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Abstract 

 
 Omega-3 long chain polyunsaturated fatty acid (n-3 LCPUFA) blood levels are a potential 

risk factor for coronary heart disease, particularly sudden cardiac death. Venipuncture sampling 

for fatty acid profiling is invasive, requires highly qualified personnel and requires a multi-step 

protocol to isolate blood fractions. Alternately, the use of whole blood for fatty acid profiling 

improves analytical throughput and allows sample collection in field research locations by 

enabling dried blood spotting (DBS). Dried blood spots are advantageous in comparison to venous 

blood sampling as they require small blood volumes and is relatively inexpensive to collect. 

However, FA profiles in DBS are commonly expressed qualitatively (% of total fatty acids) and 

not quantitatively (µg/mL) as finger-tip prick (FTP) sampling usually results in the collection of 

an unknown volume of blood. Quantitation can be effected by preexisting fatty acid contaminants 

on DBS collection materials and oxidative losses of sensitive fatty acids such as n-3 LCPUFA due 

to the increased surface area of DBS samples. Fatty acid quantitation could detect hypo- and hyper-

lipidemia in samples that a qualitative only assessments would miss. To address these issues, the 

relationship between blood volume and blood spot area on 903 Protein Saver Cards (903 PSC) 

was examined to determine the blood volume associated with a 6mm hole punch and the Mitra 

Microsampling Device, a product designed to collect 10 µL of blood regardless of hematocrit, was 

assessed for FA and lipidomic analyses.  To determine if fatty acid contaminants were present, the 

903 PSC, the Mitra tips and Whatman chromatography paper (also commonly used to collect blood 

spots) were examined using gas chromatography and ultra high-performance liquid 

chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Finally, the stability 

of the fatty acids in a DBS sample on Mitra and 903 PSC stored at ambient, 4C, -20C and -80C 

temperatures with and without antioxidant for 3 months was examined.  It was determined that the 
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6mm punch of 903 PSC contained 9.6 µL of blood and that FA profiles determined from the Mitra 

samples were comparable to FA profiles from wet blood controls.  The Mitra tips could also be 

used to provide similar lipidomic profiles.  The 903 PSC, the Mitra tips and the Whatman paper 

all contained palmitic and stearic acid as free fatty acids (FFA) while the Mitra tips also had 

palmitoyl and stearoyl lysophosphatidylcholines (LysoPC) present. With DBS storage, the n-3 

LCPUFA biomarkers were the most stable with -80C storage followed by 4C or ambient room 

temperatures while samples stored at -20C storage had the lowest stability in both antioxidant and 

no antioxidant conditions, which mirrored previous research examining whole blood storage.  In 

conclusion, quantitative fatty acid determinations of DBS samples are possible.  Blood volumes 

can be estimated using a defined hole punch on the commonly used 903 PSC, or defined by using 

a Mitra sampling device.  Analysis of blank sampling devices is recommended to assess the 

potential impact of fatty acid and fatty acyl contaminants in any DBS collection materials to be 

used.  Finally, storage conditions need to be a consideration with DBS sample collection as 

preventative steps such as storage temperature and the use of antioxidants can improve sample 

stability and ensure data integrity.  
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Chapter 1 

 

Introduction 

 
 The omega-3 long chain polyunsaturated fatty acids (n-3 LCPUFA), eicosapentaenoic acid 

(EPA) and docosahexaenoic acid (DHA) are linked to reduced risk of cardiovascular disease 

(CVD) [1], infant neurodevelopment [2] and health [3]. Omega-3 blood biomarkers such as the 

omega-3 index (sum of the percentages of EPA and DHA in total fatty acids of erythrocytes), have 

been characterized in the global population [4] and allowed for the development of blood level 

targets to optimize cardio-protective effects [5]. Recently, it has been demonstrated that maternal 

EPA+DHA status during pregnancy is associated with the risk of the infant developing asthma 

after birth [3]. Thus, screening blood for fatty acid (FA) health biomarkers in various populations 

has clinical utility in preventing morbidity and reducing health care costs.  

One of the challenges with fatty acid profiling of blood samples is the lack of consensus in 

analytical procedures [4, 6]. This includes different blood fractions, with plasma total lipids, 

plasma phospholipids and erythrocytes being examined typically.  Recently, whole blood sampling 

has emerged as an option, because it can simplify sample collection as it can be accessed through 

procedures such as finger-tip prick (FTP) or heel prick to generate dried blood spot (DBS) samples 

[7]. DBS have logistical and economic advantages in the collection, handling and storage of 

samples in various clinical and field research settings because they do not require the same amount 

of infrastructure and highly qualified personnel as compared with venipuncture and blood 

fractioning methods. DBS can provide informative fatty acid profiles [6] and have been used to 

assess mothers and newborns [8, 9], Zimbabwean children [10], young Canadians [11] and Tibetan 

adults [12]. In comparison to whole blood sampling however, DBS samples have limitations as 

quantitative (ex. µg/mL) results are not possible unless; blood volumes were assessed prior to 
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spotting, any fatty acid (FA) contaminants present on materials commonly used to spot the blood 

are determined, and the high risk of PUFA loss during storage is properly managed [13]. 

Currently in the literature, FA determinations from DBS samples have mainly been 

expressed qualitatively, which is the percentage of an individual fatty acid in the total fatty acids 

[10, 14, 15].  This is the most common method of presenting fatty acid data [4]  as it highlights the 

metabolic competition between fatty acids within pools of complex lipids and most blood 

biomarkers are based on these qualitative measurements.  For example, the sum of the weight 

percent (wt %) of EPA and DHA [16] and the percentage of omega-3 highly unsaturated fatty 

acids (HUFA) in total HUFA [17] are both qualitative assessments. However, qualitative 

assessments result in a lack of independence of the data as increases in one fatty acid are reflected 

by a decrease in another because they are expressed in relative abundance (% of total FA). 

Qualitative FA profiles also may remain blind to variations in total fat concentration that may be 

caused by recent food consumption, dietary habits, age, gender and genetic background [18]. 

Internal fatty acid standards are available and gas chromatography responses are robust, so precise 

quantitative determinations are possible, but the volume of blood collected by DBS is not usually 

measured.  

This thesis examines quantitation of fatty acid profiles of DBS on two commercially 

available products. First, a method will be developed to determine unknown volumes of blood on 

903 Protein Saver Cards (903 PSC) which are one of the most commonly used DBS materials for 

clinical blood collections. Second, a novel microsampling device, Mitra® will be validated for FA 

analysis. The Mitra uses absorptive technology to wick 10 μL of sample regardless of viscosity 

which can be influenced by hematocrit level in blood. 
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This thesis will also examine FA contaminants in materials used to collect DBS as they 

can also impact quantitative efforts.   Palmitate (C 16:0) and stearate (C18:0) contamination 

appears to be common in various chromatography papers used to collect blood samples [19]. 

Again, the focus will be on the 903 PSC and the Mitra, as these are materials specifically designed 

to collect DBS.  In addition to using gas chromatography (GC) to identify if fatty acids are present, 

we will also examine the lipid extractions with ultra-high performance liquid chromatography 

coupled with tandem mass spectrometry (UHPLC-MS/MS) to determine if the fatty acids are 

present as free fatty acids or as fatty acyls within a complex lipid. UHPLC-MS/MS will also be 

used to assess lipidomic profiles in Mitra tips using traditional collection materials.  

Finally, given that sample storage can result in losses in PUFA [13] and impact 

quantitation, the effect of storage of DBS on 903 PSC and Mitra on fatty acid profiles will be 

determined.  Practical fatty acid storage conditions will be examined and include ambient room 

temperature, 4C, -20C and -75C temperatures. The ambient, 4C, -20C may provide 

information on means of storage when access to the optimal ultra-cold storage (-75C) is not 

possible, but when a common household refrigerator and/or regular freezer are available. The use 

of antioxidants to improve FA stability in DBS on 903 PSC and Mitra will also be assessed given 

previous reports of improved FA stability of DBS samples on chromatography paper[15, 20].  
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Chapter 2 

Background 

2.1 Blood Fatty Acids as Biomarkers of Diet and Health  

 Fatty acids in blood have been used as an assessment tool for determining risk levels for 

chronic disease, cardiovascular disease, cognitive decline and as markers of dietary fat intake [7]. 

The omega-3 index, the sum of the percentages of EPA and DHA in erythrocytes is a risk factor 

for coronary heart disease or sudden cardiac death because of the role the n-3 FAs have in 

membranes and their interaction with membrane bound proteins [16]. Increased levels of EPA and 

DHA dietary intake has demonstrated positive health benefits in instances of neurological 

development in preterm infants [21, 22], rheumatoid arthritis [23], depressive disorder [24], 

inflammation [25] and cardiovascular disorders [26]. Therefore, some health agencies have 

recommended increasing n-3 intake through diet or supplementation to reduce disease risk and 

improve the health of the general population [27, 28]. Dietary recommendations can be made based 

on blood FA levels as a linear correlation between EPA + DHA intake and n-3 FA blood 

biomarkers through tightly controlled dietary intake trials and the relationship has been observed 

in whole blood, RBC and plasma phospholipid pools [29].  

 

2.2 Blood Fatty Acid Analysis: Blood Fractions and Lipid Pool Considerations 

Fatty acid profiles can either be expressed for whole blood or for common blood fractions 

of erythrocytes or red blood cells (RBC), plasma, and/or buffy coat. Plasma fatty acid profiles can 

be presented as the fatty acid composition of total lipids or as the composition of lipid subclasses 

such as phospholipids, triacylglycerols (TAG), and cholesteryl esters.  While the fatty acid 
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compositions of these different blood pools can predict the composition of the other blood pools 

[6], each blood/lipid pool can be influenced by diet and metabolism differently. 

Plasma fatty acid composition mainly reflects the fatty acyls of lipids in lipoproteins [30] 

with some contribution from the nonesterified fatty acid pool [18]. The lipoproteins consist of a 

monolayer of phospholipids that is largely of the phosphatidylcholine species with cholesterol and 

apolipoproteins.  This results in a spherical particle with a nonpolar core of largely TAG and 

cholesteryl esters.  Based on their relative densities dictated by the ratio of triacylglycerol to protein 

content, plasma lipoproteins can be classified as chylomicrons (CM), very-low-density 

lipoproteins (VLDL), low-density lipoproteins (LDL) and high-density lipoproteins (HDL). 

However, the lipoprotein classes can further be separated into intermediate-density lipoproteins 

(IDL) and subclasses of HDL lipoproteins including HDL1, HDL2, HDL3 and so on which have 

different functions based on their structure [31]. Lipoprotein classification can be attributed to their 

main metabolic functions; chylomicrons and VLDL transport TAGs from the intestine or liver to 

peripheral tissues and alternately, HDL removes excess cholesterol and transports it to the liver to 

be excreted. Thus, lipoproteins play an important role in TAG and cholesterol metabolism. 

Specifically, the hydrophobic tendencies of TAG molecules require lipoproteins for transport in 

the aqueous plasma. TAG molecules generally exist in enantiomeric forms and their FA 

composition represents recent dietary intake from preceding days. The fatty acid composition of 

TAG tends to be dominated by saturated fatty acids (SFA) and monounsaturated fatty acids 

(MUFA), specifically C 16:0, C 18:0, and C 18:1 but also contains C 18:2n-6 which is high in the 

diet of industrialized countries as well its’ primary metabolite, C 20:4n-6 [18].  Fatty acid 

composition data on isolated types of lipoproteins is rare due to tedious separation techniques 

required, whereas lipid class isolation is more common as it can be achieved with thin layer 
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chromatography.  The nonesterified fatty acid pool is largely maintained by lipolysis of TAG stores 

within adipose tissue although dietary fatty acids can contribute to the pool post absorption via 

lipoprotein lipase spillover [18]. In general, of the total fatty acids in plasma, 44-59% are 

associated with TAG, 24-31% associated with PL, 14-21% associated with CE, and 3-6% as NEFA 

[18]. 

 Erythrocytes or RBCs are mainly plasma membranes containing hemoglobin.  As such, 

their fatty acids are found predominantly as fatty acyls of phospholipids (PL). As the membrane 

is a lipid bilayer, it is composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE), 

phosphatidylserine (PS), phosphatidylinositol (PI) and sphingomyelin (SPH) [18].  Each class of 

PL can have a characteristic fatty acid composition but they generally have a SFA/MUFA in the 

sn-1 position and a MUFA/PUFA in the sn-2 position [18].  RBC fatty acid profiles are often 

promoted as a better marker of long term dietary habits based on the 3-month half-life of 

erythrocytes.  However, it has been shown that the fatty acid profile of RBC membranes can 

remodel relatively quickly in response to dietary changes [32].  This remodeling may be specific 

to the outer layer and PC, while inner membrane phospholipids such as PE may take longer to 

remodel [32].  This has been demonstrated to have an effect on how we interpret omega-3 

biomarkers as EPA appears to have a higher remodeling rate compared with DHA [7].  The 

erythrocyte fatty acid profile can be correlated with plasma fatty acids, although there is 

considerably less C 18:1n-9 and C 18:2n-6 as these are typically high in the TAG pool absent in 

RBC [6, 33]. 

The buffy coat is collected less frequently, but the FA profiles tend to be similar to RBC.  

This is largely because the buffy coat fatty acids are predominantly from the lipid bilayers of white 

blood cells and platelets [18]. However, the size of the buffy coat fraction can vary in size within 
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and between individuals due to various immune conditions and responses.  The impact of changes 

in the buffy coat on fatty acid composition have not be examined in detail.  

Blood fractioning into plasma, RBC and WBC requires a venous blood draw, anticoagulant 

to prevent RBC lysis and a centrifuge which may not be accessible outside of an analytical facility. 

Thus, whole blood sampling is an attractive alternative for epidemiological studies because it 

enables microsampling procedures such as finger-tip prick or heel prick DBS collections [7]. The 

accessibility, low volume collection, simple sample processing and storage options for DBS makes 

it an attractive option for large screening studies or field related blood collections.  DBS samples 

are, however, a combination of all blood fractions, so the advantages and disadvantages of all the 

fractions are combined.  In being a comprehensive sample, detailed mechanistic insights from the 

FA composition of DBS can therefore be limited, but the comprehensive approach also means that 

no fatty acid information of a specific lipid pool has been lost. 

 

2.3 Dried Blood Spotting and the Growth of Whole Blood Microsampling for Fatty Acid 

Analyses 

 DBS have commonly been used in field research due to the advantages they have in 

collection, storage and transport in comparison to handling wet blood. DBS requires ~50 L or 

less of blood per spot and enables relatively non-invasive and repeatable FTP or heel prick 

collection procedures. DBS were originally used to test for phenlyketoneuria in neonates in the 

1960s and has broadened its scope towards HIV testing and now is commonly used for FA 

profiling in humans [34]. Advancements in the sensitivity of mass spectrometry and gas 

chromatography means that very low volumes of blood can be used for meaningful analyses 

(~10-20 L). 
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DBS in comparison to standard venous blood sampling has lower risks due to its non-

invasive blood sampling protocol such that venous blood draws may raise ethical concerns in the 

elderly, infants or other populations. FTP sampling also allows multiple collections within short 

periods of time which is not possible with venous blood sampling [7]. However, FTP sampling 

methods collect unpredictable volumes of blood and can only be expressed qualitatively as percent 

of total fatty acids identified (%TFA). Differences in FAs when expressing data in %TFA can be 

dictated by increases or decreases in other FAs, which may mask the true quantitative response.  

This is particularly problematic when considering circumstances that may introduce variation in 

the total FA pool such as lipid disorders, postprandial responses or other environmental and genetic 

factors. Alternately, FA profiles can be expressed quantitatively as microgram of fatty acid per 

milliliter of blood (μg FA/ mL blood) if the volume of sample is known. FA quantitation can give 

insight into fluctuations in total concentrations and changes in individual FAs are much easier to 

identify because the variability in the profiles is more visible. Additionally, to truly consider 

factors that may influence DBS FA quantitation, FA contaminants present on dried blood spotting 

materials should also be considered. 

Palmitate and stearate fatty acid contaminants have been identified on commonly used 

spotting materials [19]. Contaminants are included in FA determinations as they are methylated 

with the biological sample during chemical preparations. “Washing” chromatography papers in 

acetone or a methylating agent has been used to remove FA contaminants on blank spotting 

materials [35] but certain product designs include inks and other cosmetic features that may 

saturate into the blood spotting area. Lui et al. recently identified FA contaminants on the Fluka 

blood collection kit, Hemaspot-80 blood collection paper, Whatman 903 specimen collection 

card, Whatman 3MM chromatography paper, Whatman ion exchange chromatography paper and 
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Whatman glass microfiber filter paper [19]. Interestingly, all of the materials were commonly 

contaminated with palmitate (C 16:0) and stearate (C 18:0). Due to the incorporation of these FA 

contaminants during the methylation step in DBS analysis, their concentrations should be 

determined to see if their abundance is high enough to skew FA profiles of DBS samples in 

common dried blood spotting materials.  

The simple blood collection procedure for DBS enables larger field or clinical studies.  

This leads to challenges with sample processing as larger sample sets require greater storage 

and/or transportation capacities. Recently, the stability of PUFA during sample storage has been 

reviewed [32]. In brief, PUFA stability can between 0 and 8 weeks at ambient temperatures, 

between 21 and 90 days at 4C, and approximately 2 weeks at -20C [15, 36-39]. Metherel et al. 

showed that EPA + DHA levels had the largest decline at -20C in whole blood when compared 

to ambient, 4C and -75C temperatures [20]. The mechanism for this accelerated loss at -20C 

is not well understood but is thought to be attributed to the disruption of the erythrocyte structure 

with freezing and iron release, since -20C is not cold enough to prevent the oxidative process. 

Antioxidants have been used to prevent FA peroxidation as BHT-treated chromatography paper 

has been shown to reduce PUFA degradation in DBS samples and HUFA levels remains stable 

in for up to 21 days at ambient temperatures [15].  

 

2.4 Advances in Fatty Acid and Lipid Analyses  

The use of DBS samples for fatty acid analysis has increased based on advances in fatty 

acid and lipid analyses in the past 15 years [33]. These advances have increased analytical 

throughput, decreased costs and enabled larger sample sets to be analyzed.  DBS samples are 
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well suited for high throughput initiatives as they are simple to collect but also have a reduced 

sample preparation time in comparison with the venous blood draw based sampling.  

Until recently, the limiting step in fatty acid analysis was the analysis of derivitized fatty 

acids by gas chromatography as individual sample run times could take over one hour.  The 

development of miniaturized capillary columns, improved temperature ramping and higher gas 

flow rates for gas chromatographs allowed for the development and adaptation of “fast” GC 

protocols.  GC run times for a FA profile can now be completed in as little as 10 min [40], which 

shifted the limiting analytical step towards cumbersome and tedious sample preparations [33].  

Traditionally, samples were prepared for fatty acid analysis by extracting the all lipids from the 

samples, saponifying the complex lipid to release the fatty acyls, and then derivitizing the free 

fatty acids to methyl esters [33].  These multiple steps are not amenable to automation and 

robotic handling, therefore the development of one-step chemical reactions [41] was the next 

critical step in increasing analytical throughput.  This also resulted in examining the blood 

collection process and the use of microwave energy to drive chemical reactions for additional 

throughput gains [7].   

It became clear that fingertip blood sampling and collection of DBS had significant 

throughput advantages [42, 43]. Because DBS samples are “dry” and there is no water in the 

sample to interfere with the chemical reactions, DBS samples can be directly transesterified to 

fatty acid methyl esters (FAMEs) without a lipid extraction step [7]. Samples containing 

considerable amounts of water typically require lipid extraction to get lipids in anhydrous 

organic solvents as water can interfere with the rapid boron trifluoride (BF3) catalyzed reaction 

(14%) in methanol [44].  The presence of water would result in the production of free fatty acids 

rather than the methanol being used to derivitize the fatty acyls to methyl esters. Making FAMEs 
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is required to optimize the resolution of each fatty acid peak by gas chromatography with flame 

ionization detection [45].  This resolution allows for consistent linear responses across all the 

individual fatty acids which provides simplified quantitation. 

One challenge with GC analysis is that the chemical derivatization required to produce 

FAMEs results in the loss of information about the native acyl species of complex lipids. While 

some of this information can be recovered by using additional techniques such as thin layer 

chromatography to isolate specific lipid classes prior to fatty acid determinations, the actual 

combinations of fatty acids on the lipids is never precisely known.  Advancements in mass 

spectrometry (MS) and the emergence of the field of lipidomics has resulted in the ability to 

determine and measure lipids in their native occurring state, including detailed information about 

their fatty acyl species [46]. MS based analyses can therefore provide more insights on acyl lipid 

species remodeling events and biological activities that are difficult to observe using GC based FA 

analysis.  This can be very useful for examining lipid metabolism during dietary intervention, 

pregnancy and metabolic diseases and can potentially reveal novel lipid blood biomarkers for 

dietary assessment and disease risk. However, at this time MS analysis remains costly, can be time 

consuming and the identification and quantitation of numerous lipid species remains problematic 

and difficult.  
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Chapter 3 

Rationale, Objectives and Hypotheses 

3.1 Rationale 

A drop of blood collected by a lancet from a FTP can be done quickly, is relatively 

simple to perform and requires little infrastructure when compared with venous blood draws.  

The simplicity and the lower cost per sample collected supports both field research and large 

clinical studies which can produce a large number of samples that require storage prior to 

shipment to an analytical facility.  FTP procedures typically result in the collection of unknown 

volumes of blood as DBS which prevents the ability to quantitate FA concentrations and limits 

data to qualitative units that can be less informative.  In addition, the materials used to collect 

DBS samples can be contaminated with lipids and fatty acids during manufacturing and/or post 

production handling.  Given that DBS samples are a comprehensive mixture of blood fractions 

and lipid pools, quantitative fatty acid data could be important to control for variability in 

samples due to conditions that could cause hypo- or hyper-lipidemia [47-49]. This thesis, 

therefore aims to address limitations in the ability to quantitate FA in DBS samples in 903 PSC, 

an industry standard, and a novel Mitra Microsampling Device.  Methods to determine blood 

volume in a DBS sample, the determination and impact of FA contaminants on quantitation, and 

FA stability during different storage conditions will be examined. 

 

3.2 Objectives 

 This thesis involves addressing three limitations in DBS quantitation that include; 

determining sample blood volumes, assessing FA contaminants on spotting materials, and FA 

stability during storage (see flow diagram: Figure 1). The initial objective was to develop a method 
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to determine unknown blood volumes of DBS.  For the commonly used 903 PSC, the relationship 

between blood volume and the area of spotted blood was examined to develop an equation to allow 

blood volume to be calculated from a hole punch of a defined area. An alternative solution involved 

the validation of the Mitra Microsampling Device, which collects 10 µL of blood, for FA analysis. 

The use of Mitra for a lipidomics analyses was also assessed using UHPLC-MS/MS and compared 

to a wet blood control. Fatty acid contaminants present on commonly used dried spotting materials 

was examined using blank 903 PSC and the Mitra devices by GC-FID and by UHPLC-MS/MS. 

Finally, the stability of FA in DBS stored on 903 PSC and the Mitra with and without antioxidants 

were tested under ambient, 4C, -20C and -80C conditions to determine fatty acid stability over 

3 months .  
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3.3 Hypotheses 

1. The area blood spotted on 903 PSC will have a strong positive linear correlation (r > 0.8) 

to the volume of blood applied. 

2. The linear relationship between area of blood and volume of blood will allow a 6mm hole 

punch to determine an unknown volume of blood from 903 PSC. The calculated volume 

will be used to determine FA concentrations through GC-FID which will yield similar FA 

profiles compared to pipetted wet blood controls. 

3. The Mitra Microsampling Device, a novel DBS device that wicks 10uL of blood will 

provide FA concentrations comparable with wet blood controls through GC-FID analysis. 

4. HPLC-MS will be used to determine fatty acyl species of complex lipids on DBS using 

lipidomic approaches and will be comparable to results from wet blood controls. 

5. GC-FID will identify palmitate and stearate fatty acids as contaminants on blank 903 PSC, 

Mitra tips and Whatman chromatography paper. HPLC-MS will identify palmitic and 

stearic free fatty acids on all materials.  

6. The HUFA status of DBS samples will decrease equally in all storage conditions (ambient, 

4C, -20C and -80C) in both the Mitra and 903 PSC. 

7. There will be an inverse relationship between temperature of storage and stability of 

HUFAs where decreasing storage temperatures will increase HUFA stability in DBS and -

20C which will show accelerated losses. 

8. The addition of BHT will increase the stability of HUFA in the DBS samples in both 

materials at all conditions, except at -80C which will show the most FA stability regardless 

of the presence of BHT. 
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Figure 1. Flow diagram addressing the main experiments in this thesis. The development of an 

equation to determine unknown amounts of blood on 903 PSC; using the equation to determine 

volume based on 6mm punch of 903 PSC; Mitra FA analysis validation; Mitra lipidomics 

validation; blank material FA contaminant identification through GC and UHPLC-MS/MS on 

903 PSC, Mitra and Whatman chromatography paper; storage experiment to determine FA 

stability using the 903 PSC and Mitra. 
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Chapter 4 

Common Methods 

 

Many of the methods in the present thesis were used for different objectives. In this chapter, 

the common methods are described in detail and can serve as a reference for the individual research 

chapters. All protocols and procedures have received approval from the Human Research Ethics 

Committee of the University of Waterloo. 

 

4.1 Blood Collection 

Venous blood was collected from the antecubital vein by a phlebotomist into sterile 

vacutainers to which 100 μL of 0.2M ethylenediaminetetaacetic acid (EDTA, Sigma-Aldrich) was 

added. Blood was aliquoted into smaller vials for application to dried spotting materials and 

storage. All DBS samples were allowed to dry at ambient temperatures and then stored at -75°C 

until analysis unless otherwise described.   

 

4.2 Lipid Extraction 

Total lipids were extracted from the DBS by adding 2:1 chloroform:methanol (v/v) and 

leaving at ambient temperatures for 24 hours [46]. Samples were then vortexed for 1 minute and 

500 μL of a 0.2M sodium phosphate buffer was added to induce separation of the aqueous and 

organic layers. Samples were inverted once and then centrifuged at 3000 rpm. The organic 

chloroform layer then collected and stored at 4ºC until further analysis.  
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4.3 Direct Methlyation and Methylation of Lipid Extracts 

Blood samples, or lipid extracts dried under nitrogen were combined with 300 μL of hexane 

containing a docosatrienoic acid (C22:3n-3) internal standard, and 1 mL of 14% boron trifluoride 

in methanol in a 5mL test tube with a silicon lined cap.   The samples were then heated for one 

hour at 100C on a block heater. Samples were removed and 1 mL each of hexane and water were 

added to the test tube followed by vortexing for 1 min and centrifugation at 3000 rpm for 5 minutes. 

The top layer containing the fatty acid methyl esters in hexane was removed, dried under nitrogen, 

and then reconstituted with 50 μL of heptane.  The fatty acid methyl esters were then transferred 

to GC vials for analysis by gas chromatography.  

 

4.4 Gas Chromatography – Flame Ionization Detection (GC-FID) 

GC-FID is the most commonly used technology for fatty acid analysis [33]. FAMEs were 

analyzed on a Varian 3900 gas chromatograph equipped with a nitroterephathalic acid modified 

polyethylene glycol capillary column with 15 m x 0.10 mm i.d. x 0.10 um film thickness and 

hydrogen as a carrier gas [20]. Volumes of 1 µL were introduced by a Varian CP-8400 autosampler 

with a split ratio of 200:1 into an injector heated to 250°C. The initial temperature was held for 

0.25min at 150°C followed by a 35°C/min ramp to 200°C, an incline of 8°C/min ramp to 225°C 

with a hold for 3.2 minutes to a final 80°C/min ramp up to 245°C for a 15-minute hold. The FID 

was set to 300°C with a nitrogen flow rate of 300mL/min.   
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4.5 Ultra-High Performance Liquid Chromatography with Tandem Mass Spectrometry 

(UHPLC-MS/MS) 

A Thermo Q-Exactive coupled with a Dionex UHPLC system was used to perform 

UHPLC-MS/MS experiments. Samples were resuspended in a solution of 65:30:5 

acetonitrile:isopropanol:water (v/v/v) with 0.1% formic acid. A C18 Ascentis Express column was 

used (15cm x 2.1mm x 2.0 um) with a binary solvent system. The two solutions for the mobile 

phase were; 60:40 acetonitrile:water (v/v), 10 mM ammonium formate and 0.1% formic acid (A) 

and 90:10 isopropanol:acetonitrile (v/v), 10 m M ammonium formate and 0.1% formic acid (B). 

The multistep gradient consisted of a mixture of the second solvent (B) into the first solvent (A) 

starting with a 32% ratio ramping up to 95% in 45 minutes [46]. Data was analyzed on the 

MassLynx 4.0 software. The tandem mass spectrometry (MS/MS) spectra was exported to the 

NIST 2.0 program for lipid identification using the LipidBlast database.  
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Chapter 5 

Development of a Quantitative Method to Determine Fatty Acid 

Concentrations on 903 Protein Saver Cards and Validating the Mitra 

Microsampling Device for Fatty Acid Analysis 

 
5.1 Introduction  

 The fatty acid profiling of DBS samples is increasing due to advantages in simplified 

sample collection, handling and processing.  However, DBS collection has limitations because 

volume of blood collected on a paper matrix is usually unknown. As a result, FAs cannot be 

expressed as concentrations and must be represented percent of the total FA (%TFA). Most of 

the available literature using DBS sampling procedures express their FA data as relative 

percentage [4] due to the unknown volumes, unless blood is previously quantitated.  

 In this chapter, the relationship between blood volume pipetted and blood spot area on 

903 PSC will be determined. This relationship will then be used to calculate the volume of blood 

on a 6mm punch of DBS on a 903 PSC. The Mitra Microsampling Device (Figure 1) that is 

designed to wick 10 μL of blood will also be validated for quantitative FA analysis. This device 

is designed to wick an accurate volume of blood regardless of hematocrit level and has been used 

for other analytes including cancer metabolomics and steroids determinations [50, 51] but not 

fatty acids and lipidomics. 

  

5.2 Methods 

In the first study, whole blood was collected by venipuncture with EDTA from one fasted 

healthy male participant as described above in Chapter 4.  Five different volumes (15, 20, 25, 30 
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and 35 μL) were pipetted in triplicate onto 903 PSC (Sigma Aldrich, Oakville, CAN) and left to 

dry at ambient temperatures.  Images were taken by 12 MP camera on a Samsung S7 Edge and 

saved as jpg files. Image were then analyzed using ImageJ software to determine accurate areas 

for each blood spot.  The mean DBS area and known blood volumes were plotted and the linear 

equation was determined and assessed by a correlation coefficient.  

In the second study, venous whole blood was taken from ten healthy adults attending the 

University of Waterloo that fasted overnight.  Samples were aliquoted as wet whole blood (35 

μL), DBS on 903 PSC and DBS on the Mitra (Neoteryx, Torrance, CA). For the 903 PSC, 

approximately 35 μL was applied, allowed to dry and then a Harris Uni-Core punch (Sigma 

Aldrich, Oakville, CAN) was used to remove a 6mm hole from the center of each spot, which 

was transferred to a test tube. For collection on the Mitra, the device was held at the surface of 

blood at 45 until completely saturated and left to dry at ambient temperatures for an hour. The 

Mitra tip was then removed and placed in a test tube.  Direct transesterification was used to 

derivitize the fatty acyls and acids to methyl esters (Chapter 4, Section 4.3). In summary, final 

blood volumes that were used were 35 μL for wet blood, 9.6 μL for 903 PSC (see below for 

calculations) and 10 μL for the Mitra.   The FAMEs were then analyzed by GC (Chapter 4, 

Section 4.4).  

The fatty acid compositions of the wet blood and DBS were expressed as concentrations 

and relative percentages and compared by one-way ANOVA with Tukey’s post hoc testing to 

determine differences between individual means.  Bland-Altman plots were also used to examine 

the concordance between wet blood and the DBS collection materials.  This was completed for 

the sum of the concentrations of EPA and DHA and the % of n-3 HUFA in total HUFA as these 

biomarkers of n-3 LCPUFA status are commonly used in the literature.      
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5.3 Results 

 In study 1, the area of each blood spot was proportional to the volume of blood applied 

(Figure 2).  After calculating the areas with Image J and plotting against the blood volumes 

(Figure 3), a linear relationship was determined (y = 0.029x, r = 0.99, P < 0.001). This equation 

was applied to the 6mm hole punched from the DBS on 903 PSC indicating that the hole punch 

contained 9.6 μL of blood.   

 In study 2, the mean fatty acid profiles for the ten individuals using the three different 

collection methods were relatively similar.  Concentration values (μg FA/ mL blood) did not 

show any significant differences for the sums of saturated fatty acids (SFA), monounsaturated 

fatty acids (MUFA), n-6 an n-3 polyunsaturated fatty acids (PUFA), highly unsaturated fatty 

acids (HUFA), and total fatty acids concentrations (Figure 4).  In addition, there were no 

differences between commonly used biomarkers of omega-3 status (EPA+DHA, N-6/N-3, 

HUFA score) (Figure 5).  However, there were significant differences for a few individual fatty 

acids (Table 1).  These included significantly higher recoveries of C 10:0, C 12:0,  C 12:1 and C 

22:1n-9 and lower recoveries of C 22:0 for the Mitra and solely higher recoveries of C 22:0 for 

the 903 PSC in comparison to wet blood controls. When the fatty acids were expressed as 

relative %, there were no significant differences between any of the individual fatty acids, sums 

of fatty acid and/or ratios or biomarkers (data not shown).  This was explored further by 

presenting the ranges of classes of fatty acids (Table 2).  Within a sample set of 10 heathy 

individuals, the ranges were much wider when the data was expressed as concentrations. 

Concordance analysis between wet whole blood and DBS collection materials for EPA + DHA 

and the % of n-3 HUFA in total HUFA by Bland-Altman plots indicated the 95% confidence 
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intervals of the bias (average difference between whole blood and spotting method) extended 

beyond zero.   

  

5.4 Discussion 

Based on our results, it appears that DBS collected by 903 PSC and Mitra can be used for 

accurate fatty acid profiling. The blood volume and blood area on 903 PSC showed a strong 

linear correlation (r = 0.99, P < 0.001) that allowed for the determination of blood volumes when 

fatty acid profiles from 903 PSC, Mitra and wet blood were compared. There were some 

statistical differences between some individual fatty acids, specifically C 10:0 and C 12:0, but 

these were very low abundant fatty acids (each was < 0.5% of total fatty acids) with little impact 

to fatty acid subgroups.  Concordance testing indicated that both the 903 PSC and Mitra are 

capable of providing omega-3 status results similar to wet blood analysis. To our knowledge, this 

is the first report of fatty acid concentrations in DBS.  Previous studies reporting DBS fatty acids 

have presented the relative % of total fatty acids [7, 11, 13, 20, 42, 52].  Blood volume estimates 

of DBS hole punches have been shown to be linear to blood area on 903 PSC previously for 

other metabolites (REF 5).  For fatty acid analyses, a 6mm DBS punch  has been shown to have 

an average blood volume of 8.7 ± 1.9 µL on PUFAcoat cards, however this material in thinner 

and less absorbant due to silica gel coating [53].   The 903 PSC and Mitra examined in this 

chapter have shown to provide similar results to wet blood controls using technical replicates and 

blood from healthy participants. These preliminary results indicate that quantitative fatty acid 

determinations are possible from DBS. Further validation should be completed on different 

populations such as children, aging populations and malnourished individuals, which may have 

high or low hematocrit.  
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These observations have limitations.  The assessment was completed using technical 

replicates, therefore the impact of biological variation was not assessed directly. Biological 

variation was indirectly assessed when the 9.6 μL volume for a 6mm punch was applied to the 

903 PSC DBS samples collected from the 10 individuals and compared to wet blood and the 

Mitra. However, the study sample was restricted to a healthy young population sample that 

fasted prior to blood sampling. Given field studies often target different populations such as 

children, the elderly or malnourished, and that postprandial conditions can vary, additional 

research is needed to validate these DBS collection materials under different conditions.  The 

variability in DBS area to blood volumes is related to blood viscosity that is determined by 

hematocrit levels, plasma viscosity, and erythrocyte aggregation and deformation.  This could 

result in different linear equations to define the DBS area and blood volume relationship on the 

903 PSC. However, using a small area/low volume of blood as we did, should minimize the 

effects of variation in DBS dispersion. There is evidence in the literature, that a “volcano” effect 

can occur with blood dispersion where the volume of blood per unit area is decreased around the 

edges of the DBS. Therefore, removing a hole punch towards the center of the DBS should 

provide an accurate unit of volume per unit of area. 

 

5.5 Conclusions 

 In conclusion, quantitative FA profiling of DBS from healthy individuals is possible. This 

can be done by characterizing the blood volume/DBS area dispersion of the 903 PSC or by 

collecting a known volume of blood using a novel Mitra collection device.  Further method 

validation is required with a larger sample size and especially in populations that may have 

different DBS blood dispersion on collection materials.  
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Figure 2. Mitra Microsampling Device (10 μL) with and without blood [54]. 

 

 

 

 

 

 

 
 

Figure 3. Whole blood spotted on 903 Protein Saver Cards. Volumes of 35, 30, 25, 20 and 15 μL 

were pipetted into the center of each spot and areas were determined using ImageJ. 
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Figure 4. Linear relationship between volume of blood pipetted and saturated are on 903 Protein 

Saver Cards. The resultant equation was y = 0.029x where the y variable is the area in cm2 and 

the x variable is volume in μL.  Linear regression and p- values were determined, n = 3 for each 

volume point.  
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Figure 5. Concentrations (μg FA/ mL of blood) of fatty acid groups in whole blood, 903 Protein 

Saver Cards and Mitra. SFA, saturated fatty acids; MUFA, monounsaturated fatty acid. Each bar 

represents means with error bars representing the S.D., n = 10.  

 
 

Figure 6. Concentrations (μg FA/ mL of blood) of biomarker status in whole blood, 903 Protein 

Saver Cards and Mitra. EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; DPA, 

docosapentaenoic acid; PUFA, polyunsaturated fatty acid; HUFA, highly unsaturated fatty acid; 

n-6, omega-6; n-3, omega-3. Each bar represents means with error bars representing the S.D., n = 

10.   
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Table 1 FA compositions of wet blood control, 6mm hole punched 903 PSC and Mitra (μg FA/ 

mL of blood)      

 

 

Asterisk used to highlight significantly different values (in comparison to wet blood control) 

after one-way ANOVA + Tukey HSD post-hoc test with p < 0.05. Data shown as mean ± SD. 

  

Fatty Acid   Whole Blood Dried Blood Spot Mitra Microsampler 

C 10:0 0.1 ± 0.1 0.1 ± 0.1 0.7 ± 0.3* 

C 12:0 0.3 ± 0.1 0.5 ± 0.3 0.9 ± 0.3* 

C 14:0 2.0 ± 1.0 2.4 ± 0.9 3.3 ± 1.0 

C 16:0 58.5 ± 13.6 60.1 ± 13.3 65.3 ± 13.2 

C 18:0 32.4 ± 7.5 31.8 ± 3.2 36.4 ± 3.5 

C 20:0 1.0 ± 0.1 1.1 ± 0.1 1.0 ± 0.1 

C 22:0 3.1 ± 0.4 3.7 ± 0.3* 2.5 ± 0.3* 

C 23:0 0.7 ± 0.1 0.8 ± 0.2 0.6 ± 0.1 

C 24:0 5.9 ± 0.8 5.3 ± 1.1 4.8 ± 0.7 

C 12:1 0.1 ± 0.1 0.1 ± 0.1 1.0 ± 0.9* 

C 14:1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 

C 16:1 2.6 ± 2.0 2.8 ± 1.9 3.1 ± 2.0 

C 18:1n-7 4.3 ± 1.0 4.8 ± 1.0 5.0 ± 1.1 

C 18:1n-9 44.2 ± 11.2 50.2 ± 9.3 52.4 ± 11.4 

C 20:1n-9 0.7 ± 0.2 0.7 ± 0.2 0.8 ± 0.1 

C 22:1n-9 0.2 ± 0.2 0.3 ± 0.2 1.7 ± 0.4* 

C 24:1n-9 6.6 ± 0.9 5.5 ± 1.1 5.3 ± 1.0 

C 18:2n-6 60.0 ± 9.5 64.5 ± 10.1 64.3 ± 9.9 

C 18:3n-6 0.7 ± 0.3 0.8 ± 0.3 0.7 ± 0.3 

C 20:2n-6 0.2 ± 0.2 0.4 ± 0.5 0.2 ± 0.2 

C 20:3n-6 4.0 ± 1.5 4.0 ± 1.4 4.1 ± 1.4 

C 20:4n-6 29.8 ± 5.9 29.4 ± 5.0 29.4 ± 5.4 

C 22:2n-6 0.1 ± 0.1 0.2 ± 0.2 0.1 ± 0.1 

C 22:4n-6 3.9 ± 0.9 3.7 ± 0.8 3.7 ± 0.8 

C 22:5n-6 1.2 ± 0.5 1.5 ± 0.8 2.2 ± 0.4 

C 18:3n-3 1.4 ± 0.6 1.6 ± 0.6 1.5 ± 0.6 

C 20:3n-3 0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 

C 20:5n-3 1.5 ± 0.6 1.5 ± 0.5 1.8 ± 0.5 

C 22:5n-3 3.2 ± 0.3 3.3 ± 0.6 3.4 ± 0.6 

C 22:6n-3 7.7 ± 2.3 7.3 ± 2.1 7.4 ± 2.1 

C 20:3n-9 0.6 ± 0.3 0.7 ± 0.1 0.7 ± 0.1 

Total 276.9 ± 47.3 289.0 ± 43.3 304.1 ± 45.4 
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Table 2 FA ranges expressed as relative percentages (%TFA) and concentrations (μg FA/ mL 

of blood).  

FA Groups 

Relative Percent 

(%TFA) 

Concentration 

(μg FA/ mL of blood) 

SFAs 34.0-40.0 79.0-143.4 

MUFAs 17.7-24.5 40.6-88.2 

N-6 32.1-37.1 81.9-140.6 

N-3 3.9-5.4 9.7-21.1 

EPA+DHA 2.0-3.8 4.8-14.8 

SFA, saturated fatty acids; MUFA, monounsaturated fatty acid, n-6, omega-6; n-3, omega-3; 

EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; PUFA, polyunsaturated fatty acid; 

HUFA, highly unsaturated fatty acid. Data is presented as range (min – max), n = 10. 
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A 

 
B 

 
 

Figure 7. Concordance testing of 903 PSC, Mitra and whole blood for EPA + DHA levels. A. 

903 PSC, B. Mitra. Sample tests completed on difference; whole blood, 903 PSC and whole 

blood, Mitra. (n = 10). 
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B 

 

Figure 8. Concordance testing of 903 PSC, Mitra and whole blood n-3 HUFA in total HUFA. A. 

903 PSC, B. Mitra. Sample tests completed on difference; whole blood, 903 PSC and whole 

blood, Mitra. (n = 10). 
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Chapter 6 

Identification of Fatty Acid and Lipid Contaminants  

Commonly found in Blank Dried Blood Spotting Materials 

6.1 Introduction  

DBS collections use materials that may be contaminated with lipids. Using gas 

chromatography methods, lipids are either extracted or the fatty acyls on lipids are directly 

transesterified prior to fatty acid composition analysis. However, due to this procedure, any lipid 

and fatty acid contaminants on the DBS collection materials can be incorporated into the biological 

sample which potentially reduces the accuracy and precision of the FA determinations.  

In the past, measures have been taken to reduce the prevalence of contaminants by soaking 

the materials in a methylating agent for 1h, 3h and 10h at ambient temperatures and 1h, 2h and 3h 

at 70°C. The study showed a 60% reduction in contaminants after 2h and 80% reduction after 3h 

at 70°C but the texture of the cards was destroyed and unusable [19]. Alternatively, others have 

used a 2:1 choloroform:methanol wash (v/v) to remove nearly 80% of the contaminants for most 

collection papers in 3h [19]. Although methods exist to treat collection materials to remove 

contaminants, certain materials with cosmetic features such as ink cannot be washed. Saturated 

FA, specifically palmitate (C 16:0) and stearate (C 18:0) are the commonly found contaminants 

on tested dried spotting materials [19].  

Understanding the concentration and type of contamination in commonly used spotting 

materials can be used to see how FA profiles in biological samples may be affected. The 

experiments in this chapter will examine contaminants on 903 Protein Saver Cards, Whatman 

chromatography paper and the Mitra through GC analysis. These three materials were chosen due 

to the popularity in 903 PSC in FA literature, the prevalence of Whatman chromatography strips 
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in our current lab use and no information on the current blank FA profile on the Mitra. UHPLC-

MS/MS will also be used to determine the actual lipid source of the fatty acid contaminants. 

6.2 Methods 

Blank Whatman chromatograph paper, 903 PSC and Mitra tips without blood samples were 

used and all materials were handled using nitrile gloves.  In triplicate, hole punches (6mm) were 

taken from the paper materials, and tips were removed from the Mitra, and then placed in clean 

glass test tubes.  Total lipids were extracted from tips using a modified Folch protocol [55]. In 

brief, the samples were submerged in 3 mL of 2:1 chloroform:methanol (v/v) and incubated 

overnight. The organic chloroform layer was then separated using a sodium phosphate buffer 

(Na2PO4) and separated into two aliquots. 

The first aliquot was used in study 1 for GC analysis. The organic chloroform layer was 

dried under nitrogen and FAMEs were prepared using 14% boron trifluoride in methanol. The 

FAMEs were then analyzed by GC as described in Chapter 4 (4.3, 4.4). 

 The second aliquot of chloroform was used in study 2 for mass spectrometry analysis. The 

sample was dried under nitrogen and then re-suspended in 65:35:5 acetonitrile:isopropanol:water 

+ 0.1% formic acid and analyzed using a reverse phase UHPLC multi-step binary protocol as 

described in section 4.5. Positive ESI mode was used to identify all lipid species but could not 

identify FFA species. Therefore, negative ESI mode was used to detect FFA because of the 

chemical properties of the compound, specifically the deprotonated form of the carboxylic acid 

(R-COO-). A spray voltage of -3.0kV was used to ionize and identify the FFA species. The mass 

spectra was exported to the NIST 2.0 program for lipid identification using the LipidBlast 

database.  
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6.3 Results 

In the first study, 16:0 and stearic 18:0 fatty acids were identified in all three DBS 

collection materials through GC-FID analysis and no other fatty acids were detected. Specifically, 

Whatman chromatography paper had the highest level of contaminants with 0.97±0.08 μg of 16:0 

and 1.43±0.16 μg of 18:0 per 6mm punch, the 903 PSC had 0.64±0.05 μg of 16:0 and 0.88±0.04 

18:0 per 6mm punch and the Mitra had 0.80±0.08 μg 16:0 and 0.98±0.10 μg 18:0 per tip.  

The second study used the GC results for the UHPLC-MS/MS analysis to perform a 

targeted search for lipids containing stearate and palmitate. Negative ionization mode identified 

palmitic acid and stearic acids in all materials as free fatty acids with the [M-H]- mass-to-charge 

ratios of 255.23 and 283.26 respectively. Additionally, positive mode analysis revealed that the 

Mitra tips also contained palmitoyl and stearoyl lysophosphatidylcholines (LysoPC) with [M+H]+ 

m/z ratios of 496.34 and 524.37, respectively.  

6.4 Discussion 

This study suggests that Whatman chromatography paper, 903 PSC and the Mitra are all 

contaminated with palmitate and stearate containing lipids. The presence of these contaminants 

can skew FA profiles due to the inclusive methylation protocol through GC-FID analysis. Pre-

treatment of chromatography papers can be used to reduce concentration amounts on certain 

collection materials. However, FA species and abundances should be determined in circumstances 

where washing procedures cannot be applied. Whatman chromatography paper showed the highest 

amount of C 16:0 and C 18:0 contaminants followed by Mitra and then 903 PSC. The amount of 

contaminants when compared to C 16:0 and C 18:0 in the blood of the healthy subjects is 
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minuscule and well below the typical variation observed with intra-individual analysis. Given the 

prevalence of FA contaminants is below 1 μg, it does not impact the total concentrations by much, 

as we estimate the contaminants are 1% of the total C 16:0 and 3% of C 18:0 in blood. 

Contaminants including C 20:0 and C 22:0 have been identified on 903 PSC previously, but at 

extremely concentrations [19]. We did not detect C 20:0 and C 22:0 by either GC-FID or UHPLC-

MS.  We analyzed blank 6mm (0.28cm2) punches of 903PSC with minimal handling.  The previous 

study examined a 1.5 X 1.5 cm blank (2.25cm2) that was treated with an internal standard [19].  

Therefore, the C 20:0 and C 22:0 could have been below the limits of detection for our analyses, 

or they were introduced onto the blanks during handling in the previous study.  Further testing 

should be completed on glassware, solvents and plastics (such as pipette tips) and different steps 

of sample processing during FA analysis to identify potential sources of contamination. 

The fact that the Mitra was the only material to have palmitoyl and stearoyl 

lysophosphatidylcholines was interesting. While lysophosphatidylcholines exist naturally in 

various sources, their presence in the absence of phosphatidylcholines suggests they have been 

added to the material intentionally.  Lysophosphatidylcholines or lysolecithin has industrial 

applications as wetting and/or emulsification agents [56].  Therefore, the lysoPC could be 

intentionally added to contribute to the wicking abilities of the Mitra because of its water soluble 

and fat soluble properties (also seen in emulsifiers). If lipidomics analysis is used, these lysoPC 

species can be selectively excluded as contaminants from the data extraction or acquisition and 

the remaining complex lipids can still be characterized fully.   

 This study shows that FA contaminant exist, but that they have low impact on blood FA 

profiles in DBS. Steps can be taken to “wash” materials to remove the SFA contaminants; 
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however, this can effect ink on the 903PSC and potentially impact the wicking capabilities of the 

Mitra.   

 

6.5 Conclusions, Limitations and Future Directions 

 In conclusion, palmitate and stearate FAs were found on Whatman chromatography paper, 

903 PSC and the Mitra. The m/z ratios of these FAs were used to identify their encompassing 

lipids using mass spectrometry. Palmitic and stearic FFAs were identified in all materials and 

palmitoyl and stearoyl LysoPCs were identified solely in the Mitra. A more comprehensive 

determination of contaminants should be completed by examining different batches of each 

material to test the consistency of the contaminants present. 
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Chapter 7 

Lipidomic Profiling of Human Whole Blood using the 10 L Mitra 

Microsampling Device 

7.1 Introduction  

Blood fatty acid profiling has shown a link between lipid metabolism, dietary intake and disease 

risk. FA analysis is commonly gas chromatography based and require a derivatization reaction to 

prepare FAMEs for analysis and as a result, there is no available information on the fatty acyl 

parent lipid species. Techniques such as thin-layer chromatography (TLC) can isolate lipid 

classes before FAs are determined but the acyl species of the original lipids remain unknown 

[57]. The advances in UHPLC-MS/MS has enabled the identification of complex lipid species as 

they exist in biological samples. A recent study has determined lipidomic profiles on Whatman 

cellulose paper, the first of its kind to apply lipidomics to DBS samples [46]. The development 

of a high-throughput UHPLC-MS/MS method identified a vast number of lipid species that 

occurred in DBS samples and also addressed the complexity in studying whole blood lipids due 

to the polar and non-polar lipid mixtures and range of abundances as well as the retention of 

specific lipids on the collection materials. The untargeted lipidomics profiling method 

characterized the main lipid species in blood including phosphatidylserine (PS), 

phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC), 

triacylglycerol (TAG) and cholesterol esters (CE). The other two recorded studies on DBS 

lipidomics used Ahlstrom 226 collection cards to determine lipid species in infant heel prick 

collections [58, 59]. This chapter examines the ability to use the Mitra sampling device for 

lipidomic assessments of DBS. A semi-quantitative, untargeted UHPLC-MS/MS method is used 
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and the lipid species identified in the Mitra was compared to those identified in wet blood 

controls.  

7.2 Methods 

Whole blood was collected by venipuncture with EDTA from one fasted healthy male 

participant as described above in Chapter 4 (Section 4.1). Samples were aliquoted as wet whole 

blood (35 μL) into clean test tubes and the Mitra tips were held at 45 until completely saturated, 

left to dry at ambient temperatures and placed into clean test tubes. Total lipids were extracted 

from tips using a modified Folch protocol [55]. In brief, the samples were submerged in 3 mL of 

2:1 chloroform:methanol (v/v) and incubated overnight. The organic chloroform layer was then 

separated using the lipid extraction protocol discussed in Section 4.2 dried under nitrogen. Samples 

were then re-suspended in 65:35:5 acetonitrile:isopropanol:water + 0.1% formic acid and analyzed 

using a reverse phase UHPLC multi-step binary protocol as described in section 4.5. The lipids 

were presented as arbitrary units which is the qualitative ratio between amount of substance 

compared to a predetermined reference measurement, in this case a 17:0/17:0 PC internal standard 

(Avanti, Alabaser, AL). The mass spectra were exported to the NIST 2.0 program for lipid 

identification using the LipidBlast database. 

7.3 Results 

There were significant differences between the lipidomics profiles generated from the 

Mitra DBS and the wet whole blood control. The Mitra DBS resulted in significantly lower 

amounts of 16:0/18:2 PC, 16:0/20:4 PC, 18:0/22:6 PS, 16:0 lyso PC and 18:0/20:4 PS.  

However, a pattern in the other PC species that were not significantly different was also observed 

in that all the PC compounds where roughly 10% lower when determined from Mitra DBS.  For 
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PE, 16:0/18:2 PE was also roughly 10% lower (not significantly different) but 16:0/22:6 PE from 

Mitra was very similar.  Determinations of PS species were particularly low from the Mitra 

(approximately 55% lower than control) as well as 16:0 lysoPC (32% lower than control). In 

contrast, the Mitra lipidomics profile showed consistent higher but not significant recoveries of 

the identified TAG (10-15% higher) and CE (29% higher) species; 16:0/18:1/18:2 TAG, 

16:0/18:1/18:1 TAG, 18:1/18:1/18:2 TAG and 18:2 CE (Table 3).  

7.4 Discussion 

The generally lower recoveries of phospholipids (~10%) and higher recoveries of 

TAG/CE species is likely due to the polarity of the compounds and interactions with the Mitra 

tip and the ability to extract lipids from the Mitra tip.  A recent study examining extraction 

protocols for lipidomics from DBS on chromatography paper showed similar profiles to wet 

blood could be obtained with 24h exposure to extraction solvents, homogenization of the 

collection material, and acid treatment to assist in recovering PS species [46]. The PS recovery 

required acid extraction to disrupt the hydrogen bonding between the carboxylic acid group of 

PS with the cellulose fibers in the paper [46].     

While the Mitra tip composition is proprietary, it appears to share some of the properties 

of chromatography paper in regard to the retention of lipids.  The three dimensional shape (cone) 

of the Mitra appears to result in less contact exposure to the extraction solvents 

(chloroform:methanol, v/v) during the overnight soak in compared with the relatively two 

dimensional shape of  DBS on chromatography paper resulting in potentially poorer extraction 

efficiencies.  The decreased extraction efficiencies of the polar lipids presently observed strongly 

suggests that the Mitra tips are made of a polar material that is retaining polar compounds, 

particularly acidic compounds The higher recoveries of TAG/CE species we observed with the 
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Mitra tip suggests extraction efficiencies for non-polar compounds are relatively high, and is 

further evidence that the Mitra materials are nonpolar.  The slightly higher recoveries of the 

nonpolar lipids from the Mitra tip relative to whole blood is likely due to the use of a polar lipid 

internal standard (17:0/17:0 PC) to calibrate responses in the mass spectrometer.  Lower 

recoveries of the internal standard likely resulted in an overestimation in the amounts of the polar 

lipids.    

7.5 Conclusions, Limitations and Future Directions 

In conclusion, the Mitra was not validated for semi-quantitative lipidomics assessment. 

However, it appears that additional steps in the extraction of the lipids from the Mitra could 

enable validation in the future.  Understanding the materials and specific chemical composition 

of the Mitra tip would facilitate validation but at this time this information remains unknown.  It 

would appear that many of the steps defined by Henao et al. [46] could be applied to improve 

lipidomic profiling from DBS collected by Mitra tips.  
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Table 3 Lipidomic examination of the Mitra and a wet blood control 

 

Lipid Ion m/z Mitra Mean WB Mean % of WB 

16:0/18:2 PC* [M+H]+ 758.57 10.6 ± 0.80 12.1 ± 0.24 88 

16:0/20:4 PC* [M+H]+ 782.57 7.94 ± 0.16 8.46 ± 0.27 94 

16:0/18:1 PC [M+H]+ 760.59 3.66 ± 0.27 3.98 ± 0.11 92 

18:0/18:2 PC [M+H]+ 786.6 3.27 ± 0.16 3.54 ± 0.08 92 

16:0/18:1/18:2 TAG [M+NH4]+ 874.79 3.42 ± 0.28 3.11 ± 0.11 110 

16:0/18:1/18:1 TAG [M+NH4]+ 876.81 3.20 ± 0.26 2.79 ± 0.10 115 

18:2 CE [M+NH4]+ 666.62 1.32 ± 0.32 1.03 ± 0.03 129 

18:1/18:1/18:2 TAG [M+NH4]+ 900.81 1.09 ± 0.08 0.98 ± 0.03 111 

18:0/20:4 PC [M+H]+ 810.6 0.91 ± 0.05 1.01 ± 0.05 90 

18:0/18:1 PC [M+H]+ 788.62 0.82 ± 0.06 0.90 ± 0.02 91 

16:0/22:6 PC [M+H]+ 806.57 0.78 ± 0.04 0.85 ± 0.02 91 

18:0/22:6 PS* [M+H]+ 836.54 0.43 ± 0.34 0.93 ± 0.03 46 

16:0 LPC* [M+H]+ 496.34 0.46 ± 0.20 0.67 ± 0.03 68 

16:0/22:6 PE [M+H]+ 764.52 0.58 ± 0.02 0.56 ± 0.01 103 

18:0/20:4 PS* [M+H]+ 812.54 0.27 ± 0.11 0.61 ± 0.03 45 

18:0/22:6 PC* [M+H]+ 834.6 0.21 ± 0.01 0.24 ± 0.01 91 

16:0/18:2 PE [M+H]+ 716.52 0.07 ± 0.01 0.08 ± 0.01 90 

Arbitrary units (AU), Mass-to-charge ratio (m/z); Phosphatidylcholine (PC); 

Phosphatidylethanolamine (PE); Phosphatidylserine (PS); Triacylglycerol (TAG); Cholesteryl 

ester (CE); Highly unsaturated fatty acid (HUFA). Asterisk used to highlight significantly 

different values after one-way ANOVA + Tukey HSD post-hoc test with p < 0.05. (n = 5). 
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Chapter 8 

Fatty Acid Changes in Dried Blood Spots when Stored at Various 

Temperatures 

8.1 Introduction  

 The proper storage and transport of biological samples are integral to maintain FA 

stability in DBS. Field studies with limited access to ultra-cold storage or analytical laboratories 

should consider their best option for storage and use anti-oxidants to preserve FA profiles. 

Currently, only a few studies have assessed the stability of FTP profiles stored on 

chromatography paper [7, 11, 14, 15, 20]. Findings have shown PUFA stability to be between 0 

and 8 weeks at ambient temperatures, between 21 and 90 days at 4C, two weeks at -20C and 

longer than 30 days at -40C [15, 37-39, 43].  Although -20C is often considered the second 

best storage option compared to -80C, Metherel et al. [14] showed that -20C storage has the 

highest instance of FA loss in comparison with 4C and ambient temperatures and its use should 

be avoided if possible. In addition to using ultra-cold storage conditions, the antioxidant 

butylated hydroxytoluene (BHT) has been shown to improve PUFA stability between 3 weeks 

and 3 months at 4C and less than 2 months at room temperature [15]. This study also showed 

that using a concentration of 5.0 mg/mL of BHT in blood can prevent HUFA degradation and 

EPA + DHA degradation from baseline for up to 28 days and PUFA degradation for up to 8 

weeks at ambient temperatures.  

Currently, there is there no literature on FA stability for the 903 PSC and Mitra for 

different storage conditions. Determining FA behavior can aid with the understanding of sample 

collection, transport and storage prior to analysis by clinical, medical and academic researchers. 

Blood from 10 participants were spotted onto 903 PSC and Mitra and stored at ambient, 4C, -
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20C and -80C temperatures and wet blood was stored at -80C to act as controls for each 

extraction point. The conclusions made from this chapter can be used to develop a deeper 

understanding of FA stability which can be used to guide academic, research, clinical and 

medical sample collection and storage.    

 

8.2 Methods 

Venous blood was collected from the antecubital vein into two vacutainers, one with 

BHT and one without BHT, for each of the ten fasted, healthy, adult participants as described in 

Chapter 4, Section 4.1. Samples were aliquoted as wet whole blood in a cryovial, DBS on 903 

PSC and DBS on the Mitra. For the 903 PSC, approximately 35 μL was applied to the center of 

each spot and allowed to dry at ambient temperatures. A Harris Uni-Core punch (Sigma Aldrich, 

Oakville, CAN) was used to remove a 6mm hole from the center of each spot and then 

transferred to a clean test tube. For blood collection on the Mitra, the device was held at the 

surface of blood at 45 until completely saturated (10 μL) and left to dry at ambient temperatures 

for an hour. The Mitra tip was then removed and placed in a test tube.  Samples were then stored 

at ambient, 4C, -20C and -80C conditions and lipids extracted at baseline, 1 week, 2 week, 4 

week, 8 week and 12 week time points. For wet 35 μL of blood was used for lipid extraction. 

FAMEs were prepared using 14% boron trifluoride in methanol and were analyzed through GC 

as described in Chapter 4, Section 4.3, 4.4. 

Individual fatty acids were identified by comparison to an external reference standard and 

data was expressed as the relative weight percentage of total fatty acids and as concentrations per 

volume of blood. Common biomarkers such as the relative percentage of EPA + DHA (omega-3 

index) and percentage of n-3 HUFA in total HUFA were also calculated.  The effect of storage 
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temperatures, time, blood collection materials and anti-oxidant use on the percentage of 

EPA+DHA were assessed using a three-way ANOVA with repeated measures as it is the most 

popular biomarker, and it has been shown to be sensitive to oxidative losses [14].  In addition, 

repeated measure ANOVAs were used for each condition to examine the effect of time on the 

percentage and concentration of EPA + DHA, the percentage of n-3 HUFA in total HUFA and 

individual fatty acids.  After a significant F-value as determined for a repeated measures 

ANOVA, post hoc tests were performed using a Dunnett’s test with baseline data as control with 

statistical significance inferred when p < 0.05.  

 

8.3 Results 

The interaction between time  collection material  storage temperature  antioxidant 

use was not significant.  Time and storage temperature were involved in several significant 

interactions, while the use of antioxidant largely required interaction with time for a significant 

F-value.  Collection material tended to be involved in significant effects except for an interaction 

with time and antioxidant use.  To simplify, the relative percentage for EPA + DHA are 

presented according to the repeated measures ANOVA for each condition with post hoc 

comparisons to baseline levels (Table 4).  The 903 PSC without BHT had no differences for up 

to 8 weeks compared to baseline at ambient and 4C  storage conditions and significant losses as 

soon as 1 week at -20C. With BHT, there were similarly no significant differences from 4 to 8 

weeks at ambient and 4C however it did increase the stability of the ratio from 4 8 weeks at -

20C. The Mitra presented similar results to the 903 PSC. In brief, the Mitra without BHT had 

FA stability for 4 to 8 weeks at baseline and 4C, but was significantly lower as soon as 1 week 

at -20C. With the addition of BHT to the Mitra, the EPA + DHA ratio was still stable for 4 to 8 
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weeks at ambient and 4C and up to 2 weeks at -20C. Over the 12 week storage period, both the 

903 PSC and Mitra did not show any significant losses at -80C. 

The n-3 HUFA in total HUFA ratio was determined in relative abundance (%TFA) at all 

conditions for both the 903 PSC and the Mitra (Table 5). The 903 PSC without BHT did not 

show any significant differences from baseline for the n-3 HUFA in total HUFA ratio for up to 8 

weeks at both ambient and 4C storage conditions. The -20C condition showed significant 

differences as soon as week 2 without BHT but increased from 4 to 8 weeks with BHT. With the 

addition of BHT, the n-3 HUFA to total HUFA ratio was not significantly different from baseline 

for 4 to 8 weeks at ambient and 4C storage conditions. As expected, the -80C storage condition 

showed no significant differences from baseline for up to 12 weeks.  The Mitra without BHT 

showed similar results to the 903 PSC. Significant differences were observed from baseline at 8 

weeks with no BHT at ambient temperatures and 4C conditions and 2 week at -20C. The 

addition of BHT had no differences from baseline for 4 to 8 weeks at ambient, 4C and -20C. 

Similar to the 903 PSC, the -80C condition showed no significant differences from baseline for 

up to 12 weeks. 

To determine actual losses of EPA + DHA rather than relative changes, concentrations 

were determined in ambient, 4C, -20C and -80C conditions over 12 weeks for 903 PSC 

(Figure 8). From baseline at ambient and 4C temperatures, EPA + DHA concentrations were 

not significantly different for up to 8 weeks with and without the addition of BHT. At -20C, 

EPA + DHA concentrations were significantly different from baseline as soon as 1 week without 

BHT and 2 weeks with BHT. The -80C remained stable up to 12 weeks and showed no 

significant differences from baseline. The Mitra showed a similar pattern to the 903 PSC (Figure 

9). In brief, EPA + DHA concentrations were significantly different for 4 to 8 weeks with or 
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without BHT at ambient and 4C temperatures, 1 week without and 2 weeks with BHT at -20C 

and remained stable through 12 weeks both with and without BHT at -80C. 

The 903 PSC showed highest FA stability over 12 weeks when stored at -80C in 

comparison to baseline values and only showed significant differences in the total FAs category 

(Table 6). The relationship between time, the presence or absence of BHT and temperature 

showed significant differences at the -20C conditions. The highest differences from baseline 

were seen at the -20C condition without BHT (Table 6). There were significantly lower 

concentrations for most FAs in comparison to baseline; the total saturated fatty acids (SFAs), 

HUFA, PUFA, total n-6, total n-3, and total concentrations were all significantly lower in 

comparison to baseline values. Similarly, the Mitra FA profiles showed the most significant 

differences at -20C for most individuals FAs and biomarkers including total SFAs, HUFAs, 

PUFAs, total n-6, and total n-3 (Table 7).  

 

8.4 Discussion 

The fatty acids in the samples were the most stable at -80C, followed by 4C and 

ambient temperature, and the least stable at -20C in both BHT and no BHT conditions. The 

stability of the EPA + DHA and n-3 HUFA in total HUFA biomarker ratios were increased with 

the use of BHT in all conditions. The reason for the accelerated degradation at -20C is because 

of the hemolysis and iron-initiated peroxidation in RBCs [52] as the hemoglobin-iron complex 

(HB-Fe2+) can be converted into (HB-Fe3+) by O2 resulting in O2 free radical and Fe3+ formation 

which can interact with PUFAs and cause peroxidation and FA loss. This study supports the 

conclusions by Metherel et al. [52] stating that ambient and 4C storage conditions should be 

used if there is no access to -80C, if solely using BHT as a preservation agent. We also 
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confirmed that expressed omega-3 status data as the percentage of n-3 HUFA in total HUFA 

results in an omega-3 status that is more resistant to changes due to oxidation as the HUFA pool 

tends to degrade at a similar rate in comparison with data expresses relative to total fatty acids 

where the saturated and monounsaturated pools are much more stable [14]. 

The interaction effect involving collection material and time and antioxidant on the 

percentage of EPA+DHA was not anticipated.   This appears be driven in part by an increase in 

EPA + DHA measured in the Mitra after 1 week of storage with no BHT.  This seems to be a 

spurious result as an increase above baseline is unlikely.  In contrast, the EPA + DHA in 903 

PSC does not appear to change at week 1 with and without BHT while there is a slight decrease 

in Mitra with BHT. 

This study contributed to the literature by determining FA stability quantitatively on both 

903 PSC and the Mitra. Quantitative data is overall rather low in comparison to qualitative data 

for DBS due to the collection of unknown volumes so most FA stability information is presented 

in relative percentage. Iron chelators to prevent iron initiated oxidation, glucose to prevent cell 

lysis and BHT combined could improve FA stability at -20C [52]. However, using BHT alone 

shows biomarker stability from 4 to 8 weeks at both ambient and 4C conditions. Ultra-cold 

storage should be used whenever available as studies have shown biomarker stability for at least 

6 months at -75 C [14]. 

8.5 Conclusions, Limitations and Future Directions 

In conclusion, storage of DBS on 903 PSC and Mitra should be at ultra-cold temperatures 

such as -80C whenever possible.  If ultra-cold storage is not possible, ambient and 4C should 

be considered, while storage at -20C should be avoided. In addition, efforts should be made to 

add BHT to DBS samples to also prevent losses of PUFA to oxidation.  In the present study, 
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BHT was added to blood during collection, but this may not be possible for samples collected 

from capillary beds such as fingertip or heel prick. Further research is needed to determine if 

both 903 PSC and Mitra can be pretreated with BHT prior to blood collection. Both EPA + DHA 

and n-3 HUFA in total HUFA displayed similar behavior when considering stability over time. 

Similarly, to have reliable biomarker data, samples should be stored at -80C followed by 4C or 

ambient temperatures. The conditions reviewed in this study are applicable to field research and 

the potential storage limitations that may accompany it. Ultra-cold storage is generally limited to 

analytical facilities and therefore ambient, 4C and -20C were examined as alternatives.   
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Table 4 Relative percentage (% of total fatty acids) of EPA + DHA in 903 PSC and the Mitra during storage over 12 weeks.  

Material Condition Temperature Storage Day      

      Baseline 1w 2w 4w 8w 12w 

903 PSC No BHT Ambient 3.04 ± 0.65 3.01 ± 0.55 3.10 ± 0.42 3.05 ± 0.59 2.72 ± 0.44* 2.45 ± 0.51* 
  4ºC   3.12 ± 0.50  3.20 ± 0.39 2.99 ± 0.55 2.62 ± 0.32* 2.35 ± 0.41* 
  -20ºC  2.31 ± 0.44* 2.05 ± 0.40* 1.55 ± 0.38* 1.23 ± 0.44 * 1.01 ± 0.39* 
  -80ºC  3.01 ± 0.51 3.11 ± 0.34 3.05 ± 0.37 2.98 ± 0.41 2.99 ± 0.49 
 BHT Ambient 3.01 ± 0.51 3.00 ± 0.45 3.11 ± 0.41  3.06 ± 0.39 2.55 ± 0.43* 2.41 ± 0.40* 
  4ºC   3.11 ± 0.42 3.07 ± 0.34 3.01 ± 0.32 2.67 ± 0.42* 2.60 ± 0.30* 
  -20ºC  2.87 ± 0.36 2.57 ± 0.29* 2.44 ± 0.35* 2.11 ± 0.23* 2.01 ± 0.25*  
  -80ºC  3.12 ± 0.44 3.05 ± 0.34 2.99 ± 0.25 2.82 ± 0.42 2.85 ± 0.38 

Mitra No BHT Ambient 3.14 ± 0.35 3.31 ± 0.41 3.11 ± 0.34 2.99 ± 0.62 2.65 ± 0.44* 2.35 ± 0.41* 
  4ºC   3.22 ± 0.40  3.11 ± 0.33 3.01 ± 0.45 2.52 ± 0.31* 2.27 ± 0.31* 
  -20ºC  2.33 ± 0.34* 1.99 ± 0.37* 1.44 ± 0.39* 1.22 ± 0.42* 1.04 ± 0.32* 
  -80ºC  3.11 ± 0.52 3.01 ± 0.32 3.15 ± 0.40 2.97 ± 0.42 2.99 ± 0.51 
 BHT Ambient 3.10 ± 0.33 3.05 ± 0.39 3.15 ± 0.30 3.18 ± 0.29 2.65 ± 0.37* 2.48 ± 0.44* 
  4ºC   3.15 ± 0.32 3.01 ± 0.28 3.17 ± 0.26 2.52 ± 0.40* 2.41 ± 0.42* 
  -20ºC  2.91 ± 0.31 2.59 ± 0.33* 2.51 ± 0.35* 2.19 ± 0.39* 2.05 ± 0.45* 

    -80ºC  3.15 ± 0.38 3.08 ± 0.24  3.07 ± 0.29 3.17 ± 0.35 3.13 ± 0.34 

903 Protein Saver Cards (903 PSC); butylated hydroxytoluene (BHT); eicosapentaenoic acid (EPA); docosahexaenoic acid (DHA). 

Asterisk used to highlight significantly different values from baseline after one-way ANOVA + Dunnett’s test with p < 0.05. (n = 10). 
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Table 5 Relative percentage (% of total fatty acids) of omega-3 HUFA in total HUFA in 903 Protein Saver Cards and the Mitra 

during storage over 12 weeks.  

Material Condition Temperature Storage Day      

      Baseline 1w 2w 4w 8w 12w 

903 PSC No BHT Ambient 25.72 ± 1.58 25.06 ± 3.33 25.55 ± 2.15 25.45 ± 2.37 23.74 ± 2.09* 23.15 ± 1.38* 
  4°C  25.26 ± 3.11 25.45 ± 2.11 25.65 ± 2.12 23.77 ± 2.19* 25.28 ± 1.55 
  -20°C  25.84 ± 3.04 22.75 ± 1.93* 20.23 ± 1.82* 20.54 ± 2.45* 20.01 ± 1.67* 
  -80°C  25.46 ± 3.12 25.56 ± 2.14 26.55 ± 3.27 26.16 ± 3.23 25.96 ± 3.11 
 BHT Ambient 24.70 ± 2.13 25.02 ± 2.14 24.96 ± 2.11 24.88 ± 2.21 23.04 ± 2.32* 22.99 ± 1.01* 
  4°C  25.16 ± 3.01 24.51 ± 2.12 24.22 ± 2.13 22.99 ± 2.11* 22.91 ± 1.65* 
  -20°C  24.64 ± 3.01 24.46 ± 2.14 24.51 ± 1.45 22.45 ± 2.23* 22.56 ± 1.25* 
  -80°C  24.57 ± 2.01 24.45 ± 2.21 25.02 ± 3.12 24.77 ± 3.01 24.12 ± 3.23 

Mitra No BHT Ambient 24.59 ± 2.90 24.16 ± 3.11 24.44 ± 2.21 24.71 ± 1.19 23.44 ± 2.46* 23.56 ± 1.57* 
  4°C  24.56 ± 2.34 24.65 ± 2.14 24.55 ± 2.01 23.04 ± 2.54* 22.99 ± 1.26* 
  -20°C  24.33 ± 2.22 21.45 ± 1.59* 20.33 ± 1.57* 20.04 ± 2.10* 19.98 ± 1.47* 
  -80°C  24.61 ± 2.12 24.55 ± 2.11 24.81 ± 2.10 24.13 ± 2.45 25.12 ± 1.99 
 BHT Ambient 24.89 ± 2.11 24.88 ± 2.50 24.69 ± 2.01 24.66 ± 1.76 23.04 ± 2.10* 23.05 ± 1.05* 
  4°C  24.06 ± 3.11 24.44 ± 2.14 24.90 ± 1.89 23.01 ± 1.55* 23.10± 1.35* 
  -20°C  24.14 ± 2.11 24.54 ± 1.58 24.18 ± 1.04 22.13 ± 2.39* 22.59 ± 1.59* 

    -80°C   24.57 ± 2.14 24.59 ± 2.19 24.35 ± 1.66 25.01 ± 2.90 25.61 ± 3.21 

903 Protein Saver Cards (903 PSC); butylated hydroxytoluene (BHT); highly unsaturated fatty acid (HUFA) 

Asterisk used to highlight significantly different values from baseline after one-way ANOVA + Dunnett’s test with p < 0.05. (n = 10). 
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Figure 9. The effects of BHT on concentrations of EPA + DHA in blood spotted 903 PSC stored at ambient, 4C, -

20C and -80C storage temperatures over 12 weeks. Data presented in concentration (g FA/ mL blood). 

*Indicates EPA + DHA concentration significantly lower than baseline (day 0) as determined by Dunnett’s 

test following a significant F-value by one-way ANOVA. Data presented as means ± SD. EPA, 

eicosapentaenoic acid; DHA, docosahexaenoic acid; BHT, butylated hydroxytoluene. 
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Figure 10. The effects of BHT on concentrations of EPA + DHA in the Mitra stored at ambient, 4C, -20C and -

80C storage temperatures over 12 weeks. Data presented in concentration (g FA/ mL blood). *Indicates EPA + 

DHA concentration significantly lower than baseline (day 0) as determined by Dunnett’s test following a 

significant F-value by one-way ANOVA. Data presented as means ± SD. EPA, eicosapentaenoic acid; DHA, 

docosahexaenoic acid; BHT, butylated hydroxytoluene.
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Table 6. Fatty acid concentrations for 903 PSC without BHT at baseline and  -20C and -80C 

at 12 weeks (μg FA/ mL of blood) 

 Baseline -20C @ 12w -80C @ 12w 

10:0 0.12 ± 0.10 0.10 ± 0.10 0.11 ± 0.09 

12:0 0.51 ± 0.26 0.19 ± 0.25* 0.48 ± 0.24 

14:0 2.38 ± 0.89 1.31 ± 0.87* 2.29 ± 0.82 

16:0 60.17 ± 13.26 42.88 ± 12.96* 57.82 ± 12.23* 

18:0 31.82 ± 3.21 16.61 ± 3.14* 30.63 ± 2.97 

20:0 1.11 ± 0.08 0.68 ± 0.08* 1.07 ± 0.08 

22:0 3.68 ± 0.27 3.16 ± 0.26 3.54 ± 0.25 

23:0 0.82 ± 0.17 0.76 ± 0.17 0.79 ± 0.16 

24:0 5.29 ± 1.07 3.43 ± 1.05* 5.11 ± 0.99 

SFAs 105.59 ± 16.17 71.29 ± 15.81* 101.63 ± 14.92 

12:1 0.07 ± 0.04 0.14 ± 0.04 0.07 ± 0.04 

14:1 0.13 ± 0.15 0.21 ± 0.15 0.13 ± 0.14 

16:1 2.82 ± 1.86 2.92 ± 1.82 2.71 ± 1.72 

18:1n-7 4.76 ± 1.01 4.95 ± 0.98 4.58 ± 0.93 

18:1n-9 50.15 ± 9.29 55.95 ± 9.09* 48.27 ± 8.58 

20:1n-9 0.71 ± 0.15 0.68 ± 0.14 0.69 ± 0.13 

22:1n-9 0.34 ± 0.15 0.29 ± 0.15 0.33 ± 0.14 

24:1n-9 5.45 ± 1.10 3.17 ± 1.08* 5.27 ± 1.02 

MUFAs 64.42 ± 12.36 67.09 ± 12.08 62.01 ± 11.40 

18:2n-6 64.53 ± 10.13 61.09 ± 9.90 62.12 ± 9.35 

18:3n-6 0.77 ± 0.34 0.49 ± 0.33* 0.74 ± 0.31 

20:2n-6 0.36 ± 0.51 1.53 ± 0.50* 0.34 ± 0.47 

20:3n-6 3.99 ± 1.38 2.88 ± 1.35* 3.86 ± 1.27 

20:4n-6 29.36 ± 4.98 18.91 ± 4.87* 28.26 ± 4.60 

22:2n-6 0.22 ± 0.21 2.42 ± 0.20* 0.21 ± 0.19 

22:4n-6 3.71 ± 0.84 2.09 ± 0.82* 3.57 ± 0.78 

22:5n-6 1.47 ± 0.84 1.43 ± 0.82 1.42 ± 0.77 

N-6 104.28 ± 14.66 86.32 ± 14.34* 100.37 ± 13.53 

18:3n-3 1.56 ± 0.56 1.21 ± 0.55 1.50 ± 0.52 

20:3n-3 0.15 ± 0.09 0.12 ± 0.09 0.14 ± 0.08 

20:5n-3 1.53 ± 0.53 1.05 ± 0.52* 1.48 ± 0.49 

22:5n-3 3.33 ± 0.60 1.69 ± 0.58* 3.22 ± 0.55 

22:6n-3 7.32 ± 2.14 2.43 ± 2.09* 7.04 ± 1.98 

N-3 13.88 ± 2.92 7.66 ± 2.86* 13.36 ± 2.70 

20:3n-9 0.67 ± 0.12 0.17 ± 0.12* 0.65 ± 0.11 

PUFAs 118.39 ± 16.89 93.05 ± 16.52* 113.96 ± 15.59 

HUFAs 48.24 ± 14.35 28.76 ± 14.03* 46.44 ± 13.24 

Total 288.97 ± 43.31 222.83 ± 42.36* 278.13 ± 39.98 

Data presented in concentration (μg FA/ mL of blood) means ± SD. FA, saturated fatty acids; MUFA, 

monounsaturated fatty acid, EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; PUFA, 

polyunsaturated fatty acid; HUFA, highly unsaturated fatty acid; n-3H/TH, n-3 HUFA in total HUFA, n = 

10. Asterisk used to highlight significantly different values (in comparison to baseline) after one-way ANOVA 

+ Dunnett’s test with p < 0.05.  
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Table 7. Fatty acid concentrations for Mitra without BHT at baseline and  -20C and -80C at 

12 weeks (μg FA/ mL of blood) 

 

Mitra  

Baseline 

Mitra  

-20C @ 12w 

Mitra  

-80C @ 12w 

10:0 0.65 ± 0.32 0.54 ± 0.29 0.61 ± 0.29 

12:0 0.91 ± 0.27 0.36 ± 0.25* 0.82 ± 0.25 

14:0 3.31 ± 0.95 1.86 ± 0.88* 3.12 ± 0.86 

16:0 65.26 ± 13.18 47.70 ± 12.25* 61.53 ± 11.98 

18:0 36.36 ± 3.45 19.44 ± 3.21* 34.30 ± 3.14 

20:0 0.99 ± 0.09 0.62 ± 0.09* 0.93 ± 0.09 

22:0 2.53 ± 0.29 2.22 ± 0.27* 2.39 ± 0.27 

23:0 0.57 ± 0.12 0.52 ± 0.11 0.53 ± 0.11 

24:0 4.84 ± 0.70 3.21 ± 0.65* 4.55 ± 0.63 

SFAs 115.27 ± 16.03 79.67 ± 14.90* 108.72 ± 14.58 

12:1 1.04 ± 0.88 2.31 ± 0.82* 0.98 ± 0.80 

14:1 0.11 ± 0.08 0.18 ± 0.08* 0.13 ± 0.08 

16:1 3.09 ± 2.02 3.24 ± 1.88 2.89 ± 1.84 

18:1n-7 5.01 ± 1.10 5.32 ± 1.02 4.723± 1.00 

18:1n-9 52.35 ± 11.37 59.82 ± 10.57* 49.38 ± 10.34 

20:1n-9 0.71 ± 0.10 0.74 ± 0.10 0.72 ± 0.09 

22:1n-9 1.66 ± 0.37 1.11 ± 0.35* 1.54 ± 0.34 

24:1n-9 5.33 ± 0.95 3.12 ± 0.88* 5.04 ± 0.87 

MUFAs 69.23 ± 13.81 71.93 ± 12.84 65.39 ± 12.56 

18:2n-6 64.34 ± 9.85 62.27 ± 9.16 60.69 ± 8.96* 

18:3n-6 0.72 ± 0.32 0.44 ± 0.30* 0.65 ± 0.29 

20:2n-6 0.17 ± 0.18 0.73 ± 0.17* 0.16 ± 0.17 

20:3n-6 4.05 ± 1.38 2.97 ± 1.28* 3.82 ± 1.25 

20:4n-6 29.40 ± 5.44 19.40 ± 5.06* 27.73 ± 4.95 

22:2n-6 0.13 ± 0.09 1.32 ± 0.08* 0.12 ± 0.08 

22:4n-6 3.72 ± 0.78 2.11 ± 0.73* 3.51 ± 0.71 

22:5n-6 2.21 ± 0.44 1.92 ± 0.41* 2.10 ± 0.40 

N-6 104.71 ± 15.19 88.75 ± 14.12* 98.77 ± 13.81 

18:3n-3 1.48 ± 0.57 1.27 ± 0.53* 1.38 ± 0.52 

20:3n-3 0.17 ± 0.13 0.11 ± 0.12* 0.17 ± 0.11 

20:5n-3 1.76 ± 0.54 1.22 ± 0.50* 1.67 ± 0.49 

22:5n-3 3.40 ± 0.61 1.74 ± 0.56* 3.20 ± 0.55 

22:6n-3 7.38 ± 2.13 2.05 ± 1.98* 6.95 ± 1.94 

N-3 14.16 ± 2.72 8.01 ± 2.53* 13.36 ± 2.47 

20:3n-9 0.67 ± 0.14 0.20 ± 0.13* 0.65 ± 0.13 

PUFAs 119.10 ± 17.36 95.85 ± 16.14* 112.31 ± 15.79 

HUFAs 52.46 ± 8.99 32.03 ± 8.36* 49.47 ± 8.17 

Total 304.11 ± 45.36 240.16 ± 42.18* 286.86 ± 41.25* 

SFA, saturated fatty acids; MUFA, monounsaturated fatty acid, n-6, omega-6; n-3, omega-3; EPA, 

eicosapentaenoic acid; DHA, docosahexaenoic acid; PUFA, polyunsaturated fatty acid; HUFA, highly 

unsaturated fatty acid; n-3H/TH, n-3 HUFA in total HUFA, n = 10. Asterisk used to highlight 

significantly different values (in comparison to baseline) after one-way ANOVA + Dunnett’s test with p < 

0.05. Data presented in concentration (μg FA/ mL of blood) means ± SD. 
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Chapter 9 

General Discussion and Conclusion 

9.1 General Discussion 

Dried blood spot methods have many advantages when considering the tedious nature of 

handling wet blood and its related analytical procedures for fractioning especially for sample 

collection in field research circumstances. Most DBS FA profiles have been expressed in relative 

abundance or %TFA and FA concentrations are not possible due to the inability to quantitate the 

volume of blood collected. This thesis presented a method to quantitate blood and FA 

concentrations on commonly used 903 Protein Saver cards by determining a relationship 

between area and volume to create a predictive linear equation. As an alternative for blood 

quantitation on traditional DBS papers, FA analysis was performed on the Mitra. To supplement 

accurate quantitation, factors that that may influence quantitation, such as contaminants on blood 

collection material were identified and FA stability was determined at various storage 

temperatures with and without the addition of antioxidant. 

 In line with the stated hypothesis 1 (Chapter 3), a linear relationship was determined 

between the area of blood on the 903 PSC and volume applied which was then validated using 

the blood from ten individuals. The equation determined a blood volume of 9.6 μL when a 6mm 

punch was removed from a 903 PSC which was then used to confirm that accurate fatty acid 

concentrations could be determined from DBS on 903 PSC (hypothesis 2). Limitations may arise 

when considering how hematology can affect the blood and volume relationship on collection 

materials, therefore in the future, the DBS area/blood volume relationship on 903 PSC using 

blood samples with high or low hematocrit should be examined. As an alternative to dried blood 

spots, the 10 μL Mitra Microsampling Device that can collect accurate collections of volume 
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regardless of viscosity [60] was assessed and validated for the determination of fatty acid 

concentrations (hypothesis 3). While the fatty acid analyses of the Mitra were similar to wet 

blood controls, the lipidomics profile generally had lower recoveries in phospholipids and higher 

TAG and CE recoveries indicating that hypothesis 4 must be rejected at this time. However, the 

lipidomic profiles from the Mitra resembled a pattern similar initial attempts to perform 

lipidomics on DBS on other collection materials [46].  As such, the cause appears to be due to 

differences in the retention of polar and nonpolar lipids on the Mitra material.  The Mitra 

material, the three dimensional geometry of the Mitra tip and the wicking agents may be 

contributing to these differences in retention.  It is possible that Mitra derived lipidomic profiling 

could be improved using a tailored extraction procedure such as physical disruption of the Mitra 

and/or an acidified extraction protocol.  

Contaminants on commonly used dried spotting materials were identified to determine 

their influence on FA quantitation. In line with hypothesis 5, palmitate and stearate were found 

as lipid contaminants. Using UHPLC-MS/MS the form of the palmitate and stearate was as FFA 

in 903 PSC, Whatman chromatography paper and the Mitra, while the Mitra also had16:0 lysoPC 

and 18:0 lysoPC.  LysoPC or “lysolecithin” is used as an industrial emulsifying agent and could 

play a role in the Mitra’s wicking abilities.  FA and lipid contaminants on collection materials 

can be reduced through “washing” procedures.  In the case of the Mitra, washing could potential 

impact the wicking ability.   Overall, the impact of 16:0 and 18:0 contaminants would be small 

as the concentration of these FA contaminants on the materials was very low (0.97±0.08 μg of 

16:0 and 1.43±0.16 μg of 18:0 per 6mm punch of Whatman CP, 0.64±0.05 μg of 16:0 and 

0.88±0.04 18:0 per 6mm punch of 903 PSC and 0.80±0.08 μg 16:0 and 0.98±0.10 μg 18:0 per 
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Mitra tip) in comparison to their amounts of 16:0 and 18:0 in total lipids of whole blood samples 

(58.54±13.61 and 32.37±7.47 respectively, n=10).  

Optimal storage conditions for FA stability using 903 PSC and the Mitra were also examined. 

The storage experiment results were generally in line with the stated hypotheses (Chapter 3). In 

short, the HUFA status of DBS samples decreased in the Mitra and 903 PSC during storage 

(hypothesis 6), HUFA in DBS were the most stable when stored at -80C and the least stable at  -

20C (hypothesis 7), and the addition of BHT increased the stability of HUFA in all the DBS 

samples (hypothesis 8).  These results confirm previous reports in the literature for the storage of 

DBS on chromatography paper [14, 15].   

Steps can be taken to improve the studies discussed in this thesis. The 903 PSC and Mitra 

should be tested on other populations including children, elderly, malnourished individuals and 

individuals in postprandial states as further validation is required with high and low hematocrit 

blood. Tailoring the extraction procedure for the Mitra could provide higher overall lipid 

recoveries and as lipidomics is an emerging field of research, alternatives to wet blood should be 

considered and further tested. The presence of SFAs in low abundance does not have a large impact 

in comparison to the SFAs present in blood samples. To further assess the interferences of  FA 

contaminants on quantitation, all materials and solvents involved (gloves, glassware, hexane, 

water, BF3, etc.) should be tested for contaminants as well. The FA stability of samples at -20C 

can be improved using iron chelators, glycerol, vacuum sealing and antioxidants. However, BHT 

alone can provide biomarker stability from 4 to 8 weeks at both ambient and 4C.  

9.1 Conclusion 

  This thesis set out to address three main limitations in DBS which were blood and FA 

quantitation, the presence of spotting material contaminants and storage/handling conditions 
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which may lead to sample oxidation. Dried blood quantitation on 903 PSC and the Mitra were 

used to provide means to collect a quantifiable volume of blood which could be used in field 

research circumstances. Biological variates were used to confirm these methods but all blood 

was collected from healthy adults attending the University of Waterloo with relatively normal 

hematocrit content. The Mitra was validated FA analysis but lipidomics analysis still requires 

additional research to determine an ideal extraction procedure. Additionally, other factors that 

may interfere with DBS FA quantitation such as contaminants and FA stability in various storage 

conditions were identified. Cumulatively, these findings indicate that the limitations associated 

with fatty acid analysis of DBS can be improved and validated in the future and enable low cost 

and high throughput analyses in laboratory and field settings.   
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