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Abstract

Smartphones have become the most preferred computing device for both personal and
business use. Different applications in smartphones result in different power consumption
patterns. The fact that every application has been coded to perform different tasks leads
to the claim that every action onboard (whether software or hardware) will consequently
have a trace in the power consumption of the smartphone. When the same sequence of
steps is repeated on it, it is observed that the power consumption patterns hold some
degree of similarity. A device infected with malware can exhibit increased CPU usage,
lower speeds, strange behavior such as e-mails or messages being sent automatically and
without the user’s knowledge; and programs or malware running intermittently or in cycles
in the background. This deviation from the expected behavior of the device is termed an
anomalous behavior and results in a reduction in the similarity of the power consumption.
The anomalous behavior could also be due to gradual degradation of the device or change in
the execution environment in addition to the presence of malware. The change in similarity
can be used to detect the presence of anomalous behavior on smartphones.

This thesis focuses on the detection of anomalous behavior from the power signatures
of the smartphone. We have conducted experiments to measure and analyze the power
consumption pattern of various smartphone apps. The test bench used for the experiments
has a Monsoon Power Meter, which supplies power to the smartphone, and an external
laptop collects the power samples from the meter. To emulate the presence of anomalous
behavior, we developed an app which runs in the background with varying activity windows.
Based on our experiments and analysis, we have developed two separate models for reliable
detection of anomalous behavior from power signatures of the smartphone. The first model
is based on Independent Component Analysis (ICA) and the second model is based on a
Similarity Matrix developed using an array of low pass filters. These models detect the
presence of anomalies by comparing the current power consumption pattern of the device
under test with that of its normal behavior.
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Chapter 1

Introduction

Smartphones have become an indispensable part of modern life. Hand-held mobile devices
can perform many online tasks, including web browsing, internet banking, multimedia
streaming, and connecting people through social media, to name a few. When not con-
nected to the internet, smartphones can be used as a music player, camera, document
viewer, and a gaming console. The continued miniaturization, increased portability, user
friendly interface, better connectivity, enhanced computational power, improved battery
life and affordable costs have made them popular for both personal and business use.
Studies have found that mobile usage has been outpacing desktops and laptops [31]. The
number of smartphone users has increased at a rapid pace [6]. It is estimated that there
are currently around 2.4 billion people using smartphones [45] and forecasts predict that
the number will rise to 2.87 billion by 2020 [6].

Google’s Android and Apple’s iOS are the two most popular smartphone operating
systems with Android accounting for nearly 80% and iOS accounting for about 15% of all
smartphone sales. Their growth in popularity is driven by the wide range of applications
(apps) now available in the market. Recent years have seen an increase in the usage of
smartphones in healthcare [48] [14], psychotherapy [20] and health research [24]. Smart-
phone applications are used as learning aids in class rooms [10], in forensic data acquisition
[18], banking [15], road and traffic monitoring [47], as interfaces to wearable devices, home
security and automation and social media. They process large amounts of information
and have become repositories of personal, financial and corporate data that need to be
protected. Malware attacks can cause data loss or data theft, hardware failure, loss of
connectivity and may affect the whole infrastructure. With companies and enterprises al-
lowing employee-owned devices to connect to their networks, in a concept known as ”bring
your own device” (BYOD), security stakes are at the highest.
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An anomaly is any deviation from the expected behavior of the device and the anoma-
lous behavior could be due to gradual degradation of the device, change in the execution
environment or due to the presence of an external agent such as a malware. The presence
of an anomaly even in a single connected wireless device could affect the whole network
and may lead to loss of confidential data, data theft or loss of connectivity and defeat the
purpose of having a well connected network. Smartphones are fast becoming the focal point
of most of the wireless networks and are pivotal in IoT; and hence the need for anomaly
detection in smartphones is imperative.

1.1 Motivation

The subject of this thesis was motivated by the following facts:

1. The growing popularity of smartphones and their application in secu-
rity critical applications. A recent survey reported that global mobile internet
penetration is going to increase to 71% in 2019 from 28% in 2013 [54]. With this pop-
ularity, mobile devices have become the fastest growing consumer technology. The
growing popularity of smartphones, wearables and other wireless connected devices;
and their increasing application in security-critical applications, namely, banking,
health monitoring, official transactions and smart grids to name a few, has made
security in smartphones critical.

Figure 1.1: Number of new Android malware samples from 2012 to 2017 (per year) [13]

2. Increase in the number of malware attacks. The number of malware attacks
have increased over the years. According to a report by McAfee Labs [44], around
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Figure 1.2: Number of new malware specimen (count in millions) from 2007 to 2017 [13]

13% of the mobile users have reported malware infection with users in Asia reporting
as high as 21%. The attacks keep modifying the malware and this makes detection of
malware a challenge. A report by G-Data security [13] has estimated that the number
of new malware specimens have risen from 0.13 million in 2007, to 6.83 million in
2016 and could be around 7.41 million in 2017, with new android malware samples
alone accounting for 3.5 million as seen in Fig. 1.1 and Fig. 1.2.

3. Presence of hacked versions of legitimate applications. Mobile Applications
or Apps as they are popularly called, are now preferred over mobile websites. The
latest data from Yahoo’s Flurry analytics shows that 90% of consumer’s mobile time is
spent on apps, and with mobile usage fast outpacing desktop or laptop, it is essential
to secure the apps available in the market. Third-party app stores are notorious
for delivering hacked versions of legitimate applications that often contain malware.
Even the official app stores can suffer problems. An article by Guardian [31], reports
that as many as 4000 apps in Apple’s official App Store, considered to have strong
security, have been infected with malware. A study by Symantec in 2014 found that,
of all the Android apps scanned, 33% were leaking SIM card information such as
address book details, mobile PIN numbers and call history.

Therefore with these facts in mind, we were motivated to study the power consumption
patterns in smartphone to attempt to delineate anomalous behavior from normal behavior.
We conducted experiments to characterize the normal behavior of the smartphone and
based on our findings we were motivated to develop two models for autonomous anomaly
detection. The first model described in Chapter 4, uses Independent Component Analysis
(ICA), and works well for malware which have a significant impact on the probability
distribution of power consumption of the smartphone. Chapter 5 proposes a more generic
model and makes use of a Similarity Matrix to detect anomalous behavior in smartphone.
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1.2 Problem Statement

An anomaly is any deviation from the expected behavior of the device. The anomalous
behavior could be due to gradual degradation of the device, change in the execution environ-
ment or due to the presence of an external agent such as malware. Security in smartphones
has become critical with the increase in the number of malware attacks that target smart-
phones and other connected devices. Smartphones have become an indispensable part of
modern life and contain large amounts of critical data and need to be protected. Further,
smartphones are an interface to various wireless devices and are, also, a significant part of
IoT. Hence, a compromise on the security of a smartphone can not only lead to loss/theft
of data, but also, affect the whole network and infrastructure.

Figure 1.3: Lifecycle of a modern attack

The main problem explored in this thesis is as follows. The increase in the number of
smartphone users has led to a tremendous increase in the number of mobile applications
(apps) that can be used on the phones. Users prefer these apps over traditional websites
as they are easy to access and use. Most of the smartphones can access a wide array of
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data and interfaces in the smartphone. Recent years have seen an alarming increase in
the number of fake illegitimate apps that can steal user information; and even take control
or corrupt the legitimate apps. Some dubious apps download codes of malware as they
are downloaded to the phone as shown in the malware threat model in Fig. 1.3. These
malware codes can lie dormant in the phone with short intervals of activity, making them
difficult to detect. This thesis focuses on developing a methodology for reliable detection
of anomalous behavior from the power signatures of the device.

1.3 Solution Strategy and Contributions

The model proposed in this thesis detects anomaly in a smartphone based on inconsistency
in its behavior. An inconsistency in the behavior of a smartphone can be observed through
various parameters such as reduced speed, suspicious system calls, increased CPU utiliza-
tion and battery drain. Since a smartphone or any wireless device requires a constant
source of power, its power consumption pattern can serve as a reference for the behavior of
the device and account for almost any kind of anomalous behavior. Anomalous behavior
detection consists of three steps, shown in Fig. 1.4.

Figure 1.4: Anomalous Behavior Detection - General Approach

The first step in anomaly detection is monitoring, which involves collecting samples
or data of the parameters such as API calls [62] [12], dataflow patterns [28], system logs
[30] [64], CPU and resource utilization [56], and energy and power consumption [54] [40]
[66] [17] [38]. The next step consists of analyzing the data collected, using algorithms or
anomaly detection models and based on the results, the presence of anomaly is decided.
The data can be collected internally using apps such as PowerTutor [69] [64], using smart
batteries [40] [38]; or externally using a monitoring tool. Similarly, the algorithm or model
used for analyzing the data and detecting malware, can be run on the device or off the
device. The algorithms used for detecting anomalies are usually complex and can use lot
of power and resource [62], [38]. Further, these algorithms themselves may be targeted by
malware [54]. To overcome these problems, the anomaly detection model developed in this
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thesis is based on off-device monitoring and off-device analysis and decision. The details
of this model can be found in Chapter. 4 and Chapter. 5.

Figure 1.5: Monitoring, Analysis and Decision - Different Methods

This work makes the following contributions that are listed below.

• Proposes two approaches to detect anomalous behavior in smartphones. The first
approach explores the use of Independent Component Analysis (ICA) in detecting
anomalous behavior based on power consumption traces, and the second approach
proposes a similarity matrix to detect the anomalous behavior.

• Analyses, evaluates and compares the two approaches based on the data collected
through a background app developed to resemble an anomaly in the smartphone.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Related research and background are pre-
sented in Chapter 2. Chapter 3 describes the experimental setup used for acquiring data
and the methodology for data acquisition. The proposed anomaly detection methodology
based on ICA is explained in Chapter 4 and a evolution of this methodology is described in
Chapter 5. Finally, Chapter 6 documents conclusions of this thesis and recommendations
for future work.
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Chapter 2

Background and Literature Survey

2.1 Introduction

This chapter provides a brief introduction on anomalies in smartphones and wireless devices
and the need to build an effective anomaly detection framework/methodology. This is
followed by a discussion on the challenges faced in detecting anomalies and the literature
on the existing detection techniques. Finally, this chapter provides an overview on ICA
and comparison of signals, which have been used in the model proposed in this thesis.

2.2 Anomaly in Wireless Devices

Anomalies are patterns in data that do not conform to a well defined notion of a normal
behavior. An anomaly could be caused in a device for any of the following reasons.

• gradual degradation or ageing of the device,

• physical damage to the device,

• change in the execution environment, and

• malware attcks on the device.
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2.2.1 Types of Anomalies and their Causes

It is important to study the types of anomalies since most of the detection methods are
specific to certain kinds of anomalies [19].

Point Anomalies

This is the simplest type of anomaly. An anomaly is called a point anomaly if an individual
data instance is considered as anomalous with respect to the rest of data. An example of
a point anomaly is credit card fraud detection.

Contextual Anomalies

An anomaly is termed as a contextual or a conditional anomaly if a data instance is
anomalous in a specific context, but not otherwise [58]. Notion of a context is induced by
the structure in the data set. Each data instance is defined using the following two sets of
attributes [19]:

• Contextual attributes. The contextual attributes are used to determine the con-
text (or neighborhood) for that instance. For example, in spatial data sets, the
longitude and latitude of a location are the contextual attributes. In time-series
data, time is a contextual attribute that determines the position of an instance on
the entire sequence

• Behavioral attributes The behavioral attributes define the noncontextual charac-
teristics of an instance. For example, in a spatial data set describing the average
rainfall of the entire world, the amount of rainfall at any location is a behavioral
attribute.

Collective Anomalies

An anomaly is called collective anomaly when a collection of data instances is anomalous
with respect to the entire data.

The anomalies considered in this thesis are an extension of a point and collective
anomaly and are explained in Section 3.1.3.
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2.2.2 Challenges in Anomaly Detection

An anomaly is any deviation from the expected behavior. A mechanism which monitors
the behavior of a device and flags an aberration might seem a sufficient strategy. However,
several constraints make this approach challenging [19]:

• Modeling or defining the normal behavior of a device is difficult since devices have
diverse uses and are dynamic in their behavior. This makes it difficult to differentiate
anomalous behavior from normal behavior.

• Anomalies resulting from malware attacks are difficult to detect since malwares keep
adapting themselves trying to duplicate normal behavior in an attempt to go unde-
tected.

• Device software updates often result in a change in the behavior of the devices and
the rules of detection might flag them as an anomaly or malware. Hence, the rules
or criteria used to detect malware need to be constantly updated.

• The definition of anomaly is different for different domains. For example, in the
medical domain a small deviation from normal (e.g., fluctuations in body tempera-
ture) might be an anomaly, while similar deviation in the stock market domain (e.g.,
fluctuations in the value of a stock) might be considered as normal. Thus applying
a technique developed in one domain to another, is not straightforward.

• It is difficult to obtain ground data for training/validating models used by anomaly
detection techniques.

• Even the data available might often contain noise which might make legitimate data
look malicious.

Due to these challenges, a methodology for reliable detection of anomaly is imperative.
Any wireless device needs a constant supply to power. These devices are usually optimized
and are consistent in their power consumption. Hence, an intrusion of any kind will result
in an abnormal power consumption pattern. Hence, monitoring and analyzing the power
consumption pattern can detect anomalies. However, most of the algorithms that monitor
and analyze power consumption patterns are energy intensive and can cause battery drain
and increased resource utilization.
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2.3 Existing Literature on Anomaly Detection

In literature, there are mainly three methods to detect unknown or malicious activities in
smartphones: statics analysis of app code; on-device monitoring; and external monitoring.
Static analysis approaches analyze specific patterns in the app code to decide if the app is
engaging in suspicious communication. William Enck [29] associates intents with certain
APIs (Application Program Interface) and track the flow of those intents through the code
to establish links between intents and UI (User Interface) elements. If an API can not be
traced to a UI element, it is suspected as a malicious activity. Buennemeyer [16] identifies
potential malware by performing static data-flow analysis of code to track dependence
between the identification and use of data; if a function call cannot be traced to a user
gesture, then it is detected as a suspicious behavior. Karim et a;. [27] identify covert
communication by looking for code patterns where no response is presented to the user,
neither on success nor on failure of the API. static analysis is effective in detecting malware,
however, this approach has some drawbacks, which are :

• access to the source code is required, and

• the designers of malicious code soon learn about the hypotheses in static analysis
and adapt their intrusion strategies.

In the on-device monitoring approaches, the key idea is to monitor the power consumed
by a device via a software tools snd detect malicious code using power signals. Researchers
in [34] have developed machine learning based techniques to classify apps according to
their power consumption to facilitate detection of suspicious apps. They have used power
histograms, Mel Frequency Cepstral Coefficients (MFCC) and Gaussian Models to classify
apps. Researchers in [7] has proposed a rule-based engine to generate warnings for the
user based on irregularities in power consumption. The effectiveness of the on-device
monitoring approaches is limited by two factors: (i) low sampling rate of the power signal;
and (ii) requirement to keep the processing techniques simple so as to put a low load on
the mobile device. In the off-device monitoring approach, the key idea is to measure the
power with external equipment and process the power signals to detect malicious activities.
The authors in [53] have built a database of power profiles of legitimate applications and
variants of mobile malware. The power profile of an unknown app is compared against
the database using the χ2-distance metric, to decide whether it is malware. Creating a
database of power profiles for each smartphone poses a great challenge for this approach.
Extraction of features in frequency domain by applying Fourier Transform on time series
power consumption signals of different applications is proposed by Zhang et al.[68]; however
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this idea is in a nascent state. Out of these three methods, off-device approaches offer more
promising solutions in detecting unknown and malicious activities in smartphone, because
this method imposes the least load on the device. Moreover, presence of malicious code
doesn’t affect this method unlike the case of on-device monitoring approach.

Battery based intrusion detection was proposed by Jacoby et al. [38] . Power con-
sumption measurements were used by Kim et al. [41] and Guri et al.[33] for detecting
energy-greedy anomalies and mobile malware variants, and sensitive activities respectively.
Apart from power signature analysis, machine learning methodologies have been explored
in detecting suspicious activities [52],[42]. The work by Xue et al. [63] focuses on anti-
malware tools adaptability for changing malware intrusion pattern. Similar research has
been reported in reference [39] to prove the effectiveness of a model to detect malware in
different operation scenarios of mobile devices. Machine learning methods such as Support
Vector Machine (SVM) have been applied in detecting malware [33]. A vast majority of
the work for detecting malware using machine learning methodology focus on data from
different applications to extract features. These methods can not be generalized for all mo-
bile devices. A summary of the anomaly detection techniques based on power consumption
is shown in Table 2.1.

Table 2.1: Summary of Anomaly Detection Techniques based on power consumption

Ref.
#

Proposed Solution Validation/Results Observations

[41] Energy consumption based mal-
ware detection by using power-
aware malware-detection frame-
work.

99% true-positive
rate achieved in
classifying mobile
malware.

Implemented on
HP iPAQ running
a Windows Mo-
bile OS. Untested
on present day
smartphones.

[21] Proposes a model implemented in
a kernel module, to build up an
energy signature of both legal and
malicious behaviors of WiFi hard-
ware component in different An-
droid devices.

The experiments
conducted show
that every activity
has an immediate
and noticeable im-
pact on the Energy
consumption of the
device.

Results indicate
that Energy moni-
toring can be used
to detect security
threats on Android
based devices.
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[38] This technique correlates network
attacks with their impact on de-
vice power consumption using a
rules-based Host Intrusion Detec-
tion Engine (HIDE).

Effective Host
based Intrusion de-
tection technique.

Limited by resource
utilization such as
battery usage.

[63] Virus Meter, a tool that uses en-
ergy consumption comparison be-
tween a clean system and when
malicious activities have been
performed on the device. This
model is implemented using three
different approaches: Linear Re-
gression, Neural Networks (NN)
and Decision Trees.

Results show a
high detection rate,
however linear
regression has a
high rate of false
positives. Neural
network is reported
to achieve the best
results among the
three approaches.

This model can
become ineffective
if malware injects
fake events in the
OS of the device
in which case the
data collected by
tracking the inter-
nal events becomes
untrustworthy.

[9] Proposes a smart anti-malware
that can shift between different
security levels according to the as-
sets value and the battery status
of the resource constrained de-
vice.

Switching between
different levels of
detection allows
preservation of
battery.

The anti-malware
system can result
in high false results
with falling battery
results.

[64] A malicious software detection
method based on power consump-
tion. This method used Gaussian
Mixture Model (GMM) built by
using Mel frequency cepstral co-
efficients (MFCC).

Has a malware de-
tection rate of 79%

The method has
effective identifica-
tion and detection
of malicious soft-
ware.

[23] Exploits correlation between
a user’s location and power
consumption pattern of his/her
smartphone.

This method is
capable of identify-
ing some locations
where location
specific power
consumption based
detection technique
can be used with
high accuracy

There is need for
further research
into smartphone
security primarily
in the detection
area
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The anomaly detection techniques surveyed in the literature either have a high rate of
false positives or use too much resources such as battery and CPU. This thesis proposes
two approaches for anomaly detection that are based on the power consumption pattern
of the smartphones and involve off device data collection and off device monitoring and
hence are independent of the smartphone battery usage. The proposed model explained in
Chapter 5 has a low false positive rate and hence is highly reliable.

2.4 Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is a statistical method for transforming an ob-
served multidimensional random vector into components that are statistically as indepen-
dent from each other as possible. One of the major challenges in anomaly detection using
power measurements is the definition of features. This is overcome with the use of ICA.The
code implemented in the software of a device and the code used by a malware are indepen-
dent of each other. Therefore, we assume that the power consumed by the malware code is
partially independent of the power consumed by the normal code of the device and hence
can be used as a differentiator to provide contrast between a signal with no anomalous
behavior and one with anomalous behavior. Further, ICA also aids in noise removal. The
use of ICA is further explained in Section 4.1.2.
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Chapter 3

Measurements and Analysis

This chapter describes the experiments conducted to acquire data for designing and vali-
dating the model proposed in this thesis. Section 3.1 details our experimental setup bench
and data acquisition methodology respectively; and, Section 3.2 presents a brief analysis
of the acquired data.

3.1 Experimental Setup

3.1.1 Monitoring Tool

The Monsoon Power Monitor, shown in Fig. 3.1, developed by Monsoon Solutions Inc.,
provides an effective solution for measuring power consumed by mobile devices. It can
be used to measure the power consumption patterns of devices with removable batteries.
PowerTool software is used to control the power supply provided by the hardware and is
used by both, electrical engineers and software developers. A USB channel connects the
monitor hardware to a computer and is used to transfer data. The power monitor can
collect 5000 samples in a second and can provide a supply of up to 13.5V and 6A. The
high rate of collection of data and a user-friendly GUI makes the monsoon power meter
ideal for the model proposed in this thesis. Figure 3.2 shows the Graphical User Interface
(GUI) of the PowerTool software.
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Figure 3.1: Mobile Device Power Monitor

Figure 3.2: Graphical user interface (GUI) for the PowerTool software
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3.1.2 Experimental Setup for detecting Malware using Power
Signatures

The setup shown in Fig. 3.3 is used to measure the power consumed by a smartphone.
The battery of the smartphone is bypassed as shown in Fig. 3.4 and the Monsoon Power
Monitor is used to power the smartphone. The Monsoon Power Meter provides a constant
power supply through the copper strips connected to the smartphone. The meter maintains
a constant voltage as set by the user, and the resistance across the meter enables us to
measure the current flowing through it and hence the power consumed by the smartphone is
measured. An external laptop is connected to the meter through a USB cable for acquiring
the power consumption data. The data acquisition is controlled using PowerTool, the
GUI interface of the Monsoon Power Meter. The experiments were carried out with the
smartphone, Samsung Galaxy S5 neo and the output voltage was set at 3.8V.

Figure 3.3: Experimental Setup for detecting Malware using Power Signatures
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Figure 3.4: Bypassing the Battery

3.1.3 Background (Malware) App Emulating Anomalous Behav-
ior

We have developed an Android app that runs in the background emulating anomalous
behavior in smartphone. This background app alternates between actively downloading
files and being dormant, based on a given duty cycle (Dut). The analogy is that an
anomalous behavior is due to an undesired app in the smartphone that is dormant most of
the time but becomes active at certain intervals. This behavior resembles the behavior of an
adware. According to GDATA [13], adware frequently hides in fake apps that are installed
from sources other than the official app markets and repeatedly launches advertisements
that can cause energy drain. The GUI interface of the App is shown in Figures. 3.5, 3.6
and 3.7.

A duty cycle is the fraction of one period in which a signal or system is active. Duty
cycle is usually expressed as a percentage or a ratio and is calculated using the formula
shown in Equation 3.1. We have kept TCycle = TON +TOFF , constant at 60 seconds, for all
the duty cycles.

Dut =
TON

TON + TOFF

(3.1)

The Malware test bench app has been programmed as follows:

• When the button indicating the Duty Cycle is clicked, the app waits in a for loop for
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Figure 3.5: The Main Screen
of the App

Figure 3.6: Duty Cycles
0.1% to 0.9%

Figure 3.7: Duty Cycles 1%
to 12%

a fixed duration of 20 seconds.

• After the wait time is over, the startService( ) method is called and the service
remains active, downloading files for TON seconds.

• The stopService( ) method is called. and the service remains dormant for TOFF

seconds.

• After TOFF seconds, the startService() method, the sequence continues in an infinite
loop.

The power consumption pattern of the Malware Test Bench App with duty cycle 12%,
shown in Fig. 3.8, clearly illustrates the cyclic behavior of the background app including
the TON and TOFF times. The first 20 seconds in Fig. 3.8 correspond to a for loop in
the activity class of the app and the rest of the power trace is the power consumed by the
service class. It is interesting to note that for the same piece of code the power consumption
is fairly consistent. Therefore, to define the normal behavior of the device, thresholding is
required which is explained in Chapter. 5 and Chapter. 6.
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Figure 3.8: Power trace of the Malware Test Bench with Duty Cycle = 12%
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The lifecycle of the background service is shown in Fig. 3.9.

Figure 3.9: Life cycle diagram of the background service
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3.2 Experiments and Preliminary Analysis

This section details the experiments conducted to acquire power consumption data and
presents a preliminary analysis of the acquired data. We use the test bench shown in Fig.
3.3 to measure the power consumed by a smartphone in varying test conditions. All the
experiments use YouTube as the foreground app.

3.2.1 Experiments in a Trusted Environment

Experiments were conducted to measure and analyze the power consumption pattern of a
smartphone when Youtube App is used. These experiments were conducted in a trusted
environment i,e., there was no anomalous behavior or malware in the phone. The settings
of the smartphone were kept the same throughout the experiments to maintain consistency
of data. The following sequence of steps are repeated on the YouTube App and the power
consumed by the smartphone is measured.

• Launch the YouTube App

• Search for a particular video

• Select the video and let it play.

The duration of each run is 300 seconds. This sequence was repeated 45 times in sets
of 15 iterations, spread over a duration of 2 months. A preliminary analysis of the data
acquired in presented in 3.2.3

3.2.2 Experiments in the Presence of Anomalous Behavior

The next set of experiments were conducted in the presence of anomalous behavior i.e.,
with the malware test bench app running in the background. The sequence of steps followed
are:

• Launch the malware test bench app.

• Press the button corresponding to the desired duty cycle.

• Press the home button so that the app keeps running in the background.
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• The start time for the background service has been set to 20 seconds. Hence wait for
20 seconds from the time the button corresponding to the duty cycle was pressed.

• Launch the YouTube App. The launch should coincide with the start of the back-
ground service.

• Search for a particular video

• Select the video and let it play.

The duration of each run is again 300 seconds. The duration is kept the same to provide
for accurate validation of the model. Experiments were conducted with the anomalous
behavior having duty cycles 1%, 2%, 3%, 4%, 8% and 12%. The reason for choosing
low duty cycles is that we are interested in detecting anomalous behavior that is active
for short intervals of time, and which would otherwise be difficult to detect by analyzing
power consumption of the smartphone. An example of the power consumption pattern of
the smartphone with anomalous behavior of differing duty cycle are shown in Fig. 3.10.
It is evident that detecting anomalous behavior with lower activity period from visual
analysis alone is difficult.

Figure 3.10: Power consumed by the smartphone in different anomaly conditions
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3.2.3 Preliminary Analysis of the Data

This subsection presents a preliminary analysis of the power consumption data acquired
through the experiments conducted.

Analysis of the Features of the Signals

The power consumed by the smartphone in the presence of anomalous behavior would be
the sum of the power consumed by the smartphone in the absence of the background service,
and the power consumed by the background service in isolation. Hence, theoretically, there
should be a clear distinction between the two cases when common features such as minimum
value, maximum value, mean value and standard deviation of the signals are analyzed. 15
readings of duration 300 seconds with 5000 samples per second, were taken for each duty
cycle of malware and three sets of 15 signals each were taken for the no malware scenario,
with each set being 1 month apart to show the variability in the behavior of the smartphone.
Signal # denotes the signal number where # ranges from 1 to 15. However, as seen in
Fig. 3.11, the power consumption is dynamic. Even though the standard deviation of
the signals is not as dynamic as the other features, we observe that the readings in red in
Fig. 3.11d, show more deviation than the signals in blue or red. The values in red are the
standard deviation of the power consumed by the smartphone in the absence of anomalous
behavior, measured 2 months after the initial experiments began. Hence, with ageing, the
power consumption pattern of the smartphone shows more deviation. Therefore, standard
deviation alone cannot be used to detect malware. Moreover, standard deviation cannot
be used if the foreground app has high variance in its power consumption.

Fig. 3.12 shows a comparison of the minimum value in the signals, Fig. 3.13 shows the
maximum values, Fig. 3.14 and Fig. 3.15. On observing the figures, it is evident that the
energy consumed over a period of time in the presence of malware is sometime lower than
the energy consumed in its absence. Analysis of the signal structure and spectral analysis
might yield better results.

When we analyze the standard deviation of the signals, there appears a slight distinc-
tion between a signal exhibiting anomalous behavior and a signal that does not exhibit
anomalous behavior as seen in Fig.3.15 However, this is attributed to the nature of power
consumption of the Youtube app and might not hold for an app that is more dynamic
in its power consumption. For this reason, we will use cross-correlation coefficient in the
models developed in Chapter 4 and Chapter 5, which is similar to standard deviation in
its formula but, it compares every point in the signal with every point of another signal,
thus facilitating comparison with historical data.
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Figure 3.11: Features of No malware

Figure 3.12: Minimum value of the Signals - sorted in ascending order
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Figure 3.13: Maximum value of the signals - sorted in ascending order

Figure 3.14: Mean value of the Signals - sorted in ascending order

3.2.4 Analysis of the Cyclic Behavior of the Signals

In this subsection we analyze the cyclic behavior of power consumption of the smartphone.
Every application in a smartphone is a software program which has a fixed set of code unless
there is an update, and this code runs in loops and functions. Hence, theoretically the
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Figure 3.15: Standard Deviation of the Signals - sorted in ascending order

power consumption of the phones should be cyclic in nature. Each signal with a duration
of 300 seconds contains 1499022 samples of data,as 5000 power samples are collected per
second. The number of unique values and their respective values, in each signal was found.
On analysis, it is observed that the number of unique values of power readings per signal
is uniform for most of the signals both in the presence and absence of anomalous behavior
and their number ranges from 20000 to 30000, which is significalty lower than 1499002,
the number of samples per signal. This can be seen in Fig. 3.16.

Further, the unique values in each signal is also consistent and shows a distinct pattern.
This leads us to the conclusion that the underlying power consumption of the smartphone
is consistent over a period of time and the changes observed are due to the superposition
of the power consumed by the anomalous behavior i.e., the background app. It is however
interesting to note that the pattern for anomalous behavior and no anomalous behavior is
not distinct as shown in Fig. 3.17. Hence, the power consumption of the YouTube app is
dynamic to some extent inspite of having a comparatively lower standard deviation.
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Figure 3.16: Number of Unique values in each signal

Figure 3.17: Unique values in each signal
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Spectral Analysis

Histogram Analysis

We analyzed the distribution of power consumed under different scenarios. It was observed
that the distribution remained consistent through all the scenarios, but an increase in the
activity of anomalous did cause subtle variations in the distribution. The background app
and the Youtube app are independent of each other and hence theoretically, the power
consumed by them can be separated through Blind Source Separation. Blind source sepa-
ration depends on the distributions of the independent components. Since the distributions
are not very distinct as seen in Fig. 3.18, we will use a different approach to Blind Source
Separation as explained in 4.1.2

Figure 3.18: Histogram plot
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Chapter 4

Detection of Anomalous Behavior of
Smartphones Using Independent
Component Analysis

This chapter describes the methodology we have developed for the detection of anomalous
behavior in smartphones using a Blind Source separation technique known as Independent
Component Analysis.

4.1 Methodology

We use the test bench shown in Fig. 3.3 to measure the power consumed by a smartphone
in varying test configurations. The methodology used in detecting malware has been
illustrated in Fig. 4.1. Power consumed by the smartphone when it is idle but with the
interfaces switched ON is called no load power, and the signal derived during this condition
is called Base Signal, BS(t). The power consumed by the smartphone when an app is used
would be the sum of the power consumed by the app and the Base Signal BS(t) as seen
in Fig. 4.2 and this signal is denoted by RSr(t) (1 ≤ r ≤ n), where n is the total number
of scenarios for a particular app. The power consumed by the smartphone is measured
for different apps across various scenarios and are stored as RS1(t), RS2(t), . . . , RSn(t).
These signals will form the reference for the detection of malware when the same apps are
used in future. Both RSr(t) and BS(t) are recorded in a closed, controlled and trusted
environment. In this thesis, we have used the methodology explained in Section 3.2.1 to
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Figure 4.1: The five steps of the methodology

measure RS(t). When the smartphone is tested for presence of malware as explained in
Section 3.2.2, the power consumed by the smartphone is measured and the signal thus
obtained is called suspicious signal SSr(t). This signal is provided as input to the model,
and based on the results obtained it is established if the smartphone has a malware. The
five steps of the methodology are as follows.

Step 1: Ground Truth Determination and Pre-Processing
Ground truth determination is done with the help of the power signals measured in
the trusted environment. Fast Fourier Transform (FFT ), a low pass Infinite impulse
response (IIR) filter and Inverse Fast Fourier Transform (IFFT ) are used for this.
The inputs for this step are RSr(t), SSr(t) and BS(t), and the outputs are RSa(t),
SSa(t) and SSr(t) as shown in Fig. 4.1.

Step 2: Blind Source Separation (BSS)
Signals RSa(t) and SSr(t) are given as inputs to the FastICA algorithm [35], which
separates two independent components from input signals and acts as a differentia-
tor. Outputs after Independent Component Analysis (ICA), Sig1(t) and Sig2(t), are
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Figure 4.2: Power consumption pattern

power signatures of the individual apps that are part of RSa(t) and SSr(t) as shown
in Equation. 4.1. [

RSa(t)
SSr(t)

]
=

[
a11 a12
a21 a22

]
×
[
Sig1(t)
Sig2(t)

]
(4.1)

where, a11, a12, a21, and, a22 depend on the intensity of the two signals.

Step 3: Normalization
Independent components, Sig1(t) and Sig2(t), obtained as outputs of FastICA, the
reference signal RSa(t) and the suspicious signal SSa(t) are normalized to a scale of
[0,1] based on Eq. 4.2, to remove error due to scaling.

NRSa(t) =
(RSa(t) −Min(RSa(t)))

(Max(RSa(t)) −Min(RSa(t)))
(4.2)

Step 4: Comparison of Similarity
The normalized signals NSig1(t), NSig2(t), NRSa(t) and NSSa(t) are then com-
pared for similarity by calculating the cross correlation for each combination.

Step 5: Detection of Anomalous Behavior
Thresholds for each combination of reference signals RSr(t), have been established
through prior tests and are used to determine if the smartphone has anomalous
behavior.
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4.1.1 Ground Truth Determination and Pre-Processing

The most important step for any signal extraction process is the determination of ground
truth. In this experiment, power consumed by the smartphone, when a given app is active,
is recorded in a closed, controlled and trusted environment. This is repeated for all the apps
under consideration and the signals are stored as RS1(t), RS2(t), . . . , RSn(t), where RS
stands for Reference Signal. We assume that the requirements of all apps in terms of the
background processes and the interface are under similar conditions. Power consumed by
the smartphone when no app is active constitutes the power consumed under no load and
is called the Base Signal BS(t). When the smart phone is exposed to the external network,
unknown background applications might get triggered which result in an increase in the
power consumption of the smartphone. The known apps are run in the same sequence
as before and the power consumed are recorded as SS1(t), SS2(t), . . . , SSn(t), where SS
is an abbreviation for Suspicious Signal. Our objective is to determine if these signals
contain power consumed by an unknown application. The trusted power signal for one
of the apps, referred to as RSr(t) (1 ≤ r ≤ n) in Fig. 4.1, is chosen using a multiplexer
and the corresponding suspicious signal, SSr(t), is also chosen using another multiplexer.
The signals RSr(t), SSr(t), and BS(t) are in the time domain and hence are converted to
the frequency domain using Fast Fourier Transform as per Equation (4.3). The resulting
signals RSr(f), SSr(f) and BS(f) contain the mean at 0 Hz and the variances at the
respective frequencies.

X (f) =
l−1∑
t=0

x (t) e−
2πi

l
tf (4.3)

where l represents the length of the signal. The reference signal and the suspicious
signal both have an additive component in addition to the base signal. Hence BS(f) is
subtracted from RSr(f) and SSr(f) to obtain RSa(f) and SSa(f), respectively. RSa(f)
is the frequency domain signal of the power consumed by just the app in the trusted
environment; similarly, SSa(f) is the frequency domain signal of the power consumed
by just the app in the suspicious environment. These signals are converted back to the
time domain using Inverse Fast Fourier Transform (IFFT) as per Equation (4.4) to obtain
the power consumed by the app alone in the trusted environment, RSa(t) and the power
consumed by the app alone in the suspicious environment, SSa(t). The signal RSa(t) serves
as the ground truth.
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x(n) =
l−1∑
n=0

X(f)e
2π
l
nf (4.4)

4.1.2 Blind Source Separation (BSS)

This step involves the separation of the two signals, the reference signal RSr(t) for the
app and suspicious signal SSr(t) for the app, into the independent components Sig1(t)
and Sig2(t). The signals RSr(t) and SSr(t) are the power consumed by the smart phone
when the app is active in a trusted environment and a suspicious environment, respectively.
However, these signals contain the base signal plus the power consumed by the app and
can be considered as a linear combination as shown in Equations (4.5), (4.6) and (4.7).
This can also seen in Fig. 4.3. The removal of BS(t) from RS(t) provides enough contrast
to implement BSS as a differentiator.

Figure 4.3: Histogram plot after removing the Base Signal from Reference Signal

RSr(t) = a11 ×BS(t) + a12 ×RSa(t) (4.5)
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SSr(t) = a21 ×BS(t) + a22 × SSa(t) (4.6)

[
RSr(t)
SSr(t)

]
= A×

[
BS(t) RSa(t)
BS(t) SSa(t)

]
(4.7)

where, A =

[
a11 a12
a21 a22

]
The power consumed by the application in any given environment is independent of

the power consumed by the smartphone under no load, since the two functionalities are
independent of each other. FastICA, a Blind Source Separation (BSS) technique [35] used
to find the independent power signals, Sig1(t) and Sig2(t), which are the power signa-
tures of the same app alone in the trusted environment and in the suspicious environment,
respectively. FastICA maximizes the mutual information within the samples of an inde-
pendent component while minimizing the mutual information between the independent
components. We use FastICA to estimate A, the mixing matrix and hence W, the de-
mixing matrix to separate the input into a set of source signals from a set of mixed signals,
without the aid of information (or with very little information) about the source signals or
the mixing process.

4.1.3 Normalization

The Reference Signal RSa(t), Suspicious Signal SSa(t), and the independent components
obtained from FastICA Sig1(t) and Sig2(t) are normalized to a scale of [0,1] based on
Equation 4.8, to remove ambiguity due to scaling and provide for more accurate compar-
ison. The outputs NRSa(t), NSSa(t), NSig1(t) and Sig2(t) are the respective similarly
computed normalized signals.

NRSa(t) =
(RSa(t) −Min(RSa(t)))

(Max(RSa(t)) −Min(RSa(t)))
(4.8)
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4.1.4 Comparison of Similarity

The independent signals obtained from FastICA need to be compared to the reference
signal to check for similarity. If the signals are similar, then we can safely assume that
there is no anomalous behavior on the smartphone. The signals are compared in pairs
as shown in Table 4.1, and the measure of the similarity is noted. The inputs are the
normalized Reference Signal NRSa(t), the normalized Suspicious Signal NSSa(t), and the
normalized independent components NSig1(t) and NSig2(t). We have four pairs and thus
four outputs CC11, CC12, CC21, CC22, where CC stands for Cross-Correlation coefficient.
The formula used for calculating the Cross-Correlation coefficient is:

Table 4.1: Comparison of Similarity

Cross-Correlation Coefficient NRSa(t) NSSa(t)
NSig1(t) CC11 CC12

NSig2(t) CC21 CC22

CCij =

∑l
t=1

(
Xi (t) −Xi

) (
Xj (t) −Xj

)√∑l
t=1

(
Xi (t) −Xi

)2∑l
t=1

(
Xj (t) −Xj

)2 (4.9)

where, Xi is one of NSig1(t) and NSig2(t), and Xi is their respective mean; Xj is one of
NRSa(t) and NSSa(t), and Xj is their respective mean; and l is the length of the signals.

4.1.5 Detection of Anomalous Behavior

The reference signals are used for the detection of anomalous behavior when the same
app is run in the future. The set of reference signals, RS1(t), RS2(t), . . . , RSn(t) contain
measurements of the power consumed by the smartphone when a particular app is run.
These measurements are taken for different scenarios or functions for which the app can
be used. The outputs of Independent Component Analysis (ICA), Sig1(t) and Sig2(t), are
mutually independent. We need to determine if these signals are different because, the
power consumed for similar functions of the smartphone are different for different points
in time or because there is an anomalous behavior on the smartphone. Hence, Sig1(t) and
Sig2(t) are compared with SSa(t) and RSa(t) after normalization, as shown in Table 4.1.
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Different combinations of the reference signals, RSr(t) (1 ≤ r ≤ n), were provided as inputs
to the proposed model and the obtained values of CCij were analyzed. We observed that
when neither of the inputs showed anomalous behavior, at least two of the values of CCij

were greater than δCC , where δCC is the minimum extraction threshold value. This value
will be used for detecting anomalous behavior. Every app has some dynamic component
involved with regard to the power consumed for the same functions. Hence, for a particular
reference signal which is not very similar to the suspicious signal, the value of CCij could
be less then δCC even though the suspicious signal does not contain anomalous behavior.
SumkCC is the number of values of CCij for a pair of signals, that are less δCC . θCC is the
minimum number of values of CCij required to flag the suspicious signal. S is the number
of combinations that have been flagged; and n is the total number of reference signals used
for a particular suspicious signal. η is a threshold that is set depending on the app being
considered and is the percentage of the combinations that have been flagged as suspicious.
The value will be lower for an app that is more dynamic in its power consumption pattern.
The detection procedure has been depicted as flowchart in Fig. 4.4

The steps to be followed for testing a smartphone for malware are as follows.

Step 1: Selection of the foreground app
The app used by the user when the smartphone is tested for malware is termed as
the foreground app. When the app is selected, the proposed model is run against the
corresponding reference signals, RS1(t), . . . , RSn(t).

Step 2: Operations on the foreground app
The foreground app is used by the user for a fixed duration and the power consumed
by the smartphone is measured and this will be the suspicious signal, SSr(t).

Step 3: Iterative evaluation
The proposed model is run for n iterations with one input, SSr(t) kept constant and
the other input varying from RS1(t) to RSn(t). The corresponding values of CCij

and SumkCC are calculated and stored.

Step 4: Anomalous Behavior detection
The number of CCij values greater than δCC are calculated for each run. If this value
is less than θCC , then the value of S is incremented by 1.

If S
n
> η, then, Potential anomalous behavior is detected

The detection procedure depends on the thresholds, δCC , θCC and η. The extracted
independent components of an app with a more dynamic power consumption pattern, might
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Figure 4.4: Detection of Anomalous Behavior

not be very similar to the Reference signals RSn and the value of CCij is low even when the
smartphone has no anomalous behavior. Hence, the values of δCC and θCC is lower for apps
with dynamic power consumption pattern than the apps with a more predictable power
consumption pattern. The value of η is the final decision boundary and is also selected
based on the probability of the power consumption pattern being similar or dissimilar.

We conducted experiments with YouTube app. YouTube is not very dynamic in its
power consumption pattern, for the same sequence of steps. Hence the value of δCC and
θCC used were 0.89 and 2. The values were selected by training the model with a separate
set of Reference Signals. The value of η was set at 0.2 because it was observed that 80%
of Reference Signals had a similarity greater than δCC and θCC . Similarly, the values of
δCC and θCC were selected when low pass filters were used in the model. The values of the
thresholds used are shown in Table 4.2.
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Table 4.2: Values of the Thresholds

Approach δCC θCC η
No Filter 0.89 2 0.200

With fc = 625Hz 0.89 2 0.133
With fc = 1250Hz 0.90 2 0.266

4.2 Illustration of the Methodology

Let us look at an example that illustrates how the proposed detection methodology works.
The length of the signals RSr(t), SSr(t) and BS(t) is 5. Approximations of the signals are
used in this illustration.

4.2.1 Ground Truth Determination and Pre-Processing

We obtain the following RSr(t), SSr(t) and BS(t) vectors from measurements using Fig.
3.3.

RSr(t) = [910.02 982.63 872.69 857.17 878.84]

SSr(t) = [722.09 646.45 2039.63 2035.32 594.49]

BS(t) = [9.10 9.88 17.34 10.19 13.48]

The reference signal RSr(t), suspicious signal, SSr(t) and base signal BS(t) are con-
verted to the frequency domain using Fast Fourier Transform as shown in Equation (4.10).

RSr (f) =
4∑

t=0

RSr (t) e−
2πi

l
tf

SSr (f) =
4∑

t=0

SSr (t) e−
2πi

l
tf

BS (f) =
4∑

t=0

BS (t) e−
2πi

l
tf

(4.10)
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The spectral components of the Base Signal BS(t) are subtracted from RSr(t) and
SSr(t) as shown in Equations (4.11), to obtain the power consumed by just the app. A
direct subtraction is possible because the signals are in the frequency domain and of the
same length and hence have the same frequency index.

RSa (f) = RSr (f) −BS (f)

SSa (f) = SSr (f) −BS (f)
(4.11)

The signals are now converted back to the time domain using Inverse Fast Fourier
Transform as shown in Equations (4.12).

RSa (t) =
4∑

n=0

RSa (f) e
2π
l
tf

SSa (t) =
4∑

n=0

SSa (f) e
2π
l
tf

(4.12)

RSa(t) = [900.92 972.75 855.35 846.98 865.36]

SSa(t) = [713.01 636.62 2022.31 2025.12 581.02]

4.2.2 Blind Source Separation (BSS)

The signal RSr(t) is a linear combination of BS(t) and RSa(t); similarly, SSr(t) is a linear
combination of BS(t) and SSa(t), as shown in Equation (4.13). The signals BS(t) and
RSa(t), and BS(t) and SSa(t) are mixed according to a mixing matrix A to obtain the
signals RSr(t) and SSr(t), respectively. The objective of using Blind Source Separation is
to determine the mixing matrix A and hence calculate the de-mixing matrix W which is
the pseudo-inverse of A.[

RSa(1) . . . RSa(5)
SSr(1) . . . SSr(5)

]
= A×

[
Sig1(1) . . . Sig1(5)
Sig2(1) . . . Sig2(5)

]
(4.13)

The independent components Sig1(t) and Sig2(t) are obtained by multiplying the de-
mixing matrix W with the input mixed signals as shown in Equation (4.14).
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[
Sig1(1) . . . Sig1(5)
Sig2(1) . . . Sig2(5)

]
= W ×

[
RSa(1) . . . RSa(5)
SSr(1) . . . SSr(5)

]
(4.14)

=

[
−0.5999 −0.4542 −2.5318 −2.5331 −0.4299
27.3408 29.3569 27.8915 27.4351 26.2763

]

4.2.3 Normalization

NRSa(t) is computed from Equation (4.8). Similarly, NSSa(t), NSig1(t) and NSig2(t)
are computed in a similar fashion by applying Equation (4.8). The values of NRSa(t),
NSSa(t), NSig1(t) and NSig2(t) are given below.

NRSa(t) = [0.4289 1.0000 0.0666 0 0.1461]

NSSr(t) = [.0914 0.0385 0.9980 1.0000 0]

NSig1(t) = [0.9192 0.9885 0.0007 0 1.0000]

NSig2(t) = [0.3455 1.0000 0.5243 0.3762 0]

4.2.4 Comparison of Similarity

The normalized signals are compared with the apriori data for similarity as shown in Table
4.3, which is an instance of Table 4.1. The entries of 4.3 are computed using Equation
(4.9).

4.2.5 Detection of Anomalous Behavior

To detect an unknown app, one needs to evaluate the conditions explained in subsection
4.1.5.

4.3 Validation of the model, analysis and results

We ran the same sequence of steps on the YouTube app in a trusted environment and mea-
sured the power consumed by the smartphone. This was repeated 15 (i.e., n = 15) times
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Table 4.3: Comparison of Similarity: An Example

Cross-Correlation Coefficient NRSa(t) NSSa(t)
NSig1(t) 0.8275 0.0516
NSig2(t) 0.8680 0.5524

and the duration of each run was 300 seconds. This will be considered as the reference
signals RS1(t), . . . , RS15(t). We developed an app that runs in the background emulating
anomalous behavior. This background app alternates between actively downloading files
and being dormant, based on a given duty cycle (Dut). The analogy is that an anomalous
behavior implies an undesired app in the smartphone that is dormant most of the time but
becomes active at certain intervals. The background app remains dormant and starts exe-
cuting when the YouTube app is launched. The ON and OFF periods of the background
app depends on the duty cycle we specify. The power consumed by this background app,
considered as the power consumed by an anomalous behavior results in a change in the
power consumption pattern of the smartphone as seen in Fig. 4.2. The proposed model
makes use of this change in power consumption to detect the anaomalous behavior. This
technique makes the assumption that the malware code does not monitor the tasks being
performed by the smartphone and is independent of the nature of the device.
We conducted experiments with the anomalous behavior having duty cycles 0.1%, 0.2%,
0.3%, . . . , 0.8%, 0.9%, 1%, 2%, 3%, 4%, 8% and 12%. We also consider two different cases
of no anomalous behavior. The second set of 15 readings were taken two months after the
first set to account for change in the behavior of the app over time. The reason for choosing
low duty cycles is that we are interested in detecting anomalous behavior that is active
for short intervals of time, and which would otherwise be difficult to detect by analyzing
power consumption of the smartphone. The same sequence of steps as done to measure
RSn, were repeated on the YouTube app, but, with the anomalous behavior present, and
the power was measured. These signals, denoted as SSn(t) and were provided as inputs
to the model, and the accuracy of model was evaluated. Accuracy here is the number of
correct identifications divided by the total number of signals. The results of the validation
of the model are shown in Fig. ??.
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4.3.1 Analysis and Results

The experiments were done with the YouTube app and a custom designed app (Anomalous
behavior) that we have developed for testing. The same sequence of steps were repeated
and the power was measured. The YouTube app was run for a duration of 5 minutes and
the measurements were taken at 5000 samples/sec. First, only the YouTube app was run
and the same video played. This was repeated 15 times and the measurements were stored
as RS1(t), . . . , RS15(t), the reference signals.

Figure 4.5: Accuracy in detecting malware with Lower Duty Cycles

Next, the same sequence of steps were repeated as before, but, with anomalous behavior
of different duty cycles in the background. This was also repeated 15 times for each of the
duty cycles. The measurements were stored as SS1(t),. . . , SS15(t), the suspicious signals.

Since we have 17 different duty cycles, we have a total of 225 suspicious signals. The
proposed model was validated as described in Sections 4.1 and 4.3 without using a filter,
with a low pass butterworth filter with cut-off frequency, fc = 625Hz and then with a low
pass butterworth filter with cut-off frequency, fc = 1250Hz. The accuracy of the proposed
model was calculated for each of the duty cycles and for each of the validations. As seen
in Fig. 4.5, the accuracy of the model for 0% Duty Cycle is 66.67% but reduces to 10%
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Figure 4.6: Accuracy in detecting malware with Higher Duty Cycles

for the new set of readings. Thus with time, the number of false positives increase. The
model performs best for malware with duty cycle 2% and 3% and has an accuracy of 100%.
The lowest accuracy is for the signals with malware with a duty cycle of 4%. This might
be because the malware becomes active long enough to resemble the power consumption
pattern of the YouTube app and hence ICA is not able to differentiate the signals properly.
We observed that the use of a low pass filter resulted in better accuracy as seen in Fig. 4.5
and Fig. 4.6, however, it resulted in an increase in the rate of false positive. This could be
because the high frequency components for the ground truths are eliminated by the low
pass filter and only the low frequency components are compared.
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Chapter 5

Detection of Anomalous Behavior
based on Similarity Matrix

This chapter describes a new approach to detect anomalous behavior in smartphones based
on the experiments conducted in Chapter 3 and validates the approach while presenting a
comparision to the results obtained in Chapter 4

5.1 Introduction

The power consumption pattern of a smartphone is not deterministic and varies between
certain ranges for the same sequence of steps. This makes it difficult to compare the
current power consumption to one particular historical data and hence the current data
has to be compared with a larger historical dataset. Further, the power consumed by a
malware or an anomalous behavior would superimpose wit the general power consumption
of the smartphone. Since the probability distributions cannot be accurately predicted,
Independent component analysis is fairly limited as a differentiator as discussed in 4.1. In
the analysis of the validation of the model proposed in Chapter 4, it was was observed that
the use of a Low pass filter improved the accuracy for most of the anomalies. However,
there was in increase in the number of false positives. When the detection procedure
described in Section 4.1 was run with Cross-Correlation coefficient, we observed that we
could achieve similar results even without the use of Independent Component Analysis.
The signals were compared with the power signals measured in the trusted environment
using the cross - correlation formula and as we can see in Fig. 5.1, there is some degree of
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differentiation between the signals containing malware with differing duty cylcles, however
there is no clear distinction between the no malware signals and those containing malware.
When the lower frequencies of the signals are compared, we oberserve that the similarity
of signals varies for different bands of frequencies.

Figure 5.1: Similarity of signals using a single comparison

Based on these observations we proposed a new modified model that uses a similar-
ity matrix to detect anomalous behavior. The similarity matrix consists of a matrix of
thresholds obtaining through an array of low pass filters.
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(a) CC = 0.9746 (b) CC = 0.9678

(c) CC = 0.9681 (d) CC = 0.9763

(e) CC = 0.9788 (f) CC = 0.9793

Figure 5.2: Illustration of similarity of signal in Lower Frequencies

5.2 Methodology

The proposed model consists of three steps: Thresholding, comparison of similarity and
detection of anomlaous behavior as shown in Fig. 5.3. Cross Correlation coefficient is a
good measure for comparing similarity and hence is used for both thresholding and signal
comparison. The formula used for calculating the Cross-Correlation coefficient is:
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CCij =

∑l
t=1

(
sigi (t) − sigi

) (
sigj (t) sigj

)√∑l
t=1

(
sigi (t) − sigi

)2∑l
t=1

(
sigj (t) − sigj

)2 (5.1)

Figure 5.3: Anomaly Detection using Similarity Matrix

5.2.1 Thresholding

In this step we compare the degree of similarity of the reference signals RSr(t), 1 ≤ r ≤
N , where N is the number of reference signals. As we have N reference signals, N ×
(N − 1) different combinations are possible. The similarity of each of these combinations
are calculated using Equation 5.1 and an array of Low Pass IIR filters to establish a
matrix of thresholds, CC(th), that will used to detect anomalous behavior. The input
to this step is the set of reference signals, RSt(t), RS2(t), . . . , RSN(t) and the output is a
(N × (N − 1))×L matrix, where L is the number of Low Pass IIR filters used. The steps
followed to determine the threshold matrix are as follows:
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Step 1: We select one reference signal, say, RS1(t) and pass the rest of the reference
signals, RS2(t), RS3(t), . . . , RSN(t) through a Low Pass filter. The Low Pass filter is
an IIR filter of order 20, with a Pass Band Frequency of 1Hz and Pass Band Ripple
0.1.

Step 2: In this step, we calculate the cross correlation coefficients of RS1(t) with each
of the filtered outputs LRS2(t), LRS3(t), . . . , LRSN(t) and the resultant values are
stored in the column 1 of the CC(th).

Step 3: We repeat steps 1 and 2 for the remaining reference signals and the subsequent
cross correlation coeffients are appended to column 1 of matrix CC(th).

Step 4: The Low Pass IIR filter is replaced with another Low Pass IIR filter with Pass
Band Frequency of 2Hz and steps 1,2 and 3 are repeated. The resultant cross corre-
lation values are stored in the second column of the matrix CCth. The same sequence
of steps are repeated with filters of Pass Band Frequencies 3Hz, 4Hz, . . . ,KHz and
the cross correlation coefficients are stored in the corresponding columns, to obtain
the (N × (N − 1)) × L threshold matrix.

A flow chart representing the steps followed for thresholding is shown in Fig. 5.4.

5.2.2 Comparison of Similarity

The power consumed by the device is measured and stored as suspicious signal, SS(t). We
need to determine if this signal is indicative of a device exhibiting anomalous behavior or
normal behavior. To determine the behavior of the device, we determine the similarity of
the lower spectral components of the suspicious signal SS(t) and the reference signals. The
inputs of this step are the reference signals RS1(t), RS2(t), . . . , RSN(t) and the suspicious
signal, SS(t) and the output is a N × L similarity matrix, CCSS. The steps followed are
explained bellow and have also been represented as a flow chart in Fig. 5.5.

Step 1: The suspicious signal, SS(t) is passed through a Low Pass IIR filter of order
20, with a Pass Band Frequency of 1Hz and Pass Band Ripple 0.1 and the filtered
signal is called LSS(t). The similarity of the filtered signal LSS(t) and the reference
signals is determined by calculating of the cross correlation coefficient of LSS(t) and
each of the reference signals, RS1(t), RS2(t), . . . , RSN(t), and the calculated values
are stored in column 1 of the similarity matrix, CCSS.
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Figure 5.4: Thresholding Methodology

Step 2: We repeat step 1 with Low Pass IIR filters of pass band frequencies of 2Hz, 3Hz, . . . ,KHz
and the calculated cross correlated coefficients are stored in the corresponding columns
of the similarity matrix, CC(SS).

5.2.3 Detection of Anomalous Behavior

The step involves an iterative comparison of the degree of similarity between the suspicious
signal, SS(t) and the reference signals, RS1(t), . . . , RSN(t); and the similarity or consis-
tency of the reference signals. The inputs to this step are the threshold matrix CCth and
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Figure 5.5: Steps followed for similarity comparison

similarity matrix CCSS; and the outputs are a similarity count CountCC and a decision
indicating the presence or absence of anomalous behavior in the device. A flowchart shown
in Fig. 5.6 depicts the control flow for detecting anomalous behavior. From the experi-
ments conducted, we understand that the similarity of power consumption in the absence
of anomalous behavior lies largely within a certain range, with a few signals that show
increased variance. The presence of anomalous behavior is enough to shift the number
of values beyond the range mentioned earlier and hence calculating the number of these
occurrences has help us in detecting anomalous behavior in the smartphone.

Step 1: Every value in column 1 CCSS is compared with each of the values in column 1
of CCth. If the value in CCSS is lower than the value of CCth, it means that the
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suspicious signal is less similar and hence may be anomalous. Hence, the counter,
CountCC is incremented by 1.

Steps 2: Step 1 is repeated for all the N columns of CCSS and the average countCC is
calculated.

Step 3: If the average is greater than a threshold η, then the smartphone has anomalous
behavior.

Figure 5.6: step 3: Detection of Anomalous Behavior
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5.3 Validation of the model, analysis and results

Experiments were conducted to measure the power consumption of the smartphone in a
trusted environment, thus exhibiting no anomalous behavior; and in the presence of a
background app with varying duty cycles. The duty cycle of the background app was
varied from 0.1% to 12% and it was observed that the accuracy of detection of anomalous
behavior was 100% for all the duty cycles except 1% duty cycle, for which it was 93%. The
occurrence of false positives was found to be at 20%, with 80% of no anomalous behavior
accurately detected. The results are shown in Fig. 5.7.

Figure 5.7: Accuracy of the Proposed Model

5.4 Comparision and Discussion

To compare the ICA approach with Similarity Matrix approach, Fig. ?? shows the F-
measure results of both the approaches. The F-measure is a measure of the model’s accu-
racy and is calculated from the precision and recall as shown in Eq. 5.2 which in turn are
calculated by first forming the confusion matrix shown in Table 5.1. Therefore, we believe
it fits the domain of anomalous behavior detection better than accuracy.
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Precision =
TP

TP + FP

Recall =
TP

TP + FN
(5.2)

F -measure =
2 × precision× recall

precision+ recall

Table 5.1: Confusion Matrix
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l

W
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al
w

ar
e

False Positive (FP) True Negative (TN)

The two methods were validated and compared by randomly choosing 10 signals for
each duty cycle, where 5 had malware and the other 5 had no malware. As seen in Fig. 5.8
and Fig. 5.9, the Similarity Matrix approach performs better for anomalous behavior for
all the duty cycles. It is interesting to note that both the approaches had a dip in accuracy
for 1% duty cycle, but detected all the malware below 1% duty cycle. This is because,
malware with such a short activity window, results in small bursts in power consumption
which alter the signal and hence can be detected.
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Figure 5.8: F-measure for malware with lower Duty Cycle

Figure 5.9: F-measure for malware with higher Duty Cycle

54



The values of precision, recall and F-measure calculated through Equations 5.2 for ICA
with no filter are shown in Table. 5.2

Table 5.2: Validation of Anomaly Detection based on ICA (No Filter)

Duty Cycle Time in seconds Detection - ICA
TON TOFF TCycle Precision Recall F-measure

0.0 % 0.00 60.00 60 0.83 0.67 0.74
0.1 % 0.06 59.94 60 0.50 0.67 0.57
0.2 % 0.12 59.88 60 0.00 0.00 NA
0.3 % 0.18 59.82 60 0.67 1.00 0.80
0.4 % 0.24 59.76 60 0.67 1.00 0.80
0.5 % 0.30 59.70 60 1.00 0.50 0.67
0.6 % 0.36 59.64 60 1.00 0.50 0.67
0.7 % 0.42 59.58 60 0.50 1.00 0.67
0.8 % 0.48 59.52 60 0.50 0.50 0.50
0.9 % 0.54 59.46 60 0.67 1.00 0.80
1 % 0.60 59.40 60 0.67 0.80 0.73
2 % 1.20 58.80 60 0.71 1.00 0.83
3 % 1.80 58.20 60 0.56 1.00 0.71
4 % 2.40 57.60 60 0.60 0.60 0.60
8 % 4.80 55.20 60 0.77 0.60 0.67
12 % 7.20 52.80 60 0.57 0.80 0.67
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The values of precision, recall and F-measure calculated through Equations 5.2 for ICA
with LFP with cut-off frequency, fc = 625Hz are shown in Table. 5.3

Table 5.3: Validation of Anomaly Detection based on ICA with LFP, fc = 625Hz

Duty Cycle Time in seconds Detection - ICA with LFP, fc = 625Hz
TON TOFF TCycle Precision Recall F-measure

0.0 % 0.00 60.00 60 0.83 0.67 0.74
0.1 % 0.06 59.94 60 0.50 1.00 0.67
0.2 % 0.12 59.88 60 0.33 0.50 0.40
0.3 % 0.18 59.82 60 0.67 1.00 0.80
0.4 % 0.24 59.76 60 0.67 1.00 0.80
0.5 % 0.30 59.70 60 0.50 0.50 0.50
0.6 % 0.36 59.64 60 0.50 1.00 0.67
0.7 % 0.42 59.58 60 0.67 1.00 0.80
0.8 % 0.48 59.52 60 0.50 1.00 0.67
0.9 % 0.54 59.46 60 0.67 1.00 0.80
1 % 0.60 59.40 60 0.50 0.80 0.70
2 % 1.20 58.80 60 0.63 1.00 0.86
3 % 1.80 58.20 60 0.63 1.00 0.86
4 % 2.40 57.60 60 0.63 1.00 0.75
8 % 4.80 55.20 60 0.63 1.00 0.82
12 % 7.20 52.80 60 0.63 1.00 0.77
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The values of precision, recall and F-measure calculated through Equations 5.2 for ICA
with LFP with cut-off frequency, fc = 1250Hz are shown in Table. 5.4

Table 5.4: Validation of Anomaly Detection based on ICA with LFP, fc = 1250Hz

Duty Cycle Time in seconds Detection - ICA with LFP, fc = 1250Hz
TON TOFF TCycle Precision Recall F-measure

0.0 % 0.00 60.00 60 0.83 0.67 0.72
0.1 % 0.06 59.94 60 0.60 1.00 0.75
0.2 % 0.12 59.88 60 0.00 0.00 NA
0.3 % 0.18 59.82 60 0.50 1.00 0.67
0.4 % 0.24 59.76 60 0.33 0.50 0.40
0.5 % 0.30 59.70 60 0.33 0.50 0.40
0.6 % 0.36 59.64 60 1.00 1.00 1.00
0.7 % 0.42 59.58 60 0.67 1.00 0.80
0.8 % 0.48 59.52 60 0.50 1.00 0.67
0.9 % 0.54 59.46 60 0.67 1.00 0.80
1 % 0.60 59.40 60 0.44 0.80 0.57
2 % 1.20 58.80 60 0.63 1.00 0.77
3 % 1.80 58.20 60 0.56 1.00 0.71
4 % 2.40 57.60 60 0.56 1.00 0.71
8 % 4.80 55.20 60 0.50 0.80 0.61
12 % 7.20 52.80 60 0.56 1.00 0.71
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The values of precision, recall and F-measure calculated through Equations 5.2 for
anomaly detection using Similarity Matrix (SM) are shown in Table. 5.5

Table 5.5: Validation of Anomaly Detection based on Similarity Matrix

Duty Cycle Time in seconds Detection - SM
TON TOFF TCycle Precision Recall F-measure

0.0 % 0.00 60.00 60 0.83 1.00 0.91
0.1 % 0.06 59.94 60 0.83 1.00 0.91
0.2 % 0.12 59.88 60 0.83 1.00 0.91
0.3 % 0.18 59.82 60 0.83 1.00 0.91
0.4 % 0.24 59.76 60 0.83 1.00 0.91
0.5 % 0.30 59.70 60 0.83 1.00 0.91
0.6 % 0.36 59.64 60 0.83 1.00 0.91
0.7 % 0.42 59.58 60 0.83 1.00 0.91
0.8 % 0.48 59.52 60 0.83 1.00 0.91
0.9 % 0.54 59.46 60 0.83 1.00 0.91
1 % 0.60 59.40 60 0.82 0.93 0.87
2 % 1.20 58.80 60 0.83 1.00 0.91
3 % 1.80 58.20 60 0.83 1.00 0.91
4 % 2.40 57.60 60 0.83 1.00 0.91
8 % 4.80 55.20 60 0.83 1.00 0.91
12 % 7.20 52.80 60 0.83 1.00 0.91
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Chapter 6

Conclusion and Future Work

In this thesis, we have proposed a model for detection of anomalous behavior using signal
processing techniques. We developed a customized app to emulate an anomalous behav-
ior and measured the power consumed by the smartphone with and without anomalous
behavior. The intensity of the anomalous behavior was varied based on duty cycle. The
measured power readings were used to detect anomalous behavior. The detection was done
using two different approaches and the results were compared. It has been observed that
detection model with ICA had an accuracy of 76.22% without the use of filters, but in-
creased to 92.89% when a low pass filter with cut-off frequency 625Hz was used. The rate
of false positives was 40%. The Similarity Matrix approach performed better in detecting
anomalous behavior and had a detection rate of 99.56% and a false positive rate of 82%
which is significantly better than any of the methods surveyed in the literature.

It was observed that both the methods are complementary, since both of them have
the same approach with the only difference being the use of ICA in the first model. The
detection model based on Similarity Matrix was more resource intensive than the model
based on ICA. For future work, we aim to combine both the methods and increase the
accuracy of detection whilst using less of the resources. The proposed models used low
pass filters with cut-off frequencies 625Hz and 1250Hz for ICA and 1−5Hz for Similarity
Matrix. For future work, the effectiveness of using low pass and high pass filters will be
investigated. The validations and experiments done in this thesis used only the Youtube
app. In future, We will be validating the model for other types of foreground apps and
also include real time malware for detection.

59



References

[1] F-secure mobile threat report q1 2014, 204.

[2] Malware life cycle. http://slideplayer.com/slide/1467916/4/images/4/Life+

cycle+of+a+modern+attack.jpg.

[3] Monsoon power monitor. http://msoon.github.io/powermonitor/.

[4] Monsoon power solutions. https://www.msoon.com/LabEquipment/PowerMonitor/.

[5] Samsung galaxy s5. http://www.gsmarena.com/samsung_galaxy_s5_neo-6506.

php.

[6] Staistica, the statistics portal. https://www.statista.com/statistics/330695/

number-of-smartphone-users-worldwide/.

[7] Battery-based intrusion detection a first line of defense, June 2005.

[8] It threat evolution. https://securelist.com/

it-threat-evolution-q2-2017-statistics/79432/, 2017.

[9] Hajer Al Housani, Hadi Otrok, Rabeb Mizouni, Jean-Marc Robert, and Azzam
Mourad. Towards smart anti-malwares for battery-powered devices. In New Tech-
nologies, Mobility and Security (NTMS), 2012 5th International Conference on, pages
1–4. IEEE, 2012.

[10] Muhammad Anshari, Mohammad Nabil Almunawar, Masitah Shahrill, Danang Kun-
coro Wicaksono, and Miftachul Huda. Smartphones usage in the classrooms: Learning
aid or interference? Education and Information Technologies, pages 1–17, 2017.

[11] L. Apvrille and A. Apvrille. Identifying unknown android malware with feature ex-
tractions and classification techniques. In 2015 IEEE Trustcom/BigDataSE/ISPA,
volume 1, pages 182–189, Aug 2015.

60

http://slideplayer.com/slide/1467916/4/images/4/Life+cycle+of+a+modern+attack.jpg
http://slideplayer.com/slide/1467916/4/images/4/Life+cycle+of+a+modern+attack.jpg
http://msoon.github.io/powermonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/
http://www.gsmarena.com/samsung_galaxy_s5_neo-6506.php
http://www.gsmarena.com/samsung_galaxy_s5_neo-6506.php
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://securelist.com/it-threat-evolution-q2-2017-statistics/79432/
https://securelist.com/it-threat-evolution-q2-2017-statistics/79432/


[12] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and
CERT Siemens. Drebin: Effective and explainable detection of android malware in
your pocket. In NDSS, 2014.

[13] GDATA Security Blog. Malware trends. https://www.gdatasoftware.com/blog/

2017/04/29666-malware-trends-2017, 2017.

[14] Maged N Kamel Boulos, Steve Wheeler, Carlos Tavares, and Ray Jones. How smart-
phones are changing the face of mobile and participatory healthcare: an overview,
with example from ecaalyx. Biomedical engineering online, 10(1):24, 2011.

[15] Jozef Bucko. Security of smart banking applications in slovakia. Journal of theoretical
and applied electronic commerce research, 12(1):42–52, 2017.

[16] T. K. Buennemeyer. Mobile device profiling and intrusion detection using smart bat-
teries. In Proceedings of the 41st Annual Hawaii International Conference on System
Sciences (HICSS 2008), pages 296–296, Jan 2008.

[17] Timothy K Buennemeyer, Theresa M Nelson, Lee M Clagett, John P Dunning,
Randy C Marchany, and Joseph G Tront. Mobile device profiling and intrusion detec-
tion using smart batteries. In Hawaii International Conference on System Sciences,
Proceedings of the 41st Annual, pages 296–296. IEEE, 2008.

[18] Niken Dwi Wahyu Cahyani, Ben Martini, Kim-Kwang Raymond Choo, and AKBP Al-
Azhar. Forensic data acquisition from cloud-of-things devices: windows smartphones
as a case study. Concurrency and Computation: Practice and Experience, 29(14),
2017.

[19] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3):15, 2009.

[20] Bonnie A Clough and Leanne M Casey. The smart therapist: A look to the future
of smartphones and mhealth technologies in psychotherapy. Professional Psychology:
Research and Practice, 46(3):147, 2015.

[21] Monica Curti, Alessio Merlo, Mauro Migliardi, and Simone Schiappacasse. Towards
energy-aware intrusion detection systems on mobile devices. In High Performance
Computing and Simulation (HPCS), 2013 International Conference on, pages 289–
296. IEEE, 2013.

61

https://www.gdatasoftware.com/blog/2017/04/29666-malware-trends-2017
https://www.gdatasoftware.com/blog/2017/04/29666-malware-trends-2017


[22] Pasquale Daponte, L De Vito, F Picariello, and M Riccio. State of the art and
future developments of measurement applications on smartphones. Measurement,
46(9):3291–3307, 2013.

[23] Bryan Dixon, Yifei Jiang, Abhishek Jaiantilal, and Shivakant Mishra. Location based
power analysis to detect malicious code in smartphones. In Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and mobile devices, pages
27–32. ACM, 2011.

[24] E Ray Dorsey, Michael V McConnell, Stanley Y Shaw, Andrew D Trister, Stephen H
Friend, et al. The use of smartphones for health research. Academic Medicine,
92(2):157–160, 2017.

[25] J ea Qadri. A review of significance of energy-consumption anomaly in malware
detection in mobile devices. International Journal on Cyber Situational Awareness,
1(1), 2016.

[26] Marwa M. A. Elfattah, Aliaa A. A. Youssif, and Ebada Sarhan Ahmed. Handsets
malware threats and facing techniques. CoRR, abs/1204.1601, 2012.

[27] Karim O. Elish, Danfeng (daphne Yao, and Barbara G. Ryder. User-centric depen-
dence analysis for identifying malicious mobile apps.

[28] Karim O Elish, Danfeng Yao, and Barbara G Ryder. User-centric dependence analysis
for identifying malicious mobile apps. In Workshop on Mobile Security Technologies,
2012.

[29] William Enck. Taintdroid: An information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’10, pages 393–407, 2010.

[30] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun,
Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid:
an information-flow tracking system for realtime privacy monitoring on smartphones.
ACM Transactions on Computer Systems (TOCS), 32(2):5, 2014.

[31] The Guardian. How secure is your smartphone. https://www.theguardian.com/

media-network/2015/sep/29/how-secure-is-your-smartphone, 2015.

[32] M. Guri, G. Kedma, B. Zadov, and Y. Elovici. Trusted detection of sensitive activi-
ties on mobile phones using power consumption measurements. In 2014 IEEE Joint
Intelligence and Security Informatics Conference, pages 145–151, 2014.

62

https://www.theguardian.com/media-network/2015/sep/29/how-secure-is-your-smartphone
https://www.theguardian.com/media-network/2015/sep/29/how-secure-is-your-smartphone


[33] Mordechai Guri, Yuri Poliak, Bracha Shapira, and Yuval Elovici. Joker: Trusted
detection of kernel rootkits in android devices via jtag interface. In Trust-
com/BigDataSE/ISPA, 2015 IEEE, volume 1, pages 65–73. IEEE, 2015.

[34] Jianjun Huang and Xiangyu Zhang. Asdroid: Detecting stealthy behaviors in android
applications by user interface and program behavior contradiction. In Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014, pages 1036–
1046, 2014.

[35] Aapo Hyvarinen. Fast and robust fixed-point algorithms for independent component
analysis. IEEE transactions on Neural Networks, 10(3):626–634, 1999.

[36] Nayeem Islam and Roy Want. Smartphones: Past, present, and future. IEEE Perva-
sive Computing, 13(4):89–92, 2014.

[37] International Telecommunication Union (ITU). Measuring the information so-
ciety report volume 1. https://www.itu.int/en/ITU-/Statistics/Documents/

publications/misr2017/MISR2017_Volume1.pdf, 2017.

[38] Grant A Jacoby and NathanielJ Davis. Battery-based intrusion detection. In Global
Telecommunications Conference, 2004. GLOBECOM’04. IEEE, volume 4, pages
2250–2255. IEEE, 2004.

[39] H. Kim, K. G. Shin, and P. Pillai. Modelz: Monitoring, detection, and analysis
of energy-greedy anomalies in mobile handsets. IEEE Trans. on Mobile Computing,
10(7):968–981, July 2011.

[40] Hahnsang Kim, Kang G Shin, and Padmanabhan Pillai. Modelz: monitoring, detec-
tion, and analysis of energy-greedy anomalies in mobile handsets. IEEE Transactions
on Mobile Computing, 10(7):968–981, 2011.

[41] Hahnsang Kim, Joshua Smith, and Kang G. Shin. Detecting energy-greedy anomalies
and mobile malware variants. In Proceedings of the 6th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’08, pages 239–252, 2008.

[42] S. Kumar, A. Viinikainen, and T. Hamalainen. Machine learning classification model
for network based intrusion detection system. In 2016 11th International Conference
for Internet Technology and Secured Transactions (ICITST), pages 242–249, Dec 2016.

[43] Malwarebytes Labs. State of malware report. https://www.malwarebytes.com/pdf/
white-papers/stateofmalware.pdf, 2017.

63

https://www.itu.int/en/ITU-/Statistics/Documents/publications/misr2017/MISR2017_Volume1.pdf
https://www.itu.int/en/ITU-/Statistics/Documents/publications/misr2017/MISR2017_Volume1.pdf
https://www.malwarebytes.com/pdf/white-papers/stateofmalware.pdf
https://www.malwarebytes.com/pdf/white-papers/stateofmalware.pdf


[44] McAfee Labs. Threats report. https://www.mcafee.com/us/resources/reports/

rp-quarterly-threats-jun-2017.pdf, June 2017.

[45] Mobile Marketing. http://mobilemarketingmagazine.com/

24bn-smartphone-users-in-2017-says-emarketer, 2017.

[46] Yisroel Mirsky, Asaf Shabtai, Bracha Shapira, Yuval Elovici, and Lior Rokach.
Anomaly detection for smartphone data streams. Pervasive and Mobile Computing,
35:83–107, 2017.

[47] Prashanth Mohan, Venkata N Padmanabhan, and Ramachandran Ramjee. Nericell:
rich monitoring of road and traffic conditions using mobile smartphones. In Proceedings
of the 6th ACM conference on Embedded network sensor systems, pages 323–336.
ACM, 2008.

[48] Abu Saleh Mohammad Mosa, Illhoi Yoo, and Lincoln Sheets. A systematic review
of healthcare applications for smartphones. BMC medical informatics and decision
making, 12(1):67, 2012.

[49] Alexios Mylonas, Stelios Dritsas, Bill Tsoumas, and Dimitris Gritzalis. Smartphone se-
curity evaluation the malware attack case. In Security and Cryptography (SECRYPT),
2011 Proceedings of the International Conference on, pages 25–36. IEEE, 2011.

[50] Ebrahim Nemati, Christina Batteate, and Michael Jerrett. Opportunistic environmen-
tal sensing with smartphones: a critical review of current literature and applications.
Current Environmental Health Reports, 4(3):306–318, 2017.

[51] P. O’Kane, S. Sezer, K. McLaughlin, and E. G. Im. Svm training phase reduction using
dataset feature filtering for malware detection. IEEE Transactions on Information
Forensics and Security, 8(3):500–509, March 2013.

[52] S. Papadopoulos, A. Drosou, and D. Tzovaras. A novel graph-based descriptor for the
detection of billing-related anomalies in cellular mobile networks. IEEE Transactions
on Mobile Computing, 15(11):2655–2668, Nov 2016.

[53] Charles P. Pfleeger, Shari Lawrence Pfleeger, and Jonathan Margulies. Security in
Computing (5th Edition). Prentice Hall Press, Upper Saddle River, NJ, USA, 5th
edition, 2015.

[54] Jameel et al Qadri. A review of significance of energy-consumption anomaly in malware
detection in mobile devices. International Journal on Cyber Situational Awareness,
1(1), 2016.

64

https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-jun-2017.pdf
https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-jun-2017.pdf
http://mobilemarketingmagazine.com/24bn-smartphone-users-in-2017-says-emarketer
http://mobilemarketingmagazine.com/24bn-smartphone-users-in-2017-says-emarketer


[55] Julia Rubin, Michael I Gordon, Nguyen Nguyen, and Martin Rinard. Covert commu-
nication in mobile applications (t). In Automated Software Engineering (ASE), 2015
30th IEEE/ACM International Conference on, pages 647–657. IEEE, 2015.

[56] Aubrey-Derrick Schmidt, Frank Peters, Florian Lamour, Christian Scheel, Seyit Ah-
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