single datacenter case and the failure detection
and resolution are much slower. The following are some questions that need to be addressed
to support cross-datacenter transactions.

1. New epoch switch mechanism. In a single datacenter scenario, epoch switch time
is much smaller than the epoch duration (based on the experiments presented in
previous chapters). But the situation may be different in cross-datacenter scenarios,
because network latency for one round trip can be less than 1 millisecond in a single
datacenter but may be greater than 100 milliseconds in geo-distributed scenarios.
The epoch switch mechanism needs to be re-designed to accommodate large network
latency.

2. Distributed epoch manager. Other than a centralized epoch manager (EM) used
in experiments of this thesis, the cross-datacenter scenario may need a distributed
epoch manager. Otherwise, the centralized EM may be a performance bottleneck for
serving servers in remote data centers. In addition, the clock offset among servers
within a single datacenter is smaller than that in cross-datacenter environment, as the
network latency is much larger in the latter case. The epoch manager design needs to
accommodate the large the clock offset scenario.

3. Quorum-based geo-replication. When replicas are in different data centers, the repli-
cation protocol for synchronizing cross-datacenter replicas needs to deal with large
network latencies and large latency variations. One direction of future work is to
explore the quorum-based replication in ALOHA-DB for cross-datacenter transaction
support.

106

Further smoothing consistency spikes in eventually consistent systems

1. Combination of GC-notification and Free-heapsize. In servers with larger main
memories, the GC pause time may on occasion be much longer than in the experiment
in this thesis, which could require an excessively long fixed delay period duration in
Free-heapsize. On the other hand, the notification lag of the GC notification method
is usually quite small. Combining the two strategies could provide both agile reaction
and a precise calculation of the delay period duration.

2. Tuning JVM settings for shorter garbage collection pause time. As the consistency
spikes result from the GC pause, ordinary GC tuning techniques may reduce the
spikes by shortening the STW pause time. For example, one could tune the size of
the young generation in heap. Real-time JVMs such as C4 [89], or (nearly) pauseless
garbage collectors such as Shenandoah [5], may also be helpful.

3. Controlling internal activities in the storage system. Consistency anomalies could
be made more predictable to avoid inconsistency at inconvenient times, by means of
explicitly invoking GC, or controlling internal activities that may lead to GC. For
example, in Cassandra such internal activities include the flush, which flushes in-
memory data from the memtable to an SSTable file on disk, and may be accompanied
by a substantial GC since a large chunk of memory becomes available for recycling.

107

References

[1] Apache Cassandra documentation. http://docs.datastax.com/en/cassandra/2.

0/. Accessed: 2015-05-15.

[2] Cassandra. http://cassandra.apache.org/ Accessed: 2015-08-21.

[3] HBase. http://hbase.apache.org/ Accessed: 2015-08-21.

[4] Project Voldemort. http://www.project-voldemort.com/voldemort/ Accessed: 2015-
08-21.

[5] Shenandoah. http://icedtea.classpath.org/wiki/Shenandoah Accessed: 2015-08-21.

[6] Daniel Abadi. Consistency tradeoffs in modern distributed database system design:
CAP is only part of the story. Computer, 45(2):37–42, February 2012.

[7] Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations
for Distributed Transactions. PhD thesis, MIT, Cambridge, MA, USA, March 1999.
Also as Technical Report MIT/LCS/TR-786.

[8] Marcos K. Aguilera, Joshua B. Leners, Ramakrishna Kotla, and Michael Walfish.
Yesquel: Scalable SQL Storage for Web Applications. In Proceedings of the 2015
International Conference on Distributed Computing and Networking, ICDCN ’15,
pages 40:1–40:4, New York, NY, USA, 2015. ACM.

[9] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos
Karamanolis. Sinfonia: A new paradigm for building scalable distributed systems.
ACM Trans. Comput. Syst., 27(3):5:1–5:48, November 2009.

[10] AWS. Amazon EC2 Instance Types. https://aws.amazon.com/ec2/

instance-types/, 2017. Accessed: 2017-11-21.

108

http://docs.datastax.com/en/cassandra/2.0/
http://docs.datastax.com/en/cassandra/2.0/
http://cassandra.apache.org/
http://hbase.apache.org/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

[11] Peter Bailis. Coordination Avoidance in Distributed Databases. PhD thesis, University
of California, Berkeley, CA, USA, 2015.

[12] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. Coordination avoidance in database systems. Proc. VLDB Endow.,
8(3):185–196, November 2014.

[13] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. HAT,
Not CAP: Towards Highly Available Transactions. In Proceedings of the 14th USENIX
Conference on Hot Topics in Operating Systems, HotOS’13, pages 24–24, Berkeley,
CA, USA, 2013. USENIX Association.

[14] Peter Bailis, Alan Fekete, Joseph M. Hellerstein, Ali Ghodsi, and Ion Stoica. Scalable
atomic visibility with RAMP transactions. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’14, pages 27–38, New
York, NY, USA, 2014. ACM.

[15] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein,
and Ion Stoica. Quantifying eventual consistency with PBS. The VLDB Journal,
23(2):279–302, 2014.

[16] Mahesh Balakrishnan, Dahlia Malkhi, John D. Davis, Vijayan Prabhakaran, Michael
Wei, and Ted Wobber. CORFU: A Distributed Shared Log. ACM Trans. Comput.
Syst., 31(4):10:1–10:24, December 2013.

[17] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. A critique of ANSI SQL isolation levels. In Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’95, pages
1–10, New York, NY, USA, 1995. ACM.

[18] David Bermbach and Stefan Tai. Eventual Consistency: How Soon is Eventual? An
Evaluation of Amazon S3’s Consistency Behavior. In Proceedings of the 6th Workshop
on Middleware for Service Oriented Computing, MW4SOC ’11, pages 1:1–1:6, New
York, NY, USA, 2011. ACM.

[19] Philip A. Bernstein, Sudipto Das, Bailu Ding, and Markus Pilman. Optimizing
optimistic concurrency control for tree-structured, log-structured databases. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’15, pages 1295–1309, New York, NY, USA, 2015. ACM.

109

[20] Philip A. Bernstein and Nathan Goodman. Concurrency control in distributed
database systems. ACM Comput. Surv., 13(2):185–221, June 1981.

[21] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986.

[22] Philip A. Bernstein, Colin W. Reid, and Sudipto Das. Hyder - A transactional record
manager for shared flash. In CIDR 2011, Fifth Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online Proceedings,
pages 9–20, 2011.

[23] Jalil Boukhobza, Stéphane Rubini, Renhai Chen, and Zili Shao. Emerging NVM: A
survey on architectural integration and research challenges. ACM Trans. Des. Autom.
Electron. Syst., 23(2):14:1–14:32, November 2017.

[24] Eric A. Brewer. Towards robust distributed systems (abstract). In Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Distributed Computing, PODC
’00, page 7, New York, NY, USA, 2000. ACM.

[25] Shankha Chatterjee and Wojciech Golab. Self-tuning eventually-consistent data stores.
In Paul Spirakis and Philippas Tsigas, editors, Stabilization, Safety, and Security of
Distributed Systems, pages 78–92, Cham, 2017. Springer International Publishing.

[26] James Cipar, Greg Ganger, Kimberly Keeton, Charles B. Morrey, III, Craig A.N.
Soules, and Alistair Veitch. Lazybase: Trading freshness for performance in a scalable
database. In Proceedings of the 7th ACM European Conference on Computer Systems,
EuroSys ’12, pages 169–182, New York, NY, USA, 2012. ACM.

[27] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.
Pnuts: Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1(2):1277–1288,
August 2008.

[28] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC ’10, pages 143–154, New York, NY, USA,
2010. ACM.

[29] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter

110

Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander
Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao,
Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang,
and Dale Woodford. Spanner: Google’s globally distributed database. ACM Trans.
Comput. Syst., 31(3):8:1–8:22, August 2013.

[30] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-store: A scalable data
store for transactional multi key access in the cloud. In Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC ’10, pages 163–174, New York, NY, USA,
2010. ACM.

[31] Khuzaima Daudjee and Kenneth Salem. Lazy database replication with snapshot
isolation. In Proceedings of the 32Nd International Conference on Very Large Data
Bases, VLDB ’06, pages 715–726. VLDB Endowment, 2006.

[32] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly available key-value store. SIGOPS
Oper. Syst. Rev., 41(6):205–220, October 2007.

[33] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton: SQL Server’s Memory-
optimized OLTP Engine. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’13, pages 1243–1254, New York, NY,
USA, 2013. ACM.

[34] Bailu Ding, Lucja Kot, Alan Demers, and Johannes Gehrke. Centiman: Elastic, high
performance optimistic concurrency control by watermarking. In Proceedings of the
Sixth ACM Symposium on Cloud Computing, SoCC ’15, pages 262–275, New York,
NY, USA, 2015. ACM.

[35] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency
and predicate locks in a database system. Commun. ACM, 19(11):624–633, November
1976.

[36] Facebook. fbthrift. https://github.com/facebook/fbthrift, 2015. Accessed:
2017-11-21.

[37] Jose M. Faleiro, Daniel J. Abadi, and Joseph M. Hellerstein. High performance
transactions via early write visibility. Proc. VLDB Endow., 10(5):613–624, January
2017.

111

https://github.com/facebook/fbthrift

[38] Jose M. Faleiro, Alexander Thomson, and Daniel J. Abadi. Lazy evaluation of trans-
actions in database systems. In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14, pages 15–26, New York, NY, USA,
2014. ACM.

[39] Hua Fan. High performance multi-partition transaction. In Proceedings of the VLDB
2015 PhD Workshop co-located with the 41rd International Conference on Very Large
Databases (VLDB 2015), Hawaii, USA, August 31, 2015.

[40] Hua Fan, Shankha Chatterjee, and Wojciech M. Golab. Watca: The waterloo
consistency analyzer. In 32nd IEEE International Conference on Data Engineering,
ICDE 2016, Helsinki, Finland, May 16-20, 2016, pages 1398–1401, 2016.

[41] Hua Fan, Wojciech Golab, and Charles B. Morrey, III. ALOHA-KV: High perfor-
mance read-only and write-only distributed transactions. In Proceedings of the 2017
Symposium on Cloud Computing, SoCC ’17, pages 561–572, New York, NY, USA,
2017. ACM.

[42] Hua Fan, Aditya Ramaraju, Marlon McKenzie, Wojciech Golab, and Bernard Wong.
Understanding the causes of consistency anomalies in apache cassandra. Proc. VLDB
Endow., 8(7):810–813, February 2015.

[43] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and Paul Gau-
thier. Cluster-based scalable network services. In Proceedings of the Sixteenth ACM
Symposium on Operating Systems Principles, SOSP ’97, pages 78–91, New York, NY,
USA, 1997. ACM.

[44] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System.
SIGOPS Oper. Syst. Rev., 37(5):29–43, October 2003.

[45] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

[46] A. K. Goel, J. Pound, N. Auch, P. Bumbulis, S. MacLean, F. Färber, F. Gropengiesser,
C. Mathis, T. Bodner, and W. Lehner. Towards scalable real-time analytics: An
architecture for scale-out of OLxP workloads. Proc. VLDB Endow., 8(12):1716–1727,
August 2015.

[47] Wojciech Golab, Xiaozhou Li, and Mehul A. Shah. Analyzing consistency properties
for fun and profit. In Proceedings of the 30th Annual ACM SIGACT-SIGOPS

112

Symposium on Principles of Distributed Computing, PODC ’11, pages 197–206, New
York, NY, USA, 2011. ACM.

[48] Wojciech Golab, Muntasir Raihan Rahman, Alvin Au Young, Kimberly Keeton, Jay J.
Wylie, and Indranil Gupta. Client-centric benchmarking of eventual consistency
for cloud storage systems. In Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13, pages 28:1–28:2, New York, NY, USA, 2013. ACM.

[49] Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM Trans.
Database Syst., 31(1):133–160, March 2006.

[50] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 1992.

[51] Rajiv Gupta and Charles R. Hill. A scalable implementation of barrier synchronization
using an adaptive combining tree. Int. J. Parallel Program., 18(3):161–180, June
1990.

[52] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker. An
evaluation of distributed concurrency control. Proc. VLDB Endow., 10(5):553–564,
January 2017.

[53] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[54] Charles Johnson, Kimberly Keeton, Charles B. Morrey, Craig A. N. Soules, Alistair
Veitch, Stephen Bacon, Oskar Batuner, Marcelo Condotta, Hamilton Coutinho,
Patrick J. Doyle, Rafael Eichelberger, Hugo Kiehl, Guilherme Magalhaes, James
McEvoy, Padmanabhan Nagarajan, Patrick Osborne, Joaquim Souza, Andy Sparkes,
Mike Spitzer, Sebastien Tandel, Lincoln Thomas, and Sebastian Zangaro. From
research to practice: Experiences engineering a production metadata database for
a scale out file system. In Proceedings of the 12th USENIX Conference on File and
Storage Technologies, FAST’14, pages 191–198, Berkeley, CA, USA, 2014. USENIX
Association.

[55] Evan P.C. Jones, Daniel J. Abadi, and Samuel Madden. Low overhead concurrency
control for partitioned main memory databases. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’10, pages
603–614, New York, NY, USA, 2010. ACM.

113

[56] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander Rasin,
Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang Zhang,
John Hugg, and Daniel J. Abadi. H-store: A high-performance, distributed main
memory transaction processing system. Proc. VLDB Endow., 1(2):1496–1499, August
2008.

[57] Rajesh Kumar Karmani, Nicholas Chen, Bor-Yiing Su, Amin Shali, and Ralph
Johnson. Barrier synchronization pattern. In Workshop on Parallel Programming
Patterns (ParaPLOP), 2009.

[58] Hideaki Kimura. FOEDUS: OLTP engine for a thousand cores and NVRAM. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’15, pages 691–706, New York, NY, USA, 2015. ACM.

[59] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete.
MDCC: Multi-data center consistency. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages 113–126, New York, NY, USA,
2013. ACM.

[60] H. T. Kung and John T. Robinson. On optimistic methods for concurrency control.
ACM Trans. Database Syst., 6(2):213–226, June 1981.

[61] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured
storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[62] Leslie Lamport. On interprocess communication, Part I: Basic formalism and Part II:
Algorithms. Distributed Computing, 1(2):77–101, Jun 1986.

[63] B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. SIGPLAN Not., 23(7):260–267, June 1988.

[64] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles,
SOSP ’11, pages 401–416, New York, NY, USA, 2011. ACM.

[65] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Stronger semantics for low-latency geo-replicated storage. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation, NSDI’13,
pages 313–328, Berkeley, CA, USA, 2013. USENIX Association.

114

[66] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai Mu, and Wyatt Lloyd. The
SNOW theorem and latency-optimal read-only transactions. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16,
pages 135–150, Berkeley, CA, USA, 2016. USENIX Association.

[67] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt, Yee Jiun Song, Wendy
Tobagus, Sanjeev Kumar, and Wyatt Lloyd. Existential consistency: Measuring and
understanding consistency at facebook. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP ’15, pages 295–310, New York, NY, USA, 2015.
ACM.

[68] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’10, pages 135–146, New York, NY, USA, 2010. ACM.

[69] Jim Melton and Alan R. Simon. Understanding the New SQL: A Complete Guide.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

[70] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. Extracting more
concurrency from distributed transactions. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation, OSDI’14, pages 479–
494, Berkeley, CA, USA, 2014. USENIX Association.

[71] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. Consolidating concurrency
control and consensus for commits under conflicts. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation, OSDI’16, pages 517–
532, Berkeley, CA, USA, 2016. USENIX Association.

[72] Neha Narula, Cody Cutler, Eddie Kohler, and Robert Morris. Phase reconciliation for
contended in-memory transactions. In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, OSDI’14, pages 511–524, Berkeley,
CA, USA, 2014. USENIX Association.

[73] Christos H. Papadimitriou. The serializability of concurrent database updates. J.
ACM, 26(4):631–653, October 1979.

[74] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. Skew-aware automatic database
partitioning in shared-nothing, parallel OLTP systems. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data, SIGMOD ’12,
pages 61–72, New York, NY, USA, 2012. ACM.

115

[75] Francisco Perez-Sorrosal, Marta Patiño Martinez, Ricardo Jimenez-Peris, and Bettina
Kemme. Elastic SI-Cache: Consistent and scalable caching in multi-tier architectures.
The VLDB Journal, 20(6):841–865, December 2011.

[76] Dai Qin, Angela Demke Brown, and Ashvin Goel. Scalable replay-based replication
for fast databases. Proc. VLDB Endow., 10(13):2025–2036, September 2017.

[77] Muntasir Raihan Rahman, Wojciech Golab, Alvin AuYoung, Kimberly Keeton, and
Jay J. Wylie. Toward a principled framework for benchmarking consistency. In
Proceedings of the Eighth USENIX Conference on Hot Topics in System Dependability,
HotDep’12, Berkeley, CA, USA, 2012. USENIX Association.

[78] Muntasir Raihan Rahman, Lewis Tseng, Son Nguyen, Indranil Gupta, and Nitin
Vaidya. Characterizing and adapting the consistency-latency tradeoff in distributed
key-value stores. ACM Trans. Auton. Adapt. Syst., 11(4):20:1–20:36, January 2017.

[79] Kun Ren. Calvin. https://github.com/yaledb/calvin, 2015. Accessed: 2017-11-
21.

[80] Kun Ren, Alexander Thomson, and Daniel J. Abadi. An evaluation of the advantages
and disadvantages of deterministic database systems. Proc. VLDB Endow., 7(10):821–
832, June 2014.

[81] Lawrence G. Roberts. ALOHA packet system with and without slots and capture.
SIGCOMM Comput. Commun. Rev., 5(2):28–42, April 1975.

[82] Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat, Christoph Koch,
Nate Foster, and Johannes Gehrke. The homeostasis protocol: Avoiding transaction
coordination through program analysis. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’15, pages 1311–1326,
New York, NY, USA, 2015. ACM.

[83] Artyom Sharov, Alexander Shraer, Arif Merchant, and Murray Stokely. Take me to
your leader!: Online optimization of distributed storage configurations. Proc. VLDB
Endow., 8(12):1490–1501, August 2015.

[84] D. Skeen and M. Stonebraker. A formal model of crash recovery in a distributed
system. IEEE Trans. Softw. Eng., 9(3):219–228, May 1983.

[85] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage
for geo-replicated systems. In Proceedings of the Twenty-Third ACM Symposium on

116

https://github.com/yaledb/calvin

Operating Systems Principles, SOSP ’11, pages 385–400, New York, NY, USA, 2011.
ACM.

[86] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil
Hachem, and Pat Helland. The end of an architectural era: (it’s time for a complete
rewrite). In Proceedings of the 33rd International Conference on Very Large Data
Bases, VLDB ’07, pages 1150–1160. VLDB Endowment, 2007.

[87] Michael Stonebraker and Ariel Weisberg. The VoltDB Main Memory DBMS. IEEE
Data Eng. Bull., 36(2):21–27, 2013.

[88] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. E-store: Fine-grained
elastic partitioning for distributed transaction processing systems. Proc. VLDB
Endow., 8(3):245–256, November 2014.

[89] Gil Tene, Balaji Iyengar, and Michael Wolf. C4: The continuously concurrent
compacting collector. SIGPLAN Not., 46(11):79–88, June 2011.

[90] Douglas B. Terry, Karin Petersen, Mike J. Spreitzer, and Marvin M. Theimer. The case
for non-transparent replication: Examples from bayou. In IEEE Data Engineering,
21:12–20, 1998.

[91] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan,
Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service level
agreements for cloud storage. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, pages 309–324, New York, NY, USA,
2013. ACM.

[92] Alexander Thomson and Daniel J. Abadi. The case for determinism in database
systems. Proc. VLDB Endow., 3(1-2):70–80, September 2010.

[93] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao,
and Daniel J. Abadi. Calvin: Fast distributed transactions for partitioned database
systems. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’12, pages 1–12, New York, NY, USA, 2012. ACM.

[94] Transaction Processing Performance Council (TPC). TPC Benchmark C standard
Sepcification Revisiosn 5.11. http://www.tpc.org/tpcc, 2010. Accessed: 2017-11-21.

117

http://www.tpc.org/tpcc

[95] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
Speedy transactions in multicore in-memory databases. In Proceedings of SOSP ’13,
pages 18–32, New York, NY, USA, 2013. ACM.

[96] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103–111, August 1990.

[97] Venkateshwaran Venkataramani, Zach Amsden, Nathan Bronson, George Cabrera III,
Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Jeremy
Hoon, Sachin Kulkarni, Nathan Lawrence, Mark Marchukov, Dmitri Petrov, and
Lovro Puzar. TAO: How facebook serves the social graph. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data, SIGMOD ’12,
pages 791–792, New York, NY, USA, 2012. ACM.

[98] Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. Data consistency
properties and the trade-offs in commercial cloud storage: the consumers’ perspective.
In CIDR 2011, Fifth Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, Online Proceedings, pages 134–143, 2011.

[99] Jenq-Shyan Yang and Chung-Ta King. Designing tree-based barrier synchronization
on 2d mesh networks. IEEE Trans. Parallel Distrib. Syst., 9(6):526–534, June 1998.

[100] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael Stone-
braker. Staring into the abyss: An evaluation of concurrency control with one
thousand cores. Proc. VLDB Endow., 8(3):209–220, November 2014.

[101] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. The end of a myth:
Distributed transactions can scale. Proc. VLDB Endow., 10(6):685–696, February
2017.

[102] Kamal Zellag and Bettina Kemme. How consistent is your cloud application? In
Proceedings of the Third ACM Symposium on Cloud Computing, SoCC ’12, pages
6:1–6:14, New York, NY, USA, 2012. ACM.

[103] Kamal Zellag and Bettina Kemme. Consistency anomalies in multi-tier architectures:
Automatic detection and prevention. The VLDB Journal, 23(1):147–172, February
2014.

[104] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and
Dan R. K. Ports. Building consistent transactions with inconsistent replication. In

118

Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15, pages
263–278, New York, NY, USA, 2015. ACM.

119

	List of Tables
	List of Figures
	Introduction
	Read-only and Write-only Distributed Transactions Under Conflicts
	Serializable Read-Write Distributed Transaction Processing
	Investigation of Consistency Anomalies in Apache Cassandra
	Outline and Previously Published Work

	Background
	Transactions in Databases
	Concurrency Control Techniques
	Transaction Isolation Levels
	Serializability

	Distributed Transactions
	Atomic Commitment Protocols
	Combination of 2PL and 2PC
	RAMP: Read Atomic Multi-Partition Transaction
	Calvin: Deterministic Databases

	Consistency in BASE Systems
	CAP theorem
	Eventual Consistency
	Consistency Analysis

	Summary

	Epoch-based Concurrency Control and ALOHA-KV
	Introduction
	System Model and Architecture
	System Model
	Architecture

	Epoch-based Concurrency Control Mechanism
	Invariants and Rules
	Transaction Barriers
	Example

	Implementation
	Data Representation in Storage
	Transaction Protocol
	On the Side-Effects of Stragglers

	Fault Tolerance
	Replication
	Cluster Membership
	Logging and Checkpointing

	Theoretical Analysis
	System Throughput
	Epoch Switch Scalability
	Analysis of Serializability

	Experimental Evaluation
	Experimental Setup
	ALOHA-KV vs. RAMP Results
	Microbenchmark Experiments
	Scalability
	Fault Tolerance

	Summary

	Scalable Serializable Transaction Processing Using Functors
	Introduction
	Architecture and Design of ALOHA-DB
	Architecture
	Unified Epochs
	Avoiding the Side-Effects of Stragglers
	Multi-version Storage

	Functors
	Transaction Lifecycle
	Functors for Read-Write Transactions
	Transforming a transaction to functors
	Functor Computing

	Implementation Details
	Functor Processing In ALOHA-DB
	Dependent Transactions
	Serializability

	Evaluation
	Experimental Setup
	TPC-C Experiments
	Microbenchmark Experiments
	Discussion

	Summary

	Understanding the Causes of Consistency Anomalies in Apache Cassandra
	Introduction
	Cassandra Consistency Levels
	Hypothesis
	Experiments
	Consistency metric
	Hardware and software environment
	Inconsistency spikes versus STW pause
	Smoothing the inconsistency spikes

	Summary

	Related Work
	Conclusion and Future Work
	Conclusions
	Future Research Directions

	References

