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Abstract  

Portable wireless ultrasound has many advantages such as high portability, easy 

connectivity, strong individuality, as well as on-site diagnostic ability in real-time. Some 

of the modern portable ultrasound devices offer high image quality and multiple ultrasound 

modes comparable to console style ultrasound, however, none of them provides ultrasound 

elastography function that enables the diagnosis of malignant legions using elastic 

properties. This is mainly due to the limitations of hardware performance and wireless data 

transfer speed for processing the large amount of data for elastography. Therefore, 

reduction of the data transfer size is one of the feasible solutions to overcome these 

limitations. Recently compressive sensing (CS) theory has been rigorously studied as a 

means to break the conventional Nyquist sampling rate and thus can significantly decrease 

the amount of measurement signals without sacrificing signal quality. In this research, we 

implemented various CS reconstruction frameworks and comparatively evaluated their 

reconstruction performance for realizing ultrasound elastography function on portable 

ultrasound. Combinations of three most common model bases (FT, DCT, and WA) and 

two reconstruction algorithms (ℓ1 minimization and BSBL) were considered for CS 

frameworks. Two kinds of numerical phantoms, echoic and elastography phantoms, were 

developed to evaluate performance of CS on B-mode images and elastograms, respectively. 

To assess the reconstruction quality, mean absolute error (MAE), signal-to-noise (SNRe) 

and contrast-to-noise (CNRe) were measured on the B-mode images and elastograms from 

CS reconstructions. Results suggest that CS reconstruction adopting BSBL algorithm with 

DCT model basis can yield the best results for all the measures tested, and the maximum 

data reduction rate for producing readily discernable elastograms is around 60%.  
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Introduction 

Ultrasound elastography (sonoelastography) [1, 2] is a non-invasive medical imaging 

modality that describes various elastic attribute of tissue to facilitate the detection of 

malignant legions. It is based on palpation principle that pathological lesions are normally 

stiffer than benign tissues; therefore, when they are compressed, strains in a malignant 

lesion are smaller than those in surrounding tissues. Several methods have been developed 

to calculate the strains, such as time-delay based [1], displacement-gradient based [2] and 

phase based [3] strain estimators. For example, in the time-delay strain estimation (TDE), 

strains are usually computed from the time delay generally obtained by cross-correlation 

of pre- and post-compression radiofrequency (RF) echo signals (Figure. 1), i.e. 

𝜀𝜀1 =
(𝑡𝑡1𝑏𝑏 − 𝑡𝑡1𝑎𝑎) − (𝑡𝑡2𝑏𝑏 − 𝑡𝑡2𝑎𝑎)

𝑡𝑡1𝑏𝑏 − 𝑡𝑡1𝑎𝑎
, (1) 

where 𝑡𝑡1𝑎𝑎  and 𝑡𝑡1𝑏𝑏  are the arrival times of the pre-compression echoes from the two 

reference windows (proximal and distal), respectively, and t2a and t2b are the arrival times 

of the post-compression echoes from the same windows, respectively [1]. Its typical 

applications are to detect tumors in the breast [3, 4] and the prostate [5], to monitor thermal 

changes and ablation [6], to assess tendon motion [7], and to measure the stiffness of 

muscle and tendon [8, 9].  

Recently, portable ultrasound is emerging as a new ultrasound imaging device, which 

is considerably smaller and lighter than the conventional console style ultrasound 

scanners,. Its high portability and mobility allow practitioners to make diagnostic and 

therapeutic decisions on site in real-time without having to take the patients out of their 

environment. This makes portable ultrasound an attractive medical modality particularly 

for harsh and remote sites [10].  
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Despite recent development of portable ultrasound devices capable of offering high 

image quality and multiple ultrasound mode, none of the current devices provide 

elastography function, mainly due to the limitations of hardware performance and data 

transfer speed of wireless communication. Note that conventional console style ultrasound 

devices perform large proportion of computations for elastography using dedicated 

hardware that is specially designed to process the substantial amount of ultrasound data 

acquisition (i.e. 192 channels of echo data with over 20 MHz sampling rate) and 

sophisticated image processing. Portable ultrasound devices, whereas, cannot call on 

dedicated hardware for such computation; instead, they have to depend on wireless-

connected mobile device or laptop computer for image processing and elastography 

computation. Although computing power of portable computer has been increasing rapidly, 

it is still not comparable to that of dedicated hardware. Furthermore, the data transfer speed 

via wireless communication is insufficient to deliver a large amount of raw ultrasound RF 

echo data set that is needed to estimate strain fields and generate elastogram images.  

One of the reasons requiring large amount of measurement data in conventional 

ultrasound is due to Shannon–Hartley theorem: the sampling rate must be at least twice the 

maximum frequency present in the recorded signal (the so-called Nyquist rate). When the 

Nyquist criterion is not met, i.e. sampling rate is less than twice signal frequency, it is 

known that a condition called aliasing occurs, which results in the differences between the 

original signal and a reconstructed data. In general, most ultrasound devices use around 4 

times faster sampling rate than the minimum requirement of Nyquist rate in order to 

generate more accurate and higher resolution ultrasound images. Recently compressive 

sensing (CS) theory has been actively studied, as a means to overcome the limitation of 

https://en.wikipedia.org/wiki/Aliasing
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conventional Nyquist rate [11, 12] and enable the signal recovery with sparse 

representations from far fewer physical measurements than Nyquist rate. It has been 

typically exploited for the applications that need large amounts of signal acquisition 

processes such as dynamic MRI [13] or photoacoustic tomography (PAT) [14]. CS allows 

significant reduction of the measurement data, and thus of time for signal processing and 

data communication while maintaining output signal quality. Moreover, CS can reduce 

image artifacts and noise power when using the same number of measurements. Given all 

the benefits of CS, we hypothesize that CS could be a feasible solution to overcome the 

limitations of portable ultrasound in realizing elastography function. On the other hand, CS 

construction imposes a new computational load to the paired computing device (lab top or 

tablet PC); however, we also hypothesize that with the increase of computing power of 

such devices, the benefits of CS outweigh the disadvantages.  

Note that although medical imaging may be one of the major areas that can be 

benefitted from CS, the adoption of CS in this field is relatively new [15]. Also, most of 

the related researches have been focusing on conventional pulse-echo B-mode imaging or 

suggesting several random sampling strategies [16], and none of them has attempted 

applying CS to elastography, particularly for portable ultrasound where reduction of 

measurement data that should be transferred through wireless communication is crucial. 

Therefore, the purpose of this research is to examine the feasibility of CS for elastography 

and to find the most efficient CS framework for implementing elastography function on 

portable ultrasound. Since the CS framework can also be used for B-mode reconstruction 

using subsampled RF data for reducing wireless communication data, the performance of 

the frameworks for reconstruction of B-mode images is also investigated. It needs to be 
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mentioned that the quality of CS reconstruction highly depends on sparsity representation 

of signal and reconstruction algorithms. Therefore, the research includes composing 

various CS frameworks associated with different model bases and reconstruction 

algorithms and assessing the quality of the B-mode images and elastograms from the RF 

data subsampled and reconstructed by each framework.  

The paper is organized as follows. In the Background section, we review the CS theory 

and the major image reconstruction methods. A newly proposed strain estimation method 

so-called simple phase-based algorithm which is significantly faster than the conventional 

strain estimators is briefly introduced in this section. In the Method section, numerical 

phantoms developed for the virtual experiments are described and the various CS 

frameworks composed of several model bases and reconstruction algorithms are presented. 

Image quality measures for evaluating the results from each CS framework are also 

described. In the Results and Discussion section, the qualities of the images reconstructed 

by various CS frameworks are compared and the feasibility of the CS for implementing 

elastography function on portable ultrasound is discussed. Last section is devoted to the 

conclusion of this paper. 

Background 

Overview of Compressive Sensing Theory 

CS enables the reconstruction of a signal 𝑥𝑥 ∈ ℝ𝑛𝑛 with sparse representations from a small 

number of physical measurements 𝑦𝑦 ∈ ℝ𝑚𝑚,𝑚𝑚 < 𝑛𝑛. The compressed measurement data 𝑦𝑦 

is acquired in the so-called sensing basis 𝛷𝛷, thus it can be mathematically expressed: 

𝑦𝑦 = 𝛷𝛷𝛷𝛷 (2) 

where 𝛷𝛷 is an 𝑚𝑚 × 𝑛𝑛 matrix. Random Gaussian ensemble or Bernoulli matrices are often 
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used as a sensing basis 𝛷𝛷  which is designed such that compressible signals 𝑥𝑥  can be 

recovered exactly from the compressed data 𝑦𝑦. 

Since most natural signals have concise representations when expressed in a convenient 

basis, the natural signals are usually significantly compressible [12]. Consider any signal 

𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛  that can be represented in some model basis 𝛹𝛹 (where 𝛹𝛹 is an 𝑛𝑛 × 𝑛𝑛 matrix with 

𝜓𝜓1, … ,𝜓𝜓𝑛𝑛 as column), which can be an orthonormal basis, a Fourier transform basis, or 

other basis depending on the measurement signal. The sparse representation of signal 𝑥𝑥 is:  

𝑥𝑥 = �𝑣𝑣𝑖𝑖𝜓𝜓𝑖𝑖

𝑛𝑛

𝑖𝑖

= 𝛹𝛹𝛹𝛹 (3) 

where 𝑣𝑣 is an 𝑛𝑛 × 1 column vector and 𝑥𝑥 and 𝑣𝑣 are the same representation of a signal with 

x in the time domain and 𝑣𝑣 in the  𝛹𝛹  domain. In the sparse representation, 𝑣𝑣 has only 𝑘𝑘 <

𝑚𝑚 < 𝑛𝑛 non-zero coefficients (so-called k-sparse) and the signal 𝑥𝑥 is a linear combination 

of just 𝑘𝑘 basis vectors. By combining (2) and (3), the measurements can be written as: 

𝑦𝑦 = 𝛷𝛷𝛷𝛷𝛷𝛷 = 𝐴𝐴𝐶𝐶𝐶𝐶𝑣𝑣 (4) 

where 𝐴𝐴𝐶𝐶𝐶𝐶  is an 𝑚𝑚 × 𝑛𝑛  matrix obeying a specified isometry constant, so called the 

restricted isometry property (RIP) [12]. In practice, the physical measurements are often 

corrupted by noise and the measurements with additive noise are rewritten as:  

𝑦𝑦 = 𝐴𝐴𝐶𝐶𝐶𝐶𝑣𝑣 + 𝑧𝑧 (5) 

where 𝑧𝑧 is a deterministic or stochastic unknown error term and bounds the amount of noise 

in the data �‖𝑧𝑧‖𝑙𝑙2 ≤ 𝜖𝜖�. As a solution for finding the optimal values of 𝑣𝑣 in (5), two classes 

of the optimization algorithms have been mainly employed to reconstruct the optimal 

values of sparse signal 𝑣𝑣 ; the first one uses deterministic algorithms including ℓ1 

minimization (L1) algorithms [11], and the other uses stochastic algorithms using Bayesian 
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learning framework such as block sparse Bayesian learning (BSBL) [16, 17]. 

In the L1 approaches, reconstruction can be first performed by solving the following 

minimization problem [12], given by:  

𝑃𝑃: 𝑣𝑣 = argmin
𝑣𝑣∈𝑅𝑅𝑛𝑛

‖𝑣𝑣‖𝑙𝑙1  subject to ‖𝑦𝑦 − 𝐴𝐴𝐶𝐶𝐶𝐶𝑣𝑣‖𝑙𝑙2 ≤ 𝜖𝜖 (6) 

In solving (6), a sparse reconstruction algorithm estimates the optimal values of 𝑣𝑣 in (5), 

and then the signal 𝑥𝑥 can be computed from (3).  

On the other hand, the unknown sparse signal 𝑣𝑣 can also be reconstructed by exploiting 

the principle of Bayesian inference as a stochastic algorithm. In this approach, a priori 

probability density functions (pdf’s) are associated with each of the unknown variables 𝑣𝑣, 

and the Bayes law is used to find the posteriori probability to be maximized, such that: 

𝑝𝑝(𝑣𝑣|𝑦𝑦) ∝ 𝑝𝑝(𝑦𝑦|𝑣𝑣)𝑝𝑝(𝑣𝑣) (7) 

where 𝑝𝑝(𝑦𝑦|𝑣𝑣)  represents the likelihood and 𝑝𝑝(𝑣𝑣)  contains prior information about the 

unknown sparse 𝑣𝑣. Assume that the ACS matrix is known and the noise 𝑧𝑧 is approximated 

by an additive Gaussian noise with zero mean and unknown variance σ2. Then the sparse 

coefficients 𝑣𝑣  and the noise variance σ2  are the quantities of CS estimate based on 

Bayesian framework. The associated Gaussian likelihood model is given by [17]: 

𝑝𝑝(𝑦𝑦|𝑣𝑣,𝜎𝜎2) = (𝜋𝜋𝜎𝜎2)−𝑛𝑛 exp �−
1
𝜎𝜎2

‖𝑦𝑦 − 𝐴𝐴𝐶𝐶𝐶𝐶𝑣𝑣‖ℓ22 � (8) 

By introducing an a priori on the coefficients to be recovered, the sparsity model is modeled 

as follows: 

𝑝𝑝0(𝑣𝑣) ∝ exp(−‖𝑣𝑣‖ℓ0) (9) 

Now, CS transformed the recovery problem of the sparse coefficients 𝑣𝑣  into a linear-

regression problem with the prior constraint by the Bayesian approach.  

Block Sparse Bayesian learning (BSBL) algorithms have been proposed to further 
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improve reconstruction performance of wireless electrocardiogram (ECG) applications 

[16, 18]. By exploring and exploiting the intra-block correlation that correlates the entries 

in each block, the recovery performance of BSBL was greatly improved compared to other 

methods ignoring the intra-block correlation. The BSBL algorithms also have a pruning 

mechanism in which they use a threshold to prune out some irrelevant coefficient. 

Recently, several BSBL algorithms such as BSBL Expectation Maximization (BSBL-EM), 

BSBL Bound-Optimization (BSBL-BO) and BSBL-L1 have been proposed [19]. In this 

work, BSBL-BO [19] which is known to have balanced performance and speed is selected 

to show the CS reconstruction performance in generating elastography for portable 

ultrasound.  

Model bases 

CS performance strongly depends on signal sparsity representation in the model basis Ψ 

[17]; however, since the raw RF data in ultrasound show the oscillatory pattern, it is not 

trivial to find the adequate sparsity representation with any basis. In this study, we 

considered three types of model basis: wave atom (WA), discrete cosine transform (DCT), 

and discrete Fourier transform (FT). 

WA basis recently proposed by Demanent and Ying [20] describes the exact 

relationship between the directional wavelets and the Gabor transform (a special case of 

the short-time Fourier transform). Consequently, it produces a multiscale transform with 

frame elements indexed by scale, location, and orientation parameters. The multiscale 

feature in WA is useful for adapting to arbitrary local directions of oscillatory patterns [17]. 

Meanwhile, DCT expresses a finite sequence of data points in terms of a sum 

of cosine functions (real-valued) oscillating at different frequencies, while FT represents a 

https://en.wikipedia.org/wiki/Data_points
https://en.wikipedia.org/wiki/Cosine
https://en.wikipedia.org/wiki/Frequency
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sum of scaled-and-shifted vector in the complex frequency domain. 

Simple Phase-based Strain Estimation 

The axial strain of a segment that has been deformed along loading direction is defined as 

𝜀𝜀 =
∆𝐿𝐿
𝐿𝐿

=
𝐿𝐿 − 𝐿𝐿0
𝐿𝐿0

 (10) 

where ∆𝐿𝐿 is the difference between the final length L and initial length 𝐿𝐿0 of the segment. 

In elastography, it can be assumed that an ultrasonic transducer transmits waves toward 

an object moving with an instantaneous velocity V as depicted in Figure 2. If a segment is 

defined as the region of axial length L0, and the change in the length of the segment ∆𝐿𝐿 =

𝑇𝑇𝑃𝑃𝑃𝑃(𝑉𝑉2 − 𝑉𝑉1) (Figure 2), the axial strain can be rewritten as 

𝜀𝜀 =
𝑇𝑇𝑃𝑃𝑃𝑃
𝐿𝐿0

(𝑉𝑉2 − 𝑉𝑉1) (11) 

where the corresponding velocity 𝑉𝑉𝑖𝑖 at both endpoints of the segment is evaluated by 2D 

autocorrelator [21, 22] and is expressed as 

𝑉𝑉𝚤𝚤� =
𝑐𝑐
2
𝑇𝑇𝑠𝑠
𝑇𝑇𝑃𝑃𝑃𝑃

arg{𝛾𝛾𝑖𝑖[0,1]}
arg{𝛾𝛾𝑖𝑖[1,0]}

=
𝑐𝑐
2
𝑇𝑇𝑠𝑠
𝑇𝑇𝑃𝑃𝑃𝑃

𝛤𝛤𝑖𝑖 (12) 

where arg{𝛾𝛾𝑖𝑖[1,0]} and arg{𝛾𝛾𝑖𝑖[0,1]} are the phase of autocorrelation at lags in sampling 

interval and pulse repetition period, respectively.  

Now let us consider an axial segment along single scan line. If the segment is centered 

at m depth samples with the upper and lower endpoints given by 𝑚𝑚1 = 𝑚𝑚 − 𝛥𝛥𝑚𝑚 2 ⁄ and 

𝑚𝑚2 = 𝑚𝑚 + 𝛥𝛥𝑚𝑚 2⁄ , the axial length of the segment is 

𝐿𝐿0 = 𝛥𝛥𝛥𝛥
𝑐𝑐
2
𝑇𝑇𝑠𝑠 (13) 

where the tunable parameter 𝛥𝛥𝛥𝛥 controls the length of the axial length of the segment. By 

substituting Eq. (13) into (11) and rewriting 𝑉𝑉1 and 𝑉𝑉2 using Eq. (12), the local axial strain 
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can be simplified as 

𝜀𝜀 =
𝛤𝛤2 − 𝛤𝛤1
𝛥𝛥𝛥𝛥

   (14) 

where 𝛤𝛤1 and 𝛤𝛤2  are the 2D autocorrelation values at both endpoints of the segment. 

Note that Eq. (14) contains only segment length 𝛥𝛥𝛥𝛥 and the phase angle Γ at the upper 

and lower end points of the segment; thus, it is not affected by sampling intervals along the 

depth (𝑇𝑇𝑠𝑠) and the frame (𝑇𝑇𝑃𝑃𝑃𝑃). In portable ultrasound, sampling interval along the frame 

(𝑇𝑇𝑃𝑃𝑃𝑃) refers to the time interval to make a pair of RF data sets from the tissue before and 

after the physical compression. This time interval (equivalent to pulse repetition period) is 

also equivalent to data-dumping interval via Wi-Fi network established between portable 

ultrasound and the paired computing device; therefore, the sampling interval cannot be 

uniform or stable as that of console-style scanner. However, Eq. (14) indicates that 

although data dumping interval is not consistent, strain estimation accuracy is not degraded 

in the SPSE method. 

In this study, CS is applied to portable ultrasound following the procedure as illustrated 

in Figure 3. First, a pair of original RF data sets are collected and compressed by the 

portable US device (Figure 3, above). The undersampled (compressed) RF data sets are 

then transmitted to a laptop or mobile device through the Wi-Fi network established 

between them. The laptop computer (or mobile device) recovers the compressed data sets 

and generates the elastogram using the SPSE method (Figure 3, bottom). 
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Methods 

Numerical Phantoms  

Numerical phantoms were developed to perform the virtual ultrasound experiment to 

evaluate the performance of various CS frameworks on image reconstruction. Two types 

of numerical phantoms were modeled: echoic and elastography phantoms. 

An echoic phantom contains arrays of hyperechoic and hypoechoic inclusions [17] to 

assess the performance of CS on the recovery of B-mode images. Using Field II [23, 24], 

an open-source Matlab-based ultrasound simulation code, RF signals from a numerical 

phantom of size 50 × 10 × 55 mm3  were simulated. A 192-element linear array probe 

with the center frequency 3.5 MHz was modeled to generate the regular ultrasound B-mode 

images. The numerical phantom was composed of a total of 100,000 point scatterers, four 

hyperechoic, and four hypoechoic inclusions of the diameter of 6 mm. The hyperechoic 

inclusions mimicked the malignant tumour with round hyperdensities (BiRads 4 or 5), 

while hypoechoic inclusions simulated benign cysts filled with liquid without any 

scatterers (BiRads 1 or 2). The standard deviation of the scatterers’ amplitude distribution 

inside the hyperechoic inclusions was ten times that of the background. The spatial 

distribution of the scatterers in the hyperechoic inclusions and the background was 

modeled as uniform and the amplitude of these regions followed a zero mean Gaussian 

distribution, respectively.  

An elastography phantom was constructed by combining finite element analysis (FEA) 

model and Field II code. Using commercial FEA code (Abaqus/CAE 6.10) (Figure 4, upper 

left), a linear elastic phantom of the size 40 × 50 × 10 𝑚𝑚𝑚𝑚3 was modeled to have a stiff 

cylindrical inclusion (10 mm) in the soft matrix. The FEA model was meshed with 



14 
 

approximately 427,000 3D quadratic tetrahedron elements and 77,000 nodes. The elastic 

moduli of the matrix and the inclusion were set to 20 kPa and 100 kPa, respectively, 

mimicking a carcinoma in breast tissue. Poisson’s ratio of 0.49 was applied to the whole 

phantom. The vertical movement of the bottom surface of the phantom was constrained 

while 0.1% axial compressive strain was applied to the top surface. The coordinates of each 

node were determined and recorded by FEA as the deformation field data sets. Then Field 

II code was used to add random scatterers to the nodal displacements and generate the 

corresponding pre- and post-deformation RF signal data (Figure 4, upper center). The 

amplitudes of the random scatterers were kept constant throughout the phantom, thus the 

inclusion could not be detected in the RF signal or in the B-mode image. In order to 

simulate the portable ultrasound device, a linear probe having 152 ultrasound elements and 

24 active elements was virtually modeled with Field II. The center frequency of the 

transducer was placed at 3.5 MHz and the sampling rate of RF signals was set to 28 MHz. 

The speed of sound through the phantom was set to 1,540 m/s. With this setting, Field II 

generated 128 simulated RF lines (A-lines) with each line containing 2,589 samples across 

the phantom depth. Parameters for both echoic and elastography phantoms are listed in 

Table 1. The simple phase-based strain estimator (SPSE) was applied to the RF data sets 

from CS reconstruction (Figure 4, upper and lower right) and the strain fields were 

estimated from the reconstructed RF dataset (Figure 4, lower center). The differences 

between the strain estimates and the true strains computed by the FEM were regarded as 

estimation errors (Figure 4, lower left).  

Model Bases 

In order to find a relevant sparse representation of the raw RF data in ultrasound, 



15 
 

reconstruction performance of the CS adopting WA, DCT, and FT model bases were 

compared. Since the elastogram used in this study depicts the axial strain field, each basis 

function is applied to one-dimensional RF signal, and then the measurement signal 𝑥𝑥 is 

converted to the sparse representation 𝑣𝑣 in the Ψ domain as described in Eq. (2). For WA 

model base, the WA package based on [20] was employed to conduct the forward and 

inverse WA transform. For DCT and FT, one-dimensional built-in function sets in Matlab 

were utilized, with the signal segment size set to 256 for all model bases. 

Reconstruction Algorithms 

The simulated RF data sets produced from the numerical elastography phantom were 

subsampled by removing 10%-80% of the original samples using a uniform random law. 

For example, 70% subsampling rate suggests that 70% of the of the original samples are 

removed and only 30% are are maintained in the compressed vector 𝑦𝑦. CS reconstruction 

was then performed on the subsampled RF data by solving the CS minimization problem 

in Eq. (5). Two types of optimization algorithms were adopted: ℓ1 minimization (L1) and 

BSBL. In the L1 experiments using the ℓ1-Magic package [25], signal segment size, the 

number of maximum iteration were set to 0.003, 256, and 50, respectively. BSBL, a 

recently proposed stochastic-based reconstruction algorithm, was also implemented by 

using the BSBL-BO package [19]. In the BSBL experiments, the segment length and block 

size , the accuracy threshold ϵ, and the maximum iteration were set to 256, 12, 1e-8 and 7, 

respectively. During the experiment, both methods successfully solved the reconstruction 

problem without any stability issue.  

Image Quality Measures 

The accuracy of the B-mode and elastograms images from CS reconstruction were 
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quantified by comparing them with the images from the original data through the mean 

absolute error (MAE) given by 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
��𝐼𝐼𝑜𝑜𝑖𝑖 − 𝐼𝐼𝑟𝑟𝑖𝑖�
𝑁𝑁

𝑖𝑖=1

 (15) 

where N is the total number of the image data, 𝐼𝐼𝑜𝑜𝑖𝑖 and 𝐼𝐼𝑟𝑟𝑖𝑖 are the intensities of both original 

and reconstructed images, respectively. 

The image quality of elastograms were examined using the signal-to-noise ratio (SNRe) 

and the contrast-to-noise ratio (CNRe). Specifically, the elastographic SNRe identifying 

the quantitative measurement of the accuracy and the precision of an elastogram is defined 

as [26] 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑚𝑚𝑠𝑠

𝜎𝜎𝑠𝑠
 (16) 

where 𝑚𝑚𝑠𝑠 is the mean value of the strain, and 𝜎𝜎𝑠𝑠 is the standard deviation of the measured 

strain. The elastographic CNRe is an important parameter to determine the detectability of 

a stiff lesion in an elastogram and is defined as [27] 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
2(𝑚𝑚𝑜𝑜 −𝑚𝑚𝑖𝑖)2

𝜎𝜎𝑜𝑜2 + 𝜎𝜎𝑖𝑖2
 (17) 

where 𝑚𝑚𝑖𝑖 ,𝑚𝑚𝑜𝑜 ,𝜎𝜎𝑖𝑖2,and 𝜎𝜎𝑜𝑜2  are the mean values and the variance values for the inside 

(subscript 𝑖𝑖) and the outside (subscript 𝑜𝑜) of the lesion, respectively. 
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Results and Discussion 

Evaluation of B-mode reconstruction 

B-mode images the produced from the RF data reconstructed by various CS frameworks, 

combining either of two reconstruction algorithms (L1 and BSBL) with one of three model 

bases (FT, DCT and WA), respectively, were evaluated as shown in Figure 5 and 6 to 

demonstrate the general CS application in medical ultrasound. To compare the quality of 

reconstructed B-mode images, we selected 50% subsampling rate which is reasonably 

applicable to generate the elastograms.  

As for the echoic phantom containing four hyper- and hypoechoic inclusions (Figure 

5), both L1 (Figure 5(a)) and BSBL (Figure 5(b)) algorithms could recover the detailed 

patterns of the phantom, and their hyper- and hypoechoic inclusions are clearly discernable, 

except the framework combining L1 with FT basis (L1-FT). Among the B-mode images 

reconstructed by L1 (Figure 5(a)), both L1-DCT and L1-WA show comparable image 

quality and similar MAE values of 0.082 dB. L1-FT produces the lowest image quality 

with the highest MAE value (0.242 dB). Hyper- and hypoechoic inclusions on L1-FT 

image are blurred and dispersed, which make them hardly discernable. On the other hand, 

B-mode images reconstructed by BSBL present better image quality and lower MAE than 

those by L1, as shown in Figure 5(b). BSBL-DCT produces the lowest MAE of 0.022 dB, 

while the MAEs of BSBL-FT and BSBL-WA are slightly higher at 0.029 and 0.037 dB, 

respectively.  

B-mode images of the elastography phantom containing a stiff inclusion from various 

CS frameworks are shown in Figure 6. Since the standard deviation of the scatterers’ 

amplitude distribution is the same as that of background, the inclusion is not visible on the 
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B-mode images. Among the B-mode images reconstructed by L1 (Figure 6(a)), both L1-

DCT and L1-WA are associated with the same level of MAE at 0.066 dB, whereas L1-FT 

yields the highest MAE of 0.111 dB with unexpected vertical black patterns appearing on 

the reconstructed image. Whereas, B-mode images reconstructed by the BSBL (Figure 

6(b)) preserve the patterns intact with excellent accordance with the original image. 

Comparing MAE values associated with the same model bases, BSBL-based frameworks 

yield much lower values than L1-based ones. Among the BSBL images in Figure 6(b), 

BSBL-FT is associated with the lowest MAE of 0.017 dB, followed by BSBL-DCT and 

BSBL-WA with the MAE of 0.022 and 0.034 dB, respectively. 

Plots of MAE values for various CS frameworks are presented in Figure 7 as a function 

of removed data (subsampling rate) from 10% to 80%. Quite consistently, the errors 

increase with the number of samples removed, for all CS frameworks. As for the echoic 

phantom (Figure 7(a)), the MAE values are linearly increasing until 50% subsampling for 

all model bases, and then rapidly rising except for L1-FT that shows linearly increasing 

trend and much higher values than the other two bases. It is also notable that BSBL-based 

frameworks yield lower MAE values than L1-based ones with little effects from model 

bases, which is consistent with the trends in B-mode images (Figure 5 and 6). The MAE 

plots for L1-DCT and L1-WA are almost equivalent, while all BSBL-based plots agree 

well with each other. In case of elastography phantom (Figure 7(b)), the trends of MAE 

are similar to those of the echoic phantom except L1-FT which is still higher than the 

others, but follows much closer trend than that in echoic phantom. Over all MAE values 

associated with BSBL-based frameworks are lower than those of L1-based ones with little 

effect from model bases.  
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Evaluation of Elastograms  

By applying the SPSE method to the RF data of elastography phantom from CS 

reconstruction, elastograms are generated to describe the strain fields under compressive 

deformation. Image quality of the elastograms from various CS frameworks are 

comparatively investigated.  

The elastograms from L1-based frameworks for the subsampling rate from 30% to 50% 

are compared in Figure 8. The elastograms for all bases for 30% subsampling rate preserve 

the original patterns very well, and the stiff inclusion in the center is clearly discernable. 

At 40% subsampling rate (Figure 8(b)), both L1-DCT and L1-WA elastograms still show 

discernable inclusion and consistent matrix strain which are close to the original image, 

while degradations in the inclusion and the matrix start occurring in L1-FT elastogram. 

When the subsampling rate is increased to 50% (Figure 8(c)) the shapes of the stiff 

inclusion for all three bases are hardly discernable and the strain fields in the matrix show 

inconsistent and locally varying behavior. Over all, L1-DCT and L1-WA preserve the 

strain patterns of similar quality until 40%, while L1-FT tends to lose the patterns much 

earlier than the others. From the observation, 40% subsampling rate seems to be the 

threshold compression ratio to effectively detect the inclusion for the elastograms from L1-

based CS frameworks. 

Strain values measured along the vertical centerline across the L1-based elastograms 

are plotted in Figure 9. The strain fields for three bases over the subsampling rate from 

30% to 50% are compared with the strains from the FEA as a ground truth. At 30% 

subsampling rate (Figure 9(a)), both plots from L1-DCT and L1-WA show good agreement 

with the FEA strains. For 40% (Figure 9(b)), L1-DCT and L1-WA still follow the trend of 
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FEA, but the strains start oscillating both in the inclusion and the matrix where strains are 

regarded as constant. The oscillations in these regions are significantly amplified with 

further increase of subsampling rate (Figure 9(c)). Beyond 50%, the strain plots become 

too noisy to identify the shape of the inclusion, which also indicates that sampling rate 

around 40% should be the threshold for L1-based CS frameworks. 

The elastograms from BSBL-based CS frameworks over the subsampling rate from 

50% to 70% are presented in Figure 10. At 50% subsampling rate (Figure 10(a)), all 

elastograms preserve the patterns superbly; they are almost equivalent to the original 

elastogram and accurately depict strain distribution in the inclusion and the matrix. At 60%, 

the inclusion is still discernable, regardless of slight strain degradation particularly in 

BSBL-WA (Figure 10(b)). Beyond 70% subsampling rate, all elastograms are significantly 

degraded and the original strain patterns are lost almost completely as shown in Figure 

10(c). Qualitative observation suggests that BSBL-DCT elastograms best agree with the 

original ones, particularly for 50% and 60% subsampling rate. 

The strain plots along the vertical centerline across the BSBL-based elastograms are 

presented in Figure 11. The strain plots for all three bases show excellent agreement with 

the ground truth (FEA results) for 50% subsampling rate (Figure 11(a)). With the increase 

of subsampling rate, reconstructed strain plots start to show oscillating behavior (Figure 

11(b)). Eventually, all strain plots lose the track of the ground truth beyond 70% 

subsampling rate, as shown in Figure 11(c). It can be summarized that that BLBL-based 

CS reconstruction is highly reliable until 50%, and is reasonably accurate up to 60% 

subsampling rate, for all three bases tested. Furthermore, the qualities of elastograms from 

BSBL-based CS frameworks are far less influenced by the model bases than those from 
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L1-based ones.  

Evaluation of Image Quality Measures and Computation Times 

Image qualities of the elastograms are evaluated with three image quality measures (MAE, 

SNRe, and CNRe) to determine the optimal CS scheme for generating the ultrasound 

elastograms. All the image measures are collected over the subsampling rate from 10% to 

80%.  

The MAE plots of elastograms (Figure 12) from various CS frameworks are compared 

with the reference strain error (black solid line) that corresponds to 15% of the applied 

strain (0.1%). The reference error plays as the error criterion based on the observation that 

MAE plots rise rapidly once they reach this level. Since MAE can be regarded as 

monotonic function of subsampling rate, the threshold subsampling rate of each framework 

is estimated from the intersection between the MAE and the error criterion. 

Among the MAE plots for L1-based frameworks (dashed lines in Figure 12), the L1-

FT yields the highest error level and intersects the error criterion at around 33% 

subsampling rate, while L1-DCT and L1-WA are slowly increasing until 40% subsampling 

rate from which they start rising rapidly. Overall, among L1-based frameworks, L1-WA 

presents the best result until it reaches the error criterion.  

All BSBL-based CS frameworks generate similar level of MAE lower than error 

criterion until 50%, regardless of associated model bases. Threshold subsampling rate is 

identified to be around 60% for BSBL-WA and BSBL-FT and around 63% for BSBL-

DCT. The comparison between L1- and BSLB-based plots in Figure 12 suggest that BSBL-

based CS frameworks yield more reliable results than L1-based ones. Particularly BSBL-

DCT yields the lowest error level over the subsampling range tested.  
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The elastographic SNRe and CNRe identifying the precision and the discernibility of 

the elastograms are quantified in Figure 13. All SNRe plots in Figure 13(a) present slowly 

decreasing trend at first, but start to drop rapidly with increase of subsampling rate. BSBL-

based frameworks yield higher SNRe than L1-based ones across all subsampling range 

tested. In Figure 13(b), CNRe plots from CS frameworks are almost equivalent to those 

from original elastogram (meaning excellent discernibility) in low subsampling range; 

however, they start to drop rapidly with increase of subsampling rate. Over all, both SNRe 

and CNRe plots from BSBL-based frameworks present higher values than those from L1-

based ones over the entire subsampling range. Furthermore, results from BSBL-based 

frameworks are less influenced by the model bases because its block-wise approach might 

maximize the signal sparsity of ultrasound echo signal. All the image quality measures 

(MAE, SNRe, and CNRe) imply that the feasible level of the subsampling rate without 

significant loss of patterns is 40% for L1-based and 60% for BSBL-based frameworks, 

respectively. 

Computation times of the CS reconstruction methods were also measured on a 

Windows 10 computer (2.3MHz, i7-3670 CPU with 12 GB RAM, ASUS-K55VD) using 

the in-house developed Matlab code. Overall, L1-WA showed the fastest computation time 

(16.732 seconds) while L1-FT spent 105.909 seconds due to the calculation of its complex 

array. On the other hand, BSBL-based frameworks presented relatively similar 

computation times among different bases. BSBL-WA took only 38.454 seconds, while 

BSBL-DCT and BSBL-FT recorded 41.864 and 55.479 seconds, respectively. As for the 

number of average iterations, L1-FT recorded 42.61, while L1-DCT and L1-WA took 

12.95 and 12.73 iterations, respectively. For the BSBL-based frameworks, all methods 
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required around 7 iterations. Threshold subsampling rates and the corresponding MAEs, 

SNRe, CNRe, and computation times for different CS frameworks are summarized in 

Table 2. 

Conclusion 

Large amount of ultrasound echo data to be transferred through wireless communication is 

one of the major limitations in implementing ultrasound elastography function on portable 

ultrasound. As a means to reduce the size of the measurement data, this paper address the 

feasibility of applying compressive sensing (CS) method to elastography. Since CS 

reconstruction performance is highly affected by model basis representing the sparse 

expansion of the data, as well as reconstruction algorithm to solve the minimization 

problem, we tested three bases, discrete Fourier transform (FT), discrete cosine transform 

(DCT), and the recently introduced wave atoms (WA), and two reconstruction algorithms, 

ℓ1 minimization (L1) and Block sparse Bayesian learning (BSBL).  

The quality of the reconstructions was quantified using the B-mode and elastogram 

images of simulated numerical phantoms through three image quality measures, mean 

absolute error (MAE), signal-to-noise ratio (SNRe) and contrast-to-noise ratio (CNRe) at 

varying subsampling rates. The results indicate that BSBL-based CS frameworks generally 

delivered the superior performance to L1-based ones. Particularly the CS framework 

adopting BSBL-DCT combination yielded the lowest MAE and the highest SNRe and 

CNRe among all combinations, and possibly the optimal CS reconstruction framework for 

elastography. The results also suggest that the maximum data reduction (subsampling) rate 

for generating reasonable elastograms is 60% for BSBL-DCT framework.  

Future work will consist in extending the CS reconstruction in real-time. Currently the 
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computation for CS reconstruction is so heavy that real-time processing is hard to be 

achieved. Improving the algorithm for efficient and fast computation is essential to the 

application of CS to portable ultrasound. Another important improvement involves 

investigating other reconstruction algorithms and model bases, specifically adapted to 

ultrasound RF data. Such improvement would make it possible to build an even sparser 

representation than current BSBL-DCT combination thus allows better reconstruction for 

a given subsampling rate.  
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Figure captions 

Figure 1. Schematic of the principle of time-delay strain estimation method. 

Figure 2. Principle of strain estimation in SPSE: ultrasonic transducer transmits waves 

toward a segment (left). The lower (farthest away from the transducer) and upper endpoints 

of the segment are moving with an instantaneous velocity 𝑉𝑉2 and 𝑉𝑉1, respectively (right). 

As a result, the segment length L0 at 𝑡𝑡 = 𝑇𝑇0 is changed to L at 𝑡𝑡 = 𝑇𝑇0 + 𝑇𝑇𝑃𝑃𝑃𝑃. 

Figure 3. Schematic of the CS procedure for generating elastogram in portable US device. 

Figure 4. Schematic of the procedure to construct a virtual elastograpy phantom and to 

produce elastogram from the undersampled RF data of the phantom using CS 

reconstruction. 

Figure 5. B-mode images of the echoic phantom containing hyper- and hypo- echoic 

inclusions produced from the original data and the reconstructed data by (a) L1-based and 

(b) BSBL-based CS reconstruction frameworks, combined with FT, DCT, and WA model 

bases, respectively. Data were reconstructed using 50% subsampling. 

Figure 6. B-mode images of the elastography phantom produced from the original data and 

the reconstructed data by (a) the L1-based and (b) the BSBL-based based CS reconstruction 

frameworks, combined with FT, DCT, and WA model bases, respectively. Data were 

reconstructed using 50% subsampling. 

Figure 7. MAE plots associated with various CS frameworks as functions of subsampling 

rate, measured on: (a) the echoic phantom, (b) the elastography phantom. 

Figure 8. Elastograms of elastography phantom computed from the original data and from 

various CS reconstruction frameworks for the subsampling rate of: (a) 30%, (b) 40%, and 

(c) 50%. 
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Figure 9. Strain values measured along the vertical centerline across the elastograms 

computed from the L1-based CS reconstruction frameworks for the subsampling rate of: 

(a) 30%, (b) 40%, (c) 50%. The FEA plots are the ground truth. 

Figure 10. Elastograms of the elastography phantom computed from the original data and 

from the BSBL-based CS reconstruction frameworks for the subsampling rate of: (a) 30%, 

(b) 40%, and (c) 50%. 

Figure 11. Strain values measured along the vertical centerline across the elastograms 

computed from the BSBL-based CS reconstruction frameworks for the subsampling rate 

of: (a) 50%, (b) 60%, (c) 70%. 

Figure 12. MAE of the elastograms as a function of subsampling rate. The error is 

computed on the elastograms produced from the various CS reconstruction frameworks. 

Reference error is 15% of the applied strain. 

Figure 13. (a) SNRe and (b) CNRe of the elastograms as a function of subsampling rate. 

The image quality measures are computed on the elastograms produced from the original 

data and from various CS reconstruction frameworks. 
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Figure 1. Schematic of the principle of time-delay strain estimation method.  
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Figure 2. Principle of strain estimation in SPSE: ultrasonic transducer transmits waves 
toward a segment (left). The lower (farthest away from the transducer) and upper 
endpoints of the segment are moving with an instantaneous velocity 𝑉𝑉2 and 𝑉𝑉1, 
respectively (right). As a result, the segment length L0 at 𝑡𝑡 = 𝑇𝑇0 is changed to L at 𝑡𝑡 =
𝑇𝑇0 + 𝑇𝑇𝑃𝑃𝑃𝑃. 
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Figure 3. Schematic of the CS procedure for generating elastogram in portable US 
device. 
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Figure 4. Schematic of the procedure to construct a virtual elastography phantom and to 
produce elastogram from the undersampled RF data of the phantom using CS 
reconstruction. 
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Figure 5. B-mode images of the echoic phantom containing hyper- and hypo- echoic 
inclusions produced from the original data and the reconstructed data by (a) L1-based and 
(b) BSBL-based CS reconstruction frameworks, combined with FT, DCT, and WA model 
bases, respectively. Data were reconstructed using 50% subsampling. 
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Figure 6. B-mode images of the elastography phantom produced from the original data 
and the reconstructed data by (a) the L1-based and (b) the BSBL-based based CS 
reconstruction frameworks, combined with FT, DCT, and WA model bases, respectively. 
Data were reconstructed using 50% subsampling. 
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Figure 7. MAE plots associated with various CS frameworks as functions of subsampling 
rate, measured on: (a) the echoic phantom, (b) the elastography phantom. 
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Figure 8. Elastograms of elastography phantom computed from the original data and 
from various CS reconstruction frameworks for the subsampling rate of: (a) 30%, (b) 
40%, and (c) 50%. 
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Figure 9. Strain values measured along the vertical centerline across the elastograms 
computed from the L1-based CS reconstruction frameworks for the subsampling rate of: 
(a) 30%, (b) 40%, (c) 50%. The FEA plots are the ground truth. 
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Figure 10. Elastograms of the elastography phantom computed from the original data and 
from the BSBL-based CS reconstruction frameworks for the subsampling rate of: (a) 
30%, (b) 40%, and (c) 50%. 
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Figure 11. Strain values measured along the vertical centerline across the elastograms 
computed from the BSBL-based CS reconstruction frameworks for the subsampling rate 
of: (a) 50%, (b) 60%, (c) 70%. 
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Figure 12. MAE of the elastograms as a function of subsampling rate. The error is 
computed on the elastograms produced from the various CS reconstruction frameworks. 
Reference error is 15% of the applied strain. 
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Figure 13. (a) SNRe and (b) CNRe of the elastograms as a function of subsampling rate. 
The image quality measures are computed on the elastograms produced from the original 
data and from various CS reconstruction frameworks. 
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Table 1. Parameters for numerical phantoms 
Parameter Echoic phantom Elastography phantom 
Phantom size 50×10×55 mm3 40×50×10 mm3 
Center frequency 3.5 MHz 3.5 MHz 
Sampling frequency 28 MHz 28 MHz 
Width 0.44 mm 0.44 mm 
Height 5 mm 5 mm 
Kerf 0.022 mm 0.022 mm 
Number of elements 192 152 
Tx elements 64 24 
Rx signals considered 128 128 
Tx/Rx focus 50 mm 50 mm 
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Table 2. Image quality measures, CPU time, and average number of iteration at the 
threshold subsampling rate(SR) associated with various CS reconstruction frameworks.  

 
CS 

reconstruc
tion 

CS 
model 
basis 

Threshold 
SR(%) MAE SNRe CNRe 

(dB) 
CPU 
(sec) 

Avg. 
iteration 

L1 FT 40 1.899e-4 2.052 34.564 105.91 42.61 

L1 DCT 40 1.312e-4 3.754 39.694 28.492 12.95 

L1 WA 40 1.216e-4 3.817 42.474 16.731 12.73 

BSBL FT 60 1.369e-4 3.534 43.489 55.479 7 
BSBL DCT 60 9.538e-5 3.455 42.839 41.864 7 
BSBL WA 60 1.681e-4 3.045 44.391 38.454 7 
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