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Expected Utility of the Drawdown-Based Regime-Switching Risk

Model with State-Dependent Termination

David Landriault∗ Bin Li* Shu Li†

December 15, 2017

Abstract

In this paper, we model an entity’s surplus process X using the drawdown-based regime-switching
(DBRS) dynamics proposed in [9]. We introduce the state-dependent termination time to the model,
and provide rationale for its introduction in insurance contexts. By examining some related potential
measures, we first derive an explicit expression for the expected terminal utility of the entity in the DBRS
model with Brownian motion dynamics. The analysis is later generalized to time-homogeneous Markov
framework, where the spectrally negative Lévy model is also discussed as a special example. Our results
show that, even considering the impact of the termination risk, the DBRS strategy can still outperform
its counterparts in either single regime strategy. This study shows that the DBRS model is not myopic,
as it not only helps to recover from significant losses, but also may improve the insurer’s overall welfare.

1 Introduction

The development of effective risk management mechanisms to help control and mitigate the underlying risks

of a given surplus/value process is of paramount importance to insurers. This explains the vast interest this

research topic has received within the actuarial science community over the years (see, e.g., [1] and references

therein). Broadly speaking, an insurer aims to maintain a steady and healthy growth rate for its underlying

business while simultaneously controlling the risk of extreme losses which may adversely affect its business

operations. This growth/risk trade-off is a delicate one for the insurer to balance and hence, modern risk

metrics are constantly developed and utilized to provide informative and timely guidance to the insurer.

With this broad context in mind and inspired from an application in the fund management industry, a

drawdown-based regime-switching (DBRS) insurance risk model was proposed by [9] in which drawdown is

used as a dynamic risk metric to measure the magnitude of the drop of insurance surplus from its maximum.

As discussed in [9], in comparison to the traditional risk metrics which rely on a fixed threshold level to

assess the solvency risk (such as the ruin probability), drawdown follows more closely the dynamic changes of

insurance surplus over time and hence, can be used to provide timely warning to decision makers on solvency

matters. This application of drawdown in insurance risk modelling is consistent with the common use of

drawdown in the fund management industry (e.g., [16]), which has been motivated from its close relationship

with fund redemption. Other practical and theoretical studies of drawdown can be found in [2], [10] - [14],

[17] - [18], and references therein.

In [9], a drawdown metric is used to characterize periods of extreme insurance losses. Given that an

insurer’s reinsurance, investment, and other business strategies will likely have to be modified to resolve an
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episode of financial distress, the DBRS model allows the insurance surplus to experience dynamic changes

on a regime-switching basis. More precisely, the dynamics of the surplus process changes according to the

alternating occurrence of the following two events: (1) the surplus process experiences a large drawdown over

a pre-determined size a > 0 and (2) the surplus process recovers its previous maximum. The former event is

used as a trigger to initiate a period of financial distress while the latter is used to reset the surplus process

dynamic to its “normal” non-distressed behavior (i.e., to end the period of financial distress). Reasons to

consider the DBRS risk process are multifold; interested readers are referred to [9] where a detailed account

can be found of how the DBRS strategy can help characterize an insurer’s business cycle.

Note that a key design feature of the DBRS model is that the surplus dynamics under the distressed

regime only remain effective until the financial distress is resolved. One may consider a situation where

the insurer is subject to additional financing/liquidity constraints under the distressed regime which may

lead to a suboptimal business strategy for the insurer. Other business related strategies of the insurer (such

as those related to its capital structure, investment policy, dividend policy, and others) may have to be

adjusted when the insurer is going through a distressed period. For instance, the insurer may revise its

pricing practices to better reflect the existing business environment which may, in turn, have an immediate

impact on the insurer’s policyholders demographic (via a change in its policyholders’ retention rate and/or

its ability to attract new policyholders). In light of the significance of the retention (surrender) risk to

an insurer’s profitability, we aim to provide a more comprehensive assessment of the benefits of the DBRS

strategy. As the main implication of this paper, the present analysis shows that the DBRS model is not

myopic, as it not only helps to recover from significant losses, but also may improve the insurer’s overall

welfare.

In terms of mathematical formulation (which will be described formally in Section 2), the surplus process

X is assumed to exhibit the DBRS dynamics (with two distinct underlying processes X1 and X2) as intro-

duced in [9]. As a novel extension, we further introduce a state-dependent termination time (which we shall

denote by ξ) with different killing rates when the DBRS process X operates under dynamics X1 or X2. In

addition to the state-dependent termination time, it is also natural to set a termination whenever one of the

following two events occurs: the surplus drops below level 0 (denoted by T−0 ) or the surplus reaches a target

level b (denoted by T+
b ). To evaluate the insurer’s overall welfare, a general utility function U(·) is imposed,

and the main problem is to calculate the benchmark expected terminal utility (ETU), i.e., for q ≥ 0,

Va(u) = E
[
e−qκU (Xκ)

∣∣X0 = u
]
, (1.1)

where κ := ξ ∧ T−0 ∧ T+
b . Note that, in (1.1), a > 0 is the pre-determined drawdown level to trigger the

dynamic changes.

Analytic expressions of the value function Va will first be given when X1 and X2 are Brownian motions

(primarily, for ease of presentation). We later extend the analysis to the case where X1 and X2 are two

general time-homogeneous Markov processes. The key is to analyze a few exit densities, which are shown to

be the unique solution to a class integro-differential equations. From the practical side, we are able to show

that, even when the state-dependent termination rate is included, the DBRS model may improve the overall

welfare of the insurer (quantified by the value function Va), i.e.,

Va(u) > max
{
V 1(u), V 2(u)

}
, (1.2)
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for some a > 0, where V 1(u) and V 2(u) are defined as the ETU (1.1) under the single regime processes

X ≡ X1 and X ≡ X2, respectively. In other words, under certain model setups, insurers are better off

by adopting the DBRS dynamic changing strategy instead of sticking to either of the selected underlying

models X1 or X2.

Although the focus of this paper is put on the application of the DBRS changing dynamics in the insur-

ance surplus context, the mathematical model and its analysis may also be applied more broadly. Indeed,

numerous entities (e.g., investors and financial institutions) are sensitive to large drops in wealth, the occur-

rence of which may lead to adjustments to the entity’s overall business operations for some time. The DBRS

model provides a natural mathematical framework to quantitatively assess the impact of such adjustments

on an entity’s strategic goals. For instance, in the variable annuity (VA) context, a state-dependent fee struc-

ture was recently proposed by [3] to reduce the surrender risk of VA buyers. Mathematically, the underlying

account value process follows a so-called refracted-type process (see, e.g., [8]) for which a constant level is

used to trigger dynamic changes. Alternatively, one may consider a given drawdown level as the trigger for

these dynamic changes which may be more effective for risk management purposes, especially in the context

of VAs with ratchet-type features.

The rest of the paper is organized as follows: in Section 2, we provide a detailed mathematical description

of the DBRS process X and further discuss the primary quantity of interest Va introduced in (1.1). In Section

3, we first consider the DBRS process when both surplus dynamics are governed by Brownian motions. An

explicit expression for the expected present value of the insurer’s terminal surplus is obtained. Numerical

examples are considered in Section 3.2. In particular, by considering a utility function of some basic form, we

provide a sufficient condition for (1.2) to hold for some a > 0. The more general case of time-homogeneous

Markov processes will be tackled in Section 4. Further details will be given under the special case of spectrally

negative Lévy processes in Section 5.

2 Problem formulation

Mathematically speaking, let X = {Xt}t≥0 be the surplus process defined on a filtered probability space

(Ω,F ,F = {Ft}t≥0,P) satisfying the usual conditions of completeness and right continuity. The drawdown

process Y = {Yt}t≥0 of X is defined as

Yt = Mt −Xt,

where Mt = sup0≤s≤tXs is the running maximum of X at time t. Let T
+(−)
x = inf {t ≥ 0 : Xt > (<) x} be

the first passage times of X for level x ∈ R. We define the first drawdown time of X (i.e., the first passage

time of Y ) for a fixed level a > 0 as

τa = inf{t ≥ 0 : Yt > a}.

The dynamics of the DBRS process X of interest in this paper is assumed to follow

dXt =

{
dX1

t , if Qt = 1,
dX2

t , if Qt = 2,
(2.1)

with initial surplus X0 = u ≥ 0, where X1 and X2 are two given processes,

Qt =

{
1, if suplt≤s≤t Ys < a,
2, if suplt≤s≤t Ys ≥ a,
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with Q0 = 1 and lt = sup {s ≤ t : Ys = 0} is the last time the process X is at its running maximum prior

to or at time t. Let N = {0, 1, 2, 3, . . .} and N+ = {1, 2, 3, . . .}. The sequence of regime switching times

{η(i)}i∈N of {Qt}t≥0 is defined recursively as

η(0) = 0, η(i) = inf
{
t ≥ η(i−1) : Qt 6= Qη(i−1)

}
for i ∈ N+,

Note that the DBRS process (2.1) is proposed by [9] where X1 and X2 are assumed to be two spectrally

negative Lévy processes (SNLPs). In this paper, X1 and X2 will be generalized to time-homogeneous Markov

processes. The special cases where X1 and X2 are either Brownian motions or SNLPs will also be given

special consideration.

For the DBRS process X, we further incorporate a state-dependent termination time ξ defined as follows.

Let {e(i)}i∈N+ be a sequence of independent random variables such that

e(i)
d
=

{
e1, if i is odd,
e2, if i is even,

where ek is an exponential random variable with mean 1/λk > 0 for k = 1, 2. Then

ξ = inf
i∈N

{
η(i) + e(i+1) : η(i) + e(i+1) < η(i+1)

}
.

Intuitively, the (instantaneous) termination rate of ξ in regime k (i.e., Q = k) is equal to λk for k = 1, 2. Or

equivalently, the termination rate of ξ at time t is equal to λQt for all t ≥ 0. The definition of ξ also implies

the conditional distribution of ξ is of the form

P (ξ > t| Ft) = P (ξ > t| {Qs}0≤s≤t) = e−λ1θ
1(t)−λ2θ

2(t), t ≥ 0, (2.2)

where

θk(t) =

∫ t

0

1{Qs=k}ds, t ≥ 0,

represents the occupation time of Q in regime k (k = 1, 2) up to time t. Clearly, θ1(t) + θ2(t) = t as

Q has only two state regimes. Figure 1 depicts the regime switching of the underlying dynamics and the

termination rate of our model.

To evaluate the overall performance of the DBRS model X with state-dependent termination, we consider

an entity whose terminal surplus is assessed at the earliest time among the following three events: (1) X

reaches a target level b (b > u); (2) X drops below level 0; (3) X is “killed” at time ξ. Formally speaking,

consider a general monotone increasing (nondecreasing) utility function U , our objective is to evaluate the

entity’s expected terminal utility (ETU) under the DBRS model (2.1), that is,

Va(u) = Eu
[
e−qκU (Xκ)

]
,

where q ≥ 0 is the discount rate and κ = ξ ∧ T−0 ∧ T+
b is the terminal time. Here and thereafter, we denote

Eu as the law of X given that X0 = u, and Pu as the corresponding conditional probability.

Throughout the paper, we confine ourselves to the most interesting case where the initial surplus u ∈ [a, b].

This is because the case u < a is not very practical and can also be easily obtained from the case u ∈ [a, b].

Moreover, we often make use of the expectation Eku[·] (k = 1, 2) to denote that all processes and stopping times

under the (conditional) expectation are those related to process Xk only (given that Xk
0 = u). For instance,

E1
u[e−qT

+
b 1{T+

b <T
−
0 ,XT+

b
∈dz}] := Eu[e−qT

1,+
b 1{T 1,+

b <T 1,−
0 ,X1

T
1,+
b

∈dz}], where T
k,+(−)
x = inf

{
t ≥ 0 : Xk

t > (<) x
}

are denoted as the first passage times of Xk (k = 1, 2).
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Figure 1: A sample path of the DBRS process X with state-dependent termination rates

3 DBRS with Brownian motion dynamics

In this section, we confine the underlying processes X1 and X2 to be two Brownian motions. As we will see,

the analysis of the value function Va is considerably simpler under this model assumption (in comparison to

the general time-homogenous Markov process setting in Section 4).

3.1 Analysis of the ETU Va

Let Xk (k = 1, 2) be a Brownian motion with Laplace exponent ψk(s) := logE
[
esX

k
1

]
= cks + 1

2σ
2
ks

2 for

s ≥ 0, where ck ∈ R is the drift and σk > 0 is the volatility of Xk. It is well-known that first passage

and drawdown problems pertaining to the Brownian motion Xk heavily rely on the first and second q-scale

functions, which are defined as

W
(q)
k (x) =

1√
c2k + 2qσ2

k

(
eρkx − e−Rkx

)
1{x≥0}, (3.1)

and

Z
(q)
k (x) = 1 + q

∫ x

0

W
(q)
k (y)dy =

q√
c2k + 2qσ2

k

(
1

ρk
eρkx +

1

Rk
e−Rkx

)
, x ≥ 0,

where ρk =
(√

c2k + 2qσ2
k − ck

)
/σ2

k and Rk =
(√

c2k + 2qσ2
k + ck

)
/σ2

k. More details on scale functions

within the more general class of SNLPs can be found in e.g., [4]–[6] or later in Section 5.

The following lemma summarizes some of the important preliminary results, including the two-sided exit

probability (3.2) (e.g., Equation 8.11 of [7]), the potential measure (3.3) (e.g., Theorem 8.7 of [7]), and the

joint law of (τa,Mτa) (3.4) (e.g., Theorem 2.1 of [9]).

5



Lemma 3.1 For k = 1, 2, u ∈ [0, b] and q ≥ 0, we have

Eku
[
e−qT

+
b 1{T+

b <T
−
0 }

]
=
W

(q)
k (u)

W
(q)
k (b)

, (3.2)

Eku
[
e−qek1{Xek∈dy,ek<T

+
b ∧T

−
0 }

]
= λk

(
W

(qk)
k (u)W

(qk)
k (b− y)

W
(qk)
k (b)

−W (qk)
k (u− y)

)
dy, y ∈ (0, b), (3.3)

Ek
[
e−qτa1{Mτa∈dz}

]
=
σ2
k

2




(
W

(q)′
k (a)

)2

W
(q)
k (a)

−W (q)′′
k (a)


 e
−W

(q)′
k

(a)

W
(q)
k

(a)
z

dz, z > 0, (3.4)

where qk = q + λk.

We also recall some results on first passage times obtained under the DBRS risk process of [9] which will

be of great help in the analysis of (1.1). It is worth pointing out that these results were derived when more

generally X1 and X2 are SNLPs, but we state here their simplified representations when X1 and X2 are

Brownian motions.

Proposition 3.1 For u ∈ [a, b] and s, q ≥ 0, the generalized two-sided exit identities are given by

Eu
[
e−sθ

1(T+
b )−qθ2(T+

b )1{T+
b <T

−
0 }
]

= e−
∫ b
u
Cs,q(w)dw, (3.5)

and

Eu
[
e−sθ

1(T−0 )−qθ2(T−0 )1{T−0 <T+
b }
]

=

∫ b

u

e−
∫ z
u
Cs,q(w)dwDs,q(z)dy, (3.6)

where

Cs,q(z) =
W

(s)′
1 (a)

W
(s)
1 (a)

{
1− σ2

1

2

W
(q)
2 (z − a)

W
(q)
2 (z)

(
W

(s)′
1 (a)−W (s)′′

1 (a)
W

(s)
1 (a)

W
(s)′
1 (a)

)}
, (3.7)

and

Ds,q(z) =
σ2
1

2




(
W

(s)′
1 (a)

)2

W
(s)
1 (a)

−W (s)′′
1 (a)



(
Z

(q)
2 (z − a)− Z(q)

2 (z)
W

(q)
2 (z − a)

W
(q)
2 (z)

)
. (3.8)

Proof : See Theorems 3.1 and 3.2 of [9].

To obtain an expression for Va, we first consider separately the contributions of all three causes of the

termination time κ, namely T+
b , T−0 and ξ. From the continuity of the sample paths of Brownian motions,

we have

Va(u) = U(b)Eu
[
e−qT

+
b 1{T+

b <T
−
0 ∧ξ}

]
+ U(0)Eu

[
e−qT

−
0 1{T−0 <T+

b ∧ξ}
]

+

∫ b

0

U(y)F (q)(u,dy), (3.9)

where we define

F (q)(u,dy) = Eu
[
e−qξ1{Xξ∈dy,ξ<T+

b ∧T
−
0 }

]
, y ∈ (0, b). (3.10)

Note that F (q)(u,dy)/q can be interpreted as the q-potential measure of the DBRS model with state-

dependent killing before exiting the interval [0, b]. Also, we denote by f (q) the density associated to the

measure F (q), i.e.

f (q) (u, y) dy = F (q)(u,dy).

In the following proposition, an explicit expression for f (q) is given.
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Proposition 3.2 For q ≥ 0, u ∈ [a, b], and y ∈ (0, b), we have

f (q)(u, y) =

∫ b

u

e−
∫ z
u
Cq1,q2 (w)dwgq1,q2(z, y)dz, (3.11)

where

gq1,q2(z, y) = λ1

(
W

(q1)′
1 (z − y)−W (q1)

1 (z − y)
W

(q1)′
1 (a)

W
(q1)
1 (a)

)
1{z−a<y<z}

+ λ2W
(q2)
2 (z − y) (Cq1,q2(z − y)− Cq1,q2(z)) 1{0<y<z}. (3.12)

Proof. We first use an infinitesimal argument to derive an ordinary differential equation (ODE) for f (q).

We proceed by considering a mid-step target level u + ε < b for some small ε > 0 (starting from an initial

surplus u). Hence, by conditioning on whether or not T+
u+ε occurs before ξ and using the strong Markov

property of the DBRS process X at new running maxima, (3.10) becomes

F (q)(u,dy) = Eu
[
e−qξ1{Xξ∈dy,T+

u+ε<ξ<T
+
b ∧T

−
0 }

]
+ Eu

[
e−qξ1{Xξ∈dy,ξ<T+

u+ε∧T
−
0 }

]

= Eu
[
e−qT

+
u+ε1{T+

u+ε<ξ∧T
−
0 }

]
F (q)(u+ ε,dy) + Eu

[
e−qξ1{Xξ∈dy,ξ<T+

u+ε∧T
−
0 }

]
. (3.13)

For the first term on the right-hand side of (3.13), using (2.2) and the identity θ1(t) + θ2(t) = t, we have

Eu
[
e−qT

+
u+ε1{T+

u+ε<ξ∧T
−
0 }

]
= Eu

[
E
[
e−qT

+
u+ε1{T+

u+ε<ξ∧T
−
0 }

∣∣∣FT+
u+ε

]]

= Eu
[
E
[
e−qT

+
u+εe−λ1θ

1(T+
u+ε)−λ2θ

2(T+
u+ε)1{T+

u+ε<T
−
0 }

∣∣∣FT+
u+ε

]]

= Eu
[
E
[
e−q1θ

1(T+
u+ε)−q2θ2(T

+
u+ε)1{T+

u+ε<T
−
0 }

∣∣∣FT+
u+ε

]]

= Eu
[
e−q1θ

1(T+
u+ε)−q2θ2(T

+
u+ε)1{T+

u+ε<T
−
0 }

]
, (3.14)

which is known from (3.5) to be given by

Eu
[
e−qT

+
u+ε1{T+

u+ε<ξ∧T
−
0 }

]
= e−

∫ u+ε
u

Cq1,q2 (w)dw. (3.15)

As for the second term on the right-hand side of (3.13), we condition on whether τa occurs before or after

the state-dependent termination time ξ. Note that the dynamics of X will experience a change from X1 to

X2 at the moment of τa. Then,

Eu
[
e−qξ1{Xξ∈dy,ξ<T+

u+ε∧T
−
0 }

]

= Eu
[
e−qξ1{Xξ∈dy,ξ<τa∧T+

u+ε∧T
−
0 }

]
+ Eu

[
e−qξ1{Xξ∈dy,τa<ξ<T+

u+ε∧T
−
0 }

]
. (3.16)

For the first term on the right-hand side of (3.16), since ξ < τa, we have ξ = e1 almost surely. Then1,

Eu
[
e−qξ1{Xξ∈dy,ξ<τa∧T+

u+ε∧T
−
0 }

]

= E1
u

[
e−qe11{Xe1∈dy,e1<τa∧T

+
u+ε∧T

−
0 }

]

= E1
u

[
e−qe11{Xe1∈dy,e1<T

+
u+ε∧T

−
0 }

]
− E1

u

[
e−qe11{Xe1∈dy,τa<e1<T

+
u+ε∧T

−
0 }

]

= E1
u

[
e−qe11{Xe1∈dy,e1<T

+
u+ε∧T

−
0 }

]
−
∫ u+ε

u

E1
u

[
e−q1τa1{Mτa∈dz}

]
E1
z−a

[
e−qe11{Xe1∈dy,e1<T

+
u+ε∧T

−
0 }

]
.

(3.17)

1Recall that Ek
u[·] (k = 1, 2) implies that all processes and stopping times under the (conditional) expectation are those

related to the process Xk.
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Note that (3.17) is possibly non-zero only for y ∈ (u− a, u+ ε). It follows from Equations (3.3) and (3.4)

that, for y ∈ (u− a, u),

lim
ε↓0

1

εdy
Eu
[
e−qξ1{Xξ∈dy,ξ<τa∧T+

u+ε∧T
−
0 }

]
= λ1

(
W

(q1)′
1 (u− y)− W

(q1)′
1 (u)

W
(q1)
1 (u)

W
(q1)
1 (u− y)

)

− σ2
1

2




(
W

(q1)′
1 (a)

)2

W
(q1)
1 (a)

−W (q1)′′
1 (a)


λ1

W
(q1)
1 (u− a)W

(q1)
1 (u− y)

W
(q1)
1 (u)

= λ1

(
W

(q1)′
1 (u− y)− W

(q1)′
1 (a)

W
(q1)
1 (a)

W
(q1)
1 (u− y)

)
,

where the last step is due to the identity

σ2
1

2




(
W

(q1)′
1 (a)

)2

W
(q1)
1 (a)

−W (q1)′′
1 (a)


 =

W
(q1)
1 (u)

W
(q1)
1 (u− a)

W
(q1)′
1 (a)

W
(q1)
1 (a)

− W
(q1)′
1 (u)

W
(q1)
1 (u− a)

,

which can be found in Equation (3.12) of [9]. Therefore,

Eu
[
e−qξ1{Xξ∈dy,ξ<τa∧T+

u+ε∧T
−
0 }

]
/dy = ελ1

(
W

(q1)′
1 (u− y)− W

(q1)′
1 (a)

W
(q1)
1 (a)

W
(q1)
1 (u− y)

)
1{u−a<y<u} + o(ε).

(3.18)

As for the second term in (3.16), we first condition on τa, at which moment the dynamic of X changes

to X2, and later condition on whether the dynamic of X will be changed back to X1 before ξ or not. One

obtains that, for y ∈ (0, u+ ε),

Eu
[
e−qξ1{Xξ∈dy,τa<ξ<T+

u+ε∧T
−
0 }

]

=

∫ u+ε

u

E1
u

[
e−q1τa1{Mτa∈dz}

]
E2
z−a

[
e−qe21{Xe2∈dy,e2<T

+
z ∧T−0 }

]

+

∫ u+ε

u

E1
u

[
e−q1τa1{Mτa∈dz}

]
E2
z−a

[
e−qT

+
z 1{T+

z <e2∧T−0 }

]
Ez
[
e−qξ1{Xξ∈dy,ξ<T+

u+ε∧T
−
0 }

]

=

∫ u+ε

u

E1
u

[
e−q1τa1{Mτa∈dz}

]
E2
z−a

[
e−qe21{Xe2∈dy,e2<T

+
z ∧T−0 }

]
+ o(ε). (3.19)

Note that the last step in (3.19) is due to

∫ u+ε

u

E1
u

[
e−q1τa1{Mτa∈dz}

]
E2
z−a

[
e−qT

+
z 1{T+

z <e2∧T−0 }

]
Ez
[
e−qξ1{Xξ∈dy,ξ<T+

u+ε∧T
−
0 }

]

≤ P1
u(Mτa < u+ ε) sup

z∈(u,u+ε)
Pz(ξ < T+

u+ε ∧ T−0 )

= o(ε).

By Equations (3.3) and (3.4), we have

lim
ε↓0

1

εdy

∫ u+ε

u

E1
u

[
e−q1τa1{Mτa∈dz}

]
E2
z−a

[
e−qe21{Xe2∈dy,e2<T

+
z ∧T−0 }

]

=
σ2
1

2




(
W

(q)′
1 (a)

)2

W
(q)
1 (a)

−W (q)′′
1 (a)


λ2

(
W

(q2)
2 (u− a)W

(q2)
2 (u− y)

W
(q2)
2 (u)

−W (q2)
2 (u− a− y)

)

= λ2W
(q2)
2 (u− y) (Cq1,q2(u− y)− Cq1,q2(u)) dy.
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It follows from that (3.19) that

Eu
[
e−qξ1{Xξ∈dy,τa<ξ<T+

u+ε∧T
−
0 }

]
/dy = ελ2W

(q2)
2 (u− y) (Cq1,q2(u− y)− Cq1,q2(u)) + o(ε). (3.20)

Substituting (3.15), (3.18) and (3.20) into (3.13) yields

f (q)(u, y) = e−
∫ u+ε
u

Cq1,q2 (w)dwf (q)(u+ ε, y) + εgq1,q2(u, y) + o (ε) ,

where the function gq1,q2 is as defined in (3.12). Thus, one obtains the ODE

df (q)(u, y)

du
= Cq1,q2(u)f (q)(u, y)− gq1,q2(u, y), u < b. (3.21)

Together with the boundary condition f (q)(b, y) = 0, it is easy to show that (3.11) solves the ODE (3.21).

Remark 3.1 Note that the proof of Proposition 3.2 uses an infinitesimal argument to simplify the derivation

of the ODE (3.21). The primary advantage of such an approach resides in the convenience that no explicit

expression needs to be given to the o(ε) terms. Alternatively, one may use a renewal argument as in Section

4 for the more general Markov setting to prove this result.

With the help of Proposition 3.2, we now provide a complete representation for the ETU Va.

Theorem 3.1 For u ∈ [a, b] and q ≥ 0, the ETU Va is given by

Va(u) = U(b)e−
∫ b
u
Cq1,q2 (w)dw + U(0)

∫ b

u

e−
∫ z
u
Cq1,q2 (w)dwDq1,q2(z)dz

+

∫ b

0

U(y)

∫ b

u

e−
∫ z
u
Cq1,q2 (w)dwgq1,q2(z, y)dzdy,

where Cq1,q2 , Dq1,q2 and gq1,q2 are given in (3.7), (3.8), and (3.12), respectively.

Proof. From (3.9) and Proposition 3.2, it remains to show that

Eu
[
e−qT

+
b 1{T+

b <ξ∧T
−
0 }

]
= e−

∫ b
u
Cq1,q2 (w)dw, (3.22)

and

Eu
[
e−qT

−
0 1{T−0 <T+

b ∧ξ}
]

=

∫ b

u

e−
∫ z
u
Cq1,q2 (w)dwDq1,q2(z)dz. (3.23)

Note that (3.22) is immediate from (3.15) by replacing u + ε by b. Moreover, (3.23) can be proved in the

same manner. Indeed, by (2.2) and (3.6), we have

Eu
[
e−qT

−
0 1{T−0 <T+

b ∧ξ}
]

= Eu
[
E
[
e−qT

−
0 1{T−0 <T+

b ∧ξ}
∣∣∣FT−0

]]

= Eu
[
E
[
e−qT

−
0 e−λ1θ

1(T−0 )−λ2θ
2(T−0 )1{T−0 <T+

b }

∣∣∣FT−0
]]

= Eu
[
e−q1θ

1(T−0 )−q2θ2(T−0 )1{T−0 <T+
b }

]

=

∫ b

u

e−
∫ z
u
Cq1,q2 (w)dwDq1,q2(z)dz. (3.24)

The proof is therefore complete.
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3.2 Risk management implication

To assess the performance of the DBRS model with state-dependent termination, we propose to compare

the ETU for the DBRS risk process X with two other ETUs, namely those associated with the single regime

processes X1 and X2. For that purpose, we exclusively consider the utility function U(x) = 1{x≥b} for x ∈ R
in this subsection, which leads an ETU of the form

Va(u) = Eu
[
e−qT

+
b 1{T+

b <T
−
0 ∧ξ}

]
. (3.25)

This corresponds to an entity’s desire to reach the target level b (in a timely manner) before either its surplus

becomes negative or the state-dependent termination time ξ is triggered.

For the sake of comparison with the single regime models X1 and X2, we first extend the ETU Va(u) to

a ∈ (0, b]. In fact, it is easy to show that Va(u) =
W

(q1)
1 (u)

W
(q1)
1 (a)

Va(a) for a ∈ (u, b], from which we deduce from

Theorem 3.1 that

Va(u) =





e−
∫ b
u
Cq1,q2 (w)dw, a ∈ (0, u],

W
(q1)
1 (u)

W
(q1)
1 (a)

e−
∫ b
a
Cq1,q2 (w)dw, a ∈ (u, b].

(3.26)

Note that from Proposition 6.3 of [9] and Lemma 3.1, we have

V0(u) := lim
a↓0

Va(u) = V 2(u) =
W

(q2)
2 (u)

W
(q2)
2 (b)

.

Also, it is easy to see from (3.26) and Lemma 3.1 that

Vb(u) = V 1(u) =
W

(q1)
1 (u)

W
(q1)
1 (b)

.

Hence, Vb(u) and V0(u) can be regarded as the ETU (3.25) for the single regime processes X1 and X2,

respectively.

As a basis of fair comparison, we assume that the processes X1 and X2 are defined such that V0(u) =

Vb(u), or equivalently,

W
(q1)
1 (u)

W
(q1)
1 (b)

=
W

(q2)
2 (u)

W
(q2)
2 (b)

. (3.27)

The following proposition provides a sufficient (but not necessary) condition for the outperformance of the

DBRS model.

Proposition 3.3 For u ∈ [0, b] and q1, q2 > 0, consider two underlying Brownian motions X1 and X2

satisfying Condition (3.27). If

(
c2
σ2
2

− c1
σ2
1

)
ln
W

(q2)
2 (u)

W
(q2)
2 (b)

−
(
q1
σ2
1

− q2
σ2
2

)
(b− u) > 0, (3.28)

then the DBRS model outperforms, in the sense that, there exists some a ∈ (0, b) such that

Va(u) > V0(u) = Vb(u). (3.29)

Proof. From Theorem 3.1, we have

Va(u) = Eu
[
e−qT

+
b 1{T+

b <ξ∧T
−
0 }

]
= e−

∫ b
u
Cq1,q2 (z)dz.
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A sufficient (but not necessary) condition for (3.29) to hold is that

lim
a↓0

∂

∂a
Va(u) = lim

a↓0
∂

∂a
e−

∫ b
u
Cq1,q2 (z)dz > 0,

or equivalently,

lim
a↓0

∂

∂a

∫ b

u

Cq1,q2(z)dz = lim
a↓0

∫ b

u

∂

∂a
Cq1,q2(z)dz < 0.

Therefore, differentiating (3.7) at s = q1 and q = q2 with respect to a yields

∂

∂a
Cq1,q2(z) =


W

(q1)′′
1 (a)

W
(q1)
1 (a)

−

(
W

(q1)′
1 (a)

)2

(
W

(q1)
1 (a)

)2



{

1− σ2
1

2

W
(q2)
2 (z − a)

W
(q2)
2 (z)

(
W

(q1)′
1 (a)−W (q1)′′

1 (a)
W

(q1)
1 (a)

W
(q1)′
1 (a)

)}

+
W

(q1)′
1 (a)

W
(q1)
1 (a)

σ2
1

2

W
(q2)′
2 (z − a)

W
(q2)
2 (z)

(
W

(q1)′
1 (a)−W (q1)′′

1 (a)
W

(q1)
1 (a)

W
(q1)′
1 (a)

)

− W
(q1)′
1 (a)

W
(q1)
1 (a)

σ2
1

2

W
(q2)
2 (z − a)

W
(q2)
2 (z)



(
W

(q1)′′
1 (a)

)2 W
(q1)
1 (a)

(
W

(q1)′
1 (a)

)2 −W
(q1)′′′
1 (a)

W
(q1)
1 (a)

W
(q1)′
1 (a)


 .

From the definition of Cq1,q2 , it follows that

∂

∂a
Cq1,q2(z) =

(
W

(q1)′′
1 (a)

W
(q1)′
1 (a)

− W
(q2)′
2 (z − a)

W
(q2)
2 (z − a)

)
Cq1,q2(z) +W

(q1)′
1 (a)

W
(q2)′
2 (z−a)

W
(q2)
2 (z−a)

− Cq1,q2(z)

W
(q1)
1 (a)

+
σ2
1

2

W
(q2)
2 (z − a)

W
(q2)
2 (z)


W (q1)′′′

1 (a)−

(
W

(q1)′′
1 (a)

)2

W
(q1)′
1 (a)


 . (3.30)

When a→ 0, using a similar argument as in Proposition 6.3 in [9], one can show that

Cq1,q2(z)→ W
(q2)′
2 (z)

W
(q2)
2 (z)

,

and thus,

lim
a↓0

W
(q2)′
2 (z−a)

W
(q2)
2 (z−a)

− Cq1,q2(z)

W
(q1)
1 (a)

=
1

W
(q1)′
1 (a)





(
W

(q2)′
2 (z)

)2
−W (q2)′′

2 (z)W
(q2)
2 (z)

(
W

(q2)
2 (z)

)2 − lim
a↓0

∂

∂a
Cq1,q2(z)




. (3.31)

Substituting (3.31) into (3.30) yields

2 lim
a↓0

∂

∂a
Cq1,q2(z) =

W
(q1)′′
1 (0)

W
(q1)′
1 (0)

W
(q2)′
2 (z)

W
(q2)
2 (z)

− W
(q2)′′
2 (z)

W
(q2)
2 (z)

+
σ2
1

2


W (q1)′′′

1 (0)−

(
W

(q1)′′
1 (0)

)2

W
(q1)′
1 (0)


 .

In the Brownian motion case, with the explicit scale function given in (3.1), it is easy to check that

W
(q1)′′
1 (0)

W
(q1)′
1 (0)

= −2
c1
σ2
1

, W
(q1)′′′
1 (0)−

(
W

(q1)′′
1 (0)

)2

W
(q1)′
1 (0)

=
4q1
σ4
1

,

and
W

(q2)′′
2 (x)

W
(q2)
2 (x)

= 2

(
q2
σ2
2

− c2
σ2
2

W
(q2)′
2 (x)

W
(q2)
2 (x)

)
.
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Therefore,

lim
a↓0

∂

∂a
Cq1,q2(z) =

(
c2
σ2
2

− c1
σ2
1

)
W

(q2)′
2 (z)

W
(q2)
2 (z)

+

(
q1
σ2
1

− q2
σ2
2

)
,

and

− lim
a↓0

{
∂

∂a

∫ b

u

Cq1,q2(z)dz

}
=

(
c2
σ2
2

− c1
σ2
1

)
ln
W

(q2)
2 (u)

W
(q2)
2 (b)

−
(
q1
σ2
1

− q2
σ2
2

)
(b− u) > 0,

by condition (3.28). Therefore, we have lima↓0 ∂
∂aVa(u) > 0 which implies that there exists some value of

a > 0 such that

Va(u) > lim
a↓0

Va(u) = V0(u) = Vb(u),

where the last equality is due to assumption (3.27).

As an illustration, we consider two numerical examples for the ETU Va in (3.25). The first example is

chosen such that Condition (3.28) is satisfied, while the second one demonstrates a situation where the ETU

Va(u) for all 0 < a < b cannot do better than either of the single regime models X1 and X2. The parameter

settings for these two examples are:

Example 1:

u = 4, b = 12, c1 = 0.05, σ1 = 0.5, c2 = 0.07, σ2 = 0.4579, λ1 = 0.02, λ2 = 0.024, q = 0.

Example 2:

u = 4, b = 12, c1 = 0.05, σ1 = 0.5, c2 = 0.055, σ2 = 0.5893, λ1 = 0.02, λ2 = 0.024, q = 0.

Note that the parameters for both examples are chosen so that Condition (3.27) is satisfied. As such,

the left and right end points of both curves in Figure 2 coincide. Moreover, for both examples, considering

a common practice of premium increase following significant insurance losses, the drift in regime 2 (c2) is

set to be larger than the drift in regime 1 (c1). As a trade-off, the termination rate in regime 2 is set to be

larger than the one in regime 1, i.e., λ2 > λ1.

For Example 1 (left panel of Figure 2), we observe that the DBRS strategy for any a ∈ (0, b) outperforms

its counterparts in either single regime model (i.e., the two end points of the curve). In addition, we observe

that there exists an optimal level a∗ that maximizes the ETU Va. Numerically, this value is found to be

a∗ = 2.35 (with 2 decimal places of accuracy).

However, the DBRS model does not always outperform its single regime counterparts. As we can see for

Example 2 (right panel of Figure 2), none of the DBRS processes do better than its counterparts in either

single regime strategy. Intuitively, this can be explained by the fact that the drift-volatility trade-off for

process X2 is generally speaking less attractive under Example 2 than under Example 1 for the same given

state-dependent killing rate λ2.

4 Analysis under time-homogeneous Markov processes

In this section, we generalize the underlying processes X1 and X2 to two time-homogeneous Markov processes

with possibly upward and downward jumps. More specifically, we assume X1 and X2 satisfy the strong

Markov property (see Section III.8,9 of [15]), and exclude Markov processes with monotone paths.
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Figure 2: Change of Va values with respect to a

To analyze the ETU Va in this model setup, we first define the following three measures:

F
(q1,q2)
+ (u,dy) = Eu

[
e−q1θ

1(T+
b )−q2θ2(T+

b )1{T+
b <T

−
0 ,XT+

b
∈dy}

]
, y ≥ b,

F
(q1,q2)
− (u,dy) = Eu

[
e−q1θ

1(T−0 )−q2θ2(T−0 )1{T−0 <T+
b ,−XT−0

∈dy}

]
, y ≥ 0,

F
(q)
0 (u,dy) = Eu

[
e−qξ1{Xξ∈dy}1{ξ<T+

b ∧T
−
0 }

]
, y ∈ (0, b).

By (2.2) and using the same conditional argument as in (3.14) and (3.24), we have

Eu
[
e−qT

+
b 1{T+

b <T
−
0 ∧ξ,XT+

b
∈dy}

]
= Eu

[
e−q1θ

1(T+
b )−q2θ2(T+

b )1{T+
b <T

−
0 ,XT+

b
∈dy}

]
= F

(q1,q2)
+ (u,dy),

and

Eu
[
e−qT

−
0 1{T−0 <T+

b ∧ξ,−XT−0
∈dy}

]
= Eu

[
e−q1θ

1(T−0 )−q2θ2(T−0 )1{T−0 <T+
b ,−XT−0

∈dy}

]
= F

(q1,q2)
− (u,dy).

Similarly as in (3.9), it follows that

Va(u) = Eu
[
e−qT

+
b U

(
XT+

b

)
1{T+

b <T
−
0 ∧ξ}

]
+ Eu

[
e−qT

−
0 U

(
XT−0

)
1{T−0 <T+

b ∧ξ}
]

+ Eu
[
e−qξU (Xξ) 1{ξ<T+

b ∧T
−
0 }
]

=

∫

[b,∞)

U (y)F
(q1,q2)
+ (u,dy) +

∫

[0,∞)

U (−y)F
(q1,q2)
− (u,dy) +

∫ b

0

U (y)F
(q)
0 (u,dy). (4.1)

For ease of notation, we will suppress the superscripts q1, q2, q of F+/−/0 in what follows. From (4.1), it is

clear that the analysis of Va reduces to the characterization of the three measures F+/−/0. More specifically,

the main objective of this section is to derive and show the uniqueness of the solution to the associated

integral equations for F+/−/0(u,A) in terms of u, where A is an arbitrary Borel subset of [b,∞), [0,∞) and

(0, b) for F+, F− and F0, respectively.
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By conditioning on τa and whether a recovery to the previous maximum will occur or not, one obtains

F+(u,A) = Eu
[
e−q1θ

1(T+
b )−q2θ2(T+

b )1{τa<T+
b <T

−
0 ,XT+

b
∈A}

]
+ Eu

[
e−q1θ

1(T+
b )−q2θ2(T+

b )1{T+
b <T

−
0 ∧τa,XT+

b
∈A}

]

=

∫ b

u

∫

[a,x)

E1
u

[
e−q1τa1{Yτa∈dl,Mτa∈dx}

] ∫

[x,b)

E2
x−l

[
e−q2T

+
x 1{T+

x <T
−
0 ,XT+

x
∈dz}

]
F+(z,A) + h+(u,A; a, b),

(4.2)

where

h+(u,A; a, b) =

∫ b

u

∫

[a,x)

E1
u

[
e−q1τa1{Yτa∈dl,Mτa∈dx}

]
E2
x−l

[
e−q2T

+
x 1{T+

x <T
−
0 ,XT+

x
∈A}

]
+E1

u

[
e−q1T

+
b 1{T+

b <τa,XT+
b
∈A}

]
.

Using similar arguments, we also find that

F−(u,A) = Eu
[
e−q1θ

1(T−0 )−q2θ2(T−0 )1{τa<T−0 <T+
b ,−XT−0

∈A}

]
+ Eu

[
e−q1θ

1(T−0 )−q2θ2(T−0 )1{τa=T−0 <T+
b ,−XT−0

∈A}

]

=

∫ b

u

∫

[a,x)

E1
u

[
e−q1τa1{Yτa∈dl,Mτa∈dx}

] ∫

[x,b)

E2
x−l

[
e−q2T

+
x 1{T+

x <T
−
0 ,XT+

x
∈dz}

]
F−(z,A) + h−(u,A; a, b),

(4.3)

and

F0(u,A) =Eu
[
e−qξ1{Xξ∈A}1{τa<ξ<T+

b ∧T
−
0 }

]
+ Eu

[
e−qξ1{Xξ∈A}1{ξ<τa∧T+

b }

]

=

∫ b

u

∫

[a,x)

E1
u

[
e−q1τa1{Yτa∈dl,Mτa∈dx}

] ∫

[x,b)

E2
x−l

[
e−q2T

+
x 1{T+

x <T
−
0 ,XT+

x
∈dz}

]
F0(x+ z,A) + h0 (u,A; a, b) ,

(4.4)

where

h−(u,A; a, b) =

∫ b

u

∫

[a,x)

E1
u

[
e−q1τa1{Yτa∈dl,Mτa∈dx}

]
E2
x−l

[
e−q2T

−
0 1{T−0 <T+

x ,−XT−0
∈A}

]

+

∫ b

u

E1
u

[
e−q1τa1{Yτa−x∈A,Mτa∈dx}

]
.

and

h0 (u,A; a, b) =

∫ b

u

∫

[a,x)

E1
u

[
e−q1τa1{Yτa∈dl,Mτa∈dx}

]
E2
x−l
[
e−qe21{e2<T+

x ∧T−0 ,Xe2∈A}

]

+ E1
u

[
e−qe11{e1<τa∧T+

b ,Xe1∈A}

]
.

For ease of notation, we further define the following fundamental measures/functions2 of the underlying

2We say f, g+/−/0,m+/−/0 are fundamental quantities because they only involve a single dynamics X1 or X2. Under some
mild conditions, it is possible to further decompose those drawdown related quantities into only exit quantities; see, e.g., [12].
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processes X1 or X2: for x ≥ u, b ≥ u ≥ 0 and l ≥ a,

f(u,dl,dx) = E1
u

[
e−q1τa1{Yτa∈dl,Mτa∈dx}

]
,

g+(u,A; 0, b) = E2
u

[
e−q2T

+
b 1{T+

b <T
−
0 ,XT+

b
∈A}

]
,

g−(u,A; 0, b) = E2
u

[
e−q2T

−
0 1{T−0 <T+

b ,−XT−0
∈A}

]
,

g0(u,A; 0, b) = E2
u

[
e−qe21{e2<T+

b ∧T
−
0 ,Xe2∈A}

]
,

m+(u,A; a, b) = E1
u

[
e−q1T

+
b 1{T+

b <τa,XT+
b
∈A}

]
,

m−(u,A; a, b) =

∫ b

u

E1
u

[
e−q1τa1{Yτa−x∈A,Mτa∈dx}

]
,

m0(u,A; a, b) = E1
u

[
e−qe11{e1<τa∧T+

b ,Xe1∈A}

]
.

This allows us to rewrite (4.2), (4.3) and (4.4) into a unified integral equation form for F+/−/0, namely

F+/−/0(u,A) =

∫ b

u

∫

[a,x)

f(u,dl,dx)

∫

[x,b)

g+(x− l,dz; 0, x)F+/−/0(z,A) + h+/−/0(u,A; a, b), (4.5)

where

h+/−/0(u,A; a, b) =

∫ b

u

∫

[a,x)

f(u,dl,dx)g+/−/0(x− l, A; 0, x) +m+/−/0(u,A; a, b). (4.6)

To show the existence and uniqueness of the solution to the integral equation (4.5), one can consider a

mapping Lψ on M = {f(·) : [a, b]→ [0, 1] is measurable}: for any φ ∈M,

Lψφ(u) =

∫ b

u

∫

[a,x)

f(u,dl,dx)

∫

[x,b)

φ(z)g+(x− l,dz; 0, x) + ψ(u),

where ψ ∈M is a given function such that

∫ b

u

∫

[a,x)

f(u,dl,dx)

∫

[x,b)

g+(x− l,dz; 0, x) + ψ(u) ≤ 1, ∀u ∈ [a, b]. (4.7)

Lemma 4.1 Given ψ ∈M satisfying (4.7), suppose that

sup
u∈[a,b]

∫ b

u

∫

[a,x)

f(u,dl,dx) < 1. (4.8)

Then there exists a unique solution φ ∈M satisfying the integral equation

φ(u) =

∫ b

u

∫

[a,x)

f(u,dl,dx)

∫

[x,b)

φ(z)g+(x− l,dz; 0, x) + ψ(u). (4.9)

Proof. On M, we define a metric: for f, g ∈M,

d(f, g) = sup
u∈[a,b]

|f(u)− g(u)|.

Under condition (4.7), it is easy to see that Lψφ ∈ M, and thus Lψ is a self mapping on M. Moreover, for
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any φ, φ̃ ∈M,

d(Lψφ,Lψφ̃) = sup
u∈[a,b]

∣∣∣∣∣

∫ b

u

∫

[a,x)

f(u,dl,dx)

∫

[b,x)

g+(x− l,dz; 0, x)
[
φ(z)− φ̃(z)

]∣∣∣∣∣

≤ d(φ, φ̃) sup
u∈[a,b]

∫ b

u

∫

[a,x)

f(u,dl,dx)

∫

[b,x)

g+(x− l,dz; 0, x)

≤ d(φ, φ̃) sup
u∈[a,b]

∫ b

u

∫

[a,x)

f(u,dl,dx).

It follows from (4.8) that Lψ is a contraction mapping on M. Thus, the existence and uniqueness of the

solution to the integral equation (4.9) follows immediately from the Banach fixed point theorem.

It is easy to see that the integral equation (4.5) for F+/−/0 all satisfy condition (4.7) of Lemma 4.1.

Moreover, we further propose a very mild assumption on the underlying process, that is,

sup
u∈[a,b]

E1
u

[
e−q1τa

]
< 1, (4.10)

which is sufficient to guarantee condition (4.8) holds because

sup
u∈[a,b]

∫ b

u

∫

[a,x)

f(u,dl,dx) ≤ sup
u∈[a,b]

E1
u

[
e−q1τa

]
< 1.

Theorem 4.1 Suppose that (4.10) holds. For u ∈ [a, b], the measures F+, F−, and F0 are the unique

solution to their corresponding integral equation in (4.5).

In general, it is difficult to find explicit solution to the integral equation (4.5) for F+/−/0 (or the fun-

damental quantities f , g+/−/0 and m+/−/0). However, when X1 and X2 are time-homogeneous Markov

processes with no positive jumps, under some mild regularity conditions, it can be shown that F+/−/0 sat-

isfy some ODEs, which can be solved explicitly in terms of the fundamental quantities f, g+/−/0,m+/−/0.

For illustration purposes, we consider the case where X1 and X2 are SNLPs in the next section. Other pos-

sible models with explicit expressions include linear diffusions, refracted SNLP, and some jump diffusions.

Interested readers are referred to Section 3 of [12] for more details.

5 Example: spectrally negative Lévy models

In this section, we fully characterize the measures F+/−/0 when X1 and X2 are two SNLPs. More precisely,

we assume that Xk (k = 1, 2) is a SNLP such that |Xk| is not a subordinator and hence 0 is regular for

(0,∞) (see Definition 6.4 and Theorem 6.5 of [7] for the definition and equivalent characterizations of the

regularity).

The Laplace exponent of Xk is assumed to have the Lévy-Khintchine representation

ψk (s) := logE
[
esX

k
1

]
= cks+

1

2
σ2
ks

2 +

∫ 0

−∞

(
esx − 1− sx1{x>−1}

)
Πk (dx) ,

for s ≥ 0 where ck ∈ R, σk ≥ 0 and the Lévy measure Πk(·) is supported on (−∞, 0) such that

∫ 0

−∞
(1 ∧ x2)Πk(dx) <∞.
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For any q ≥ 0, let Φk(q) = sup{x ≥ 0 : ψk(x) = q}, and define the q-scale function W (q) : R 7→ [0,∞) as the

unique function supported on (0,∞) with Laplace transform

∫ ∞

0

e−syW (q)
k (y)dy =

1

ψk(s)− q , s > Φk(q).

It is known that W
(q)
k is continuous and strictly increasing on (0,∞). Henceforth, we assume that the jump

measure Πk has no atom which implies that W
(q)
k ∈ C1(0,∞) (e.g., Lemma 2.4 of [6]).

We recall the following results for the SNLP Xk which will be useful in what follows. We refer the reader

to e.g., [7], Chapter 8, for more details.

(a) For q ≥ 0 and 0 ≤ u ≤ b, the upward exit probability from [0, b] is

Eku
[
e−qT

+
b 1{T+

b <T
−
0 }

]
=
W

(q)
k (u)

W
(q)
k (b)

. (5.1)

(b) For q ≥ 0, 0 ≤ u ≤ b, and y ∈ (0, b), the q-potential measure killed before exiting [0, b] is

∫ ∞

0

e−qtPku
(
Xt ∈ dy, t < T+

b ∧ T−0
)

with density

ϑ
(q)
k (u, y; 0, b) =

W
(q)
k (u)W

(q)
k (b− y)

W
(q)
k (b)

−W (q)
k (u− y). (5.2)

(c) For q ≥ 0, 0 ≤ u ≤ b, and y ≥ 0, the downward exit density from [0, b] is

Eku
[
e−qT

−
0 1{T−0 <T+

b ,−XT−0
∈dy}

]
=

∫ ∞

0

ϑ
(q)
k (u, z; 0, b)Πk(−dy − z)dz

+
σ2
k

2

(
W

(q)′
k (u)− W

(q)
k (u)W

(q)′
k (b)

W
(q)
k (b)

)
δ0 (dy) , (5.3)

where δ0 (·) is the Dirac measure centered at 0.

Given that X2 is a skip-free upward process and using (5.1), we can simplify (4.5) to

F+/−/0(u,A) =

∫ b

u

∫

[a,x)

f(u,dl,dx)
W

(q2)
2 (x− l)
W

(q2)
2 (x)

F+/−/0(x,A) + h+/−/0(u,A; a, b), (5.4)

for u ∈ [a, b], where from Equation (2.4) of [9],

f(u,dl,dx) =
W

(q1)′
1 (a)

W
(q1)
1 (a)

e
−W

(q1)′
1 (a)

W
(q1)
1 (a)

(x−u)
dxF

(q1)
Yτa

(dl), (5.5)

with

F
(q1)
Yτa

(dl) =

∫ a

0

(
W

(q1)
1 (a)

W
(q1)′
1 (a)

W
(q1)′
1 (z)−W (q1)

1 (z)

)
Π1(z − dl)dz

+
W

(q1)
1 (a)

W
(q1)′
1 (a)

W
(q1)
1 (0+)Π1(−dl) +

σ2
1

2

(
W

(q1)′
1 (a)− W

(q1)
1 (a)

W
(q1)′
1 (a)

W
(q1)′′
1 (a)

)
δa(dl).
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Differentiating (5.4) in u, it follows that, for u ∈ [a, b],

F ′+/−/0(u,A) = −
∫

[a,u)

W
(q1)′
1 (a)

W
(q1)
1 (a)

F
(q1)
Yτa

(dl)
W

(q2)
2 (u− l)
W

(q2)
2 (u)

F+/−/0(u,A)

+ h′+/−/0(u,A; a, b) +
W

(q1)′
1 (a)

W
(q1)
1 (a)

(
F+/−/0(u,A)− h+/−/0(u,A; a, b)

)

= Cq1,q2 (u)F+/−/0(u,A)− p+/−/0(u,A; a, b), (5.6)

where

Cq1,q2 (u) =
W

(q1)′
1 (a)

W
(q1)
1 (a)

(
1−

∫

[a,u)

W
(q2)
2 (u− l)
W

(q2)
2 (u)

F
(q1)
Yτa

(dl)

)
, (5.7)

and

p+/−/0(u,A; a, b) =
W

(q1)′
1 (a)

W
(q1)
1 (a)

h+/−/0(u,A; a, b)− h′+/−/0(u,A; a, b). (5.8)

Note that (5.7) reduces to (3.7) with s = q1 and q = q2 when X1 and X2 are two Brownian motions.

For F+, Theorem 3.1 of [9] showed that the solution to (5.6) with boundary condition F+(b, A) = 1{b∈A}

(as b is regular for (b,∞)) is given by

F+(u,dy) = e−
∫ b
u
Cq1,q2(w)dwδb (dy) , u ∈ [a, b] ,

where δb (·) is the Dirac measure centered at b. For F− and F0, both measures satisfy their corresponding

ODEs given in (5.6) with boundary condition F−/0(b, A) = 0. Hence, their solution can be expressed as

F−/0(u,dy) =

∫ b

u

e−
∫ z
u
Cq1,q2(w)dwp−/0(z,dy; a, b)dz, u ∈ [a, b] .

It remains to characterize p−/0(z,dy; a, b). Substituting (4.6) and (5.5) into (5.8), one finds that

p−/0(u,dy; a, b) =
W

(q1)′
1 (a)

W
(q1)
1 (a)

m−/0(u,dy; a, b)− d

du
m−/0(u,dy; a, b)

+
W

(q1)′
1 (a)

W
(q1)
1 (a)

∫

[a,u)

F
(q1)
Yτa

(dl)g−/0(u− l,dy; 0, u). (5.9)

We first tackle p0. Noting that

g0(u− l,dy; 0, u) = λ2

∫ ∞

0

e−q2tP2
u−l{t < T+

u ∧ T−0 , Xt ∈ dy} = λ2ϑ
(q2)
2 (u− l, y; 0, u)dy, (5.10)

where ϑ
(q2)
2 is defined in (5.2), and

m0(u,dy; a, b) = E1
u

[
e−qe11{e1<τa∧T−0 ∧T+

b ,Xe1∈dy}

]

= E1
u

[
e−qe11{e1<T−0 ∧T+

b ,Xe1∈dy}

]
− E1

u

[
e−qe11{τa<e1<T−0 ∧T+

b ,Xe1∈dy}

]

= λ1ϑ
(q1)
1 (u, y; 0, b)−

∫ b

u

∫

[a,x)

f(u,dl,dx)E1
x−l
[
e−qe11{e1<T−0 ∧T+

b ,Xe1∈dy}

]

= λ1

{
ϑ
(q1)
1 (u, y; 0, b)−

∫ b

u

∫

[a,x)

f(u,dl,dx)ϑ
(q1)
1 (x− l, y; 0, b)

}
dy. (5.11)
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Substituting (5.10) and (5.11) into (5.9) followed by some simple algebraic manipulations, we obtain

p0(u,dy; a, b) = λ1

(
W

(q1)′
1 (a)

W
(q1)
1 (a)

ϑ
(q1)
1 (u, y; 0, b)− d

du
ϑ
(q1)
1 (u, y; 0, b)

)
dy

+
W

(q1)′
1 (a)

W
(q1)
1 (a)

∫

[a,u)

F
(q1)
Yτa

(dl)
[
λ2ϑ

(q2)
2 (u− l, y; 0, u)− λ1ϑ(q1)1 (u− l, y; 0, b)

]
dy

= λ1

(
W

(q1)′
1 (a)

W
(q1)
1 (a)

ϑ
(q1)
1 (u, y; 0, x)− W

(q1)′
1 (u)W

(q1)
1 (b− y)

W
(q1)
1 (b)

+W
(q1)′
1 (u− y)

)
dy

+
W

(q1)′
1 (a)

W
(q1)
1 (a)

∫

[a,u)

F
(q1)
Yτa

(dl)
[
λ2ϑ

(q2)
2 (u− l, y; 0, u)− λ1ϑ(q1)1 (u− l, y; 0, b)

]
dy. (5.12)

Similarly for p−, it follows from (5.3) that

g−(u− l,dy; 0, u) =

∫ ∞

0

ϑ
(q2)
2 (u− l, z; 0, u)Π2(−dy − z)dz

+
σ2
2

2

(
W

(q2)′
2 (u− l)− W

(q2)
2 (u− l)W (q2)′

2 (u)

W
(q2)
2 (u)

)
δ0 (dy) . (5.13)

Also,

m−(u,dy; a, b) =

∫ b

u

E1
u

[
e−q1τa1{Yτa∈x+dy,Mτa∈dx}

]
=

∫ b

u

f (u, x+ dy,dx) . (5.14)

Substituting (5.13) and (5.14) into (5.9) leads to

p−(u,dy; a, b) =
W

(q1)′
1 (a)

W
(q1)
1 (a)

F
(q1)
Yτa

(u+ dy)

+
W

(q1)′
1 (a)

W
(q1)
1 (a)

∫

[a,u)

F
(q1)
Yτa

(dl)

∫ ∞

0

ϑ
(q2)
2 (u− l, z; 0, u)Π2(−dy − z)dz

+
W

(q1)′
1 (a)

W
(q1)
1 (a)

∫

[a,u)

F
(q1)
Yτa

(dl)
σ2
2

2

(
W

(q2)′
2 (u− l)− W

(q2)
2 (u− l)W (q2)′

2 (u)

W
(q2)
2 (u)

)
δ0 (dy) . (5.15)

Finally, we shall verify that condition (4.10) is satisfied for the SNLP. We proceed by contradiction. For

any q1 > 0, a > 0 and 0 < ε < a, if E1[e−q1τa ] = 1, one must have Px(T−x+ε−a < T+
x+ε) = W (a−ε)

W (a) = 1, which

is in contradiction with the strictly increasing property of the scale function.

Now we are ready to give the full characterization of the ETU Va in the DBRS model with spectrally

negative Lévy dynamics.

Corollary 5.1 Suppose that Xk (k = 1, 2) are SNLPs. For u ∈ [a, b] and q ≥ 0, the ETU Va is given by

Va (u) = U (b) e−
∫ b
u
Cq1,q2 (w)dw +

∫

[0,∞)

U (−y)

∫ b

u

e−
∫ z
u
Cq1,q2 (w)dwp−(z,dy; a, b)dz

+

∫ b

0

U (y)

∫ b

u

e−
∫ z
u
Cq1,q2 (w)dwp0(z,dy; a, b)dz.

where Cq1,q2 , p− and p0 are as defined in (5.7), (5.15) and (5.12), respectively.
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