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 9 

Abstract 10 

Catalyst layer (CL) has a significant impact on the overall pore structure of the entire electrodes, 11 

thereby impacting the transport processes and the performance of polymer electrolyte membrane 12 

(PEM) fuel cells. In this study, the contribution of the CL to the entire electrode structure is 13 

experimentally investigated. The electrodes are prepared by using two types of catalysts with 14 

different platinum/carbon (Pt/C) ratios and Pt loadings and characterized by the method of 15 

standard porosimetry (MSP). The results show that for the same type of catalysts, as the Pt 16 

loading is increased, both the porosity and mean pore size of the electrode decrease, whereas the 17 

pore surface area increases. For a constant Pt loading, a lower Pt/C ratio results in a thicker 18 

electrode with a smaller porosity, smaller pore size, and larger pore surface area. The fractal 19 

dimension is found to be a good representative of the complexity of the pore structure of the 20 

electrode; a larger fractal dimension is detected for a higher Pt loading and a smaller Pt/C ratio.  21 

Keywords: Polymer electrolyte membrane fuel cell; Catalyst layer; Pore size; Pore surface area; 22 

Fractal dimension 23 

  24 
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1. Introduction 1 

Polymer electrolyte membrane (PEM) fuel cell is a clean power generator suitable for a wide 2 

range of practical applications [1–8]. It has a multi-layered structure with its core component, 3 

referred to as a membrane-electrode assembly (MEA), having a proton-conducting membrane 4 

layer sandwiched between an anode and a cathode electrode; and each electrode consists of a gas 5 

diffusion layer (GDL) and a catalyst layer (CL) [9–11]. In cell operation, hydrogen and air are 6 

transported through the pore regions of the anode and cathode GDLs to the reaction sites within 7 

the CLs for electrochemical reactions and power generation [12–14]. The structure of the 8 

electrode dictates the transport processes, and hence the performance of PEM fuel cells. The 9 

importance of the GDL on the overall pore structure of the electrode is well recognized and 10 

extensively investigated [15,16], while the contribution of the CL is not. 11 

A typical CL employed in PEM fuel cells contains electrochemically active and electrically 12 

conductive platinum (Pt) nanoparticles supported on relatively larger carbon particles, and these 13 

Pt/C particles are held together by an ionomer binder [17–19]. The morphological, 14 

microstructural and electrochemical characteristics of the CL are closely linked to its materials 15 

and design parameters, such as Pt/C ratio, Pt loading, and ionomer weight ratio. Since the CL is 16 

typically very thin, only a few micrometer thick, hence mechanically weak, it is usually 17 

deposited onto the membrane or GDL which is typically a carbon paper. The carbon paper is 18 

comprised of carbon fibers and generally has a thickness of 100-300 µm. By its very nature, the 19 

carbon paper has solid and void regions. The solid region serves as a “bridge” for electron 20 

transport, while the void region provides pathways for mass transport. The microstructural 21 

characteristics of the carbon paper depend to a large extent on the orientation of the fibers and 22 

numbers of layers stacked. The pore structure of the carbon paper is usually modified to achieve 23 
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desirable wettability characteristics – a process termed as “hydrophobic treatment”, in which the 1 

surface of the carbon paper is treated by hydrophobic agents, such as polytetrafluoroethylene 2 

(PTFE), polyvinylidene fluoride (PVDF), and fluorinated ethylene propylene (FEP). In addition, 3 

specifically for the cathode side, the micro-porous layer (MPL), composed of carbon particles 4 

and a hydrophobic agent, is deposited onto the carbon paper to achieve effective water 5 

management and interfacial transport characteristics [20]. The combination of the carbon paper 6 

and MPL is often referred to as the double-layer or dual-layer GDL.  7 

The mass transport in both the GDLs and CLs occurs under the combined influence of relatively 8 

dominant diffusion and a lesser degree of convection [14]. The effectiveness of diffusion and 9 

convection through both the GDL and CL is represented by the effective diffusion coefficient 10 

(EDC) and permeability, which are the strong functions of the microstructural characteristics of 11 

the electrodes [21–24]. Therefore, it is of significance to understand the pore structure of the 12 

entire electrode (GDL+CL).  13 

The microstructural characteristics of the porous electrodes are quantitatively represented by the 14 

terms of “porosity” and “pore-size distribution” [25]. The porosity is the ratio of the pore volume 15 

over the bulk volume, while the pore-size distribution provides information about the distribution 16 

of the pore volume or area with respect to pore size. The pore volume represents the volume of 17 

the void region including open and closed pores, while the bulk volume is the cumulative volume 18 

of solid and void regions. However, many engineering problems require more comprehensive 19 

information that cannot be fully obtained by determining these two parameters – this makes the 20 

identification of other parameters, such as bulk density, mean pore size, and pore surface area, 21 

essential [25]. The bulk density is defined as the ratio between the mass of the porous sample and 22 

the bulk volume. The mean pore size is the strong function of the shapes of the pores, and it can 23 
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only be precisely determined when the shapes of the pores are known. However, most pores in 1 

the electrodes are of irregular shapes. Thus, the mean pore size of the electrodes generally relies 2 

on the assumption that the shape of the pores is constant and cylindrical [26]. More recently, the 3 

functionality of another parameter termed as “fractal dimension” has also been greatly 4 

appreciated [27–29], specifically for investigating the capability of the porous media for mass 5 

transport (see [27,30–39], for example). The fractal dimension is a measure of the complexity of 6 

the porous media, and it can take non-integer values between 2 and 3, depending on the 7 

complexity of the fractal surface – the more it approaches to 3, the more complex the surface is 8 

[37,40,41].  9 

As mentioned earlier, optimization of the electrodes requires a comprehensive understanding of 10 

the structure of the entire electrode (GDL+CL). However, thus far, the focus of the studies on 11 

microstructural characterization has been mainly centering upon investigating the pore structure 12 

of the carbon papers and double-layer GDLs (see [15,42–45], for example), with few studies 13 

directed towards the entire electrode (GDL+CL). The available studies have significantly 14 

contributed to the literature by revealing the influence of the pore structure of the GDL on 15 

various phenomena, i.e., the transport of mass, heat, and electricity – this has enabled the 16 

manufacture of fuel cells that can operate at high-current densities, which is fairly desirable for 17 

practical applications [46]. However, optimization of the electrodes for optimum performance, 18 

durability, and stability requires a complete understanding of the entire pore structure. It is thus 19 

critical to understand exactly what type of pore structure is achieved upon deposition of the CL, 20 

or how the CL design parameters, i.e., catalyst type and catalyst loading, influence the pore 21 

structure of the electrode. It might be mentioned that Yu et al. [47] investigated the pore size 22 

distribution of the catalyst layers deposited on the reference ethylene tetrafluoroethylene (ETFE) 23 
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substrate and the results are compared with the reference ETFE substrate. Their studies 1 

investigated the changes in pore size distribution with a focus on the ionomer/carbon ratio of the 2 

catalyst layer. 3 

The objective of the present study is therefore to address these open questions by characterizing 4 

the catalyzed electrodes (GDL+CL) with different specifications in terms of porosity, pore size 5 

distribution, pore surface area, mean pore size, and fractal dimension. The catalyzed electrodes 6 

are prepared by using two types of catalysts (i.e., 30% and 60% Pt/C particles) with Pt loadings 7 

of 0.1 and 0.4 mg·cm-2. Comparison is made with an uncatalyzed electrode, or GDL only. The 8 

MSP is selected to characterize the pore structures of the electrodes, owing to its capability of 9 

measuring a wide range of pore size under room conditions without damaging the pore structure 10 

of the electrode [48]. The electrode characteristics measured in this study will be useful for the 11 

analysis and simulation of the transport phenomena in the electrode and cell performance.  12 

 13 

2. Experimental 14 

2.1. Electrode Preparation 15 

The electrodes investigated in the present study are prepared by following a procedure that 16 

involves three steps. For brevity, only the procedure followed for the electrode made of carbon 17 

supported platinum (Pt/C, 30 wt.%) with the Pt loading of 0.4 mg·cm-2 is described. The first 18 

step is the preparation of the catalyst ink, through which the commercially available carbon-19 

supported platinum (Pt/C, 30 wt.%), 5 wt.% Nafion® solution, deionized (DI) water, and 20 

isopropyl alcohol (IPA, 99.9%, Sigma-Aldrich®) are consecutively mixed in a vial and then 21 

ultrasonically blended for 1 h to achieve a uniform suspension. The weight ratio of the catalyst to 22 

Nafion® in the ink is set at 3:1. The resulting slurry is spray-deposited onto the MPL surface of 23 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 
 

the commercially available PTFE-treated GDL (Avcarb GDS3250) until the catalyst loading of 1 

0.4 mg·cm-2 is achieved. Lastly, the catalyzed electrodes are dried at 60°C for 2 h to evaporate 2 

any remaining moisture. In this study, five types of samples are tested in order to investigate the 3 

effect of Pt loading and catalyst type on the pore structure of the electrodes. These five types of 4 

the samples include an uncatalyzed GDL, and four catalyzed GDLs made of 30 and 60% Pt/C 5 

with 0.1 and 0.4 mg·cm-2 Pt loading, respectively. 6 

2.2. Method of Standard Porosimetry (MSP) 7 

2.2.1. Experimental Setup  8 

The pore structures of the electrodes under investigation are determined by the method of 9 

standard porosimetry (MSP) [49–51], owing to its advantages, such as it is a non-destructive 10 

method and has a capability of detecting the pores located in a broad range (0.3 nm-300 µm) 11 

under room conditions. The experimental setup for the pore characterization of the electrodes is 12 

equipped with the following constituents: a heating bottle, a vacuum pump, aluminum clamping 13 

devices, a digital balance, a manipulating robot arm, and a drying station. The heating bottle is 14 

used to remove the moisture from the samples prior to measurements, while the vacuum pump is 15 

employed to provide a vacuum environment during the drying step to ensure that the pores in the 16 

porous media are free of moisture in the air. The aluminum clamping devices are used to keep 17 

the samples stacked in a fixed position. The digital balance with high accuracy is utilized to 18 

measure the change in the weights of the stacked samples over time. The manipulating robot 19 

compatible with commercial software is used to move the samples between the digital balance 20 

and drying station at certain time intervals. The drying station is the place where the samples are 21 

kept at a constant temperature of about 45°C to speed up the evaporation of the working fluid. In 22 
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the measurements, octane is chosen as the working fluid, due to its advanced wetting 1 

characteristics.  2 

2.2.2. Experimental Procedure 3 

The MSP utilizes the capillary pressure equilibrium between the bodies in contact to determine 4 

the capillary pressure curve of the sample under test. This method employs three samples: two of 5 

them are standard with known pore size distribution, and the other is the sample extracted from 6 

the test of interest electrode. Prior to measurements, two pieces of disk-like samples (23 mm in 7 

diameter) are extracted via a die. The two layers of test samples (each of them is about 220-230 8 

µm thick) are situated together as an individual test object – that is, the test sample is thick 9 

enough to contain sufficient amount of octane, enabling us to obtain measurements from an 10 

adequate number of measurement points. Thereafter, the test and standard samples are situated in 11 

a glass tube and drained at 180°C for 1 h under a vacuum environment to remove any moisture. 12 

Subsequently, the test sample, along with the two standard samples, is soaked in octane at room 13 

temperature under a vacuum environment for 10 min to ensure that the pores of the samples are 14 

completely filled with octane. On completion of octane immersing process, the samples are taken 15 

out of the beaker, and excess octane is gently wiped off from the sample surfaces. The test 16 

sample is sandwiched between the standard samples via clamping devices; and in this case, it is 17 

known that the test sample is in capillary equilibrium with the standard ones. Also, any variation 18 

from the capillary equilibrium due to evaporation will affect both the test and standard samples, 19 

allowing determination of the capillary curve of the sample under test from the known capillary 20 

pressure curves of the standard samples. Thus, the change in the weight of the samples due to 21 

evaporation is periodically measured by moving the clamping devices at 3-min time intervals 22 

between the drying station and digital balance. During each measurement, the clamping devices 23 
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are separated individually, and the mass of each clamping device (upper, middle, and lower) with 1 

the corresponding test sample is recorded. Therefore, the mass of the octane evaporated from the 2 

samples can be calculated by the weight difference between the two consecutive measurements. 3 

This provides a precise determination of the volume of the remaining octane occupying the pores 4 

at the corresponding time intervals. The variation in the samples weights is recorded until the 5 

samples are completely dried – this corresponds to ~100 consecutive measurements. The last 6 

step is establishing the correlation between the pore volume and pore radius of the test sample by 7 

utilizing the capillary pressure curves of the standard samples.  8 

2.2.3. Data Analysis 9 

The method of standard porosimetry (MSP) is developed based on the laws of capillary 10 

equilibrium [49–51], which states that if two or more porous materials stay together for a 11 

sufficiently long time in a wetting liquid, they will have the same capillary potentials (capillary 12 

pressure is a kind of capillary potential): 13 

 ��� = ��� = ��� = �� (1)

where pc is the capillary potential of i th layer. 14 

The MSP experimentally determines the relationship between the liquid volume (Vt) in the test 15 

sample and the liquid volume (Vs) in the standard sample: 16 

 �� = 	
(��) (2)

The liquid distribution in the standard sample can be expressed as a function of pc and is 17 

provided by the manufacturer as follows. 18 
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 �� = 	�(��) (3)

The liquid distribution in the tested samples regarding pc is determined:  1 

 �� = 	
[	�(��)] (4)

The capillary pressure (or capillary potential), pc, can be expressed as the Young-Laplace 2 

equation [49]:  3 

 �� = −2�cos���  
(5)

where σ is the surface tension of the liquid, θ is the wetting angle, and rm is the maximum pore 4 

radius filled with liquid. Here, the value of pc is one of the capillary potentials, hence the 5 

function between Vt  and rm becomes: 6 

 �� = 	
 �	� �−2�cos��� �� = �(�, ��) (6)

For octane, the wetting angle is almost zero for all materials, thus Eq. (6) is simplified to, 7 

 �� = 	
 �	� �−2����� = �(��) 
(7)

On the other hand, the total pore volume, Vp, of the test samples can be determined as follows: 8 

 �� =  �!�–	 $%&'  (8)

where msat is the total mass of the saturated sample, mdry is the total mass of the dry sample, and ρ 9 

is the density of the octane.  10 
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Then the bulk volume, Vb, can be calculated: 1 

 �( = )*
�+,
4  

(9)

where d is the diameter of the test sample, + is the thickness of the sample and N is the number 2 

of the samples being tested together. In this case, d = 23 mm, and N = 2. 3 

The porosity, ∅, is defined as: 4 

 ∅ = ���( 
(10)

The pore surface area, Sp, can be calculated from the integral pore radius distribution curve by 5 

using the following equation [48]: 6 

 
/� = 2 0 1

�
%234

%256

*��
*� *� 

(11)

The specific surface area, SSA, is defined by the following equation in order to make a good 7 

comparison with other samples, 8 

 //7 = /��( 
(12)

The mean pore size, MPS, is defined as [26]: 9 

 89/ = 4��/�  
(13)
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The fractal dimension, D, can be determined based on the relation between the fractal surface 1 

area, Sp, and the pore radius or “scale”, r, used to measure the surface area, according to the 2 

following relation, 3 

 //7 = :��;< (14)

where k is the constant that describes the shape of the solid elements in the porous media. The 4 

values of k and D can be determined by curve fitting of the pore surface area distribution using 5 

Eq. (14).  6 

3. Results and Discussion 7 

The pore structures of the prepared electrodes are investigated by the method of standard 8 

porosimetry (MSP) in terms of pore size distribution (PSD), porosity, pore surface area 9 

distribution, specific surface area (SSA), and mean pore size (MPS), and surface fractal 10 

dimension. 11 

3.1 Pore Size Distribution 12 

Pore size distribution is the relative amount of each pore size in a representative volume of 13 

porous materials [52] and is usually represented by a probability density function indicating the 14 

pore volume at a given pore size. Since the pore shapes in natural objects are mostly irregular, 15 

the pore size is only meaningful when the equivalent pore shapes are assumed. In most porous 16 

media, the pore sizes are distributed over a wide range of values, and this parameter 17 

quantitatively describes the uniformity and complexity of the pore structure. 18 

Fig. 1 (a) and (b) indicate the cumulative pore size distribution of the electrodes containing two 19 

different types of catalyst with the Pt/C ratios of 30% and 60%, respectively. As can be seen, for 20 
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the low Pt loading of 0.1 mg·cm-2, the volume of the pores larger than 1 µm is decreased slightly 1 

for both two types of catalysts in comparison with the uncatalyzed GDL. This is likely due to the 2 

penetration of the small catalyst particles and ionomers into the GDLs; therefore, some large 3 

pores are occupied by the catalyst particles and ionomer, leading to a slight decrease in the 4 

volume of large pores. However, as the Pt loading is increased to 0.4 mg·cm-2, these two types of 5 

catalysts behave differently. For 30% Pt/C, the large pores (>1 µm) continue to reduce since the 6 

catalysts and ionomers trend to penetrate into and occupy more large pores; while for 60% Pt/C, 7 

more large pores are introduced by the thicker catalyst layers. In other words, the pore volume 8 

and pore size distribution of the electrodes can be changed by two means: reduced pore volume 9 

due to the material (catalyst particle and ionomer) penetration into GDLs and increased pore 10 

volume due to the presence of the deposited catalyst layers. The combined effect of these two 11 

factors should be further determined based on other parameters, e.g., porosity. 12 

Fig. 1 (c) and (d) exhibit the differential pore size distribution of the electrodes with two 13 

different types of catalyst, 30% and 60% Pt/C, respectively. The radii of the pores can be as large 14 

as 10 µm. It is seen that for the same type of catalyst, as the Pt loading is increased, the volume 15 

of the pores smaller than 100 nm increases (also see Fig. 1 (a) and (b)). This increase is likely 16 

due to the presence of more catalyst particles in the CLs with higher Pt loadings. For the constant 17 

Pt loading, the volume of pores smaller than 100 nm for 30% Pt/C (see Fig. 1 (a)) is much higher 18 

than that for 60% Pt/C (see Fig. 1 (b)). This implies that a lower Pt/C ratio requires more carbon 19 

particles in order to maintain the same Pt loading, and a larger amount of carbon particles leads 20 

to a significant increase in small pores, formed between the carbon particles with a diameter 21 

range from 30 to 50 nm.  22 
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 1 

(a) Cumulative pore size distribution for 30% Pt/C. 2 

  3 

(b) Cumulative pore size distribution for 60% Pt/C. 4 
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 1 

(c) Differential pore size distribution for 30% Pt/C. 2 

 3 

(d) Differential pore size distribution for 60% Pt/C. 4 
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Fig. 1. Pore size distribution (PSD) of the porous electrodes with the Pt loadings and catalyst 1 

types of (a) cumulative PSD for 30% Pt/C, (b) cumulative PSD for 60% Pt/C, (c) differential 2 

PSD for 30% Pt/C, and (d) differential PSD for 60% Pt/C, (Vp is pore volume, Vb is bulk 3 

volume, and r is the pore radius.) 4 

3.2 Porosity 5 

Porosity is a measure of the volumetric fraction of the pores in a porous medium. A larger 6 

porosity indicates that there are more void regions in the porous media which can be used for 7 

transporting oxygen, hydrogen, and water in PEM fuel cells, yielding a smaller mass transport 8 

resistance, hence a better cell performance. Therefore, to accurately measure the porosity is of 9 

great significance for the performance of the electrodes as well as the PEM fuel cells. 10 

Fig. 2 (a) and (b) present the relationships between the pore volume, bulk volume, and porosity 11 

for the electrodes with the two types of catalysts (30% and 60% Pt/C) studied, respectively. It 12 

can be observed that for a given type of Pt/C catalyst, the bulk volume presents a linear increase 13 

with the Pt loading since the amount of CL ingredients (Pt/C and ionomer) increases 14 

proportionally. This is because for a given type of Pt/C catalyst, an increase in the Pt loading 15 

increases the thickness of the electrode, since the cross sectional area of the sample is fixed. For 16 

example, the electrode thickness increases from 221.6±2.1 µm to 243.0±2.1 µm for 30% Pt/C 17 

and to 231.0±2.1 µm for 60% Pt/C, respectively [53], as calculated based on Eq. (9) with the 18 

given bulk volumes as shown in Fig. 2. However, the pore volume of these electrodes does not 19 

change too much. As the porosity is defined as the ratio of pore volume to bulk volume, the 20 

porosity of the electrode for a higher Pt loading is decreased significantly. Similarly, for the 21 

same Pt loading, a higher Pt/C ratio requires fewer amounts of carbon and ionomer, thus 22 
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resulting in a thinner electrode with a smaller bulk volume. Therefore, a Pt/C ratio of 30% results 1 

in a thicker and less porous electrode as compared to that of 60% Pt/C.  2 

 3 

(a) Pore volume and bulk volume. 4 

 5 

(b) Porosity.  6 

Fig. 2. Pore volume and porosity of the electrodes with various Pt loadings and two types of 7 

catalysts of 30% and 60% Pt/C. 8 

3.3 Pore Surface Area Distribution  9 
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Pore surface area distribution, similar to PSD, is defined in this section as the probability density 1 

function of the amount of surface area at a given pore size. This parameter quantifies the surface 2 

area in either large or small pores and can be an indicator of the amount of electrochemical 3 

reaction sites. 4 

Fig. 3 (a) and (b) indicate the cumulative surface area distribution of the pores from the 5 

maximum to minimum size for these five types of the prepared electrodes. The cumulative 6 

surface area shown represents the total pore surface area integrated from the maximum pore sizes 7 

to the given pore size, normalized by the total bulk volume of the sample involved. As can be 8 

seen, the surface area is greatly contributed by the small pores, e.g., 95.0%-96.5% for the pores 9 

with a radius smaller than 100 nm. In addition, for 60% Pt/C, 0.1 mg·cm-2 Pt loading leads to a 10 

1.2% increase in the specific surface area, while 0.4 mg·cm-2 Pt loading causes a 24.0% increase. 11 

The rises of the pore surface area are contributed by the presence of small Pt/C particles, 12 

resulting in more chemical reaction sites. Further, for a smaller Pt/C ratio, more surface area can 13 

be observed with a constant Pt loading. The increase in surface area is due to the larger amount 14 

of carbon particles utilized. Meanwhile, only the pores larger than 3.2 nm is considered in order 15 

to study the pore surface area. This is because the pores with a range from 0 to 3.2 nm have 16 

negligible volumes as shown in Fig. 1 (a) and (b), while the relative uncertainty in pore volume 17 

within this range can be as large as 100%. Therefore, the surface area calculated from the pores 18 

with a size range from 0 to 3.2 nm is unreliable, which is excluded in the pore surface area 19 

analysis in this study. 20 
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  1 

(a) Cumulative surface area distribution for 30% Pt/C. 2 

  3 

(b) Cumulative surface area distribution for 60% Pt/C. 4 

Fig. 3. Cumulative surface area distribution of the porous electrodes with various Pt loadings and 5 

different types of catalysts: (a) 30% Pt/C and (b) 60% Pt/C. 6 
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3.4 Specific Surface Area (SSA) 1 

Specific surface area is defined as the total surface area of a material per unit of mass or bulk 2 

volume. It has a particular importance for reaction rate, permeability, and other physical 3 

properties. Fig. 4 represents the volume-based specific surface area for the uncatalyzed and 4 

catalyzed electrodes considering the pores larger than 3.2 nm, as defined by Eq. (12) earlier. As 5 

can be seen, as more catalysts are deposited on top of GDLs, the specific surface area increases 6 

significantly. For example, for 30% Pt/C, even though the thickness of the 0.4 mg.cm-2 is 7 

increased by only 7.5% in comparison with that of the 0.1 mg.cm-2, the specific surface area is 8 

increased by 35.2%. Similarly to the 60% Pt/C, the thickness increase is only 2.9%, while the 9 

SSA increase can be 19.4%. The increase in the surface area is contributed to by the small pores 10 

formed due to the presence of the catalyst particles. 11 

 12 

Fig. 4. Specific surface area of the porous electrodes with various Pt loadings and different types 13 

of catalysts. 14 

 15 
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3.5 Mean Pore Size 1 

The mean pore size is defined as four times of the pore volume to the corresponding pore surface 2 

area. It represents the characteristic size of the pathways in the porous media, and a smaller mean 3 

pore size indicates that it is more difficult for reactant gases or product liquid to pass the media.  4 

Fig. 5 presents the mean pore size of the electrodes with various Pt loadings and different types 5 

of catalysts. For the same type of catalysts, as the Pt loading is increased to 0.4 mg·cm-2, more 6 

Pt/C particles and ionomers are deposited on the GDLs. Because the CL is becoming thicker, the 7 

mean pore size decreases accordingly. The mean pore size is equal to four times the ratio of pore 8 

volume to pore surface area. A slight decrease in pore volume and a significant increase in pore 9 

surface area lead to the decrease in the mean pore size. In addition, for the constant Pt loading, 10 

reducing the Pt/C ratio leads to a significant drop in mean pore size. This is expected because a 11 

small Pt/C ratio results in more small pores in the electrode as discussed in previous sections. 12 

  13 

Fig. 5. Mean pore size of the porous electrodes with various Pt loadings and different types of 14 

catalysts. 15 
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3.6 Surface Fractal Dimension 1 

Surface fractal dimension is a measure of the complexity of the porous structure. Normally, the 2 

Euclidean or topological dimension of a surface equals 2; however, the fractal dimension of the 3 

porous media, that is, D as defined in Eq. (14), can take a non-integer dimension between 2 and 3, 4 

and its value rises with the surface complexity or roughness [39,54]. When the fractal surface 5 

area is determined at different scale levels using various methods (e.g., gas adsorption [55], 6 

liquid extrusion [56], method of standard porosimetry [49,50,57], etc.), the fractal dimension can 7 

be calculated by fitting the data of the surface areas at different scale levels to Eq. (14). The 8 

value of k is a measure of the shape of the solid elements, which is formed during the fabrication 9 

or formation of the porous materials, while D is the fractal dimension which is a quantitative 10 

measure of the solid element distribution in space.  11 

Table 1 presents the fractal dimension and the corresponding constant (or shape factor of the 12 

solid element) calculated through curve fitting. The pore surface area is a function of fractal 13 

dimension, D, and the constant, k. Using the least square curve fitting method as implemented in 14 

MATLAB’s lsqcurvefit function [58], the experimental data on surface area distribution are 15 

fitted to Eq. (14), and the values of the fractal dimension, D, and the constant, k are obtained for 16 

the best fit. As can be seen, the surface fractal dimensions of the uncatalyzed and catalyzed 17 

electrodes are within the range of 2.7-2.9. As the Pt loading is increased, the fractal dimension 18 

and shape factor increase. This indicates that the surface properties and pore structure of the 19 

porous media become more complicated due to the addition of more Pt, carbon, and ionomer. 20 

Similarly, when the catalyst is changed to 60% Pt/C, the fractal dimension, D, and the shape 21 

constant, k, are smaller in comparison with 30% Pt/C. This is because less carbon and ionomer 22 

are sprayed on the GDL when the Pt loading is constant and less carbon and ionomer means that 23 
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the pore structure is less affected than that of 30% Pt/C. Therefore, fractal dimension is a good 1 

indicator of the complexity of the pore structure of the electrodes.  2 

 3 

Table 1. Fractal dimension of the uncatalyzed and catalyzed electrodes. 4 

Pt Loading [mg.cm-2] 
GDL GDL+CL (30% Pt/C) GDL+CL (60% Pt/C) 

0 0.1 0.4 0.1 0.4 

D 2.709 2.716 2.877 2.715 2.818 

k [×106] 0.95 1.1 1.9 1.0 1.5 

R2 (coefficient of 
correlation) 

0.9890 0.9724 0.9967 0.9750 0.9889 

 5 

4. Conclusions 6 

In this study, the effect of the catalyst layer (CL) on the pore structure of the electrode in 7 

polymer electrolyte membrane (PEM) fuel cells has been investigated by using the method of 8 

standard porosimetry (MSP). The catalyst inks are prepared from two different catalysts (30% 9 

and 60% Pt/C) and spray-deposited onto the gas diffusion layers (GDLs) for the Pt loadings of 10 

0.1 and 0.4 mg·cm-2. It is observed that the presence of the CL is of great significance to the 11 

overall pore structure of the electrode. As the Pt loading is increased, the electrode porosity 12 

decreases. Specifically, for 30% Pt/C, the electrode porosity decreases from 75% of the 13 

uncatalyzed GDL to 65%; and for 60% Pt/C, the porosity is reduced to 69%. It is also seen that 14 

the pores smaller than 100 nm in all the catalyzed electrodes increase with the Pt loading in 15 

comparison with the uncatalyzed one. These pores significantly contribute to the formation of the 16 

specific pore surface area (SSA) such that 95.0-96.5% of the cumulative pore surface area is 17 
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taken up by the pores smaller than 100 nm. For the constant Pt loading, the electrode made of a 1 

lower Pt/C ratio yields a thicker electrode, lower porosity, larger SSA, and smaller mean pore 2 

size. The surface fractal dimension of the electrode, between 2.709 and 2.877, is found to 3 

increase either with increasing Pt loading or decreasing Pt/C ratio, indicating more complex 4 

structure resulted from the fabrication of the CL on the electrode. Overall, this study highlights 5 

the importance of the CLs, hence its design parameters, i.e., Pt loading and Pt/C ratio, on the 6 

pore structure of the entire electrode in PEM fuel cells. 7 
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Highlights: 

o Studied the effect of Pt loading and catalyst type on electrode pore structure 

o Characterized electrode pore structure by the Method of Standard Porosimetry 

o Quantified porosity, pore size, pore surface area, and surface fractal dimension 

o Observed 95.0-96.5% of surface area contributed by small pores (<100 nm) 

o Quantified the surface fractal dimension of electrode within the range of 2.7-2.9 


