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Abstract

Statistical analysis in high-dimensional settings, where the data dimension p is close

to or larger than the sample size n, has been an intriguing area of research. Applications

include gene expression data analysis, financial economics, text mining, and many others.

Estimating large covariance matrices is an essential part of high-dimensional data analysis

because of the ubiquity of covariance matrices in statistical procedures. The estimation

is also a challenging part, since the sample covariance matrix is no longer an accurate

estimator of the population covariance matrix in high dimensions. In this thesis, a series

of matrix structures, that facilitate the covariance matrix estimation, are studied.

Firstly, we develop a set of innovative quadratic discriminant rules by applying the

compound symmetry structure. For each class, we construct an estimator, by pooling the

diagonal elements as well as the off-diagonal elements of the sample covariance matrix,

and substitute the estimator for the covariance matrix in the normal quadratic discrimi-

nant rule. Furthermore, we develop a more general rule to deal with nonnormal data by

incorporating an additional data transformation. Theoretically, as long as the population

covariance matrices loosely conform to the compound symmetry structure, our specialized

quadratic discriminant rules enjoy low asymptotic classification error. Computationally,

they are easy to implement and do not require large-scale mathematical programming.

Then, we generalize the compound symmetry structure by considering the assumption

that the population covariance matrix (or equivalently its inverse, the precision matrix)

can be decomposed into a diagonal component and a low-rank component. The rank of

the low-rank component governs to what extent the decomposition can simplify the covari-

ance/precision matrix and reduce the number of unknown parameters. In the estimation,

this rank can either be pre-selected to be small or controlled by a penalty function. Un-

der moderate conditions on the population covariance/precision matrix itself and on the

penalty function, we prove some consistency results for our estimator. A blockwise co-

ordinate descent algorithm, which iteratively updates the diagonal component and the

low-rank component, is then proposed to obtain the estimator in practice.

In the end, we consider jointly estimating large covariance matrices of multiple cate-

gories. In addition to the aforementioned diagonal and low-rank matrix decomposition,
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it is further assumed that there is some common matrix structure shared across the cate-

gories. We assume that the population precision matrix of category k can be decomposed

into a diagonal matrix D, a shared low-rank matrix L, and a category-specific low-rank

matrix L(k). The assumption can be understood under the framework of factor models —

some latent factors affect all categories alike while others are specific to only one of these

categories. We propose a method that jointly estimates the precision matrices (therefore,

the covariance matrices) — D and L are estimated with the entire dataset whereas L(k) is

estimated solely with the data of category k. An AIC-type penalty is applied to encour-

age the decomposition, especially the shared component. Under certain conditions on the

population covariance matrices, some consistency results are developed for the estimators.

The performances in finite dimensions are shown through numerical experiments. Using

simulated data, we demonstrate certain advantages of our methods over existing ones, in

terms of classification error for the discriminant rules and Kullback–Leibler loss for the

covariance matrix estimators. The proposed methods are also applied to real life datasets,

including microarray data, stock return data and text data, to perform tasks, such as

distinguishing normal from diseased tissues, portfolio selection and classifying webpages.
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Chapter 1

Introduction

1.1 Challenges due to high-dimensionality

High-dimensional data have emerged in a variety of areas and become ever more ubiquitous.

For example, it is typical that microarray gene expression data contain expression levels

of tens of thousands of genes but a much smaller number of subjects. These data can

be used for various purposes, such as identifying genes that are differentially expressed

across samples, identifying subtypes of a disease, distinguishing tumors from normal tissues;

studying treatment effects on gene expression and many others. See Butte (2002) for a

comprehensive review.

Data from finance and economics can also be high-dimensional. In portfolio selection

and risk management, hundreds of assets are to be considered for allocation. Since esti-

mating the large covariance matrix of asset returns is necessary for asset allocation, there

could be more than a hundred thousand parameters to be estimated. In forecasting, the

number of predictors could be approximately the same as the number of observations.

For example, the dataset studied by Stock and Watson (2012) consists of 195 quarterly

observations on 143 U.S. macroeconomic times series.

Other sources of high-dimensional data include text mining, functional magnetic reso-

nance imaging, computer vision, climatology, etc.
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There are many challenges in analyzing high-dimensional data. One is the noise accu-

mulation when estimating the mean vector. Although the sample mean of every dimension

is consistent by itself, the accumulated noise of all dimensions could be large. Dimension

reduction methods such as feature selection and projection have been proposed as solutions.

See Fan and Fan (2008) for more details.

Another challenge is that the sample covariance matrix is no longer an accurate esti-

mator of the population covariance matrix, because the number of unknown parameters

grows quadratically with the dimensionality. Moreover, the sample covariance matrix is

non-invertible when the number of features exceeds the sample size, while the inverse of

the covariance matrix is crucial in many classical statistical methods such as Hotelling’s

T 2 test and Fisher’s linear discriminant analysis.

In this thesis, we focus on the covariance matrix. We use the following two examples

to illustrate the impact of inaccurate covariance matrix estimations and motivate new

estimation methods.

1.1.1 Markowitz portfolio selection

In the classic Markowitz portfolio selection problem (Markowitz, 1952), we have the op-

portunity to invest in p assets and aim to decide the asset weights, so that a certain level

of expected return is achieved and the “risk”, which is described by the variance, is mini-

mized. El Karoui (2010) showed that estimating the covariance matrix of the asset returns

with the sample covariance matrix leads to risk underestimation.

Let µ be the mean returns and Σ be the covariance matrix of returns of p assets. The

vector µ is p-dimensional, and Σ is a p × p matrix. Let 1p be the p-dimensional vector

with all elements being one. The Markowitz problem is formulated as

woptimal = arg min
w∈Rp

w′Σw subject to w′µ = µ0,w
′1p = 1, (1.1)

in which µ0 is the desired level of expected return.

In practice, µ and Σ are unknown and need to be estimated. Let µ̂ and Σ̂ be the
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sample mean and sample covariance matrix, respectively. Problem (1.1) becomes

ŵ = arg min
w∈Rp

w′Σ̂w subject to w′µ̂ = µ0,w
′1p = 1. (1.2)

Since we focus on the performance of Σ̂ as an estimator of Σ, we compare ŵ with

w̃ = arg min
w∈Rp

w′Σw subject to w′µ̂ = µ0,w
′1p = 1, (1.3)

in which Σ is provided while µ is estimated by the sample mean.

A result from random matrix theory stated that the largest eigenvalue of Σ will be

overestimated by the largest eigenvalue of Σ̂; the smallest eigenvalue of Σ will be underes-

timated by the smallest eigenvalue of Σ̂; and the situation is worsen in the “large p” setting

(Marčenko and Pastur, 1967). The impact of this phenomenon on the portfolio selection

problem can be illustrated with a simplified case, where the population covariance matrix

is the identity matrix. If Σ is the p×p identity matrix Ip, the risk in (1.3), w̃′Σw̃, is always

1 regardless of the choice of the weights. However, as some eigenvectors of Σ̂ are associated

with the underestimated eigenvalues that are smaller than 1, intuitively, (1.2) will tend to

give a solution that is closer to these eigenvectors and underestimate the overall risk with

ŵ′Σ̂ŵ < 1, especially when p is large.

Theorem 3.1 in El Karoui (2010) depicted the risk underestimation more rigorously.

Under the assumption of normal distribution (not necessarily with identity covariance

matrix) and (p− 2) < (n− 1), they gave

ŵ′Σ̂ŵ = w̃′Σw̃
χ2
n−p+1

n− 1
,

where w̃′Σw̃ is statistically independent of χ2
n−p+1.

When p has the same order of magnitude as n and they are both large, χ2
n−p+1/(n− 1)

is approximately 1− (p− 2)/(n− 1). Therefore, “large p” results in risk underestimation

if the sample covariance matrix is used in the Markowitz portfolio selection problem.

See El Karoui (2010) for a complete study on this problem.
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1.1.2 High-dimensional classification

With gene expression data, discriminant analysis can be used to distinguish between tumors

and normal tissues or classify malignancies into different classes. Unlike some financial

data, whose dimension p is relatively close to the sample size n, gene expression data

generally contain expression levels of tens of thousands of genes for at most dozens or

hundreds of samples. Thus, the high-dimensional problem is more severe in this case.

In the following, we show that using the sample covariance matrix in high-dimensional

linear discriminant analysis (LDA) could lead to large misclassification probability.

Let C1 and C2 be the two classes of p-dimensional normal distributions N(µ1,Σ) and

N(µ2,Σ), respectively. Discriminant analysis is the problem of assigning a newly observed

vector x to one of these classes. We assume equal unconditional prior probabilities, and

the optimal linear classifier is the Bayes rule (Anderson, 2003), which classifies x to class

1 if

Q = (x− µ)′Σ−1(µ1 − µ2) ≥ 0, (1.4)

and to class 2 otherwise, in which µ = (µ1 + µ2)/2.

Assume that Σ has eigenvalues bounded away from 0 and +∞, and let

c =
[
(µ1 − µ2)′Σ−1(µ1 − µ2)

]1/2
be the Mahalanobis distance between the two classes. If x ∼ N(µ1,Σ), the probability of

misclassification is

P (Q < 0|x ∈ C1) = Φ
(
− c

2

)
, (1.5)

in which Φ(·) is the cumulative distribution function of the standard normal distribution.

The probability of misclassification of x ∼ N(µ2,Σ) is the same because of the symmetry;

thus, we only focus on the probability of misclassifying x ∼ N(µ1,Σ).

In practice, µ1, µ2 and Σ have to be estimated from the training data Y. Without loss

of generality, we assume Y contains n/2 observations from both classes. After replacing
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the parameters in (1.4) with their sample counterparts (sample mean and pooled sample

covariance matrix), we have

Q̂ = (x− µ̂)′Σ̂−1(µ̂1 − µ̂2).

In the case of fixed p and n → +∞, according to Theorem 6.5.1 in Anderson (2003), if

x ∼ N(µ1,Σ), Q̂ converges to N(c2/2, c2) in distribution and

P
(
Q̂ < 0|x ∈ C1

)
→ Φ

(
− c

2

)
, (1.6)

which is the Bayes risk. Thus, the rule with sample mean and sample covariance matrix

is asymptotically optimal in low dimensions.

However, the situation changes when p/n→∞. Bickel and Levina (2004) showed the

problem. As Σ̂ is non-invertible when p > n, they replaced Σ̂−1 with Σ̂−, its Moore-Penrose

inverse. They considered a simple case Σ = Ip, and proved, for x ∼ N(µ1,Σ),

P
(
Q̂ < 0|x ∈ C1

)
→ 1

2
, (1.7)

as p/n→∞. The convergence indicates that, asymptotically, the LDA rule using Q̂ could

be random guess in the high-dimensional setting.

1.2 Outline of the thesis

Chapter 2 – 4 are based on three independent research papers. The research paper of

Chapter 2 has been accepted by Statistica Sinica, the research paper of Chapter 3 has

been submitted for publication, and the manuscript of Chapter 4 is in preparation for

submission. The model assumption in Chapter 4 is a multiclass extension of that in Chapter

3, while the latter is a generalization of that in Chapter 2. In each of these chapters, we

firstly review the relevant literature, and then we propose an innovative method and study

its properties in detail. The most relevant summaries are presented at the end of these

chapters, but the overall conclusion of the thesis is relegated to Chapter 5. Technical proofs

of different chapters are contained in separate sections of the appendices. The notations
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are kept consistent within each chapter and its corresponding technical proofs; however,

for simplicity of presentation, some notations might be redefined across the chapters.

In Chapter 2, we tackle the problem that the quadratic discriminant rule, in its original

format, does not perform well in the high-dimensional setting. To this end, we propose

a substitute for each covariance matrix in the rule. Each substitute has the compound

symmetry structure — its diagonal (off-diagonal) elements are the average of the diagonal

(off-diagonal) elements of the population covariance matrix. This substitution immediately

reduces the number of unknown parameters from [(p + 1)p]/2 to 2 and dramatically sim-

plifies the estimation task — estimation by sample counterparts is accurate in spite of the

high dimension. The structure might seem stringent at first sight; however, we establish

that the population covariance matrices only need to loosely conform to the compound

symmetry structure to ensure nice performance of the altered discriminant rule. Under

conditions on the structures of population covariance matrices and the information for dif-

ferentiating two classes (e.g., differences between class means or class covariance matrices),

we prove a low asymptotic misclassification rate. A special case, that ignores the corre-

lations, is also studied. The simulation, in which a variety of matrices are experimented,

empirically shows advantages of our methods. In real data analysis, we discover that some

simple pre-processing steps could further improve the performances.

The aforementioned discriminant rules are also generalized to handle nonnormal data;

the method is to transform the data to be normally distributed before applying the dis-

criminant rules. Assuming the existence of such transformations is equivalent to assuming

that the dependence structure of the data can be described by a normal copula model. To

estimate the transformation for each dimension, a function, which is based on the marginal

empirical cumulative distribution function, can be used. We establish that, the generalized

rules have low asymptotic misclassification rates, if the conditions on population covari-

ance matrices and between-class differences are placed on the transformed data, and p is

controlled by exp(nc), where c is a positive constant. Simulations show that incorporating

the transformation is advantageous dealing with nonnormal data, although it might lead

to slightly higher misclassification rates when the original data already distribute normally,

because of the extra error introduced by the transformation estimation.

In Chapter 3, we generalize the compound symmetry structure and directly consider
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large covariance matrix estimation, instead of its application in classification. The com-

pound symmetry structure can be decomposed into a scaled identity matrix and a rank-1

matrix; as a generalization, we now assume that a covariance matrix can be decomposed

into a diagonal matrix and a low-rank matrix — Σ = D + L, in which L has rank r < p.

This assumption can be interpreted by a factor model — D represents the variance of

independent errors and L represents the variance explained by r latent factors. The de-

composition assumption reduces the number of unknown parameters because L can be

written as L = RR′, in which R is a p× r matrix. In this way, the estimation is simplified

and its accuracy could be improved. To obtain such an estimator, we consider an opti-

mization problem that minimizes the summation of (i) the distance between the estimator

and the sample covariance matrix and (ii) a penalty imposed on r. Then we establish a

consistency property for the estimator, under some conditions of the penalty function. On

the one hand, the penalty has to be strong enough so that r and the number of unknown

parameters are encouraged to be small. On the other hand, it should not be too strong,

otherwise, r might be smaller than the true rank, and this could lead to bias. In the

simulations, our estimator is shown to be accurate, under various setups of the popula-

tion covariance matrix. In fact, many of these covariance matrices are not covered by the

theory; they either do not exactly satisfy the decomposition assumption or violate other

conditions.

In Chapter 4, we extend the idea of diagonal and low-rank decomposition to jointly

estimate covariance matrices of multiple categories. We assume that the covariance matrix

of category k can be decomposed into a diagonal matrix D, a low-rank matrix L and

another low-rank matrix L(k), i.e., Σ(k) = D + L + L(k). In the decomposition, D and L

are shared across categories while L(k) is category-specific. If we interpret the assumption

with factor models, D represents the variance of independent errors, L represents the

variance explained by factors with common effects across categories, and L(k) represents

the variance explained by factors with category-specific effects. Exploiting the common

matrix structure leads to fewer overall unknown parameters (therefore better estimation

accuracy) than considering the diagonal and low-rank decomposition for every category

separately. To be more specific, knowing that L + L(k) is the low-rank component of

the decomposition of category k, we can see that when rank(L) + rank(L(k)) is fixed, the
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larger the rank of L, the smaller the total number of unknown parameters of all categories.

To obtain such estimators, we minimize an objective function, which consists of (i) the

distances between the estimators and the corresponding sample covariance matrices of all

categories and (ii) an AIC-type penalty. An overall consistency result of the estimators

is established by extending the proof of Chapter 3. Through simulations and real data

analysis, we show the advantages of the joint estimation over separate estimations for

multiple categories.

1.3 Main contributions

To begin with, some matrix structures, such as the compound symmetry structure and

the joint diagonal and low-rank decomposition of multiple matrices, are studied for the

first time to facilitate large covariance matrix estimation. We not only propose these

matrix structures, but also conduct thorough research on their underlying interpretation,

implementation, and theoretical and numerical properties. Similar matrix structures to

the diagonal and low-rank decomposition of a single matrix have been considered by other

researchers; however, we employ a different method to encourage such a decomposition.

To encourage low-rank components in the (joint) diagonal and low-rank decomposition,

we directly impose penalties on the ranks, e.g., the AIC-type penalties. To the best of

our knowledge, we are the first to study this type of penalty in the context of high-

dimensional covariance matrix estimation. Although other works have also considered

low-rank matrices to facilitate high-dimensional covariance matrix estimation, they either

did not employ penalties and chose the rank with other methods, or applied the nuclear

norm to encourage a low rank component. Furthermore, due to the formulation of the

penalty, we are able to establish corresponding consistency properties and efficient solvers.

Theoretical properties are established for these newly proposed methods. The con-

ditions describe when these methods perform well, and the consistency results quantify

the classification/estimation accuracy. (There could be situations, not covered by the-

ories, where the methods still work well.) Some techniques and intermediate results of

the proofs could also be considered contributions. For instance, we adapt the techniques
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of establishing consistency for sparse estimators in Rothman et al. (2008) to handle our

“low-rank” estimators. Moreover, some lemmas, that we prove as intermediate steps, are

indeed standalone matrix properties.

Algorithms are developed for our methods. The algorithms for implementing the dis-

criminant rules are highly efficient because of the simplicity of the compound symmetry.

Although inverse matrices are part of the discriminant rules, the inverse of a compound

symmetry structure is far less expensive than that of a general matrix. Algorithms of

the (joint) diagonal and low-rank decomposition methods are not as simple and involve

numerical optimization techniques. But they require low memory and are also considered

efficient, given the difficult of handling low-rank matrices.

Our contributions will be elaborated in each of the following three chapters.
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Chapter 2

High-dimensional Quadratic

Discriminant Analysis

2.1 Introduction

In this chapter, we study discriminant analysis in high dimensions. Suppose a random

vector x ∈ Rp, where p is very large, comes from either class 1 (C1) or class 2 (C2). On the

training data, the class memberships of these vectors are labelled. The goal is to classify

an unlabelled observation using a discriminant rule that is learned from the training data.

To focus on the main issues, we shall assume that the unconditional prior probabilities of

both classes are equal to 1/2. Otherwise, all discriminant rules mentioned can be modified

simply by adding a constant to correct for the class imbalance.

For i = 1, 2, let µi and Σi be the class mean and class covariance matrix, respectively.

To determine the class label of x, Fisher’s linear discriminant rule (see, e.g., Anderson,

2003), which assumes Σ1 = Σ2 = Σ, classifies x to class 1 if

(x− µ)′Σ−1(µ1 − µ2) ≥ 0, (2.1)

where µ = (µ1 + µ1)/2, and to class 2 otherwise. If the two covariance matrices cannot

be taken to be identical, then the quadratic discriminant rule can be used, which classifies
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x to class 1 if

ln (|Σ1|/|Σ2|) + (x− µ1)′Σ−1
1 (x− µ1)− (x− µ2)′Σ−1

2 (x− µ2) ≤ 0, (2.2)

and to class 2 otherwise. Equation (2.2) is also the Bayes rule under the assumption that

x ∼ N(µi,Σi) if x ∈ Ci, and so is equation (2.1) when Σ1 = Σ2.

In practice, the parameters µi and Σi are unknown and need to be estimated from

training data. Let µ̂i and Σ̂i be the sample mean and sample covariance matrix of class i.

They are conventionally used as estimators of µi and Σi. The common covariance matrix

in (2.1) is estimated by the pooled sample covariance matrix, Σ̂ = (n1 + n2 − 2)−1[(n1 −
1)Σ̂1 + (n2− 1)Σ̂2]. When the dimension is high and the number of covariates p is close to

or larger than the number of observations n, the sample covariance matrix is well-known

to be a poor estimate of its population counterpart; in fact, it is often singular and cannot

be directly plugged into the discriminant rules.

2.1.1 Linear discriminant analysis (LDA)

In recent years, many methods have been proposed in the literature for performing linear

discriminant analysis (LDA) in high dimensions. For example, one can ignore the covari-

ance terms and use just a diagonal matrix in (2.1) — these are referred to as “independence

rules”. Bickel and Levina (2004) showed that, if one simply uses the Moore-Penrose inverse

of Σ̂, then the misclassification error of (2.1) converges to 1/2 as p/n → ∞, whereas the

independence rule is at least as good. These “independence rules” can, and often should,

be applied in conjunction with feature selection. For instance, Fan and Fan (2008) pointed

out that they can perform poorly by themselves due to noise accumulation in estimating

the population centroids, µ1 and µ2, in high-dimensional spaces. They proposed to se-

lect a subset of important features by performing two-sample t-tests before applying the

independence rule. Based on similar considerations, Tibshirani et al. (2002) shrunk class

centroids towards the overall center of the data in order to reduce noise, and also estimated

Σ with a diagonal matrix.

Another popular approach in the literature is to impose sparsity assumptions. For

example, Shao et al. (2011) assumed both Σ and the mean difference vector, µ1−µ2, to be
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sparse, and estimated them by thresholding. Fan et al. (2013b) performed variable selection

by “innovated thresholding” and “higher criticism thresholding” before carrying out LDA

with the selected set of features. Hao et al. (2015) rotated the data to create sparsity prior

to applying existent classifiers. Witten and Tibshirani (2011) applied a sparsity penalty

in seeking out a projection direction that maximized the between-class variance. Notice

that, for LDA, the (pooled) covariance matrix Σ affects classification only through the

discriminant direction, Σ−1(µ1−µ2). Thus, various methods have been proposed to avoid

the estimation of Σ itself — e.g., Fan et al. (2012) solved for the discriminant direction

directly by minimizing the misclassification rate under a sparsity constraint; Mai et al.

(2012) found the direction by solving a penalized linear regression problem; see also Cai

and Liu (2011b).

2.1.2 Quadratic discriminant analysis (QDA)

The LDA rule (2.1) assumes that two classes share the same covariance matrix, which is

challenging to test in high dimensions (see, e.g., Li and Chen, 2012; Cai et al., 2013a, and

many others). If the null hypothesis, H0 : Σ1 = Σ2, cannot be accepted for sound reasons,

it may become necessary to consider quadratic discriminant analysis (QDA). However,

because there are many more unknown parameters to estimate, QDA is much more chal-

lenging than LDA, especially in high dimensions, and much less work has been done about

it.

As in the case of LDA, it is also natural to use just diagonal covariance matrices or

to impose some sparsity conditions in order to regularize QDA. For example, diagonal

quadratic discriminant analysis (DQDA) was studied by Dudoit et al. (2002), whereas Li

and Shao (2015) suggested a sparse QDA (SQDA) procedure by thresholding not only the

mean difference vector µ̂1 − µ̂2, but also the covariance matrices Σ̂i and their difference

Σ̂1 − Σ̂2. A more recent work on sparse QDA rule is based on the dimension reduction

method, QUADRO, proposed by Fan et al. (2015). QUADRO constructs a quadratic

projection f(x) = x′Ωx − 2δ′x by maximizing the Rayleigh quotient of f , which is the

ratio of the variance explained by the class label to the remaining variance. The parameters,

Ω and δ, are encouraged to be sparse by `1 penalties. The estimated projection can then
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be used for classification. For example, the class label can be decided by the sign of

x′Ω̂x− 2δ̂′x− c for some thresholding constant c.

Friedman (1989) proposed regularized discriminant analysis (RDA) as a way to compro-

mise between LDA and QDA. In particular, his proposal shrinks the sample class covariance

matrix Σ̂i twice — once toward the pooled sample covariance matrix, Σ̂, and once again

toward the diagonal matrix, p−1tr(Σ̂i)Ip, where tr(·) denotes the trace of a matrix and Ip

is p× p identity matrix.

We shall refer to the quantity, p−1tr(Σ̂i)Ip, simply as the “trace estimator”. It has been

used in the literature for high-dimensional hypothesis testing and classification problems,

and is closely related to our methods. One reason why the trace estimator is useful is

that, under some mild conditions, p−1tr(Σ̂i) can be shown to be a consistent estimator of

p−1tr(Σi) even as p→∞.

For classification, Friedman’s RDA (Friedman, 1989) clearly uses the trace estimator,

as it shrinks the sample covariance matrix Σ̂i towards both the pooled covariance estimator

Σ̂ and the trace estimator. Shrinking toward the trace estimator is one way to overcome

the well-known bias in the sample covariance matrix, which inflates large eigenvalues and

deflates smaller ones. The two directions of shrinkage are controlled by two separate tuning

parameters, λ and γ, as follows:

Σ̂i(λ) =
(1− λ)(ni − 1)Σ̂i + λ(n1 + n2 − 2)Σ̂

(1− λ)(ni − 1) + λ(n1 + n2 − 2)
,

and

Σ̂i(λ, γ) = (1− γ)Σ̂i(λ) + γ
[
p−1tr(Σ̂i(λ))Ip

]
.

There are four extreme cases. When λ = 0 and γ = 0, RDA reduces to vanilla QDA.

When λ = 1 and γ = 0, RDA amounts to LDA. When λ = 1 and γ = 1, RDA is

equivalent to replacing Σ̂ in LDA with just the identity matrix — in this case, classification

is based on comparing Euclidean distances ||x − µ̂i||2 instead of Mahalanobis distances

(x− µ̂i)
′Σ̂−1(x− µ̂i), for i = 1, 2. When λ = 0 and γ = 1, RDA is equivalent to replacing

Σ̂i in the QDA rule (2.2) with the trace estimator, p−1tr(Σ̂i)Ip.

For hypothesis testing, Bai and Saranadasa (1996) proposed a test statistic, which re-

places the pooled sample covariance matrix Σ̂ in Hotelling’s two-sample T 2-statistic with
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the identity matrix Ip and uses just the squared Euclidean distance (rather than Maha-

lanobis distance) between the sample means for high-dimensional problems. However, to

do so, a bias-correction term must be added that depends on tr(Σ̂). Chen and Qin (2010)

generalized this to the case where Σ1 6= Σ2 so using the pooled estimate Σ̂ is no longer

appropriate.

Aoshima and Yata (2014) then followed up on these ideas and used them for classi-

fication. In particular, they substituted the identity matrix Ip for the sample covariance

matrix Σ̂ in the LDA rule (2.1), and used the trace estimator in place of each Σ̂i in the

QDA rule (2.2). These two rules are similar to two of the four extreme cases in Friedman’s

RDA, corresponding to (λ, γ) = (1, 1) and (λ, γ) = (0, 1), except for the aforementioned

bias-correction terms involving tr(Σ̂) and tr(Σ̂i). They also investigated a few variants of

their quadratic rule (Aoshima and Yata, 2015).

2.1.3 Handling nonnormal data

Compared with LDA, QDA is more sensitive to deviations from normality (Friedman,

1989). A common approach for relaxing the normality assumption is to assume that there

exists a strictly monotone transformation for each dimension such that the transformed

vector x follows a multivariate normal distribution given its class label (e.g., Lin and Jeon,

2003; Liu et al., 2009; Mai and Zou, 2015). After first estimating and then applying

these transformations, Lin and Jeon (2003) performed classic LDA and QDA; Liu et al.

(2009) estimated undirected graphical models; and Mai and Zou (2015) applied their direct

method for sparse discriminant analysis (DSDA). In this work, we will also rely on this

idea to generalize our methods.

2.1.4 Outline and summary of this chapter

One can view the trace estimator as the result of two operations: pooling the diagonal

elements of each sample covariance matrix, and ignoring its off-diagonal elements. In

this chapter, we take the idea of the trace estimator one step further, and introduce an

estimator that also pools the off-diagonal elements. We will refer to the resulting QDA
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rule as ppQDA (for having performed two pooling operations), and the QDA rule with the

trace estimator as pQDA — a special case of our more general method. We will study

their asymptotic performances (Section 2.2), and also generalize them to handle nonnormal

data (Section 2.3). Our generalization is based on first estimating a set of nonparametric

data transformations and then applying our methods to the transformed data. As such,

we will refer to these generalized QDA rules as semiparametric ppQDA (Se-pQDA) and

semiparametric pQDA (Se-pQDA), respectively. We will prove a result for Se-pQDA, but

only demonstrate the performance of Se-ppQDA empirically; the proof of a similar result

for Se-ppQDA is more complicated, and will be left for future research.

Here is a summary of our main contributions. First, while most existing high-dimensional

discriminant analysis methods focus on LDA, we fill this gap by focusing on QDA. Second,

the sample covariance matrix is inconsistent when the dimension is high but, instead of

making sparsity assumptions, we reduce the number of unknown parameters by simplifying

the matrix structure in a different way. Third, using more than just the trace estimator

in the QDA rule, our proposed ppQDA rule allows us to make use of information about

the correlations among different dimensions. Fourth, we relax the normality assumption

for both ppQDA and pQDA, and establish theoretical results for all of them except Se-

ppQDA, the semiparametric extension of ppQDA. Finally, because our methods are based

on using a very simple matrix structure, all our methods are computationally feasible and

easy to apply in practice.

We proceed as follows. In Section 2.2, we introduce our notation, and describe our main

methods, ppQDA and pQDA. In Section 2.3, we propose semiparametric generalizations

of our main methods for nonnormal data. In Section 2.4, we give an outline of the main

proofs, but detailed proofs are relegated to the appendices. Section 2.5 contains extensive

numerical experiments, and Section 2.6 shows a few real-data examples. Then, in Section

2.7, we provide some important discussions about the relative performance of our ppQDA

rule to that of the Bayes decision rule, before we close with some concluding remarks in

Section 2.8.
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2.2 QDA by pooling elements of covariance matrices

Let {y1k : 1 ≤ k ≤ n1} and {y2k : 1 ≤ k ≤ n2} be training samples from p-dimensional

normal distributionsN(µ1,Σ1) andN(µ2,Σ2), respectively. That is, y1k ∈ C1 and y2k ∈ C2.

In addition, all yiks are assumed to be independent. Let yijk to denote the jth dimension

of yik, for j = 1, . . . , p. In what follows, x ∈ Rp is used to denote a generic feature vector

observation without a class label, and our target is to classify x based on a rule learned

from the training samples. The sample version of the QDA rule (2.2) is to classify x to

class 1 if

ln(|Σ̂1|/|Σ̂2|) + (x− µ̂1)′Σ̂−1
1 (x− µ̂1)− (x− µ̂2)′Σ̂−1

2 (x− µ̂2) ≤ 0, (2.3)

and to class 2 otherwise, but this does not work when p is larger than or close to n. We

propose to replace the sample covariance matrices in (2.3) with simpler alternatives. Our

main idea is to simplify the matrix structure in order to reduce the number of unknown

parameters. When there are fewer parameters, we can expect to estimate them consistently.

2.2.1 Some basic conditions

Before introducing the special matrix structure that we propose to use, we first describe

some common conditions on the covariance matrices and sample sizes.

Let Σj1j2 be the element of Σ in the j1th row and j2th column.

Condition 2.1. With respect to p, |Σj1j2| is uniformly bounded by a constant c .

Condition 2.1 places a bound on all the elements of Σ. Throughout the chapter, we

shall assume that both Σ1 and Σ2 satisfy condition 2.1.

Let 1p = (1, 1, ..., 1)′ ∈ Rp and Su(Σ) = 1′pΣ1p be the summation of all elements in Σ.

Condition 2.1 implies Condition 2.2 below.

Condition 2.2. For both i = 1, 2, tr(Σi) = O(p), tr(Σ2
i ) = O(p2) and Su(Σi) = O(p2).

We also assume that the sample sizes ni for the two classes are close.
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Condition 2.3. There exist n > 0 and constants 0 < c1 < c2 < +∞ such that c1 < ni/n <

c2 as n→∞ for both i = 1, 2.

Condition 2.3 is equivalent to saying that n1 � n2. The value n has the same order as

n1 and n2; it will be used later in our theoretical statements, where we will often refer to

the sample size in general, without specifying the classes.

2.2.2 Main method: ppQDA

We now describe our main idea. Given Σi, let

ai = p−1tr(Σi) and ri = (p(p− 1))−1 (Su(Σi)− tr(Σi)) ,

be the average of its diagonal elements and the average of its off-diagonal elements, respec-

tively. Our main idea is to use the structured matrix,

Ai =


ai ri · · · ri

ri ai · · · ri
...

...
. . .

...

ri ri · · · ai

 = (ai − ri)Ip + ri1p1
′
p,

which has uniform diagonal elements and uniform off-diagonal elements, in place of Σi, for

i = 1, 2, in the quadratic discriminant rule (2.2).

Estimators of ai and ri, and hence of Ai as well, are based on the sample covariance

matrix, i.e.,

âi = p−1tr(Σ̂i), r̂i = (p(p− 1))−1
(
Su(Σ̂i)− tr(Σ̂i)

)
,

and

Âi = (âi − r̂i)Ip + r̂i1p1
′
p.

As both ai and ri are scalar parameters, their estimators âi and r̂i are consistent even when

p is large.
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Using Âi to replace Σ̂i, for i = 1, 2, in (2.3), we call the resulting decision rule the

“ppQDA rule”, where each “p” is short for “pooling” as constructing Âi involves pool-

ing both the diagonal and the off-diagonal elements of Σ̂i. Specifically, the ppQDA rule

classifies x to class 1 if

Q̂ = ln (|Â1|/|Â2|) + (x− µ̂1)′Â−1
1 (x− µ̂1)− (x− µ̂2)′Â−1

2 (x− µ̂2) ≤ 0, (2.4)

and to class 2 otherwise. Due to its special structure, the inverse of Ai can be directly

calculated:

Â−1
i = (âi − r̂i)−1Ip − r̂i(âi − r̂i)−1(âi + (p− 1)r̂i)

−11p1
′
p. (2.5)

Hence, we see that no matrix inversion is required, which is also a highly desirable property,

especially for large p.

Theoretically, we are able to establish that our simplified ppQDA rule has good clas-

sification performance under Condition 2.1, Condition 2.3 and some additional conditions

on the matrices, Ai for i = 1, 2, given below:

Condition 2.4. The population covariance matrices satisfy

1. ai − ri > δi > 0, p[ai + (p− 1)ri] > δ
′
i > 0;

2. |(a1 − r1)− (a2 − r2)| > δ0 > 0;

3. tr ((Ai − Σi)
2) = o(p2);

4.
∑p

j=1(vij − v̄i)2 = o(p2), where (vi1, vi2, . . . , vip) = 1′pΣi — i.e., vij is jth column-sum

of Σi — and v̄i = p−1
∑p

j=1 vij.

Theorem 2.1. Let R̂n,p = P(Q̂ > 0|x ∈ C1) + P(Q̂ ≤ 0|x ∈ C2) be the misclassification

probability of the ppQDA rule (2.4). If conditions 2.1, 2.3 and 2.4 hold, then,

lim
p→∞,n→∞

R̂n,p = 0.

Notice that, in Theorem 2.1, we do not need to restrict the rate with which p ap-

proaches infinity relative to how fast the sample size n increases, a common requirement
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for high-dimensional problems. This is because the ppQDA rule, in effect, reduces each

covariance matrix to just two scalar parameters, ai and ri, which can be consistently esti-

mated regardless of how big the dimension p is. However, we will require a restriction of the

aforementioned kind later in Section 2.3 as we extend our basic ideas to a semiparametric

setting (see Remark 2.6 below).

While Theorem 2.1 establishes conditions under which the ppQDA rule can be nearly

perfect asymptotically, we will also discuss in more detail below (Section 2.7) the factors

that control how close the ppQDA rule can approach the Bayes decision rule when nearly

perfect classification is not achievable.

The detailed proof of Theorem 2.1 is given in the Appendix, although we will give a

brief outline of the proof in Section 2.4. Here in this section, we first make some important

remarks about Conditions 2.4.

Remark 2.1. As long as Σi is a positive definite matrix, the inequalities, ai − ri > 0

and ai + (p − 1)ri > 0, in Condition 2.4-1 always hold, by the definition of ai and ri (see

Lemma A.1, Appendix). In addition, the Condition 2.4-1 requires that both ai − ri and

p[ai + (p− 1)ri] be bounded away from 0, a degeneracy, even as the dimension gets high.

Remark 2.2. Condition 2.4-2 essentially requires that there is some difference between the

two class covariance matrices, Σ1 and Σ2, so that the two classes can be separated. Gener-

ally for multivariate normal distributions, there are two sources of information that make

classification possible: differences between the mean vectors (locations), and differences be-

tween the covariance matrices. Condition 2.4-2 is sufficient but not necessary, since it

only requires some difference between the covariance matrices. If there is adequate signal

in the mean vectors, e.g., if µ1 − µ2 is fairly large, then Condition 2.4-2 can be relaxed.

This will be discussed in more detail in the Appendix, after the proof of Lemma A.2. We

choose to use a condition that is solely focused on the covariance matrices for two reasons.

First, there are already many papers in the literature (see Section 2.1) about discriminant

analysis and classification based on signals from the mean vectors alone. Second, our main

idea — that of replacing Σi with Ai — is about dealing with large covariance matrices

(by introducing a structural simplification). As a result, Condition 2.4-2 actually makes

classification possible even if there is no location separation at all (µ1 − µ2 = 0).
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Remark 2.3. Both conditions 2.4-3 and 2.4-4 place a bound on the difference between

the true covariance matrix Σi and its structural simplification Ai. Naturally, if the true

covariance matrix Σi really does have the simplified structure Ai, then our proposed ppQDA

rule will be trivially optimal. What makes our proposal useful and interesting, of course,

is that it can perform well even when the true covariance matrix does not have exactly the

special structure. Conditions 2.4-3 and 2.4-4 make it precise how much Σi can deviate from

the structure that would be “ideal” for our proposal. In particular, Condition 2.4-3 means

that the average of squared elementwise difference between Σi and Ai is o(1). Condition

2.4-4 is similar to 2.4-3 except it is about the column sums of Σi, vi1, ..., vip, instead of

about its individual elements. Notice that the average column sum, v̄i, can be expressed as

Su(Σi)/p = ai + (p− 1)ri, which is also equal to the uniform column sum of Ai for every

column. Thus, Condition 2.4-4 also means that the average squared difference between

the column sums of Σi and those of Ai is o(p). Here, it is important to note that some

commonly used covariance structures do, in fact, satisfy these two conditions, including

the autoregressive matrix such as Σi(j1, j2) = σ2
i ρ
|j1−j2|
i and the block diagonal matrix —

provided that the block size q is o(p). Of course, if Σi deviates a lot from the structural

simplification, then both of these conditions can be violated. For example, if half of the

off-diagonal entries in Σi are zero and the other half are 0.2, then it easily can be derived

that tr((Ai−Σi)
2) ≥ 0.01p(p−1), so tr((Ai−Σi)

2) 6= o(p2) and Condition 2.4-3 no longer

holds.

2.2.3 Special case: pQDA

We also consider a special case, which uses just the trace estimator, âiIp, to replace Σ̂i,

i = 1, 2. We call this rule “pQDA” because only the diagonal elements of Σ̂i are pooled

and the off-diagonal elements are simply “ignored”. This rule classifies x to class 1 if

Q̂0 = p ln (â1/â2) + â−1
1 (x− µ̂1)′(x− µ̂1)− â−1

2 (x− µ̂2)′(x− µ̂2) ≤ 0, (2.6)

and to class 2 otherwise.

Clearly, the trace estimator, âiIp is a special case of Âi. But we can take advantage

of the added special structure and derive a stronger and more interpretable result under a
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different set of assumptions:

Condition 2.5. The population covariance matrices satisfy

1. there exist positive constants c3 and c4 such that c3 < λij < c4 for i = 1, 2 and

j = 1, . . . , p, where λij is the jth eigenvalue of Σi;

2. there exists some positive constant c5 such that (ai1/ai2−ln (ai1/ai2)−1)+p−1a−1
i2

(µ1−
µ2)′(µ1 − µ2) > c5 for (i1, i2) = (1, 2) and (2, 1).

Theorem 2.2. Let R̂0,n,p = P(Q̂0 > 0|x ∈ C1) + P(Q̂0 ≤ 0|x ∈ C2) be the misclassification

probability of the pQDA rule (2.6). If conditions 2.1, 2.3, and 2.5 hold, then,

lim
p→∞,n→∞

R̂0,n,p = 0.

The proof of Theorem 2.2 is, by and large, similar to that of Theorem 2.1 and the

details will be omitted. Below, we make some important remarks about Condition 2.5.

Remark 2.4. Condition 2.5-1 requires that the Σis have bounded eigenvalues in order

for pQDA to work. The reason why ppQDA does not require bounded eigenvalues is that,

although both Ai and aiIp have a similar structure (uniform diagonal elements and uniform

off-diagonal elements), Ai has a spiked eigenvalue spectrum (provided that ri does not

degenerate to 0, the case of pQDA), whereas aiIp has uniform eigenvalues. Boundedness

can also be thought of as a different way of stating closeness. In addition, as aiIp has

uniform eigenvalues, it is intuitive that our pQDA rule will perform better if the true

covariance matrix Σi has eigenvalues that are closer to each other.

Remark 2.5. As we mentioned before (Remark 2.2), in quadratic discriminant analy-

sis, there are two sources of information that are useful for class separation. One is the

difference in the mean vectors, and the other is the difference in the covariance matri-

ces. In our pQDA rule, these two sources of information are parameterized by µ1 − µ2

and a1/a2 or a2/a1, respectively. Condition 2.5-2 simply requires that there is sufficient

combined information for class separation from both sources. Note that the expression

ai1/ai2 − ln (ai1/ai2)− 1 achieves its minimum value of 0 when ai1 = ai2. Hence, classifica-

tion becomes easier the larger the difference is between a1 and a2 — regardless of whether

a1 > a2 or a2 > a1.
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2.3 Generalization to deal with nonnormal data

As we briefly mentioned in Section 2.1, QDA often is more sensitive to violations of the

normality assumption than is LDA. In this section, we investigate a semiparametric method

to relax the normality assumption for the pQDA rule. The ppQDA rule can be generalized

similarly, but the theoretical justification is much more tedious, although it requires no

additional technique (more on this below in Remark 2.8). Thus, we will state generalized

versions of both the ppQDA rule and the pQDA rule, as well as include both of them in our

empirical studies (Sections 2.5 and 2.6), but we will only develop the theory for generalized

pQDA.

For non-normal data, we follow a common approach in the literature (e.g., Lin and

Jeon, 2003; Liu et al., 2009; Mai and Zou, 2015) and assume that

Condition 2.6. there exist a set of strictly monotonic transformations

h(y) ≡ (h1(y1), h2(y2), ..., hp(yp))
′

such that h(yik) ∼ N(µi,Σi) for k = 1, . . . , ni and i = 1, 2.

This assumption is equivalent to using a Gaussian copula model to describe the depen-

dence structure of multivariate observation yik (Lin and Jeon, 2003).

To test the validity of Condition 2.6, any high-dimensional normality test can be applied

to the transformed data. However, testing normality in high dimensions is another complex

research problem in itself. According to Lin and Jeon (2003), an alternative may be to

check the classification results directly, as it is possible for a classification rule to work

reasonably well even if the underlying normality assumption is violated.

Under this assumption, the generalization of ppQDA and pQDA is straight-forward.

First, we obtain a nonparametric estimate of the transformations, say

ĥ(·) ≡ (ĥ1(·1), ĥ2(·2), ..., ĥp(·p))′,

from the training sample. Then, we apply ppQDA and pQDA to the transformed data,

{ĥ(yik) : k = 1, ..., ni; i = 1, 2} and ĥ(x). We refer to these procedures as Se-ppQDA and

Se-pQDA, respectively, where “Se” is short for “semiparametric”.

22



In what follows, we will use the same notations as before to denote various distributional

parameters and their estimates for the transformed data. For example, µi and Σi will now

denote the mean vector and covariance matrix of the transformed sample {h(yik) : k =

1, ..., ni}, while

µ̂i = n−1
i

ni∑
k=1

ĥ(yik) and Σ̂i = (ni − 1)−1

ni∑
k=1

(ĥ(yik)− µ̂i)(ĥ(yik)− µ̂i)
′

will denote the corresponding sample quantities based on the estimated transformation,

ĥ. Similarly, ai, ri (likewise âi, r̂i) will continue to denote, respectively, the average of

the diagonal and off-diagonal elements of Σi (likewise Σ̂i) — except Σi and Σ̂i are now

covariance and sample covariance matrices of the transformed data.

2.3.1 Estimation of h

Let Fij be the class-i marginal cumulative distribution function (CDF) for the jth dimen-

sion. Let σ2
ij be the variance of hj(yij), i.e., σ2

ij is the jth diagonal element of Σi. Notice

that each of the assumed transformations hj(·) in Condition 2.6 must satisfy the following:

if u ∼ F1j and v ∼ F2j, then after transformation the marginal distributions of hj(u) and

hj(v) can differ only up to a location-and-scale transform. Thus, we can set µ1j = 0 and

σ2
1j = 1 for all j = 1, . . . , p, without loss of generality. This, in turn, means that each hj

can be equivalently expressed as

hj = Φ−1 ◦ F1j or hj = σ2j

(
Φ−1 ◦ F2j

)
+ µ2j, (2.7)

where Φ denotes the CDF of the standard normal.

This means the transformation hj can be estimated using training samples from either

class. Here, we will estimate it using data from class 1, i.e.,

ĥj = Φ−1 ◦ F̂1j,
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where F̂1j is an “edge-smoothed” version of the empirical CDF (e.g., Mai and Zou, 2015),

F̂1j(t) =


1− 1

n2
1
, if F̃1j(t) > 1− 1

n2
1
;

F̃1j(t), if 1
n2
1
≤ F̃1j(t) ≤ 1− 1

n2
1
;

1
n2
1
, if F̃1j(t) <

1
n2
1
,

and F̃1j is the actual empirical CDF, F̃1j(t) = n−1
1

∑n1

k=1 1{y1jk ≤ t}. But our choice of

using data from class 1 is entirely arbitrary. In practice, we recommend using data from

the larger class in order to maximize estimation accuracy.

It is also possible to estimate the transformation hj by making use of data from both

classes. For example, Mai and Zou (2015) proposed such a pooled estimator for the special

case in which the class covariance matrices are identical. A closer look at (2.7) suggests

that a potential generalization of their pooled, two-sample estimator could be to take a

weighted average of two different, one-sample estimators of hj, e.g.,

ĥj =
n1

n
(Φ−1 ◦ F̂1j) +

n2

n

[
σ̂2j(Φ

−1 ◦ F̂2j) + µ̂2j

]
,

where F̂2j is defined similarly as F̂1j above. To take full advantage of pooled estimation, one

could obtain σ̂2j and µ̂2j with a pooled method as well, as there is information about them

not only in the transformed sample {Φ−1[F̂1j(y2jk)]}n2
k=1 but also in {Φ−1[F̂2j(y1jk)]}n1

k=1.

However, since this is not the main focus of our study, we will not pursue this more

complicated, pooled strategy in the current work.

2.3.2 Se-ppQDA and Se-pQDA

Since our estimated transformations ĥ1, ..., ĥp automatically make µ̂1 = 0, the Se-ppQDA

rule classifies x to class 1 if

Q̂ĥ = ln (|Â1|/|Â2|) + ĥ(x)′Â−1
1 ĥ(x)− (ĥ(x)− µ̂2)′Â−1

2 (ĥ(x)− µ̂2) ≤ 0, (2.8)

and to class 2 otherwise. Similarly, that σ̂2
1j = 1 for all j = 1, ..., p implies â1 = p−1tr(Σ̂1) =

1, so the Se-pQDA rule classifies x to class 1 if

Q̂ĥ,0 = p ln (1/â2) + ĥ(x)′ĥ(x)− â−1
2 (ĥ(x)− µ̂2)′(ĥ(x)− µ̂2) ≤ 0, (2.9)
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and to class 2 otherwise.

We are now ready to establish some theoretical results about the asymptotic perfor-

mance of the Se-pQDA rule. While the idea behind Se-pQDA — first estimating the

transformations and then applying pQDA to transformed data — is straight-forward, its

performance is much more intricate to analyze than that of pQDA, being affected by not

only the structural simplifications of the pQDA rule itself, but also the estimation quality of

the p univariate transformations and that of the key model parameters for the transformed

data.

Theorem 2.3. Let R̂ĥ,0,n,p = P(Q̂ĥ,0 > 0|x ∈ C1) + P(Q̂ĥ,0 ≤ 0|x ∈ C2) be the misclassifi-

cation probability of the Se-pQDA rule (2.9). Under Condition 2.6, if and conditions 2.1,

2.3, and 2.5 hold for the transformed data, then,

lim
p→∞,n→∞

R̂ĥ,0,n,p = 0,

provided that p exp(−Cn1/3−θ)→ 0 for some C > 0 and 0 < θ < 1/3, and that there exists

some constant c6 > 0 such that |µ2j| < c6 for all j = 1, . . . , p.

Compared with Theorem 2.2 and aside from the obvious additional Condition 2.6,

Theorem 2.3 requires two more assumptions, about which we will make some remarks

below.

Remark 2.6. Recall that, previously for ppQDA and pQDA, we did not need to control

the rate with which p goes to infinity relative to that of n, but we do now for Se-pQDA.

This is because we must now estimate p univariate transformations. To ensure that we

can estimate these transformations reasonably well, the dimension p cannot grow too fast

relative to the overall sample size n. More precisely, we require p exp(−Cn1/3−θ) → 0 for

some C > 0 and 0 < θ < 1/3 as both p and n tend to infinity.

Remark 2.7. The additional assumption in Theorem 2.3 — that every |µ2j| is bounded

— is introduced to avoid some unnecessary technical difficulties in our proof. This added

assumption does not really weaken our result. If |µ2j| is very large, it only makes classifi-

cation easier, and the more challenging (and hence more interesting) problem in practice
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occurs when the marginal signals are relatively weak. This is especially relevant as we have

not made any sparsity assumptions about µ1 − µ2. Situations in which signals from the

mean vectors are relatively dense (see, e.g., Fan et al., 2013b) are only interesting when

those signals are marginally faint.

2.4 Outline of proofs

In this section, we give a brief outline of the main proofs, but the actual proofs are given

in the Appendix.

2.4.1 Theorems 2.1 and 2.2

To prove Theorem 2.1, we first prove it for Q, using the true parameters µi, ai, ri. This

is essentially the population version of the ppQDA rule. To prove it for Q̂, the sample

version, our main idea is to write Q̂ as (Q̂−Q) + Q and prove that the quantity, Q̂−Q,

is dominated by Q as p, n→∞, so that we can conclude

P(Q̂ > 0|x ∈ C1)− P(Q > 0|x ∈ C1) = P(Q̂−Q+Q > 0|x ∈ C1)− P(Q > 0|x ∈ C1)→ 0

and likewise for P(Q̂ ≤ 0|x ∈ C2). The proof of Theorem 2.2 is very similar (and in fact,

easier), even though their conditions are somewhat different.

2.4.2 Theorem 2.3

In a nutshell, Theorem 2.3 is proved in three steps. First, we prove it for Qh,0, assuming

that we know the transformation h as well as the true distributional parameters (e.g.,

µi,Σi, Ai, and so on) for the transformed data h(yik). Then, we prove it for an intermediate

quantity, Qĥ,0, which uses the estimated transformation ĥ but nonetheless still uses the

true distributional parameters for the transformed data — again, µi,Σi, Ai, and so on.

This intermediate quantity is perhaps somewhat difficult to conceptualize in practice —

how can we have the true parameters for the transformed data if the transformation itself
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is unknown and estimated? Here, it is important to keep in mind that this is merely a

hypothetical entity used as a “stepping stone” for the theoretical proof; it has no intrinsic

value in itself. Finally, we prove it for Q̂ĥ,0.

The result for Qh,0 can be obtained “for free” as a result of having proved Theorem 2.2

already by this point. To obtain the results for Qĥ,0 and subsequently for Q̂ĥ,0, the key lies

in being able to bound various probabilities that the difference is large between a quantity

that depends on hj(xj) and its counterpart that depends on ĥj(xj) — say, J(hj(xj)) and

J(ĥj(xj)). This is achieved using a similar set of techniques as used by Mai and Zou (2015).

Specifically, the real line R is divided into four (4) different regions depending on whether

hj(xj) is

• less than O(
√

lnn) distance away from 0,

• between O(
√

lnn) and O(lnn) distance away from 0,

• between O(lnn) and O(poly(n)) distance away from 0 — where poly(n) means “poly-

nomial” in n, or

• more than O(poly(n)) distance away from 0;

and different bounds are obtained for each region. As we move through the four regions in

the order listed above, the bounds on the difference, |J(hj(xj))−J(ĥj(xj))|, get successively

looser, but the corresponding probabilities for hj(xj) to fall into these regions also decrease.

Although we have used techniques from Mai and Zou (2015), it does not mean that our

proofs are essentially the same as theirs. The main difference is that they assumed sparsity.

In the final step when we move from Qĥ,0 to Q̂ĥ,0, our proof is similar to theirs, but in the

second step when we focus on Qĥ,0, our proof is considerably different. Specifically, the

misclassification error of Qĥ,0 depends critically on how many hj(xj) falls outside the first

region described above. For Mai and Zou (2015), their sparsity assumption meant only a

small number of those would affect their classification rule, and the resulting error could

be controlled relatively easily. Without making any sparsity assumptions, however, all of

those falling outside the first region will affect our classification rule, so we must carry out

a more careful analysis respectively in each of the three other regions in order to control
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our error. Another difference is that they focused on semiparametric linear, as opposed

to quadratic, discriminant rules. As a result, many of our error/probability bounds are

necessarily different from theirs.

Remark 2.8. We are now ready to say more about establishing theoretical results for

Se-ppQDA, having outlined our proof of Theorem 2.3 above. By and large, the required

techniques remain the same, but since ppQDA uses a non-diagonal matrix (even though

it is still a very simple one), we must now consider the interactions between hj(xj) and

hj′(xj′) for all j 6= j′. To do so, we must now divide R × R into 4 × 4 = 16 different

regions, and obtain different bounds in each of them. This will undoubtedly be much more

tedious, but the fundamental ideas are the same. Hence, we have decided not to pursue it

at the present stage.

2.5 Numerical experiments

In this section, we demonstrate the performance of pQDA, ppQDA, Se-pQDA and Se-

ppQDA by simulation. Three other methods — DSDA (Mai et al., 2012), SSDA (Mai and

Zou, 2015) and random forest (Breiman, 2001) — are included for comparison purpose.

Both DSDA and SSDA are penalized linear discriminant rules, and the latter deals with

nonnormal data; for these methods we used the R package dsda, provided by the authors of

the methods. For random forest, we used the R package randomForest with a forest size of

1000; for all other parameters, we simply used their default values as further adjustments

did not noticeably affect the performance.

We also include a benchmark classifier, in which the true covariance matrices (Σ1,Σ2)

and the sample means (µ̂1, µ̂2) are plugged into the QDA rule. Note that we used only the

true covariance matrices — but not the true mean vectors — in the benchmark classifier,

because we would like to focus on the effect of using our structured covariance matrices for

classification, and to avoid letting the estimation of the mean vectors µ1,µ2 (an intricate

problem on its own in high dimensions) unduly confound our performance evaluation.

28



For all our QDA procedures (i.e., pQDA, ppQDA, Se-pQDA, Se-ppQDA), we stan-

dardized the variance of each dimension j by the larger of the two within-class standard

deviations, i.e., max{σ̂1j, σ̂2j}. In the case of Se-pQDA and Se-ppQDA, such standardiza-

tion was performed after first estimating and then applying the transformation hj.

2.5.1 Different covariance matrices

We considered nine types of covariance matrix structures. The number of explanatory

covariates was set to either p = 400 or p = 800. We use M [1 : p0, 1 : p0] to denote the

p0×p0 sub-matrix consisting of the first p0 rows and columns of M . We set p0 = b5p2/3c to

control how the sub-matrix increases with p. For the purpose of brevity, below we describe

only the “interesting part” of our nine matrices; the elements not explicitly described are

1 if on the diagonal and 0 if on the off-diagonal.

M1: The matrix M1 contains an autoregressive p0×p0 sub-matrix, with M1,j1j2 = 0.2|j1−j2|

for j1, j2 ∈ {1, . . . , p0}.

M2: The matrix M2 is a perturbed version of M1. With probability 1/p0, each element

0.2|j1−j2| from M1[1 : p0, 1 : p0] is randomly replaced by 0.3|j1−j2|. The matrices M1

and M2 therefore differ by approximately p0 elements.

M3: The matrix M3 is block diagonal. Each diagonal block is a q×q matrix, 0.21q1
′
q+0.8Iq,

where q is chosen to be 4.

M4: The matrix M4 is a modified version of M1. In particular, the sub-matrix M4[1 :

p0, 1 : p0] is designed to have the same eigenvectors as M1[1 : p0, 1 : p0] but different,

randomly generated eigenvalues. Let T be the orthogonal matrix containing the

eigenvectors of M1[1 : p0, 1 : p0]. Then, M4[1 : p0, 1 : p0] = T (diag{ν1, . . . , νp0})T ′,
where νj

i.i.d∼ Uniform(1, 2).

M5: The matrix M5 is simply M5 = 0.21p1
′
p + 0.8Ip.

M6: The matrix M6 = M−1
5 is simply the inverse of M5.
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M7: The matrix M7 is a perturbed version of M5. First, with probability 0.2, each off-

diagonal element from the first five (5) rows and columns of M5[1 : p0, 1 : p0] is

randomly replaced by zero (0) — call the resulting matrix B. Then, we let M7 =

(B + λIp)/(1 + λ), where λ = max{−λmin(B), 0} + 0.05 and λmin(B) is the smallest

eigenvalue of B, to ensure that M7 is positive definite.

M8: The matrix M8 is also a perturbed version of M5, except here the perturbations are

made to the diagonal elements. Specifically, M8 = M5 + diag{ν1, . . . , νp}, in which

νj
i.i.d∼ Uniform(0, 1) for j ≤ p0 and νj = 0.5 for j ≥ p0 + 1.

M9: The matrix M9 is largely unstructured, with mostly small entries other than a few

large ones. First, a baseline matrix B0 is generated by randomly sampling each

element from Uniform(0, 0.2). Then, five (5) elements are randomly deleted and

re-drawn from Uniform(0.2, 0.8) instead. Finally, to ensure symmetry and positive-

definiteness, we let B = (B0 + B′0)/2 and M9 = (B + λIp)/(1 + λ), where λ =

max{−λmin(B), 0}+ 0.05 and λmin(B) is the smallest eigenvalue of B.

2.5.2 Simulated examples

Based on these nine different types of matrices, we created ten simulated classification

examples. In all of them, the means of the two classes were taken to be µ1 = 0p and

µ2 = (3.5p−1/21′0.6p,0
′
0.4p)

′. That is, the signal was spread out evenly among the first 0.6p

dimensions. The magnitude of the signal in each dimension was controlled so that the

between-class Euclidean distance did not change with p. The ten examples differed mostly

by the covariance matrices of the two classes. In all cases, we also controlled the difference

between the two within-class covariance matrices by a parameter s ≡ 3p−1/2 (see below).

Example 1: Σ1 = M1, partly autoregressive, and Σ2 = Σ1 + sIp.

Example 2: Σ1 = M3, block diagonal, and Σ2 = Σ1 + sIp.

Example 3: Σ1 = M4, modified version of M1, and Σ2 = Σ1+sIp. This example is designed

to investigate a case in which the covariance matrices have eigenvalues that
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are quite close to each other — one in which pQDA is expected to perform

well (see Remark 2.4).

Example 4: Σ1 = M1, partly autoregressive, and Σ2 = M2 +sIp, also partly autoregressive,

but with some elements (both diagonal and off-diagonal ones) being different

from those in Σ1.

Example 5: Σ1 = Σ2 = M1, partly autoregressive, and identical between the two classes.

This example is designed to test the performance of our QDA rules when the

LDA rule is optimal.

Example 6: Σ1 = M5, compound symmetry, and Σ2 = Σ1 + sIp. This is an example in

which ppQDA is expected to have an advantage over pQDA.

Example 7: Σ1 = M6, also compound symmetry, and Σ2 = Σ1 + sIp. The matrix M6 is

different from M5 in that it has negative off-diagonal elements that are close

to 0 and is almost not positive definite.

Example 8: Σ1 = M7, compound symmetry with off-diagonal perturbations, and Σ2 =

Σ1 + sIp.

Example 9: Σ1 = M8, compound symmetry with diagonal perturbations, and Σ2 = Σ1 +

sIp.

Example 10: Σ1 = M9, unstructured, and Σ2 = Σ1 + sIp.

2.5.3 Results

For all of our ten simulated examples, we used n1 = n2 = 100 training samples, and 1000

independent testing samples, respectively from N(µ1,Σ1) and N(µ2,Σ2). All simulations

were repeated for 100 times, and the average misclassification rates on the testing samples

were recorded, together with their standard errors.

Table 2.1 shows how the methods compared on the ten examples. Our suite of methods

were generally better than DSDA, SSDA and random forest. This is not surprising as both
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DSDA and SSDA assume sparsity and identical within-class covariance matrices, and the

random forest does not make (or take advantage of) any specific distribution assumption.

In each example, the best method statistically matched the benchmark classifier. Recall

that, for the benchmark classifier, we used only the true covariance matrices but still kept

using the sample rather than the population mean vectors, so it was possible sometimes

for other methods to outperform it.

In Examples 1-4, the covariance matrices are better approximated by diagonal ones,

so pQDA is expected to perform well, but we see that ppQDA performed reasonably well,

too. This indicates that, whenever pQDA works, ppQDA is only slightly worse than, if

not as good as, pQDA.

In Example 5, the two within-class covariance matrices are the same, so LDA is actually

optimal, but we see that both pQDA and ppQDA still continued to perform well.

In Examples 6-7, the covariance matrices have exactly the compound symmetry struc-

ture, so naturally in these cases we see that ppQDA performed considerably better than

all other methods.

In Examples 8-9, the covariance matrices no longer have exactly the compound sym-

metry structure, due to perturbations to the various off-diagonal (M7, Example 8) and

diagonal (M8, Example 9) elements. In Example 10, the covariance matrices are largely

unstructured, except that a few randomly selected entries are much larger than others.

These examples were designed to test the robustness and sensitivity of ppQDA. In all

of these cases, ppQDA maintained good performance and sometimes still commanded a

considerable advantage over all other methods.

In Table 2.1, we see that both Se-pQDA and Se-ppQDA performed slightly worse than

their counterparts without any nonlinear transformations. Clearly, estimating these extra

transformations when they were unnecessary introduced additional errors.

We also transformed the data from these ten examples to be non-normally distributed

and repeated our experiments. In particular, after data were first generated from N(µ1,Σ1)

and N(µ2,Σ2), we applied one of six nonlinear transformations — g(1)(·), . . . , g(6)(·), as

listed in Table 2.2 — in each dimension. The first bp/6c dimensions were transformed by

g(1); dimensions bp/6c + 1 to 2bp/6c were transformed by g(2); and so on. All remaining
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dimensions, from 6bp/6c + 1 to p, were left untransformed. Table 2.3 shows the result.

When the data were non-normal, the advantages of Se-pQDA and Se-ppQDA over other

methods became clear. The benchmark classifier in Table 2.3 is the same as the one in

Table 2.1, and is equivalent to using the true transformations, true covariance matrices,

and sample means.

2.6 Real data analysis

To test the performance of our methods with real data, we used a colon cancer dataset

(Alon et al., 1999), available in the R package rda at https://CRAN.R-project.org/

package=rda, and a malaria dataset (Ockenhouse et al., 2006), available at http://www.

ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS2362. For our various QDA procedures,

variables were standardized in the same manner as described in Section 2.5. For Se-pQDA

and Se-ppQDA, the transformations h1, h2, ..., hp were estimated based on training data

from the larger class (specifically, the “tumor” class for the colon cancer data, and the “in-

fected” class for the malaria data), and any pre-processing operations (e.g., pre-screening,

if applicable, and variable standardization) were performed after the transformation.

2.6.1 Colon cancer data

Alon et al. (1999) studied the colon cancer dataset by performing cluster analysis on both

genes and tissues. The dataset consists of n1 = 40 tumor and n2 = 22 normal colon tissues.

The original dataset contained more than 6, 500 features (genes), but the one available in

the rda package contains only 2, 000 features with the highest minimal intensities across

samples, which were used by Alon et al. (1999) in their cluster analysis. The dataset was

randomly split into a training set (2/3) and a testing set (1/3). All discriminant rules were

estimated from the training data and then applied to the testing data. This process was

repeated 100 times.

Table 2.4 shows the average and median misclassification rates, together with their

respective standard errors, from the 100 replications. Our pQDA and ppQDA rules were
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Table 2.2: List of non-linear transformations.

g(1)(y) = y3 g(2)(y) = exp (y)

g(3)(y) = arctan (y) g(4)(y) = Φ(y)

g(5) = (y + 1)3 g(6) = arctan (2y)

comparable with DSDA, which gave the best result on the same dataset as reported by a

comprehensive review paper (Mai, 2013), but computationally our methods were much less

expensive. For this dataset, the Se-pQDA and Se-ppQDA rules did not perform as well,

but neither did SSDA, a clear indication that the extra data transformations h1, h2, ..., hp

were unnecessary and having to estimate them only brought in extra estimation error.

2.6.2 Malaria data

The malaria dataset consists of n1 = 49 infected and n2 = 22 healthy samples. For each

sample, expression levels are available for 22, 283 genes. The data was randomly split into

a training set and a testing set, with a sample-size ratio of approximately 1:1. Afterwards,

the genes were screened on the training set and the p = 5000 most significant ones were

kept for discriminant analysis. The significance level for the screening test was decided by

the smaller of two p-values, one from a two-sample t-test and another from an F-test of

equal variance. Again, this process was repeated 100 times.

The rough pre-screening step was used to avoid excessive noise accumulation, as our

theory for the semiparametric QDA classifiers (Theorem 2.3) requires that p does not grow

too fast relative to the sample size n, due to the need to estimate p distinct univariate

transformations — see Remark 2.6.

Table 2.5 reports the average and median misclassification rates, together with their

respective standard errors. We can see that, for this dataset, the pQDA and ppQDA rules

did not perform well, and neither did DSDA, but our Se-pQDA and Se-ppQDA rules pro-

duced the best results, with the SSDA trailing slightly behind. This suggests that not

only were these data nonnormal, but there were also signals that linear classifiers could

not capture. This is precisely the kind of situations in which our methods are useful.
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Table 2.4: Colon cancer data. Average and median misclassification rates and their stan-

dard errors. Standard errors for the median are obtained by bootstrapping.

Method pQDA ppQDA Se-pQDA Se-ppQDA DSDA SSDA

Average(%) 15.1(0.57) 15.2(0.58) 16.8(0.67) 16.6(0.66) 15.2(0.59) 19.6(0.79)

Median(%) 13.6(1.87) 13.6(2.06) 13.6(2.20) 13.6(2.10) 13.6(1.25) 18.2(1.10)

Table 2.5: Malaria data. Average and median misclassification rates and their standard

errors. Standard errors for the median are obtained by bootstrapping.

Method pQDA ppQDA Se-pQDA Se-ppQDA DSDA SSDA

Average(%) 8.46(0.67) 6.91(0.59) 4.00(0.31) 3.69(0.30) 8.50(0.50) 4.90(0.42)

Median(%) 7.14(1.36) 5.71(0.84) 2.86(0.74) 2.86(0.32) 8.57(0.65) 5.71(1.09)

2.7 Discussion

So far our theoretical results have focused on establishing conditions under which our

proposed methods (e.g., ppQDA, pQDA, Se-pQDA) can have nearly perfect performance

asymptotically. In reality, of course, perfect classification is not always possible, in which

case we would like to know how well our methods can perform relative to the Bayes decision

rule. In this section, we will provide some answers to this question for ppQDA.

To do so, we further simplify the situation by focusing on a special case where there

is no signal for classification in the class means, i.e., µ1 = µ2 = 0. As we have already

stated earlier (see Remark 2.2), since there are already many papers in the literature

about classification based on signals from the mean vectors alone, and since our main idea

of replacing Σi with Ai is “only” about dealing with large covariance matrices, we think it

actually makes things clearer if we concentrate on just the covariance matrices and ignore

the mean vectors.

We will also focus on the population version of the ppQDA rule. This is justified since
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we already proved (see Section 2.4) the dominance of the population quantity Q over Q̂−Q
as p, n→∞. However, our proof has assumed condition 2.4, but this section is primarily

concerned with situations in which asymptotically perfect classification is not achievable,

so it would be desirable if this dominance could be established without condition 2.4-2.

Indeed, this is possible, provided that some mild modifications are made to conditions 2.4-3

and 2.4-4. Specifically, instead of the difference between Ai and Σi being simply o(p2), now

its order must also depend on how much signal there is for classification, as measured by

(ai1 − ri1)/(ai2 − ri2) for (i1, i2) = (1, 2) and (2, 1). A detailed proof is omitted, as the

technique is similar to that used in the proof of Theorem 2.1.

2.7.1 The Bayes decision rule versus ppQDA

Let A1, A2, Σ1 and Σ2 be defined as in Section 2.2. Under the assumption that µ1 = µ2 =

0, the quantity that drives (population) ppQDA, using the true (as opposed to estimated)

parameters, is

Q = ln (|A1|/|A2|) + x′A−1
1 x− x′A−1

2 x,

whereas the Bayes decision rule is driven by

QB = ln (|Σ1|/|Σ2|) + x′Σ−1
1 x− x′Σ−1

2 x.

Clearly, the performance of ppQDA will be close to that of the Bayes rule if Σi ≈ Ai for

both i = 1, 2, but we will argue below that this need not necessarily be the case.

To see this, suppose first that x ∈ C1. Then, for any matrix B, we have

E(x′Bx|x ∈ C1) = E[tr(x′Bx)|x ∈ C1] = E[tr(Bxx′)|x ∈ C1]

= tr[BE(xx′|x ∈ C1)] = tr(BΣ1),

which immediately implies

E(QB|x ∈ C1) = ln |Σ−1
2 Σ1|+ p− tr(Σ−1

2 Σ1), (2.10)
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and

E(Q|x ∈ C1) = ln |A−1
2 A1|+ tr(A−1

1 Σ1)− tr(A−1
2 Σ1). (2.11)

But the inverse formula for Âi, given in equation (2.5), applies to Ai as well, so we can

write

tr(A−1
i Σ1) = [(ai − ri)−1]tr(Σ1)− [ri(ai − ri)−1(ai + (p− 1)ri)

−1]tr(1p1
′
pΣ1).

However, the definition of A1 implies tr(Σ1) = tr(A1) and

tr(1p1
′
pΣ1) = tr(1′pΣ11p) = Su(Σ1) = Su(A1) = tr(1′pA11p) = tr(1p1

′
pA1).

This means tr(A−1
i Σ1) = tr(A−1

i A1) so that (2.11) can be further reduced to

E(Q|x ∈ C1) = ln |A−1
2 A1|+ p− tr(A−1

2 A1). (2.12)

Together, equations (2.12) and (2.10) are highly suggestive of the possibility that, given

x ∈ C1, the performance of ppQDA can be close to that of the Bayes rule as long as A−1
2 A1

is close to Σ−1
2 Σ1 in the sense that

tr(A−1
2 A1) ≈ tr(Σ−1

2 Σ1) and |A−1
2 A1| ≈ |Σ−1

2 Σ1|,

whereas each Ai need not be close to Σi in itself.

Moreover, for two p × p, symmetric, positive-definite matrices U, V , we can define the

function,

φ(U, V ) =
∣∣∣ ln |V −1U |+ p− tr(V −1U)

∣∣∣,
as one way to measure their difference — notice that φ(U, V ) = 0 if U = V , and the

absolute value is needed because, for any p × p, symmetric, positive-definite matrix M

with eigenvalues λ1, ..., λp, the function ln |M | + p− tr(M) =
∑

(lnλj + 1− λj) ≤ 0 with

equality only when λj = 1 for all j; see also Remark 2.5. For x ∈ C1, our analysis above

shows that, on average, the Bayes rule and the ppQDA rule are simply using the same

φ(·, ·) function to measure the differences between a different set of matrices — (Σ1,Σ2)

for the Bayes rule and (A1, A2) for ppQDA.
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Combined with arguments similar to those we used to prove Theorem 2.1 (see Sec-

tion 2.4), our analysis above also suggests that, for x ∈ C1, the performance of ppQDA can

be asymptotically close to that of the Bayes rule if

φ(Σ1,Σ2)− φ(A1, A2)

φ(Σ1,Σ2)
∼ o(1)

as p→∞.

The same argument applies to the case of x ∈ C2, except that, in this case, the dif-

ferences are measured by φ(A2, A1) and φ(Σ2,Σ1) instead of by φ(A1, A2) and φ(Σ1,Σ2).

Thus, we define the symmetric difference measure,

ϕ(U, V ) = φ(U, V ) + φ(V, U),

and conjecture that the relative performance of our ppQDA rule to that of the Bayes rule

depends very much on the quantity,

∆ ≡ ϕ(Σ1,Σ2)− ϕ(A1, A2)

ϕ(Σ1,Σ2)
, (2.13)

and whether ∆→ 0 as p→∞. We present some empirical evidence below to support this

observation.

2.7.2 Empirical evidence

In this section, we re-examine some examples from Section 2.5 to see (i) how the quantity

∆, given in (2.13), changes with p; and (ii) how it relates to the overall misclassification

error.

Not all examples from Section 2.5 are included because some of them — in particular,

examples 5, 6, 7 — do not contribute any information to either question (i) or question

(ii) above. In example 5, Σ1 = Σ2, which means ϕ(Σ1,Σ2) = 0, so ∆ is not well defined.

In examples 6 and 7, Σi = Ai for both i = 1, 2, which means ϕ(Σ1,Σ2)−ϕ(A1, A2) = 0, so

∆ = 0 as well. We also remove classification signals contained in the location parameters

by setting µ1 = µ2 = 0, and focus on signals contained in the covariance matrices alone.

40



For question (i), Table 2.6 shows that the quantity, ∆, generally decreases with p. For

question (ii), Figure 2.1 shows that small values of ∆ are highly predictive of small gaps

between the performance of ppQDA and that of the Bayes rule.

Table 2.6: The quantity ∆ versus p.

Example p = 100 p = 400 p = 800 p = 1000

1 0.1624 0.1312 0.1112 0.1051

2 0.1728 0.1367 0.1160 0.1094

3 0.0973 0.0468 0.0305 0.0268

4 0.1566 0.1304 0.1091 0.1051

8 0.4911 0.4026 0.3267 0.3237

9 0.1228 0.0966 0.0720 0.0702

Remark 2.9. In this section, we have focused on the special case where µ1 = µ2 = 0. For

the more general case where µ1,µ2 6= 0, similar arguments can be carried through, except

equations (2.10) and (2.12) will each contain an extra term — respectively,

(µ1 − µ2)′Σ−1
2 (µ1 − µ2) and (µ1 − µ2)′A−1

2 (µ1 − µ2).

But we can still arrive at the same conclusions, provided that we re-define the function φ

as

φ(U, V ) =
∣∣∣ ln |V −1U |+ p− tr(V −1U)

∣∣∣+ (µ1 − µ2)′V −1(µ1 − µ2).

Then, the function

ϕ(U, V ) ≡ φ(U, V ) + φ(V, U) =∣∣∣ ln |V −1U |+ p− tr(V −1U)
∣∣∣+
∣∣∣ ln |U−1V |+ p− tr(U−1V )

∣∣∣
+ (µ1 − µ2)′

(
V −1 + U−1

)
(µ1 − µ2)

is still a symmetric measure of difference between two classes, except it now measures

differences not only between U and V but also between µ1 and µ2 — e.g., ϕ(U, V ) = 0 if

and only if both U = V and µ1 = µ2. This is very much analogous to condition 2.5-2 for

Theorem 2.2.
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Figure 2.1: The difference, ê(Q) − ê(QB), versus ∆, where ê(Q) denotes a Monte Carlo

estimate (based on 100 test samples) of e(Q) ≡ P(Q > 0|x ∈ C1) + P(Q ≤ 0|x ∈ C2), the

misclassification error of the ppQDA rule, and likewise for ê(QB).
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2.8 Conclusion

We have proposed two simple rules — namely, ppQDA and pQDA — to perform quadratic

discriminant analysis for high-dimensional data, and generalized both rules by using a

semiparametric transformation in order to handle data that do not necessarily follow the

normal distribution. Desirable theoretical properties have been established for ppQDA,

pQDA, and Se-pQDA — the semiparametric extension of pQDA. The performances of our

specialized quadratic discriminant rules are comparable to, if not better than, other high-

dimensional discriminant analysis methods in many numerical experiments and several

real-data examples.

Unlike many existing high-dimensional discriminant analysis methods that focus on

LDA, our methods aim at performing QDA, which allows us to exploit the difference

between covariance matrices from separate classes and use it for classification. The sample

covariance matrix is inconsistent when the dimension is high. Whereas most methods

address this difficulty by imposing sparsity conditions, we do so by simplifying the structure

of covariance matrices while still trying to capture some subtle information from across all

dimensions. The special matrix structure that we use can be viewed as a generalization of

the trace estimator, which has been used in high-dimensional hypothesis-testing as well as

classification problems. Specifically, we pool not only the diagonal elements but also the

off-diagonal ones in each covariance matrix, so as to obtain some information about the

correlations among different dimensions. As a result, our easy-to-apply discriminant rules

enjoy very low computational costs. The sparsity approach can be quite unstable for weak

signals, and is more suitable for dealing with cases with just a few strong signals. Our

approach is more attractive for cases with many weak signals.

Because of the complexity of the problem, at this point it is difficult to imagine that

there could be a universally optimal discriminant analysis method for high-dimensional

data. Almost every method can enjoy some advantages under certain circumstances. Due

to noise accumulation, the performance of our methods could certainly deteriorate when

there are a large number of useless covariates, but so would most methods. Due to the

special matrix structure that we use, which has a common set of diagonal elements and a

common set of off-diagonal ones, one may also expect that our discriminant rules may not
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perform too well if the marginal variances across different dimensions are vastly different,

or if some dimensions are very highly correlated while others have little correlation. In

practice, however, these two problems can be alleviated by pre-screening and properly pre-

processing the data, as we already have seen in Section 2.6. Our current main interest lies

in the question of what other special matrix structures we can exploit for high-dimensional

QDA. Prominent candidates must allow us to capture more information in each covariance

matrix (than what can be captured by just two scalars ai, ri), but still have a relatively

small number of “easily estimable” parameters.
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Chapter 3

High-dimensional Covariance Matrix

Estimation using a Diagonal and

Low-rank Decomposition

3.1 Introduction

In this chapter, we focus on the covariance matrix estimation itself, instead of one of

its applications, discriminant analysis. The emphasis is laid on the estimation accuracy

rather than the misclassification rate. The method to be proposed is inspired by, and a

generalization of, the compound symmetry structure considered in Chapter 2.

3.1.1 High-dimensional covariance matrix estimation

Before proceeding with the detail of our method, we conduct a brief review on covari-

ance/precision matrix estimation in high dimensions.

The simplest estimator can be built using a scaled identity or a diagonal matrix as a

substitute for the sample covariance matrix S. It is well-known that the sample covariance

matrices tend to overestimate the large eigenvalues and underestimate the small eigenvalues
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of the population covariance matrix; this bias can be corrected by shrinking the sample

covariance matrix towards a scaled identity matrix, e.g., tr(S)Ip (Friedman, 1989). An

optimal weight for the convex linear combination between the sample covariance matrix

and the identity matrix has been proposed and studied by Ledoit and Wolf (2004). Ignoring

the correlations and preserving only the diagonal part of S is a long-established practice in

the high-dimensional classification, often referred to as the independence rule or the “naive

Bayes classifier”; it has been demonstrated to outperform Fisher’s linear discriminant rule

under certain conditions (Dudoit et al., 2002; Bickel and Levina, 2004; Fan and Fan, 2008).

Apart from the scaled identity matrix and the diagonal matrix, other structured esti-

mators have also been proposed. Methods such as banding (Bickel and Levina, 2008) and

tapering (Furrer and Bengtsson, 2007) are useful when the covariates have a natural or-

dering (Rothman et al., 2008). Cai et al. (2013b) studied banding and tapering estimators

in estimating large Toeplitz covariance matrices, which arise in the analysis of stationary

time series.

Another popular assumption is sparse covariance or precision matrices. Sparse covari-

ance matrix estimators can be obtained by either thresholding or regularization. Thresh-

olding has been studied by Bickel and Levina (2008) and Cai and Liu (2011a), and applied

in discriminant analysis by Shao et al. (2011) and Li and Shao (2015). To encourage spar-

sity, Rothman (2012) and Xue et al. (2012) imposed lasso-type penalties on the covariance

matrix. Sparsity is a good assumption for the precision matrix in many applications, e.g.,

for Gaussian data zeros in the precision matrix suggest conditional independence; it can

be achieved directly by imposing an `1 penalization on the precision matrix (Yuan and

Lin, 2007; Rothman et al., 2008; Banerjee et al., 2008; Friedman et al., 2008; Lam and

Fan, 2009; Cai et al., 2011) or indirectly through regularized regression (Meinshausen and

Bühlmann, 2006; Rocha et al., 2008; Yuan, 2010; Sun and Zhang, 2013).

In the context of high-dimensional data analysis, it is reasonable to assume that the

variance of the observed data can be explained by a small number of latent factors; thus,

factor models can be applied to reduce the number of parameters in covariance matrix

estimation, too. Assuming observable factors and independent error terms, Fan et al.

(2008) proposed a covariance matrix estimator by estimating the loading matrix with

regression and the covariance matrix of the error terms with a diagonal matrix. This
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method was generalized by Fan et al. (2011) so that the error covariance was not necessarily

diagonal, but it was assumed to be sparse and estimated with thresholding techniques. Fan

et al. (2013a) then considered the case where the factors are unobservable. Assuming the

number of latent factors (k) to be known, they performed PCA on the sample covariance

matrix, kept the first k principal components to estimate the covariance matrix of the

latent factors, and thresholded the remaining principal components to estimate a sparse

covariance matrix for the error terms.

A related matrix structure is called “spiked covariance matrix”, that is, the covariance

matrix has only a few eigenvalues greater than one and can be decomposed into a low-

rank matrix plus an identity matrix (Johnstone, 2001). Cai et al. (2015) proposed a sparse

spiked covariance matrix estimator. In addition to the spiked structure, they assumed that

the matrix spanned by the eigenvectors of the low-rank component has a small number of

nonzero rows, which in turn constrains the covariance matrix to have a small number of

rows and columns containing nonzero off-diagonal entries.

Chandrasekaran et al. (2012) proposed a latent variable method for Gaussian graphical

model selection, based on the conditional independence interpretation of zero off-diagonals

in the precision matrix. Assuming the observable and latent variables are jointly distributed

as Gaussian, they showed that, if one assumes (i) the conditional precision matrix of

the observables given the latent factors is sparse and (ii) the number of latent factors

is small, then the marginal precision matrix of the observables must consist of a sparse

component plus a low-rank component. The authors then considered a penalized likelihood

approach to estimate such a marginal precision matrix, using the `1-norm to regularize

the sparse component and the nuclear-norm to regularize the low-rank component. They

also derived some consistency results for their estimator in the operator norm. Taeb and

Chandrasekaran (2017) extended this framework to allow the incorporation of covariates.

A comprehensive review has been provided by Cai et al. (2016b), in which they also

compared some of the aforementioned methods in terms of their respective convergence

rates.
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3.1.2 Outline and summary of this chapter

In this chapter, we make the explicit structural assumption that the population covari-

ance/precision matrix can be decomposed into a diagonal plus a low-rank matrix, in order

to facilitate the estimation of large covariance/precision matrices in high dimensions. In

Section 3.2, we discuss this main model assumption in more detail.

While this model assumption is similar (but not identical) to some of the works reviewed

in Section 3.1.1, the main difference is that we do not rely on nuclear norm regularization

to promote low-rank-ness; instead, we directly impose a penalty on the matrix rank itself.

In Section 3.3 and Section 3.4, we present estimators of the covariance/precision matrix

under this model assumption, and show that estimation consistency can be achieved with

a proper choice of the penalty function.

As is often the case, our estimators are characterized, or defined, as solutions to var-

ious optimization problems. In Section 3.5, we describe an efficient blockwise coordinate

descent algorithm for solving the main optimization problem. In particular, given the low-

rank component, the diagonal component can be obtained by solving a relatively cheap

semi-definite program; given the diagonal component, the low-rank component actually can

be obtained analytically. Since optimization with nuclear-norm constraints is still computa-

tionally burdensome for large matrices, we think our approach, which avoids nuclear-norm

regularization, can be especially attractive.

In Section 3.6 and Section 3.7, we demonstrate the performances of our method with

various simulations and an analysis of some real financial data. All proofs are relegated to

the appendices.

3.1.3 Notations

We use Rp1×p2 to denote the set of p1 × p2 matrices, Sp to denote the set of symmetric

p× p matrices, Sp+ to denote the subset of matrices ⊂ Sp which are positive semi-definite,

and Sp++ to denote the subset of those which are strictly positive definite. Sometimes,

another superscript is added to denote a restriction on the rank, for example, Sp,r is used
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to denote the subset of matrices in Sp with rank ≤ r, and likewise for Sp,r+ , Sp,r++. For the

corresponding sets of diagonal matrices, we replace S with D , e.g., Dp, Dp
+, and Dp

++.

For any A ∈ Sp, we use tr(A) to denote its trace, |A| to denote its determinant,

and λmax(A), λmin(A) to denote its largest and smallest eigenvalues. Furthermore, we use

‖A‖F = {tr(AT
A)}1/2 to denote its Frobenius norm, ‖A‖∗ = tr{(AT

A)1/2} to denote its nu-

clear norm (which is equivalent to the sum of its singular values), ‖A‖op = {λmax(AA
T
)}1/2

to denote its operator norm, and ‖A‖1 =
∑

i,j |Aij| to denote its `1 norm. The function

diag(·) converts a vector to a diagonal matrix by setting the diagonal elements to be the

input vector and a matrix to a vector by extracting the diagonal elements.

3.2 Problem set-up and model assumption

Consider a random sample X = (x1, . . . , xn), in which x1, . . . , xn are independently and

identically distributed p-variate random vectors from the multivariate normal distribution

with population mean 0 and population covariance matrix Σ0. (We assume that the data

have been centered in order to focus on the covariance matrix estimation problem alone,

but it is important to point out that, in high dimensions, even estimating the mean vector

is an intricate problem and much research has been conducted to address it.) The sample

covariance matrix S, is a natural estimator of Σ0 if p is fixed and n → ∞, but it can

perform badly when p is close to or larger than n, so some additional structural constraints

are needed in order to facilitate estimation. We study a particular type of such structural

constraints.

The main model assumption in our work here is that the population covariance matrix,

Σ0 ∈ Sp++, can be decomposed as

Σ0 = LΣ0 +DΣ0 ,

in which LΣ0 ∈ Sp,r0+ is a low-rank matrix for some r0 ≤ p, and DΣ0 ∈ Dp
++ is a diagonal

matrix.

Such a decomposition is always possible as long as r0 ≤ p, but only for reasonably small

r0 is the assumed decomposition interesting and valuable for estimating large covariance
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matrices. Thus, for a particular matrix Σ0, we define r0 as the smallest among all attainable

ranks of LΣ0 after the decomposition, i.e., r0 = rank(L∗) in which

L∗ = arg min
L

rank(L),

subject to L+D = Σ0, L ∈ Sp+, D ∈ Dp
++. (3.1)

As a solution of (3.1), the matrix L∗ itself might not be unique, but the optimal value r0

is.

How should one understand this model assumption conceptually? As our first intuition,

the assumption can be viewed as a generalization of the compound symmetry structure
a b · · · b

b a · · · b
...

...
. . .

...

b b · · · a


with a > b, which was exploited earlier in Chapter 2 as a special structure to facilitate

quadratic discriminant analysis in high dimensions. Notice that covariance matrices having

the compound symmetry structure above can be decomposed into a rank-one matrix plus

a scaled identity matrix,

b1p1
T

p + (a− b)Ip,

in which 1p is a vector of ones and Ip is the p × p identity matrix. Therefore, the com-

pound symmetry structure can be seen as a special case of the “diagonal + low-rank”

decomposition.

The proposed decomposition also coincides with the factor analysis model and enjoys

a nice interpretation. It is equivalent to assuming that the observed random vector x

depends on a potentially smaller number of latent factors, i.e., x = Rz + ε, in which z is

some unobserved r0-dimensional random vector from a normal distribution with mean 0

and variance Ir0 , R is an unobserved p× r0 loading matrix, and ε is a p-dimensional vector

of independently distributed error terms with zero mean and finite variance, cov(ε) = Ψ.

Under the given structure, it is straight-forward to see that cov(x) = RR
T

+ Ψ, in which

RR
T ∈ Sp,r0+ is a low-rank matrix and Ψ ∈ Dp

++ is a diagonal matrix. For our purpose,

50



we are not interested in estimating the loading matrix or analyzing the latent factors; we

merely exploit the special structure to help us estimate Σ0. This purely “utilitarian” use of

the factor model is also the reason why we can define r0 simply as the smallest attainable

rank in the “diagonal + low-rank” decomposition.

Finally, we can also think of the “diagonal + low-rank” assumption as an alternative to

the popular sparsity assumption to facilitate the estimation of large covariance matrices.

Numerous methods with lasso-type penalties assume a large number of zero off-diagonal

entries in Σ0; undoubtedly some of these sparse structures can be represented as the sum

of a low-rank matrix (i.e., with many empty rows and columns) and a diagonal matrix.

The rank constraint is also somewhat analogous to the sparsity constraint. Specifically, the

rank of LΣ0 is the number of its non-zero eigenvalues, so low-rank means its spectrum (i.e.,

set of eigenvalues) is sparse. Like the sparsity constraint, a rank constraint also reduces

the total number of parameters to be estimated, as lower ranks of LΣ0 imply more linearly

dependent columns and rows in LΣ0 .

3.3 Precision matrix estimation with fixed rank

3.3.1 The estimation method

Our main model assumption can be equivalently imposed either on the covariance or on

the corresponding precision matrix. Let Θ0 = Σ−1
0 be the corresponding precision matrix.

To understand the structure of Θ0 when Σ0 has the aforementioned “diagonal + low-rank”

decomposition, we notice by a result of Henderson and Searle (1981) that

(LΣ0 +DΣ0)
−1 = −D−1

Σ0

(
Ip + LΣ0D

−1
Σ0

)−1
LΣ0D

−1
Σ0

+D−1
Σ0

, −L0 +D0, (3.2)

in which L0 ∈ Sp,r0+ and D0 ∈ Dp
++, because the product of several matrices has rank at

most equal to the minimum rank of all the individual matrices in the product, and the

inverse of a matrix in Dp
++ is still in Dp

++. Therefore, we see that the precision matrix Θ0

has an equivalent decomposition.
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With this in mind, we will henceforth concentrate on estimating the precision matrix

rather than the covariance matrix. This is in line with various recent literatures on co-

variance matrix estimation; the precision matrix is also the more “natural” variable for

maximizing the Gaussian-likelihood and the more “direct” quantity to use in many statis-

tical procedures such as discriminant analysis.

Other than the main “diagonal + low-rank” condition, our theoretical results will also

require a “bounded eigenvalue” condition (see Condition 3.1 below), which is purely tech-

nical but common in the literature. Thus, our entire set of conditions about the population

covariance/precision matrix is as follows:

Condition 3.1. There exist constants c1, c2 > 0 such that c1 ≤ λmin(Σ0) ≤ λmax(Σ0) ≤ c2,

or equivalently, c−1
2 ≤ λmin(Θ0) ≤ λmax(Θ0) ≤ c−1

1 , uniformly with respect to p.

Condition 3.2. For some r0 = o(p), the population covariance matrix Σ0 ∈ Sp++ can be

decomposed as Σ0 = LΣ0 + DΣ0, where LΣ0 ∈ Sp,r0+ and DΣ0 ∈ Dp
++; or equivalently, the

precision matrix Θ0 ∈ Sp++ can be decomposed as Θ0 = −L0 + D0, where L0 ∈ Sp,r0+ and

D0 ∈ Dp
++.

In this section, we shall first consider a simple version of the problem, in which the

rank of L0 is pre-specified. We will consider the more general version of the problem later

in Section 3.4. One pragmatic reason for first considering a simple (and perhaps somewhat

unrealistic) version of the problem is because our main result regarding the more general

version and our computational algorithm for solving it are both based on results that we

shall derive in this section for the simple version.

For the simple version, a natural precision matrix estimator is

(Θ̂r, L̂r, D̂r) = arg min
Θ
{tr(ΘS)− log |Θ|},

subject to Θ = −L+D, Θ ∈ Sp+, L ∈ Sp,r+ , D ∈ Dp, (3.3)

in which r is a pre-specified constant. The objective function is the negative log-likelihood

of the normal distribution, up to a constant. Let

Fr = {Θ ∈ Sp++ | L ∈ Sp,r+ , D ∈ Dp
++ and Θ = −L+D}
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denote the search space of the optimization problem given in (3.3). In Sections 3.3.2 and

3.3.3 below, we will establish theoretical results to the following effects: (i) if the pre-

specified constant r ≥ r0, then the true precision matrix Θ0 ∈ Fr, but if r is much larger

than r0, the search space can be “too large” and solving (3.3) will become inefficient for

estimating Θ0; (ii) if the pre-specified constant r < r0, then Θ0 /∈ Fr, and the gap between

Θ̂r and Θ0 will depend on the distance between Θ0 and the search space Fr.

Remark 3.1. In (3.3), it is unnecessary to explicitly restrict Θ or D to be positive defi-

nite. The − log |Θ| term in the objective function and the constraint Θ ∈ Sp+ together will

guarantee Θ ∈ Sp++. In addition, as Θ = −L+D and L ∈ Sp,r+ , we will also automatically

have D ∈ Dp
++, for Θ may not be in Sp++ otherwise.

Remark 3.2. The non-uniqueness of L̂r and D̂r is inconsequential for our purposes; our

results and discussions below only depend on Θ̂r being a feasible minimizing solution to

(3.3).

3.3.2 The conservative case: r ≥ r0

To pre-specify the rank of L0, denoted by r, it is generally advisable to err on the con-

servative side by choosing it to be large enough so that one can be more or less sure that

r ≥ r0.

Theorem 3.1. Under Conditions 3.1 and 3.2, if r ≥ r0 and Θ̂r is a solution of (3.3), then

‖Θ̂r −Θ0‖F = Op {max(an,p,r, bn,p)} ,

in which

an,p,r = r1/2(p/n)1/2, bn,p = {(p log p)/n}1/2 .

The true rank, r0, may be fixed and finite, or it may diverge to infinity with p and n.

Since Theorem 3.1 concerns the case of r ≥ r0, if r0 →∞, then r must necessarily also go

to infinity. Hence, finite choices of r ≥ r0 are only possible if r0 is also finite. If r0 is finite

and we choose a finite r ≥ r0, the consistency of Θ̂r is driven by bn,p, whose order is greater

than that of an,p,r, and the theorem basically suggests that choosing r ≥ r0 conservatively
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will not hurt estimation in any fundamental way. Otherwise if we must choose a diverging

r, it becomes possible for the convergence rate to be driven by an,p,r, and the theorem

basically implies that the estimator Θ̂r will be less efficient for larger, more conservative,

choices of r.

3.3.3 The aggressive case: r < r0

What if one errs on the aggressive side by choosing r to be too small so that r < r0? Let

dr = min
Θ∈Fr
‖Θ−Θ0‖F

be the distance from Θ0 to the search space Fr. When r ≥ r0, dr = 0. When r < r0,

the true precision matrix Θ0 is no longer in the search space Fr, and dr > 0. Under such

circumstances, it is still possible to achieve the same level of performance provided that dr

is not too large.

Theorem 3.2. Under Conditions 3.1 and 3.2, if r < r0, dr = O{max(an,p,r0 , bn,p)}, and

Θ̂r is a solution of (3.3), then

‖Θ̂r −Θ0‖F = Op {max(an,p,r0 , bn,p)} ,

in which

an,p,r0 = r
1/2
0 (p/n)1/2, bn,p = {(p log p)/n}1/2 .

While the proof itself is given in the appendices, the main reason why Theorem 3.2

holds is as follows. Let Θr ∈ Fr be the matrix closest to Θ0 such that ‖Θr−Θ0‖F = dr. It

can be shown that Θ̂r, as the solution to maximizing the likelihood function in the search

space Fr, will be close to Θr. So, if dr is small, Θ̂r will also be reasonably close to Θ0.

More importantly, the condition dr = O{max(an,p,r0 , bn,p)} requires the distance dr to be

of order max(an,p,r0 , bn,p), which, by Theorem 3.1, is also the order of the estimation error

when the rank r is correctly set to be r0. As a result, the error caused by Θ0 being away

from Fr is relatively small and does not increase the order of the estimation error.

According to Theorem 3.2, we require dr → 0 for Θ̂r to be a consistent estimator. Here

we provide an example of such dr. Let Θ0 = Ip− avvT , where v is a p-vector with the first
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q elements being 1 and the rest being 0, and a is a positive real number. Let a < 1/q to

ensure that Θ0 is positive definite. If we set r = 0, the closest diagonal matrix to Θ0 is the

one that contains the diagonal elements of Θ0, thus, dr = a
√
q(q − 1). If a = o(1/q), we

have dr → 0.

However, by definition dr is also a lower bound for the estimation error,

‖Θ̂r −Θ0‖F ≥ dr,

which means, not surprisingly, that Θ̂r will cease to be a consistent estimator of Θ0 if dr

is large.

3.3.4 Discussion

To summarize what we have presented so far, although the optimization problem (3.3)

is straight-forward and easy to implement (see Section 3.5), it is generally not possible

to specify r accurately. An inaccurate choice of r can be harmful in two ways: (1) A

conservative choice of r > r0 leads to slower convergence and less estimation efficiency. (2)

An aggressive choice of r < r0 can ruin the consistency of Θ̂r, because it can enlarge the

distance between Θ0 and the search space Fr.

In the next section, we introduce a rank penalty to circumvent these problems. How-

ever, our main result below (Theorem 3.3) as well as the main computational algorithm

(Section 3.5) are both heavily based on the results (Theorems 3.1 and 3.2) that we have

obtained so far in this section.

3.4 Precision matrix estimation with rank penalty

3.4.1 The estimation method

One way to avoid having to specify the rank of the low-rank component L is by adding a

penalty on the rank of L to the objective function in (3.3). That is, instead of (3.3), we
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can solve the following optimization problem:

(Θ̂, L̂, D̂) = arg min
Θ,L,D

[tr(ΘS)− log |Θ|+ τ{rank(L)}] ,

subject to Θ = −L+D, Θ ∈ Sp+, L ∈ Sp+, D ∈ Dp, (3.4)

where τ(·) is a monotonically increasing penalty function.

In the literature, it is popular to impose rank restrictions on a matrix by penalizing its

nuclear norm. There are some advantages to directly penalizing its rank. Let Θ̂r denote

the solution to (3.3). Clearly, if we fix rank(L) = r in (3.4), its solution becomes Θ̂ = Θ̂r.

This means Θ̂ can only be one of {Θ̂r | r = 1, . . . , p}, which will have a direct implication

on how (3.4) can be solved in practice. In particular, we shall see in Section 3.5 below

that, for fixed r, Θ̂r can be obtained by a relatively efficient blockwise coordinate descent

algorithm, in which the update of L given D can be achieved analytically, and the update

of D given L is a relatively cheap semi-definite program.

In this section, however, we shall concentrate on the key question of how to choose the

penalty function τ(·) in order to ensure that Θ̂ is a good estimator of Θ0. Our answer is

that it must satisfy the following two conditions:

Condition 3.3. If r < r0 and dr/max(an,p,r0 , bn,p)→∞, then |τ(r)− τ(r0)|/d2
r → 0.

Condition 3.4. If r > r0 and r/max(r0, log p)→∞, then a2
n,p,r/|τ(r)− τ(r0)| → 0.

These conditions are quite technical, and readers will find a concrete example of τ(·),
to be provided later in Section 3.4.3, much easier to grasp. Our main result is that, with a

penalty function that satisfies Conditions 3.3 and 3.4, the solution of (3.4) will be a good

estimator of Θ0.

Theorem 3.3. Under Conditions 3.1, 3.2, 3.3 and 3.4, if Θ̂ is a solution of (3.4), then

‖Θ̂−Θ0‖F = Op {max(an,p,r0 , bn,p)} ,

in which

an,p,r0 = r
1/2
0 (p/n)1/2, bn,p = {(p log p)/n}1/2 .
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Comparing the conclusion of Theorem 3.3 with that of Theorem 3.1, we can see that

the convergence rates of the two methods, whether using a penalty on rank(L) or a pre-

specified rank for L, are similar. The only difference is that the convergence rate of

the former depends on the true rank r0, as long as the penalty function τ(·) is chosen

appropriately, while the convergence rate of the latter depends on the presumed rank r.

3.4.2 Technical conditions on the penalty function

To understand Conditions 3.3 and 3.4, and how they are essential to Theorem 3.3, let us

partition the set {r | r 6= r0} into four disjoint pieces:

A1 = {r | r < r0, dr/max(an,p,r0 , bn,p)→∞},
A2 = {r | r < r0, dr = O[max(an,p,r0 , bn,p)]},
A3 = {r | r > r0, r = O[max(r0, log p)]},
A4 = {r | r > r0, r/max(r0, log p)→∞}.

Notice that, by definition, for any ri ∈ Ai (i = 1, 2, 3, 4), we have r1 < r2 < r0 < r3 < r4.

Together, Theorem 3.1 and Theorem 3.2 have already established the convergence rate

of Θ̂r to be max(an,p,r0 , bn,p) for r ∈ A2 ∪ A3 ∪ {r0}. A penalty function that satisfies

Conditions 3.3 and 3.4 will ensure that the solution to (3.4) cannot be in the set {Θ̂r | r ∈
A1 ∪A4}.

Specifically, as ‖Θ̂r−Θ0‖F ≥ dr, any Θ̂ ∈ {Θ̂r | r ∈ A1} cannot achieve the convergence

rate given in Theorem 3.3, but Condition 3.3 ensures that such a Θ̂ will not be chosen by

(3.4). To see this, if r ∈ A1, we have

tr(Θ̂rS)− log |Θ̂r| ≥ tr(Θ̂r0S)− log |Θ̂r0|,

and

τ(r) < τ(r0).

The first inequality encourages the optimization problem (3.4) to favor a solution with

rank(L) = r0 while the second inequality encourages it to favor one with a smaller rank,

57



r. Condition 3.3 will ensure that τ(r0)− τ(r) is relatively small so that the influence from

the penalty function (the second inequality above) will remain relatively weak. Likewise,

by Theorem 3.1, any Θ̂ ∈ {Θ̂r | r ∈ A4} cannot achieve the convergence rate given

in Theorem 3.3, either, but Condition 3.4 will ensure that, for r ∈ A4, τ(r) − τ(r0)

is sufficiently large so that the influence from the penalty function is strong enough to

outweigh the fact that the first inequality above has now switched direction for r ∈ A4.

3.4.3 A concrete example

At this point, it will help greatly to see a concrete example of penalty functions that

satisfy Conditions 3.3 and 3.4. Given n observations from a p-dimensional multivariate

Gaussian model, when rank(L) in (3.4) is r, where r ≤ p, Akaike (1987) defined the Akaike

information criterion (AIC) as

aic(r) =
1

n

[
(−2)

n∑
i=1

`(xi) + {2p(r + 1)− r(r − 1)}

]
, (3.5)

where `(x) denotes the log-density function.

However, the AIC penalty has to be modified to satisfy Condition 3.3 and Condition

3.4. We let

τ(r) = δn,p {2p(r + 1)− r(r − 1)} /n, (3.6)

in which

δn,p → ∞, (3.7)

and

δn,p = o
{
d2
rn/(r0p)

}
for all r ∈ A1. (3.8)

We can see that (3.6) is essentially a scaled version of the AIC penalty. The condition

(3.7) on the scaling factor δn,p means that the penalty (3.6) is larger than the AIC penalty

asymptotically.
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For all r ∈ A1, d2
r/(r0p/n)→∞ by definition, so (3.8) does not contradict with (3.7);

it is also equivalent to

δn,p = o

[
min
r∈A1

{d2
rn/(r0p)}

]
.

To verify that (3.6) satisfies Condition 3.3 and Condition 3.4, notice that

τ(r)− τ(r0) = δn,p(r − r0){2p− (r + r0 − 1)}/n.

On the one hand, any given r < r0 such that dr/max(an,p,r0 , bn,p) → ∞ is in the set A1

and

|τ(r)− τ(r0)|/d2
r = δn,p(r − r0){2p− (r + r0 − 1)}/(d2

rn)

= o [(r − r0){2p− (r + r0 − 1)}/(r0p)]

= o(1),

so Condition 3.3 is satisfied. On the other hand, any given r > r0 such that r/max(r0, log p)→
∞ is in the set A4 and

a2
n,p,r/|τ(r)− τ(r0)| = rp/[δn,p(r − r0){2p− (r + r0 − 1)}]

= o(1),

so Condition 3.4 is satisfied.

3.4.4 Discussion

The convergence rate given by Theorem 3.3 applies both to finite r0 and to r0 that may

diverge to infinity with p and n. If r0 is fixed and finite, the consistency of Θ̂ is driven by

bn,p = [(p log p)/n]1/2, whose order is greater than that of an,p,r0 ; otherwise, it is possible

for the convergence rate to be driven by an,p,r0 = r
1/2
0 (p/n)1/2 — e.g., if r0 goes to infinity

faster than does log p.

One can better assess our convergence rate here in the Frobenius norm by comparing

it with the convergence rate of the “sparse precision matrix estimator” given by Rothman
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et al. (2008). Their convergence rate in the Frobenius norm is {(p + s)(log p)/n}1/2, in

which s is the number of nonzero off-diagonal entries in the population precision matrix.

For fixed s, their rate becomes {(p log p)/n}1/2 and is the same as our rate (bn,p) for fixed

r0.

That these convergence rates are of a comparable order provides another argument

that the low-rank assumption can be regarded as an analogue of the sparsity assumption

for estimating high-dimensional covariance/precision matrices, except that it encourages a

slightly different matrix structure.

3.5 A blockwise coordinate descent algorithm

We now describe a computational algorithm for solving the optimization problem (3.4).

As we have pointed out in Section 3.4, the solution to (3.4) can only be one of {Θ̂r |
r = 0, 1, ..., p}. In principle, this means we can simply solve (3.3) for all r ∈ {0, 1, ..., p}
and choose the one that minimizes the objective function (3.4). In practice, it is usually

sufficient, and not impractical, to do this only on a subset of {0, 1, ..., p}, say Zr.

That is, we first obtain a series of fixed-rank estimators, Θ̂r, by solving (3.3) for each

r ∈ Zr. Then, we use the penalty function (3.6), given in Section 3.4.3, and evaluate the

objective function (3.4) at each {Θ̂r | r ∈ Zr}, and the one that minimizes the objective

function (3.4) is taken as the solution, Θ̂. As we do not have an explicit expression for δn,p,

it is treated in practice as a tuning parameter and selected by minimizing the objective

function on a separate, validation data set.

For each r ∈ Zr, Θ̂r is obtained by solving the fixed-rank optimization problem (3.3)

with a blockwise coordinate descent algorithm, which iteratively updates L and D (see

Algorithm 1). For fixed D, we can actually solve for L analytically; this provides an

enormous amount of computational saving. The validity of line 4, the analytic update of

L given D, is established by Lemma B.4 in the appendices. For fixed L, we solve a log-

determinant semi-definite program over D, e.g., using the SDPT3 solver (Tütüncü et al.,

2003) available as part of the YALMIP toolbox (Lofberg, 2004) in Matlab; the fact that

D is diagonal means the semi-definite program here is one of the cheapest kinds to solve.

60



To initialize the blockwise coordinate descent algorithm for each r ∈ Zr, we suggest

arranging all r ∈ Zr in ascending order and solving for each Θ̂r sequentially, using the

last solution as a “warm start” for finding the next solution. To be more specific, for

r(1) < r(2) < ... ∈ Zr, we suggest using the diagonal component of Θ̂r(k−1) , namely D̂r(k−1) ,

as the initial point (D(0) in Algorithm 1, line 2) for obtaining Θ̂r(k) . To initialize the

algorithm for the very first Θ̂r(1) , we suggest using the solution of (3.3) corresponding to

r = 0; taking r = 0 means there is no low-rank component, so we have an analytical

solution, D(0) = D̂0 = diag{s−1
11 , . . . , s

−1
pp }, where sjj is the jth diagonal element of the

sample covariance matrix S. Our experience from running many numerical experiments

shows that obtaining Θ̂r in such a sequential manner is much more efficient than obtaining

each Θ̂r independently with random “cold start” initialization.

Remark 3.3. We think Lemma B.4, the analytic update of L given D, is a useful piece

of contribution on its own. It can be used to obtain other “low-rank + something” type of

decompositions of precision matrices, as the low-rank step (line 4 of the algorithm) does not

depend on D being diagonal. For example, one can assume that D is a sparse matrix and

the coordinate descent algorithm (Algorithm 1) can still be applied, as long as one modifies

the D step (line 14) to include a sparsity penalty such as ‖D‖1 =
∑

i,j |Dij|, although we

generally will expect the resulting D step to become more computationally expensive than

it is when D is diagonal.

3.6 Simulation

3.6.1 Simulation settings

In this section, we compare four different estimators of the covariance/precision matrix:

the sample covariance matrix (S); a simple diagonal estimator (DS), which keeps only the

diagonal elements of S and sets all off-diagonal elements to zero; the graphical lasso (Glasso)

by Friedman et al. (2008); and our method (DL). The graphical lasso is implemented with

the R package glasso.
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Algorithm 1: Blockwise coordinate descent algorithm for solving (3.3).

1 fold =∞;

2 Initialize D = D(0);

3 while do

4 L = D1/2UV UTD1/2, in which

5 V = diag{1− 1/max (w1, 1), . . . , 1− 1/max (wr, 1)};
6 U = [ u1 . . . ur ];

7 w1, . . . , wr denote the r largest eigenvalues of D1/2SD1/2.;

8 u1, . . . , ur denote the corresponding eigenvectors;

9 fnew = tr{(D − L)S} − log |D − L|;
10 if |fnew − fold| < tol then

11 return D, L ;

12 end

13 fold = fnew ;

14 Minimize tr{(D − L)S} − log |D − L| over D by solving a log-determinant

semi-definite program.

15 end
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Using a training sample size of n = 100, we generated data from p-dimensional (p =

50, 100, 200) normal distributions with mean 0 and the following five population covariance

matrices:

Example 1: The matrix Σ1 is compound symmetric, Σ1 = (0.2)1p1
T

p + (0.8)Ip.

Example 2: The matrix Σ2 is “diagonal + low-rank”, Σ2 = Ip + RR
T
, where R ∈ Rp×5

and all of its elements are independently sampled from the Uniform(0, 1) dis-

tribution.

Example 3: The matrix Σ3 is block diagonal, consisting of 5 identical blocksB = (0.2)1q1
T

q +

(0.8)Iq, where q = p/5.

Example 4: The matrix Σ4 is almost “diagonal + low-rank” but with some perturbations.

First, a “diagonal + low-rank” matrix is created, B0 = Ip + RR
T
, where

R ∈ Rp×3 and all of its elements are independently sampled with probabil-

ity 0.8 from the Uniform(0, 1) distribution and set to 0 otherwise. Next, a

perturbation matrix B1 ∈ Rp×p is created, whose elements are independently

sampled with probability 0.05 from the Uniform(−0.05, 0.05) distribution and

set to 0 otherwise. Then, the perturbation matrix B1 is symmetrized before

being combined with B0 to obtain B =
{
B−1

0 + (B1 +B
T

1 )/2
}−1

. Finally, we

let Σ4 = B + δIp, with δ = |min(λmin(B), 0)| + 0.05, to ensure it is positive

definite.

Example 5: The matrix Σ5 is designed to have a sparse inverse. First, a baseline matrix

B0 ∈ Rp×p is created where all of its elements are set to 0.5 with proba-

bility 0.5 and 0 otherwise. Then, it is symmetrized and made positive defi-

nite before being inverted: B = B0 + B
T

0 , δ = |min(λmin(B), 0)| + 0.05, and

Σ5 = (B + δIp)
−1.

Each population covariance matrix in the first three examples can be decomposed into

a low-rank plus a diagonal matrix. Let the decomposition be Σk = LΣk + DΣk for k =

1, 2, 3; then, LΣ1 ∈ Sp,1+ and LΣ2 , LΣ3 ∈ Sp,5+ . Example 4 is used to test the robustness

of our method; starting from a “diagonal + low-rank” matrix, we randomly perturbed
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approximately 10% of the elements in the corresponding precision matrix. Example 5 is

used to illustrate the performance of our method in a situation that is ideal to the graphical

lasso, where the corresponding precision matrix is sparse.

Tuning parameters are selected by minimizing the negative log-likelihood function on

a separate validation data set of size 100. For the graphical lasso, the tuning parameter

was selected from {0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.15, 0.20}. For our method, we used

Zr = {1, 3, 5, 7, 9}, and the tuning parameter δn,p was selected from {0.6, 0.8, 1.0, 1.2, 1.4}.
Recall from Section 3.5 that only the size of Zr affects our computational time, not the

number of tuning parameters we evaluate.

3.6.2 Estimation accuracy

As Rothman et al. (2008), we evaluated the estimation accuracy with the Kullback–Leibler

loss,

LKL

(
Θ̂,Θ0

)
= tr

(
Θ−1

0 Θ̂
)
− log

∣∣∣Θ−1
0 Θ̂

∣∣∣− p. (3.9)

When Θ̂ = Θ0, the true precision matrix, the loss achieves its minimum of zero. For the

graphical lasso and our method, the estimated precision matrix Θ̂ could be directly plugged

into the loss function (3.9); for S and DS, the estimated covariance matrix needed to be

inverted first. Thus, we could not evaluate the loss for S when p = 100 and p = 200,

because it was non-invertible.

Table 3.1 reports the average Kullback–Leibler loss over 100 replications and its stan-

dard error. Not surprisingly, the sample covariance matrix S was the worst estimator; the

diagonal estimator DS was better in most cases, but not as good as the other two methods.

In the first four examples, our method outperformed the graphical lasso. In Example 5,

an ideal case for the graphical lasso in which the population precision matrix was sparse,

our method performed slightly worse than, but still remained largely competitive against,

the graphical lasso.
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Table 3.1: Average (standard error) of Kullback–Leibler loss over 100 replications.

S DS Glasso DL

Example 1

p = 50 37.59 (0.311) 9.058 (0.011) 2.618 (0.016) 0.980 (0.019)

p = 100 NA 20.09 (0.017) 5.496 (0.029) 1.983 (0.026)

p = 200 NA 42.73 (0.024) 11.39 (0.050) 3.893 (0.040)

Example 2

p = 50 37.44 (0.331) 36.80 (0.019) 4.148 (0.024) 2.751 (0.030)

p = 100 NA 80.70 (0.043) 9.469( 0.044) 5.708 (0.043)

p = 200 NA 170.0 (0.071) 20.38 (0.082) 11.85 (0.060)

Example 3

p = 50 37.67 (0.341) 5.417 (0.011) 3.080 (0.026) 3.247 (0.038)

p = 100 NA 14.40 (0.016) 7.643 (0.038) 6.103 (0.046)

p = 200 NA 34.72 (0.022) 16.48 (0.074) 12.00 (0.076)

Example 4

p = 50 37.52 (0.316) 26.21 (0.017) 3.522 (0.023) 2.028 (0.022)

p = 100 NA 33.00 (0.019) 7.534 (0.040) 3.917 (0.036)

p = 200 NA 136.4 (0.062) 16.35 (0.066) 9.044 (0.057)

Example 5

p = 50 37.57 (0.312) 42.80 (0.020) 8.267 (0.034) 9.949 (0.046)

p = 100 NA 78.15 (0.028) 22.03 (0.047) 24.13 (0.073)

p = 200 NA 180.1 (0.035) 59.89 (0.096) 61.08 (0.123)
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3.6.3 Rank recovery

We also investigated how well r0 was recovered by comparing the 10 largest eigenvalues of

L̂ with those of L0, the low-rank component of the population precision matrix. According

to (3.2), L0 can be derived as

L0 = D−1
Σ0

(
I + LΣ0D

−1
Σ0

)−1
LΣ0D

−1
Σ0
.

For Examples 1–3, the components LΣ0 and DΣ0 could be obtained directly from the set-

up. For Example 4, because of the perturbation, the components were only approximate:

LΣ4 ≈ RR
T

where R ∈ Rp×3, and DΣ4 ≈ Ip. We skip Example 5 here because the true

covariance/precision matrix does not have a corresponding low-rank component.

As the results were similar for different values of p, we only present here those for

p = 100. In Figure 3.1, the 10 largest eigenvalues of L0 and of L̂ are plotted. For L̂, the

bigger dots in the middle are the averages over 100 replications; the smaller dots above

and below are the values, (average)± (1.96)(standard error). We can see that on average

our method successfully identified the nonzero eigenvalues, or the rank, of L0.

3.7 Real data analysis

To showcase a real application of our method to high-dimensional covariance/precision

matrix estimation, we discuss the classic Markowitz portfolio selection problem (Markowitz,

1952). In this problem, we have the opportunity to invest in p assets, and the aim is to

determine how much to invest in each asset so that a certain level of expected return is

achieved while the overall risk is minimized. To be more specific, let µ be the mean returns

of p assets and Σ, their covariance matrix. Let 1p be the p-dimensional vector (1, 1, ..., 1)
T
.

Then, the Markowitz problem is formulated as

ŵ = arg min
w∈Rp

w
T

Σw subject to w
T

µ = µ0, w
T

1p = 1, (3.10)

in which Rp is a space of p-vectors, w is a vector of asset weights, µ0 is the desired level of

expected return, and w
T
Σw is the variance of the portfolio, which quantifies the investment

risk.
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Figure 3.1: Comparison of the 10 largest eigenvalues of L0 and those of L̂ [(average) ±
(1.96)(standard error)].
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In practice, µ and Σ can be estimated respectively by the sample mean and the sample

covariance matrix before the optimization problem (3.10) is solved, provided that the

sample size n is much larger than the dimension p; in high dimensions, however, solving

(3.10) with the sample covariance matrix often leads to undesirable risk underestimation

(El Karoui, 2010). Instead, different estimators of the covariance matrix can be used, such

as those we have studied in the previous section: namely, the diagonal estimator (DS), the

graphical lasso (Glasso), and our method (DL).

To compare these different covariance matrix estimators for solving the Markowitz

problem, we used monthly stock return data of companies in the S&P100 index from

January 1990 to December 2007, as did Xue et al. (2012). This dataset contains p = 67

companies that remained in the S&P100 throughout this entire period; for each stock,

there are 12× (2007− 1990 + 1) = 216 monthly returns.

For each month starting in January 1996, we first constructed a portfolio by solving

the Markowitz problem using an estimated µ and Σ from the preceding n = 72 monthly

returns, and a target return of µ0 = 1.3 %. The performance of the resulting portfolio

was then measured by its return in that month. For any given estimator of Σ, a total of

12× (2007− 1996 + 1) = 144 portfolios were constructed and evaluated in this manner.

We used three-fold cross-validation to choose the tuning parameters for both the graph-

ical lasso and our method. Each time, portfolios were constructed based on two-thirds of

the training data (48 months), and the tuning parameter that maximized the average re-

turn on the remaining one-third of the training data (24 months) was selected. For the

graphical lasso, the tuning parameter was selected from {0.2, 0.4, . . . , 3.0}. For our method,

we chose from the same set of tuning parameters, and the candidate ranks we considered,

Zr, consisted of all even numbers between 2 and 28.

Table 3.2 shows the results. Again, the sample covariance matrix was noticeably out-

performed by all of the other three methods. Our method (DL) was better than DS in

terms of both the average return and the overall volatility (standard error). Comparing

with the graphical lasso, although our average return was slightly lower, our portfolio

had much lower volatility, and hence a higher Sharpe ratio, a popular measure of overall

portfolio performance in finance defined as [mean(x− xb)]/[stdev(x− xb)], where x is the
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Table 3.2: Average, standard error, and Sharpe ratio of monthly portfolio returns, January

1996 to December 2007. All numbers are expressed in %.

S DS Glasso DL

Average 0.70 1.32 1.42 1.41

Standard Error 13.2 5.08 5.13 4.73

Sharpe ratio 5.30 26.0 27.7 29.8

portfolio’s and xb is the risk-free rate of return. For this demonstration here, we simply

took xb = 0 to be constant.

3.8 Conclusion

In this chapter, we have proposed a high-dimensional covariance/precision matrix esti-

mation method that decomposes the covariance/precision matrix into a low-rank plus a

diagonal matrix. This structural assumption can be understood as being driven by a factor

model and as an alternative to the popular sparsity assumption to facilitate estimation in

high-dimensional problems. We estimate the precision instead of the covariance matrix

because the resulting negative log-likelihood function is convex and because the precision

matrix can be directly applied in many statistical procedures.

Starting with a fixed-rank estimator, we have shown how it can be used to provide

a more general estimator by maximizing a penalized likelihood criterion. The theoretical

conditions for a valid penalty function have been studied in general, and a specific example,

which is related to the Akaike information criterion, has been discussed and tested. Under

these conditions, we have derived the convergence rates of the estimation error in the

Frobenius norm. Numerically, we have proposed a blockwise coordinate descent algorithm

that optimizes our objective function by iteratively updating the low-rank component and

the diagonal component, and provided both simulated and real data examples showing

that our method could have some advantages over a number of alternative estimators.

An immediate extension of our method is that it can be adapted easily to solve the latent
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variable graphical model selection problem. As mentioned in Section 3.1, Chandrasekaran

et al. (2012) decomposed the observed marginal precision matrix into a sparse and a low-

rank component. They used the `1-norm as a penalty to encourage sparsity and the

nuclear- or trace-norm as a penalty to encourage low-rank-ness. If the rank can be fixed a

priori to be r, then we can extend our method easily to solve this problem, by removing

the constraint D ∈ Dp and adding an `1-penalty ‖D‖1 to the objective function in (3.3)

instead. If the rank r cannot be fixed, then our rank-penalized method in Section 3.4 can

be extended analogously. To solve the modified optimization problem, we only need to

modify Algorithm 1 slightly by adding an `1-penalty on D in Step 3 to solve for a sparse

rather than diagonal component while the low-rank component is fixed.
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Chapter 4

High-dimensional Covariance Matrix

Estimation by a Joint Diagonal and

Low-rank decomposition

4.1 Introduction

In this chapter, we seek to estimate large covariance matrices of multiple categories simul-

taneously. Previously, we considered matrix structures to facilitate estimation of a single

covariance matrix; the key was to reduce the number of unknown parameters and improve

the estimation accuracy by encouraging these structures. Now, we show that exploiting

a common matrix component across categories further reduces the number of unknown

parameters and allows samples from every category to contribute to the estimation of all

categories.

To keep this chapter self-contained, we will briefly reiterate the relevant part of the

literature review on estimating a single large covariance matrix. Then we will proceed

with a review of joint estimation methods.
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4.1.1 Estimation of a high-dimensional covariance matrix

Researchers have studied numerous matrix structures to facilitate the estimation of a large

covariance matrix. One simple yet useful approach is to ignore the correlations and retain

only the diagonal elements of S, the sample covariance matrix; a linear discriminant rule

that applies such diagonal matrix is referred to as a naive Bayes classifier or an indepen-

dence rule (Fan and Fan, 2008). Sparsity is a common and well-established assumption,

in which the covariance matrix or its inverse is believed to have only a few non-zero off-

diagonal elements. A sparse covariance matrix indicates a small number of correlated

covariates, and such an estimator can be obtained by either thresholding (Cai and Liu,

2011a; Shao et al., 2011) or lasso-type regularization (Xue et al., 2012; Rothman, 2012).

For Gaussian data, zeros in the inverse covariance matrix, or precision matrix, means con-

ditional independence; imposing `1 penalization on the precision matrix can encourage

such a sparse structure (Friedman et al., 2008; Rothman et al., 2008; Cai et al., 2011).

The factor model is an alternative to the sparse structure, it assumes that the overall

variance can be explained by a few latent factors and some error terms. Assuming observ-

able factors, Fan et al. (2008) proposed a covariance matrix estimator, in which the loading

matrix was estimated with regression, and the covariance matrix of the error terms was

estimated with a diagonal matrix. Fan et al. (2011) generalized this method by estimating

the latter with a sparse instead of diagonal matrix. Chandrasekaran et al. (2012) proposed

another framework, which is closely related to the factor model yet interpreted from a

different perspective. They assumed that the observable variables and the latent factors

are jointly Gaussian, the conditional precision matrix of the observables given the latent

factors is sparse, and the number of latent factors is small. These conditions give rise to

a decomposition of the marginal precision matrix of the observables into a sparse matrix

and a low-rank matrix. Then, they formed a precision matrix estimator using the observed

data by encouraging such a decomposition. They applied the `1 norm and the nuclear norm

to recover the sparse matrix and the low-rank matrix respectively. Our decomposition of

the covariance/precision matrix into a diagonal matrix and a low-rank matrix in Chapter

3 could also be interpreted with a factor model; this method features direct penalization

on the rank. As it is fundamental to this work, we will discuss the detail later on.
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For a more comprehensive review on estimating a single large covariance matrix, see

Cai et al. (2016b). We proceed with the joint estimation of high-dimensional covariance

matrices.

4.1.2 Joint estimation of high-dimensional covariance matrices

In many applications, when we work with multiple categories of data, it is reasonable to

assume that different categories have category-specific characteristics while also share some

common features. For example, consider a webpage dataset, which includes a category

of student and a category of faculty. On the one hand, term frequencies of a student

webpage could be uniquely related to academic information and job seeking, while term

frequencies of a faculty webpage might be related to research interests and professional

activities, on the other hand, these two categories could both be related to teaching and

studying. Another example is gene expression data. Across categories such as normal

and cancerous or various subtypes of the same disease, distributions of gene expression

levels could differ through some pathways while be similarly related to others. In these

cases, jointly estimating multiple covariance matrices could outperform either estimating

the same covariance matrix for all categories or estimating multiple covariance matrices

completely independently.

Researchers have proposed some methods with the merit of joint estimation. The

focus has been on the existence of both shared and non-shared links in graphical models.

Guo et al. (2011) reparameterized each off-diagonal element of a precision matrix as the

product of a common parameter and a category-specific parameter; then, they imposed

lasso-type penalties on the common parameters to encourage universal zero entries and on

the category-specific parameters to encourage zeros for associated categories. Danaher et al.

(2014) considered the fused graphical lasso (FGL) and the group graphical lasso (GGL).

Both methods apply the conventional `1 penalty to all precision matrices so that they

have sparse patterns. Regarding shared matrix structures, the FGL penalizes differences

between precision matrices and encourages not only similar network structures but also

similar edge values; the GGL applies a group lasso penalty to elements in the same position

of different precision matrices and simultaneously encourages them to be zero. Cai et al.
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(2016a) proposed to minimize the maximum of the `1 norms of the precision matrices,

subject to a constraint that encourages a common sparse pattern. Without applying the

likelihood, this method does not require independence among the random vectors across

categories.

4.1.3 Outline and summary of this chapter

In this chapter, we estimate high-dimensional covariance/precision matrices of multiple

categories, by considering an innovative method of joint estimation. In the estimation,

each covariance/precision matrix is encouraged to decompose into a diagonal matrix, a

low-rank matrix, both shared across categories, and a category-specific low-rank matrix.

This decomposition can be interpreted under the framework of factor models. Just as

graphical models can share network structures, when data are believed to be affected by

latent factors, it is a reasonable assumption that the effects of some factors are common

across categories while those of the other factors are specific to one of these categories.

In Section 4.2, we firstly summarize the decomposition assumption for a single covari-

ance matrix, and then discuss the proposed joint decomposition assumption in detail. In

Section 4.3, we consider pre-selected matrix ranks and study properties of associated esti-

mators. In Section 4.4, an AIC-type penalty is imposed to encourage the decomposition

and automatically select the matrix ranks. Some consistency properties of the estimators

are developed under conditions on the population covariance matrices and the penalty

function. An algorithm for obtaining the estimators is introduced in Section 4.5. In Sec-

tion 4.6, we experiment a variety of matrix setups and show nice performances of the

proposed estimators. In Section 4.7, through real data analysis, we demonstrate how the

latent factors can be identified with the estimated low-rank matrices and how quadratic

discriminant analysis can apply the proposed estimators. All proofs are relegated to the

appendices.
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4.1.4 Notations

Before proceeding with the methodology, we introduce a few notations. We let Rp1×p2

denote the set of p1×p2 matrices and Rp denote the set of p-vectors. We use Sp denote the

set of symmetric matrices in Rp×p, Sp+ denote the set of positive semi-definite matrices in

Sp, and Sp++ denote the set of strictly positive definite matrices in Sp. Whenever necessary,

another superscript r is added to indicate a subset of matrices with rank ≤ r, e.g., Sp,r,

Sp,r+ and Sp,r++. In a similar manner, Dp, Dp
+, and Dp

++ denote sets of diagonal matrices

with real, non-negative and positive diagonal elements, respectively.

For A ∈ Sp, we let tr(A) denote its trace, |A| denote its determinant, λmax(A) and

λmin(A) denote its largest and smallest eigenvalues respectively. For matrix norms, we let

‖A‖F = {tr(AT
A)}1/2 denote its Frobenius norm, ‖A‖∗ = tr{(AT

A)1/2} denote its nuclear

norm, and ‖A‖op = {λmax(AA
T
)}1/2 denote its operator norm. For a vector a, we use ‖a‖2

to denote its `2 norm.

We use Ip to denote the p × p identity matrix. The function diag(·), depending on

the type of the input, either converts a vector to a diagonal matrix by setting its diagonal

elements to be the input vector, or converts a matrix to a vector by extracting the diagonal

elements.

4.2 Problem set-up and model assumption

4.2.1 The “diagonal + low-rank” decomposition

To begin with, we briefly summarize the method in Chapter 3 and lay a foundation for the

upcoming new method.

Previously, we studied high-dimensional covariance matrix estimation by limiting our

discussion to data drawn from one distribution, e.g., N(0,Σ†0), and assuming Σ†0 = D†Σ0
+

L†Σ0
, in which D†Σ0

∈ Dp
++ and L†Σ0

∈ S
p,r†0
+ . This assumption can be related to the factor

model, so that r†0 is the number of latent factors, L†Σ0
is the variance explained by the latent

75



factors, and D†Σ0
is the variance explained by error terms. The idea was to encourage such

a decomposition and reduce the number of unknown parameters while estimating Σ†0.

The decomposition of Σ†0 is equivalent to the decomposition of its inverse, i.e., Θ†0 =

D†0−L
†
0, where D†0 ∈ Dp

++ and L†0 ∈ S
p,r†0
+ . Therefore, we aimed at Θ†0, the precision matrix,

and obtained its estimator Θ̂† by solving

min
Θ

tr(ΘS)− log |Θ|+ τ{rank(L)},

subject to −L+D = Θ, Θ ∈ Sp+, L ∈ Sp+, D ∈ Dp, (4.1)

where the objective function is the negative log-likelihood of the normal distribution plus

a monotonically increasing penalty function of the rank, τ(·). An example of τ(·), that

ensures nice properties of Θ̂†, is a scaled Akaike information criterion (AIC) penalty.

In the current work, we consider an extension of the “diagonal + low-rank” condition,

so that the low-rank component is further explored in the context of multiple categories.

4.2.2 The “joint diagonal + low-rank” decomposition

Consider a heterogeneous dataset X = (X(1), . . . , X(K)), in which X(k) = (x
(k)
1 , . . . , x

(k)
nk )

contains nk samples identically drawn from the p-variate Gaussian distribution N(0,Σ
(k)
0 ).

We also assume that all random samples in X are independently drawn. The observations

in each of the K categories are assumed to be centered without loss of generality. Let

n =
∑K

k=1 nk.

In the situation of multiple categories, instead of assuming the previous “diagonal +

low-rank” decomposition for each category, we propose a “joint diagonal + low-rank”

decomposition,

Σ
(k)
0 = DΣ0 + LΣ0 + L

(k)
Σ0

(k = 1, . . . , K), (4.2)

in which DΣ0 ∈ Dp
++, LΣ0 and L

(k)
Σ0

’s are positive semi-definite, rank(LΣ0) = r0 and

rank(L
(k)
Σ0

) = (v0k − r0). That r0 ≤ v0k is implicit. For the purpose of brevity, a vec-

tor will be used to represent v0k’s whenever applicable: v0 = (v01, . . . , v0K).
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We can see that DΣ0 and LΣ0 are shared across categories, while L
(k)
Σ0

’s are category-

specific. Furthermore, v0k’s represent to what degree a covariance matrix of a certain

category conforms to the “diagonal + low-rank” structure, and r0 decides to what extent

a joint matrix structure might be exploited.

To eliminate the ambiguity of v0 and r0, we formalize their definitions. We first let

v0k = rank(L
(k)
∗ ), in which

L(k)
∗ = arg min

L
rank(L)

subject to D + L = Σ
(k)
0 , D ∈ Dp

++, L ∈ Sp+, (4.3)

and then we let r0 = rank(LΣ0), in which

LΣ0 = arg max
L

rank(L)

subject to L+ L(k) = L(k)
∗ ,

rank(L) + rank(L(k)) = v0k,

L ∈ Sp+, L
(k) ∈ Sp+. (4.4)

Definition (4.3) means, v0k’s are the smallest attainable ranks through separate diagonal

and low-rank matrix decompositions. Definition (4.4) means, after v0k’s and L
(k)
∗ ’s are

defined, r0 is the largest rank of the common low-rank component that might be isolated

from L
(k)
∗ ’s. When defining r0, we force the summation of rank(L) and rank(L(k)) to equal

v0k, so that the definition aligns with our algorithm. For the purpose of efficiency, in the

algorithm (Section 4.5), we will first find and fix v0k’s; then, we will seek r0 by searching

through 0 ≤ r ≤ min
k

v0k — for each r, L and L(k) are estimated with ranks restricted to

be r and v0k − r respectively.

Although the decomposition (4.2) is trivially possible for any set of positive definite

matrices if there is no restriction on v0 or r0, we will concentrate on the situation when the

decomposition is most useful for matrix estimation. That is when v0k’s are small and r0 is

relatively large — small v0k’s and relatively large r0 lead to a small number of unknown

parameters to be estimated .
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The decomposition (4.2) could be understood under the factor model framework. If

the random vectors can be explained by latent factors and error terms as follows:

x
(k)
i = Γf

(k)
i + Γ(k)g

(k)
i + ε

(k)
i , k = 1, . . . , K, i = 1, . . . , nk, (4.5)

in which Γ ∈ Rp×r0 , Γ(k) ∈ Rp×(v0k−r0), f
(k)
i ∼ N(0, Ir0), g

(k)
i ∼ N(0, Iv0k−r0), ε

(k)
i ∼

N(0, D), D ∈ Dp
++, and f

(k)
i , g

(k)
i and ε

(k)
i are independent, (4.2) is immediately true. The

factor model (4.5) suggests that all random vectors are affected by f factors through the

common loading Γ, the random vectors in category k are affected by g factors through a

category-specific loading Γ(k), and all error terms distribute identically. In spite of the close

connection with factor models, our main concern is still estimating Σ
(k)
0 ’s; loading matrix

estimation and factor interpretation are considered by-products and will be demonstrated

only in real data analysis (Section 4.7).

In our previous work, when we imposed the “diagonal + low-rank” structure on a

covariance matrix, we compared it to the sparse matrix structure. We pointed out that

(i) the “diagonal+low-rank” structure, just like the sparse structure, reduces the number

of parameters to be estimated; (ii) the rank, or the number of non-zero eigenvalues, of the

low-rank component is analogous to the number of non-zero off-diagonal elements of the

covariance/precision matrix under the sparse assumption — both indicate to what extent

the assumed structures can simplify the matrices. Similarly, the “joint diagonal + low-

rank” could be compared to joint sparse structures. The category-wise comparison is the

same as comparing the “diagonal+low-rank” structure to the sparse structure. To see the

comparison from the perspective of “joint”, let us use the fused graphical lasso (Danaher

et al., 2014) as an example. The “joint diagonal + low-rank” decomposition encourages a

shared low-rank component and further reduces the overall number of unknown parameters,

just like the fused graphical lasso, which encourages elements in precision matrices to be

identical across categories and simplifies the overall matrix structure.

4.3 Precision matrix estimation with fixed ranks

Now we shift our focus to the structure of the precision matrices under the aforementioned

decomposition assumption, and then propose a joint estimation method on top of that.
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Let Θ
(k)
0 = (Σ

(k)
0 )−1 be the precision matrix of category k. Just as decomposing the

covariance matrix and its inverse are equivalent in the “diagonal+low-rank” case, the equiv-

alence in the “joint diagonal+low-rank” case can be established (Henderson and Searle,

1981):

Θ
(k)
0 = (DΣ0 + LΣ0 + L

(k)
Σ0

)−1

= −(DΣ0 + LΣ0)
−1
{
Ip + L

(k)
Σ0

(DΣ0 + LΣ0)
−1
}−1

L
(k)
Σ0

(DΣ0 + LΣ0)
−1 + (DΣ0 + LΣ0)

−1

= −(DΣ0 + LΣ0)
−1
{
Ip + L

(k)
Σ0

(DΣ0 + LΣ0)
−1
}−1

L
(k)
Σ0

(DΣ0 + LΣ0)
−1

−D−1
Σ0

(
Ip + LΣ0D

−1
Σ0

)−1
LΣ0D

−1
Σ0

+D−1
Σ0

, −L(k)
0 − L0 +D0, (4.6)

in whichD0 ∈ Dp
++, L0 and L

(k)
0 ’s are positive semi-definite, rank(L0) = r0, and rank(L

(k)
0 ) =

(v0k− r0). We henceforth work with the precision matrices, since they are also the natural

optimization variables in the likelihood maximization. We write the population precision

matrices as Θ0 = (Θ
(1)
0 , . . . ,Θ

(K)
0 ). This “list of matrices” notation is used to simplify the

discussion of multiple categories.

Apart from the “joint diagonal + low-rank” structure, we also make the common condi-

tions of “bounded eigenvalues” and “comparable sample sizes”. Therefore, the conditions

about the population covariance/precision matrices are as follows:

Condition 4.1. There exist constants c1, c2 > 0 such that c1 ≤ λmin(Σ
(k)
0 ) ≤ λmax(Σ

(k)
0 ) ≤

c2, or equivalently, c−1
2 ≤ λmin(Θ

(k)
0 ) ≤ λmax(Θ

(k)
0 ) ≤ c−1

1 , uniformly with respect to p.

Condition 4.2. All sample sizes are of the same order, i.e., nk � nk′, k, k
′ = 1, . . . , K.

Condition 4.3. For some v0k = o(p) and r0 ≤ v0k, Σ
(k)
0 can be decomposed as Σ

(k)
0 =

DΣ0+LΣ0+L
(k)
Σ0

, where DΣ0 ∈ Dp
++, LΣ0 ∈ Sp+, L

(k)
Σ0
∈ Sp+, rank(LΣ0) = r0 and rank(L

(k)
Σ0

) =

(v0k − r0); or equivalently, Θ
(k)
0 can be decomposed as Θ

(k)
0 = D0 − L0 − L(k)

0 , where D0 ∈
Dp

++, L0 ∈ Sp+, L
(k)
0 ∈ Sp+, rank(L0) = r0 and rank(L

(k)
0 ) = (v0k − r0).

Being ready to estimate Θ0, we firstly consider the simple situation when the ranks

of L0 and L
(k)
0 are pre-selected as r and (vk − r) respectively. In this case, the precision
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matrix estimators can be obtained by solving

min
Θ

K∑
k=1

nk
{

tr(Θ(k)S(k))− log |Θ(k)|
}
,

subject to Θ(k) = D − L− L(k),

Θ(k) ∈ Sp+, D ∈ Dp,

L ∈ Sp,r+ , L(k) ∈ S
p,(vk−r)
+ , (4.7)

where S(k) is the sample covariance matrix of category k, and the objective function is

the negative log-likelihood of multiple independent normal distributions. In the following

discussion, we use Θ = (Θ(1), . . . ,Θ(K)) to denote the optimization variable and Θ̂r,v =

(Θ̂
(1)
r,v , . . . , Θ̂

(K)
r,v ) to denote the fixed-rank solution. In the subscript of Θ̂r,v, v = (v1, . . . , vK)

represents a vector of ranks.

To facilitate the forthcoming discussion of the estimation accuracy, we set up a few

concepts. We let

Fr,v = {Θ = (Θ(1), . . . ,Θ(K)) | Θ(k) = D − L− L(k),

D ∈ Dp
++, L ∈ Sp,r+ , L(k) ∈ S

p,(vk−r)
+ for all k}

denote the search space of (4.7), and define the distance between Θ0 and Fr,v as

dr,v = min
Θ∈Fr,v

K∑
k=1

‖Θ(k) −Θ
(k)
0 ‖F .

We also let Θr,v = (Θ
(1)
r,v , . . . ,Θ

(K)
r,v ) ∈ Fr,v be the element closest to Θ0 in the search space,

i.e.,
∑K

k=1 ‖Θ
(k)
r,v −Θ

(k)
0 ‖F = dr,v .

To gain some intuition about dr,v, we consider two cases. These two cases do not cover

the whole picture, but the remaining cases can be discussed in the same manner.

When vk ≥ v0k (for all k = 1, . . . , K) and r ≤ r0, we have Θ0 ∈ Fr,v and dr,v = 0. To

see this, we eigen-decompose L0 as L0 = U diag(λ1, . . . , λr0 , 0, . . . , 0)UT , and simply let

D = D0,

L = U diag(λ1, . . . , λr, 0, . . . , 0)UT ,

L(k) = U diag(0, . . . , 0, λr+1, . . . , λr0 , 0, . . . , 0)UT + L
(k)
0 ;
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then, Θ
(k)
0 = D − L− L(k) and all constraints in Fr,v are satisfied.

On the other hand, when vk < v0k (for all k = 1, . . . , K) and r > r0, Θ0 is not in the

search space anymore, and we have dr,v > 0. To find an upper bound for dr,v, we construct

a list of matrices that belongs to Fr,v. In addition to the previous eigen-decomposition of

L0, we eigen-decompose L
(k)
0 as L

(k)
0 = U (k) diag(λ

(k)
1 , . . . , λ

(k)
v0k−r0 , 0, . . . , 0)(U (k))T , in which

the eigenvalues are in descending order. Then, let

D = D0,

L = L0,

L(k) = U (k) diag(λ
(k)
1 , . . . , λ

(k)
vk−r, 0, . . . , 0)(U (k))T .

If Θ(k) = D − L− L(k), we have Θ ∈ Fr,v. Thus, the distance has an upper bound

dr,v ≤
K∑
k=1

‖Θ(k) −Θ
(k)
0 ‖F

=
K∑
k=1

‖(D −D0)− (L− L0)− (L(k) − L(k)
0 )‖F

=
K∑
k=1

‖(λ(k)
vk−r+1, . . . , λ

(k)
v0k−r0)

T‖2. (4.8)

On the right-hand-side of (4.8) are the smallest {(v0k − vk) + (r − r0)} (i.e., the total

number of “misspecified” ranks for category k) eigenvalues of L
(k)
0 ; if they are small, we

can anticipate small dr,v.

Now, we establish consistency properties of Θ̂r,v, under the condition that dr,v is rela-

tively small.

Theorem 4.1. Suppose conditions 4.1, 4.2 and 4.3 hold and the ranks r and v are pre-

specified so that dr,v = O{max(an,p,v, bn,p)}, then the solution of (4.7), Θ̂r,v, has the prop-

erty:
K∑
k=1

‖Θ̂(k)
r,v −Θ

(k)
0 ‖F = Op {max(an,p,v, bn,p)} ,

in which

an,p,v = (max
k

vk)
1/2(p/n)1/2, bn,p = {(p log p)/n}1/2.
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Corollary 4.1. Suppose conditions 4.1, 4.2 and 4.3 hold and the ranks r and v are pre-

specified so that dr,v = O{max(an,p,v0 , bn,p)} and max
k

vk = O{max(max
k

v0k, log p)}, then

the solution of (4.7), Θ̂r,v, has the property:

K∑
k=1

‖Θ̂(k)
r,v −Θ

(k)
0 ‖F = Op {max(an,p,v0 , bn,p)} ,

in which

an,p,v0 = (max
k

v0k)
1/2(p/n)1/2, bn,p = {(p log p)/n}1/2.

Remark 4.1. Theorem 4.1 and and Corollary 4.1 contain three situations: (i) vk ≥
v0k (k = 1, . . . , K) and r ≤ r0; (ii) vk < v0k (k = 1, . . . , K) and r > r0, but the dis-

tance from Θ0 to Fr,v is reasonably small; (iii) the remaining combinations of v and r, and

dr,v is small.

In situation (i), the conditions on dr,v in both Theorem 4.1 and Corollary 4.1 hold

trivially. Theorem 4.1 suggests, when the convergence rate is determined by vk’s, it gets

worse as max
k

vk gets larger. This aligns with the intuition because, as long as Θ0 ∈ Fr,v

already, larger vk’s introduce extra unnecessary parameters and lead to larger estimation

error. Corollary 4.1 suggests, even if max
k

vk > max
k

v0k, as long as it is not too large in

terms of the order, the convergence rate is as if vk’s are chosen correctly.

Situation (ii) contains two interesting facts. Firstly, Let us take the true ranks (i.e., r0

and v0) as the benchmark case, under which we have the convergence rate max(an,p,v0 , bn,p).

Corollary 4.1 states that when dr,v does not exceed the estimation error of the benchmark

case, the error caused by choosing inaccurate ranks is dominated and Θ̂r,v is asymptotically

no worse than Θ̂r0,v0. Secondly, according to Theorem 4.1, presuming smaller vk (vk < v0k)

might be beneficial — when vk’s are small, so is an,p,v. To be more specific, when vk < v0k,

the estimation error could be lower than that of the benchmark case as long as dr,v does

not exceed this error. The intuition is, if the advantage of estimating fewer parameters

overweighs the disadvantage of Θ0 not being in Fr,v, we may as well just use smaller vk’s.

It is worth noticing that this intuition also applies to r > r0 even if it is not shown through

the convergence rate. The upper bound in (4.8) suggests that the scenario being discussed

could happen when there are some rapidly degenerating eigenvalues in the population low-

rank components.
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Situation (iii) is a mix of (i) and (ii); for every instance in situation (iii), v and r

satisfy some inequalities in (i) and some in (ii). This situation could suffer from either

extra parameters or Θ0 /∈ Fr,v. The dominant rank in v, which determines the convergence

rate, is not necessarily an overstated one (i.e., vk > v0k) if there is any; for example, even

vk ≥ v0k and vk′ < v0k′ for k′ 6= k, it is possible that vk′ > vk. Therefore, the discussion of

(i) applies when the dominant rank is one of the overstated ranks, and that of (ii) applies

when an understated rank dominates.

Although the estimators do enjoy good properties when we are able to well-specify the

ranks, sometimes there is no prior information for us to do so. Ill-specified ranks could lead

to large error, caused by either too many unnecessary parameters or Fr,v being too far from

Θ0. For the latter, if dr,v diverges, so must the estimation error as
∑K

k=1 ‖Θ̂
(k)
r,v −Θ

(k)
0 ‖F ≥

dr,v by the definition of dr,v. To avoid these unpleasant situations, we consider applying a

rank penalty in the next section.

4.4 Precision matrix estimation with rank penalty

Let us consider the AIC penalty for fixed p,

τ(r, v) =
K∑
k=1

{2p(vk − r)− (vk − r)(vk − r − 1)}+ {2p(r + 1)− r(r − 1)} ,

which is the number of unknown parameters in (4.7). Some simple calculus shows that

it increases with vk and decreases with r when K > 1 and p ≥ (
∑K

k=1 vk)/(K − 1); the

former is guaranteed while dealing with multiple categories, and the latter is true given

v0k = o(p) and we do not consider large vk in practice. This suggests that the AIC penalty

aligns with our goal of encouraging small vk’s and relatively large r.

We modify the AIC penalty by considering an additional tuning parameter λ and
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propose the following penalized optimization problem,

min
Θ

K∑
k=1

nk
{

tr(Θ(k)S(k))− log |Θ(k)|
}

+ λτ(r, v),

subject to Θ(k) = D − L− L(k),

Θ(k) ∈ Sp+, D ∈ Dp,

L ∈ Sp+, L
(k) ∈ Sp+. (4.9)

Let Θ̂ = (Θ̂(1), . . . , Θ̂(K)) be the solution. If the ranks are fixed, so is τ(r, v), and (4.9)

reduces to (4.7); therefore, Θ̂ must be in{
Θ̂r,v | vk = 1, . . . , p, r = 1, . . . ,min

k
vk

}
,

which is the set of solutions of (4.7) under various fixed ranks.

Now we think about what makes a good penalty and show that the proposed penalty

qualifies. Recall that we aim to prevent too large max
k

vk and dr,v; to formalize these

scenarios to be avoided, we define the corresponding sets of ranks as

A1 =
{

(r, v) | (max
k

vk)/max(max
k

v0k, log p)→∞
}
,

A2 = {(r, v) | dr,v/max(an,p,v0 , bn,p)→∞} .

Corollary 4.1 states that, when (r, v) ∈ Ac
1 ∩ Ac

2, the convergence rate is as if r and

v are set to be the true ranks. Thus, if τ(r, v) and λ together can adjust the objective

function so that an element of A1 ∪ A2 is never chosen over (r0, v0), we will be able to

guarantee that Θ̂ has the same convergence rate as Θ̂r0,v0 . As a matter of fact, this is the

case for the proposed penalty, if we have the following additional condition about λ,

Condition 4.4. λ→∞ and λ = o(δn,p), where

δn,p = min
(r,v)∈A2∩Ac

1

(dr,v)
2/a2

n,p,v0
.

Theorem 4.2. Suppose conditions 4.1 – 4.4 hold, then the solution of (4.9), Θ̂, has the

property:
K∑
k=1

‖Θ̂(k) −Θ
(k)
0 ‖F = Op {max(an,p,v0 , bn,p)} ,
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in which

an,p,v0 = (max
k

v0k)
1/2(p/n)1/2, bn,p = {(p log p)/n}1/2.

Remark 4.2. Condition 4.4 says λ has to be sufficiently large to approach the infinity

while not too large to exceed the rate of δn,p. To understand this, we consider A1 and

A2∩Ac
1 separately. On the one hand, to exclude A1, we want large λτ(r, v) to penalize the

overstated ranks (i.e.,vk > v0k); on the other hand, we want to avoid overly large λτ(r, v),

which might lead to A2 ∩Ac
1, where the convergence is ruined by either understated vk or

overstated r (too few parameters and Θ0 /∈ Fr,v).

4.5 Algorithm

Now we consider how to solve the optimization problem (4.9). We have mentioned in

Section 4.4 that Θ̂ can only be one of {Θ̂r,v | vk = 0, . . . , p, r = 0, . . . ,min
k

vk}; thus, a

straightforward solution is to obtain every Θ̂r,v and identify the one that minimizes the

objective function in (4.9). However, as we discussed in Section 4.2.2, the decomposition

method is most useful for estimating large covariance/precision matrices when v0k’s are

small; therefore, we propose to consider only a subset {Θ̂r,v | vk ∈ Z(k), r = 0, . . . ,min
k

vk},
in which Z(k) ⊂ {0, . . . , p} includes small ranks and is chosen by the user in practice.

Considering subsets is also more computationally efficient.

Furthermore, we first determine vk’s by applying the “diagonal+low-rank” to each cat-

egory separately, and then fix v and obtain Θ̂r,v for various r. In this way, we avoid

considering the combinations of possible values of vk’s as well as the combinations of pos-

sible values of r with unfavorable values of v, thus dramatically reduce the computational

cost. To be more specific, we first solve (4.1) for each category, and the ranks vk ∈ Z(k)

associated with the solutions are selected. Then we solve (4.7) for each r and obtain a

series of fixed-rank estimators {Θ̂r,v | r ≤ min
k

vk}. At last, over this set of estimators, we

seek the minimizer of the objective function in (4.9) and take it as the final solution.

The algorithm for solving (4.1) can be found in Chapter 3 and is omitted here. To

solve (4.7), we apply a blockwise coordinate descent method, in which D, L and L(k)’s are
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iteratively updated till the convergence of the objective function. To update D with fixed

L and L(k)’s, we apply RMSProp, a modified version of gradient descent with adaptive

learning rate (Tieleman and Hinton, 2012). To update L with fixed D and L(k)’s, we write

L = RRT (R ∈ Rp,r) and minimize the objective function with respect to R with the same

descent method. To update L(k)’s with fixed D and L, we notice that each L(k) affects

the objective function only through the likelihood of its own category; thus, L(k)’s can

be obtained independently from each other. As obtaining optimal L(k)’s boils down to K

single category problems, we will borrow the step of updating the low-rank component in

the “diagonal + low-rank” method.

Our experience with the numerical experiment shows that a proper initialization for

(4.7) can make the computation more efficient. For r = 0, we initialize D to be the

analytical minimizer of the objective function when L and L(k)’s are set to be 0. For each

r > 0, we initialize D to be D̂r−1,v, where D̂r−1,v is the diagonal component of Θ̂r−1,v,

and then we initialize R (and L = RRT ) to be the analytical minimizer of the objective

function when L(k)’s are set to be 0.

See Algorithm 2 for the details. For the purpose of presentation, let

f(D,L, L(1), . . . , L(K)) =
K∑
k=1

nk
[
tr{(D − L− L(k))S(k)} − log |D − L− L(k)|

]
be the objective function, and S = n−1

∑K
k=1(nkS

(k)) be the pooled sample covariance.

The analytical solution of D in line 3 is straightforward by basic calculus. The analytical

solutions of L and L(k)’s in line 7 and 12 are direct generalizations of Lemma B.4 in

Appendix B.2; these solutions degenerate to 0 if the corresponding ranks (r or (vk − r)’s)
are 0. The numerical update of L in line 23 degenerates to 0 if r = 0.

4.6 Numerical experiment

In this section, for the purpose of comparison, we investigate the estimation accuracy of

sample covariance matrices S(k)’s, diagonal matrices, which keep the diagonal elements

of S(k)’s, the “diagonal + low-rank”, which is separately applied to every category, the
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Algorithm 2: Blockwise coordinate descent algorithm for solving (4.7) for fixed (r, v).

1 fold =∞;

2 if r = 0 then

3 D = diag(1/ diag(S));

4 else

5 D = D̂r−1,v;

6 end

7 R = D1/2QW 1/2, L = RRT , in which

8 W = diag{1− 1/max(w1, 1), . . . , 1− 1/max(wr, 1)}, Q = (q1, . . . , qr);

9 w1, . . . , wr are the r largest eigenvalues of D1/2SD1/2;

10 q1, . . . , qr are the associated eigenvectors;

11 while do

12 L(k) = (D − L)1/2Q(k)W (k)(Q(k))T (D − L)1/2, in which

13 W (k) = diag{1− 1/max(w
(k)
1 , 1), . . . , 1− 1/max(w

(k)
vk−r, 1)};

14 Q(k) = (q
(k)
1 , . . . , q

(k)
vk−r);

15 w
(k)
1 , . . . , w

(k)
vk−r are the vk − r largest eigenvalues of (D − L)1/2S(k)(D − L)1/2;

16 q
(k)
1 , . . . , q

(k)
vk−r are the associated eigenvectors;

17 fnew = f(D,L, L(1), . . . , L(K));

18 if |fnew − fold| < tol1 then

19 return D, L, L(k)’s;

20 end

21 fold = fnew ;

22 update D with Algorithm 3, g(D) = f(D,L, L(1), . . . , L(K));

23 update R (and L) with Algorithm 3, g(R) = f(D,RRT , L(1), . . . , L(K));

24 end
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Algorithm 3: RMSProp for line 22 and 23 in Algorithm 2. The initialization x(0) is

the value (of D or R) before the update; m has the same shape as x, and operations

in line 3 and 4 are elementwise; ∇g(x) is the gradient; α is the learning rate, a scalar.

1 Initialization: x = x(0), m = 0, gold = +∞;

2 while do

3 m = 0.9m+ 0.1{∇g(x)}2;

4 x = x− α∇g(x)
{

(m)1/2 + 10−8
}−1

;

5 gnew = g(x);

6 if |gnew − gold| < tol2 then

7 return x;

8 end

9 gold = gnew;

10 end

“joint diagonal+low-rank” and the fused graphical lasso (Danaher et al., 2014). The fused

graphical lasso is implemented by the R package JGL.

We set K = 3 and experiment p = 50, p = 100 and p = 200. The sample sizes are

nk = 100, k = 1, 2, 3. For each category, data are independently and identically generated

from a multivariate normal distribution with zero mean.

In the following examples, we employ various matrices structures to demonstrate the

performances. To set up some notations, 1p×p is a p × p matrix with all elements being

one; 0p1×p2 is a p1 × p2 matrix with all elements being zero; (b1, b2) represents a matrix

formed by stacking b1 and b2 horizontally (given b1, b2 are matrices with the same number

of rows); U(·, ·) represents a Uniform distribution with the input lower bound and upper

bound, U(·) represents a Uniform distribution on the input interval, and Ber(·) denotes

a Bernoulli distribution with the input success probability; k = 1, 2, 3 in all examples;

whenever values are randomly drawn, values with different indices are drawn independently

from each other.

Example 1: The matrices are constructed based on the compound symmetry structure,
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Σ
(k)
0 = 0.5Ip + 0.21p×p + 0.2a(k)(a(k))T , where a(k) ∈ Rp and a

(k)
j ∼ U(0, 1).

Example 2: The matrices are block diagonal and have different number of blocks, Σ
(k)
0 =

0.5Ip + 0.2aaT + 0.2a(k)(a(k))T , a = (b1, b2), a(1) = 0, a(2) = (b3, b4), a(3) =

(b5, b6), bi = (0q×(i−1)q, 1q×q, 0q×(p−iq))
T and q = bp/(2K)c.

Example 3: The matrices have the “joint low-rank+diagonal” structure and are sparse, and

the diagonal component is randomly drawn. Let Σ
(k)
0 = diag(d) + 0.2aaT +

0.2a(k)(a(k))T , where d ∈ Rp, a ∈ Rp×4, a(k) ∈ Rp×2, dj ∼ U(0.2, 0.6), aj1,j2 ∼
Ber(0.4) and a

(k)
j1,j2
∼ Ber(0.4).

Example 4: The matrices have a perturbed “joint low-rank +diagonal” structure. Let

B(k) = 0.5Ip+0.2aaT+0.2a(k)(a(k))T+P (k), where a ∈ Rp×2, a(k) ∈ Rp, aj1,j2 ∼
Ber(0.4), a

(k)
j ∼ Ber(0.4). The perturbation matrix P (k) = 0.01{P (k)

0 +

(P
(k)
0 )T}/2, where P

(k)
0 ∈ Rp×p and each element in P

(k)
0 is randomly drawn

from U(0, 1) with probability 0.2 and set to zero otherwise. Let Σ
(k)
0 =

B(k) + {|min(λmin(B(k)), 0)|+ 0.05}Ip so that it’s positive definite.

Example 5: The precision matrices are sparse and some elements are shared across cat-

egories. Let B
(k)
0 = 0.2a + 0.2a(k), where a, a(k) ∈ Rp×p, aj1,j2 ∼ Ber(0.2),

a
(k)
j1,j2
∼ Ber(0.2), and B(k) = 0.5Ip + {B(k)

0 + (B
(k)
0 )T}/2. Let Σ

(k)
0 = [B(k) +

{|min(λmin(B(k)), 0)|+ 0.05}Ip]−1.

Example 6: The matrices correspond to K networks — this is a similar structure as ex-

perimented by Danaher et al. (2014). Let A ∈ Rp×p be the adjacency ma-

trix of a network that contains 10 equally sized unconnected subnetworks,

each with a power law degree distribution. Let (B0)j1,j2 = Aj1,j2aj1,j2 , where

aj1,j2 ∼ U{(−0.4,−0.1) ∪ (0.4, 0.1)}, B1 = Ip + (B0 + BT
0 )/2, B2 = [B1 +

{|min(λmin(B1), 0)|+0.05}Ip]−1, Bj1,j2 = dj1,j2(B2)j1,j2 {(B2)j1,j1(B2)j2,j2}−1/2,

where dj1,j2 is 0.6 if j1 6= j2 and 1 otherwise. Finally, Σ
(1)
0 = B, Σ

(2)
0 is the

same as Σ
(1)
0 except one subnetwork block is the identity, and Σ

(3)
0 is the same

as Σ
(2)
0 except an additional subnetwork block is the identity.

To implement our methods, we set Z(k) = {0, 1, 2, 4, 6, 8} for k = 1, 2, 3. The true ranks
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of Example 1 – Example 3 are included in Z(k) whereas those of the other three examples

are not.

Tuning parameters for DL, JDL and FGL are all selected via minimizing the negative

log-likelihoods of separately generated validation sets (Rothman et al., 2008); the validation

sample size is also 100 for each category. The tuning parameter sets for DL and JDL are

{0.2, 0.4, . . . , 1.2} and {0.8, 1.0, . . . , 1.8} respectively. On a side note, unlike the size of

Z(k), the sizes of the tuning parameter sets do not affect our computational cost. FGL has

two tuning parameters — λ1 for sparsity and λ2 for shared network and edge values. We

let both the tuning parameter sets of λ1 and λ2 contain 5 evenly spaced real numbers over

(0.01, 0.1) for Example 1 – Example 5 and (0.1, 0.3) for Example 6, and the best pair is

selected after validation on the grid.

4.6.1 Estimation accuracy

The estimation accuracy is evaluated by Kullback-Leibler loss:

LKL(Θ,Θ0) =
K∑
k=1

{
tr(Σ

(k)
0 Θ(k))− log |Σ(k)

0 Θ(k)| − p
}
. (4.10)

The loss quantifies how far the proposed estimators are from the population values; it is

minimized at Θ = Θ0 and has a minimum value of zero. Output from DL, JDL and FGL

can be directly plugged into (4.10), while the sample covariance matrices and diagonal

matrices have to be inverted first. As the sample covariance matrices become singular for

p = 100 and p = 200, corresponding losses are marked as “NA”.

See Table 4.1 for the results. The sample covariance matrix is the worst among all,

and the diagonal matrix outperforms the sample covariance matrix but is still worse than

the other three. For Example 1 and 3, where the “joint diagonal + low-rank” structure

is satisfied, DL and JDL produce nice results and enjoy lower KL losses than FGL. For

Example 4, where the “joint diagonal + low-rank” structure is randomly perturbed, the

nice performances of DL and JDL show their robustness. Example 2 explores the block

diagonal structure and satisfies both the “joint diagonal + low-rank” structure and the

joint sparse graphical model; we can see that DL, JDL and FGL all perform well, and JDL
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and FGL outperform DL since they both exploit the joint matrix structure. For Example

5 and 6, which are built to favor the joint sparse graphical model, FGL produces better

results as expected, but our methods also show some power in these two cases.

Table 4.1: Average (standard error) of Kullback-Leibler loss over 100 replications.

Sample Cov Diagonal DL JDL FGL

Example 1

p = 50 112.07(0.57) 53.43(0.02) 4.22(0.03) 2.64(0.02) 5.37(0.02)

p = 100 NA 115.2(0.05) 8.61(0.05) 4.88(0.06) 11.8(0.04)

p = 200 NA 241.1(0.08) 16.6(0.10) 8.81(0.07) 24.9(0.07)

Example 2

p = 50 112.29(0.56) 14.13(0.02) 6.63(0.05) 3.62(0.04) 4.07(0.04)

p = 100 NA 36.97(0.02) 13.2(0.07) 7.09(0.04) 9.62(0.08)

p = 200 NA 90.82(0.04) 26.0(0.10) 14.1(0.08) 20.6(0.11)

Example 3

p = 50 111.79(0.57) 70.130(0.02) 10.62(0.06) 6.74(0.05) 12.2(0.05)

p = 100 NA 175.51(0.04) 21.45(0.11) 13.02(0.1) 27.37(0.1)

p = 200 NA 409.48(0.07) 43.14(0.18) 26.4(0.15) 57.3(0.17)

Example 4

p = 50 112.03(0.56) 40.60(0.02) 7.400(0.05) 3.930(0.04) 7.330(0.04)

p = 100 NA 86.58(0.03) 14.58(0.08) 7.590(0.06) 15.67(0.08)

p = 200 NA 189.8(0.06) 28.45(0.12) 15.46(0.09) 33.93(0.15)

Example 5

p = 50 111.23(0.63) 64.830(0.02) 27.00(0.09) 25.96(0.09) 18.58(0.07)

p = 100 NA 131.73(0.03) 70.84(0.12) 68.18(0.11) 52.22(0.09)

p = 200 NA 273.85(0.04) 170.7(0.20) 165.4(0.19) 137.6(0.16)

Example 6

p = 50 111.75(0.55) 3.080(0.02) 3.080(0.02) 2.01(0.01) 1.56(0.02)

p = 100 NA 6.490(0.03) 6.490(0.03) 4.38(0.02) 3.58(0.03)

p = 200 NA 13.06(0.04) 13.06(0.04) 8.80(0.02) 7.26(0.03)

In the end, we draw the most essential conclusion of this section that JDL consistently

outperform DL when there is some shared matrix structure across the categories, suggesting

that exploiting such structure indeed helps improve the estimation accuracy.
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4.6.2 Rank recovery

In this section, we provide the empirical evidence of the rank recovery performance — how

JDL identifies the ranks of L and L(k)’s, by comparing the 10 largest eigenvalues of the

population low-rank components with those of the estimated ones.

We firstly find out the population low-rank components. For Example 1 – Example 3,

with information about DΣ0 , LΣ0 and L
(k)
Σ0

in the example setup, D0, L0 and L
(k)
0 can be

derived by (4.6). Example 4 only approximately satisfies the joint diagonal and low-rank

decomposition; we let DΣ0 = 0.5 diag(d), LΣ0 = 0.2aaT and L
(k)
Σ0

= 0.2a(k)(a(k))T , and the

corresponding D0, L0 and L
(k)
0 can be derived by (4.6). Example 5 and Example 6 are

omitted in this section for the lack of population values. The estimated low-rank compo-

nents are directly produced by the JDL algorithm. As the rank recovery performances are

similar for various dimensions, we show the plots for p = 100.

See Figure 4.1 for the result. In each plot, the number of non-zero eigenvalues corre-

spond to the rank of the matrix. We conclude that on average JDL does yield successful

recovery of the ranks of L0 and L
(k)
0 ’s.

From the plots of Example 4, it can be seen that the overall recovery is not as accurate

as those of the other three examples. This is a consequence of v0k /∈ Z(k) instead of the

perturbation. To show this, we let Z(k) contain all integers from 0 to 8 and reproduce

the plots (Figure 4.2). This suggests that (i) including more ranks in Zk might improve

the performance at the cost of computational expense; (ii) JDL performs well even if the

population covariance matrix does not conform precisely to the decomposition assumption.

4.7 Real data analysis

We apply the JDL to WebKB, a dataset that contains webpages of computer science depart-

ments of a few universities. The webpages were collected in 1997 and manually classified

into 7 categories: student, faculty, project, course, staff, department, and other.

The dataset has been pre-proccessed by Cardoso-Cachopo (2007) and can be downloaded

from http://ana.cachopo.org/datasets-for-single-label-text-categorization.
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Figure 4.1: Comparison of the 10 largest eigenvalues of the population low-rank components

(“×”) and those of the estimated ones (“−”). For the estimated eigenvalues, the bars

represent the averages over 100 replications. The leftmost column corresponds to the joint

low-rank component L and the other three correspond to L(k), k = 1, 2, 3.
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Figure 4.2: Comparison of the 10 largest eigenvalues of the population low-rank components

(“×”) and those of the estimated ones (“−”) for Example 4 when v0k ∈ Z(k).

Pre-processing procedures include (i) discarding the categories with too small sample

size (staff and department) or very diverse pages (other); (ii) randomly choosing 2/3 of

the samples to be training data and letting the remaining 1/3 to be testing data (Table

4.2); (iii) standard text processing such as removing short words and stemming.

Table 4.2: Sample sizes of WebKB

Class Training data Testing data Total

student 1097 544 1641

faculty 750 374 1124

project 336 168 504

course 620 310 930

With R package tm, we use the standard “term frequency – inverse document frequency”

(tf-idf) to weight a document-term matrix. Let tfi,j be the count of occurrences of term j

in document i, we use the weighting function 0.5 + 0.5 tfi,j/max
j

(tfi,j) for term frequencies

and log2(N/dfj) for inverse document frequencies, where N denotes the total number of

documents and dfj is the number of documents in which term j occurs. The final weight is

the product of the term frequency and the inverse document frequency. During weighting,

the training set and the testing set are combined, and no label information is used.

The feature selection is done by applying document frequency thresholding (Largeron

et al., 2011) to the training data. We keep p = 200 out of 7203 terms with the highest
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document frequencies. This method assumes that a term that occurs in only a small

number of documents is not an effective feature for categorization.

To perform the “diagonal + low-rank” method for each category, we let Z(k), k =

1, . . . , 4, contain every integer from 0 to 10 and the tuning parameter sets contain 6 evenly

spaced real numbers over (2.4, 3.4) for the category project and (2.7, 3.7) for the other

categories. In the joint diagonal and low-rank decomposition step, similarly, the tuning

parameter set contains 6 evenly spaced real numbers over (4.5, 5.5). We employ heavy

penalties to enhance the interpretability of the latent factors. It will also be seen later that

this regularization improves the performance of quadratic discriminant analysis (QDA).

We select the tuning parameters by a 3-fold cross-validation. The training set is parti-

tioned into 3 subsamples with equal sizes. In each round, one of these subsamples is used

as the validation data. The cross-validation scores are the log-likelihoods of normal distri-

butions, evaluated on validation data and averaged over the rounds. The tuning parameter

associated with the highest score is selected.

Recall that we mentioned in Section 4.2.2 that the “joint diagonal + low-rank” assump-

tion can be understood as factor models. The effects of r0 factors are common, and the

effects of v0k− r0 factors are specific to category k; now we can take a look at these factors

in the context of the webpage data.

The selected ranks are v = (5, 5, 2, 3) and r = 2. The estimated components of the

precision matrices are produced by JDL and then converted to L̂Σ0 and L̂
(k)
Σ0

by a similar

expansion to (4.6). We first write L̂Σ0 = RR′ (R ∈ Rp×r) and obtain R by multiplying the

square roots of the largest r eigenvalues of L̂Σ0 to their associated eigenvectors. Then, we

apply a VARIMAX rotation to R, which maximizes the variance of squared loadings, so that

each factor tends to have less but “larger” (in terms of the magnitude) non-zero loadings.

At last, we identify, for each factor, the covariates associated with “large” loadings and try

to understand what the factor represents and affects. Likewise, L̂
(k)
Σ0

can be analyzed.

The identified covariates are plotted in Figure 4.3. The shown words are among the

top 10 (for 3D plot) or 15 (for 2D plot) covariates of at least one of the factors in the

same subplot. Category project does not have factors with category-specific effects and

is omitted.
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Figure 4.3: Loadings of covariates after the VARIMAX rotation. The subplots are, from

left to right, top to bottom, for factors with common effects, factors that affect category

student, faculty and course. The last subplot only contains one factor.
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We can see that, for factors that affect all categories alike, one is related to technical

support and the other is related to teaching and studying. The other three categories all

have their characteristic words. To be more specific, student has a factor of academic

information (e.g., year, graduate) and a factor of job seeking (e.g., resume); faculty

has some words related to research interest (e.g., artific, intellig, laboratori) and

others to academic activity (e.g., journal, associ, confer, member); course only has one

extra factor, and as expected it represents course information and materials (e.g., lectur,

homework, syllabu).

The final task is to see how the regularization affects the performance of QDA. To this

end, we consider a score for each category based on the Bayes rule,

Qk(x) = 2 log π(k) + log |Θ(k)| − (x− µ(k))TΘ(k)(x− µ(k)),

in which x is an unlabeled vector, π(k) is the category prior and µ(k) is the category mean.

Based on the training data, we estimate π(k) with nk/n and µ(k) with category sample

mean. The observation x will be classified to the category with the largest score.

We intend to experiment the same covariance/precision matrix estimators as in Section

4.6. However, as there are 2 covariates with zero variance in category project, we have

to use the Moore-Penrose generalized inverse for the sample covariance matrix and adjust

these 2 variances to be the smallest non-zero variance for the method “Diagonal” as well

as the initialization of DL and JDL. In addition, as the R package JGL does not cope with

this situation, we decide to omit the joint graphical lasso.

Random forest (RF) is included as a suggestion of the accuracy that can be achieved for

this dataset; it is trained after the same pre-processing and feature selection procedures.

All classifiers are applied to the test data and evaluated by classification accuracy. See

Table 4.3 for the results. We conclude that (i) the separate rank regularization (DL) does

help enhance the performance and (ii) exploiting the shared matrix structure (JDL) makes

further improvement.
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Table 4.3: Classification accuracy of QDA rules (based on various covariance/precision

matrix estimators) and random forest.

Sample Cov Diagonal DL JDL RF

Accuracy 75.28% 80.30% 82.31% 86.17% 88.18%

4.8 Conclusion

We proposed a method that jointly estimates high-dimensional covariance/precision ma-

trices of multiple categories. The method decomposes each covariance/precision matrix

into a shared diagonal matrix, a shared low-rank matrix and a category-specific low-rank

matrix.

Starting with fixed-rank estimators, we emphasized the importance of accurate pre-

selected ranks and pointed out the difficult of specifying them. Then, we considered an

AIC-type penalty that encourages the proposed decomposition and automatically selects

the ranks. We established that, under certain technical conditions, the estimators obtained

via imposing the penalty have the same consistency property as fixed-rank estimators with

correct pre-selected ranks.

An algorithm, which iteratively updates the diagonal matrix and the low-rank matrices,

has been developed; and several techniques to reduce the computational cost have been

discussed. We used simulations to empirically assess the estimation accuracy of our method

and were able to see the advantage of exploiting the shared matrix structure. In real data

analysis, the estimators were applied to factor model analysis and quadratic discriminant

analysis; we found that interpretable factors could be identified, and the regularization of

ranks did improve the classification accuracy.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we studied a series of matrix structures to facilitate high-dimensional covari-

ance matrix estimation. Firstly, we investigated the compound symmetry structure in the

context of quadratic discriminant analysis. Then, we generalized it and considered the more

flexible “diagonal + low-rank” structure. In the end, we studied the “joint diagonal+low-

rank” structure in order to simultaneously estimate multiple covariance matrices while

exploiting some common structure among them.

Based on the compound symmetry structure, we developed a set of QDA rules. The

ppQDA rule forms a substitute for each covariance matrix by pooling both diagonal ele-

ments and off-diagonal elements of the sample covariance matrix. The pQDA rule ignores

the correlations and is a special case. The Se-ppQDA rule and the Se-pQDA rule generalize

the ppQDA rule and the pQDA rule respectively in order to handle nonnormal data. The-

oretical properties of some of these rules and empirical performances of all of them were

provided. We showed that, in spite of the simplicity, these rules enjoy low misclassification

probability as long as the population covariance matrices moderately satisfy the assumed

matrix structure. In practice, the optimal rule could vary from case to case. We suggest

that users investigate the data, pre-process the data, and decide a suitable rule.
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The compound symmetry structure could be written as the summation of a scaled

identity matrix and a rank-1 matrix. To pursue and generalize this decomposition, we

proposed a covariance matrix estimator, the DL estimator, that could be written as the

summation of a diagonal matrix and a low-rank matrix. An important step of obtaining

the DL estimator is to find an appropriate rank, which could exploit the decomposition

to its fullest potential. We started with considering a pre-selected rank and showed that

consistency of the DL estimator could be established when the rank is “approximately”

correct. However, specifying a relatively accurate rank is not trivial in general, and an

inaccurate rank could lead to inconsistency. To tackle this problem, we considered a

penalty, which was directly imposed on the rank. It could be proven that, with a proper

choice of the penalty function, the obtained estimator converges as if the correct rank was

provided. We compared the DL with the graphical lasso via simulations, and concluded

that, although both methods outperform the sample covariance matrix and the diagonal

matrix, that keeps the diagonal elements of the sample covariance matrix, their relative

performances depend on whether the “diagonal + low-rank” or the sparsity assumption is

closer to the reality.

To extend the DL estimator from estimating a single covariance matrix to estimating

multiple ones, we proposed the “joint diagonal + low-rank” structure. This particular

structure allows the matrices to share some common components. To be more specific, each

covariance matrix has the “diagonal + low-rank” structure when viewed independently,

but the low-rank component can be further separated into a category-specific low-rank

matrix and a shared low-rank matrix. Exploiting such a matrix structure, we developed

an estimator — the JDL estimator. As for the DL estimator, we explored estimations with

either pre-selected ranks or a rank penalty, and established consistency properties when

the pre-selected ranks are “approximately” correct or the penalty is properly defined. In

the implementation of the JDL algorithm, there is a shared rank and K (the number of

categories) category-specific ranks to be taken care of; to avoid considering complicated

combinations of the ranks and the consequent high computational cost, we suggested users

to apply the penalized DL to each category to decide the category-specific ranks first and

then apply the penalized JDL to decide the shared rank and obtain the estimators. The

simulations demonstrated the advantage of the JDL over independently applying the DL
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to every category. We showed, via real data analysis, that the JDL estimator could be

used to identify factors as well as to facilitate discriminant analysis.

Through this thesis, we explored a series of covariance matrix estimators and estab-

lished their nice properties both theoretically and empirically. However, these properties

were developed only under certain conditions. High-dimensional covariance matrix estima-

tion is a challenging task, and it is implausible to give a universally optimal solution. All

estimators are subject to some underlying assumptions about the structure of the popu-

lation covariance matrix; therefore, for a specific data set, it is crucial to make a decision

about which estimators to use and how to pre-process the data to use the estimators to

their fullest potential.

5.2 Future Work

One possible extension is to consider relaxing the normality assumptions in Chapter 3

and Chapter 4. To do so, we would almost certainly need to make explicit assumptions

about the tail behavior of the data distribution, which might change the convergence rates

of the resulting estimators. Although our objective functions are based on the normal

likelihood, they work by pushing the covariance matrix estimators towards the sample

covariance matrices on one hand and encouraging the assumed “diagonal+low-rank” or

“joint diagonal +low-rank” on the other. As a result, the estimation accuracy depends on

how well the sample covariance matrices can approximate their population counterparts,

which is affected by the tail behavior of the data distribution.

Since the DL and JDL estimators are generalizations of the compound symmetry struc-

ture, which we considered in the context of discriminant analysis. It is natural to ask

whether we can construct new discriminant rules by substituting DL or JDL estimators

for the compound symmetry estimators in the ppQDA rule. A small experiment has been

done on this in the real data analysis in Chapter 4; however, many properties still remain

to be investigated. Intuitively, such new rules would work under more relaxed assumptions

about the population covariance matrices than the ppQDA rule. Furthermore, we might be

able to compare the new rules with the Bayes decision rule through the already established
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bounds of estimation errors of the DL or JDL estimators — the QDA rules should converge

to the Bayes decision rule if the estimators converge to their population counterparts.

In order to obtain the DL estimator and the JDL estimator, we applied algorithms that

alternately update variables in the objective functions. This could lead to local minimizers

instead of global ones. A convenient solution is to initialize from multiple starting points

to increase the chance of finding global minimizers. We did not recommend this, because

our deterministic initialization (“warm starts”) already produced nice results in numerical

experiments, and it did not seem worthwhile to increase the computational cost. However,

how the local minimizers compare with the global ones remains an open question. In the

future, we might be interested in developing theoretical properties of the local minimizers

or establishing connections between the local minimizers and the global minimizers.

Another potential extension of JDL is to consider dependence across the categories.

From a “factor model” point of view, the current framework assumes that the random

vectors depend on latent factors, while all the factors are independent of each other, in

spite of the common effects introduced by common loading matrices. However, when

certain random vectors of various categories depend on the same factors, dependence must

be considered. For example, stocks of different sectors (categories) might be related to the

same set of economic indicators; in this case, all stock returns at a certain time point are

related to the indicators at that time point and must not be independent of each other.

To take the dependence into account, it will be necessary to alter the objective function,

since building the overall likelihood by multiplying likelihoods of every observation requires

independence. To this end, we might consider a likelihood based on the joint distribution

of all categories or another function that also pushes the estimators towards the sample

covariance matrices.

In the end, motivated by the compound symmetry structure, “diagonal + low-rank”

and “joint diagonal + low-rank”, many other matrix structures might be considered. The

“factor model” interpretation suggests some reasonable options. For instance, we can

replace the diagonal component with a sparse one, so that the implied independence of the

error terms is relaxed. We can also encourage the low-rank matrix or the associated loading

matrix to be sparse; a sparse low-rank matrix indicates many uncorrelated covariates, and

a sparse loading matrix implies that each covariate depends on a smaller number of latent
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factors. In the joint estimation case, if the low-rank matrices are assumed to be sparse,

the model indicates not only shared factor effects but also shared network links. That

being said, it is not trivial to choose proper penalties to encourage these structures, and

developing efficient algorithms is also a challenge.
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Hashorva, E. and Hüsler, J. (2003). On multivariate Gaussian tails. Annals of the Institute

of Statistical Mathematics, 55(3):507–522.

Henderson, H. V. and Searle, S. R. (1981). On deriving the inverse of a sum of matrices.

SIAM Review, 23(1):53–60.

Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal compo-

nents analysis. The Annals of Statistics, pages 295–327.

Lam, C. and Fan, J. (2009). Sparsistency and rates of convergence in large covariance

matrix estimation. The Annals of Statistics, 37(6B):4254–4278.
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Appendix A

Proofs of Chapter 2

A.1 Proofs of Theorems 2.1 and 2.2

The following lemma shows that the doubly pooled covariance matrix used in the ppQDA

function is positive definite, which is due to all its eigenvalues being positive.

Lemma A.1. Let Σ = (σij) be a p×p covariance matrix, a and r be the average of diagonal

and off-diagonal entries of Σ, respectively. Then for p > 2, a−r > 0, a+(p−1)r > 0, and

A = (aij) is positive definite, where aij = a if i = j, otherwise aij = r, for i, j = 1, · · · , p.

Proof. Notice that the matrix A has p eigenvalues which are a+ (p− 1)r, a− r, · · · , a− r.
To finish the proof, we only need to show that a− r > 0 and a+ (p− 1)r > 0.

For 1 ≤ i < j ≤ p, let eij be a p-dimensional column vector whose i-th element is 1,

j-th element is −1, and all other elements are 0. As Σ = (σij) is a p× p covariance matrix,

then

e′ijΣeij = σii + σjj − 2σij > 0 and
∑

1≤i<j≤p

e′ijΣeij = p(p− 1)(a− r) > 0.

Therefore, a− r > 0 if p > 2.
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Let 1p be a p-dimensional column vector of 1’s, then

1′pΣ1p = p[a+ (p− 1)r] > 0,

and a+ (p− 1)r > 0. This finishes the proof.

The following lemma shows that the ppQDA function with true parameters enjoys the

property of asymptotically perfect classification. We accomplish this by showing that the

probability of misclassifying x from class 1 to class 2 tends to 0 as the ppQDA function

is negative when the dimension p is sufficiently large. The probability of misclassifying x

from class 2 to class 1 tending to 0 can also be proved in a similar fashion.

Lemma A.2. Let Q be the ppQDA function with true parameters. Under conditions 2.1

and 2.4,

lim
p→∞

Rp = lim
p→∞

P(Q > 0|x ∈ C1) + P(Q ≤ 0|x ∈ C2) = 0.

Proof. We only focus on the probability of misclassifying x from class 1 to class 2, i.e.

P (Q > 0|x ∈ C1) . For i = 1, 2, let Ai = TΛiT
′ be the eigen decomposition of Ai, where

Λi = diag
(
ai − ri, · · · , ai − ri, ai + (p− 1)ri

)
,

T = (t1, . . . , tp) and tp = (1/
√
p) · 1p. Define αj = t′j(x − µ1) and βj = t′j(µ1 − µ2), for

j = 1, · · · , p. The quadratic classification function with true parameters can be expressed
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as

Q = ln
(
|A1|/|A2|

)
+ (x− µ1)′A−1

1 (x− µ1)

−(x− µ1 + µ1 − µ2)′A−1
2 (x− µ1 + µ1 − µ2)

= ln
(
|A1|/|A2|

)
+ (x− µ1)′TΛ−1

1 T ′(x− µ1)− (x− µ1)′TΛ−1
2 T ′(x− µ1)

−2(µ1 − µ2)′TΛ−1
2 T ′(x− µ1)− (µ1 − µ2)′TΛ−1

2 T ′(µ1 − µ2)

= ln
(
|A1|/|A2|

)
+
[
1/(a1 − r1)− 1/(a2 − r2)

] p−1∑
j=1

α2
j

+α2
p

{
1/[a1 + (p− 1)r1]− 1/[a2 + (p− 1)r2]

}
− 2

p−1∑
j=1

βjαj/(a2 − r2)

−2βpαp/[a2 + (p− 1)r2]−
p−1∑
j=1

β2
j /(a2 − r2)− β2

p/[a2 + (p− 1)r2]

= ln
(
|A1|/|A2|

)
+
[
1/(a1 − r1)− 1/(a2 − r2)

] p−1∑
j=1

α2
j

+α2
p/[a1 + (p− 1)r1]− 2

p−1∑
j=1

βjαj/(a2 − r2)

−
p−1∑
j=1

β2
j /(a2 − r2)− (αp + βp)

2/[a2 + (p− 1)r2]. (A.1)

Next we consider
∑p−1

j=1 α
2
j , α

2
p and

∑p−1
j=1 βjαj in (A.1) separately, followed by discussing

all other terms in (A.1). First of all,

p−1∑
j=1

α2
j = (x− µ1)′(t1, . . . , tp−1)(t1, . . . , tp−1)′(x− µ1)

= (x− µ1)′(Ip −
1

p
1p1

′
p)(x− µ1),

such that

E

(
p−1∑
j=1

α2
j

)
= tr

[(
Ip −

1

p
1p1

′
p

)
Σ1

]
= (p− 1)(a1 − r1).
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In addition,

V ar

(
p−1∑
j=1

α2
j

)
= 2tr

[(
Ip −

1

p
1p1

′
p

)
Σ1

(
Ip −

1

p
1p1

′
p

)
Σ1

]
= 2

[
tr(Σ2

1)− 2

p
Su(Σ2

1) +
1

p2
Su2(Σ1)

]
= 2(p− 1)(a1 − r1)2 + o(p2).

The last equality is due to Condition 2.4-3 and Condition 2.4-4. Notice that Condition

2.4-3 is equivalent to

tr(Σ2
i )− (p− 1)(ai − ri)2 = Su2(Σi)/p

2 + o(p2)

and Condition 2.4-4 is equivalent to

Su(Σ2
i ) = Su2(Σi)/p+ o(p2),

for i = 1, 2. Hence, ∑p−1
j=1 α

2
j = (p− 1)(a1 − r1) + op(p). (A.2)

Secondly, given that αp ∼ N(0, Su(Σ1)/p), then

[a1 + (p− 1)r1]−1 α2
p ∼ χ2

1. (A.3)

Thirdly, notice that
∑p−1

j=1 βjαj can be expressed as

p−1∑
j=1

βjαj =(µ1 − µ2)′(Ip −
1

p
1p1

′
p)(x− µ1),

with E
(∑p−1

j=1 βjαj

)
= 0 and

V ar

(
p−1∑
j=1

βjαj

)
=(µ1 − µ2)′(Ip −

1

p
1p1

′
p)Σ1(Ip −

1

p
1p1

′
p)(µ1 − µ2).
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Let λmax(Σ1 −A1) be the largest eigenvalue of Σ1 −A1. According to Condition 2.4-3,

tr [(Σ1 − A1)2] = o(p2), then λ2
max(Σ1−A1) = o(p2) and λmax(Σ1−A1) = o(p). As a result,

V ar

(
p−1∑
j=1

βjαj

)

= (µ1 − µ2)′(Ip −
1

p
1p1

′
p)(Σ1 − A1 + A1)(Ip −

1

p
1p1

′
p)(µ1 − µ2)

≤ (µ1 − µ2)′(Ip −
1

p
1p1

′
p)A1(Ip −

1

p
1p1

′
p)(µ1 − µ2)

+λmax(Σ1 − A1)(µ1 − µ2)′(Ip −
1

p
1p1

′
p)(Ip −

1

p
1p1

′
p)(µ1 − µ2)

= (a1 − r1)

p−1∑
j=1

β2
j + o(p)

p−1∑
j=1

β2
j

= o(p)

p−1∑
j=1

β2
j .

Therefore,
p−1∑
j=1

βjαj = op

√√√√p

p−1∑
j=1

β2
j

 . (A.4)
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Plugging (A.2), (A.3), (A.4) into (A.1), we have

Q = ln
(
|A1|/|A2|

)
+
[
1/(a1 − r1)− 1/(a2 − r2)

][
(p− 1)(a1 − r1) + op(p)

]
+Op(1)−

[
2/(a2 − r2)

]
op

√√√√p

p−1∑
j=1

β2
j


−

p−1∑
j=1

β2
j /(a2 − r2)− (αp + βp)

2/
[
a2 + (p− 1)r2

]
= (p− 1) {1− (a1 − r1)/(a2 − r2) + ln [(a1 − r1)/(a2 − r2)]}

+ ln
{

[a1 + (p− 1)r1] / [a2 + (p− 1)r2]
}

+ op(p) +Op(1) + op

√√√√p

p−1∑
j=1

β2
j


−

p−1∑
j=1

β2
j /(a2 − r2)− (αp + βp)

2/ [a2 + (p− 1)r2] . (A.5)

According to conditions 2.1 and 2.3, |1− (a1 − r1)/(a2 − r2)| > 2δ0/c and for p→∞,

(p− 1)

[
1− (a1 − r1)/(a2 − r2) + ln

(
(a1 − r1)/(a2 − r2)

)]
→ −∞ (A.6)

at the order of p. If
∑p−1

j=1 β
2
j = O(p), then op

(√
p
∑p−1

j=1 β
2
j

)
is dominated by (A.6). On

the other hand, if
∑p−1

j=1 β
2
j has the order of p1+ε for some ε > 0, then op

(√
p
∑p−1

j=1 β
2
j

)
is dominated by

∑p−1
j=1 β

2
j /(a2 − r2). All the other terms in (A.5) are either negative or

dominated by (A.6). Thus, we conclude that Q < 0 when p is sufficiently large, and the

probability of misclassifying x from class 1 to class 2,

P (Q > 0|x ∈ C1)→ 0, as p→∞.

It can be proved in a similar fashion that the probability of misclassifying x from class 2

to class 1 also converges to 0. This finishes the proof.

Remark A.1. Now we discuss how Condition 2.4-2 can be relaxed. To achieve asymptot-

ically perfect classification, we want Q in (A.5) to be negative for large p, for which (A.6)
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is critical but guaranteed by Condition 2.4-2. Alternatively, if (µ1 − µ2) is not so close to

the origin such that
∑p−1

j=1 β
2
j /(a2− r2) can dominate the other terms in (A.6), then Q can

still be negative for large p with Condition 2.4-2 being relaxed.

In summary, the Condition 2.4-2 on covariance matrices is sufficient for ppQDA to

achieve the property of asymptotically perfect classification. However, such property could

also be attributed to distinct location parameters with Condition 2.4-2 being relaxed.

The following lemma shows that pQDA with true parameters also enjoys the property

of asymptotically perfect classification. The proof is similar to that of the previous lemma

but much simpler due to its simpler structure of the pQDA function than that of the

ppQDA function.

Lemma A.3. Let Q0 be the pQDA function with true parameters. Under conditions 2.1

and 2.5,

lim
p→∞

R0,p = lim
p→∞

P(Q0 > 0|x ∈ C1) + P(Q0 ≤ 0|x ∈ C2) = 0.

Proof. Similar to the proof of Lemma A.2, the quadratic classification function with true

parameters can be expressed as

Q0 = p ln (a1/a2) + (1/a1 − 1/a2)(x− µ1)′(x− µ1)

−2(µ1 − µ2)′(x− µ1)/a2 − ||µ1 − µ2||2/a2. (A.7)

We can show that

(x− µ1)′(x− µ1) = tr(Σ1) +Op

[√
tr(Σ2

1)
]

= pa1 +Op(
√
p)

(A.8)

and
(µ1 − µ2)′(x− µ1) = Op

[√
(µ1 − µ2)′Σ1(µ1 − µ2)

]
= Op

(
||µ1 − µ2||

)
.

(A.9)

The final equality in (A.8) and (A.9) is due to Condition 2.5-1.
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Plugging (A.8) and (A.9) into (A.7), we have

Q0 = p
[
1− a1/a2 + ln (a1/a2)

]
+Op(

√
p)

+Op

(
||µ1 − µ2||

)
− ||µ1 − µ2||2/a2.

(A.10)

Under (B.2), it can be shown that Q0 < 0 when p is sufficiently large, i.e.,

P (Q0 > 0|x ∈ C1)→ 0.

Similarly, we can prove tht P (Q0 ≤ 0|x ∈ C2)→ 0. This finishes the proof.

Remark A.2. Bounded eigenvalues of Σ1 assure that
√
tr(Σ2

i ) = O(
√
p) in (A.8).

The following lemma presents the estimation accuracy of various estimators, and will

be repeatedly used in our proof of the asymptotically perfect classification property for the

proposed ppQDA function.

Lemma A.4. Let y1, . . . ,yn
i.i.d.∼ N(µ,Σ), where the p × p covariance matrix Σ is sym-

metric and positive definite. Define a = tr(Σ)/p and r = [Su(Σ) − tr(Σ)]/[p(p − 1)],

i.e., the average of diagonal and off-diagonal entries of Σ, respectively. Let µ̂ and Σ̂

denote the sample mean and sample covariance matrix, i.e., µ̂ =
∑n

k=1 yk/n and Σ̂ =∑n
k=1(yk− µ̂)(yk− µ̂)′/(n−1). Let â = tr(Σ̂)/p and r̂ = [Su(Σ̂)− tr(Σ̂)]/[p(p−1)]. Given

a− r > δ > 0 for some δ > 0 and Condition 2.1, we have

tr(Σ̂) = tr(Σ) +Op

(√
tr(Σ2)/n

)
, (A.11)

Su(Σ̂) = Su(Σ) +Op

(√
Su2(Σ)/n

)
, (A.12)

â− r̂ = a− r +Op

(
p−1
√
tr(Σ2)/n+ p−2

√
Su2(Σ)/n

)
= a− r +Op

(
n−1/2

)
, (A.13)

â+ (p− 1)r̂ = a+ (p− 1)r +Op

(
p−1
√
Su2(Σ)/n

)
, (A.14)

(â− r̂)−1 = (a− r)−1 +Op

(
p−1
√
tr(Σ2)/n+ p−2

√
Su2(Σ)/n

)
= (a− r)−1 +Op

(
n−1/2

)
, (A.15)[

â+ (p− 1)r̂
]−1

= [a+ (p− 1)r]−1 +Op

{
n−1/2[a+ (p− 1)r]−1

}
. (A.16)
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Proof. To prove (A.11), it can be shown that

tr(Σ̂) =
1

n− 1

[
n∑
k=1

(yk − µ)′(yk − µ)− n(µ̂− µ)′(µ̂− µ)

]
,

in which

E

[
n∑
k=1

(yk − µ)′(yk − µ)

]
= ntr(Σ)

E [(µ̂− µ)′(µ̂− µ)] = tr(Σ)/n

V ar

[
n∑
k=1

(yk − µ)′(yk − µ)

]
= 2ntr(Σ2)

V ar [(µ̂− µ)′(µ̂− µ)] = 2tr(Σ2)/n2.

Thus,

tr(Σ̂) =
1

n− 1

{
ntr(Σ) +Op

[√
ntr(Σ2)

]
− tr(Σ) +Op

[√
tr(Σ2)

]}
= tr(Σ) +Op

[√
tr(Σ2)/n

]
.

To prove (A.12), it can be shown that

Su(Σ̂) =
1

n− 1

n∑
k=1

1p
′(yk − µ̂)(yk − µ̂)′1p,

for which E
[
Su(Σ̂)

]
= Su(Σ) and V ar

[
Su(Σ̂)

]
= 2Su2(Σ)/(n− 1). Thus,

Su(Σ̂) = Su(Σ) +Op

[√
Su2(Σ)/n

]
.

According to (A.11) and (A.12), (A.13) and (A.14) follow directly. In addition,

â− a = Op

[
p−1
√
tr(Σ2)/n

]
and

r̂ − r = Op

(
p−2

[√
Su2(Σ)/n+

√
tr(Σ2)/n

])
.
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Due to Condition 2.1, we have â− a = op(1) and r̂− r = op(1). Therefore, the consistency

of â and r̂ is proved.

To prove (A.15), by Taylor expansion,

(â− r̂)−1 = (a− r)−1 + (a− r)−2Op

[
p−1
√
tr(Σ2)/n+ p−2

√
Su2(Σ)/n

]
= (a− r)−1 +Op

[
p−1
√
tr(Σ2)/n+ p−2

√
Su2(Σ)/n

]
.

To prove (A.16), define D = {[â+ (p− 1)r̂]− [a+ (p− 1)r]} [a+ (p− 1)r]−1. Accord-

ing to (A.14), it can be shown that D = Op(n
−1/2). By Taylor expansion,

[â+ (p− 1)r̂]−1 = [a+ (p− 1)r]−1 + [a+ (p− 1)r]−1

∞∑
l=1

(−1)lDl

= [a+ (p− 1)r]−1 +Op

{
n−1/2[a+ (p− 1)r]−1

}
.

This finishes the proof.

Proof of Theorem 2.1. In Lemma A.2, we show that P (Q > 0|x ∈ C1)→ 0 where Q is the

ppQDA function with true parameters, though true parameters are unknown in practice.

Next, we prove the asymptotically perfect classification property for the proposed ppQDA

function (with the estimators of unknown parameters plugged in), i.e.,

Q̂ = ln
(
|Â1|/|Â2|

)
+ (x− µ̂1)′Â−1

1 (x− µ̂1)− (x− µ̂2)′Â−1
2 (x− µ̂2).

Once again, we focus on the probability of misclassifying x from class 1 to class 2, i.e.,

P
(
Q̂ > 0|x ∈ C1

)
. The main strategy is to show that Q̂−Q can be dominated by Q, which

leads to P
(
Q̂ > 0|x ∈ C1

)
= P

(
Q̂−Q+Q > 0|x ∈ C1

)
→ 0 when p is sufficiently large.

We start by examining those three terms in Q̂ separately.

First of all, we focus on ln
(
|Â1|/|Â2|

)
in Q̂.

ln
(
|Â1|/|Â2|

)
= (p− 1) [ln (â1 − r̂1)− ln (â2 − r̂2)]

+ ln [â1 + (p− 1)r̂1]− ln [â2 + (p− 1)r̂2],
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where according to Taylor expansion, (A.13) and (A.14), for i = 1, 2,

ln (âi − r̂i) = ln (ai − ri) + (ai − ri)−1Op

[
p−1
√
tr(Σ2

i )/ni + p−2
√
Su2(Σi)/ni

]
and

ln [âi + (p− 1)r̂i] = ln [ai + (p− 1)ri]

+[ai + (p− 1)ri]
−1Op

[
p−1
√
Su2(Σi)/ni

]
.

Therefore,

ln (â1 − r̂1)− ln (â2 − r̂2) = ln (a1 − r1)− ln (a2 − r2) +Op(n
−1/2)

ln [â1 + (p− 1)r̂1]− ln [â2 + (p− 1)r̂2] = ln [a1 + (p− 1)r1]− ln [a2 + (p− 1)r2]

+Op(n
−1/2).

In summary,

ln
(
|Â1|/|Â2|

)
= ln (|A1|/|A2|) +Op(pn

−1/2). (A.17)

Secondly, we focus on (x− µ̂1)′Â−1
1 (x− µ̂1) in Q̂.

(x− µ̂1)′Â−1
1 (x− µ̂1) = (x− µ̂1)′T Λ̂−1

1 T ′(x− µ̂1)

= (â1 − r̂1)−1(x− µ̂1)′(x− µ̂1) +
{

[â1 + (p− 1)r̂1]−1

−(â1 − r̂1)−1
}

(x− µ̂1)′
(

1

p
1p1

′
p

)
(x− µ̂1).

≡ (â1 − r̂1)−1 · I
+p−1

{
[â1 + (p− 1)r̂1]−1 − (â1 − r̂1)−1

}
· II. (A.18)

As µ̂i is the sample mean, let µ̂i = µi + ε̂i for i = 1, 2, then ε̂i ∼ N(0,Σi/ni). We

consider I and II in (A.18) separately, where

I = (x− µ̂1)′(x− µ̂1)

= (x− µ1)′(x− µ1)− 2(x− µ1)′ε̂1 + ε̂′1ε̂1,
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in which

(x− µ1)′(x− µ1) = tr(Σ1) +Op

[√
tr(Σ2

1)

]
(x− µ1)′ε̂1 = Op

[√
tr(Σ2

1)/n1

]
ε̂′1ε̂1 = tr(Σ1)/n1 +Op

[√
tr(Σ2

1)/n1

]
Hence,

I = (x− µ1)′(x− µ1) +Op

[√
tr(Σ2

1)/n1

]
+ tr(Σ1)/n1.

In addition,

II =(x− µ̂1)′
(
1p1

′
p

)
(x− µ̂1)

=(x− µ1)′1p1
′
p(x− µ1)− 2(x− µ1)′1p1

′
pε̂1 + ε̂′11p1

′
pε̂1,

in which

(x− µ1)′1p1
′
p(x− µ1) = Op [Su(Σ1)]

(x− µ1)′1p1
′
pε̂1 = Op

[√
Su2(Σ1)/n1

]
ε̂′11p1

′
pε̂1 = Op

[√
Su2(Σ1)/n2

1

]
.

Hence,

II =(x− µ1)′1p1
′
p(x− µ1) +Op(

√
Su2(Σ1)/n1).
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According to I, II, and Lemma A.4 ((A.15) and (A.16) specifically), (A.18) becomes

(x− µ̂1)′Â−1
1 (x− µ̂1) =

[
(a1 − r1)−1 +Op(n

−1/2)
]
· I + p−1

{[
a1 + (p− 1)r1]−1

+Op

[
n−1/2[a1 + (p− 1)r1]−1

]
− (a1 − r1)−1 +Op

(
n−1/2

)}
· II

= (a1 − r1)−1
[
(x− µ1)′(x− µ1)

−p−1(x− µ1)′1p1
′
p(x− µ1)

]
+p−1[a1 + (p− 1)r1]−1(x− µ1)′1p1

′
p(x− µ1)

+Op(pn
−1/2
1 )

= (x− µ1)′A−1
1 (x− µ1) +Op(pn

−1/2
1 ). (A.19)

Thirdly, we focus on (x− µ̂2)′Â−1
2 (x− µ̂2) in Q̂.

(x− µ̂2)′Â−1
2 (x− µ̂2) = (â2 − r̂2)−1(x− µ̂2)′(Ip − p−11p1

′
p)(x− µ̂2)

+[â2 + (p− 1)r̂2]−1(x− µ̂2)′
(
p−11p1

′
p

)
(x− µ̂2)

≡ (â2 − r̂2)−1 · III + [â2 + (p− 1)r̂2]−1 · IV. (A.20)

We consider III and IV separately. First of all,

III = (x− µ̂2)′(Ip − p−11p1
′
p)(x− µ̂2)

= (x− µ2)′(Ip − p−11p1
′
p)(x− µ2)− 2(x− µ2)′(Ip − p−11p1

′
p)ε̂2

+ε̂′2(Ip − p−11p1
′
p)ε̂2

≡ III1 − 2 · III2 + III3,

where

E(III1) =E
[
(x− µ2)′(Ip − p−11p1

′
p)(x− µ2)

]
=tr

[
(Ip − p−11p1

′
p)Σ1

]
+ (µ1 − µ2)′(Ip − p−11p1

′
p)(µ1 − µ2)

=(p− 1)(a1 − r1) +

p−1∑
j=1

β2
j .
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With the techniques in the derivation of (A.2) and (A.4), we have

V ar(III1) = 2tr
[
(Ip − p−11p1

′
p)Σ1(Ip − p−11p1

′
p)Σ1

]
+4(µ1 − µ2)′(Ip − p−11p1

′
p)Σ1(Ip − p−11p1

′
p)(µ1 − µ2)

≤ 2
[
tr(Σ2

1)− 2p−1Su(Σ2
1) + p−2Su2(Σ1)

]
+ o

(
p

p−1∑
j=1

β2
j

)

= o(p2) + o

(
p

p−1∑
j=1

β2
j

)
.

Hence,

III1 = (p− 1)(a1 − r1) +

p−1∑
j=1

β2
j + op(p) + op

√√√√p

p−1∑
j=1

β2
j

 .

In addition,

E(III2) =E
[
(x− µ2)′(Ip − p−11p1

′
p)ε̂2

]
= 0.

By the techniques in the derivation of (A.4) and Condition 2.1, we have

V ar(III2) = V ar
[
(x− µ2)′(Ip − p−11p1

′
p)ε̂2

]
= n−1

2 tr
{

[(µ1 − µ2)(µ1 − µ2)′ + Σ1] (Ip − p−11p1
′
p)Σ2(Ip − p−11p1

′
p)
}

= n−1
2 (µ1 − µ2)′(Ip − p−11p1

′
p)Σ2(Ip − p−11p1p)(µ1 − µ2)

+n−1
2 tr

[
Σ1(Ip − p−11p1

′
p)Σ2(Ip − p−11p1

′
p)
]

≤ o

(
n−1p

p−1∑
j=1

β2
j

)
+ n−1

2

[
tr(Σ1Σ2)− p−1Su(Σ1Σ2)− p−1Su(Σ2Σ1)

+p−2Su(Σ1)Su(Σ2)
]

= o

(
n−1p

p−1∑
j=1

β2
j

)
+O(p2/n),

Hence,

III2 = op

n−1/2

√√√√p

p−1∑
j=1

β2
j

+Op(pn
−1/2)

125



Last but not least,

E(III3) =E
[
ε̂′2(Ip − p−11p1

′
p)ε̂2

]
= n−1

2 (p− 1)(a2 − r2).

By Condition 2.1,

V ar(III3) = V ar
[
ε̂′2(Ip − p−11p1

′
p)ε̂2

]
= 2n−2

2 tr
[
(Ip − p−11p1

′
p)Σ2(Ip − p−11p1

′
p)Σ2

]
= 2n−2

2

[
tr(Σ2

2)− 2p−1Su(Σ2
2) + p−2Su2(Σ2)

]
= O

(
p2/n2

)
.

Hence,

III3 = n−1
2 (p− 1)(a2 − r2) +Op (p/n)

Combining III1, III2 and III3, we have

III = (x− µ2)′(Ip − p−11p1
′
p)(x− µ2)− 2 · III2 + III3

= (x− µ2)′(Ip − p−11p1
′
p)(x− µ2) + op

n−1/2

√√√√p

p−1∑
j=1

β2
j

+Op(pn
−1/2)

+n−1
2 (p− 1)(a2 − r2).

Secondly, we focus on IV,

IV = (x− µ̂2)′
(
p−11p1

′
p

)
(x− µ̂2)

=
[
p−1/21′p(x− µ1 + µ1 − µ2 − ε̂2)

]2
= (αp + βp − t′pε̂2)2,

in which (t′pε̂2)2 = Op

{
[a2 + (p− 1)r2]/n2

}
, so that

IV =(αp + βp)
2 − 2(αp + βp)t

′
pε̂2 +Op

{
[a2 + (p− 1)r2]/n2

}
.
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Plugging III and IV in (A.20), we have

(x− µ̂2)′Â−1
2 (x− µ̂2)

= (â2 − r̂2)−1 · III + [â2 + (p− 1)r̂2]−1 · IV

=
[
(a2 − r2)−1 +Op(n

−1/2)
][

(x− µ2)′(Ip − p−11p1
′
p)(x− µ2)

+op

n−1/2

√√√√p

p−1∑
j=1

β2
j

+Op(pn
−1/2) + n−1

2 (p− 1)(a2 − r2)

]

+

{
[a2 + (p− 1)r2]−1 +Op

(
n−1/2[a2 + (p− 1)r2]−1

)}[
(αp + βp)

2

−2(αp + βp)t
′
pε̂2 +Op

(
[a2 + (p− 1)r2]/n2

)]

= (x− µ2)′A−1
2 (x− µ2) +Op

(
n−1/2

p−1∑
j=1

β2
j

)

+Op

(
pn−1/2

)
+ op

n−1/2

√√√√p

p−1∑
j=1

β2
j


+Op

{
n−1/2 [a2 + (p− 1)r2]−1 (αp + βp)

2
}

+Op

{
[a2 + (p− 1)r2]−1 (αp + βp)t

′
pε̂2

}
. (A.21)

where

(x− µ2)′A−1
2 (x− µ2) = (a2 − r2)−1(x− µ2)′(Ip − p−11p1

′
p)(x− µ2)

+ [a2 + (p− 1)r2]−1 (αp + βp)
2.

Based on (A.17), (A.19),and (A.21), we have

Q̂−Q = Op

(
n−1/2

p−1∑
j=1

β2
j

)
+Op

(
pn−1/2

)
+ op

n−1/2

√√√√p

p−1∑
j=1

β2
j


+Op

{
n−1/2 [a2 + (p− 1)r2]−1 (αp + βp)

2
}

+Op

{
[a2 + (p− 1)r2]−1 (αp + βp)t

′
pε̂2

}
. (A.22)
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Recall (A.5), in which

Q = (p− 1) {1− (a1 − r1)/(a2 − r2) + ln [(a1 − r1)/(a2 − r2)]}

+ ln
{

[a1 + (p− 1)r1] / [a2 + (p− 1)r2]
}

+ op(p) +Op(1) + op

√√√√p

p−1∑
j=1

β2
j


−

p−1∑
j=1

β2
j /(a2 − r2)− (αp + βp)

2/ [a2 + (p− 1)r2] (A.23)

Comparing (A.22) with (A.23), to show that Q̂ − Q is dominated by Q, we need to

consider the last term in (A.22) only, i.e., Op

{
[a2 + (p− 1)r2]−1 (αp + βp)t

′
pε̂2

}
. Notice

that all other terms in (A.22) are dominated by the leading negative terms in (A.23). It

can be shown that

E
{

[a2 + (p− 1)r2]−1 (αp + βp)t
′
pε̂2

}
= 0,

V ar
{

[a2 + (p− 1)r2]−1 (αp + βp)t
′
pε̂2

}
= [a2 + (p− 1)r2]−2

·
{ [
Su(Σ1)/p+ β2

p

]
[Su(Σ2)/(pn2)]

}
.

That is, given that Su(Σi) = pai + p(p− 1)ri for i = 1, 2, we have

[a2 + (p− 1)r2]−1 (αp + βp)t
′
pε̂2 = Op

{√
[β2
p + a1 + (p− 1)r1][a2 + (p− 1)r2]−1/n2

}
= Op

{
n−1/2p1/2|βp|

}
+Op

(
pn−1/2

)
.

The second equality is by conditions 2.1 and 2.4-1. If |βp| = O(
√
p), the above reduces to

Op(pn
−1/2) and is dominated by the leading negative terms in (A.23). Otherwise, if |βp|

has the order of p1/2+ε, for some ε > 0, then

[a2 + (p− 1)r2]−1(αp + βp)t
′
pε̂2 = op

{
n−1/2[a2 + (p− 1)r2]−1(αp + βp)

2
}
,

(A.24)

where the right-hand side already appears in (A.22) and is dominated by the leading

negative terms in (A.23). To show (A.24), notice that

[a2 + (p− 1)r2]−1(αp + βp)t
′
pε̂2

n−1/2[a2 + (p− 1)r2]−1(αp + βp)2
=

Op

[
n−1/2

√
a2 + (p− 1)r2

]
n−1/2

{
βp +Op

[√
a1 + (p− 1)r1

]} ,
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which tends to 0 when p is sufficiently large.

This finishes the proof.

Proof of Theorem 2.2. The proof is similar to the proof of Theorem 2.1 and is omitted.

A.2 Proof of Theorem 2.3

Next, we prove the asymptotically perfect classification property of Q̂ĥ,0, the proposed Se-

pQDA rule, which involves estimated parameters and estimated transformation functions.

We begin by dealing with Qĥ,0, the Se-pQDA rule with true parameters but estimated

transformation functions; and proceed to prove that the error introduced by the estimated

transformation functions does not affect the convergence of the misclassification probability

of Qh,0, the Se-pQDA rule with true parameters and true transformation functions; we then

return to consider Q̂ĥ,0.

Without loss of generality, we use class 1 training data to estimate the transformation

functions. Hence, for x ∈ C1, we have hj(xj) ∼ N(0, 1), j = 1, · · · , p, and µ1 = E[h(x)] =

0. With a slight abuse of notation, the estimated and true marginal CDF’s of class 1 are

denoted by F̂j(·) and Fj(·) respectively.

Notice that the pQDA rule with true parameters assigns x to class 1 if Q0 ≤ 0 and to

class 2 otherwise, where

Q0 = p ln (a1/a2) + a−1
1 (x− µ1)′(x− µ1)− a−1

2 (x− µ2)′(x− µ2)

= p ln (a1/a2) + a−1
1

p∑
j=1

(xj − µ1j)
2 − a−1

2

p∑
j=1

(xj − µ2j)
2

=
(
a−1

1 − a−1
2

) p∑
j=1

(xj − ηj)2 + C,

in which η = (a−1
1 − a−1

2 )−1(a−1
1 µ1 − a−1

2 µ2) and

C = p ln (a1/a2) + a−1
1 µ′1µ1 − a−1

2 µ′2µ2 − (a−1
1 − a−1

2 )

p∑
j=1

η2
j .
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For the Se-pQDA rule, we essentially apply the pQDA rule on the transformed data. If

we plug in the true transformation functions and true parameters, the Se-pQDA function

Qh,0 becomes Q0 for the transformed data, where

Qh,0 =
(
a−1

1 − a−1
2

) p∑
j=1

[hj(xj)− ηj]2 + C,

If we plug in the estimated transformation functions but true parameters, the Se-pQDA

function becomes

Qĥ,0 =
(
a−1

1 − a−1
2

) p∑
j=1

[
ĥj(xj)− ηj

]2

+ C.

The corresponding misclassification probability can be expressed as

P
(
Qĥ,0 > 0|x ∈ C1

)
.

We have shown that the pQDA function Q0 (or Qh,0 for transformed data) enjoys

the property of asymptotically perfect classification. To show that Qĥ,0 enjoys the same

property, we are to compare
∑p

j=1

[
ĥj(xj)− ηj

]2

in Qĥ,0 with
∑p

j=1 [hj(xj)− ηj]2 in Qh,0.

The following inequalities regarding the normal distribution are repeatedly used in our

proof.

Proposition A.1. Let φ(t) and Φ(t) be the pdf and cdf of N(0, 1), then we have

(a) for t ≥ 1,
φ(t)

2t
≤ 1− Φ(t) ≤ φ(t)

t
;

(b) for t ≥ 0.99,

Φ−1(t) ≤

√
2 ln

(
1

1− t

)
;

The following lemma shows that
∣∣∣ĥj(xj)− ηj∣∣∣2 is close to |hj(xj)− ηj|2 for hj(xj) ∈ An.

130



Lemma A.5. For some 0 < γ1 < 1, let An =
[
−
√
γ1 lnn,

√
γ1 lnn

]
. When n is sufficiently

large, for any ε > 0, we have for j = 1, · · · , p,

P

{
sup

hj(xj)∈An

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε

}

≤ 2 exp

{
−n1−γ1

[
C1π

2γ1 lnn ln
(

4n
γ1
2

√
2πγ1 lnn

)]−1

ε2
}

+2 exp
[
−n1−γ1(C2πγ1 lnn)−1

]
,

where C1 and C2 are some positive constants.

Proof. By mean value theorem,[
ĥj(xj)− ηj

]2

− [hj(xj)− ηj]2 = 2 [Φ−1(ξ)− ηj] (Φ−1)
′
(ξ)
[
F̂j(xj)− Fj(xj)

]
,

for some ξ ∈
[
min

(
F̂j(xj), Fj(xj)

)
,max

(
F̂j(xj), Fj(xj)

)]
.

To show that
∣∣∣ĥj(xj)− ηj∣∣∣2 is close to |hj(xj)− ηj|2 for hj(xj) ∈ An, first of all, we

bound
∣∣(Φ−1)

′
(ξ)
∣∣. By considering the range of Fj(xj) and F̂j(xj) for hj(xj) ∈ An, Mai

and Zou (2015) show that, with probability no less than 1− 2 exp [−n1−γ1/(16πγ1 lnn)],

n−γ1/2/
[
4(2πγ1 lnn)1/2

]
≤ ξ ≤ 1− n−γ1/2/

[
4(2πγ1 lnn)1/2

]
. (A.25)

In conjunction with Proposition A.1, it can be shown that∣∣∣(Φ−1
)′

(ξ)
∣∣∣ =

{
φ
[
Φ−1(ξ)

]}−1 ≤ 8πnγ1/2
√
γ1 lnn.

Next, we bound |Φ−1(ξ)− ηj|. Due to (A.25) and Proposition A.1, with probability no

less than 1− 2 exp [−n1−γ1(16πγ1 lnn)−1],

|Φ−1(ξ)− ηj| ≤ |Φ−1(ξ)|+ |ηj|

≤
√

2 ln
(

4nγ1/2
√

2πγ1 lnn
)

+ |ηj|.
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As |ηj|’s do not diverge with n, we bound the following product, when n is sufficiently

large,

2
∣∣Φ−1(ξ)− ηj

∣∣ ∣∣∣(Φ−1
)′

(ξ)
∣∣∣ ≤ 32

√
ln
(

4nγ1/2
√

2πγ1 lnn
)(

πnγ1/2
√
γ1 lnn

)
≡ M∗

n.

Therefore,

P

{
sup

hj(xj)∈An

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε

}

≤ P

[
M∗

n sup
hj(xj)∈An

∣∣∣F̂j(xj)− Fj(xj)∣∣∣ > ε

]
+2 exp

[
−n1−γ1(16πγ1 lnn)−1

]
. (A.26)

The probability involving M∗
n on the right hand side,

P

[
M∗

n sup
hj(xj)∈An

∣∣∣F̂j(xj)− Fj(xj)∣∣∣ > ε

]

≤ P

[
M∗

n sup
hj(xj)∈An

∣∣∣F̂j(xj)− F̃j(xj)∣∣∣ > ε/2

]

+P

[
M∗

n sup
hj(xj)∈An

∣∣∣Fj(xj)− F̃j(xj)∣∣∣ > ε/2

]
. (A.27)

As sup
hj(xj)∈An

∣∣∣F̂j(xj)− F̃j(xj)∣∣∣ ≤ 1/n2 by definition and M∗
n/n

2 → 0, the first probability

on the right hand side of (A.27) is 0 when n is sufficiently large. The second probability,

P

[
M∗

n sup
hj(x)∈An

∣∣∣Fj(x)− F̃j(x)
∣∣∣ > ε/2

]
≤ 2 exp

{
−2n [ε/(2M∗

n)]2
}

≤ 2 exp

{
−n1−γ1ε2

[
C1π

2γ1 lnn ln
(

4nγ1/2
√

2πγ1 lnn
)]−1

}
, (A.28)
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where C1 is a positive constant and the first inequality is from Dvoretzky-Kiefer-Wolfowitz

(DKW) inequality.

Combining (A.26), (A.27) and (A.28), we finish the proof.

Lemma A.5 shows that
∣∣∣ĥj(xj)− ηj∣∣∣2 is close to |hj(xj)− ηj|2 for hj(xj) ∈ An. Next

we focus on Acn, which will be partitioned into three regions. For some positive constants

0 < γ1 < 1, γ2 > 0 and γ3 > 0, we define:

Bn = [−γ2 lnn,−
√
γ1 lnn) ∪ (

√
γ1 lnn, γ2 lnn];

Cn = [−nγ3 ,−γ2 lnn) ∪ (γ2 lnn, nγ3 ];

Dn = (−∞,−nγ3) ∪ (nγ3 ,+∞).

Although the regions are similar to those in Mai and Zou (2015), we consider how many

components of a new obsevation fall into each region to establish the accuracy of the QDA

rule that depends on the estimated transformation (Qĥ,0), whereas they considered how

many samples (of a particular dimension) fall into each region to establish the accuracy of

estimated parameters. This major difference is discussed in detail later.

Lemma A.6. Let ρj1j2 be the correlation between hj1(xj1) and hj2(xj2), for j1, j2 = 1, 2, . . . , p,

and ρ = max{0,max
j1 6=j2

(ρj1j2)}. Let α1 and α2 be positive constants such that α1 > 1 −
γ1/[2(ρ+ 1)]. Define #Bn = #{j : hj(xj) ∈ Bn}, i.e., the number of marginal random

variables hj(xj)’s that fall into Bn, and Cn, Dn analogously. For sufficiently large n, we

have

sup
hj(xj)∈Bn

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ ≤ (

2
√

lnn+ c6

)2

+ (γ2 lnn+ c6)2 ;

(A.29)

sup
hj(xj)∈Cn

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ ≤ (

2
√

lnn+ c6

)2

+ (nγ3 + c6)2 ;

(A.30)
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P(#Bn > pnα1−1) = O

{
n2[1−α1− γ1

2(1+ρ) ]
[
(lnn)

(
1− n1−α1−γ1/2

)2
]−1
}

;

(A.31)

P(#Cn > pnα2−1) = O


p−1(γ2 lnn) exp

[
− (γ2 lnn)2

2

]
+ exp

[
− (γ2 lnn)2

ρ+1

]
n2α2−2 (γ2 lnn)2

[
1− n1−α2 exp

(
− (γ2 lnn)2

2

)
/ (γ2 lnn)

]2

 ;

(A.32)

P(#Dn > p/n) = O


p−1n2−γ3 exp

(
−n2γ3

2

)
+ n2−2γ3 exp

(
−n2γ3

1+ρ

)
[
1− n1−γ3 exp

(
−n2γ3

2

)]2

 .

(A.33)

Proof. Inequalities (A.29) and (A.30) are because the range of ĥj(xj) is decided by its

definition and Proposition A.1 and the range of hj(xj) is decided by the definitions of Bn

and Cn. To be more specific about ĥj(xj),∣∣∣ĥj(xj)∣∣∣ ≤ Φ−1(1− 1/n2) ≤ 2
√

lnn.

Now we prove (A.31). Let wj = 1{hj(xj)∈Bn} be the indicator of whether hj(xj) is in Bn.

Then the probability of hj(xj) falling into Bn is

pj = P [hj(xj) ∈ Bn] = E(wj).

Similarly, the probability of both hj1(xj1) and hj2(xj2) falling into Bn is defined as

pj1j2 = P [hj1(xj1) ∈ Bn, hj2(xj2) ∈ Bn] = E(wj1wj2).

To examine the order of P(#Bn > pnα1−1), we now focus on pj and pj1j2 which are

both useful for bounding P(#Bn > pnα1−1) as shown later.

For pj, because of normality, the definition of Bn and Proposition A.1, when n is

sufficiently large,

pj ≤ 2
[
1− Φ

(√
γ1 lnn

)]
≤
√

2n−γ1/2/
√
πγ1 lnn ≤ n−γ1/2.
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For pj1j2 , consider the following bivariate normal random vector[
hj1(xj1)

hj2(xj2)

]
∼ N

[
0,

(
1 ρj1j2

ρj1j2 1

)]
.

Then,

pj1j2 ≤ 4 P
[
hj1(xj1) >

√
γ1 lnn, hj2(xj2) >

√
γ1 lnn

]
≤ (1− ρj1j2)−2(1− ρ2

j1j2
)3/2(γ1 lnn)−1 exp

(
− γ1 lnn

1 + ρj1j2

)
≤ (1− ρ)−2(γ1 lnn)−1 exp

(
−γ1 lnn

1 + ρ

)
,

where the second inequality is due to the bound of Mill’s ratio for multivariate normal

distribution (Savage, 1962; Hashorva and Hüsler, 2003). Thus,

P(#Bn > pnα1−1) = P

(
p∑
j=1

wj > pnα1−1

)

≤ P

(
p∑
j=1

wj −
p∑
j=1

pj > pnα1−1 − pn−γ1/2
)

≤ E

( p∑
j=1

wj −
p∑
j=1

pj

)2
 (pnα1−1 − pn−

γ1
2 )−2.
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Now we focus on the expectation on the right hand side of the previous inequality,

E

( p∑
j=1

wj −
p∑
j=1

pj

)2
 = E

( p∑
j=1

wj

)2

+

(
p∑
j=1

pj

)2

− 2

(
p∑
j=1

wj

)(
p∑
j=1

pj

)
=

 p∑
j=1

pj + 2
∑
j1<j2

pj1j2 −

(
p∑
j=1

pj

)2


≤
[√

2pn−γ1/2
(√

πγ1 lnn
)−1

+p(p− 1)(1− ρ)−2(γ1 lnn)−1 exp

(
−γ1 lnn

1 + ρ

)]
= O

[
pn−γ1/2

(√
πγ1 lnn

)−1

+ p2(lnn)−1n−γ1/(1+ρ)

]

= O

[
p2(lnn)−1n−γ1/(1+ρ)

]
.

The last equality is because the ratio between the first and second item in the right hand

side of the second last equality tends to 0, i.e.,

pn−γ1/2
(√

lnn
)−1

p2(lnn)−1n−γ1/(1+ρ)
= p−1(lnn)1/2n

γ1(1−ρ)
2(1+ρ) → 0.

Now we bound P(#Bn > pnα1−1),

P(#Bn > pnα1−1) ≤ E

( p∑
j=1

wj −
p∑
j=1

pj

)2
 (pnα1−1 − pn−γ1/2)−2.

= O

[
n−γ1/(1+ρ)(lnn)−1(nα1−1 − n−γ1/2)−2

]

= O

{
n2[1−α1− γ1

2(1+ρ) ]
[
(lnn)

(
1− n1−α1−γ1/2

)2
]−1
}
.

The above right hand side is desired and tends to 0 because it is assumed that α1 >

1 − γ1/[2(1 + ρ)]. The proof of P(#Cn > pnα2−1) and P(#Dn > p/n) is similar and

omitted. This finishes the proof.
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The next lemma shows that Qĥ,0, the Se-pQDA rule with estimated transformation

functions but true parameters, enjoys the property of asymptotically perfect classification.

Lemma A.7. Under Condition 2.6, if conditions 2.1, 2.3 and 2.5 hold for the transformed

data, and p exp
(
−n1−γ1/ ln2 n

)
→ 0, then,

lim
p→∞,n→∞

Rĥ,0 = lim
p→∞,n→∞

P(Qĥ,0 > 0|x ∈ C1) + P(Qĥ,0 ≤ 0|x ∈ C2) = 0.

Proof. Define A, the collection of index j such that hj(xj) ∈ An, i.e.,

A = {j|hj(xj) ∈ An},

and B, C and D analogously. For any ε > 0,

P

{
p−1

∣∣∣∣∣
p∑
j=1

[
ĥj(xj)− ηj

]2

−
p∑
j=1

[hj(x)− ηj]2
∣∣∣∣∣ > ε

}

≤ P

{
p−1

p∑
j=1

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε

}

≤ P
{
p−1#An max

j∈A

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε/4

}
+P
{
p−1#Bn max

j∈B

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε/4

}
+P
{
p−1#Cn max

j∈C

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε/4

}
+P
{
p−1#Dn max

j∈D

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε/4

}
≤ P

{
max
j∈A

sup
hj(xj)∈An

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε/4

}

+P

{
p−1#Bn max

j∈B
sup

hj(xj)∈Bn

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε/4

}

+P

{
p−1#Cn max

j∈C
sup

hj(xj)∈Cn

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε/4

}

+P
{
p−1#Dn max

j∈D

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε/4

}
. (A.34)
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We require α1 < 1 and 2γ3 + α2 < 1. By inequality (A.29) and (A.30) in Lemma A.6, if

#Bn ≤ pnα1−1, #Cn ≤ pnα2−1 and n is sufficiently large,

p−1#Bn max
j∈B

sup
hj(xj)∈Bn

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ ≤ ε/4,

p−1#Cn max
j∈C

sup
hj(xj)∈Cn

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ ≤ ε/4;

therefore,

P

{
p−1#Bn max

j∈B
sup

hj(xj)∈Bn

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε/4

}
≤ P(#Bn > pnα1−1), (A.35)

P

{
p−1#Cn max

j∈C
sup

hj(xj)∈Cn

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε/4

}
≤ P(#Cn > pnα2−1). (A.36)

For the probability involving Dn, when #Dn ≤ p/n and n is sufficiently large,

P
{
p−1#Dn max

j∈D

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε/4

}
≤ P

{
n−1

[(
2
√

lnn+ c7

)2

+ max
j∈D

(
hj(xj)− ηj

)2
]
> ε/4

}
≤ P

[
n−1/2 max

j∈D
|hj(xj)− ηj| >

√
ε/8

]
≤ P

[
n−1/2 max

j∈D
|hj(xj)| >

√
ε/4

]
≤

p∑
j=1

P
[
|hj(xj)| >

√
nε/4

]
= 2p

[
1− Φ

(√
nε/4

) ]
≤ (2p)

[
4/(2πnε)1/2

]
exp (−nε/32)

= 4
√

2(πε)−1/2pn−1/2 exp (−nε/32) . (A.37)

The last inequality is due to Proposition 1 for sufficiently large n. In addition, the far right

hand side in (A.37) tends to 0 due to the assumption of ln p = o(n).
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When n is sufficiently large, with Lemma A.5, Lemma A.6, (A.35), (A.36) and (A.37),

we have

P

{
p−1

∣∣∣∣∣
p∑
j=1

[
ĥj(xj)− ηj

]2

−
p∑
j=1

[hj(x)− ηj]2
∣∣∣∣∣ > ε

}

≤ 2p exp

{
−n1−γ1

[
C1π

2γ1 lnn ln
(

4nγ1/2
√

2πγ1 lnn
)]−1

ε2
}

+2p exp
{
− n1−γ1(C2πγ1 lnn)−1

}
+ P(#Bn > pnα1−1)

+P(#Cn > pnα2−1) + P(#Dn > p/n)

+4
√

2(πε)−1/2pn−1/2 exp (−εn/32) (A.38)

≡ P ′.

Notice that P ′ tends to 0 when p→∞.

For Qĥ,0, the Se-pQDA function with estimated transformation functions but true pa-

rameters, the probability of misclassifying x from class 1 to class 2 can be expressed as the

following

P
(
Qĥ,0 > 0|x ∈ C1

)
= P

{(
a−1

1 − a−1
2

) p∑
j=1

[
ĥj(xj)− ηj

]2

+ C > 0

∣∣∣∣∣x ∈ C1

}

≤ P

{(
a−1

1 − a−1
2

) p∑
j=1

[
hj(xj)− ηj

]2

+ C + p
∣∣a−1

1 − a−1
2

∣∣ ε > 0

∣∣∣∣∣x ∈ C1

}
+ P ′

= P
[
Qh,0 + p

∣∣a−1
1 − a−1

2

∣∣ ε > 0|x ∈ C1

]
+ P ′. (A.39)

Notice that Qh,0, the Se-pQDA function with true transformation functions and true

parameters, is equivalent to Q0, the p-QDA rule in (A.10). We have shown that Q0 tends

to negative infinity at the order of at least p. We can choose a small ε > 0 so that

p
∣∣a−1

1 − a−1
2

∣∣ ε is dominated by the leading negative terms in Q0. For example, ε can be

chosen so that
∣∣a−1

1 − a−1
2

∣∣ ε < c5.

Notice that P
(
Qĥ,0 > 0|x ∈ C1

)
is only one-side misclassification probability with ĥ

being estimated from the class 1 training data. With the current ĥ, a transformed class 2
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observation obviously does not follow standard normal distribution marginally. Hence, the

proof for P
(
Qĥ,0 ≤ 0|x ∈ C2

)
→ 0 needs to be modified from that of P

(
Qĥ,0 > 0|x ∈ C1

)
→

0. Similar to the construction of An, Bn, Cn and Dn when proving P
(
Qĥ,0 > 0|x ∈ C1

)
→

0, we construct the following regions in order to prove P
(
Qĥ,0 ≤ 0|x ∈ C2

)
→ 0.

Anj =
[
− σ2j

√
γ1 lnn+ µ2j, σ2j

√
γ1 lnn+ µ2j

]
;

Bnj =
[
− σ2jγ2 lnn+ µ2j,−σ2j

√
γ1 lnn+ µ2j

)
∪
(
σ2j

√
γ1 lnn+ µ2j, σ2jγ2 lnn+ µ2j

]
;

Cnj =
[
− σ2jn

γ3 + µ2j,−σ2jγ2 lnn+ µ2j

)
∪
(
σ2jγ2 lnn+ µ2j, σ2jn

γ3 + µ2j

]
;

Dnj =
(
−∞,−σ2jn

γ3 + µ2j

)
∪
(
σ2jn

γ3 + µ2j,+∞
)
. (A.40)

We first show that
∣∣∣ĥj(xj)− ηj∣∣∣2 is close to |hj(xj)− ηj|2 for hj(xj) ∈ Anj. Define γ∗1 =

γ1(σmax + b1)2, where σmax = max1≤j≤p σ2j and b1 is some positive constant. Let

A∗n =
[
−
√
γ∗1 lnn,

√
γ∗1 lnn

]
.

Then for sufficiently large n, Anj ⊂ A∗n for all j, and

P

{
sup

hj(xj)∈Anj

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε

}

≤ P

{
sup

hj(xj)∈A∗n

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε

}
Then for 0 < γ∗1 < 1 and sufficiently large n,

P

{
sup

hj(xj)∈Anj

∣∣∣∣[ĥj(xj)− ηj]2

− [hj(xj)− ηj]2
∣∣∣∣ > ε

}

≤ 2 exp

{
− n1−γ∗1 ε2

[
C1π

2γ∗1 lnn ln
(

4nγ
∗
1/2
√

2πγ∗1 lnn
)]−1

}

+2 exp

[
− n1−γ∗1 (C2πγ

∗
1 lnn)−1

]
.
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The proof follows that of Lemma A.5 by replacing γ1 with γ∗1 .

The proof of Lemma A.6 and Lemma A.7 alike for Bnj, Cnj, and Dnj can be slightly

modified from that of Lemma A.6 and Lemma A.7 for Bn, Cn, and Dn. Notice that scale

and location change doesn’t affect the order of the bounds in (A.29), (A.30) and (A.37).

To bound #Bnj as in (A.31), notice that hj(xj) ∈ Bnj is equivalent to

σ−1
2j [hj(xj)− µ2j] ∈

[
−γ2 lnn,−

√
γ1 lnn

)
∪
(√

γ1 lnn, γ2 lnn
]
,

where σ−1
2j [hj(xj)− µ2j] ∼ N(0, 1), so the proof follows. Bound #Cnj and #Dnj as in

(A.32) and (A.33).

As for 0 < γ∗1 < 1, if (σmax + b1) ≤ 1 then no extra step needs to be taken; otherwise,

given other positive constants, we need to have 0 < γ1(σmax+b1)2 < 1 instead of 0 < γ1 < 1

in order to show P
(
Qĥ,0 ≤ 0|x ∈ C2

)
→ 0.

This finishes the proof.

We now proceed to show that Q̂ĥ,0, the proposed Se-pQDA rule (with estimated trans-

formation functions and estimated parameters) also enjoys the property of asymptotically

perfect classification. Its performance will be dependent upon not only the accuracy of

estimated transformation functions ĥj (·)’s but also the accuracy of estimated parameters.

To investigate the effect of parameter estimation, we now ignore the class label for

brevity. We assume that transformed data follow a multivariate normal distribution, i.e.

h(yk)
i.i.d.∼ N (µ,Σ), k = 1, · · · , n. Denote ĥj = Φ−1 ◦ F̂j, where F̂j is defined as in Section

2.3; denote, for the jth dimension, µj = E[hj(yjk)] and µ̂j = (1/n)
∑n

k=1 ĥj(yjk) as the true

and estimated mean respectively; σ2
j = V ar[hj(yjk)] and σ̂2

j = (1/n)
∑n

k=1

[
ĥj(yjk)− µ̂j

]2

as the true and estimated variance respectively.

Notice that estimating h′js based on the class 1 training data ensures that after transfor-

mation the marginal distributions of class 1 data are N(0, 1); hence, it seems unnecessary

to estimate µj and σ2
j for the transformed class 1 data. However, the estimated means and

variances of the transformed class 2 data need to be examined. The following result on

class 1 offers us insight on how estimated transformation functions affect the parameter

estimation.
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We present without proof, in the following proposition, some results from Mai and Zou

(2015). Notice that, Proposition A.2 holds for every j ∈ {1, · · · , p}.

Proposition A.2. From proof of Theorem 1 in Mai and Zou (2015), for some constant

C sufficiently large n and any ε > 0,

P (|µ̂j − µj| > ε) ≤ ζ∗1 (ε);

P
(∣∣σ̂2

j − σ2
j

∣∣ > ε
)
≤ ζ∗2 (ε),

in which

ζ∗1 (ε) = 2 exp(−Cnε2) + 4 exp(−Cn1−γ1ε2/(γ1 lnn)) + exp(−Cn2α1−1)

+ exp(−Cn2α2−1) + (2π)−1/22 exp(−Cn2γ3);

ζ∗2 (ε) = 2 exp(−Cn2γ3) + exp(−Cn2α2−1)

+ exp(−Cn2α1−1) + 4 exp(−Cn1−γ1ε2/(γ2
1 ln2 n)).

Remark A.3. Note that α1, α2, α3, γ1 and γ3 are defined as in Lemma A.5 — Lemma

A.7. In fact, the proof of this proposition applies similar technique. Previously, when we

bound the difference between
∑p

j=1

(
ĥj(xj)− ηj

)2

and
∑p

j=1 (hj(xj)− ηj)2, we consider,

across dimensions, how many components of h(x) fall into regions An, Bn, Cn and Dn,

respectively. Now, we bound the estimation error of mean and variance for every j ∈
{1, · · · , p}; we consider, across samples, how many realizations in {yjk, k = 1, . . . , n} fall

into regions An, Bn, Cn and Dn, respectively.

Remark A.4. To summarize, the inequalities 0 < γ1 < 1, γ2 > 0, γ3 > 0, α1 + γ1/(2(ρ+

1)) > 1, α1 < 1 and 2γ3 + α2 < 1 need to be satisfied. We can set γ1 = θ(1 + ρ),

γ3 = 1/6− θ/2, α1 = 1− θ/4 and α2 = 2/3 for any 0 < θ < 1/3. Then,

ζ∗1 (ε) = 2 exp(−Cnε2) + 4 exp(−Cn1−θ(1+ρ)ε2/lnn) + exp(−Cn1−θ/2)

+ exp(−Cn1/3) + (2π)−1/22 exp(−Cn1/3−θ);

ζ∗2 (ε) = 2 exp(−Cn1/3−θ) + exp(−Cn1/3) + exp(−Cn1−θ/2)

+4 exp(−Cn1−θ(1+ρ)ε2/ ln2 n). (A.41)
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Proof of Theorem 2.3. As h(·) = Φ−1 ◦ F1(·), then µ1 = 0 and a1 = tr(Σ1)/p = 1. Hence,

Q̂ĥ,0 only involves the estimates of µ2, a2 and ĥj’s, not µ1 and a1. Notice that for any

ε2 > 0,

P
(

max
1≤j≤p

|µ̂2j − µ2j| > ε2

)
≤

p∑
j=1

P
(
|µ̂2j − µ2j| > ε2

)
≤ pζ∗1 (ε2) (A.42)

and

P (|â2 − a2| > ε2) ≤ P
(
p−1

p∑
j=1

∣∣σ̂2
2j − σ2

2j

∣∣ > ε2

)
≤

p∑
j=1

P
(∣∣σ̂2

2j − σ2
2j

∣∣ > ε2
)

≤ pζ∗2 (ε2). (A.43)

According to (A.41), the leading terms in the right-hand-side of (A.42) and (A.43) are

both

p exp(−Cn1/3−θ).

Thus, if p exp(−Cn1/3−θ)→ 0, the right-hand-side of (A.42) and (A.43) converges to 0.

The proposed Se-pQDA function is

Q̂ĥ,0 = ln
(
|Â1|/|Â2|

)
+
[
ĥ(x)− µ̂1

]′
Â−1

1

[
ĥ(x)− µ̂1

]
−
[
ĥ(x)− µ̂2

]′
Â−1

2

[
ĥ(x)− µ̂2

]
= p

[
ln (1/â2) + (1− 1/â2) ĥ(x)′ĥ(x)/p+ 2µ̂′2ĥ(x)/(pâ2)− µ̂′2µ̂2/(pâ2)

]
.

We now consider the above right hand side without the factor p by parts, given that

max1≤j≤p|µ̂2j − µ2j| < ε2 and |â2 − a2| < ε2.

First of all,

ln (1/â2) ≤ ln (1/a2) + a−1
2 ε2 +O(ε22), (A.44)

1− 1/â2 ≤ 1− 1/a2 + a−2
2 ε2 +O(ε22). (A.45)

The right hand sides in (A.44) and (A.45) can be derived from Taylor expansion.
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Secondly, with (A.45), we can show that

(1− 1/â2) ĥ(x)′ĥ(x)/p ≤ (1− 1/a2) ĥ(x)′ĥ(x)/p

+
[
a−2

2 ε2 +O(ε22)
]

4 lnn. (A.46)

Thirdly, for any ε3 > 0 and sufficiently large n,

P
[∣∣∣µ̂′2ĥ(x)/(pâ2)− µ′2ĥ(x)/(pa2)

∣∣∣ > ε3

]
≤ P

[
p−1
∣∣∣µ̂′2ĥ(x)/â2 − µ̂′2ĥ(x)/a2

∣∣∣ > ε3/2
]

+P
[
p−1
∣∣∣µ̂′2ĥ(x)/a2 − µ′2ĥ(x)/a2

∣∣∣ > ε3/2
]

≤ P

[
p−1O(ε2)2

√
lnn

p∑
j=1

(
|µ2j|+ ε2

)
> ε3/2

]
+P
(

2ε2
√

lnn/a2 > ε3/2
)
. (A.47)

Then set ε2 = (lnn)−1−α for some α > 0, (A.47) tends to 0 when n is sufficiently large.

Fourthly, from (A.45),

µ̂′2µ̂2/(â2p) ≥ (µ̂′2µ̂2/p)
[
1/a2 − a−2

2 ε2 +O(ε22)
]

= µ′2µ2/(a2p) +O(ε2), (A.48)

as

µ̂′2µ̂2/p =

p∑
j=1

µ̂2
2j/p

=

p∑
j=1

[
µ2

2j + 2µ2j(µ̂2j − µ2j) + (µ̂2j − µ2j)
2
]
/p

≥
p∑
j=1

(µ2
2j − |2µ2jε2|)/p

=

p∑
j=1

µ2
2j/p− 2ε2

p∑
j=1

|µ2j|/p. (A.49)
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As a result of combining (A.44), (A.46), (A.47) and (A.48), the probability of misclassifying

ĥ(x) from class 1 to class 2 is

P
(
Q̂ĥ,0 > 0|x ∈ C1

)
= P

[
p ln (1/â2) + (1− 1/â2) ĥ(x)′ĥ(x) + 2µ̂′2ĥ(x)/â2 − µ̂′2µ̂2/â2 > 0|x ∈ C1

]
≤ P (|â2 − a2| > ε2) + P

(
max
1≤j≤p

|µ̂2j − µ2j| > ε2

)
+P
[
p ln (1/a2) + (1− 1/a2) ĥ(x)′ĥ(x) + 2µ′2ĥ(x)/a2 − µ′2µ2/a2

+En > 0|x ∈ C1

]
≤ pζ∗1 (ε2) + pζ∗2 (ε2) + P

[
Qĥ,0 + En > 0|x ∈ C1

]
≤ pζ∗1 (ε2) + pζ∗2 (ε2) + P [Qh,0 + p |1− 1/a2| ε+ En > 0|x ∈ C1] + P ′ (A.50)

where ε2 = (lnn)−1−α for some α > 0 and

En/p =a−1
2 ε2 +

[
a−2

2 ε2 +O(ε22)
]

4 lnn+ 2ε3 +O(ε2).

If p exp(−Cn1/3−θ) → 0 for any 0 < θ < 1/3, then (A.50) goes to 0. Note that the

condition in Lemma A.7 for P ′ → 0 is satisfied because 1−γ1 = 1−θ/(1+ρ) > 1/3−θ. We

also need to choose small ε and ε3 so that (1−1/a2)ε+ 2ε3 being small in conjunction with

the convergence of En/p ensures Q̂ĥ,0 is dominated by Qh,0 which is negative for sufficiently

large p.

This proves the probability of the proposed Se-pQDA misclassifying ĥ(x) from class 1

to class 2 converges to 0. Similarly, we can prove that the other side of the misclassification

probability converges to 0. This finishes the proof.
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Appendix B

Proofs of Chapter 3

B.1 Main theorems

Proof of Theorem 3.1. We use the framework of the proof for the consistency of the sparse

precision matrix estimator in Rothman et al. (2008). In spite of the similar framework,

our proof is essentially different from theirs in that we are to establish consistency for

estimators with the “low-rank + diagonal” matrix structure.

To study the solution of the optimization problem (3.3), we firstly recall the search

space,

Fr = {Θ | L ∈ Sp,r+ , D ∈ Dp
++ and Θ = −L+D}.

Base on that, we define another set

Er = {∆ | ∆ = Θ−Θ0,Θ ∈ Fr},

which can be thought as a “centered” version of Fr. As r ≥ r0 is assumed in this theorem,

we straightforwardly have Θ0 ∈ Fr and 0 ∈ Er.

Let f(Θ) = tr(ΘS)− log |Θ| be the value of the objective function at Θ, and F (∆) =

f(Θ0 + ∆)− f(Θ0). Let ∆̂r = Θ̂r −Θ0, we can prove the desired result

‖∆̂r‖F ≤M max(an,p,r, bn,p), (B.1)
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for some constant M , by proving

F (∆) > F (0) = 0 for all ∆ ∈M2r, (B.2)

in which

M2r = E2r ∩ {∆ | ‖∆‖F = M max (an,p,r, bn,p)} ∩ {∆ | ‖∆‖op ≤ C1},

and C1 is a constant so that ‖∆̂r‖op ≤ C1 (r = 1, . . . , p). The existence of C1 is validated

by Lemma B.1.

To clarify this, we show it leads to contradiction if (B.2) is true while (B.1) is not.

As ‖∆̂r‖F > M max(an,p,r, bn,p) and ‖0‖F < M max(an,p,r, bn,p), there exists a real number

0 < t < 1 so that ‖(1− t)0+ t∆̂r‖F = M max(an,p,r, bn,p). As ∆̂r ∈ Er and 0 ∈ Er, we have

(1 − t)0 + t∆̂r ∈ E2r. As ‖∆̂r‖op ≤ C1 by Lemma B.1, we have ‖(1 − t)0 + t∆̂r‖op ≤ C1.

Therefore, (1 − t)0 + t∆̂r ∈ M2r and F{(1 − t)0 + t∆̂r} > 0 by (B.2). However, as ∆̂r

minimizes F (∆) and F (∆̂r) ≤ 0, we also have

F
{

(1− t)0 + t∆̂r

}
≤ (1− t)F (0) + tF (∆̂r) ≤ 0

by convexity of F (∆), and this leads to contradiction.

The remaining work is to prove (B.2).

For any ∆ ∈M2r, we have

F (∆) = tr {(Θ0 + ∆)S} − log |Θ0 + ∆| − {tr(Θ0S)− log |Θ0|}
= tr(∆S)− {log |Θ0 + ∆| − log |Θ0|}. (B.3)

The bound of the second term in (B.3) is irrelevant to the assumed structure of the matrix;

according to Rothman et al. (2008) and the definition of M2r.

log |Θ0 + ∆| − log |Θ0| ≤ tr(Σ0∆)− (‖Θ0‖op + ‖∆‖op)−2‖∆‖2
F

≤ tr(Σ0∆)− (c−1
1 + C1)−2‖∆‖2

F . (B.4)

We write C2 = (c−1
1 + C1)−2. With (B.4) plugged into (B.3), we obtain

F (∆) ≥ C2‖∆‖2
F + tr {∆(S − Σ0)} . (B.5)
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Now we derive the bound of tr{∆(S − Σ0)} in (B.5). We notice that any ∆ ∈ E2r can

be written as ∆ = −(L−L0) +D−D0, in which −(L−L0) ∈ Sp,3r and D−D0 ∈ Dp. By

Lemma B.2, ∆ can also be decomposed as ∆ = L∆ + D∆, so that L∆ ∈ Sp,9r, D∆ ∈ Dp

and ‖∆‖2
F ≥ C3 (‖L∆‖2

F + ‖D∆‖2
F ) for some constant C3. We consider the absolute value,

| tr {∆(S − Σ0)} | ≤ | tr {L∆(S − Σ0)} |+ | tr {D∆(S − Σ0)} |

≤ ‖L∆‖∗‖S − Σ0‖op + ‖D∆‖F
{∑p

j=1
(sj − σ0j)

2
}1/2

≤ (9r)1/2‖L∆‖F‖S − Σ0‖op + p1/2‖D∆‖F max
1≤j≤p

|sj − σ0j|, (B.6)

in which sj and σ0j are the jth diagonal elements in S and Σ0 respectively. The second

inequality is because of the property of dual norm (Recht et al., 2010). The last inequality

uses inequalities regarding different matrix norms (Recht et al., 2010; Rothman et al.,

2008).

Under the normality assumption, with probability tending to 1, the sample covariance

matrix S satisfies

max
1≤j≤p

|sj − σ0j| ≤ C4(log p/n)1/2, ‖S − Σ0‖op ≤ C4(p/n)1/2, (B.7)

for some constant C4. The first inequality is by Lemma 1 in Rothman et al. (2008), and

the second inequality is by Proposition 2.1 in Vershynin (2012).

Combine (B.6) and (B.7), we have

| tr {∆(S − Σ0)} | ≤ C5(‖L∆‖F + ‖D∆‖F ) max(an,p,r, bn,p), (B.8)

for some constant C5.

By (B.5), (B.8) and ‖∆‖2
F ≥ C3 (‖L∆‖2

F + ‖D∆‖2
F ),

F (∆) ≥ C2‖∆‖2
F − C5(‖L∆‖F + ‖D∆‖F ) max(an,p,r, bn,p)

≥ C2‖∆‖2
F − C5 max(an,p,r, bn,p)

{
2
(
‖L∆‖2

F + ‖D∆‖2
F

)}1/2

≥ C2‖∆‖2
F − C6 max(an,p,r, bn,p)‖∆‖F

= ‖∆‖2
F

{
C2 − C6 max(an,p,r, bn,p)‖∆‖−1

F

}
= ‖∆‖2

F (C2 − C6/M)

> 0, (B.9)
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for sufficiently large constant M . Constant C6 depends on C3 and C5.

This completes the proof.

Proof of Theorem 3.2. Recall that dr = min
Θ∈Fr
‖Θ − Θ0‖F and Θr is a matrix in Fr so that

‖Θr −Θ0‖F = dr. As

‖Θ̂r −Θ0‖F ≤ ‖Θ̂r −Θr‖F + ‖Θr −Θ0‖F
= ‖Θ̂r −Θr‖F + dr

= ‖Θ̂r −Θr‖F +O {max(an,p,r0 , bn,p)} ,

we only need to prove ‖Θ̂r −Θr‖F = Op{max(an,p,r0 , bn,p)}.

We use similar technique as in the proof of Theorem 3.1.

Let f(Θ) = tr(ΘS)− log |Θ| be the value of the objective function at Θ, and Fr(∆) =

f(Θr + ∆) − f(Θr). To obtain the desired result ‖Θ̂r − Θr‖F ≤ M max(an,p,r0 , bn,p) for

some constant M , it is sufficient to prove

Fr(∆) > Fr(0) = 0 for all ∆ ∈Mr
2r, (B.10)

in which

Mr
2r = {∆ | ∆ = Θ−Θr,Θ ∈ F2r} ∩ {∆ | ‖∆‖F = M max (an,p,r0 , bn,p)} ∩ {∆ | ‖∆‖op ≤ C7}.

The constant C7 is defined as follows. As

‖Θ̂r −Θr‖op ≤ ‖Θ̂r −Θ0‖op + ‖Θr −Θ0‖F ≤ C1 + dr,

and dr → 0, we define C7 = 2C1 and guarantee ‖Θ̂r − Θr‖op ≤ C7. Afterwards, the

reasoning of the sufficiency of (B.10) is the same as that of the sufficiency of (B.2), and is

omitted.

Now, we prove (B.10).
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For any ∆ ∈ Mr
2r, by similar argument as for (B.5) and ‖Θr − Θ0‖F = dr, with C9

based on C7, we have

Fr(∆) ≥ C9‖∆‖2
F + tr {∆(S − Σr)}

= C9‖∆‖2
F + tr {∆(S − Σ0)}+ tr {∆(Σ0 − Σr)}

≥ C9‖∆‖2
F + tr {∆(S − Σ0)} − ‖∆‖F‖Σr − Σ0‖F

≥ C9‖∆‖2
F + tr{∆(S − Σ0)} − C10‖∆‖Fdr, (B.11)

for some constant C10. The second last inequality is because of Cauchy–Schwarz inequality,

and the last inequality uses ‖Σr −Σ0‖F = ‖Θ−1
r −Θ−1

0 ‖F ≤ C10‖Θr −Θ0‖F , which can be

derived by Taylor expansion.

By similar argument as from (B.6) to (B.9), for ∆ ∈Mr
2r

| tr{∆(S − Σ0)}| ≤ C11‖∆‖F max(an,p,r0 , bn,p). (B.12)

By (B.11), (B.12) and dr = O (max (an,p,r0 , bn,p)), with some constant C12 based on C10

and C11,

Fr(∆) ≥ C9‖∆‖2
F − C12‖∆‖F max(an,p,r0 , bn,p)

> 0

for sufficiently large M .

This completes the proof.

Proof of Theorem 3.3. Let f(Θ) = tr(ΘS)− log |Θ|, ∆̂r = Θ̂r −Θ0 and F (∆̂r) = f(Θ̂r)−
f(Θ0). The objective function in (3.4) becomes f(Θ̂r) + τ(r) when rank (L) is fixed to be

r.

The discussion in Section 3.4.2 shows that, the convergence rate in Theorem 3.3 is

already true for r ∈ A2 ∪A3 ∪ {r0}. Thus, if we can prove f(Θ̂r) + τ(r) > f(Θ̂r0) + τ(r0)

for all r ∈ A1 ∪A4 so that these ranks will not be selected, the proof of the theorem will

be completed.
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For a particular r 6= r0, τ(r) and τ(r0) are both fixed; therefore, all we need is a lower

bound of f(Θ̂r) − f(Θ̂r0). We firstly develop a general lower bound, and then discuss

r ∈ A1 and r ∈ A4 separately.

As f(Θ0) ≥ f(Θ̂r0), we have

f(Θ̂r)− f(Θ̂r0) ≥ f(Θ̂r)− f(Θ0) = F (∆̂r);

and it is sufficient if we have a lower bound for

F (∆̂r) = tr(∆̂rS)− {log |Θ0 + ∆̂r| − log |Θ0|}. (B.13)

With similar argument as (B.4), we have

log |Θ0 + ∆̂r| − log |Θ0| ≤ tr(Σ0∆̂r)− (‖Θ0‖op + ‖∆̂r‖op)−2‖∆̂‖2
F

≤ tr(Σ0∆̂r)− (c−1
1 + C1)−2‖∆̂r‖2

F . (B.14)

Just to clarify, although look alike, the bound of ‖∆‖op in (B.4) is due to the definition

of M2r, whereas the bound of ‖∆̂r‖op in (B.14) is because ‖∆̂r‖op ≤ C1 (r = 1, . . . , p) by

Lemma B.1.

Plug (B.14) into (B.13), we have

F (∆̂r) ≥ C2‖∆̂r‖2
F + tr{∆̂r(S − Σ0)}. (B.15)

Let L̂r and D̂r be the low-rank matrix component and diagonal matrix component of

Θ̂r respectively, we have ∆̂r = −(L̂r − L0) + (D̂r − D0), in which −(L̂r − L0) ∈ Sp,r+r0

and D̂r −D0 ∈ Dp. By Lemma B.2, ∆̂r can also be written as ∆̂r = L∆̂r
+D∆̂r

, in which

L∆̂r
∈ Sp,3(r+r0), D∆̂r

∈ Dp and ‖∆̂r‖2
F ≥ C3(‖L∆̂r

‖2
F + ‖D∆̂r

‖2
F ).

By similar argument as (B.6) – (B.8), the second part in (B.15) can be bounded as

| tr{∆̂r(S − Σ0)}| ≤ {3(r + r0)}1/2 ‖L∆̂r
‖F‖S − Σ0‖op + p1/2‖D∆̂r

‖F max
1≤j≤p

|sj − σ0j|

≤ C14‖∆̂r‖F max {an,p,(r+r0), bn,p}. (B.16)

for some constant C14.
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Plug (B.16) into (B.15), we have

F (∆̂r) ≥ C2‖∆̂r‖2
F − C14‖∆̂r‖F max {an,p,(r+r0), bn,p}. (B.17)

With the general lower bound of F (∆̂r) obtained, we now consider r ∈ A1.

When r ∈ A1, as r < r0, we replace the an,p,(r+r0) in (B.17) with an,p,r0 , and obtain

F (∆̂r) ≥ C2‖∆̂r‖2
F − C15‖∆̂r‖F max (an,p,r0 , bn,p), (B.18)

for some constant C15. By the definition of A1, we can represent dr as

dr = ηn,p,r0 max(an,p,r0 , bn,p)

for some ηn,p,r0 → ∞. By the definition of the distance dr, we have ‖∆̂r‖F ≥ dr. With

these facts, (B.18) can be simplified as

F (∆̂r) ≥ ‖∆̂r‖2
F

{
C2 − C15‖∆̂r‖−1

F max(an,p,r0 , bn,p)
}

≥ ‖∆̂r‖2
F

(
C2 − C15η

−1
n,p,r0

)
≥ C2‖∆̂r‖2

F/2

≥ C2d
2
r/2, (B.19)

when n and p are sufficiently large.

By (B.19) and Condition 3.3, we have{
f(Θ̂r) + τ(r)

}
−
{
f(Θ̂r0) + τ(r0)

}
≥ C2d

2
r/2 + τ(r)− τ(r0)

> 0, (B.20)

when n and p are sufficiently large.

When r ∈ A4, the an,p,(r+r0) in (B.17) can be replaced with an,p,r, and we obtain

F (∆̂r) ≥ C2‖∆̂r‖2
F − C15‖∆̂r‖F max (an,p,r, bn,p).
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As A4 is defined so that r/max(r0, log p)→∞, we have an,p,r/bn,p →∞ and

F (∆̂r) ≥ C2‖∆̂r‖2
F − C15‖∆̂r‖Fan,p,r. (B.21)

The right hand side of the inequality in (B.21) is quadratic in ‖∆̂r‖F and can be minimized

analytically. Thus, (B.21) is bounded as

F (∆̂r) ≥ −C16a
2
n,p,r, (B.22)

in which C16 is some positive constant based on C2 and C15. ,

By (B.22) and Condition 3.4, we have{
f(Θ̂r) + τ(r)

}
−
{
f(Θ̂r0) + τ(r0)

}
≥ −C16a

2
n,p,r + τ(r)− τ(r0)

> 0, (B.23)

when n and p are sufficiently large.

Results (B.20) and (B.23) together complete the proof.

B.2 Supplementary technical details

This appendix contains some lemmas. Lemma B.1 and Lemma B.2 are repeatedly used

in the proof of Theorem 3.1 – Theorem 3.3; Lemma B.3 is a useful result for the proof of

Lemma B.2; Lemma B.4 is used to justify Algorithm 1.

Lemma B.1. Let Θ̂r be the solution of the low-rank and diagonal matrix decomposition

when the rank is fixed to be r,

Θ̂r = arg min
Θ
{tr(ΘS)− log |Θ|},

subject to Θ = −L+D, Θ ∈ Sp+, L ∈ Sp,r+ , D ∈ Dp, (B.24)

in which S is the sample covariance matrix, we have ‖Θ̂r − Θ0‖op < C for some constant

C, with probability tending to 1.
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Proof. In the following proof, we will use the fact that, with probability tending to 1,

λmax(S−1) = λ−1
min(S) ≤

{
λmin(Σ0)− c(p/n)1/2

}−1

≤ 2/c1, (B.25)

for some constants c and c1, where c1 has been defined in Condition 3.1.

To prove this lemma, it suffices to show that

λmax(Θ̂r) ≤ λmax(S−1). (B.26)

This is because

‖Θ̂r −Θ0‖op ≤ ‖Θ̂r − S−1‖op + ‖S−1 −Θ0‖op
≤ max

{
λmax(Θ̂r), λmax(S−1)

}
+ max

{
λmax(S−1), λmax(Θ0)

}
≤ 4/c1,

The second inequality is due to the fact that Θ̂r, S
−1 and Θ0 are all positive definite. The

last inequality is because of (B.26) and (B.25).

It remains to show (B.26). We will prove that, if λmax(Θ) > λmax(S−1) instead (i.e.

(B.26) isn’t true), then Θ must not be the solution to (B.24) because the objective function

in (B.24) can always be further decreased. We conduct this proof in two steps.

Step 1: If λmax(Θ) > λmax(S−1), the objective function cannot reach its minimum.

Let Θ = D−L in which D and L are constrained as in (B.24). We eigen-decompose Θ

as

Θ = D − L = TΛT
T

,

in which T = (t1, . . . , tp) and Λ = diag(λ1, . . . , λp). Without loss of generality, let the

eigenvalues be aligned in descending order. With basic calculus, the objective function in

(B.24) can be rewritten as

tr(ΛT
T

ST )− log |Λ| =
p∑
j=1

(
λjt

T

j Stj − log λj

)
, (B.27)
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for which the partial differentiation with respect to λ1 is t
T

1St1 − λ−1
1 . Hence, due to

convexity, (B.27) may reach its minimum when λ1 = (t
T

1St1)−1. However, λ1 > (t
T

1St1)−1

strictly because

λ1 = λmax(Θ) > λmax(S−1) = λ−1
min(S) ≥ (t

T

1St1)−1.

Therefore, (B.27) cannot reach its minimum.

Step 2: Given that λ1 > (t
T

1St1)−1, the objective function can be further decreased if

(not only if) we change theD (in Θ = D−L) in a way that both t
T

1St1 and
∑p

j=2

(
λjt

T

j Stj − log λj

)
remain unchanged but λ1 decreases.

We now show that such a change in D does exist. By employing the results of differen-

tiating eigenvalues and eigenvectors in Magnus (1985), we have the following three results.

First of all

dλ1 = t
T

1 (dD)t1, (B.28)

Secondly,

d
(
t
T

1St1

)
= 2(St1)

T

dt1

= 2(St1)
T

(λ1Ip −Θ)+(dD)t1. (B.29)

Lastly,

d

{
p∑
j=2

(
λjt

T

j Stj − log λj

)}
=

p∑
j=2

(t
T

j Stj − λ−1
j )dλj + 2λj(Stj)

T

dtj

=

p∑
j=2

(t
T

j Stj − λ−1
j )t

T

j (dD)tj

+2λj(Stj)
T

(λjIp −Θ)+(dD)tj, (B.30)

in which dD is a diagonal matrix representing an infinitesimal change of D and (·)+ is the

Moore-Penrose inverse. Expressions (B.28),(B.29) and (B.30) are all linear with respect

to the elements in dD and t1 6= 0 obviously. Hence, we can surely solve dD from setting

(B.29) and (B.30) to be 0 and (B.28) to be negative.
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In summary, we have shown that if we change D by dD, the objective function (B.27)

decreases. Therefore, we have proved that Θ is not the solution to (B.24). This completes

the proof.

Lemma B.2. If a p × p matrix M can be written as M = L + D, in which L ∈ Sp,r and

D ∈ Dp, then M can also be written as M = L′ +D′, in which L′ ∈ Sp,3r, D′ ∈ Dp and

‖M‖2
F ≥ C

(
‖L′‖2

F + ‖D′‖2
F

)
,

for some positive constant C.

Proof. Let Mij and Lij be the entries in the ith row and jth column of M and L respec-

tively; let Dj be the jth diagonal entry of D. Similarly, L′ij and D′j are defined. Define the

index set B = {j | L2
jj >

∑
i 6=j L

2
ij}.

According to Lemma B.3, the cardinality of B is at most 2r − 1. We set L′jj = Mjj/2

for j ∈ B and L′ij = Lij for i 6= j and i = j /∈ B; D′ is set accordingly so that M = L′+D′.

As at most 2r− 1 diagonal entries of L′ are different from those of L, rank (L′) < 3r. Now

we prove ‖M‖2
F ≥ C (‖L′‖2

F + ‖D′‖2
F ) for some constant C.

We notice two properties: (1) for j ∈ B, (L′jj)
2 = M2

jj/4; (2) for j /∈ B, (L′jj)
2 ≤∑

i 6=j(L
′
ij)

2 =
∑

i 6=jM
2
ij. As a result,

‖M‖2
F =

p∑
j=1

M2
jj +

p∑
j=1

∑
i 6=j

M2
ij

≥ 4
∑
j∈B

(L′jj)
2 +

p∑
j=1

∑
i 6=j

(L′ij)
2

≥ 1/2

{∑
j∈B

(L′jj)
2 + 2

p∑
j=1

∑
i 6=j

(L′ij)
2

}

≥ 1/2

∑
j∈B

(L′jj)
2 +

∑
j /∈B

(L′jj)
2 +

p∑
j=1

∑
i 6=j

(L′ij)
2


= 1/2‖L′‖2

F . (B.31)
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The first inequality is because of property (1) and the third inequality is because of property

(2).

Finally, by (B.31) and ‖D′‖F ≤ ‖M‖F + ‖L′‖F , we have

‖D′‖2
F ≤ 2(‖M‖2

F + ‖L′‖2
F )

≤ 6‖M‖2
F ,

we have ‖L′‖2
F + ‖D′‖2

F ≤ 8‖M‖2
F and ‖M‖2

F ≥ C(‖L′‖2
F + ‖D′‖2

F ) for C = 1/8. This

completes the proof.

Lemma B.3. Let A be a p× p matrix with rank(A) = r (r ≤ p) and Aij be the element in

the ith row and jth column, the number of column vectors in A that satisfy A2
jj >

∑
i 6=j A

2
ij

is at most 2r − 1.

Proof. Let aj be the jth column vector in A. If it satisfies A2
jj >

∑
i 6=j A

2
ij, we say this

column is diagonally dominant and is dominated by the jth element. Let Rp denote the

dimension p vector space, and Rp,r denote the column space of A. Straightforwardly, Rp,r

is a subspace of Rp that contains at most r linearly independent vectors.

Finding out the upper bound of the number of diagonally dominant column vectors in A

is equivalent to considering at most how many vectors in Rp,r can be dominated by one of

its entries. The equivalence requires, when we count in Rp,r, if two vectors are dominated

by the same entry (e.g., jth), they are counted as one vector. Now, we count in Rp,r.

Without loss of generality, we assume the first r columns (a1, . . . , ar) in A are orthog-

onal to each other and are unit vectors. This is valid because for any given A, without

changing the column space, we can (1) change the order of the columns by moving r linearly

independent column vectors to the left and (2) orthonormalize these linearly independent

vectors.

Let

Vp×r =
(
a1, . . . , ar

)
=

b
T

1
...

b
T

p

 ,
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in which b1, . . . , bp are r × 1 vectors. Any vector in Rp,r can be written as Vp×rk where k

is a r × 1 vector; therefore, a vector dominated by the jth element can be in Rp,r if and

only if there is a vector k 6= 0 and

(b
T

j k)2 >
∑
i 6=j

(b
T

i k)2.

The inequality is equivalent to

k
T

bjb
T

j k >
∑
i 6=j

k
T

bib
T

i k,

and

k
T

(V
T

V − 2bjb
T

j )k < 0.

The existence of k suggests V
T
V − 2bjb

T

j has negative eigenvalues. As V consists of

orthonormal vectors, we conclude the smallest eigenvalue of

V
T

V − 2bjb
T

j = Ir − 2bjb
T

j

must be negative.

Let λmin(·) be the smallest eigenvalue of a matrix and u be the corresponding eigenvector

of λmin

(
Ir − 2bjb

T

j

)
. We have

λmin

(
Ir − 2bjb

T

j

)
= u

T
(
Ir − 2bjb

T

j

)
u

= 1− 2(u
T

bj)
2

≥ 1− 2‖bj‖2

and consequently ‖bj‖2 > 1/2. Finally, noticing
∑p

i=1 ‖bi‖2 =
∑r

j=1 ‖aj‖2 = r, we conclude

there are at most 2r − 1 bj with ‖bj‖2 > 1/2.

Lemma B.4. When D is fixed and positive definite, the objective function

tr {(D − L)S} − log |D − L|

can be minimized with respect to L analytically.

Eigen-decompose D1/2SD1/2, let w1, . . . , wp be the eigenvalues in descending order and

u1, . . . , up be the associated eigenvectors. Let U = (u1, . . . , ur), V = diag{1−1/max (w1, 1),

. . . , 1− 1/max (wr, 1)}, then L = D1/2UV U
T
D1/2 is the analytic solution.
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Proof. Since D and S are fixed, the target can be simplified as maximizing

tr(LS) + log |D − L|
= tr

{
(D−1/2LD−1/2)D1/2SD1/2

}
+ log |Ip −D−1/2LD−1/2|+ log |D|.

Let the low-rank part be eigen-decomposed as D−1/2LD−1/2 = Ũ Ṽ Ũ
T
, in which Ũ =

(ũ1, . . . , ũr) is a p × r matrix and Ṽ = diag(ṽ1, . . . , ṽr) is a r × r diagonal matrix. Also,

without of loss generality, let ṽ1, . . . , ṽr be in descending order. Then, we need to maximize

tr
{
Ṽ Ũ

T

D1/2SD1/2Ũ
}

+ log |Ir − Ṽ |. (B.32)

Regardless of Ṽ , We have

tr
{
Ṽ Ũ

T

D1/2SD1/2Ũ
}
≤

r∑
i=1

λi(Ṽ )λi(Ũ
T

D1/2SD1/2Ũ)

≤
r∑
i=1

ṽiλi(D
1/2SD1/2)

=
r∑
i=1

ṽiwi,

where λi(·) is the ith largest eigenvalue of the input matrix. The first and second inequal-

ities follow Theorem 3.34 and Theorem 3.19 in Schott (2005) respectively. The maximum

can be achieved when Ũ = U .

When Ũ = U , maximizing (B.32) is equivalent to maximizing

ṽiwi + log(1− ṽi) (i = 1, . . . , r),

subject to ṽi ∈ [0, 1). By basic calculus, we need ṽi = 1− 1/max(wi, 1).
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Appendix C

Proofs of Chapter 4

To prove the theorems, we set up a framework to deal with the “joint diagonal + low-rank”

structure. On the occasion that certain derivations can be broken down into individual

categories, we refer to Appendix C, proofs of “diagonal + low-rank”.

C.1 Proof of Theorem 4.1

Proof of Theorem 4.1. Firstly, by triangular inequality,

K∑
k=1

‖Θ̂(k)
r,v −Θ

(k)
0 ‖F ≤

K∑
k=1

‖Θ̂(k)
r,v −Θ(k)

r,v‖F +
K∑
k=1

‖Θ(k)
r,v −Θ

(k)
0 ‖F

=
K∑
k=1

‖Θ̂(k)
r,v −Θ(k)

r,v‖F + dr,v.

With dr,v restricted by the condition of the theorem, i.e., dr,v = O{max(an,p,v, bn,p)}, it

remains to prove

K∑
k=1

‖Θ̂(k)
r,v −Θ(k)

r,v‖F = O{max(an,p,v, bn,p)}. (C.1)
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Recall the search space of (4.7),

Fr,v = {Θ = (Θ(1), . . . ,Θ(K)) | Θ(k) = D − L− L(k),

D ∈ Dp
++, L ∈ Sp,r+ , L(k) ∈ S

p,(vk−r)
+ for all k},

on which the solution Θ̂r,v minimizes the objective function. Here, we additionally define

the “centered” version of Fr,v as

Er,v = {∆ = (∆(1), . . . ,∆(K)) | ∆(k) = Θ(k) −Θ(k)
r,v , Θ ∈ Fr,v}.

Since Θr,v ∈ Fr,v, we have 0 ∈ Er,v.

Let f (k)(Θ(k)) = tr(Θ(k)S(k)) − log |Θ(k)|, F (k)(∆(k)) = f (k)(Θ
(k)
r,v + ∆(k)) − f(Θ

(k)
r,v ),

∆̂
(k)
r,v = Θ̂

(k)
r,v −Θ

(k)
r,v and ∆̂r,v = (∆̂

(1)
r,v , . . . , ∆̂

(K)
r,v ).

We can prove the desired result, equivalent of (C.1),

K∑
k=1

‖∆̂(k)
r,v‖F ≤ M max(an,p,v, bn,p), (C.2)

for some constant M , by proving

F (∆) =
K∑
k=1

nkF
(k)(∆(k)) > 0 for all ∆ ∈M2r,2v, (C.3)

in which

M2r,2v = E2r,2v ∩ {∆ |
K∑
k=1

‖∆(k)‖F = M max(an,p,v, bn,p)} ∩ {∆ | ‖∆(k)‖op ≤ C1};

Constant C1 is the upper bound of C + dr,v (C as in Lemma C.1) so that

‖∆̂(k)
r,v‖op ≤ ‖Θ̂(k)

r,v −Θ
(k)
0 ‖op + ‖Θ(k)

0 −Θ(k)
r,v‖op ≤ C + dr,v ≤ C1.

To show (C.3) is indeed sufficient for (C.2), we derive contradiction when (C.3) is true

while (C.2) is not. If
∑K

k=1 ‖∆̂
(k)
r,v‖F > M max(an,p,v, bn,p), there exists 0 < t < 1, so that

(1 − t)0 + t∆̂r,v ∈ E2r,2v,
∑K

k=1 ‖(1 − t)0 + t∆̂
(k)
r,v‖F = M max(an,p,v, bn,p) and ‖(1 − t)0 +
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t∆̂
(k)
r,v‖op ≤ C1; that is, (1−t)0+t∆̂r,v ∈M2r,2v. Therefore, F{(1−t)0+t∆̂r,v} > 0 by (C.3).

On the other hand, by convexity, we have F{(1− t)0+ t∆̂r,v} ≤ (1− t)F (0)+ tF (∆̂r,v) ≤ 0;

to see the last inequality, we notice F (0) = 0 and F (∆̂r,v) ≤ 0 because Θ̂r,v is the minimizer.

The contradiction has been derived, and it remains to prove (C.3).

For any ∆ ∈M2r,2v, we have

F (∆) =
K∑
k=1

nk
[
tr(∆(k)S(k))− {log |Θ(k)

r,v + ∆(k)| − log |Θ(k)
r,v |}

]
≥ C2

K∑
k=1

nk‖∆(k)‖2
F +

K∑
k=1

nk tr{∆(k)(S(k) − Σ(k)
r,v )}

= C2

K∑
k=1

nk‖∆(k)‖2
F +

K∑
k=1

nk tr{∆(k)(Σ
(k)
0 − Σ(k)

r,v )}︸ ︷︷ ︸
I

+
K∑
k=1

nk tr{∆(k)(S(k) − Σ
(k)
0 )}︸ ︷︷ ︸

II

, (C.4)

where Σ
(k)
r,v = (Θ

(k)
r,v )−1. The inequality is a result of the similar inequality of the log-

determinant function in the proof of Theorem 3.1 in Chapter B and the definition of

M2r,2v (‖∆(k)‖op ≤ C1). We consider I and II separately.

To bound I,

|I| ≤
K∑
k=1

nk‖∆(k)‖F‖Σ(k)
0 − Σ(k)

r,v‖F

≤ C3ndr,v

K∑
k=1

‖∆(k)‖F . (C.5)

The first inequality is the Cauchy–Schwarz inequality, and the second inequality is a direct

result of ‖Σ(k)
0 −Σ

(k)
r,v‖F = ‖(Θ(k)

0 )−1−(Θ
(k)
r,v )−1‖F ≤ C3‖Θ(k)

0 −Θ
(k)
r,v‖F , which can be derived

by Taylor expansion.

By the definition of E2r,2v and Lemma B.2 in Appendix B.2, we can write ∆(k) =

D
(k)
∆ + L

(k)
∆ , so that D

(k)
∆ ∈ Dp, L

(k)
∆ ∈ Sp,9vk and ‖∆(k)‖2

F ≥ C4(‖D(k)
∆ ‖2

F + ‖L(k)
∆ ‖2

F ) for
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some positive constant C4. The bound of II can be obtained by considering the bound for

each category,

|II| ≤
K∑
k=1

nk| tr{∆(k)(S(k) − Σ
(k)
0 )}|

≤
K∑
k=1

nk

[
| tr{D(k)

∆ (S(k) − Σ
(k)
0 )}|+ | tr{L(k)

∆ (S(k) − Σ
(k)
0 )}|

]

≤
K∑
k=1

nk

‖D(k)
∆ ‖F

{
p∑
j=1

(s
(k)
j − σ

(k)
0j )2

}1/2

+ ‖L(k)
∆ ‖∗‖S

(k) − Σ
(k)
0 ‖op


≤

K∑
k=1

nk

[
p1/2‖D(k)

∆ ‖F max
1≤j≤p

|s(k)
j − σ

(k)
0j |+ (9vk)

1/2‖L(k)
∆ ‖F‖S

(k) − Σ
(k)
0 ‖op

]

≤ C5

K∑
k=1

nk

[
{(p log p)/nk}1/2‖D(k)

∆ ‖F + v
1/2
k (p/nk)

1/2‖L(k)
∆ ‖F

]
≤ C6

K∑
k=1

nk max(ank,p,vk , bnk,p)‖∆(k)‖F ,

≤ C6nmax(an,p,v, bn,p)
K∑
k=1

‖∆(k)‖F (C.6)

in which s
(k)
j and σ

(k)
0j are the jth diagonal elements of S(k) and Σ

(k)
0 respectively, ank,p,vk =

v
1/2
k (p/nk)

1/2 and bnk = {(p log p)/nk}1/2. The second to the second last inequalities here

depend on single category analysis, and omitted details can be found in the proof of

Theorem 3.1 in Chapter B.
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We replace I and II in (C.4) with their lower bounds and obtain

F (∆) ≥ C2

K∑
k=1

nk‖∆(k)‖2
F − C3ndr,v

K∑
k=1

‖∆(k)‖F − C6nmax(an,p,v, bn,p)
K∑
k=1

‖∆(k)‖F

≥ C7n
K∑
k=1

‖∆(k)‖2
F − C8nmax(an,p,v, bn,p)

K∑
k=1

‖∆(k)‖F

≥ C7nK
−1

(
K∑
k=1

‖∆(k)‖F

)2

− C8nmax(an,p,v, bn,p)
K∑
k=1

‖∆(k)‖F

= n

(
K∑
k=1

‖∆(k)‖F

)2
C7K

−1 − C8 max(an,p,v, bn,p)

(
K∑
k=1

‖∆(k)‖F

)−1


= n

(
K∑
k=1

‖∆(k)‖F

)2 {
C7K

−1 − C8M
−1
}

> 0,

for sufficiently largeM . The second inequality is due to Condition 4.2 and dr,v = O{max(an,p,v, bn,p)}.
This proves (C.3) and completes the proof of Theorem 4.1. The proof of Corollary 4.1 is

similar to this proof and is omitted.

C.2 Proof of Theorem 4.2

Proof of Theorem 4.2. To prove this theorem, according to the discussion in Section 4.4,

we need to show that a pair (r, v) ∈ A1∪A2 is never chosen; that is, the objective function

(4.9) evaluated at Θ̂r,v with (r, v) ∈ A1 ∪A2, is always larger than that evaluated at Θ̂.

We tackle this by proving ∀(r, v) ∈ A1 ∪A2,{
K∑
k=1

nkf
(k)(Θ̂(k)

r,v ) + λτ(r, v)

}
−

{
K∑
k=1

nkf
(k)(Θ̂(k)

r0,v0
) + λτ(r0, v0)

}
> 0. (C.7)

This is sufficient because the objective function evaluated at Θ̂r0,v0 is no smaller than the

minimized objective function, or the objective function evaluated at Θ̂.
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To this end, we firstly look at the penalty term and the negative log-likelihood term

separately, and then (C.7) is proven for A1 and A2 ∩Ac
1.

Step 1: The penalty. The range of the penalty of arbitrary (r, v) is considered. For

the purpose of brevity, let vmax = max
k

vk. We have

τ(r, v) > 2p(vmax − r)− (vmax − r)(vmax − r − 1) + 2p(r + 1)− r(r − 1)

= 2p(vmax + 1)− vmax(vmax − 1) + 2vmaxr − 2r2

≥ 2p(vmax + 1)− vmax(vmax − 1)

= vmax{2p− (vmax − 1)}+ 2p

≥ pvmax (C.8)

and

τ(r, v) ≤ 2Kp(vmax − r)−K(vmax − r)(vmax − r − 1) + 2p(r + 1)− r(r − 1)

= 2Kp(vmax + 1)−Kvmax(vmax − 1)

+2Kvmaxr + 2(1−K)p(r + 1)− (1 +K)r2 + (1−K)r

< 2Kp(vmax + 1) + 2Kvmaxr

< 2Kp(2vmax + 1) (C.9)

Then, we can find out the bound of τ(r, v)− τ(r0, v0). Let v0,max = max
k

v0k.

When (r, v) ∈ A1, we have vmax/v0,max →∞, vmax/ log p→∞; thus,

τ(r, v)− τ(r0, v0) > p(vmax − 4Kv0,max − 2K)

≥ (pvmax)/2, (C.10)

when n and p are sufficiently large.

When (r, v) ∈ A2 ∩Ac
1, we have vmax = O(v0,max); thus,

|τ(r, v)− τ(r0, v0)| ≤ max {τ(r, v)− τ(r0, v0), τ(r0, v0)− τ(r, v)}
< 2Kpmax{2vmax + 1, 2v0,max + 1}
= O(na2

n,p,v0
). (C.11)
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Step 2: The negative log-likelihood. To obtain the lower bound of the left-hand-

side of (C.7), we notice, since Θ̂r0,v0 minimizes (4.9) when the ranks are (r0, v0),

K∑
k=1

nkf
(k)(Θ̂(k)

r,v )−
K∑
k=1

nkf
(k)(Θ̂(k)

r0,v0
) ≥

K∑
k=1

nkf
(k)(Θ̂(k)

r,v )−
K∑
k=1

nkf
(k)(Θ

(k)
0 ). (C.12)

Therefore, a lower bound of the right-hand-side of (C.12) suffices, and we proceed to find

this lower bound.

In a slight abuse of notation, let F (k)(∆(k)) = f (k)(Θ
(k)
0 + ∆(k))− f (k)(Θ

(k)
0 ) and ∆̂

(k)
r,v =

Θ̂
(k)
r,v − Θ

(k)
0 ; that is, we now center at Θ

(k)
0 instead of Θ

(k)
r,v . The problem becomes finding

out the lower bound of F (∆̂r,v) =
∑K

k=1 nkF
(k)(∆̂

(k)
r,v ).

We firstly notice

F (∆̂r,v) =
K∑
k=1

nk

[
tr(∆̂(k)

r,vS
(k))− {log |Θ(k)

0 + ∆̂(k)
r,v | − log |Θ(k)

0 |}
]

≥ C9

K∑
k=1

nk‖∆̂(k)
r,v‖2

F +
K∑
k=1

nk tr{∆̂(k)
r,v (S(k) − Σ

(k)
0 )}︸ ︷︷ ︸

III

. (C.13)

The inequality is a result of the similar inequality of the log-determinant function in The-

orem 3.1 of Chapter B and Lemma C.1; although look alike, (C.13) differs from (C.4) in

that the latter results from the definition of M2r,2vk instead of Lemma C.1.

Now we look at III, which is similar to II except that ∆̂
(k)
r,v = Θ̂

(k)
r,v −Θ

(k)
0 . We can write

∆̂
(k)
r,v = D

(k)
∆ + L

(k)
∆ , so that D

(k)
∆ ∈ Dp, L

(k)
∆ ∈ Sp,3(v0k+vk) and ‖∆̂(k)

r,v‖2
F ≥ C4(‖D(k)

∆ ‖2
F +
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‖L(k)
∆ ‖2

F ). Then, the bound of III can be obtained,

|III| ≤
K∑
k=1

nk| tr{∆̂(k)
r,v (S(k) − Σ

(k)
0 )}|

≤
K∑
k=1

nk

[
| tr{D(k)

∆ (S(k) − Σ
(k)
0 )}|+ | tr{L(k)

∆ (S(k) − Σ
(k)
0 )}|

]
≤ C10

K∑
k=1

nk

[
{(p log p)/nk}1/2‖D(k)

∆ ‖F + (v0k + vk)
1/2(p/nk)

1/2‖L(k)
∆ ‖F

]
≤ C11

K∑
k=1

nk max{ank,p,(v0k+vk), bnk,p}‖∆̂(k)
r,v‖F ,

≤ C12nmax(an,p,v0 , an,p,v, bn,p)
K∑
k=1

‖∆̂(k)
r,v‖F , (C.14)

in which ank,p,(v0k+vk) = (v0k + vk)
1/2(p/nk)

1/2. The third inequality is derived in the same

manner as (C.6).

By plugging (C.14) into (C.13) and some simple calculation, we have

F (∆̂r,v) ≥ n

C13K
−1

(
K∑
k=1

‖∆̂(k)
r,v‖F

)2

− C12 max(an,p,v0 , an,p,v, bn,p)
K∑
k=1

‖∆̂(k)
r,v‖F

 .

(C.15)

Step 3: The inequality (C.7).

When (r, v) ∈ A1, we can simplify (C.15) as

F (∆̂r,v) ≥ n

C13K
−1

(
K∑
k=1

‖∆̂(k)
r,v‖F

)2

− C12an,p,v

K∑
k=1

‖∆̂(k)
r,v‖F


≥ −C14na

2
n,p,v. (C.16)

The second inequality is by minimizing the quadratic function with respect to
∑K

k=1 ‖∆̂
(k)
r,v‖F .
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By (C.10), (C.16) and Condition 4.4,{
K∑
k=1

nkf
(k)(Θ̂(k)

r,v ) + λτ(r, v)

}
−

{
K∑
k=1

nkf
(k)(Θ̂(k)

r0,v0
) + λτ(r0, v0)

}
≥ −C14na

2
n,p,v + λ {τ(r, v)− τ(r0, v0)}

≥ 0, (C.17)

when n and p are sufficiently large.

When (r, v) ∈ A2 ∩ Ac
1, let dr,v = ηn,p,v max(an,p,v0 , bn,p), where ηn,p,v → ∞, we can

simplify (C.15) as

F (∆̂r,v) ≥ n

C13K
−1

(
K∑
k=1

‖∆̂(k)
r,v‖F

)2

− C15 max(an,p,v0 , bn,p)
K∑
k=1

‖∆̂(k)
r,v‖F


= n

(
K∑
k=1

‖∆̂(k)
r,v‖F

)2
C13K

−1 − C15 max(an,p,v0 , bn,p)

(
K∑
k=1

‖∆̂(k)
r,v‖F

)−1


≥ n

(
K∑
k=1

‖∆̂(k)
r,v‖F

)2 (
C13K

−1 − C15η
−1
n,p,v

)
≥ C16n(dr,v)

2, (C.18)

when n and p are sufficiently large. The first inequality is due to max
k

vk = O{max(max
k

v0k, log p)}.

The second inequality is because
∑K

k=1 ‖∆̂
(k)
r,v‖F ≥ dr,v.

By (C.11), (C.18) and Condition 4.4,{
K∑
k=1

nkf
(k)(Θ̂(k)

r,v ) + λτ(r, v)

}
−

{
K∑
k=1

nkf
(k)(Θ̂(k)

r0,v0
) + λτ(r0, v0)

}
≥ C16n(dr,v)

2 + λ {τ(r, v)− τ(r0, v0)}
≥ 0, (C.19)

when n and p are sufficiently large.

Results (C.17) and (C.19) together say that, with a tuning parameter satisfying Con-

dition 4.4, (r, v) ∈ A1 ∪A2 is never chosen over (r0, v0), and this completes the proof.
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Lemma C.1. Let Θ̂r,v be the solution of (4.7), then for every k we have ‖Θ̂(k)
r,v−Θ

(k)
0 ‖op < C

for some constant C, with probability tending to 1.

Proof. To prove this lemma, we follow the steps of the proof of Lemma B.1 in Appendix

B.2 and modify in the following way: (i) the objective function is now a summation over K

categories; (ii) the eigenvalue used to establish the contradiction should be the maximum

eigenvalue of any category; (iii) the quantities required to remain unaffected when alter

the eigenvalue should contain various categories.

Due to the similarity, the details are omitted.
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