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GRAPHICAL ABSTRACT 

 

 

HIGHLIGHTS 
  Hg removal was greatly improved by biochars after sulfurization 

 Synchrotron-based techniques are utilized to characterize Hg removal mechanisms 

 Polysulfur was chemisorbed and dimercato was sorbed by π-π interaction with biochar 

 Hg distributes across the particle of unmodified biochar by bonding to Cl 

 Hg distributes primarily on particle surface of sulfurized biochar by bonding to S 

 

Abstract 
The application of biochar to treat mercury (Hg) in the environment is being proposed on an 

increasing basis due to its widespread availability and cost effectiveness. However, the efficiency 
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of Hg removal by biochars is variable due to differences in source material composition. In this 

study, a series of batch tests were conducted to evaluate the effectiveness of sulfurized biochars 

(calcium polysulfide and a dimercapto-related compound, respectively) for Hg removal; Hg-

loaded biochars were then characterized using synchrotron-based techniques. Concentrations of 

Hg decreased by >99.5% in solutions containing the sulfurized biochars. Sulfur X-ray absorption 

near-edge structure (XANES) analyses indicate a polysulfur-like structure in polysulfide-

sulfurized biochar and a thiol-like structure (shifted compared to dimercapto) in the dimercapto-

sulfurized biochar. Micro-X-ray fluorescence (µ-XRF) mapping and confocal X-ray micro-

fluorescence imaging (CXMFI) analyses indicate Hg is distributed primarily on the edges of 

sulfurized biochar and throughout unmodified biochar particles. Hg extended X-ray absorption 

fine structure (EXAFS) analyses show Hg in enriched areas is bound to chlorine (Cl) in the 

unmodified biochar and to S in sulfurized biochars. These results indicate that Hg removal 

efficiency is enhanced after sulfurization through the formation of strong bonds (Hg-S) with S-

functional groups in the sulfurized biochars. 

Key words: Biochar; Mercury; Polysulfur; X-ray Absorption Spectroscopy; Confocal X-ray 

Micro-fluorescence Imaging 

Introduction 
Mercury (Hg) is a global high-priority contaminant in water, sediments, and soils [1]. Extensive 

efforts have been devoted to removing Hg from water and to stabilize Hg in soils, sediments, and 

solid-wastes to decrease its impact on the environment [2, 3]. Pyrolyzed carbonaceous materials, 

including activated carbon, charcoal, and biochar, have been used as reactive media in a variety 

of Hg treatment systems [4-9]. For example, Hg removal from aqueous solution using biochar 

derived from malt spent rootlets [10] and activated carbons derived from sago waste [11] and 

coirpith [12] have been shown to be effective; however, aqueous Hg concentrations after 
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treatment often remain in the µg L-1 to mg L-1 range, above those required for protection of the 

environment [13]. To overcome these limitations, functionalized resins have been used to 

achieve final aqueous concentrations of Hg in the ng L-1 range [14-18]. Synthetic chelating 

ligands have also been used to maximize Hg removal [19, 20]. These specialized resins and 

ligands can be costly, potentially limiting their use for large-scale Hg treatment as would be 

required for remediation of watershed-scale contamination. There remains a need to evaluate the 

effectiveness of low-cost reactive materials that promote removal of Hg to ng L-1 levels. 

The bond between Hg(II) and sulfide or thiol compounds is strong [19-24], and has been 

extensively studied. Hg(II) is preferentially bonded to thiol functional groups compared to O/N 

ligands in organic mater  [25-27]; Hg is likely complexed with two thiols in organic matter at a 

distance of 2.33 Å as indicated by Hg extended X-ray absorption fine structure (EXAFS) 

modeling. The binding with sulfide or thiol can result in a decrease in Hg bioavailability [28]. 

However, in some cases, the presence of polysulfide and low molecular weight-thiols in solution 

can lead to enhanced solubility of cinnabar  and a potential increase in Hg bioavailability [29, 

30]. Impregnation of polysulfide into carbonaceous materials can potentially reduce this adverse 

effect.  

Calcium polysulfide (CPS) has been shown to be an effective reagent for removing 

Cr(VI) from water in both laboratory and field scale applications [31-33], and dimercapto 

(DMC)-related compounds have been studied for Hg removal with efficient removal of Hg 

observed [21, 34, 35]. Elemental S and H2S have also been applied for activated carbon (AC) 

sulfurization [22, 23], but the process requires high temperatures and the H2S gas is corrosive 

and toxic.  
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Characterization of the form and spatial distribution of Hg within biochar particles is 

important for understanding Hg removal mechanisms and estimating the stability of bonded Hg. 

Synchrotron-based techniques can be used to characterize Hg speciation and S species of the 

sulfurized sorbent, for example to observe Hg-Br, Hg-S, and Hg-C binding environments on 

brominated and sulfurized sorbents [22]. Feng et al. [23] report that elemental S, thiophene, and 

sulfate are likely responsible for Hg uptake in S-treated AC based on the results of S X-ray 

absorption near-edge structure (XANES) analyses.  

Micro-X-ray fluorescence (µ-XRF) mapping has also been widely used to characterize 

the spatial distribution of Hg in various materials [36-40]. One drawback of µ-XRF mapping is 

that the fluorescence received by the detector is the sum of the signal along the incident beam 

path through the sample. Micro-XRF is often used to characterize elemental distributions in thin-

sections, therefore measured distributions are representative of the sum of the elements over the 

thickness of a thin-section (usually ≥30 µm [8, 38, 40]). Confocal X-ray micro-fluorescence 

imaging (CXMFI), an emerging non-destructive technique, can overcome this drawback [41]. 

Depth compositional information can be obtained from precise locations of a particle using 

CXMFI [42]. The particle orientation can be adjusted using CXMFI, but for thin-sections, the 

slice of the particle is fixed. 

In a previous study, Liu et al. [8] evaluated hardwood- (sp. Quercus) based biochar in its 

unmodified form and observed relatively effective removal of Hg from water. The current study 

is focused on improving Hg uptake by sulfurizing this biochar using CPS and DMC. A series of 

batch tests was conducted to evaluate the removal of dissolved Hg from aqueous solution using 

these sulfurized biochars. Solid-phase reaction products were examined using a range of 
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synchrotron-based techniques, including S K-edge XANES, µ-XRF, CXMFI, and Hg EXAFS 

analyses, to evaluate the forms and distribution of Hg within the sulfurized biochar particles.  

Materials and Methods 
Biochar Sulfurization  

Biochar (CL2) was produced from oak wood at ~700°C (Cowboy Charcoal Co.). CPS (Green 

Earth Sure-Gro IP Inc.) and DMC (2,5-dimercapto-1,3,4-thiadiazole; 98%, Sigma-Aldrich) were 

used as biochar sulfurization reagents. 

 The biochar sulfurization was conducted under low-O2 conditions. CL2 was crushed and 

sieved to a size of 0.5-2 mm and rinsed six times with Ar-purged ultra-pure water to remove fine 

particulates. The targeted S contents for the CL2 were 0.5, 2, and 5%. To achieve this, CL2 (20 

g) was mixed with CPS (0.43, 1.7, and 4.2 mL) in 400 mL ultra-pure water or DMC (0.16, 0.63, 

and 1.56 g) in 100 mL ethanol. The mixtures were shaken thoroughly and allowed to equilibrate 

for 72 h. Controls were prepared by mixing CL2 with ultra-pure water. The supernatants were 

then decanted and the reactive materials were rinsed six times with ultra-pure water. The reactive 

materials were left to dry in the anaerobic chamber. 

Batch Experiments  

Batch-style experiments were conducted under low-O2 conditions. Solutions containing 25 and 

250 g L-1 Hg were prepared in an anaerobic chamber by dissolving reagent-grade HgCl2 in 

simulated groundwater (SG; CaCO3-saturated water [43]). Duplicate tests were conducted in 40 

mL polypropylene tubes by mixing 1 g reactive material with 40 mL Hg-spiked SG. SG with and 

without Hg as well as ultra-purified water were used as controls. The 40 mL tubes were rotated 

for 48 h. Samples were then collected for total Hg (THg) analysis by filtering through 0.45 μm 

membranes (Acrodisc®, Pall Corp.). Samples were acidified to pH<2 with concentrated HNO3, 

and stored at 4°C until analysis. 
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The biochars without sulfurization and with 2% targeted S content were further tested in 

the same manner for removal of Hg at a higher initial concentration of Hg and for analysis with 

synchrotron-based techniques. The experiment was conducted by mixing 1 g of biochar with 200 

mL SG with a THg concentration of 5 mg L-1. Filtered samples were collected for THg and 

alkalinity analysis. Unfiltered samples were collected for pH analysis. Alkalinity and pH were 

measured immediately after sample collection. The pH was measured using an electrode (Orion-

815600, Thermo Scientific). Alkalinity was determined in duplicate using a Hach® digital 

titrator, bromocresol green-methyl red indicator, and 0.16 N H2SO4. 

THg concentrations were determined using cold-vapor atomic fluorescence spectroscopy 

(Tekran 2600) according to EPA Method1631 [44]. The method detection limit (MDL) was 0.19 

ng L-1 as determined following an EPA procedure [45].  

Solid Samples for X-Ray Absorption Spectroscopy 

S reference materials included elemental S, Na2SO3 (Sigma-Aldrich), CPS, and DMC. Cinnabar 

(Excalibur Mineral Corp., Peekskill) was used as an Hg reference material. The reference 

materials were ground into fine powders to decrease self-absorption effects. Unmodified and 

sulfurized biochar samples with and without Hg were washed, freeze-dried, and ground into fine 

powders. The biochar samples loaded with Hg were prepared for thin-sections with a thickness 

of 30 µm (Vancouver Petrographics Ltd., Canada). 

S X-Ray Absorption Near-Edge Structure Spectra 

S K-edge XANES spectra were collected on the SXRMB beamline at the Canadian Light Source 

(CLS). Finely-ground samples and reference compounds were spread as a thin film on a 

conductive double-sided tape mounted to a copper sample holder. The reduction of higher-order 

harmonics was accomplished by detuning a Si(111) monochromator to 70%. An unfocused beam 
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of ~200×50 μm was employed and data were collected using a silicon drift detector. Both total 

electron (TEY) and fluorescence (FY) yield data were collected. TEY data were used for 

reference materials and sulfurized biochars because FY data are known to be susceptible to self-

absorption at high S contents. FY data were collected for the unmodified biochars. Up to six 

scans were collected for each sample. Data was processed with ATHENA software [46]. The 

energy for each run was calibrated with elemental S. Spectra for HgSO4, metacinnabar (β-HgS), 

cinnabar (α-HgS), pyrrhotite, pyrite, and L-cysteine were obtained from a previous study [8].  

Micro-X-Ray Fluorescence Mapping   

Micro-XRF maps were collected for thin-sections on Beamline 13-ID-E (GSECARS) at the 

Advanced Photon Source (APS), Argonne National Laboratory. A micro-focused beam with a 

size of ~2×2 µm2 and a photon energy of 12.6 keV were applied. The step size (pixel) was 2×2 

µm for the maps. A Vortex ME4 silicon drift diode array detector was placed at 90° relative to 

the incident beam to collect emitted XRF. 

Confocal X-Ray Micro-Fluorescence Imaging 

CXMFI analysis of the particles loaded with Hg was conducted at Beamline 20-ID-B 

(PNC/XSD), APS using an incident beam energy of 12.6 keV. The micro-focused beam size was 

~2*2 μm2. Particles were mounted on a quartz slide and placed at 35° to the incident beam. The 

XRF spectra were collected by a Si-drift Vortex detector perpendicular to the incident beam. A 

Ge optical unit (lithographically fabricated spoked channel array) was mounted in front of the 

detector to complete the confocal geometry [47-49].  

The intensity attenuation was calculated for the incident beam and the XRF arising from 

the additional depth into the sample using the method described by Liu et al. [50]. The intensity 

was corrected using the Beer-Lambert Law by considering the heterogeneity of the sample. The 
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elemental composition used for correction is presented in Table S1. Data importing, processing, 

and plotting were completed in MATLAB®. 

Hg Extended X-Ray Absorption Fine Structure Spectra 

Hg EXAFS spectra were collected for the Hg-enriched areas of thin-sections on the GSECARS 

beamline at the APS. A short collection time (~5 min) was utilized to minimize the risk of beam 

damage. Five to ten scans were collected for each Hg-enriched area at 3 µm increments apart 

between each scan to reduce radiation exposure (beam size: ~2×2 µm). The scans were merged 

for further data processing. 

The XAS spectra were analyzed using ATHENA, and EXAFS model calculations were 

made using ARTEMIS [46] following the method described by Gibson et al. [35] and Liu et al. 

[8]. The atomic structures of cinnabar, metacinnabar, HgCl2, Hg2Cl2, and HgO from American 

Mineralogist Crystal Structure database [51] and ATOMS.INP website [52], were used as 

models for fitting of sample EXAFS spectra. The atomic structure of Hg(II) complexed with two 

thiols (Hg(SR)2) were also constructed from Skyllberg et al. [25], and was used as a model 

structure. The EXAFS spectra were modelled using the first shell of these reference materials, 

and were fitted in Fourier-transformed R-space.  

During the refinement of the first shell of Hg bound to biochar, the amplitude reduction 

factor (S02) and the Debye-Waller factor (σ2) were fixed on values determined from fits to 

reference compounds [8], and the coordination number (CN) and bond distances (R) of the first 

shell were varied. A k weighting of 3 was applied to enhance weak oscillations in the EXAFS 

spectra. The best fitted results were reported by evaluating the values of CN (CN>0), the change 

in interatomic distance (ΔR), the change in energy from theoretical data (ΔE; abs(ΔE)<10 eV), 

and goodness of fit (R-factor). 
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Results and Discussion 
Aqueous Chemistry  

Batch experiment pH values increased slightly after the addition of unmodified and sulfurized 

biochars. The initial pH values were 7.9, 7.6, and 7.3 in solutions with THg concentrations of 

17,800 ng L-1, 245,000 ng L-1, and 4,960 µg L-1, respectively. At the termination of the 

experiment, the pH values increased to ~8.2 in all solutions mixed with washed and unmodified 

hardwood-based biochar (CL2), CPS-sulfurized CL2 (CL2-CPS), and DMC-sulfurized CL2 

(CL2-DMC). The initial alkalinity was ~95 mg L-1, which is close to the values at the 

termination of the experiment. The results indicate the aqueous chemistry of the solution was 

only slightly altered after the addition of washed CL2 and sulfurized CL2. This observation was 

not the case for the unwashed and unmodified hardwood-based biochar [53], for which the pH 

increased from 7.8 to 8.5 and the alkalinity increased from 44 to 74 mg L-1. 

Hg Removal 

Substantial decreases in THg concentrations were observed for solutions with added CL2, CL2-

CPS, and CL2-DMC at three different initial concentrations (Fig. 1). The final THg 

concentrations in solutions containing sulfurized CL2 were much lower than those with CL2. 

When the initial THg concentration was 17,800 ng L-1, the average final THg concentration was 

370 ng L-1 using CL2, but <40 ng L-1 using CL2-CPS or CL2-DMC. When the initial THg 

concentration was 245,000 ng L-1, the final concentration was 5,700 ng L-1 using CL2 but <110 

ng L-1 using the sulfurized CL2. When the initial THg concentration was 4,960 µg L-1, the final 

concentration was 170 µg L-1 using CL2 but <28 µg L-1 using the sulfurized CL2. THg removal 

was >96.5 and >99.5% using CL2 and the sulfurized CL2, respectively, at the three initial 

concentrations. 
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 The observed decline in Hg concentrations indicates that Hg removal is much more 

effective in the batch mixtures containing the sulfurized biochar particles. No clear trend in THg 

concentrations is observed with respect to the use of CL2-CPS at three targeted S contents (0.5, 

2, and 5%), but, in contrast, THg concentrations decrease after addition of CL2-DMC when the 

targeted S content increases.  

Hg is more effectively removed by CL2-DMC than CL2-CPS at a low initial THg 

concentration, but more effectively removed by CL2-CPS at high initial concentrations. The 

more effective Hg removal by CL2-DMC at the lowest THg concentration evaluated may be due 

to higher binding constants for Hg-thiol interaction than for Hg-polysulfide interaction [54]. The 

greater Hg removal by CL2-CPS at a high concentration may be due to a higher proportion of 

reaction sites provided by CL2-CPS compared to CL2-DMC. 

 The Hg removal efficiency observed using these sulfurized biochars is comparable to 

previous studies using functionalized resins and activated carbon. For example, Hg 

concentrations decrease from 1000 to <12 ng L-1 in batch experiments and to <51 ng L-1 in 

column experiments using functionalized resins [16, 17]; THg concentrations decrease from 

approximately 10,000 to 25 ng L-1 in batch experiments using activated carbon [8]. 

S XANES 

S XANES spectra can be used to define the oxidation state of S based on the position of the 

characteristic peak. The peak energy of S standards increases from 2470.3 to 2482.5 eV when the 

oxidation state of S increases from -2 (sulfide) to +6 (sulfate) (Fig. 2). The peaks in the S 

XANES spectra assigned to ν1-5 represent the major peaks observed in CPS, DMC, CL2, DMC-

CL2, and CPS-CL2 (Fig. 2). Three peaks (ν1, 2471.1; ν2, 2472.8; ν4, 2478.2 eV) are observed 

for CPS (Fig. 2a). The ν1 peak falls between peaks in the spectra of FeS2 and FeS, and is due to 
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the excitation of 1s electrons from the end members of S in the polysulfide. The ν2 peak is at the 

same position as the peak in elemental S, and is assigned to 1s electrons in a molecular orbital σ* 

(S-S) of the intermediate members of polysulfide. The ν4 peak is close to that of sulfite, and 

another small peak is observed at a higher energy and may represent an impurity in CPS. ν3 

(2473.6 eV) in DMC, at the same position as the peak in L-cysteine, is assigned to a 1s→σ* 

transition (S-C and S-H) [55, 56]. The pre-edge small peak (2471.21 eV) in DMC is likely due to 

the excitation of electrons from the S between the two carbon atoms of DMC. 

 The two peaks at low energy and the ν5 peak (sulfate, 2482.6 eV) in CL2 are not 

distinguishable after sulfurization to CL2-CPS and CL2-DMC (Fig. 2b), which is likely due to 

the low S content (<0.01%) in CL2 [8]. Only the ν2 peak is observed in CL2-CPS, which 

indicates that the elemental S-like structure (polysulfur) is primarily formed during the 

sulfurization process. This observation also indicates that the impurities in CPS are removed 

during the washing process. For CL2-DMC, a shoulder at the same energy as ν2 is observed on 

the ν3+ peak. This shoulder is likely due to the shift of the pre-edge small peak in DMC. The ν3+ 

means the peak is at a slightly higher energy (2474.1 eV) than v3. The slight shifts of v3 to ν3+ 

and the pre-edge small peak are likely due to the interaction of thiol groups on DMC and 

functional groups on CL2. The observation of the polysulfur structure in CL2-CPS is consistent 

with spectra reported for activated carbon fibers treated with H2S at 400-600°C [23].  

 The disappearance of the ν1 peak representing the end members of the polysulfide in the 

S spectra for CL2-CPS indicates the end members are likely embedded into the carbon structure 

of the biochar. The impregnation of CPS in CL2 is likely through a chemisorption process (Eq. 

1). Aromatic ring structures of biochar have been reported [57, 58], and these aromatic ring 

structures have delocalized electrons (π electrons). The thiadiazole in DMC also has delocalized 
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electrons [59, 60]. Therefore, DMC is likely bound to biochar via π-π interactions between the 

ring structures (Eq. 2). The π-π interactions between biochar and DMC cannot alter the S 

speciation in DMC, which is consistent with the similarity of the S spectra between DMC and 

CL2-DMC. This type of interaction is hydrophobic and provides thiol groups that are available 

to bind with Hg. 

2-C + Sx2- = -C-Sx-C-,                                                  (1) 

-Cπ + πDMC = -Cπ- πDMC.                                            (2) 

where -C represents the end member of a C chain, Sx2- represents polysulfur, and -Cπ represents 

delocalized electrons of aromatic rings [61]. 

The sulfurized biochars were exposed to air for 10 and 60 d to evaluate the stability of the 

deposited S. The spectra collected for CL2-CPS exposed to air for 10 or 60 d are similar to those 

for the fresh materials (Fig. 2c). The result indicates S in CL2-CPS is stable under aerobic 

conditions. A sulfate peak is evident in CL2-DMC exposed to air for 60 d, which indicates S in 

CL2-DMC is not as stable as S in CL2-CPS.  

The form of S in reactive materials (e.g., elemental, cysteine, and thiophene) plays an 

important role in the Hg removal process [23, 40, 62]. The S XANES spectra of CL2-CPS 

loaded with Hg are similar to CL2-CPS without Hg (Fig. 2b). This observation indicates the S 

forms in CL2-CPS are not altered by the adsorption of Hg, similar to previous findings by Liu et 

al. [8] for unmodified CL2 with and without Hg exposure. The peak height is slightly different 

for CL2-DMC without and with Hg, and a sulfate peak is evident in CL2-DMC loaded with Hg.  

Hg μ-XRF Maps 

The results of μ-XRF maps indicate differences in the Hg distribution in thin-sections prepared 

using CL2, CL2-CPS, and CL2-DMC particles loaded with Hg (Fig. 3). For CL2, Hg is located 
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inside the pores and channels within the particles. For CL2-CPS, Hg is primarily distributed on 

the surface with less observed within the pores of the particles. For CL2-DMC, Hg is mostly 

located on the surface of and also penetrates less extensively into the particles. The presence of 

Hg is confirmed in the XRF spectra collected from an Hg-enriched area (Fig. 3). 

 The difference in Hg distribution patterns between unmodified (CL2) and sulfurized 

(CL2-DMC and CL2-CPS) biochars is likely due to impregnation of S in the sulfurized biochars. 

The primary distribution of Hg on the surface of sulfurized biochars indicates the S likely 

bonded to the surface, which is consistent with a previous study that reported Hg concentrated on 

the exterior of a polysulfide-rubber-coated activated carbon, but diffused up to 100 µm into the 

particle after 3 months [38]. Results from this study indicate the Hg is distributed up to 10 µm 

into the sulfurized biochar particles after 2 d of treatment. The Hg distribution within the 

channel-like shape in CL2 is consistent with the observation of another thin-section of the same 

biochar in a previous study [8].  

Confocal X-Ray Micro-Fluorescence Imaging 

Large differences in Hg distribution are evident for unmodified and sulfurized biochars based on 

CXMFI analysis (Fig. 4). Hg is distributed across and deep into CL2 particles but mostly 

accumulates on the surface of CL2-CPS particles. Hg penetrates slightly deeper into CL2-DMC 

than CL2-CPS. Additional CXMFI results for Hg distribution within unmodified and sulfurized 

biochar particles are provided in Figs. S1-S5; distribution maps of other elements (S, Cl, K, and 

Ca) are also presented. Consistent Hg distribution maps are observed for the particles presented 

in Fig. 4 and in Figs. S1-S5. The observations are also consistent with the μ-XRF maps (Fig. 3).  

 The S intensity of unmodified biochar particles in the maps is indistinguishable from the 

background signal and therefore is not included. The distribution of S is primarily on the surface 
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of CL2-CPS (Figs. S2-S4) and on the surface and along the pores of CL2-DMC (Fig. S5). The 

observation of S in the sulfurized biochars indicates that it was successfully incorporated into the 

biochars. The Hg in enriched areas co-occurs with S in the sulfurized biochars (Fig. S2-S5). The 

difference in Hg distribution between the sulfurized biochars is likely due to the difference in S 

distribution.  

Hg EXAFS 

The threshold E0 (ionization energy) is 12.285 keV for the Hg XANES spectra of Hg-enriched 

areas of the unmodified and sulfurized biochars (Fig. 5). No distinguishable features are 

observed among the XANES spectra of the samples. The Hg XANES spectra of the samples 

indicate Hg is in the oxidized Hg(II) form, as indicated by the similarity of the E0 and edge shape 

of the sample spectra and the spectra for HgO, HgCl2, cinnabar, and metacinnabar [8, 50]. 

Modeling EXAFS spectra can help to define the local structural information (e.g., 

binding elements, coordination number, bond length) of the atom of interest. The best matches 

are obtained using HgCl2 as a model compound to simulate the spectra for Hg-enriched areas of 

unmodified CL2 (Table 1). The spectra for Hg-enriched areas of CL2-CPS and CL2-DMC were 

best simulated by using the structure of cinnabar(Table 1). The Hg EXAFS modeling results 

indicate that Hg is bound to Cl in the unmodified biochar and to S in the sulfurized biochar. The 

EXAFS modeling R-factors range from 0.08 to 0.12. 

 The coordination number (CN) of Cl is 0.6 for Hg in the Hg-enriched area of CL2, a 

value that is close to previous measurements using the same biochar [8]; the bond length is 2.29 

Å, which is consistent with the theoretical value for Hg-Cl bonding. The CNs of S bound to Hg 

are 1.3 and 1.7 in Hg-enriched areas of CL2-CPS and CL2-DMC, which are in the range of 

published values [8, 35, 63]; the modeled Hg-S distances are 2.36 and 2.42 Å, which are similar 
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to the theoretical value for cinnabar (2.37 Å) [8]. Gibson et al. [35] conducted a batch 

experiment using DMC to remove Hg from solution and bulk Hg EXAFS was modeled with the 

first path of cinnabar. The results show CN is 1.6 and bond length is 2.48 Å [35], which are 

similar to the current study using CL2-DMC. 

The Hg EXAFS modelling results indicate HgS is the primary Hg species in Hg-enriched 

areas of sulfurized biochars, suggesting that a chemical reaction occurs between the Hg in 

solution and the S functional groups in the biochars. Kim et al. [38] also report Hg removal 

through reaction with S in polysulfide-rubber-coated activated carbon. Based on the EXAFS 

modeling results, the following reactions are summarized to describe Hg removal pathways 

using CL2 (Eq. 3), CL2-CPS (Eq. 4), and CL2-DMC (Eq. 5). 

2-Cl + Hg(OH)20 + 2H+ → -Cl-Hg-Cl- + 2H2O,                                      (3) 

-S-S- + Hg(OH)20 + 2H+ → -S(Hg)S- + 2H2O,                                      (4) 

2-SH + Hg(OH)20 = -S-Hg-S- + + 2H2O.                                         (5) 

where -Cl is chlorine from the biochar matrix or from solution, -S-S- is chemisorbed 

polysulfur of CPS, and -SH is thiol from adsorbed DMC. Hg(OH)20 is the primary Hg species at 

the pH range (7.3-8) of the initial solution [64, 65]. 

Conclusions 
Hg immobilization by reaction or complexation with S functional groups within sulfurized 

biochar is a potential strategy for remediating contaminated sites by limiting Hg transport and 

decreasing Hg bioavailability. Results of this study indicate that Hg removal is enhanced after 

sulfurization of an oak biochar compared with unmodified biochar. After treatment, the Hg is 

distributed mainly on the surface of sulfurized biochars and on the surface and within the 

unmodified biochar particles. Synchrotron-based analyses indicate that Hg is stabilized through 

formation of Hg-S for the sulfurized biochar, suggesting a potentially stronger binding 
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mechanism relative to simple surface adsorption processes. Future research is still required to 

evaluate the stability of Hg removed by the sulfurized biochars under long-term and other 

conditions, including redox oscillation, acidic or basic conditions. 

 Contaminated-site remediation using DMC or DMC-sulfurized reactive materials has not 

been reported, however, DMC-sulfurized material has been used in the removal of metal ions 

from ethanol [66]. DMC has also been used for determinations of Hg, and Cu in different 

environmental media, due to its propensity to bind with metals [67]. A potential application of 

CL2-DMC for Hg removal is in controlled environments such as use in containerized treatment 

systems for wastewater [68]. Larger-scale field applications may require greater information on 

the potential health effects of DMC.  

CPS is a low-cost (~$0.32 L-1 [69]) reagent approved for use for contaminated site 

remediation (including Superfund sites) in the US [70]. After impregnation of CPS in the 

biochar, stabilization of Hg is enhanced, potentially decreasing the environmental impact of Hg. 

Biochar can be stable under some environmental settings for long periods [71], suggesting that 

sulfurized biochar may also be stable over the long term. 
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Table 1. Hg EXAFS fitting results for Hg-enriched areas of thin-sectionsa. 
Sample Reference Path CN R (Å) S0

2 σ2 (Å2) R-factor 

CL2-DMC α-HgS Hg-S 1.3 (±0.3) 2.36 (±0.04) 0.841b 0.00518b 0.12 

CL2-CPS α-HgS Hg-S 1.7 (±0.7) 2.42 (±0.07) 0.841b 0.00518b 0.11 

CL2 HgCl2 Hg-Cl 0.6 (±0.2) 2.29 (±0.07) 0.967b 0.00234b 0.08 
a CN = coordination number, R = bond length, and R-factor = fitting statistic 
b fixed values from model compounds [8, 50] 
The value in the bracket is error bar which is taken from the diagonal of a covariance matrix. 
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Figure 1. THg concentrations from aqueous solution in batch tests containing CL2, CL2-CPS 
and CL2-DMC (target S contents: 0.5, 2, and 5%) at three initial concentrations. Error bars 
represent standard error of the mean derived from duplicate experiments. 
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Figure 2. S XANES spectra of a) ten reference materials (one in b), b) unmodified and 
sulfurized CL2, and c) sulfurized CL2 exposed to air for 10 and 60 d. Spectra of S0 and HgSO4 
were reduced by half for ease of display. The molecular structures of CPS and DMC are 
presented. 
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Figure 3. Microscope photos under reflection mode (left), transmission mode (medium), Hg µ-
XRF maps (right). White bar represents 100 μm. EXAFS spectra for modeling were collected at 
locations indicated by white arrows. 
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Figure 4. Confocal X-ray micro-fluorescence imaging showing the distribution of Hg in 
unmodified and sulfurized biochars with adsorbed Hg. Photos in the bottom right corner show 
the orientation of the particles for analysis. The white bars on the particle indicate the imaging 
area (600×60 μm2) with an imaging depth as 350 μm. The thick white arrow indicates the surface 
of the particle. The thin white arrows indicate the incident and emitted beam paths. 
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Figure 5. a) Normalized Hg XANES spectra of HgCl2 and cinnabar, and spectra collected from 
Hg-enriched areas in thin-sections. b) k3-weighted chi spectra (black line) and best fit (blue-dash 
line). c) Fourier-transformed magnitude spectra. d)  Fourier-transformed real part. 
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