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Abstract

In recent years, long wait times for healthcare services have become a challenge in most

healthcare delivery systems in Canada. This issue becomes even more important when

there are priorities in patients’ treatment which means some of the patients need emer-

gency treatment, while others can wait longer. One example of excessively long wait times

in Canada is the MRI scans. These wait times are partially due to limited capacity and

increased demand, but also due to sub-optimal scheduling policies. Patients are typically

prioritized by the referring physician based on their health condition, and there is a wait

time target for each priority level. The difficulty of scheduling increases due to uncertainty

in patients’ arrivals and service times. In this thesis, we develop a multi-priority robust

optimization (RO) method to schedule patients for MRI services over a multi-period fi-

nite horizon. First, we present a deterministic mixed integer programming model which

considers patient priorities, MRI capacity, and wait time targets for each priority level.

We then investigate robust counterparts of the model by considering uncertainty in pa-

tients’ arrivals and employing the notion of the budget of uncertainty. Finally, we apply

the proposed robust model to a set of numerical examples and compare the results with

those of the non-robust method. Moreover, sensitivity analysis is performed over capacity,

penalty cost, service level, and budget of uncertainty. Our results demonstrate that the

proposed robust approach provides solutions with higher service levels for each priority,

and lower patients’ wait time in realistic problem instances. The analysis also provides

some insights on expanding capacity and choosing the budget of uncertainty as a trade-off

between performance and conservatism.
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Chapter 1

Introduction

A magnetic resonance imaging (MRI) scan is an important step in the early diagnosis

of many medical conditions including the brain, neck, and spinal cord diseases. In some

cases, MRI provides essential information that cannot be obtained through other medical

imaging methods. Most of the people may need MRI scans at least once in their lifetime

(CADTH, 2015).

Because of the growing and aging population, demand for MRI examinations is high and

has been increasing in the past few years (CIHI, 2016). According to Canadian Institute

for Health Information (CIHI), 1.95 million MRI examinations were performed in Canada

in 2015. 40% of these patients experienced difficulty in getting specialized diagnostic

tests, while this percentage is 21% internationally (CIHI, 2016). Based on the reported

data, since 2012, patients’ wait times for MRI exams have increased (Figure 1.1). The

CIHI report shows that 90% of patients wait an average of 105 days to receive an MRI

service (CIHI, 2016). These excessive wait times become even more vital in some urgent

cases, where it may potentially impact the health outcomes. Often, there are different
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medically acceptable wait times for different types of patients. Some patients need urgent

and immediate service while others can wait up to several weeks.

In Canada, patients who need MRI scans are categorized into four priorities based on

assessments performed by their primary physicians (CAR, 2013). Ontario has determined

optimal wait time targets within which a patient should be served. Patients with priority

1, the highest priority level, must be served in less than 1 day and patients with priority

2 should receive MRI in less than 2 days. Priorities 3 and 4 can wait up to 10 and 28

days, respectively (MOHLTC, 2017a). These wait time targets are developed by Canadian

Association of Radiologists (CAR) in collaboration with the Ontario government (WTA,

2013). In 2004, the First Ministers of Canada committed to decreasing patient wait times

as part of a 10-year plan to improve health care (CIHI, 2017). They set a mandated target

to serve at least 90% of patients with different priorities within their wait time targets in

a fiscal year (365 days) (CAR, 2013).

Based on the data from 74 MRI hospitals in Ontario, among all patients who need

MRI, 2% are classified as priority 1, 7% priority 2, 14% priority 3, and 77% are priority

4 (lowest priority) (Jiang, 2016). Since waiting too long for MRI scan may have severe

impacts on patients’ health outcomes, managers and policy makers in health care systems

try to reduce patients’ wait times by improving appointment scheduling. However, these

goals are not met in current practice. The percentage of patients who receive the service

in their wait time targets are shown in Table 1.1, based on the report of Ontario ministry

of health and long-term care (MOHLTC, 2017b). The primary motivation of our work is

to provide a method to reduce wait times in an MRI section.

In a system with limited capacity, there is often a queue. There are three ways to

improve the performance of these systems; (1) Increasing the capacity is the simplest

way; however, it is costly. (2) Controlling patients’ arrivals by announcing the wait times

2



Figure 1.1: Provincial wait times (in days) for MRI exams, April to September 2012 and
2016 (CIHI, 2017)

∗ Saskatchewan did not report data in 2012.

+ Alberta excluded the data from Edmonton region in 2012. In 2016 the data of all regions are included.

through, for example, an online system (Dong et al., 2015). (3) Regulating the queue by ef-

ficient scheduling policies. The imbalance between available resources and demand usually

causes capacity deficiencies that can be decreased by resource allocation and capacity opti-

mization. An improved patient scheduling would create a more efficient capacity allocation

and a reduction in wait times (Chakraborty et al., 2010). In this thesis, our focus is mainly

on improving the performance through regulating the queue. While this thesis focuses on

the scheduling of multi-priority patients in an MRI section where different priorities have

different wait time targets, our approach may be applicable to a broader domain, such as

3



Provincial wait time by priority- Feb 2017
MRI service 90th percentile wait time (days) Wait time target (days) % Completed within wait time target
Priority 1 N/A 1 N/A
Priority 2 4 2 81%
Priority 3 42 10 61%
Priority 4 105 28 39%

Table 1.1: Provincial wait time by priority- Feb 2017 (MOHLTC, 2017b)

scheduling patients for operating rooms (Kim and Horowitz, 2002), and generally, when

there is a limited resource with multi-priority levels and related wait time targets.

There are two commonly-used appointment scheduling methods in healthcare centers;

first-come, first-served and strict policy (Gupta and Denton, 2008). In first-come, first-

served, there is a single line of patients, and all patients with different priorities are as-

sumed to be equal regarding the urgency of service. In this method, the order of receiving

service is based on patients’ arrival times. This scheduling method is not practical for

MRI because priorities and related wait times are neglected. On the other hand, in the

strict policy, higher priorities would receive the service first, and as long as the queues of

higher priority groups are not empty, lower priority groups would not receive the service.

However, hospitals aim to serve lower priorities, as well, as long as higher priorities are

being served within their wait time targets (Jiang, 2016).

In addition, due to the existing uncertainties in demands for MRI examination and du-

ration of MRI services, the scheduling is more challenging. Two most popular approaches

to deal with uncertainties in data and information are Stochastic Optimization (SO) and

Robust Optimization (RO). In practice, it is hard to obtain the exact distribution of de-

mand for MRI scans. SO needs the information of the distribution of the random variable,

while RO does not necessarily require the distribution information and it assumes that the

uncertain data or parameter belongs to an “uncertainty set” (Ben-Tal et al., 2009). Also,

in contrast to stochastic optimization which finds solutions that are protected from some
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probabilistic sense in stochastic uncertainty, robust optimization seeks to build a solution

that is feasible for any realization of uncertainty within a given uncertainty set (Bertsimas

et al., 2011).

We aim to develop a scheduling method to decrease patients’ wait times in the system.

Our scheduling approach is an advance scheduling, which means the number of patients

that are going to be served from each priority in each day is determined at time t = 0 of

the horizon. Then, patients from each priority are served by first-come, first-serve policy

within the same day. The goal is to minimize the sum of penalty costs of delaying patients

while serving at least 90% of patients within their wait time targets. Then, we apply robust

optimization methods to incorporate the uncertainties in demand for MRI scans into our

proposed scheduling method.

In this thesis, we develop robust counterparts of a capacitated multi-period scheduling

problem with multi-priority patients subject to arrival uncertainty. The rest of the thesis

is as follows; Section 2 presents a literature review on healthcare scheduling and robust

optimization. In Section 3, the problem is defined, and a mixed integer program is proposed

to schedule multi-priority patients over a multi-period finite horizon. Then, uncertainty

in the patient’s arrival is considered, and robust counterparts of the proposed model are

presented. In Section 5, we present numerical results and sensitivity analysis over important

parameters of the model. Finally, in Section 6, concluding remarks and future research

directions are presented.
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Chapter 2

Related Work

2.1. Healthcare Scheduling

In any system with a limited capacity, when there is a mismatch between capacity and de-

mand, there is a queue. There are three ways to improve the performance of these systems;

First, by increasing the capacity, which is costly. Second, by controlling the arrivals of the

system with online wait time announcements (Dong et al., 2015). Third, by regulating the

queue and implementing a good appointment scheduling policy. Chakraborty et al. (2010)

state that inadequate scheduling leads to inefficiency in operational management, whereas

a good scheduling policy would reduce the wait time and positively optimize the access to

the service, also, good scheduling systems that control the flow of patients are the primary

means to improve the efficiency of resource utilization (Lowery and Martin, 1989). There

is plenty of research on appointment scheduling. For comprehensive reviews, readers are

encouraged to refer to Cayirli and Veral (2003), Denton and Gupta (2003), Mondschein

and Weintraub (2003), Cardoen et al. (2010) and Guerriero and Guido (2011). However,
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the problem of allocating the medical capacity when there are multiple priorities or classes

has received limited attention. In general, scheduling systems can be divided into two ar-

eas; Advance scheduling and allocation scheduling (Magerlein and Martin, 1978). Advance

scheduling refers to when patients are scheduled in the future in advance of the service

date, and the latter refers to the methods that schedule patients on the day of appoint-

ment based on a waiting list. Our work falls into the first category and mainly focuses on

multi-period advance scheduling for multi-priority patients with different wait time targets.

Allocation scheduling has received a lot of attention in recent years. Gerchak et al.

(1996) define a stochastic dynamic program to schedule elective surgeries on each day when

there are two classes of patients to utilize the capacity; emergency and elective surgeries.

They incorporate the uncertain duration of surgery to in their analysis and determine the

number of elective surgeries on each day. Green et al. (2006) investigate the problem of

scheduling patients for diagnostic services. They develop a method to schedule patients

within a day, after determining a fixed number of outpatient exams.

Several heuristic rules are developed to determine which patients to serve next when

there are patients who are waiting in both inpatient and outpatients categories. Qu et al.

(2007) develop a scheduling method to find the percentage of open-access appointments

that are required to satisfy the patients’ demand in each session. They also evaluate the

sensitivity of solutions under changes of available capacity, demand distribution and no-

show rate. Gupta and Wang (2008) propose a Markov decision process model to schedule

patients in a primary-care clinic. They consider patients’ preference for a specific time of

day and a specific physician. In their approach, allocated spots are dynamically changed

to meet the demands. They develop several heuristics to maximize the revenue by de-

ciding which appointment request to accept. Ayvaz and Huh (2010) also investigate the

problem of resource allocation in a hospital. They design a model by adopting a dynamic
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programming approach and propose a heuristic to solve the problem with multiple types

of patients that have different reactions to the delays in service.

In Min and Yih (2010), the problem of scheduling different priorities of patients for

elective surgeries is investigated. They incorporate the uncertainties in surgery duration

and the capacity of the intensive care unit. The authors develop a stochastic dynamic

program to solve the problem. Luo et al. (2012) study the problem of scheduling patients’

appointments under no-show behavior. They develop a heuristic by considering policies

where a scheduled patient can be interrupted by an emergency request. Feldman et al.

(2014) also develop heuristics for scheduling appointments, assuming that patients’ prefer-

ences of a particular time for appointment follow a multinomial logit model. Patients can

choose among offered days or wait for a later appointment date. They also incorporate the

case of no-show behavior in their approach.

Priority queue is one of the methods in dynamic appointment scheduling, in which the

order of patients’ treatment is determined by their priorities. Kleinrock and Finkelstein

(1967) present a queuing policy as “time-dependent priority queue” to deal with the draw-

back of classical priority queue discipline. Their proposed discipline moderates the issue of

not serving lower priorities before higher priorities. In their policy, a lower priority patient

can reach an accumulated priority to receive the service before a higher one. This accu-

mulated priority is a linear function of patients’ wait time in the system. Stanford et al.

(2014) improve the approach proposed by Kleinrock and Finkelstein (1967) by considering

multiple classes of patients with performance targets. They derive the wait time distribu-

tions of patients in different classes to obtain the “maximum priority process”. Li (2015)

extends the theory of accumulating priority queue (APQ) in Kleinrock and Finkelstein

(1967) by considering a multi-class, multi-server queue. The author proposes a discipline

to minimize the weighted average of the expected excess wait time of patients.
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Compared to allocation scheduling, research focused on advance scheduling is limited. It

is mainly because of the computational effort needed in advance scheduling to consider the

capacity restriction over slots in the booking horizon, as opposed to allocation scheduling

which is required to focus on the current time slot (Gocgun and Puterman, 2014).

Patrick et al. (2008) study a dynamic scheduling method for a diagnostic facility, which

consists of two types of patients’ demand: inpatients and outpatients. They formulate

the model as a Markov decision process (MDP). Since the size of the state space makes

MDP a non-tractable approach, they employ approximate dynamic programming to solve

the model. They also use simulation to evaluate the solution quality. However, Patrick

et al. (2008) do not employ the idea of wait time targets explicitly. Their method tries

to serve patients in a vital class before the particular target date. Gocgun and Ghate

(2012) extend the model of Patrick et al. (2008) by considering multiple resources and

then formulate the allocation and advance scheduling problems as Markov decision process

models. They propose a heuristic based on approximate dynamic programming which

employs Lagrangian relaxation and constraint generation to obtain the schedule.

Saure et al. (2012) consider the problem of patient scheduling for radiation therapy

by implementing the approach of Patrick et al. (2008). Gocgun and Puterman (2014)

extend the work of Saure et al. (2012) to an application in chemotherapy appointment

scheduling by considering target days and tolerance around those targets. The proposed

tolerance provides a degree of flexibility for appointment booking of patients. Truong

(2015) study analytical properties of a dynamic advance scheduling problem of two classes

of patients; emergency and regular with multiple resources. The author also develops an

efficient algorithm to calculate the optimal policy. Astaraky and Patrick (2015) develop an

advance scheduling method for the problem of multi-class patient scheduling for surgeries

with multiple resources. Their proposed schedule aims to minimize the sum of the interval
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between patient’s request and date of surgery, operating room’s overtime, and congestion

in the wards. To find the schedule, a simulation-based approximate dynamic programming

method is presented. Jiang (2016) proposes two dynamic scheduling policies: weight accu-

mulation and priority promotion, for scheduling patients for MRI scans. The author shows

a substantial reduction in patients’ wait times in the system. Parizi and Ghate (2016)

study a class of advance scheduling problems with multiple classes of patients that need

multiple resources. They also consider no-show behavior, cancellation, and overbooking

in their studies. They develop a Markov decision process model and employ approximate

dynamic programming to find a schedule.

From an advance scheduling perspective, there have been some studies addressing chal-

lenges associated with scheduling of multi-priority patients or considering patients with

wait time targets. However, to the best of our knowledge, no study addresses multi-period

scheduling of multi-priority patients which explicitly considers different wait time targets

for each priority level. In the present study, we investigate the problem of scheduling

multi-priorities patients with different wait time targets in an MRI section. Our schedul-

ing approach is an advance scheduling. It determines the number of patients from each

priority in each day that can receive service. The goal is to minimize the sum of penalty

cost of delaying patients while serving at least 90% of patients within their wait time

targets.

2.2. Robust Optimization

One of the most important things to consider when developing a model is the uncertainty in

data and information. In the real world, we are facing problems in which determining the

exact values of parameters is difficult and in some cases impossible. Therefore, to address
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these issues, it is necessary to exploit methods that can incorporate the uncertainties in

data into the model and apply them to increase the reliability and accuracy of the results.

Accordingly, various methods can be used to consider data uncertainty in a mathematical

programming model. These include robust optimization (RO) and stochastic optimization

(SO).

In some cases, despite the incompleteness of the information and lack of accuracy in

data, robust optimization provides better results, while other methods sometimes face fea-

sibility and tractability problems that make them not applicable in practice. For example,

in stochastic optimization, the actual probability distribution of uncertain parameter is as-

sumed to be known or estimated, and the goal is to optimize an expected measure (Birge

and Louveaux, 2011). However, the lack of the availability of the distribution function

of the parameters makes this problem difficult for the analyst to handle. On the other

hand, RO doesn’t necessarily need the distribution information, and it assumes that the

uncertain data or parameter belongs to an “uncertainty set”. An attractive feature of RO

is that for many classes of uncertainty sets, it leads to a computationally tractable prob-

lem and the robust counterpart can be reduced to an equivalent mathematical program

which is not much harder than the original (non-robust) problem to solve (Ben-Tal et al.,

2009). Furthermore, RO does not suffer from the curse of dimensionality, which is the

difficulty in some dynamic programming problems. Especially, many researchers consider

robust optimization as a tractable approximation approach that can solve some stochastic

programming models which are considered impossible to solve (Chen et al., 2007). For a

detailed review of SO topics, readers are encouraged to see Birge and Louveaux (2011).

Robust optimization was introduced by El Ghaoui et al. (1998), Ben-Tal and Nemirovski

(1998), and Bertsimas and Sim (2004). The idea of using a “maximin” model is not a new

idea. Wald (1945) for the first time introduced this idea which is influenced by the notion of
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zero-sum games in game theory. Later on, Soyster (1973) was the first one who developed

linear models that are protected against the uncertainty in data. He presents a linear

optimization model to find the solution which is feasible for all data that belong in a

convex set, but the problem is that the result of his model is too conservative and it gives

up too much optimality. The primary model of Soyster is as follows:

max c′x

s.t.
n∑
j=1

Ãjxj ≤ b, ∀Ãj ∈ Kj, j = 1, 2, ..., n

x ≥ 0

In this model, each column Ãj of matrix Ã belongs to the uncertainty set Kj, which is

convex. Soyster shows that the problem is equivalent to the following:

max c′x

s.t.
n∑
j=1

Ājxj ≤ b, j = 1, 2, ..., n

x ≥ 0

In this model āij = sup
Āj∈Ki

(ãij), where āij are the entries of matrix Ā. In other words, Soyster

considers the maximum value of matrix Ā and puts that in the constraints. Therefore, the

solution is too conservative since it is protected against the worst-case scenario.

In general, the issue of over-conservatism in robust optimization is important, as the

worst-case solution is derived from an uncertain parameter set. Thus, choosing an appro-

priate uncertainty set to achieve a trade-off between the protection against uncertainty

and performance is essential. In some cases, the worst-case is computed over a finite num-
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ber of scenarios like historical data or over continuous, convex uncertainty sets, such as

polyhedral or ellipsoidal uncertainty (Bertsimas et al., 2011).

Ben-Tal and Nemirovski (1998) reintroduce the concept of robust optimization for con-

vex optimization problems. Their assumption of uncertainty was of that enclosed within

an ellipsoid. Then, Ben-Tal and Nemirovski (1999) introduce RO for linear program-

ming (LP) problem by assuming the uncertainty set as an ellipsoidal set. Ben-Tal and

Nemirovski (2000) demonstrate that the robust counterpart (RC) of the LP with an ellip-

soidal uncertainty set is computationally tractable, and the equivalent robust counterpart

can be reformulated as a conic quadratic program, which has higher computational cost

than solving an LP (Ben-Tal et al., 2009). Their nominal model is as follows:

max c′x

s.t. Ax ≤ b

l ≤ x ≤ u

Where A = (aij) denotes the uncertain parameters of the model. They present the follow-

ing robust problem:

max c′x

s.t.
∑
j

aijxj +
∑
j∈Ji

âijyj + Ωi

√∑
j∈Ji

â2
ijz

2
ij ≤ bi ∀i

− yij ≤ xi − zij ≤ yij ∀i, j ∈ Ji

l ≤ x ≤ u

y ≥ 0

Given the ith constraint of the nominal problem, let Ji be the set of uncertain coefficients
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ãij, j ∈ Ji, where ãij belongs to the interval [aij − âij, aij + âij] and aij is the nominal

value. This model is less conservative than Soyster’s model (Bertsimas and Sim, 2004).

The idea of using “budgets of uncertainty” is introduced by Bertsimas and Sim (2004),

as naturally, not all uncertain parameters take their worst-case values. They propose a

row-wise uncertainty, meaning that all uncertain parameters in a constraint are indepen-

dent of those in other constraints. Also, they suggest that the total number of uncertain

parameters deviated from their nominal values, should not exceed a predetermined budget

of uncertainty. The budget of uncertainty provides the flexibility of deciding on a trade-off

between robustness and performance and reduces the conservatism. They also show that

the robust counterparts of the LP remain LP, with additional variables and constraints.

Bertsimas and Sim (2003) also extend their methods for discrete optimization and network

flow problems in a tractable way. They demonstrate that the robust counterpart of an

integer program (IP) remains an IP. The nominal formulation is as follows:

max c′x

s.t. Ax ≤ b

l ≤ x ≤ u

Bertsimas and Sim (2004) propose a parameter Γi to control the level of robustness

against the level of conservatism. Γi, takes value in the interval [0, |Ji|]. They find the
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following formulation:

max c′x

s.t.
∑
j

aijxj+

max{Si∪ti|Si⊆Ji,|Si|=bΓic,ti∈Ji\Si}{
∑
j∈Si

âijyi + (Γi − bΓic)âitiyt} ≤ bi ∀i

− yj ≤ xj ≤ yj ∀j

l ≤ x ≤ u

y ≥ 0

Then Bertsimas and Sim (2004), by utilizing strong duality, make an equivalent linear

formulation of their model. Later, Bertsimas and Thiele (2006) consider the problem

of controlling a supply chain in the presence of uncertainty in demand. They present

a robust optimization method by employing the concept of the budget of uncertainty in

Bertsimas and Sim (2004) to adjust the level of conservatism. They state that their method

is numerically tractable, particularly opposed to dynamic multidimensional programming

problems in complex supply chains. Mamani et al. (2016) apply robust optimization to

a classic single echelon, N-period inventory problem for a single product. The authors

extend the work of Bertsimas and Thiele (2006) by considering the uncertainty set both

as symmetric and asymmetric sets, and assess the problem by using uncertainty sets that

are motivated by the central limit theorem.

Robust optimization has been applied successfully in many fields of applications in-

cluding inventory and logistics (Hazır et al. (2010)), facility location (Baron et al. (2011)),

healthcare (Hanne et al. (2009), Bortfeld et al. (2008)), finance (Fabozzi et al. (2010)),

energy (Bertsimas et al. (2013)). See Ben-Tal and Nemirovski (2008), Bertsimas et al.
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(2011), and Gabrel et al. (2014) for comprehensive surveys on RO applications.

RO is especially useful in healthcare settings, in which not considering sources of uncer-

tainty could impact patients’ health outcome. Some examples of using RO in healthcare

problems are in cancer treatment and addressing challenges in hospitals. For example,

Bortfeld et al. (2008) present robust optimization in the application to radiation therapy.

They consider the uncertainty due to breathing motion and obtain treatment plans for

cancer patients. Also, in the context of patients transportation in hospitals, Hanne et al.

(2009) employ a robust approach to the problem of patient flow management.

Decision making under uncertainty can be divided into two categories: static and dy-

namic. In static robust optimization, decision-makers must take decisions before the re-

alization of the uncertain parameter, and no recourse action will be possible after the

realization of uncertainty. These decisions are called “here-and-now decisions”. In dy-

namic decision making, decisions are made in several stages. For example, in two-stage

decision making, there are two sets of decisions; first, “here-and-now” or “first stage” de-

cisions; second, “wait-and-see” or “recourse” decisions which are decisions that are made

after the realization of the uncertain parameter (Neyshabouri and Berg, 2017). An exam-

ple of dynamic decision making is the work of Neyshabouri and Berg (2017), who address

the problem of scheduling patients by incorporating the uncertainties in the duration of

surgery and the length-of-stay in intensive care units. They propose a two-stage robust

optimization model which allows managers to control the level of risk that they are com-

fortable with. A column-and-constraint generation method is developed to solve the model

and simulations are used to test the quality of the solution.

Our robust optimization approach and those we survey below fall into the first category,

static robust optimization. Chen et al. (2011) investigate the problem of managing hos-

pitals beds for emergency and elective inpatients. They propose a distributionally robust
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optimization approach to determine the quotas. They develop two models based on the

fixed and optimized budget of variation subject to “an expected bed shortfall constraint”.

They tested the models by simulations based on real hospital admission data. There are

approaches other than budgets of uncertainty to reduce the level of conservatism. For

example, Meng et al. (2015) propose a distributionally robust optimization model for man-

aging elective admissions in a hospital. They present an optimized budget of variation

approach to deal with the ambiguous probability distribution and incomplete information

of uncertainties. They obtain the maximum level of uncertainty that the system can have

without violating the constraint of expected bed shortfall. A second-order conic problem

is presented to solve the robust optimization, and the quality of solutions are tested with

simulations based on hospital admission data.

In our study, we base our robust optimization approach on the idea of “budgets of

uncertainty”. This notion provides decision makers the flexibility of controlling the level

of conservatism and decide on a trade-off between the system’s performance and the level

of protection against uncertainty. We propose the robust counterparts of deterministic

models by considering that the uncertain demand belongs to a known uncertainty set that

can be controlled by a budget of uncertainty. Our formulation can be used in other ap-

plications such as other health problems and manufacturing that have priority levels in

patients or customers and uncertainty in parameters. To the best of our knowledge, this

work is the first work to address multi-period scheduling of multi-priority patients which

explicitly considers different wait time targets for each priority and applies robust opti-

mization to incorporate the uncertainty in patient arrivals. However, patient’s preference

in appointment dates is not considered in our study.
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Chapter 3

Problem Definition

In healthcare settings, treating patients within medically acceptable wait times is vital,

because excessive wait times may potentially deteriorate health outcomes. Magnetic res-

onance imaging (MRI) is one of the critical steps in early detection of diseases. MRI

patients, based on their priority level, have an acceptable wait time target which if ex-

ceeded, may impact the result of treatment and cause health deterioration. MRI patients

in Canada are categorized into 4 priority levels based on the urgency of service. Priority

1, the highest priority, needs emergency service in 24 hours, priority 2 is also urgent and

should receive MRI service in less than 2 days, while priority 3 is semi-urgent and need to

be served within 10 days and priority 4, which is not urgent, can wait up to several weeks,

28 days (CAR, 2013). Reducing wait times for multi-priority health services is a signifi-

cant challenge for Canada’s government and hospitals. As in 2013, Canadian Association

of Radiologists has recommended the 90th percentile service rate for medical imaging as

the “preferred retrospective measure” within each priority level (CAR, 2013). However,

with current practice, these goals are not met, and over 67% of patients exceed their wait
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time target, and many exceed it by more than 100 days (Jiang, 2016).

The mismatch between the available capacity of MRI and the increasing number of pa-

tients who need MRI exams has increased patients’ wait times. This problem can be miti-

gated by two methods: Increasing the capacity and developing a more practical scheduling

method. Capacity expansion is achievable through increasing the number of MRI equip-

ment and facilities and extending the operating hours in each day. MRI machines are

expensive, and they need area expansion in hospitals as well (Green et al., 2006). Also,

there are restrictions on extending the performing hours in each day. Another method to

reduce wait time is through an improved scheduling approach. Poor scheduling is “a major

source of operational inefficiency and patient dissatisfaction”, according to Chakraborty

et al. (2010). On the other hand, a practical scheduling method is a primary means of

improving resource utilization and reducing patient wait times (Lowery and Martin, 1989).

Currently, hospitals apply a strict scheduling policy, which serves patients with higher pri-

ority first. In this policy, lower priority patients are not served as long as a higher priority’s

queue is not exhausted. This policy neglects how long lower priorities have been waiting to

receive the service which leads to longer wait time for lower priorities. However, hospitals

aim to serve lower priority patients as well, as long as higher priority ones are served within

their wait time target and thus are not in danger.

In this thesis, we address the problem of reducing patients’ prolonged wait times in

a system of multi-priority levels with different wait time targets. We study an advance

scheduling problem which is motivated by the scheduling of magnetic resonance imag-

ing (MRI) exams at Ontario’s hospitals. First, we develop a model for the problem of

scheduling patients with different priorities and wait time targets over a multi-period finite

horizon. In our approach, we consider the “indirect wait” or “intradaywait” of patients,

which is the interval between the patient’s request day for service and the actual day of
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service (Truong, 2015). There are different penalty costs for patients waiting from different

priorities, which are greater for the higher priority, and the goal is to minimize the total

wait times of patients while serving at least 90% of patients within their wait time targets.

In the proposed model, we assume that the demand is known before the horizon. Next,

the available capacity of MRI exams is allocated among different priorities based on their

demands while ensuring fulfilling the desired service level of 90%. Our model addresses

the following key question: How many patients in each priority are going to be served in

each period. This decision is made at time 0 of the horizon and patients are served based

on a first-come, first-serve policy within the same day, given the allocated capacity.

In Section 3.1, we explain the difference between our approach and current practice.

Deterministic formulation of the multi-priority patients scheduling problem with different

wait time targets is presented in Section 3.2.

3.1. Strict Policy vs. Our Approach

One of the most commonly-used methods in scheduling patients for MRI exams in hospitals

is the strict policy. This policy enforces serving higher priority first without considering

how long a patient from a lower priority has waited to receive the service. Thus, as long

as there are patients of higher priorities in the queue, lower priorities are not served. This

strategy leads to prolonged wait times for lower priority patients, stated in Table 1.1,

the 90th percentile of patients with priority 4 wait more than 100 days to receive MRI

exams. Therefore, in the proposed model, we aim to develop a more practical method to

tackle the issue of these prolonged wait times by providing a model that ensures 90% is

met for all patients. We consider the service rate of 90%, because the national maximal
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wait time access target for medical imaging recommends this service rate as the “preferred

retrospective measure” within each priority level (CAR, 2013).

3.2. Definitions

In this section, we address the problem of scheduling patients with multiple priorities

P with different wait time targets, wp, over a finite horizon of T periods indexed by

t ∈ {1, 2, ..., T}, while fulfilling the target of serving over αp of patients within their wait

time target. In each period t in the horizon, demand, dpt, arises from different priority, p.

The decision in period t is how to allocate the available capacities in periods {t, t+1, ..., T}

among different priorities. We use the two terms “period” and “day” interchangeably as

in reality a period normally corresponds to a day.

Notations

Two sets of non-negative integer decision variables are defined as:

xptn: Total number of patients with priority p who are served in period t after waiting for

n periods.

Iptn: Total number of patients with priority p who are not served at the end of period t

and are waiting for n periods.

Parameters are as follows:

T : Planning horizon, t ∈ {1, 2, ..., T}

P : Priority levels, p ∈ {1, 2, ..., P}

n: Number of days that a patient is waiting to receive a service. n ∈ {1, 2, ..., T}

21



dpt: Total arrivals of patients with priority p in period t.

Ct: Total available time of MRI services in period t (capacity).

sp: Service time of patients with priority p.

wp: Wait-time target of patients with priority p (days).

αp: Percentage of patients with priority p who are served within their wait time target

(Service level).

h(n, p): Penalty cost for delaying patients type p for n days.

3.3. Deterministic Model

The assumptions in the deterministic model are:

• Patients’ arrivals are deterministic and known at the beginning of the horizon.

• Patients can be served after the horizon.

• Patients cannot choose between appointment dates.

The deterministic scheduling problem is then formulated as a mixed integer program

[M1]:

[M1]: min
P∑
p=1

T∑
t=1

t∑
n=1

h(p, n)Iptn (3.1a)

s.t. Iptn = dpt − xptn ∀p ∈ P, t ∈ T,

n = 1 (3.1b)

Iptn = Ip,t−1,n−1 − xptn ∀p ∈ P, t ∈ T,

∀n ∈ {2, ..., t} (3.1c)
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Iptn ≥ 0 ∀p ∈ P, t ∈ T, n ∈ {2, ..., t} (3.1d)

P∑
p=1

t∑
n=1

spxptn ≤ Ct ∀t ∈ T (3.1e)

wp∑
n=1

T∑
t=1

xptn ≥ αp

T∑
t=1

dpt ∀p ∈ P (3.1f)

xptn ≥ 0 ∀p ∈ P, t ∈ T, n ∈ {1, ..., t} (3.1g)

xptn is integer ∀p ∈ P, t ∈ T, n ∈ {1, ..., t} (3.1h)

The objective function (3.1a) minimizes the total wait times of patients to receive the

service. There are different penalty costs for patients’ waiting from different priorities.

The penalty cost, h(p, n), is a function of patients’ priority and the number of days they

wait to receive MRI exam. Index n is counting the interval between the patient’s request

day for service and the actual day of service. Different penalty costs for priority levels

means one day waiting for a patient with higher priority has a greater penalty than that of

one day waiting for a patient with lower priority. Therefore, if there is a patient of higher

priority who is not served on the day of arrival, the schedule tries to serve him/her as soon

as possible. Arrivals, dpt, occur in each period for each priority. Hospitals provide service

for some of the patients based on the available capacity of MRI services in each period,

Ct, and the rest are delayed to the next periods.

The number of patients who are waiting to receive the service, Iptn, is calculated by

two linear equations; Constraints (3.1b) and (3.1c) describe patients who are waiting for

1 day and more than one day, respectively. Constraint (3.1d) ensures not to serve more

patients than the number of arrivals, and constraint (3.1e) restricts the total daily number

of performed procedures to the available time of MRI services in each period. Additionally,

constraint (3.1f) assures that the desired service level, αp, of serving patients within their
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wait time targets is achieved.

Considering constraints (3.1b) and (3.1c) together, leads to the following closed-form

expression:

Iptn = dp,t−n+1 −
n−1∑
i=0

xp,t−i,n−i ∀p ∈ P, t ∈ T, n ∈ {1, ..., t} (3.2)

Then we have the following Model [M2]:

[M2]: min
P∑
p=1

T∑
t=1

t∑
n=1

h(p, n)Iptn (3.3a)

s.t. Iptn = dp,t−n+1 −
n−1∑
i=0

xp,t−i,n−i ∀p ∈ P, t ∈ T,

∀n ∈ {1, ..., t} (3.3b)

dp,t−n+1 −
n−1∑
i=0

xp,t−i,n−i ≥ 0 ∀p ∈ P, t ∈ T,

∀n ∈ {1, ..., t} (3.3c)

(3.1e)− (3.1h)

Constraint (3.3b) represents the number of patients of priority p at the end of priority t

who are waiting n day(s) to receive the service.

In our deterministic model [M2], we assume that all the demands are known with

certainty. Whereas, in reality, daily demand variability of different priority for MRI exams

can be observed and it is difficult to predict patients’ arrivals from each priority in each

day (Jiang, 2016). Therefore, the need arises to develop an optimization approach that

takes the uncertainty of arrivals into account and remains numerically tractable as the
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dimensions of the problem increase. In Section 3.4, we develop a robust optimization

approach to guarantee the feasibility and optimality of solutions against uncertainty in

demands.

3.4. Robust Optimization

In practice, there is a daily variation in patients’ arrivals for MRI exams in each priority,

so demands are uncertain, and it is hard to obtain the exact distribution. Thus, in this

section, we incorporate the uncertainty in demand without making any assumptions on

its distribution. We then develop the robust counterparts of our proposed model. In

our robust approach, we only need the information of nominal values and total possible

variation of demands from their nominal values for each priority p. Thus, patients’ arrivals

of priority p in period t, d̃pt, are assumed to be uncertain parameters that take values in a

known interval centered at nominal values, dpt, and half length of variation, d̂pt, but their

exact values are unknown; d̃pt ∈
[
dpt − d̂pt, dpt + d̂pt

]
. The nominal value refers to the value

of demand which is more likely to happen. Let zpt = (d̃pt−dpt)/d̂pt be the scaled deviation

of demand from its nominal value for each priority p in each period t, which takes values

in the interval [−1, 1].

In the deterministic formulation [M2], demand uncertainty affects the objective function

(3.3a), and constrains (3.3b), (3.3c) and (3.1f). Since we have uncertainty in the objective

function, we can rewrite the model by considering an auxiliary variable yptn and adding

the objective function to the constraints. Assuming that the vector of demand d belongs
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to an uncertainty set U , robust counterpart of our problem is presented as [M3]:

[M3]: min
P∑
p=1

T∑
t=1

t∑
n=1

h(p, n)yptn (3.4a)

s.t. yptn ≥ d̃p,t−n+1 −
n−1∑
i=0

xp,t−i,n−i ∀p ∈ P, ∀t ∈ T,

∀n ∈ {1, ..., t}, d̃pt ∈ Up (3.4b)

n−1∑
i=0

xp,t−i,n−i ≤ d̃p,t−n+1 ∀p ∈ P, t ∈ T,

∀n ∈ {1, ..., t}, d̃pt ∈ Up (3.4c)

P∑
p=1

t∑
n=1

spxptn ≤ Ct ∀t ∈ T (3.4d)

wp∑
n=1

T∑
t=1

xptn ≥ αp

T∑
t=1

d̃pt ∀p ∈ P, d̃pt ∈ Up (3.4e)

xptn ≥ 0 ∀p ∈ P, t ∈ T, n ∈ {1, ..., t} (3.4f)

xptn is integer ∀p ∈ P, t ∈ T, n ∈ {1, ..., t} (3.4g)

where different priority levels p have distinct associated uncertainty sets, Up. Therefore,

a manager can allocate a unique uncertainty set to each priority level, based on his/her

preference. Various types of uncertainty sets are introduced in the robust optimization

literature. One concern in RO is to consider uncertainty sets, U , which lead to tractable

robust counterparts (Bertsimas et al., 2004). If U is ellipsoidal, for example, then robust

counterparts can be written as second-order conic programs, while if U is assumed to be

polyhedral, then the equivalent formulation can be written as a linear program (Ben-Tal

et al., 2009).
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We study two types of uncertainty sets: Box uncertainty set and budget of uncertainty

which is a type of polyhedral uncertainty set. Robust counterparts of the problem in case of

the box uncertainty set is presented in Section 3.4.1. In Section 3.4.2, following the notion

defined by Bertsimas and Sim (2004), robust counterparts are proposed by employing a

budget of uncertainty, which is less conservative than the box uncertainty. The budget of

uncertainty approach allows the adjustment of the level of robustness of the solution. This

adjustment provides a trade-off between the model performance and the level of protection

against uncertainty (Bertsimas and Sim, 2004).

3.4.1 Box Uncertainty

In box uncertainty, d̃pt take values in
[
dpt − d̂pt, dpt + d̂pt

]
, where dpt and d̂pt are given

parameters as nominal value and variation of demands for each priority p. Then, zpt =

(d̃pt − dpt)/d̂pt is the scaled deviation of nominal values. The uncertainty set for uncertain

parameter d̃pt, is as follows:

Up = {d ∈ Rn : d̃pt = dpt ± zpt.d̂pt, |zpt| ≤ 1 ,∀p ∈ P, t ∈ T} (3.5)

The robust approach is to maximize the right-hand side of constraints (3.4b), (3.4c),

and (3.4e) over the set of scaled deviations. Therefore, all the uncertain demand parame-

ters d̃pt take their largest value in the interval, dpt + d̂pt. After replacing the upper bound

of d̃pt in [M3], we have [M4]:
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[M4]: min
P∑
p=1

T∑
t=1

t∑
n=1

h(p, n)yptn (3.6a)

s.t. yptn +
n−1∑
i=0

xp,t−i,n−i ≥ dp,t−n+1 + d̂p,i−n+1 ∀p ∈ P, t ∈ T

∀n ∈ {1, ..., t} (3.6b)

n−1∑
i=0

xp,t−i,n−i ≤ dp,t−n+1 + d̂p,i−n+1 ∀p ∈ P, t ∈ T,

∀n ∈ {1, ..., t} (3.6c)

P∑
p=1

t∑
n=1

spxptn ≤ Ct ∀t ∈ T (3.6d)

wp∑
n=1

T∑
t=1

xptn ≥ αp

T∑
t=1

(dp,t + d̂p,t) ∀p ∈ P (3.6e)

xptn ≥ 0 ∀p ∈ P, t ∈ T, n ∈ {1, ..., t} (3.6f)

xptn is integer ∀p ∈ P, t ∈ T, n ∈ {1, ..., t} (3.6g)

The box uncertainty set leads to a tractable robust counterpart, but it is unlikely that

all demands in each period occur at their worst-case values. Thus, this approach provides

a relatively conservative solution.

3.4.2 Budget of Uncertainty

In robust optimization with box uncertainty, we assume all demands of priority p in period

t can happen at their worst-case values at the same time. However, as much as it is unlikely

that all the demands happen at their nominal values, it is also unlikely that they all occur
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at their worst-case value. Although considering all demands happening at their worst-

case values is the safest approach, it leads to an extremely conservative solution which is

not necessarily justifiable in practice (Bertsimas and Sim, 2004). Therefore, we aim to

adjust the level of conservatism of the solution by employing the notion of the budget

of uncertainty, which has the property of achieving a trade-off between performance and

robustness.

Following the concept of the budget of uncertainty, only some of the uncertain pa-

rameters can deviate from their nominal values to worst-case values. We then define

Γp = (Γ1, ...,ΓP ) as the budget of uncertainty vector for the demand of each priority. bΓpc

determines the total number of demand parameters of each priority that are allowed to be

equal to their highest possible amount over the horizon. We enforce
∑T

t=1 zp,t ≤ Γp,∀p,

which restricts the total number of scaled deviations from the nominal value to be less than

the budget of uncertainty, Γp. Our goals are to determine the worst-case cost for a given

level of uncertainty and to find a robust solution, which is feasible even when d̃pt changes

in the interval. The uncertainty set for demand, d̃pt, is as follows:

Up = {d ∈ Rn : d̃pt = dpt + zpt.d̂pt, |zpt| ≤ 1 ,∀p ∈ P, t ∈ T,
T∑
t=1

zpt ≤ Γp,∀p ∈ P} (3.7)

Nominal values and variations of demand for each priority can be gathered from the

experts who have enough information regarding each priority’s arrivals. Also, different

priority levels can have unique levels of uncertainty, Γp. Thus, based on the manager’s

preference and information, various budgets of uncertainty can be allocated to different

priority levels (Neyshabouri and Berg, 2017).

In addition, the value of budget of uncertainty for each priority p is chosen based on

the risk-attitude of the decision maker (Neyshabouri and Berg, 2017). A higher budget
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of uncertainty allows more demand points, d̃pt, to deviate from their nominal values, and

leads to a more conservative schedule. Γp, which is not necessarily an integer takes values

in the interval [0, T ]. We have the flexibility of controlling the level of conservatism by

varying Γp in [0, T ]. Γp = 0 means that all d̃pt take their nominal value and constraints are

equivalent to those in the nominal problem. Likewise, when Γp = T , it means all d̃pt occur

at their worst-case values, and the problem is equivalent to that under box uncertainty.

The robust approach here is to satisfy the worst-case of constraints (3.4b), (3.4c), and

(3.4e) over the set of possible scaled deviations. By the definition of uncertainty set Up,

we can substitute the value of d̃pt and reformulate problem [M3] as [M5]:

[M5]: min
P∑
p=1

T∑
t=1

t∑
n=1

h(p, n)yptn (3.8a)

s.t. yptn +
n−1∑
i=0

xp,t−i,n−i ≥ (dp,t−n+1 + zp,t−n+1d̂p,t−n+1)

∀p ∈ P, t ∈ T, n ∈ {1, ..., t} (3.8b)

n−1∑
i=0

xp,t−i,n−i ≤ dp,t−n+1 + zp,t−n+1d̂p,t−n+1

∀p ∈ P, t ∈ T, n ∈ {1, ..., t} (3.8c)

P∑
p=1

t∑
n=1

spxptn ≤ Ct ∀t ∈ T (3.8d)

wp∑
n=1

T∑
t=1

xptn ≥ αp(
T∑
t=1

dp,t + max
{|ζpt|≤1 ,∀p,t

∑T
t=1 ζpt≤Γp,∀p}

T∑
t=1

ζp,td̂p,t)

∀p ∈ P (3.8e)

xptn ≥ 0 ∀p ∈ P, t ∈ T, n ∈ {1, ..., t} (3.8f)

xptn is integer ∀p ∈ P, t ∈ T, n ∈ {1, ..., t} (3.8g)
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where ζpt is the scaled deviation of uncertain demand from its nominal value. In our

model, since we have a continuous uncertainty set for d̃pt, we have an infinite number of

constraints. To eliminate maximizing
∑T

t=1 ζp,td̂p,t in constraint (3.8e), we need to consider

the inner-maximization problem for each priority p separately as follows:

∀p ∈ P, [M6]: max
T∑
t=1

ζp,td̂p,t (3.10a)

s.t.
T∑
t=1

ζp,t ≤ Γp (3.10b)

0 ≤ ζp,t ≤ 1 ∀t ∈ T (3.10c)

In [M6], the budget of uncertainty, Γp is defined for each priority level p. These auxiliary

problems arise from maximizing zp,td̂p,t in constraints (3.4b) and (3.4c), and
∑T

t=1 ζp,td̂p,t

in constraint (3.4e). Since the optimal ζpt in [-1,1] obtained from constraints that have

uncertain demand are opposite to each other, there is no feasible demand in the interval

that can satisfy all. Therefore, as a result, we have constraint (3.10c).

Bertsimas and Sim (2004) in their paper, “the price of robustness”, define the uncer-

tainty to be row-wise, which means all uncertain parameters that belong to a constraint

are independent of those in other constraints. Then by applying the duality theorem,

they reformulate the robust counterpart as a linear program. However, in our model,

the uncertain demand parameters in constraint (3.4e) are dependent on the uncertain de-

mand in constraints (3.4b) and (3.4c). The linear programming problems [M6] for all p

are feasible and bounded, and we can use the strong duality theorem to substitute the

inner-maximization problem in constraint (3.8e) with its dual and reformulate the robust

counterparts as a single minimization problem, but we need zpt in other constraints (3.8b)

and (3.8c).
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In order to solve this min-max problem, we first solve auxiliary linear programming

problems [M6] for each priority p and find the optimal objective values u∗p for each problem.

u∗p is the maximum possible amount of uncertainty for each priority p subject to a given

Γp over the horizon. Then, by adding a new set of constraints into Model [M3], we make

sure that the total amount of uncertainty for each priority p over the horizon is equal to

u∗p. Additionally, constraints (3.10b) and (3.10c) are added. By substituting the value of

d̃pt with dpt + zp,t.d̂p,t and considering the scaled deviation zpt as a new decision variable,

we have [M7] as follows:

[M7]: min
P∑
p=1

T∑
t=1

t∑
n=1

h(p, n)yptn (3.11a)

s.t. yptn +
n−1∑
i=0

xp,t−i,n−i ≥ (dp,t−n+1 + zp,t−n+1d̂p,t−n+1) ∀p ∈ P, t ∈ T,

∀n ∈ {1, ..., t} (3.11b)

n−1∑
i=0

xp,t−i,n−i ≤ dp,t−n+1 + zp,t−n+1d̂p,t−n+1 ∀p ∈ P, t ∈ T,

∀n ∈ {1, ..., t} (3.11c)

P∑
p=1

t∑
n=1

spxptn ≤ Ct ∀t ∈ T (3.11d)

wp∑
n=1

T∑
t=1

xptn ≥ αp(
T∑
t=1

dp,t + u∗p) ∀p ∈ P (3.11e)

T∑
t=1

zp,t ≤ Γp ∀p ∈ P (3.11f)

0 ≤ zp,t ≤ 1 ∀p, t (3.11g)

xptn ≥ 0 ∀p ∈ P, t ∈ T,
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∀n ∈ {1, ..., t} (3.11h)

xptn is integer ∀p ∈ P, t ∈ T,

∀n ∈ {1, ..., t} (3.11i)

where u∗p is the optimal objective function of auxiliary problems [M6], and zpt is a decision

variable. Considering zpt as a decision variable provides the model the flexibility of spread-

ing the total amount of uncertainty over the horizon. u∗p in constraint (3.11e) maintains

the worst-case deviation of demands from their nominal values. Other constraints and

parameters are the same as those in [M5].
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Chapter 4

Results

In this chapter, the proposed robust approach and the non-robust scheme are implemented

on multiple demand datasets. Then, the results are analysed to investigate the effective-

ness of the robust model in minimizing wait times while maintaining the desired service

level under existing uncertainties in demands. Based on the given demand datasets, we

solve each model to determine a schedule which is later used to compute wait times and

service levels for each priority over different demand instances. In Section 4.1, the param-

eters and demand instances are explained. Sections 4.2, 4.3, and 4.4 discuss the model

parameters. Sections 4.4.1, 4.4.2, and 4.5 provide some more detail on the implementa-

tion of the proposed scheduling scheme. In Section 4.6, we perform sensitivity analysis for

the different parameters of the robust model to study their influence on the average wait

times, service level, and capacity allocation. Our proposed approach and strict policy are

compared in terms of priority’s wait time in Section 4.7. Finally, in Section 4.8, scheduling

from the robust approach and non-robust model are applied to other datasets. Two met-

rics, service level and patients average wait time for each priority, are calculated to assess
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the performance of robust compare to non-robust model after the realization of uncertain

demands.

4.1. Data

In this research, two groups of datasets are used for the numerical testing. In the first

group, parameters are taken from Jiang (2016) which are based on the MRI admission

data of 74 hospitals in Ontario. The daily number of patient’s arrivals are generated based

on the normal distribution with parameters of µ = 41.30 and σ = 12.81. Three different

scenarios are presented based on various percentages of patients with different priorities.

We then generate 10 random datasets of the aggregate number of arrivals in each period

for each scenario. In a particular hospital, among all the patients in need of an MRI exam,

a few are of priorities 1 and 2 (2% and 7%) while the demand for the patients with the

priorities of 3 and 4 are higher, i.e., 14% and 77% respectively, where these percentages

show the proportions of patients in each priority. This dataset is used in Section 4.8 to

compare RO and the non-robust approach in terms of service level and wait times. The

datasets are explained in detail in Section 4.8.1.

Since the demand levels for priorities 1 and 2 are low, to show the performance of

the proposed approach and the impact of important parameters, another group of data is

generated. The new group is generated based on the uniform distribution with a higher

minimum and maximum value of demand. The aim of generating this group of datasets

is to have higher and relatively equal demands in each priority. One example of these

datasets is summarized in Table 4.1. We use these datasets in the analysis of Sections

4.3-4.7.

Parameters are as follows: The planning horizon, T , is a finite horizon consisting of
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365 periods (days) which is based on the fiscal year. A fiscal year refers to a period that

Canada’s Ministry of Health uses for its regulations. In a medical calendar, a fiscal year

is from 1 January to 31 December. Therefore, to consider the desired service level of

patients in regulations, we need to consider a year as the time horizon. Hospitals serve

four priorities, p of patients with different wait time targets, wp for MRI services. Wait

time targets for patients with priority 1, 2, 3, and 4 is 1 day, 2 days, 10 days, and 28 days,

respectively. These priorities are the outcomes of physician assessments and related wait

time targets are determined by Canadian association of radiologists in collaboration with

the Ontario Government (WTA, 2013). Uncertain demand for each priority belongs to an

interval which is centered by the nominal demand, d̄pt and the half-length of variation of

demand, d̂pt. (Nominal value refers to the value of demand which is more likely to happen.)

In our numerical analysis, we assume that the service time for each priority, sp, is

constant and takes the same value for all priorities, but this assumption can be relaxed.

The desired service level for each priority is to serve at least 90% within their wait time

targets, where it is based on the health regulation of Canada’s ministry of health. Other

parameters in Table 4.1, like budget of uncertainty, Γp, capacity of MRI services in each

period, Ct and penalty costs, h(p, n) are explained in Sections 4.2, 4.3 and 4.4, respectively.
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p = 4 Number of priorities of patients
T = 365 Planning horizon
h1 = 4, h2 = 3, h3 = 2, h4 = 1 Penalty costs of delaying priorities 1, 2, 3, and 4
sp = 1, ∀p Service time of each priority
w1 = 1, w2 = 2, w3 = 10, w4 = 28 Wait time targets of priorities 1, 2, 3, and 4
ct = 110, ∀t Capacity of MRI services in each period

d1t = 20, d̂1t = 10, ∀t Nominal value and variation of demand for priority 1

d2t = 30, d̂2t = 14, ∀t Nominal value and variation of demand for priority 2

d3t = 25, d̂3t = 12, ∀t Nominal value and variation of demand for priority 3

d4t = 28, d̂4t = 13, ∀t Nominal value and variation of demand for priority 4
Γp = 100, ∀p Budget of uncertainty for each priority

Table 4.1: Sample of input data

4.2. Budget of Uncertainty

In the proposed robust approach, we assume that the total number of uncertain demand

points in each priority that can deviate from their nominal values to their worst-case

realizations over the finite horizon is constrained to be less than a predetermined budget of

uncertainty. The budget of uncertainty allows managers to control the level of conservatism

in the system. It can take the values of 0 to 365. In the case of Γ = 0, there is no

uncertainty in the system and all demands happen at their nominal values while in the

case of Γ = 365, all demand points occur at their worst-case realizations. The budget

of uncertainty is defined for each priority, in case a manager wants to consider higher

uncertainty in a specific priority level. The total amount of uncertainty in each priority

over the horizon is predetermined, while the proposed robust approach has the flexibility

of spreading the given uncertainties over periods.
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4.3. Minimum Capacity Required for a Level of Un-

certainty to Satisfy 90% Service Level

As mentioned in previous chapters, Canada’s Ministry of Health’s regulation is set to serve

at least 90% of patients in each priority within their wait time targets. However, with

current scheduling policies and capacities, hospitals are not able to achieve this goal (see

Table 4.1 and Jiang (2016)). The limited number of MRI machines and the daily operating

hours are main obstacles to meet this target. Besides, the existing uncertainty in demand

increases the mismatch between demands and capacity in each day. Thus, one necessary

analysis is to find the minimum capacity that is required to achieve the desired service

level of 90% under the presence of uncertainty in demands. Also, because the minimum

required capacity depends on the amount of uncertainties in the system, we need to take

different values of the budget of uncertainties into account as well. Therefore, we solve the

robust model for the different budget of uncertainties while keeping all other input values

constant, including the demand of each priority in each day and service level. Then for

each budget of uncertainty we determine the minimum required capacity which provides

a feasible solution. Figure 4.1 presents the level of uncertainty corresponding to a given

capacity to meet the service level of 90%.

Figure 4.1 shows that the minimum required capacity when Γ = 0 is 93 hours, while it

is 137 hours in case of Γ = 365. Thus, if all patient demand points happen at their nominal

values, 93 hours of MRI is enough to serve at least 90% of patients from different priorities

within their wait time targets. However, if the worst-case scenario happens, which means

all patients demand occur at their maximum values, to achieve the desired level of service,

the manager needs to increase the capacity by at least 44 hours to 137 hours. We assumed

that capacity and service time are integer-valued and based on hours; however, shorter
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Figure 4.1: Relationship between budget of uncertainty and capacity

time periods can be considered as well.

This analysis also provides a useful tool for managers to decide on how much uncertainty

they want to consider in their systems based on the available capacity or decide on whether

to increase the number of MRI machines or the daily operating hours to fulfill the desired

service rate in the presence of higher uncertainty.

Note, for the rest of the results, we assume that we have at least minimum level of

capacity, Ct, in each period for the given budget of uncertainty, Γp.

4.4. Penalty Function

In healthcare systems, delaying patients from different priority level may have different

outcomes. In case of priorities 1 and 2, delaying service can deteriorate patients’ health.

Thus, in our proposed scheduling approach, an important factor to manage the queue is
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to consider different penalty costs for delaying patients from different priorities. Penalty

cost means how much cost would incur if a patient waits for one more day in the system.

First, we investigate the impact of considering different penalty costs on priority’s service

level and wait times in Section 4.4.1. Then, allocated capacity to each priority is analysed

under two cases of considering the same and the different penalty costs for each priority

level in Section 4.4.2.

4.4.1 Effect of penalty cost on service level and wait time

In this section, we analyse how considering different penalty costs for different priorities

influence priority’s service level and average wait time. The average service level and

average wait time of 10 random datasets for each case are summarized in Table 4.2. All

results are obtained by keeping all other input parameters constant, including Γp = 100

and Ct = 107 units in each period. In Table 4.2, the column of penalty cost consists of four

cases of different waiting cost. In the first case, it is assumed that there is no difference

between delaying patients among different priority levels, whereas in the rest of the cases,

the longer the wait time target, the lower penalty is applied on waiting patients. In case

2, higher priorities have higher penalty of waiting, h1 = 4, h2 = 3, h3 = 2, and h4 = 1.

In case 3, the values of penalty costs for each priority are set relative to their different

wait time target, h1 = 28
1

, h2 = 28
2

, h3 = 28
10

, and h4 = 28
28

, where 28 is the highest wait

time target which related to priority 4. Finally, in case 4, the waiting cost is the function

of waiting days and priorities; that means that the penalty cost of a patient with higher

priority is extremely greater than that for a lower priority patient if they wait longer in

the system to receive the service. The weights for each priority is the same as case 3.

In Table 4.2, there are two numbers under the third, fourth, fifth and sixth columns; the
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Case Penalty cost
Average number of waiting days, Average wait time

Service level (%) (αp) for each priority, (w̄tp)
P1 P2 P3 P4 wt1 wt2 wt3 wt4

1 h1, h2, h3, h4 = 1 1, 92.7 1.7, 90 10, 90 16, 92.2 1.6 2.3 3 2.5
2 h1 = 4, h2 = 3, h3 = 2, h4 = 1 1, 96.7 1, 94.5 6.7, 92 28, 90 0.19 0.5 1.4 7.7
3 h1 = 28, h2 = 14, h3 = 2.8, h4 = 1 1, 97.6 1, 94.8 7, 90.9 28, 90 0.12 0.6 1.4 7.8
4 h1 = 28n, h2 = 14n, h3 = 2.8n, h4 = 1 1, 95.2 1, 93.9 4.7, 91.6 27.7, 90 0.23 0.5 1.2 8.2

Table 4.2: Impact of penalty costs on service level and wait times

First number shows the number of waiting days in which the service level exceeds 90% and

the second number is priority’s service level, αp. The service level refers to the percentage

of patients who received an MRI exam within their wait time target, and the percentage of

patients who exceeded wait time target can be calculated as 1−αp. The next four columns

show the average wait times of patients in each priority (days). In a practical scheduling,

we expect a lower number of waiting days and a higher service level for higher priorities.

Comparing case 1 with the other cases, we observe that by placing a higher penalty

cost for a higher priority, the service level of the higher priority is significantly increased

and patients with lower priority are delayed within their wait time targets while achieving

the 90% service level. As shown in rows 2-4, there are trade-offs between the service levels

and wait times of each priority. For example, in case 3, by promoting the higher priority,

the percentage of priority 1 patients who exceed their wait time target is reduced by 0.9%

compared to that in case 2. This reduction is in exchange for delaying patients’ priorities

2, 3 and 4 for slightly higher times. Also, in case 4, patients with priorities 2 and 3 can

receive the service sooner, while fewer patients with higher priorities 1 and 2 exceeded their

wait time target to receive the service.
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4.4.2 Effect of penalty cost on allocated capacity

In this section, the effect of penalty cost on the percentage of allocated capacity among

priorities is analysed. In Figure 4.2, the case of having the same penalty costs for different

priorities is considered. As we observe, at the first periods, capacity is allocated based on

patients’ arrivals. However, approaching the end of the horizon, due to the same penalty

cost for delaying different priorities, the schedule doesn’t differentiate between delaying

higher priorities and lower ones. Capacities in each period are allocated only in a way to

meet serving at least 90% of patients within their wait time targets.

Figure 4.2: Percentage of capacity allocated to each priority per day, Γp = 100, Ct = 110

On the other hand, Figure 4.3 shows the allocated capacity among priorities in case

of considering different penalty costs for different priorities. In this analysis, the penalty

costs are assumed as h1 = 4, h2 = 3, h3 = 2, and h4 = 1. As we observe in Figure 4.3,

the allocated capacity per day depends on the patients’ arrival in each period. When it

approaches the end of the horizon, the schedule allocates more capacity to priority 1, 2

and 3, and delays priority 4 to after the end of the horizon within their wait time targets.
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This behavior can occur due to a few reasons. First, the goal is to serve at least 90% of

each priority within their wait time targets. Second, in the objective function, we consider

a higher penalty cost for delaying the higher priority and a low penalty cost for delaying

lower priorities. Therefore, in comparison to Figure 4.2, the obtained schedule differentiates

among priorities based on penalty cost as well. Also, the schedule tends to delay patients

of priority 3 and 4 after the end of the horizon within their wait time target, since they

have longer wait time targets. The observed behavior is also partially due to the difference

in spreading the total uncertainty over periods (see Figure 4.4). As observed, uncertainties

are mostly spread in the last few periods. The total amount of uncertainty in each day is

defines as
∑P

p=1 zptd̂pt where
∑T

t=1 zp,t ≤ Γp and 0 ≤ zp,t ≤ 1, ∀p ∈ P, t ∈ T .

Figure 4.3: Percentage of capacity allocated to each priority per day, Γp = 100, Ct = 110

Concluding from Table 4.2 and Figures 4.2 and 4.3, applying higher penalty cost for

delaying patients from higher priority enhances the service level of the higher priority

patients and places more emphasis on allocating capacities to them, compared to the lower

priority in which exceeding wait time target has lower importance. In addition, a manager
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Figure 4.4: The total amount of uncertainty in each day, Γp = 100

can decide on the different values and the function of penalty costs based on his/her

preference for each priority. In the rest of the analysis, we assume the penalty costs of case

2 in Table 4.2.

4.5. Effect of Terminal Cost on Allocated Capacity

One of the drawbacks of schedules mentioned in Section 4.4.2 is that there is no penalty

for not serving patients at the end of the horizon because of the finite horizon. The

schedule tends to delay some patients after the end of horizon within their wait time

targets, especially priorities 3 and 4 patients since their wait time targets are longer.

Thus, the capacities at ending periods are used mostly to serve priority 1, 2 and 3. To

avoid this issue, we analyze the impact of placing a penalty (terminal) costs for patients

who are not served by the end of the horizon. As we observe in Figure 4.5, by considering

terminal costs, which are higher for not serving higher priorities within the horizon, the
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schedule forces to allocate more MRI capacity to patients with higher priorities at the first

periods of the horizon to prevent higher terminal costs. Also, the higher demand during

the beginning periods is due to the spreading of uncertainty. Figure 4.6 displays the total

uncertainty which is spread mostly in early periods, and as a result, the demand is taking

its maximum value in the uncertainty set.

Figure 4.5: Percentage of capacity allocated to each priority per day in the presence of
terminal cost, Γp = 100, Ct = 110
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Figure 4.6: The total amount of uncertainty in each day, Γp = 100

4.6. Sensitivity Analysis

In this section, we perform sensitivity analysis over some of the important parameters of

the model to see the effect of each one on the scheduling, wait time targets, average wait

time and service level. We also introduce some analysis for managerial decisions about

the required capacity of MRI services, the number of MRI machines and the amount of

uncertainty that can be considered in the system.

It is important to note that in all the results of the current section if the situation is

not explicitly specified, we have assumed that we are meeting the regulation of serving at

least 90% of patients in each priority within their wait time targets.

4.6.1 Service level versus minimum capacity required

Hospitals’ target is to achieve the desired level of service; i.e., to serve over 90% of patients

from each priority within their wait time target. However, with the current scheduling
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policies and the amount of available MRI services, this target is not met. Thus, determining

the minimum level of capacity to achieve the desired goal becomes essential. Moreover,

it is useful for managers to know what is the minimum required capacity for the desired

service level. Therefore, in this section, we study the relationship between service level

and capacity. We solve the robust model for a given dataset of demand and budget of

uncertainty, Γp = 100. Then, for different amounts of service level, we find the minimum

capacity which guarantees a feasible solution. The relationship between service level and

capacity is shown in Figure 4.7.

Figure 4.7: Minimum capacity required to achieve desired service level

As shown in Figure 4.7, for this dataset, to achieve the service level of 90%, the hospital

needs to have at least 105 hours of MRI services and to achieve, for example, the service

level of 50%, it requires 59 hours of MRI services. This analysis provides a useful tool for

managers to decide on capacity expansion to achieve the desired service level. The increase

in capacity can be obtained by increasing the number of MRI machines or increasing the
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daily operating hours.

4.6.2 Effect of capacity on wait time

Figure 4.8 shows the number of days that patients in each priority need to wait to receive

service. In this analysis, the available capacity of MRI services is 105 hours, and the budget

of uncertainty is 100 for each priority type. We observe that the schedule is treating 90%

of patients within their wait time target while delaying the other 10% to after their wait

time targets. As noted in Figure 4.8, among this 10%, some patients with priority 1 with

wait time target of 1 day are waiting as much as 26 days to get the service. The length of

wait times reaches 32, 60, and 93 days for patients with priority 2, 3, and 4, respectively.

This behavior is caused by the limitation on the daily performed procedures of MRI and

the number of daily arrivals.

Figure 4.8: Wait time of patients in each priority who are waiting n days to get service,
Ct = 105, Γp = 100

One way to reduce the length of wait times is through enhancing the capacity. Since
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MRI machines are expensive and also there are some constraints on daily procedures,

increasing capacity is not an easy way. Therefore, an analysis is needed to see the effect

of increasing capacities on the performance. Figure 4.9 displays the impact of increasing

the daily capacity by 5 hours and having the capacity of 110 hours per day. As shown in

Figure 4.9, the length of wait times for priority 1, 2, 3, and 4 are reduced to 6, 9, 20, and

57, respectively.

Figure 4.9: Wait time of patients in each priority who are waiting n days to get service,
Ct = 110, Γp = 100

Also, as noted in Figures 4.8 and 4.9, by increasing the capacity from 105 to 110 hours

per day, the total wait time of patients in each priority is reduced. For example, when the

capacity is 105 hours per day, the total wait times (days) of patients with priority 4 who

have waited for 29 days which exceeded their wait time target of 28 days, is 1152 days

while it is 856 days when capacity is increased by 5 hours per day.

Figure 4.10, shows how the change in capacity influences the average wait time of each

priority and average wait time of patients. Results are obtained by changing capacity while

keeping all other inputs constant. We observe that wait times are sensitive to changes in
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(a) Average wait time of priority 1 (days) (b) Average wait time of priority 2 (days)

(c) Average wait time of priority 3 (days) (d) Average wait time of priority 4 (days)

(e) Average wait time of priority p (days) (f) Average wait time of patients (days)

Figure 4.10: Effect of capacity on average wait time, Γp = 100
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capacity. As noted in Figures 4.10(a)-4.10(d), when the capacity increases, the average wait

times of all priorities are reduced significantly. In Figure 4.10(a), the minimum required

capacity to that priority 1 patients are not delayed is 112 hours, while it increases to

113 hours for priorities 2, and 3, and 116 hours for priority 4. Figure 4.10(e) shows the

average wait time of all patients. This analysis provides managers with a tool to decide

on expanding the capacity based on the preference for each priority. For example, if all

priorities are important to be served without waiting, 116 hours of MRI exams are needed,

whereas if only priorities 1 and 2 are vital to serve without waiting, 112 hours is enough.

Figure 4.10(f) illustrates the impact of changing capacity on average wait time of patients

independent of their priority level. As capacity increases by 1 hour, from 105 to 106 hours,

the average wait time of patients is reduced by 1 day.

4.6.3 Effect of capacity on service level

In this section, we analyze the impact of changes in capacity on patients’ service level.

We study the effect of MRI capacity on service levels of each priority as shown in Figures

4.11(a)-4.11(d). In this analysis, the minimum required capacity to meet the service level

of 90% is 105 hours for the given Γp = 100, which can also be obtained from Figures 4.1

and 4.7. We observe that when capacity increases from 105 to 106 hours, the extra capacity

is used to serve patients of priority 1 and 2, while the service level of patients priority 3

and 4 are not changed. This behavior is because of the higher penalty cost for delaying

patients with higher priorities. Thus, in case of capacity expansion, the model prefers to

serve priorities 1 and 2, first. When capacity increases to 108 hours per day, more patients

priority 3 are served and after 113 hours the service level of patients priority 4 starts to

increase significantly.
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As it is shown in Figure 4.11(e), all patients of priorities 1 and 2 are served when

available hours of MRI services is 113 in each day, while patients of priority 3 and 4 are

all served when the capacity increase to 114 and 117 hours, respectively. Based on this

analysis, decision makers can decide on the expansion of capacity based on their preference

for different priority levels. For example, the capacity expansion of 113 hours is sufficient

if serving all patients priority 1 is more important while serving over 90% of patients

with other priorities. Similarly, Figure 4.11(f) shows that as the capacity of MRI services

increases, the weighted average of the service level increases as well. The weighted average

of the service level is calculated as
∑P

p=1(αp
∑T

t=1 dpt)/
∑P

p=1

∑T
t=1 dp,t. We observe that

by increasing the capacity by 6 hours to 111 hours, the weighted average of the service

level increases by 5%. Also, to meet 100% service level, an increase of 12 hours per day is

required.

4.6.4 Effect of capacity on number of served patients

Figure 4.12 shows the number of patients in each priority who are being served after n− 1

days of waiting, where n ≥ 1. The available capacity of MRI services in each day is 105

hours for the given Γp = 100. Also, Figure 4.13(a) shows the number of patients in each

priority who are served in their day of arrival. It can be seen that patients with priority 1

and 2 are mostly served on their first day of arrival. However, the schedule delays patients

with priority 3 and 4 within their wait time targets. 1091 patients priority 4 patients are

delayed for 28 days. On the other hand, by increasing the capacity of MRI services by 5

hours per day, not only the number of served patients at the day of arrival is increased

(Figure 4.13(b)), but also the number of patients of priority 4 who need to wait for 28 days

is reduced to 51 (Figure 4.14).
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(a) Service level of priority 1 (b) Service level of priority 2

(c) Service level of priority 3 (d) Service level of priority 4

(e) Service level of priority p (f) Weighted average of patient’s service level

Figure 4.11: Effect of capacity on service level, Γp = 100
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Figure 4.12: Number of patients in each priority who are served after n days of waiting,
C = 105, Γ = 100

(a) Number of patients in each priority who
are served on the arrival day, C = 105, Γ =
100

(b) Number of patients in each priority who
are served on the arrival day, C = 110, Γ =
100

Figure 4.13: Effect of capacity on number of served patients, Γp = 100
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Figure 4.14: Number of patients in each priority who are served after n days of waiting,
C = 110, Γ = 100

55



4.7. Strict Policy

As mentioned in the previous chapters, the strict policy is the common method that is

used in hospitals to schedule MRI patients. This policy places emphasis on serving higher

priority patients while neglecting the wait time of lower priority patients in the system.

Thus the lower priorities are not served until the pool of higher priorities is exhausted.

This method leads to prolonged wait time for lower priorities. As it states in Table 1.1, the

90th percentile of patients with priority 4 waits more than 100 days to receive MRI exam.

However, often serving some lower priorities before higher priorities is more practical as

long as we are serving lower priorities within their wait time target.

Figure 4.15: Wait time of patients in each priority, C = 105, Γp = 100

Figure 4.15 shows wait times of patients who have waited n days to receive the service,

without forcing the desired service level of 90%. Comparing Figure 4.15 and Figure 4.8,

it is noted that the total wait times of patients priority 4 in strict policy are significantly

higher than those in the proposed approach. The analysis shows that by delaying patients
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of higher priority within their wait time target while meeting the desired service level,

lower priority wait times are mitigated.

4.8. Robust versus Deterministic

To determine the effectiveness of robust optimization approach for scheduling problem, we

compare robust schedule against deterministic schedule under different scenarios. Section

4.8.1 details the data used and scenarios generated.

4.8.1 Scenarios and datasets

Based on Ontario’s hospital data, Jiang (2016) shows that daily customer arrivals follow

a normal distribution with mean µ = 41.3 and standard deviation σ = 12.8. We use the

same normal distribution N(41.3, 12.8), to randomly generate the daily number of patients

over the planning horizon T . Once the daily number of patient arrivals are estimated, it

is proportioned between different priorities under three scenarios.

Based on 74 MRI hospitals in Ontario, Jiang (2016) reports that daily patient arrivals

are categorized into 4 priorities with following proportions: where 2% are categorized as

priority 1, 7% priority 2, 14% priority 3, and 77% are priority 4. We use these proportions

to generate scenario 1. as shown in Table 4.3. To investigate the effect of the different

proportion of demand, we generate scenario 2 and 3. In scenario 2, we assume that daily

demand is relatively proportioned equally among different priorities. In scenario 1, we note

that higher priority patients have lower demand. In contrast to scenario 1, we generate

scenario 3 in which patients with high priority level have higher demand.
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Scenario
% Patients of priority p
1 2 3 4

1 2 7 14 77
2 20 23 25 32
3 77 14 7 2

Table 4.3: Summary of scenarios

A random dataset is generated for each scenario which is used to solve the robust

and deterministic models. For each dataset, we estimate uncertainty interval for each

patient p ∈ P as [min
t∈T
{dpt},max

t∈T
{dpt}]. The nominal value is then calculated as dpt =

min
t∈T
{dpt}+ max

t∈T
{dpt}

2
. These values are used to solve the robust model, and for the de-

terministic model, we directly use randomly generated daily demand values. For each

scenario, we generate robust and deterministic schedule which are tested over 10 new ran-

dom instances. We also solve each scenario over four different capacity levels to see the

effect of capacity on the difference between the schedule before and after the realization

of arrivals. Three metrics are defined: the total average wait time for all patients (wt),

the average wait time for each priority (wtp), and the service level (αp). The averages

of data in 10 datasets are reported in Tables 4.4, 4.5, 4.6 for scenario 1, scenario 2 and

scenario 3, respectively. In these tables, R and D denote the robust and the deterministic

model results, respectively. The percentage of improvements are reported as the difference

between the robust approach and the deterministic one, ∆%. It shows how the schedule

from the robust approach performs better than the schedule from the deterministic model.

In Table 4.4, we observe that for all capacities, the robust approach outperforms the

deterministic model. For example, when capacity is 47 hours, priority 1 patients wait for an

average of 0.2 days under the robust schedule, while it is 2.8 days in the deterministic one.

Also, the service level of priority 1, which shows the number of patients who received service
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Capacity Model
Average wait time, wtp Service level, αp

wt1 wt2 wt3 wt4 wt α1 α2 α3 α4

47

R 0.2 0.8 1.1 0.5 0.6 96.4% 87.9% 93.0% 100.0%

D 2.8 3.0 2.7 2.5 2.6 68.0% 72.7% 90.9% 98.0%

∆% -92% -73% -59% -82% -78% 42% 21% 2% 2%

48

R 0.0 0.3 0.2 0.4 0.4 99.9% 93.9% 99.6% 99.5%

D 2.5 1.9 1.7 1.6 1.7 73.5% 79.1% 94.7% 99.5%

∆% -100% -84% -90% -75% -78% 36% 19% 5% 0%

49

R 0.0 0.3 0.2 0.2 0.2 99.8% 93.7% 99.9% 99.6%

D 2.5 1.9 1.7 1.6 1.7 73.0% 79.6% 94.6% 99.3%

∆% -100% -83% -87% -86% -86% 37% 18% 6% 0%

50

R 0.0 0.3 0.2 0.1 0.1 100.0% 94.6% 99.9% 99.9%

D 2.5 1.9 1.7 1.6 1.7 72.8% 79.2% 94.9% 99.3%

∆% -100% -87% -88% -92% -92% 37% 19% 5% 1%

Table 4.4: Robust versus Deterministic optimization- Scenario 1
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Capacity Model
Average wait time, wtp Service level, αp

wt1 wt2 wt3 wt4 wt α1 α2 α3 α4

48

R 1.1 1.1 0.9 3.4 1.8 78.7% 88.6% 94.0% 94.3%

D 5.6 5.5 6.4 6.1 5.9 65.0% 70.8% 85.2% 91.2%

∆% -80% -80% -87% -44% -70% 21% 25% 10% 3%

49

R 0.7 0.4 0.9 2.4 1.2 81.6% 91.6% 93.8% 96.8%

D 5.6 5.5 6.4 6.0 5.9 64.5% 70.9% 86.8% 91.0%

∆% -87% -92% -86% -60% -79% 27% 29% 8% 6%

50

R 0.9 0.2 0.4 1.9 0.9 80.3% 94.6% 96.6% 95.5%

D 5.6 5.5 6.4 6.0 5.9 66.8% 72.2% 85.8% 91.5%

∆% -84% -96% -94% -68% -84% 20% 31% 13% 4%

51

R 0.8 0.2 0.2 1.2 0.6 81.0% 95.5% 99.6% 93.3%

D 5.6 5.5 6.4 5.9 5.9 65.9% 71.3% 85.9% 91.7%

∆% -86% -97% -97% -81% -90% 23% 34% 16% 2%

Table 4.5: Robust versus Deterministic optimization - Scenario 2

within 1 day, is 96.4% in the robust schedule, whereas the deterministic schedule serves

68% of priority 1 on the day of arrival. We also note that as the capacity increases, the

difference of average wait time of some priorities increases in favor of the robust approach.

As shown in Table 4.5, the schedule of the robust approach performs better than that of

the deterministic model even when demand can take values outside of the uncertainty set.

We expect that even if the number of deviating demand points is greater than Γp = 100,
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Capacity Model
Average wait time, wtp Service level, αp

wt1 wt2 wt3 wt4 wt α1 α2 α3 α4

47

R 0.4 2.1 3.0 6.0 1.0 86.3% 82.8% 90.1% 89.6%

D 2.8 3.1 3.5 5.8 2.9 56.9% 67.6% 91.5% 93.7%

∆% -84% -35% -13% 3% -67% 52% 22% -2% -4%

48

R 0.3 2.0 2.9 5.9 0.8 89.8% 82.7% 90.2% 90.0%

D 2.8 3.1 3.4 5.3 2.9 58.6% 69.6% 90.8% 94.2%

∆% -90% -37% -14% 11% -72% 53% 19% -1% -4%

49

R 0.2 1.6 2.3 5.1 0.6 91.7% 84.4% 91.6% 90.9%

D 2.8 3.1 3.3 4.7 2.9 56.7% 68.8% 90.5% 94.8%

∆% -93% -48% -29% 8% -78% 62% 23% 1% -4%

50

R 0.1 0.9 1.6 3.9 0.4 93.3% 88.0% 93.9% 92.8%

D 2.8 3.0 3.1 4.5 2.9 56.3% 68.9% 91.6% 94.8%

∆% -96% -69% -49% -14% -85% 66% 28% 2% -2%

Table 4.6: Robust versus Deterministic optimization - Scenario 3

robust performs better with a high probability (Bertsimas and Sim, 2004). As noted,

the average wait times of patients under the robust schedule are less than those in the

deterministic model, and the service levels are higher in the robust approach, in all cases.

The results for scenario 3 are summarized in Table 4.6 where we note that for higher

priority patients, the robust model outperforms the deterministic model results both in

terms of average wait time and service level achieved. For example, when capacity is 49,

the average wait time and service level of priority 1 patients are 0.2 days and 91.7 %,
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respectively, while it outperforms deterministic by 93% reduction in average wait time and

62% increase in service level. Furthermore, in case of the average wait time of patients

independent of priority levels, robust performs better. When capacity is 50 hours, patients

wait for an average of 0.4 days under the robust schedule, whereas they wait for an average

of 2.9 days in the deterministic one. Although for lower priority patients, the deterministic

schedule performs better than the robust schedule, the difference is not significant.
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Chapter 5

Conclusion and Future Research

In this work, we studied the problem of scheduling multi-priority patients over a multi-

period horizon while ensuring to meet a desired level of service. Due to demand uncertainty,

a deterministic model may not perform well, and as such, we developed a robust optimiza-

tion approach to making a schedule which is robust against uncertainty in daily patient

arrivals. We exploited the notion of the budget of uncertainty to control the level of per-

formance against the level of conservatism. The budget of uncertainty allows a decision

maker to adjust the budget of uncertainty based on their preferences for each priority level.

The proposed robust method is applied to several datasets, and an extensive sensitivity

analysis is performed over important parameters such as capacity, penalty cost, service

level, and budget of uncertainty.

The analysis showed that the proposed robust approach outperforms the deterministic

method concerning service level and patient wait time. Furthermore, we observed that

even if the realized demand occurs outside the defined interval for uncertain demand,

RO solutions provide higher service levels and lower wait times compared to those in the
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deterministic approach. Extensive sensitivity analysis presents key managerial insights

with respect to the effect of capacity, penalty cost, and budget of uncertainty on the

optimal schedule.

Our work has some limitations that could be addressed in the future research. One

possible extension could be to consider different types of MRI scans with various service

durations, and also incorporating service time uncertainties into the model. Furthermore,

sensitivity analysis can be performed on the length of the planning horizon, various service

levels for different priorities, and different wait time targets.

We may also employ a dynamic decision-making approach where a schedule can be

updated based on the realized demand. The problem can be formulated as a two-stage

robust optimization problem. In two-stage decision making, there are two sets of decisions;

first stage decisions and recourse decisions, where recourse decisions are decisions that are

made after the realization of an uncertain parameter.

Another possible extension is to apply Pareto robust optimization (PRO). Traditional

robust optimization approach may lead to multiple optimal solutions. By utilizing PRO,

we may find solutions that dominate RO solutions under non-worst case scenarios while

maintaining the performance of RO solution under the worst-case scenario.
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