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Abstract

Palletization is the most standard method of packaging and transportation in the retail
industry. Their building involves the solution of a three-dimensional packing problem
with side practical constraints such as item support and pallet stability, leading to what
is known as the mixed-case palletization problem. Motivated by the fact that solving
industry-size instances is still very challenging for current methods, we propose a new
solution methodology that combines data analysis at the instance level and optimization
to build pallets. Item heights are first analyzed to identify possible layers and to derive
relationships between item positions. Items are stacked in pairs and trios to create super
items, which are then arranged to create layers of even height. The resulting layers are
finally stacked to create pallets. The layers are constructed using a reduced-size mixed
integer program as well as a two-dimension placement heuristic. Computational tests on
industry data show that the solution approach is extremely efficient in producing high-
quality solutions in fast computational times.

v





Acknowledgements

First, I would like to thank my supervisor Prof. Samir Elhedhli to whom I am truly
grateful. He offered me the opportunity to transfer to the research-based Masters program,
stimulating my scientific curiosity and passion towards Data Science and Operations Re-
search. I appreciate his always inspiring speeches and extremely positive attitude, his
enormous patience and valuable guidance towards my development in scientific writing (in
a foreign language), and for being supportive and always challenging me.

I would like to thank the readers of this thesis, Prof. Fatma Gzara and Prof. Bissan
Ghaddar for their valuable comments and insights.

I appreciate my colleagues Cynthia Waltho, for being one of the people responsible for
bringing me into the research life. Burak Yildiz for all the help and discussions about bin
packing. Daniel Ulch for the hours and help on all other projects so I could focus on my
thesis.

I am grateful to our industry partner for providing the challenges and resources that
made this thesis possible.

My wife Julia is without any doubt a fundamental part of all this work. For all the
times I could not go forward and she was there to give me strength, inspiration and love,
and for being my partner in all, for inspiring me, pushing me to always leave my comfort
zone, for leaving all behind in Brazil and come to this new life with me.

My father, mother, sisters for being the cornerstone of my life and giving me everything
so I could be here today.

Borges, my friend and boss, to whom I am grateful for the encouragement and support.
My Professors Catai and Chiquito for the inspiration and help.

Thanks to my friend Rodolfo for somehow letting me know that I got into university
that day, and the support during my Masters admission process and move to Canada.

vii





Dedication

I dedicate this to my love Julia, my family and friends, and all the ones like me that
have always been curious and asked so many questions.

ix





Table of Contents

List of Tables xiii

List of Figures xv

1 Introduction 1

2 Literature review 5

3 Problem Definition and Solution Methodology 9

3.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Solution Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Phase 1 - Item Grouping . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.2 Phase 2 - Item Placement . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.3 Support Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Numerical Testing 25

4.1 Tests on the 750-item instance . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Phase 1 - Item grouping . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.2 Phase 2 - Item placement . . . . . . . . . . . . . . . . . . . . . . . 27

5 Conclusion 41

References 43

xi





List of Tables

4.1 Characteristics of the 750-item instance . . . . . . . . . . . . . . . . . . . . 25

4.2 Initial results based on [LL3] . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Final results based on [LL3] . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 3-corner item support per bin - [LL3] . . . . . . . . . . . . . . . . . . . . . 32

4.5 Full support evaluation - [LL3] . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Final results iterative method per group - MaxRects . . . . . . . . . . . . . 33

4.7 3-corner item support per bin - MaxRects . . . . . . . . . . . . . . . . . . 38

4.8 Full support evaluation - MaxRects . . . . . . . . . . . . . . . . . . . . . . 39

xiii





List of Figures

3.1 Representation of an Item and a Pallet . . . . . . . . . . . . . . . . . . . . 9

3.2 Representation of a Pair and a Trio . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Flowchart for phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Flowchart for the MIP phase . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Flowchart for the MaxRects phase . . . . . . . . . . . . . . . . . . . . . . . 20

3.6 Sample height profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7 Height profile after the first grouping step . . . . . . . . . . . . . . . . . . 22

3.8 Height profile after the second grouping step . . . . . . . . . . . . . . . . . 22

3.9 Optimization results for the three groups . . . . . . . . . . . . . . . . . . . 23

3.10 Optimization result as a long layer . . . . . . . . . . . . . . . . . . . . . . 24

3.11 Final Pallet arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 750-item instance height profile . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 750-item instance height profile after phase 1 . . . . . . . . . . . . . . . . . 27

4.3 Height distribution of the remaining items . . . . . . . . . . . . . . . . . . 29

4.4 Height distribution of the remaining items after grouping . . . . . . . . . . 29

4.5 The final pallets using [LL3] - 1 to 4 . . . . . . . . . . . . . . . . . . . . . 31

4.6 The final pallets using [LL3] - 5 to 8 . . . . . . . . . . . . . . . . . . . . . 32

4.7 The 3 best and worst layers in terms of area coverage using MaxRects . . . 34

4.8 Layer coverage for group 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.9 Layer coverage for group 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xv



4.10 Layer coverage for group 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.11 The final pallets using MaxRects - 1 to 4 . . . . . . . . . . . . . . . . . . . 37

4.12 The final pallets using MaxRects - 5 to 8 . . . . . . . . . . . . . . . . . . . 38

xvi



Chapter 1

Introduction

Transportation and warehousing play a fundamental role in every country’s economy. For
example, they represented 4.3% of Canada’s Global Domestic Product (GDP) in 2015. In
addition, world freight volume is expected to increase by a factor of 4.3 by 2050 (Transport
Canada, 2016). Considering this growth, improving efficiency and providing cost effective-
ness are essential to ensure financial sustainability and competitiveness in this industrial
segment.

In in a survey of logistics service providers and companies, 98% of logistics suppli-
ers stated that data-driven decision making is essential to the success of supply chains.
Moreover, 85% of them believe that effective manipulation of big data will become a core
competency in this sector (Capgemini and Langley, 2017). Furthermore, data analytics is
the featured topic of the 2017 edition of the survey. When asked about the most important
initiatives regarding data analytics in logistics and supply chain management, 71% of par-
ticipants identified “Improving process quality and performance”, followed by “Improving
logistics optimization” with 70%.

In this work, we focus on one of the basic and most common forms of goods trans-
portation, which is pallet transportation. The efficiency of pallet transportation depends
on the palletization process, which is the process by which an order, typically very large, is
packed in different pallets. This problem, known as the mixed-case palletization problem,
is a generalization of the three-dimensional bin packing problem (3DBPP).

One and two-dimensional versions of bin packing problems have been extensively stud-
ied as opposed to the more challenging three-dimensional version (Zhao et al., 2016). Three-
dimensional bin packing problems consist of packing items inside a container (bin) where
items are placed side-by-side, parallel to the edges of the container. The problems are often
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categorized by the heterogeneity of items, the characteristics of the bin, and the objective
of the packing (Bortfeldt and Wäscher, 2013).

Aside from basic geometric constraints, Bortfeldt and Wäscher (2013) define five addi-
tional categories. Container-related constraints include weight limit and distribution, while
loading priority, orientation, and stacking are within the item-related category. Cargo-
related constraints include shipment integrity and item-specific allocation. Positioning
constraints impose separation of items, for example, food from cleaning products. Load-
related constraints involve cargo stability. Most of the current work on 3DBPP does not
consider these practical constraints as indicated by Bortfeldt and Wäscher (2013) and Zhao
et al. (2016).

The traditional 3DBPP is already difficult to solve, and the inclusion of practical con-
straints makes the task even more challenging. As exact methods face limitations when
dealing with large instances, approximation methods and heuristics are more suitable to
tackle practical problems. Zhao et al. (2016), while comparing different solution methods,
separate heuristics into placement and improvement. Arranging items in modular blocks
such as walls or layers is the basis of most placement and construction heuristics.

Motivated by the need for more efficient solution methodologies, we propose a data-
driven optimization approach for the mixed-case palletization and three-dimensional bin
packing problems. We combine data analysis and optimization in an efficient solution
methodology where analysis of the item dimensions at the instance level is used to enhance
the optimization by fixing variable and reducing problem size, while also accounting for
practical constraints such as support and stability.

The solution methodology is composed of two phases. The first phase is devoted to,
analyzing the instance under study, identify groups of items that when stacked achieve a
certain target height. A common height can include single as well as special two and three-
item arrangements. The second phase is item placement, and for each common height
a layer is constructed where only pallet depth is enforced. This long layer will later be
divided into multiple layers. By construction, the layers are dense to maximize volume
utilization and provide adequate support. The formation of layers is done using a reduced-
size three-dimensional bin packing mixed-integer program (MIP) formulation as well as a
two-dimensional placement heuristic proposed by Jylänki (2010).

The main contribution of this work is a data-driven solution methodology based on
instance analysis and optimization. The data analysis at the instance level defines the
main blocks of the optimization model and drives the heuristic methodology. It leads to
solutions of large problems that are otherwise out of reach of exact methods and are very
challenging for current heuristics.
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The remainder of this thesis is organized as follows. In Chapter 2, a literature review
is performed. Chapter 3 defines the problem and the solution methodology. Chapter 4
presents the numerical tests and results. Conclusions and future research are given in
Chapter 5.
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Chapter 2

Literature review

Being the core problem in mixed-case palletization, we start by reviewing the literature
on 3DBPP. The review paper by Bortfeldt and Wäscher (2013) provides a definition and
a classification scheme depending on problem characteristics.

Wäscher et al. (2007) classify container loading problem into seven types: Single Stock-
Size Cutting Stock, Multiple Stock-Size Cutting Stock, Residual Cutting Stock, Single
Bin-Size Bin Packing, Multiple Bin-Size Bin Packing, Residual Bin Packing, and Open
Dimension Problems. More details on the specific definition of each category are given by
Wäscher et al. (2007).

Bortfeldt and Wäscher (2013) extend Wäscher et al. (2007) by analyzing 163 papers,
published between 1980 and 2011, focusing on the types of constraints considered. Weight
limits are accounted for in 23 papers, while weight distributions are in 19. Meanwhile,
loading priorities are only in 3 papers, orientation in 15, and stacking in 25 out of the
163 papers reviewed. In addition, 19 papers consider complete-shipment, 13 allocation,
and 28 account for positioning constraints. Finally, load-related stability and complexity
constraints are considered in 61 and 15 papers respectively. Although some constraint types
are widely adopted, the authors observe that practicality (by addressing several constraints
simultaneously) is still scarce. As more than 75% of the papers consider at most 2 types
of constraints. This is most likely due to the solution methodologies not being ready to
accommodate such complexity. The current work is a step in this direction.

The recent survey by Zhao et al. (2016) analyzes 113 papers, focusing mainly on solu-
tion approaches: heuristics (placement or improvement) or exact methods. Improvement
heuristics create rules and mechanisms to place items inside the container in order to
generate an initial solution and/or iterate between different solutions. by exploring the
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neighbourhood of the solution. Placement heuristics tackle the problem by building walls,
layers, or blocks of items, and by creating a sequence for the placement. This search can
be associated with a placement heuristic, to construct an initial solution. The authors
note that the number of exact methods is relatively small compared to heuristics, and con-
clude that only a small portion of the papers addresses real-world constraints. They also
emphasize that more challenging and realistic benchmark data-sets need to be proposed.

George and Robinson (1980) present a two-phase construction heuristic based on wall
building. The first phase identifies an empty space to be filled and the second fill it. The
walls are based on the dimensions of the first box placed, which is selected according to
a ranking criteria. Bischoff and Marriott (1990) propose a compound technique based
on two-dimensional packing. They propose a hybrid approach that considers 14 different
heuristics, to select the best solution. The 14 different heuristic base methods come from
combinations of 3 methods and 6 ranking rules, applied to instances ranging from 1 type
of boxes to 20 different types. Based on the results for all methods, the authors propose a
compound heuristic, that apply different methods in a sequence.

To maximize the number of items in a single bin, Mohanty et al. (1994) propose a
heuristic based on the multi-dimensional knapsack problem. Bischoff and Ratcliff (1995)
address the multi-drop container loading problem and present a heuristic that combines
packing and a sequence based on destination. They are able to solve larger problems
than Bischoff and Marriott (1990). Ratcliff and Bischoff (1998) incorporate load bearing
constraints.

Faina (2000) proposes a geometric model to reduce the problem to a finite enumeration,
presenting good results for problems with less than 128 items. Pimpawat and Chaiyaratana
(2001) utilize a co-operative co-evolutionary genetic algorithm. Their results indicate bet-
ter performance in terms of containers required, compared to standard genetic algorithm.
Pisinger (2002) aggregates tree search algorithm to ranking criteria, achieving considerable
improvements in the space filling.

Lodi et al. (2002) introduce a two-phase Tabu search heuristic. In the first phase
items are grouped by height, and then sorted by area. The heuristic is then used as
a base to generate solutions for the Tabu search. Farøe et al. (2003) propose a guided
local search. It initiates with an upper bound generated by a greedy heuristic, then the
algorithm iteratively reduces the number of bins searching for a feasible solution. Moura
and Oliveira (2005) include modifications based on GRASP (greedy randomized adaptive
search procedure) to the framework of George and Robinson (1980), increasing volume use
and cargo stability.

Bischoff (2006) proposes a random search method that accounts for load bearing. It
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creates a scoring framework, accounting for suitability of items and impact on future place-
ments. Crainic et al. (2008) present an extreme point placement heuristic. Extreme points
are identified and items are placed based on a best-fit decreasing heuristic. This work
is developed further in Crainic et al. (2009) where a two-level Tabu search (TS2pack) is
introduced. The first level reduces the number of bins and the second level optimizes the
packing.

Zhu et al. (2012) propose a set covering formulation with a prototype-based column
generation approach. The goal is to minimize the cost of containers used while considering
support constraints. The efficiency is improved by the generation of prototypes, which are
good approximation of columns.

Gonçalves and Resende (2013) combine a biased random-key genetic algorithm to
set the order in which the items are packed and a constructive heuristic combined with
maximal-space representation to determine where each box is placed.

Hifi et al. (2014) use an integer linear programming heuristic that breaks the problem
into a series of single knapsack problems. It is composed of two phases, selection and
positioning. The first phase defines a subset of items susceptible to an active container,
and the second packs the already selected items. A greedy heuristic is added to deal with
larger instances. Elhedhli et al. (2017) propose a slicing heuristic based on the relative
positioning mixed integer formulation that forces dense layers at the bottom of the bins.
The results show good performance on item support.

Toffolo et al. (2017) propose a decomposition method with multi-phase heuristics. The
problem is decomposed into two types of subproblems, stacks and bins. The method, based
on a MIP model, dynamically build layers and pack them into containers. Local search
is also applied to enhance solution performance. Mahvash et al. (2017) study a combined
3DBPP and vehicle routing problem. They decompose the problem and solve it with a
column generation based technique. Wu et al. (2017) propose a three-stage heuristic with
phases defined as: fastener packing, carton packing, and crate packing. The first is used
to determine a packing strategy depending on the item shape, selecting predetermined
packing patterns to maximize the filling rate. The second aims to increase utilization of
the crates while considering sequence and allocation constraints, and the third is a heuristic
based on multi-layer search used to load the blocks created in the previous stages into the
containers.

Formulations based on MIP form an important part of the 3DBPP literature. Chen
et al. (1995) developed a mixed integer formulation based on relative positioning that
considers non-uniform sized items and containers.
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Martello et al. (2000) propose a branch-and-bound method to the 3DBPP with or-
thogonal packing. This work proposes lower bounds on the number of bins. The work is
extended in Martello et al. (2007), where algorithm 864 and a benchmark instance were
proposed.

Fasano (2004) considers orthogonal placement with balancing conditions and proposes
a MIP formulation heuristic. At each iteration the method increases the number of items
picked, maintaining the relative position of the previous solutions. This work is extended
in Fasano (2008) with a recursive procedure based on non-blind local search. Wu et al.
(2010) extend Chen et al. (1995) to take box orientation into account.

Allen et al. (2012) introduce a space indexed formulation to overcome limitation of the
relative positioning model. The method is claimed to be strong but faces limitations due
to the number of variables generated. Paquay et al. (2016) use MIP to minimize unused
space and incorporate some real-world constraints as weight distribution and stability.
Paquay et al. (2017) introduce a heuristic to generate a good initial solution, based on
decomposition and relax-and-fix, insert-and-fix and fractional relax-and-fix methods.

Junqueira et al. (2012b) incorporate vehicle routing into the 3DBPP also accounting
for vertical stability, as an extension of Junqueira et al. (2012a).

Yildiz et al. (submitted in 2017) use a column generation approach where the pricing
is a two-dimensional layer generation problem. They are able to solve large problems in
fast computational time.
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Chapter 3

Problem Definition and Solution
Methodology

In this chapter, we first formulate the 3DBPP as a mixed integer program and then give
the details of the two-phase solution methodology we propose.

3.1 Mathematical Formulation

Consider a set of items i ∈ {1, 2, ..., n} of rectangular shape, with width (wi), depth (di)
and height (hi) that have to be packed in a pallet of width (W ), depth (D), and height (H ).
The items have to be placed parallel to the edges of the pallet with no physical overlap.
An illustration is given in figure 3.1.

Figure 3.1: Representation of an Item and a Pallet
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Given a Cartesian co-ordinate system with origin at the lower left corner of the bin,
the 3DBPP can be modeled as a MIP with decision variables:

csi : the front, lower, left coordinate of item i = 1, 2, ..., n along direction s = x, y, z

psij =

{
1 if item i = 1, 2, ..., n precedes item j = i + 1, 2, ..., n along direction s = x, y, z,

0 otherwise

h : the maximum height of all packed items.

For now, let us assume that the height of the bin, H, is large enough to accommodate
all items, and formulate what is known as the Open Bin Packing problem:

[BPP]: min h

s.t.
∑

s=x,y,z

(psij + psji) ≥ 1 i = 1, ..., n; j = i + 1, ..., n (3.1)

psij + psji ≤ 1 i = 1, ..., n; j = i + 1, ..., n; s = x, y, z (3.2)

csi + lsi ≤ csj + Ls(1− psij) i = 1, ..., n; j = i + 1, ..., n; s = x, y, z (3.3)

0 ≤ csi ≤ Ls − lsi i = 1, ..., n; s = x, y, z (3.4)

czi + lzi ≤ h i = 1, ..., n (3.5)

psij ∈ {0, 1} i = 1, ..., n; j = i + 1, ..., n; s = x, y, z (3.6)

h, csi ≥ 0 i = 1, ..., n; s = x, y, z (3.7)

where, Lx = W, Ly = D, Lz = H, lxi = wi, lyi = di, and lzi = hi; i = 1, ..., n.

The first constraints (3.1) make sure that any two items differ in at least one direction,
which means having at least one relative positioning variable greater than zero. Constraints
(3.2) ensure that an item can not both proceed and precede an other. Constraints (3.3)
prohibit overlap by setting the minimum distance between items along the direction of
non-overlap. Constraints (3.4) place items inside the pallet limits, and constraints (3.5)
define the bin height as the maximum of all item heights. The objective function minimizes
the height of the pallet.
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3.2 Solution Methodology

Due to the complexity of solving mixed-case palletization problems, especially when prac-
tical constraints such as support and stability are incorporated, we propose a two-phase
solution approach that combines data analysis and optimization in an attempt to use infor-
mation about item placement to reduce the complexity of the optimization. The approach
has two main phases.

3.2.1 Phase 1 - Item Grouping

This step aims at identifying subsets of items that can be combined and treated as a single
item. As we implicitly account for item support and pallet stability, we consider two and
tree-item arrangement that are well supported. We call them pairs and trios, respectively.
Figure 3.2 provides an illustration. In addition, we target common heights to be able to
build long layers of even height. The grouping algorithm clusters items and defines the
height of layers so that a stable and well-supported pallet can be built.

Figure 3.2: Representation of a Pair and a Trio

The objective is to generate subsets with defined item combinations to form a homo-
geneous layer (in terms of height), arranged in a way to ensure support. Stacked layers
will form one or multiple pallets. The method starts with a set of items S, and at each
iteration k, generates a list of trios Tk and pairs Pk of items. This information is then
passed on to the placement/optimization phase. The following section provide the details.

Trio generation

A trio Tk is defined as a set of three items where two items, a1 and a2, are placed side by
side over the third item. The base item (b) is selected to have an area that fully support
the two items on top (a1 and a2). The heights of the top items are chosen to be as close
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as possible to each other and total height b + a1 (or b + a2) being within the target height
interval.

The first target height is the tallest item’s height. This is because it is a layer setting
item, i.e., a layer should be at least as tall as this tallest item. For subsequent iterations,
the function combination from library itertools in python is used. This function generates
all combination of a predetermined number of elements (2 items - 1 base and 1 top). Then,
the heights are summed for every combination and the value with the highest occurrence
is taken.

After setting the target height r, two additional parameters are defined: height tolerance
th and trio tolerance tw. The height tolerance th is the maximum deviation allowed on an
accepted height combination. It defines the allowable range as r± th. The trio tolerance tw
is analogous to th, but for the width dimension. The trio generation algorithm is presented
next:
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Algorithm 1 Trio Generation

1: Input:
set of items i = 1, ..., n1 each with dimensions (wi, di, hi)

2: Initialize:
3: Layer height ← r
4: Height tolerance ← th
5: Trio width tolerance ← tw
6: Ttemp: set of temporary Trios ← ∅
7: T : set of Trios ← ∅
8: Ptemp: set of temporary Pairs ← ∅
9: for item i do

10: for item j do
11: if hi + hj ∈ [r − th, r + th] then
12: include i and j as possible pair ← (i, j) ∈ Ptemp

13: end if
14: end for
15: end for
16: for (i1, j) ∈ Ptemp do Find (i2, j) ∈ Ptemp

17: if wi1 + wi1 ∈ [wj − tw, wj + th] then
18: include i1, i2, j as possible trio ← (i1, i2, j) ∈ Ttemp

19: end if
20: end for
21: Calculate trios fitness
22: while Ttemp not ∅ do
23: select trio with highest fitness
24: include trio in final list
25: remove selected items from temporary list
26: end while
27: return List of Trios for iteration k

An important parameter in the trio generation is the fitness. It is defined as: |1 −
area of a1+area of a2

area of b
|. The trios are selected based on the best fitness (lowest value). Ties

are decided for the item listed first. In addition, we also generate pairs of items that are
stacked on top of each other, to achieve a predetermined height.
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Pair generation

Similar to the trios, the remaining items are searched to generate a list of pairs of similar
height. The algorithm to achieve this is described below:

Algorithm 2 Pair Generation

1: Input:
set of items i = 1, ..., n2 each with dimensions (wi, di, hi)

2: Initialize:
3: Layer height ← r
4: Height tolerance ← th
5: Ptemp: set of temporary Pairs ← ∅
6: P : set of Pairs ← ∅
7: for item i do
8: for item j do
9: if hi + hj ∈ [r − th, r + th] then

10: include i and j as possible pair ← (i, j) ∈ Ptemp

11: end if
12: end for
13: end for
14: Calculate pair fitness
15: while Ptemp not ∅ do
16: select pair with highest fitness
17: include pair in final list
18: remove selected items from temporary list
19: end while
20: return List of Pairs for iteration k

For pairs, the fitness is defined as: |1 − area of a
area of b

|. The pairs are selected based on it.
Once this complete procedure is done, three sets of items, pairs P , trios T , and singletons
R are available to form layers. The pairs and trio generation steps are executed repeatedly
until a stopping criteria is met, which can be a predetermined number of iterations or the
size of the remaining-items set. The complete procedure is summarized in Figure 3.3.
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Figure 3.3: Flowchart for phase 1
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The procedure starts with the complete set of items. A target layer height is defined,
and all possible trios are found. The items used for the trios are removed from the set.
With the remaining items, pairs are generated. Again, the covered items are removed
from the set. A check is performed to evaluate if another round is necessary, based on a
minimum size of the remaining group or a predetermined number of rounds to be executed.
If another round is necessary, the procedure is re-started, if not, it is terminated.
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In the following section, we will detail how the output of phase 1 is incorporated into
the placement methods - the mathematical model and the two-dimensional heuristic.

3.2.2 Phase 2 - Item Placement

3.2.2.1 Modified mathematical model

After the item grouping phase, the mathematical formulation [BPP] is modified to incor-
porate the information generated in phase 1. This will reduce the problem complexity.

Problem Decomposition

The first impact from the data analysis is that the placement will be executed on reduced
and selected groups. Within each group, a reduced-size problem is solved using a modified
version of [BPP] where H is fixed to the desired height and W is set to be sufficiently large
to accommodate all items in a long strip. Complete layers will be generated within these
groups. This model is solved repeatedly for different groups, generating multiple layers.

Relative Positioning

The grouping algorithm defines which items are stacked on top of each other given the
predetermined layer height. This enforces pzab = 1 where a is the bottom item and b the
top item in pair (a, b). The same is applied to the trios (a1, a2, b), accounting for the
relations between top items a1 and a2, and the base item b. The corresponding constraints
are pza1b = 1 and pza2b = 1

The paired items should also be aligned, to make sure they sit on top of each other
and not in different places in the x, y plane. This is achieved by the following constraints:
cxa− cxb = 0 and cya− cyb = 0. For the trios the constraints are: cxa1 − cxb = 0 and cya1 − cyb = 0
for top item a1, and cxa2 − cxa1 = lxa1 and cya2 − cyb = 0 for item a2.

Long layer approach

The resulting layer for each group has a homogeneous height, a fixed depth, and a long
width (‘long layer’). To be able to cut it into multiple layers having the depth and width
of the pallet, we introduce artificial items, called separators. These items, have very small
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width, depth D and can be thought of as being sheets of cardboard. Their positioning is
defined by: cxseparatork = k ×W, k = {1, 2, ..., K}, cyseparatork = czseparatork = 0.

Objective function

With the long layer approach, the objective function has to be adapted to minimize the
total length and create dense layers. To achieve that, we maximize the area of items inside
the pallet. In other words, we maximize the area of all items placed in the first section of
the layer, which coincide with the pallet. We define a new binary variable xi for i = 1, ..., n,
which takes a value of 1 if the item i is in the first section of the layer.

Modified model

Given trios T , pairs P , and separators n, the new mathematical model is:
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[LL3]: max
∑
i

(lxi l
y
i )xi

s.t. (3.1)− (3.6)

csi + lsi ≤ r i = 1, ..., n (3.7)

pzab = 1 (a, b) ∈ P (3.8)

pza1b = 1, pza2b = 1 (a1, a2, b) ∈ T (3.9)

cxa − cxb = 0

cya − cyb = 0

cxa1 − cxb = 0

cya1 − cyb = 0

cya2 − cyb = 0

cxa2 − cxa1 = lxa1 (a1, a2, b) ∈ T (3.10)

cxseparatork = k ×W k = {1, ..., K} (3.11)

cyseparatork = czseparatork = 0 k = {1, ..., K} (3.12)

cxi + Mxi ≤ W + M i = 1, ..., n (3.13)

cxi + Wxi ≥ W i = 1, ..., n (3.14)

xi ∈ {0, 1} i = 1, ..., n (3.15)

csi ≥ 0 i = 1, ..., n; s = x, y, z (3.16)

The model is used iteratively for a subset of items until the complete group is covered.
The goal is to form 1 or 2 acceptable layers in each iteration. Constraints (3.7) define
the maximum height as the target height r set in phase 1. Constraints (3.8) define the
relative positioning (on the z coordinate) of items paired in the grouping phase. Constraints
(3.9) do it for the items in a trio. Constraint (3.10) separates the top items in a trio by its
width. Constraints (3.11) and (3.12) set the position of the artificial items (the separators).
Constraints (3.13) and (3.14) ensure that the variable xi has a value of 1 for the items in
the first part of the layer, where we want to maximize the area coverage. The complete
procedure is summarized in Figure 3.4.
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Figure 3.4: Flowchart for the MIP phase
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The procedure starts with the output of phase 1. A reduced subset of items is selected,
as only one or two layers are expected to be built at each iteration. Then, the corresponding
constraints are generated and [LL3] is solved. The resulting layers are accepted only if they
exceed a minimum area coverage of 70%. The covered items are then removed from the
list and new items selected for the next iteration. When all items are placed, a list with
all accepted layers is created. The list is sorted by increasing area coverage and the layers
are stacked to form the pallets.

3.2.2.2 A placement heuristic

An alternative to solving [LL3] is to use a two-dimensional heuristic. The MaxRects
placement heuristic is a two-dimensional bin packing algorithm that places items based
on squares of free space (Jylänki, 2010). In order to adapt it to the two-phase method-
ology, tree-dimensional pair or trio are represented as a two-dimensional projection. For
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a pair, composed items a and b, the projection vi is defined by the expression: vi =
(max{wa, wb},max{da, db}); for a trio composed by items a1, a2, and b the expression is
then vi = (max{(wa1 + wa2), wb},max{da1 , da2 , db}). For each group, a list of rectangles
(projections) is the input for MaxRects. The algorithm returns the layers with the coor-
dinates of each element. The top items are then added based on the information from the
item-grouping phase. Several layers are created covering all items in that group.

The procedure is performed for each group, discarding the layers that do not satisfy the
minimum coverage criteria (70%). These rejected pairs and trios are put together with the
original remaining items and MaxRects is executed to create uneven layers (to be used as
the pallet’s top layer). After all items are covered, the three-dimensional layer are recreated
from the MaxRects results, which are then stacked and the final pallet generated.

The flowchart for the two-phase method, using the MaxRects heuristic, is presented in
Figure 3.5.

Figure 3.5: Flowchart for the MaxRects phase
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3.2.3 Support Evaluation

Support is an important requirement in mixed-case palletization. An item is said to have
partial support if 3 out of 4 corners are supported by an item below it. An item has full
support if all its bottom corners are in contact with items below it, or 70% of its area rests
on items below it.

3.3 An Illustrative Example

We illustrate the proposed methodology on a practical 50-item instance from an industrial
partner. The heights, graphed in Figure 3.6, range from 86 to 302 mm.

Figure 3.6: Sample height profile

We start with a target height of 302 ± 3 mm, forming 12 pairs (no trios). With these
pairings, the height distribution is as depicted in Figure 3.7.
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Figure 3.7: Height profile after the first grouping step

Performing a second pairing, 9 new pairs are formed within the height of 455 mm. The
new height distribution is depicted in Figure 3.8.

Figure 3.8: Height profile after the second grouping step
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After two rounds, the original set of 50 items is reduced to three groups, of 24, 18, and
a remaining subset of 8 items.

As seen, the data analysis phase successfully modifies the height distribution from
almost a straight line in Figure 3.6 to a step function with well-defined target heights. The
first group has a target height of 302 mm and the second 455 mm. With this information,
the optimization step focuses on the three groups of items defined. Model [LL3] is solved
with a running time of 15 seconds for each group. The solutions are given in Figures 3.9a,
3.9b and 3.9c, respectively.

(a) Solution of the first group (b) Solution of the second
group

(c) Solution of the remaining
items

Figure 3.9: Optimization results for the three groups

Figures 3.10 and 3.11 display the solution as a single layer and as a pallet, respectively.
It is clear that the pallet has a good volume usage, is composed by layers with good items
support, and does not have towers. Note that from an industry perspective, layers are
preferred to towers as they increase volume usage and lead to stable pallets.
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Figure 3.10: Optimization result as a long layer

Figure 3.11: Final Pallet arrangement
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Chapter 4

Numerical Testing

The proposed solution methodology is tested on industrial instances supplied by a global
logistics company. All tests were performed using an Intel(R) Core(TM) i7-3517U CPU @
1.90GHz 2.40GHz computer with 6.00 GB of Installed memory (RAM). Python 3.6 was
used for data analysis and placement heuristics and MATLAB R2015b with CPLEX 12.6.2
to solve the mixed-integer program.

We start by testing on an industrial instance composed of 750 items. We use a North
American standard pallet of size W = 1219, D = 1016, and H = 2200mm.

4.1 Tests on the 750-item instance

The 750-item instance is based on real orders. The width, height and depth distribution
is summarized in table 4.1 and the height distribution is graphed in Figure 4.1

Table 4.1: Characteristics of the 750-item instance

Width Depth Height
mean 358.1 246.9 209.2
st. dev. 76.2 53.1 75.8
min 182 164 81
max 602 403 435
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Figure 4.1: 750-item instance height profile

4.1.1 Phase 1 - Item grouping

Applying the grouping method leads to 4 groups of items and a remaining set. The first
has a height around 435 mm, the height of the tallest item. It is composed of 53 trios
and 187 pairs, covering 533 items. The second group has a height around 315 mm, with 3
trios and 45 pairs covering an additional 99 items. The third, contains 14 pairs and 2 trios
among 34 items grouped around a height of 446 mm. The fourth and last has 19 items
paired over 292 mm, with 1 trio and 9 pairs. By that, 685 items out of 750 are grouped,
allowing multiple layers to be built within these subsets. The remaining 65 items are not
grouped further, as the new groups would not constitute a layer. The corresponding height
profile is graphed in Figure 4.2.
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Figure 4.2: 750-item instance height profile after phase 1

Equipped with information about relative positioning and coordinate of items within
the defined groups, optimization based on [LL3] and placement based on MaxRects will be
used to construct layers.

4.1.2 Phase 2 - Item placement

MIP solution based on [LL3]

Layer generation based on [LL3] can be done for each group or for the entire set. Using
the full group may provide the best results in terms of layer density, as all possible item
combination are considered, it may not be practical depending on the size of the group. For
instance, group 1 from the 750-item data set, has 533 items. The number of variables and
constraints for a problem of this magnitude may lead to excessive computational times,
way beyond the industrial standard of 2 minutes. To overcome this, 15 combinations of
pairs or trios are selected at each iteration and fed to [LL3], allowing a running time of
only 15 seconds. The solution is then checked if satisfies a minimum area coverage. If
this resulting layer has more than 70% of area coverage, the layer is accepted and the
corresponding items are removed from the total list. If not, new items are randomly
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selected and the optimization executed. This procedure is repeated until no more items
are left in that group.

Processing of Groups 1- 4

For item Group 1, it took 25 iterations to process the 533 items, leading to 25 accepted
layers and one rejected (with 9 items). Group 2 had 5 iterations with 5 accepted layers
covering 97 out of 99 items. For group 3, one layer with 21 items was selected and 13 items
remained. Group 4 had all its 19 items placed in one accepted layer. The final result after
processing these four groups is presented in table 4.2.

Table 4.2: Initial results based on [LL3]

Group Accepted Covered Items Avg layer min layer max layer
layers items remaining area % area % area %

Group 1 25 524 9 80% 76% 86%
Group 2 5 97 2 82% 79% 84%
Group 3 1 21 13 77% 77% 77%
Group 4 1 19 0 68% 68% 68%

After processing all the groups, it was possible to generate 31 layers covering 661 items.
The 24 uncovered items and the original 65 remaining set were reprocessed in phase 1 in
an attempt to generate more layers. Figure 4.3 shows the distribution of the remaining
items.
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Figure 4.3: Height distribution of the remaining items

After applying the grouping algorithm, another 2 groups are formed, one with 24, and
one with 25 items as seen in Figure 4.4:

Figure 4.4: Height distribution of the remaining items after grouping
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Table 4.3: Final results based on [LL3]

Group Accepted Covered Avg layer Item
layers items area % support %

Group 1 25 524 80% 100%
Group 2 4 97 82% 100%
Group 3 1 21 77% 100%
Group 4 1 19 68% 100%
Group 5 1 24 73% 100%
Group 6 1 25 76% 100%
Remaining N/A 40 N/A N/A

With the remaining items, 5 new layer were formed by just placing items until the layer
is full. This is performed using [BPP]. The items were sorted in descending height.

In total 39 layers were identified to form pallets. Then, they were stacked on top of
each other based on area coverage (density). The pallets are displayed in Figures 4.5 and
4.6.
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Figure 4.5: The final pallets using [LL3] - 1 to 4
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Figure 4.6: The final pallets using [LL3] - 5 to 8

We mentioned earlier that one of the benefits of using layer is item support, which is
one of the features that distinguishes mixed-case palletization from 3DBPP. To assess to
what extent item support is achieved, we evaluate the support of each item based on the
condition that 3 out of 4 corners are supported by an item underneath (partial support).
The results are displayed in table 4.4.

Table 4.4: 3-corner item support per bin - [LL3]

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8
Nb of items 111 94 99 90 101 97 80 78
Item Support (%) 86.5 83.0 80.8 80.0 80.2 81.4 82.5 87.2
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The results for a more strict support criteria (where an item is fully supported if it has
at least 70% of its area over other items beneath) are presented in table 4.5.

Table 4.5: Full support evaluation - [LL3]

Average % area Min % area Nb of items with
support support support > 70%

MIP 76.3 13.51 471 (62.8%)

With more than 62.8% of items fully supported, it is clear that the methodology does
enforce support implicitly. The performance could be increased by modifying the pallet
formation step.

Placement heuristic based on MaxRects

The same instance with the 750 items is processed now using the 2D heuristic MaxRects
from rectpack1 library. As MaxRects only determines the position of the base, post pro-
cessing is necessary to place the top items and recreate the tree-dimensional layer.

Table 4.6 presents the groups and number of layers generated.

Table 4.6: Final results iterative method per group - MaxRects

Group Generated Covered Avg layer Item
layers items area % support %

Group 1 26 533 86.5% 100%
Group 2 5 99 71.7% 100%
Group 3 3 52 61.3% 100%
Group 4 2 20 41.5% 100%
Remaining N/A 46 N/A N/A

The generation of layers using MaxRects is much faster that MIP, giving the flexibility
to change the groups and test different arrangements to improve support. From first group,
26 layers were generated covering 533 of the 750 items. The layer with highest area coverage
has 93.4% and the lowest 69.7%. Figure 4.7 displays the three most and least dense layers.

1https://github.com/secnot/rectpack
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Figure 4.7: The 3 best and worst layers in terms of area coverage using MaxRects

From group 2, 5 layers were generated covering all 99 items with an average area
coverage of 71.7%, a maximum of 91.7%, and a minimum of 31.8%. The layer projections
are displayed in Figure 4.8.
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Figure 4.8: Layer coverage for group 2

Based on the 52 items in group 3, three layers were created. They have area coverage
of 92.2%, 80.4%, and 16.8%.

Figure 4.9: Layer coverage for group 3

Group 4 produces only two layers with its 20 items. One layer has 77.3% of area
coverage and the other, with just two items, has 5.8%. Figure 4.10 presents the layers.
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Figure 4.10: Layer coverage for group 4

After processing the four groups, 46 items remain unpaired. Out of the 35 resulting
layers, 3 were discarded due to low area coverage (less than 65%). These items were put
together with the unpaired items, for a total of 98, and the MaxRects heuristic was applied.
This results in 8 additional layers. Next, the layers are arranged and the pallets are formed.

The final result has 40 layers covering the full 750 items. These layers were organized
according to their density and are used to form 8 pallets. Figures 4.11 and 4.12 display
the final pallets. Note that pairs and trios are represented as single items.
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Figure 4.11: The final pallets using MaxRects - 1 to 4
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Figure 4.12: The final pallets using MaxRects - 5 to 8

Tables 4.7 and 4.8 display support results. According to the tables, around 90% of the
items have a three-corner item support and 72.2% of items have full support.

Table 4.7: 3-corner item support per bin - MaxRects

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8
Nb of items 99 90 108 82 85 95 92 99
Item Support (%) 96.0 88.9 93.5 92.7 91.8 88.4 94.6 92.9
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Table 4.8: Full support evaluation - MaxRects

Average % area Min % area Nb of items with
support support support > 70%

MaxRects 85.15 0.84 542 (72.2%)

The MaxRects solution has a higher average support than that based on [LL3]. 542
items are fully supported compared to 471; and the average area supported is 85% compared
to 76%.
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Chapter 5

Conclusion

In this thesis, we proposed a new data-driven solution approach for the mixed-case palleti-
zation problem that combines data analysis and optimization. Depending on the instance,
we analyze the height distribution of items, combine them into pairs an trios to create
distinct sets with uniform height. Items of the same height are then used to form layers,
which are in turn stacked to form a three-dimensional packing. The layer formation are
optimized using a mixed-integer programming model as well as fast placement heuristic.

Layers are a highly desired feature in palletization for several reasons. They tend to
maximize volume usage, provide adequate support for items, lead to stable pallets, and are
easy to build in automated warehouses. From a modeling perspective, building a three-
dimensional packing based on layers reduces the problem to a two-dimensional bin packing
problem.

Tests on a large industrial dataset composed of 750 items reveal that the approach is
successful in reducing the set of items into 4 groups, each with a common height, as a well
a fifth small group of remaining items. The uniform height groups are used to form layers
by passing the relative positioning and the coordinate information of the grouped items
into a three-dimensional mixed integer programming formulation. A fast placement 2D
heuristic was also used. The resulting solution leads to eight well-built pallets where more
than 85% of the items have at least 3 corner support.

Possible future research based on the two-phase method can focus on the incorporation
of other practical constraints, such as guaranteed item support and load bearing. These
can be handled at the layer formation or pallet building phases, respectively.
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