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Abstract

This thesis investigates the applicability of Recurrent Neural Networks (RNNs) and

Deep Learning methods for multi-step prediction of robotic systems. The unmodeled

dynamics and simplifying assumptions in classic modeling methods result in models that

yield rapidly diverging predictions when the model is used in an iterative fashion, i.e., for

multi-step prediction. However, the effect of the unmodeled dynamics can be captured by

collecting datasets of the system. Deep Learning provides a strong set of tools to extract

patterns from data, however, large datasets are commonly required for the methods to

work well. Collecting a large amount of data from a robotic system can be a cumbersome

and expensive approach.

In this work, Deep Learning methods, particularly RNNs, are studied and employed for

the purpose of learning models of two aerial vehicles from experimental data. The feasibility

of employing RNNs is first studied to learn a model of a quadrotor based on a simulated

dataset, which yields a Multi Layer Fully Connected (MLFC) architecture. Models can be

learned for multi-step prediction, recovering excellent predictions over 500 timesteps in the

presence of simulated disturbances to the robot and noise on the measurements.

To learn models from experimental data, the RNN state initialization problem is defined

and formulated. It is shown that the RNN state initialization problem can be addressed

by creating and training an initialization network jointly with the multi-step prediction

network, and the combination can be used in a black-box modeling approach such that the

model produces predictions which are immediately accurate. The RNN based black-box

methods are trained on an experimental dataset gathered from a quadrotor and a publicly

available helicopter dataset. The quadrotor dataset, which encompasses approximately 4
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hours of flight data in various regimes, has been released and is now available publicly

online.

Finally, a hybrid network, which combines the proposed RNN based black-box models

with a physics based quadrotor model into a single RNN-based modeling system is intro-

duced. The proposed hybrid network solves many of the limitations of the existing state of

the art in long-term prediction for robotics systems. Trained on the quadrotor dataset, the

hybrid model provides accurate body angular rate and velocity predictions of the vehicle

over almost 2 seconds which is suitable to be used in a variety of model-based controller

applications.
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Chapter 1

Introduction

Predicting the behaviour of a dynamic system has always been a challenging and important

problem in engineering. The prediction accuracy, i.e., the similarity between the predicted

and actual behaviour, is mainly dependent on the model that generates the prediction. In

its mathematical form, a model is a set of rules, formulated as mathematical equations,

that represents a phenomenon or a physical process. For instance, Newton’s second law of

motion, f = ma, explains the relation between the acceleration (a) of a point mass (m)

and the force (f) acting on it.

A useful model should be less complex and cheaper to run than the real system, oth-

erwise the modeling process is not justified. Therefore, many simplifying assumptions are

usually made in modeling. In the context of modeling dynamic systems, these simplifying

assumptions lead to unmodeled dynamics which are part of the system not explained by the

model, and therefore, increase the prediction error. When the prediction is required over

very short periods into the future, the unmodeled dynamics may cause negligible error,

however, using the model over longer prediction horizons, the unmodeled dynamics lead to
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drastic growth in the prediction error over time. In the discrete-time domain1, a prediction

required for one time step into the future is referred to as a single-step prediction, and a

prediction many steps into the future is referred to as a multi-step prediction.

Multi-step prediction has many applications in state estimation, simulation and con-

trol [76, 12]. For instance, in a moving vehicle when some measurements, such as GPS

readings, are temporarily unavailable, a multi-step prediction can account for the miss-

ing measurements and approximate the system position and speed over the blockout pe-

riod. As another example, model based control schemes, such as Model Predictive Control

(MPC) [57], can extensively benefit from an accurate long-term prediction. MPC calcu-

lates a control input sequence by optimizing a cost function, which penalizes the deviation

of the model output from a desired trajectory, over a finite horizon. To avoid modeling

errors affecting control performance, MPC applies the first element of the calculated in-

put to the system and discards the rest. Then it recedes the prediction horizon one step

forward in time and repeats the optimization. Accurate multi-step predictions allow for a

slower update rate of the MPC, reducing the overall computational burden while maintain

smoothness and accuracy of the resulting control system response.

Modeling methods can be classified as white-box, black-box or grey-box [55], referring

to the level of opacity in the representation of the underlying system. White-box systems

rely on models developed using the laws of physics. Black-box systems are driven entirely

by collected data and avoid specifying any physical constraints on the system states. Grey-

box models lie in between, with a portion that is derived from first principles and a portion

that relies on learned knowledge from collected data.2 There are two major difficulties in

1Throughout this thesis, the discrete-time domain is considered only.
2It should be noted that some researchers use the term grey-box equivalent to parameter identification

process in modeling. While this usage is also correct, throughout this thesis, grey-box modeling refers
to hybrid models that partially benefit from first principles and partially from black-box models.
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the white-box approach. First, the developed model will contain many parameters which

describe the system physical characteristics (mass, drag coefficient, etc.) that must be

properly identified prior to using the model. Second, many properties of the system might

be too difficult to model explicitly, such as the vortex-ring effect on a quadrotor vehicle [37].

Identifying the parameters of a model can be expensive. For instance, measuring the blade

drag coefficient of a quadrotor needs a wind tunnel. Moreover, by changing the system

physical properties slightly, the model should be adapted accordingly, which may involve

new measurements and cumbersome tests. An example of the need to repeat system

identification frequently in real systems can be seen when adding a payload to an aerial

vehicle, which modifies the vehicle aerodynamic properties and mass distribution.

Black-box models can be categorized based on their structure. Polynomial models, such

as the Wiener model, are based on polynomials for their realization [69]. Fuzzy models [92]

employ a set of linguistic rules which are converted to mathematical equations using Fuzzy

Inference Engines [74]. Neural Networks [32] provide a network of simple interconnected

computational units (neurons) to approximate an unknown function [69]. Regardless of the

method, a black-box model has many degrees-of-freedom (DOF), depicted as parameters

or weights, that should be found based on a set of input-output observations from the

system. This search to find the appropriate values for the model parameters is usually

done through an optimization process and, since many black-box models are Machine

Learning (ML) methods, the parameter optimization process is frequently referred to as a

learning process.

In recent years, ML has been going through a rapid progress. Deep Learning (DL) [35,

34] is revolutionizing the ML field and solving problems that could not have been solved

before, such as speech recognition [33] and object detection and classification in images [7,
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85]. Three main components conduct this revolution; the newly available hardware capable

of performing efficient parallel processing on giant numerical models, methods to train these

models and availability of massive datasets. Because of the last reason, the applications

of deep learning have been mainly focused on vision and image classification. However,

DL methods can be also used in modeling and control of robotic systems. In fact, in

mobile robotics, where the robot is deployed in an unstructured environment with noisy

and uncertain sensory information, learning from observation can deal with problems that

are either too difficult or too expensive to handle with classic methods.

In this thesis, DL methods are employed to model mobile robotic systems for a multi-

step prediction problem. Several DL methods are comprehensively studied and extended

as black-box models to learn the dynamics of two real aerial vehicles, a helicopter and a

quadrotor. The helicopter dataset is publicly available, however, the quadrotor dataset

had to be specifically collected for this work. Both datasets are described, with more focus

on the collected quadrotor data. A grey-box approach is also proposed which combines

the approximation property of the black-box models and the quadrotor motion model.

Comprehensive study of the error distributions over prediction horizons are presented to

assess the prediction performance of the proposed and implemented models. This work

embodies the capability of neural networks in learning unmodeled dynamics of a real and

challenging robotic system for multi-step prediction, for the first time, and may serve

as a basis for future development and application of more sophisticated ML methods in

modeling and control of such systems.

5



1.1 Methodology and Literature Review

The data driven approach of the black and grey-box models lies in the field of machine

learning. A wide range of machine learning methods have been adopted, including neural

networks, support vector machines, fuzzy inference systems, etc. Although each of these

methods can be adapted to address the problem at hand, neural networks are chosen for

this work because of the following reasons.

Neural networks are universal function approximators meaning that for every continu-

ous bounded function, there exists a neural network which can approximate that function

to any desired level of accuracy [38, 24, 17]. Support vector machines [2] and fuzzy infer-

ence systems [44] share the same property. In fact neural networks, fuzzy inference systems

and support vector machines are functionally equivalent [49, 5]. However, each of them

is designed for specific tasks. Support vector machines are well suited for classification

problems. Although a classification problem can be considered a function approximation

problem, the reverse is not always true because the output of a function can be real-valued

while in a classification problem the output of the function (classifier) is a set of discrete

values, each representing a class. There is no such clear boundary between fuzzy infer-

ence systems and neural networks, as both are capable of representing similar systems

accurately. Fuzzy inference relies on expert knowledge in order to represent the system,

however, and so tends to be employed only in situations where such knowledge is available.

For quadrotors dynamics, it is not clear that expert knowledge can be advantageous.

Neural networks can be represented by computational graphs. The nodes are called

neurons and the edges are called weights (or synaptic weights). Each neuron has an acti-

vation function which maps the values it receives from the incoming edges to its outgoing
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edges. For convenience, and without loss of generality, neurons are gathered in layers. All

neurons in a layer share the same activation function. In a neural network, a hidden layer

does not directly provide the output. However, hidden layers contribute drastically to the

representational capacity of the network [46]. There are two types of neural networks,

Feed-Forward Neural Networks (FFNN) and Recurrent Neural Networks (RNNs). FFNNs

are acyclic graphs meaning that the connection between layers do not form a cycle. They

constitute a rich class of static maps. On the other hand, due to the presence of feedback

within RNNs, they implement a rich class of dynamic mappings [43]. RNNs also possess

the universal approximation property and in theory can reconstruct state-space trajectories

of dynamic systems arbitrary well [25, 40, 80].

FFNNs have been used extensively in modelling and control of dynamic systems [2, 70,

18, 8, 6, 3]. In a control problem, they may be employed as a modelling part of a controller

in a Lyapunov design approach. In this method using a Lyapunov function, the equations

for evolution of the neural network weights are extracted so that the closed loop controller

stabilizes the system [58, 13, 19, 71]. Since FFNNs lack exhibiting dynamics, they are

mainly used as single-step predictor or compensator.

RNNs possess dynamics and are universal approximators for reconstructing state-space

trajectories of dynamic systems [25, 40, 80], which make them suitable candidate models

for multi-step prediction problem. In [25], it is shown that any finite-time trajectory of

a dynamic system can be approximated by some RNNs to any desired level of accuracy

given a proper initial state. This result is extended to discrete RNNs in [40]. One main

issue with using RNNs having hidden neurons is the state initialization problem, i.e., how

to properly assign initial values to the hidden neuron outputs. The common approach is

to initialize the RNN states to zero or random values and run the RNN until the effect
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of the initial states is washed out [95, 39]. However, this results in an arbitrary transient

response of the RNN. For control applications, the immediate response of the model plays

an important role and cannot be considered arbitrary.

Nonlinear Auto-Regressive (NAR) models are classic tools to model dynamic sys-

tems [69, 68, 15]. In [68], Narendra et al. devised methods to use Multi-Layer Perceptrons

(MLPs) in the Non-linear Autoregressive eXogenous (NARX) framework. In a discrete-

time fashion, NARX framework implements a dynamic system whose output at any given

time, y(k), is a function of the input at that time, u(k), and the system output and input

at previous time steps,

y(k) = f

(
y(k − 1), . . . , y(k − τy), u(k), u(k − 1), . . . , u(k − τu)

)
,

where the length of the memory buffers, i.e., τu and τy, are usually given or determined

through a hyper-parameter optimization process. The function f(.) can be realised by

various methods. In [68], the function f(.) is realised by an MLP. To avoid confusion,

the method to implement this function is added to the NARX abbreviation as a suffix.

For instance, if f(.) is realised by an MLP then the architecture will be referred to as

NARX-MLP. A NARX-MLP is essentially an MLP equipped with buffers and feedback

connections. Hence, it can be classified as an RNN.

The NARX-MLP architectures are often trained via a Series-Parallel [68] mode which

uses the network target values instead of the network past outputs as the delayed version(s)

of the network output. This method is also known as teacher forcing [68]. Clearly, this

mode converts the NARX architecture into a feedforward one which therefore loses the

main advantage of an RNN and limits the ability of the method to represent dynamic sys-
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tems accurately. On the other hand, training NARX-MLP in a closed-loop form (Parallel

mode) to model dynamic systems can be difficult due to numerical stability issues in the

calculation of the gradient for learning based optimization. As it will be demonstrated in

this work, NARX-MLPs, when trained in a closed-loop fashion, may become unstable or

converge very slowly.

One alternative to NARX model is to define an internal state, x(k), and use a one step

memory buffer,

x(k) =f

(
x(k − 1), y(k − 1), u(k)

)
,

y(k) =g

(
x(k)

)
.

This architecture is an example of a Recurrent Multilayer Perceptron (RMLP). An RMLP

is made by one (or a few) locally recurrent layers of sigmoid neurons [43]. RMLPs have

been used in a number of dynamic system identification and modelling problems, such as

a heat exchanger [75], engine idle operation [51] and wind power prediction [50].

It is not clear whether using RMLPs is more advantageous than NARX-MLPs. How-

ever, in [45] it is shown that NARX-MLPs, in a single-step prediction scenario, outperform

RMLPs in modelling a real helicopter. NARX RNNs have been extensively studied [82, 53]

and used in various modelling and identification problems [9, 4, 52]. In [91], a Radial Ba-

sis Function (RBF) network in a NARX architecture, i.e., NARX-RBF, is used to model

and control a quadrotor with three horizontal and one vertical propeller. In [86], another

form of NARX-RBF is employed and trained using Levenberg-Marquardt learning method

(LM) to model a small-scale helicopter. Both approaches employ a Series-Parallel training

method.
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Recently, Abbeel et al. used Rectified Linear Units neural networks to model dynamics

of a helicopter from experimental data [78]. Although they have not used RNNs, their

dataset is also used in this thesis to assess the performance of RNNs. In [94], a deep

neural network, trained by a Model-Predictive Control (MPC) policy search, is used as a

policy learner to control a quadrotor. The network generates one step policies and has a

feed-forward architecture. In [73], a few NN architectures, such as MLPs, RMLPs, Long-

Short-Term-Memory (LSTM) and Gated Recurrent Unit cells are compared against each

other in one step prediction of a few small robotic datasets. In [47], a hybrid of recurrent

and feed-forward architectures is used to learn the latent features for MPC of a robotic

end-effector to cut 20 types of fruits and vegetables. Although the authors use recurrent

structure, they also state that using their Transforming Recurrent Units (TRUs) in a

multi-step prediction scheme results in “instability in the predicted values”, so they use

their proposed network as a one-step predictor. However, the recurrent latent state helps

to improve the predictions.

1.2 Contributions

The main contributions of this thesis are as follows.

• Traditional RNN architectures are implemented and trained to model a simulated

quadrotor from input-output data for multi-step prediction. It is demonstrated that

these models do not generally perform well on the task. Therefore, a novel struc-

turally deep RNN is proposed that is capable of learning the simulated quadrotor

model for producing accurate multi-step prediction for over 5 seconds flight time. The

proposed architecture employs inter-layer connections (skip connections) to alleviate
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the vanishing/exploding gradient problem, which arises in deep architectures. [63, 64]

• The RNN state initialization problem is defined for multi-step prediction and the

importance of initial RNN state values for control purposes is highlighted. A history-

based initialization method is proposed which leads to a novel deep architecture

employing a cascade of neural networks; one network generates the initial state values

for the second network, which is an RNN to carry out the multi-step prediction task.

The cascaded architecture provides a suitable black-box model to be trained for

learning models of dynamic systems from input-output data.

• The proposed state initialization method is applied to two main classes of RNNs,

sigmoid layers and gated architectures, and are trained on the input-output dataset

of two real aerial vehicles, a helicopter and a quadrotor. The quadrotor dataset is

collected as a part of this work and is made publicly available3. This work provides a

first comprehensive comparison on employing various RNN architectures in modeling

real robotic systems for multi-step prediction [67, 66].

• A novel grey-box approach is proposed which employs first principle model of a

quadrotor, formulated as a motion model, with the proposed black-box models. The

proposed grey-box models, trained on the quadrotor dataset, produce velocity and

body rate predictions whose errors on average are less than 3 centimetres per second

and 2 degrees per second [65].

3 https://github.com/wavelab/pelican_dataset
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1.3 Thesis organization

The remainder of this thesis is organized as follows:

• Chapter 2 provides a background in neural networks and deep learning. The model

of a neuron and the basics of the architectures to be used in this thesis are introduced.

Methods to obtain the network gradient and supervise-train the Recurrent Neural

Networks are explained.

• Chapter 3 formulates the multi-step prediction problem for dynamic systems. To

show the feasibility of using RNNs in addressing the multi-step prediction problem,

a novel structurally deep RNN is proposed and formulated. Through simulation, the

proposed RNN is trained for multi-step prediction of a simulated quadrotor. The

simulation results show a superior performance over traditional RNN architectures.

• Chapter 4 formulates the state initialization problem in RNNs which is encoun-

tered when the training trajectories do not start from a zero initial condition. Two

solutions are proposed and formulated which result in novel deep architectures for

RNNs in the context of multi-step prediction. Results on modeling two aerial vehicles

from experimental input-output data, using various architectures, are presented and

compared after the datasets are introduced.

• Chapter 5 describes a grey-box modeling approach, which results in two hybrid

architectures. The hybrid architectures employ black-box models and a motion model

of a quadrotor and are trained on the quadrotor dataset. The prediction results are

presented and compared with the predictions from white-box and black-box models

of the quadrotor.

12



• Chapter 6 concludes the thesis and provides suggestions on future works and ex-

pansions.
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Chapter 2

Background

In this chapter, the principles governing neural networks, and more specifically RNNs, are

presented. The interested reader is referred to the following texts for further details on the

field of neural networks [32, 43, 11, 27]. Also, since the main system to be modeled in this

thesis is a real quadrotor, in this chapter the quadrotor vehicle is introduced and a model

for it is developed using first principles. There are multiple ways to obtain a model of a

quadrotor [37, 89, 23]. In this work, the approach described in [23] is adopted.

2.1 Artificial Neural Networks

An Artificial Neural Network1 is a network of interconnected simple processing elements

referred to as neurons. Multiple neuron models have been proposed [32, 62, 16, 20]. In

general, a neuron is a (nonlinear) function which maps a multi-dimension input to a scalar.

One class of commonly used neurons, and the one used extensively in this thesis, is based

1Artificial Neural Networks and neural networks are referred to interchangeably.
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Figure 2.1: A general model of a neuron.

on the pioneering McCulloch-Pitts model:

y = f(
n∑
i=1

uiwi + b) = f(w>u + b) = f(v) (2.1)

In this model, u> = [u1, . . . , um] ∈ Rm is the input vector to the neuron, w> =

[w1, . . . , wm] ∈ Rm is the multiplicative weight vector and b is the bias term. The scalar

valued v, which is an affine mapping of the input, is commonly referred to as activation

potential or induced local field. There are many choices for the activation function f(.). If

f(.) represents a threshold function,

f(v) =


0, v < 0

1, v > 0

then the model represented by Equation (2.1) is called McCulloch-Pitts model. To avoid

confusion, the class of all neurons with any activation function applied on an affine trans-

formation of the input are referred to as affine neurons. The activation function used in

this thesis is the hyperbolic tangent function,

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
(2.2)
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Figure 2.2: Graph of the hyperbolic tangent function.

and it is plotted in Figure 2.2. The hyperbolic tangent function is sigmoidal. A sigmoidal

function f(.) is a real-valued, monotonic and differentiable function such that

lim
x→∞

f(x) = +1, lim
x→−∞

f(x) = −1. (2.3)

There are other activation functions such as Radial Basis Functions (RBF) and Rectified

Linear Units (ReLUs) [27]. There is no significant difference between any sigmoidal function

in the problems being investigated in this thesis. RBFs, however, are suited more for

problems where spatial information among the observations carry significant information,

and ReLUs are suited more for classification problems [27].

A basic example of a neural network is shown in Figure 2.3. It has m inputs and n

outputs. Note that in this architecture, signals flow in one direction: from input nodes

toward outputs. This architecture, and similar ones which satisfy this property, are called

Feed-Forward Neural Networks (FFNNs).

In Figure 2.3, each stack of neurons is called a layer (shaded regions) and a circle

denoted by Ni,j represents the ith neuron inside the jth layer. If all neurons inside a layer
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have the same activation function, it is convenient to write the equation for a layer as,2

yl = f(vl) = f(Wlul + bl), (2.4)

where l represents the layer index. The activation potential is denoted by vl. Let the

number of neurons in the lth layer be nl, i.e., yl ∈ Rnl . If the input to the lth layer,

represented by Equation (2.4), has ml elements (i.e. ul ∈ Rml), then Wl ∈ Rnl ×Rml and

bl ∈ Rnl .

The layer at which the outputs are generated is called the output layer. All the inter-

mediate layers between the input and output layers are called hidden layers. The example

shown in Figure 2.3 has one hidden layer. If the activation function of neurons inside the

hidden layer(s) in an FFNN is sigmoidal then it is called a Multi-Layer Perceptron (MLP).

y1

y2

yn

u1

u2

um

...
...

...
...

N1,1

N2,1

Nh,1

N1,2

N2,2

Nn,2

Figure 2.3: A simple neural network.

Initially, the sigmoidal activation functions were the primary choice for neural net-

works because of the universal function approximation property. Informally, the universal

approximation theorem states that for every continuous bounded function, there exists an

MLP network which can approximate that function to any desired level of accuracy. Formal

2In this text, bold lower-case letters indicate vectors, and bold upper-case letters indicate matrices.
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definition of this theorem as well as proofs can be found in [32, 38, 24, 17]. Neural networks

with other type of activation functions, such as RBF, are also universal approximator, for

more details see [31] and [83].

2.2 Supervised Training in Neural Networks

In ML, supervised training is performed through an optimization process. In neural net-

works, the optimization is dominantly chosen to be a variant of gradient descent ap-

proaches. In brief, a cost function is defined which reflects the training goal. Then the

derivative of the cost with respect to the network weights (the network gradient) is calcu-

lated using backpropagation. Backpropagation (BP) is essentially a repeated application

of the chain rule on the cost function to calculate its gradient. Because the cost is a func-

tion of the network output, the chain of derivatives start from the output and is followed

backwards toward the network inputs. Backpropagation through many layers result in a

phenomena known as vanishing gradient problem.

Consider a deep MLP, i.e., an MLP with N > 1 layers each having h neurons. For

simplicity, assume N = 5, which is illustrated in Figure 2.4. The equation to calculate all

layer outputs is given by (2.4), where ml = nl−1 = h for l = 2, ..., 5 and m1 = n5 = 1.

As a part of the BP algorithm, let us focus on two derivatives, the derivative of the

output y w.r.t. w1 and w5.
3 From Figure 2.4 it is clear that ul = yl−1 for l = 2, ..., 5 where

y>l = [yl1, yl2, ..., ylh]. To obtain ∂y
∂w5

, we apply the chain rule once to the network output

3Note that because both the input and output have dimension one, the weights at the first and last
layers are denoted using lower-case bold letter.

18



u

N1,1

N2,1

Nh,1

y11

y21

yh1

...

N1,2

N2,2

Nh,2

y12

y22

yh2

...
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Figure 2.4: A deep MLP with 5 layers.

y,

∂y

∂w5

=
∂y

∂v5

∂v5
∂w5

= f ′(w>5 y4 + b5)y4 (2.5)

where f ′(.) is the derivative of f(.) w.r.t. its argument. Repeatedly applying the chain

rule, one can obtain ∂y
∂w1

using the following equation,

∂y

∂w1

=
∂y

∂v5

∂v5
∂y4

2∏
i=4

∂yi
∂vi

∂vi
∂yi−1

∂y1

∂v1

∂v1

∂w1

, (2.6)

where the index i starts at 4 and decreases so that the matrix multiplications are in the

correct order.4 There are two types of terms in Equation (2.6). One is the derivative of

a layer output w.r.t its activation potential, e.g., ∂y5

∂v5
, and the other is the derivative of a

layer activation potential w.r.t. the input to the layer, e.g, ∂v5
∂y4

. The former corresponds

to the derivative of the activation function w.r.t. its argument and the latter is equivalent

to the layer multiplicative weights Wi,

∂vi
∂yi−1

= Wi. (2.7)

4The derivative of a vector-valued function with p elements w.r.t. a variable vector with q elements is
a matrix, known as Jacobian, which is a member of Rp × Rq.
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The network weights should be initialized to small values for training. Therefore, using

a sigmoidal activation functions, all of the terms in Equation (2.6) are values (much) less

than 1. Comparing Equations (2.5) and (2.6) it is clear that,

∂y

∂w1

<<
∂y

∂w5

. (2.8)

This results in an optimization process which searches the weight space unevenly and pun-

ishes the shallow weights (w5) much larger than the deep weights (w1). The decaying

gradient, as described above, can cause the numerical optimization process involved in

training a deep NN to become unstable due to severely fluctuating cost values. Moreover,

the tiny deep gradient values may also cause machine precision errors. Clearly, the deeper

a network, the more severe the vanishing gradient problem becomes. In Recurrent Neu-

ral Networks, sigmoidal layers are virtually placed in a series architecture which will be

discussed next.

2.3 Recurrent Neural Networks

Consider a network in which inputs, activations and outputs are time varying signals:

y(k) = f(Wu(k) + b), (2.9)

where k indicates a discrete-time index. A continuous time formulation can also be em-

ployed [25]. This work focuses on the discrete time case, as it most easily represents the

discrete nature of network input measurements from sensors.

As stated earlier, the flow of signals in FFNNs is unidirectional. Therefore, after an
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FFNN is trained and the weights are fixed it becomes a static mapping from inputs to

outputs. Although FFNNs are universal approximators, they lack the capability to exhibit

any form of dynamical behaviour [32, 43]. Recurrent Neural Networks (RNNs) are not

only universal approximators [25, 40, 80] but also have internal dynamics, and are therefore

considered strong candidate for accurate representation of dynamical systems. An example

of a Fully Connected RNN (FCRNN) is illustrated in the Figure 2.5.

u1(k)
...

um(k)

y1(k)
...

yn(k)

x1(k)
...

xs(k)

x1(k − 1)

...
xs(k − 1)

N
...

N

N
...

N

z−1

...

z−1

Figure 2.5: An example of FCRNN with m inputs, s hidden and n output neurons. Each
circle denoted with N represents a neuron. Different colors represent different weights.

A convenient way to present the equations governing the dynamic of an RNN is a state-

space representation. The name arises from the similarity with state-space representation

of dynamic systems. In fact, RNNs are nonlinear dynamic systems,

x(k) = f(Ax(k − 1) + Bu(k) + bx)

y(k) = g(Cx(k) + Du(k) + bo).

(2.10)
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y(k)

x(k)

x(k − 1)

Figure 2.6: RMLP illustrated as a state-space model.

In this representation, which corresponds to Figure 2.5, the following hold,

RNN state vector: x(k) ∈ Rs,

RNN output vector: y(k) ∈ Rn,

Independent input vector: u ∈ Rm,

State feedback weights: A ∈ Rs × Rs, blue connections in Figure 2.5

Input-to-state weights: B ∈ Rs × Rm, green connections in Figure 2.5

State-to-output weights: C ∈ Rn × Rs, black connections in Figure 2.5

Input-to-output weights: D ∈ Rn × Rm, red connections in Figure 2.5

State bias term: bs ∈ Rs,

Output bias term: bo ∈ Rn.

(2.11)

Also, the vector-valued functions, f(.) and g(.), are the state and output activation func-

tions. There are a variety of architectures in RNNs. The explained architecture, which

uses an MLP with feedback connections (Equation (2.10)), is called a Recurrent MLP or

RMLP. Figure 2.6 shows the block diagram of an RMLP suited for system identification.

Note that the output layer activation function is the identity. A comprehensive study on

RNN architectures can be found in [59, 43].

One interesting architecture, particularly for dynamic system identification, is called
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Non-linear Auto-Regressive eXogenous, or NARX, model. In statistical signal processing

auto-regressive models are used to estimate the output of a linear dynamic process in

discrete time domain. In an auto-regressive scheme, the model is represented by a mapping

from the previous input and output values to the present output. NARX is an extension

of the same idea to the nonlinear dynamic systems. In a NARX framework, the system

output at a time step k is modelled as a nonlinear mapping of the previous values of the

system output, the current and past values of the input. In practice, the past time-horizon

is finite. For a system with scalar input and output, the NARX model is,

y(k) = g

(
u(k), u(k − 1), . . . , u(k − dx), y(k − 1), . . . , y(k − dy)

)
. (2.12)

One of the earliest successfully employed neural network models for modeling a dynamic

system is based on the NARX architecture [68], where the function f(.) is realized by an

MLP. Although any other FFNN might be used to realize it, the NARX architecture with

a single hidden-layer MLP has been used commonly ever since [2, 70, 18, 8, 6, 3]. The

dynamics of this model with m inputs and n outputs is governed by the following equation,

y(k) = W2f

(
W1φ(k)

)
, (2.13)

where φ(k) is called a regressor and is a vector which contains the vectors u(k − i) for

all i = 0, 1, . . . , dx and y(k − i) for j = 1, . . . , dy. For each k we shall have y(k) ∈ Rn,

u(k) ∈ Rm and therefore φ(k) ∈ Rm(dx+1)+ndy .

To provide a delayed version of a signal in discrete time, it is customary to employ a

bank of buffers, referred to as Tapped Delay Line (TDL) [32]. A TDL with length of t is

basically a bank of t buffers arranged in a serial fashion as depicted in Figure 2.7.
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z−1

z−1

...

z−1

u(k) u(k)

u(k − 1)

u(k − 2)

...

u(k − t)

Figure 2.7: A TDL with t number of buffers which provides delayed versions of a signal.

2.4 Learning Algorithms for RNNs

As stated earlier, at the heart of training a neural networks lies an optimization process

which in a supervised learning case is often derivative-based. Two common methods exist:

Real Time Recurrent Learning (RTRL) and Back Propagation Through Time (BPTT). In

RTRL the network gradient is continually updated as the network receives input elements

and the weights are updated in the gradient descent direction using a learning rate. In

BPTT, however, the gradient is calculated for a (finite) time horizon and any gradient-

based method can be applied to update the network weights. Both methods are briefly

explained in the next two subsections, however, more details can be found in [32, 43, 27, 90].

2.4.1 Real Time Recurrent Learning

RTRL was originally proposed by Ronald J. Williams and David Zipser in 1989 [90]. This

algorithm is suitable when it is required to train the network while continually running it.

In the original description, RTRL is formulated for a fully connected RNN (FCRNN) with

an arbitrary number of neurons and input lines, where the states are equal to the outputs

(Figure 2.8). However, the concept is applicable to a number of other architectures.
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Figure 2.8: An example of FCRNN with m input, n hidden neurons where states and
outputs are the same.

To show how RTRL works, let us first concatenate inputs (u(k)) and outputs (y(k)) to

form the (m+ n)-tuple z(k). Thus, if I is the set of input indices and O the set of output

indices, then

zi(k) =


ui(k) if i ∈ I

yi(k) if i ∈ O
(2.14)

In a similar manner we can arrange all weights, that exist between all neurons in the

network, into an n× (m+ n) weight matrix W. Since the network is fully connected, the

activation of each neuron at time k is

vi(k) =
∑
l∈O∪I

wilzl(k) (2.15)

and the network outputs at the next time step will be calculated by

yi(k + 1) = fi(vi(k)) (2.16)
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where i ranges over U . Equations (2.14), (2.15) and (2.16) define the dynamics of the

network for which the RTRL algorithm is presented next.

Let T (k) denote the set of indices of neurons for which a desired value ydi (k) exists at

time k. Then the error signal ei(k) is

ei(k) =


ydi (k)− yi(k) if i ∈ T (k)

0 otherwise

(2.17)

The instantaneous error of the network is

E(k) =
1

2

∑
i∈O

e2i (k) (2.18)

The minimization cost function can be either the instantaneous error or a total error over

a given period such as

L = E(k)

∣∣∣∣T+t0
k=t0

=

T+t0∑
k=t0

E(k). (2.19)

RTRL is based on the gradient descent algorithm and adjusts the weights along the negative

of the gradient of the cost function, i.e.,∇WE(k). Thus, for both of the above cost functions

(i.e., Equations (2.18) and (2.19)) we need to compute the partial derivative of E(k) with

respect to the individual weights at time k:

∆wij(k) = −η∇WE(k) = −η∂E(k)

∂wij
= −η

∑
l∈O

el(k)
∂yl(k)

∂wij
, (2.20)

where η is the learning rate which can be either a fixed positive value or determined using
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a line search method. Using Equations (2.16) and (2.15) for l ∈ O:

∂yl(k)

∂wij
= f ′l (vl(k))

[∑
p∈O

wlp
∂yp(k)

∂wij
+ δilzj(k)

]
, (2.21)

and δil denotes the Kronecker delta, that is δil = 1 if i = l, and 0 otherwise.

Assuming the initial state of the network has no functional dependence on the weights

we have

∂yl(t0)

∂wij
= 0. (2.22)

Therefore, Equations (2.21) and (2.22) constitute a recursive formula to compute ∂yl(k)
∂wij

and

using Equation (2.20) the RTRL weight update rule is obtained.

In the case of the cumulative cost function (Equation (2.19)), one must sum all the

individual updates ∆wij(k) over the interval [t0, T+t0] and the final weight update becomes

∆wij =

T+t0∑
k=t0

∆wij(k). (2.23)

2.4.2 Back Propagation Through Time

Back Propagation Through Time or BPTT is the temporal extension of the BP method

to RNNs. As the name implies, to use this method, one first needs to unfold the network

back in time either an infinite or finite number of time-steps. This procedure yields a deep

FFNN where the standard BP algorithm is applicable, bearing in mind that the weight

values are shared across the layers. As described in Section 2.2, such a deep architecture

will result in the vanishing gradient problem. However, since the weights are shared across

the layers, there is a slight difference between the vanishing gradient problem arises in deep
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FFNNs and RNNs. Although both have the same effect, for clarity the term structural

vanishing problem is used, in this work, to refer to the former and temporal vanishing

problem to refer to the latter. In an RNN, if the weight values are larger than 1, the

repetitive multiplications that occur when applying the chain rule will result in gradient

values which can be extremely large. This is referred to as the exploding gradient problem

and similar to the vanishing gradient problem deteriorates the training of an RNN. For

more details on the vanishing/exploding gradient problem in RNNs, see [36].

The temporal vanishing/exploding gradient problem becomes particularly important

when there are long-term dependencies, i.e., the output at a time step is significantly de-

pendent on information fed to the network in the distant past. However, the structural

vanishing gradient problem occurs when there are multiple layers connected in series and

disables the network to efficiently learn deep weights. Long Short Term Memory cells

(LSTMs) are probably the most successful attempt to resolve the temporal vanishing gra-

dient problem in RNNs. For more information and detailed discussions refer to [81, 29].

2.5 Long Short Term Memory RNNs

In an attempt to facilitate the flow of information throughout a network, LSTMs employ

cells equipped with gates to remember, forget or output information [81]. Basically, gates

in LSTMs are affine layers with sigmoid activation function ( 1
1+e−x ) which are trained to let

pass the information throughout the network in such a way that the gradient of information

is preserved across time. There are many versions of LSTMs [29]. The LSTMs employed in

this work are described in [79] and depicted in Figure 2.9 which are equipped with peephole

connections. Peephole connections are connection from the cell, c(.), to the gates. The
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equations of the LSTM in this work are given by the following,

gi(k) =σ

(
Wi

iu(k) + Wm
i m(k − 1) + Wc

ic(k − 1) + bi

)
,

gf (k) =σ

(
Wi

fu(k) + Wm
f m(k − 1) + Wc

fc(k − 1) + bf

)
,

go(k) =σ

(
Wi

ou(k) + Wm
o m(k − 1) + Wc

oc(k) + bo

)
,

c(k) =gi(k)� f

(
Wi

cu(k) + Wm
c m(k − 1) + bc

)
+ gf (k)� c(k − 1),

m(k) =g

(
c(k)

)
� go(k),

y(k) =h

(
Wym(k) + by

)
= Wym(k) + by.

(2.24)

In this set of equations, indices i, f , o and c correspond to the input gate, forget gate,

output gate and cell. The operator � indicates an element-wise multiplication. Gate

activation functions, σ(.), are logistic sigmoid while the cell activation function g(.) and

the output activation function h(.) are chosen by the designer. Since the problem at hand is

regression, the activation functions h(.) and g(.) are set to identity and tangent-hyperbolic

function, respectively. Detailed gradient calculations can be found in [81, 26]. Note that

in LSTMs there are two types of state: cell states, c(k), and hidden states, m(k). One

significant difference between LSTMs and traditional RNNs, such as an RMLP, is that in

traditional RNNs the neuron outputs are not multiplied by each other, i.e., they are first-

order networks. However, LSTMs benefit from such inter-multiplication throughout the

cell in a smart way. Therefore, LSTMs can also be categorized as second-order RNNs.

More about second order RNNs can be found in [43].
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Figure 2.9: A Long-Short-Term-Memory cell with peephole connections. The blue colored
connections are the feedback connections, red ones are the peepholes and the black ones
are the feedforward connections.

2.6 Learning Considerations

Having calculated the gradients, the next step in training any NN is to run an optimiza-

tion. Variants of first-order optimization methods have been almost established as standard

methods to train NNs. Although second order methods converge faster (particularly in re-

gression problems), the excessive memory demand and computation cost outweigh the

benefit of faster convergence. All gradient-descent methods work on the same basis, how-

ever, second order methods provide a more ”informative” choice for the learning step [72]

based on the Hessian (or approximations to it) of the cost. First order methods, such

as the Hessian Free method [61] or the Conjugate Gradients method [72], try to incorpo-
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rate the second order information (the curvature information) of the cost without explic-

itly computing or approximating the Hessian. Other methods such as ADADELTA [93],

RMSProp [87], ADAM [42], etc, which are all first-order, provide different mechanisms

for updating the learning rate. In this thesis, two optimization methods are used, the

Levenberg-Marquardt-Method (LMM) [30] and ADAM [42].

As with all machine learning methods, the use of large datasets can be computationally

prohibitive, using small datasets can lead to overfitting and weights getting stuck in local

minima. Cross-validation is commonly used to avoid such issues [11], and is employed

here as well. Additionally, both regularization and randomization in the gradient descent

update can improve convergence properties [77], and these methods are also employed to

improve learning performance.

Although the RTRL and BPTT methods provide the two main frameworks to calculate

the gradients, in large RNNs it is far from straight-forward to calculate the gradients. For

instance, a slight change in the network architecture has a heavy impact on the form

of Equation (2.21). Quite recently, due to progress in hardware and versatile software,

very large networks with sophisticated architectures can be implemented and trained, the

gradients can be calculated automatically and optimization can be run concurrently on

many thousands of cores. In the next chapter a simple method is proposed and formulated

to simplify the gradient calculations in a wide range of RMLPs with skip-connections which

makes it much easier to modify RNNs architecture, and allows network architecture to be

designed more easily for each new dynamical system.
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2.7 Quadrotor Model

A quadrotor is a rotorcraft aerial vehicle which generates its lift by two pairs of identical

fixed pitched propellers. In the commonly used quadrotors, each pair is mounted at the

two ends of an arm and the two arms are attached at the center. The propellers of each

pair rotate in the same direction which opposes the direction of rotation of the other pair.

As the rotor disks are fixed, the movement of the quadrotor is controlled by changing the

rotation speed of the propellers. Depending on how they are controlled, two configurations

exist; a plus (’+’) configuration and an X configuration. The effect of rotor speeds to

achieve different movements are depicted in Figures 2.10 and 2.11, for the plus and X

configurations, respectively. The X configuration described in this thesis is tailored to the

Pelican quadrotor (Section 4.4.1).
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(a) Hovering.
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(b) Positive yaw.
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ẑB

1

2

3

4
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(d) Positive pitch.

Figure 2.10: Basic quadrotor movements for plus configuration, top view. The thickness
of arrows around the rotors proportionally corresponds to the rotor speed.
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ŷB
ẑB
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(d) Positive pitch.

Figure 2.11: Basic quadrotor movements for X configuration, top view. The thickness of
arrows around the rotors proportionally corresponds to the rotor speed.

To study the behaviour of a quadrotor, it is convenient to describe the vehicle transla-

tion and rotation in two frames: an inertial frame {R, (O, x̂I , ŷI , ẑI)}, which is attached to

the earth and a body-fixed frame {RB, (OB, x̂B, ŷB, ẑB)} attached to the body. For each of

the plus and X configuration, the body-fixed frame is illustrated in Figures 2.10 and 2.11.

Note that the body-fixed frame can be converted from one configuration to the other by

applying a 45 degrees rotation on the xy plane.

In Figure 2.12, both the inertial frame and the body-fixed frame are illustrated for a

plus configuration. The frames are right hand coordination systems. The origin of the

body-fixed frame OB is assumed to be placed at the vehicle center of mass. Therefore,

the position of the quadrotor is the position of OB measured in the inertial frame and

represented by ξ = [x y z]T . The orientation of the vehicle is represented by the Euler

angle vector, which represents the angles of the body-fixed frame in the inertial frame. The
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Euler angle vector, η = [φ θ ψ]T , has three components: roll (φ), pitch (θ) and yaw (ψ),

illustrated in Figure 2.12.

Given a vector, vB, in the body-fixed frame, it can be expressed in the inertial frame,

vI = RB→IvB,

using a rotation matrix:

RB→I =


CθCψ CψSθSφ − CφSψ CφCψSθ + SφSψ

CθSψ SψSθSφ + CφCψ CφSψSθ − SφCψ

−Sθ CθSφ CθCφ

 , (2.25)

where Tα, Cα and Sα are the tan(α), cos(α) and sin(α) (for α = φ, θ, or ψ).

Figure 2.12: Quadrotor frames and variables.
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The quadrotor velocity and Euler angle rates are represented by ξ̇ and η̇, respectively:

ξ̇ = [ẋ ẏ ż]T , η̇ = [φ̇ θ̇ ψ̇]T . (2.26)

Body angular velocities (body rates), which are the rate of change of roll, pitch and

yaw, in the body frame, can be well measured by gyroscopic rate sensors. The following is

the mapping between the body rates (ω = [p q r]T ) and Euler angle rates (η̇)

ω = M(φ, θ, ψ)η̇ (2.27)

and the matrix-valued function M(.) is given by [22]:

M(φ, θ, ψ) =


1 0 −Sθ

0 Cφ SφCθ

0 −Sφ CφCθ

 . (2.28)

The quadrotor state vector is formed as follows,

xT = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12]

= [ηT ωT ξT ξ̇
T

]

= [φ θ ψ p q r x y z ẋ ẏ ż].

(2.29)

Using an Euler-Lagrange approach as in [23], the quadrotor dynamic model can be
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written as,

η̇ = M−1(φ, θ, ψ)ω,

Iω̇ = τB − ω × (Iω×)− krω,

ξ̈ = RB→I

 0

0
τf
m

− kt
m
ξ̇,

(2.30)

in which kr and kt are the rotational and translational drags, τf is the total thrust acting

on the body, τB = [τp τq τr ]>, is the torque around the body frame axis, ’×’ denotes the

vector cross-product and I represents the inertia matrix in the body frame,

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 . (2.31)

The input to Equations (2.30) is the total thrust and torques, arranged in a vector, τ , as
follows,

τ =

[
τf

τB

]
=


τf

τp

τq

τr

 (2.32)

and are related to the forces generated by the rotors. For the plus configuration illustrated

in Figure 2.10 this relation is given by,

τ =


1 1 1 1

0 −l 0 l

−l 0 l 0

−d d −d d



f1

f2

f3

f4

 , (2.33)
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and for the X configuration illustrated in Figure 2.11 the relations is,

τ =


1 1 1 1

l −l l −l
−l l −l l

d d −d −d



f1

f2

f3

f4

 . (2.34)

In Equations (2.33) and (2.34), l is the distance from the center of mass to the rotors, d is

the ratio between the drag and the thrust coefficients of the blade, and fi for i = {1, 2, 3, 4}

are the forces generated by the four rotors of the quadrotor. The force generated by the

ith motor rotating at a speed of ωi is approximated by fi = (bmi + ω2
i )/kmi, where bmi and

kmi are the motor thrust coefficients.
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Chapter 3

Multi-Step Prediction for Dynamic

Systems

In this chapter, the main problem is formulated, i.e., the multi-step prediction of a dynamic

system. As mentioned earlier, the RNNs are used to address this problem. To empirically

show RNNs are a good candidate to address the problem at hand, an RNN based solution

to a simplified version of the problem is proposed and formulated. The solution is applied

to modeling a simulated quadrotor vehicle. The results are presented and compared with

classic approaches using RNNs [63, 64].

3.1 Multi-Step Prediction Problem

Consider a dynamic system, Smn , with m input and n output dimensions. The system input

and output at a time instance, k, is denoted by u(k) ∈ Rm and y(k) ∈ Rn, respectively.

It is assumed that both input and output are measurable at all timesteps, k. Consider an
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input sequence of length T starting at a time instance k0 + 1, U(k0 + 1, T ) ∈ Rm × RT ,

U(k0 + 1, T ) =

[
u(k0 + 1) u(k0 + 2) . . . u(k0 + T )

]
. (3.1)

The system response to this input is an output sequence denoted by Y(k0+1, T ) ∈ Rn×RT ,

Y(k0 + 1, T ) =

[
y(k0 + 1) y(k0 + 2) . . . y(k0 + T )

]
. (3.2)

Definition: Given an input sequence U(k0 +1, T ), the multi-step prediction problem seeks

an accurate estimate of the system output, Ỹ(k0 + 1, T ) ∈ Rn × RT , over the same time-

horizon, T ,

Ỹ(k0 + 1, T ) =

[
ỹ(k0 + 1) ỹ(k0 + 2) . . . ỹ(k0 + T )

]
, (3.3)

which minimizes the prediction error, that is, a measure of the error between the actual

and predicted outputs. Usually, a Sum-of-Squared Errors measure (SSE) (or the mean of

SSE, MSSE) is chosen,

L =
1

T

k0+T∑
k=k0+1

e(k)>e(k), (3.4)

e(k) = y(k)− ỹ(k). (3.5)

4

3.1.1 Application Example

In Chapter 1, two application examples were briefly introduced which can benefit from a

multi-step prediction model. To highlight the applicability of the multi-step prediction and
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the importance of the prediction error, an application example is explained in this section

which employs a multi-step prediction model.

To inspect a bridge, an autonomously flying quadrotor should follow a specific path

close to the bridge structure for its sensors to inspect various joints and other parts of

the structure. Assuming a detailed description of the bridge shape as well as the map of

the environment surrounding it are available, a path can be devised through which the

quadrotor should fly to achieve certain goals. The devised path consists of waypoints,

each of which is determined by a desired vehicle state. The vehicle state is described

by its position, velocity, attitude and body angular rates. The desired state values are

sequentially given to an onboard controller which issues appropriate commands to the

four motors to navigate the vehicle through the waypoints by minimizing the vehicle state

errors. The state error is the difference between the measured state and the desired one at

each waypoint. The vehicle position and velocity are measured by accurate GPS readings

and the vehicle attitude and body rates are measured by an onboard Inertial Measurement

Unit (IMU), both at 100Hz.

There are areas under the bridge where the GPS reading is not available. As the flying

vehicle enters a GPS denied area, the position and velocity measurements are temporarily

lost. However, to continue the mission safely, state predictions based on a model of the

vehicle dynamics can be used to continue to pilot the vehicle in open loop until measure-

ments are once again available. For this purpose, a multi-step prediction model can be

used, which recursively updates the position and velocity from the motor speeds until the

GPS signals are recovered. For simplicity it is assumed that the weather is calm and the

quadrotor is not affected by the wind significantly.

Assume that the GPS readings correspond to the center of the gravity (CG) of the
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quadrotor. Then the waypoints should be placed in such a way that there is enough space

between the quadrotor frame and the bridge structure. For instance, if the quadrotor is

hovering at a waypoint, then the Euclidean distance between this waypoint and the bridge

structure should be larger than the largest distance of the points on the quadrotor frame

(including all the sensors and rotor blades) from the quadrotor CG. However, a safety

distance should also be considered to account for the errors in GPS readings as well as

the controller transient and steady-state response. Design of such controller is out of the

scope of this work and the GPS readings accuracy depends on the receiver being used. In

the absence of the GPS reading and using a multi-step prediction model to update the

position and velocity, the prediction error (Equation 3.4), dictates the clearance that each

waypoint should meet in order to avoid hitting the bridge structure.

CG

(a) A bounding cylinder for a quadrotor.
The cylinder is centered at the vehicle CG
and fully surrounds the vehicle body.

error margin (z)

cylinder half height

cylinder radius

error margin (x)

x

z

(b) The cross-section of the bounding cylin-
der. The bounding cylinder should be in-
flated to avoid collision. The amount of in-
flation is denoted by the error margins.

Figure 3.1: A bounding cylinder which surrounds the quadrotor body can be used for
planning purposes to avoid collision with obstacles.

An illustration of the above discussion is depicted in Figure 3.1. In this figure, a cylinder
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is centered at the quadrotor CG and surrounds the quadrotor. The cylinder’s dimensions

can be used in order to design collision-free waypoints. It is a common practice to inflate

the dimensions of the surrounding shape (here it is a cylinder) to account for measurement

errors and ensure a collision free navigation. A similar approach can also be taken to

account for errors in the vehicle attitude measurements. When the position and velocity

of the vehicle is being updated by the multi-step prediction model, the prediction error

corresponds to the error margins depicted in Figure 3.1.

During the flight, while the GPS measurements are available, an Extended Kalman

Filter (EKF) can be used to update the states of the vehicle and send them to the controller.

The controller then calculates the state error and issues appropriate commands to minimize

them. As soon as the GPS readings become inaccurate or unavailable, the multi-step model

replaces the EKF and is used to update the states in an open-loop fashion, using the motor

speeds only, until the GPS readings are recovered. The length of a safe continuation of the

flight, both in terms of time and distance, depends on the multi-step prediction accuracy

provided by the model over the prediction length. Throughout this thesis, several models

will be developed and trained, however, the safe lengths resulting from the most accurate

model will be provided as a proof of practicality of the trained model (Section 5.4).

3.2 RNNs as Sequence-to-Sequence Models

Throughout this thesis, RNNs will be playing a central role in addressing multi-step pre-

diction problem, and therefore, are formulated for this purpose. Given an input sequence,

U(k0 + 1, T ), an RNN produces an output sequence with the same number of elements. In

this scenario, the RNN maps an input sequence to an output sequence with equal length.
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Although it is not necessary that the input and output sequences have the same length,

throughout this thesis it will be assumed they do unless otherwise mentioned. A sequence

may represent a continuous signal sampled at a fixed frequency. In such a case, each oc-

currence of an element is referred to as a time instance. Similar to the description of Smn

in Section 3.1, an RNN with m inputs and n outputs, Rm
n , is a dynamic system. At each

time instance, k, feeding in the input element u(k) causes the RNN to evolve through two

major steps:

1. state update,

x(k|θ) = f

(
x(k − 1|θ),u(k)

)
, (3.6)

2. output generation.

ỹ(k|θ) = g

(
x(k|θ),u(k)

)
, (3.7)

where the RNN output is denoted by ỹ(k). The vector θ ∈ Rq encompasses the network

weights whose size, q, depends on the RNN architecture. The functions f(.) and g(.)

are defined either explicitly, e.g., RMLPs - Equations (2.10), or implicitly, e.g., LSTMs -

Equations (2.24), as described in Chapter 2.

Using RNNs to address the multi-step prediction problem, we seek an RNN which,

given an input sequence U(k0 + 1, T ), produces an output sequence Ỹ(k0 + 1, T |θ) which

minimizes the Mean SSE (MSSE) loss over the prediction interval [k0 + 1, k0 + T ],

L(θ) =
1

T

k0+T∑
k=k0+1

e(k|θ)>e(k|θ) (3.8)

e(k|θ) = y(k)− ỹ(k|θ). (3.9)
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where y(k) is the system output at time k ∈ [k0+1, k0+T ] to the input u(k) ∈ U(k0+1, T ).

Therefore, the solution to the multi-step prediction problem is an RNN which minimizes

L for all possible input-output sequences,

θ∗ = arg min
θ

(
L(θ)

)
. (3.10)

Such an RNN will be referred to as a predictor.

The optimization in (3.10) is not practically possible because there are infinite input-

output sequences. In practice, a dataset is collected by measuring the system input and

output in a variety of cases. The dataset is comprised of time-series samples in a form of

input-output tuples,

D =

{
si =

(
Ui(T ),Yi(T )

)}
, i = 1, ..., nD. (3.11)

where T indicates the length of the trajectories and there are a total number of nD samples

in the dataset D. Throughout this thesis, it is assumed that all of the samples have the

same length.

Definition: A complete dataset is a dataset in which samples encompass all of the

information needed to reconstruct the system input and state trajectories over T .

4

Example: Since position is the integral of velocity, and velocity is bounded in a physical

system, using velocity measurements is more convenient for normalization purposes. Also,

Euler angles are the integral of Euler rates which can be obtained using vehicle body

rates (refer to Sections 2.7 and 4.4.1). Therefore, if each sample in a quadrotor dataset
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encompasses the four motor speeds as input and velocity and body rates as the output

over T , then it is complete.

4

Having a complete dataset, a numerical optimization is carried out to find a minimum

of the total prediction loss,

Lpred(θ) =
1

nD

nD∑
i=1

Li(θ) =
1

TnD

nD∑
i=1

k0+T∑
k=k0+1

ei(k|θ)>ei(k|θ). (3.12)

where Li is the loss due to the prediction error resulted from sample si. For detailed

discussions refer to [39] and [95].

3.3 Multi-Layer Fully Connected RNNs

The framework described in this section is a generalization to RMLPs. It is a modular

RNN with multiple locally recurrent layers and connections between all layers, both for-

ward and backward. As a proof of concept, a Single-Input-Single-Output (SISO) nonlinear

system which models the altitude dynamics of a quadrotor, is modeled using this frame-

work. Through simulation it will be shown that in modeling this SISO system, the proposed

architecture outperforms NARX-MLP and regular RMLP in terms of number of parame-

ters, computational time and number of training samples. Then, it will be demonstrated

that the Multi-Layer Fully Connected RNN (MLFC-RNN) is also capable of modelling the

quadrotor as a Multi-Input-Multi-Output (MIMO) system.
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3.3.1 The MLFC framework

An MLFC-RNN1 consists of layers which are locally recurrent, denoted by Gl, l = 1, . . . , N ,

where N is the number of layers. An example of a three layer (N = 3) MLFC-RNN is

illustrated in Fig. 3.2 . In fact, each Gl is a dynamic MIMO system with ml inputs and nl

outputs. The equations governing the dynamics of Gl, similar to (2.10), are as follows:

xl(k) = Alyl(k − 1) + Blul(k) + bl

yl(k) = fl

(
xl(k)

) , (3.13)

where xl(k) ∈ Rnl is the state of the layer, yl(k) ∈ Rnl is the output of the layer, ul(k) ∈

Rml is the input to the layer, Al ∈ Rnl×Rnl is the feedback weight matrix, Bl ∈ Rnl×Rml

is the input weight matrix, bl ∈ Rnl is a bias weight vector, fl(.) is the layer activation

function, nl is the number of the neurons inside the layer and finally ml is the number of

input signals to the layer.

G1 G2 G3

u(k)

y3(k)

z−1 z−1

y1(k) y2(k)

Figure 3.2: A 3 layers MLFC-RNN, with output ỹ(k) equal to y3(k).

The vectorized form of the weights inside the layer Gl is referred to by p>l = [Bl(:

, 1)> . . . Bl(:,ml)
> Al(:, 1)> . . . Al(:, nl)

> b>l ], where Al(:, j)
> is the transpose of the

jth column of Al and similarly for Bl. The weight vector, pl, is in Rql , where ql =

nl(ml + nl + 1) is the number of all weights inside Gl.

1In [63] and [64] this framework is called a Modular-Deep-Recurrent-Neural-Network (MODERNN).

46



The states and outputs of an MLFC-RNN can be updated in either a parallel or a serial

fashion. In the parallel fashion all layers are updated at once. In this case, the input to

each layer becomes,

ul(k) =

[
u>(k) y>1 (k − 1) . . . y>l−1(k − 1) y>l+1(k − 1) . . . y>N(k − 1)

]>
, (3.14)

and as all the inputs are formed, then the states (and outputs) are updated at the same

time. The serial method updates each layer as the signals flow from input towards the

output layer:

ul(k) =

[
u>(k) y>1 (k) . . . y>l−1(k) y>l+1(k − 1) . . . y>N(k − 1)

]>
. (3.15)

The parallel fashion treats all of the layers in the MLFC-RNN as a single layer, hence, it is

a reformulation of RMLP. However, the sequential update taking place within MLFC-RNN

in the serial fashion is a novel approach and implicitly provides an internal time-constant

for the network which is equal to the number of layers, N . In this work, the MLFC-RNNs

will be used in a serial update fashion. In either case,

ml = m+
N∑
j=1
j 6=l

nj . (3.16)

In this work, it is assumed that the N th layer provides the network output as well, i.e.,

ỹ(k) = yN(k). For later reference, a network with N layers is represented by a function
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that maps the input sequence U(k0, T ) to the output sequence Ỹ(k0, T ):

Ỹ(k0, T ) = ΩN

(
U(k0, T )

)
. (3.17)

3.3.2 Network Jacobians for MLFC-RNN

In this section, a modular method to derive the network Jacobians is presented. It has

been reported that for different architectures, obtaining network output derivatives is a

time consuming process [61]. MLFC-RNN is an attempt to address this problem and

speed up the process of designing new architectures.

To calculate the network Jacobians, let us form p ∈ Rq which is a vector encompassing

all the weights inside an MLFC-RNN network, i.e., p> =

[
p>1 . . . p>N

]
. The number of

all weights inside this networks is given by q:

q =
N∑
l=1

ql, pl ∈ Rql .

Considering an arbitrary layer, Gl, the Jacobian update rule is written as follows:

Jyl (k) =
∂yl(k)

∂p
= diag

[
f ′l

(
xl(k)

)](
AlJ

y
l (k − 1) + BlJ

u
l (k) + Γl(k)

)
. (3.18)

In (3.18), Jyl (k) ∈ Rnl × Rq is the Jacobian of the outputs of the layer Gl at time k and

Jul (k) ∈ Rml×Rq is the Jacobian of the inputs to that layer. The matrix Γl(k) corresponds

to the derivatives of the layer weights with respect to the network weights,

Γl(k) =
∂Al

∂p
yl(k − 1) +

∂Bl

∂p
ul(k) +

∂bl
∂p

. (3.19)
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Note that Equation (3.18) is a recursive update rule for Jyl (k). Therefore, an initial

value is needed at time k = 0. In this chapter, it is assumed that the training starts from

a stationary point; an assumption to be relaxed in the next chapter. Therefore the trivial

zero initial condition for this matrix is assumed. Next, two matrices are formed: Jul (k) and

Γl(k). As the independent inputs are not dependent on the network weights, the first m

rows of Jul (k) are zero. Recalling the serial update fashion and Equation (3.15) we have,

Jul (k) =

[
0>m×q Jy1

>(k) . . . Jyl−1
>(k) Jyl+1

>(k − 1) . . . JyN
>(k − 1)

]>
. (3.20)

The remaining elements inside the Jacobian Jul (k) are already calculated and so this term

can be determined recursively.

To modularly formulate Γl(k), first let us define another matrix Λl(k) for each layer,

Gl, as follows:

Λl(k) =
∂Al

∂pl
yl(k − 1) +

∂Bl

∂pl
ul(k) +

∂bl
∂pl

. (3.21)

In other words, Λl(k) plays the same role as Γl(k) but when the derivative is taken with

respect to local weights only. Note, Λl(k) is in Rnl×Rql . With some algebraic manipulation,

the term Λl(k) can be presented in the following form:

Λl(k) =

[
Λl,1(k) Λl,2(k) Inl

]
nl×ql

, (3.22a)

Λl,1(k) =

[
yl,1(k − 1)Inl

. . . yl,nl
(k − 1)Inl

]
, (3.22b)

Λl,2(k) =

[
ul,1(k)Inl

. . . ul,ml
(k)Inl

]
, (3.22c)

and ul,1(k) refers to the first element inside ul(k), and so on.
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Since Λl(k) can be calculated for all layers, it is possible to form Γl(k):

Γl(k) =

[
0nl×a Λl(k) 0nl×b

]
. (3.23)

For Equation (3.23), we define

a =
l−1∑
j=1

qj , b =
N∑

j=l+1

qj (3.24)

Having Γl(k) defined, Equation (3.18) can be calculated and update the Jacobian recur-

sively.

3.3.3 A Learning Algorithm for Training MLFC-RNN

As described in Chapter 2, RTRL uses a recursively updated gradient. The truncated

BPTT gives us the gradients over a time horizon. MLFC-RNN, as described earlier, mod-

ularizes the calculation of the derivatives update rule. Therefore, the gradients are already

calculated and can be used to construct a Jacobian by using a series of gradient values

over a time horizon.

Let us consider the problem of modeling a quadrotor. In this problem the input(s)

and output(s) correspond to the variables of interest of a quadrotor vehicle flying some

trajectory over time. To devise the learning algorithm and for the sake of simplicity, let us

assume the input and output are both scalar. That is, one training sample is represented

by s,

s =

(
u(k0 + 1, T ),y(k0 + 1, T )

)
, (3.25)
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where

u(k0 + 1, T ) = [u(k0 + 1) u(k0 + 2) ... u(k0 + T ) ]> ∈ RT ,

is the input time-series of the sample s and similarly for the output time-series, y(k0+1, T ).

As discussed earlier, an SSE cost function is adopted. To solve the SSE optimization

problem, the Levenberg-Marquardt Method (LMM) is employed which has been frequently

used and reported to be quite efficient [30]. For the sake of simplicity, let us assume k0 = 0,

then the cost function is:

L = 0.5
T∑
k=1

(
ỹ(k)− y(k)

)2

= 0.5e>e, (3.26)

where the error vector e is defined over the input-output sequence length:

e> =

[
e(1) e(2) . . . e(T )

]
, e(k) = ỹ(k)− y(k), for k = 1, . . . , T, (3.27)

and the network output at time instance k is denoted by ỹ(k).

The LMM is essentially a second-order optimization method with variable step size

which approximates the Hessian of the error vector, (3.27), with J>J, where J is the

Jacobian of e [48, 60]. At each training iteration, the update rule in LMM is given by,

∆p = −(J>J + λI)−1J>e, (3.28)

where λ is a damping parameter. There are a number of methods to update λ [88].

However, the method proposed by Marquardt [60] is used in here.

In Equation (3.28), J is the Jacobian of the cost function over the time horizon , T ,
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given by,

J =


∂e(1)
∂p1

. . . ∂e(1)
∂pq

...
...

...

∂e(T )
∂p1

. . . ∂e(T )
∂pq


T×q

=



(
∂e(1)
∂p

)>
...(

∂e(T )
∂p

)>

 =
∂e

∂p
. (3.29)

The proposed training method divides the optimization into four nested loops. The

outer most loop, o1, handles the choice of training and validation samples. The two middle

nested loops, o2 and o3, perform the LM optimization over the selected training set with

nv-fold cross-validation. The inner most loop, o4, modifies the parameter vector p using

Equation (3.28).

Assume a set of samples are available which is divided into two sets, a training set,

D, to be used for learning and a test set, G, to test the generalization capability of the

network. Also, assume that the training dataset has nD samples in it, each is an input-

output trajectory segment with T time steps (for simplicity k0 is dropped):

D =

{
si =

(
ui(T ),yi(T )

)}
, i = 1, ..., nD. (3.30)

The test set, G, is similar to the training set, D, in structure. At each iteration of o1 a

subset of D, namely Ds, is formed by randomly selecting ns = ntr + nv samples from D,

Ds ⊂ D, |Ds| = ns, (3.31)

where |.| denotes the cardinality of a set. The number of trajectory segments that the

network is simultaneously trained on is ntr, and nv is the number of trajectory segments

that the network is validated on. Both constants should be kept small to reduce the
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computational complexity of the training process. Then, at each iteration of o2, the set Ds

is divided into two sets: the training set, Dtr, and the validation set, Dv, so that |Dtr| = ntr

and |Dv| = nv.

Having the training and validation sets, the optimization starts in loop o3 and continues

until the validation fails, i.e., the error over validation set starts to increase. At each

iteration of o3, the network runs over the entire Dtr, the network Jacobians are updated and

collected, as described in Section 3.3.2, and the errors are calculated. Then the Jacobian is

formed as described by (3.29). The weight update process is performed in loop o4, where

the network weights are updated using Equation (3.28) starting with an initial (usually

small) λ0. At each iteration of o4, the error is checked and λ is accordingly updated.

That is, if the error decreases, λ also decreases, by a constant factor, and if the error

increases, λ increases by the same factor. The detailed steps of this algorithm are defined

in Algorithm 1. Although specific choices are made in terms of stopping criteria, step size,

etc., these choices are not a requirement of the algorithm and may easily be modified to

apply the MLFC-RNN to other problem instances. It is worthwhile to mention that to

assess the generalization performance of the network, one stopping criterion can be set as

a function of generalization error which can be calculated every a few iterations on the test

set, G.

It is important to note that each weight update is performed using the Jacobian that is

computed over a number of flights at once. That is, each training sample inside Dtr is fed

to the network individually, but the training is carried out simultaneously over the entire

set, Dtr.
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Algorithm 1 Learning Algorithm for MLFC-RNN

Require: The initial damping parameter λ0
Require: Maximum value for damping parameter λmax

while (Stopping criteria not met) do . loop o1
Ds ← From D randomly choose ns samples

for o2=1 to
⌊
ns

nv

⌋
do . loop o2

Dtr ← From Ds randomly choose ntr samples
Dv ← Ds\Dtr
γ1 ← True . Validation fail check
λ← λ0
while γ1 do . loop o3

ev,0 ←Minibatch(Dv,p, 0)
[etr,0,J]←Minibatch(Dtr,p, 1)
γ2 ← True . Parameter update fail check
while γ2 do . loop o4

∆p← −(J>J + λI)−1J>e
etr,1 ←Minibatch(Dtr,p + ∆p, 0)
if e>tr,1etr,1 < e>tr,0etr,0 then . Parameter update successful

λ← λ× 2
3

γ2 ← False
p← p + ∆p

else . Parameter update fail
λ← λ× 3

2

if λ > λmax then
γ2 ← False

ev,1 ←Minibatch(Dv,p, 0)
if e>v,1ev,1 > e>v,0ev,0 then . Validation fails.

γ1 ← False

function [e,J]=Minibatch(Dtr,p, δ) . If δ is set to 1, calculate the Jacobian
for s = 1 to |Dtr| do

y← ΩN(us) . Generate network output
es ← [e(1) . . . e(T )]> . eq. (3.27)
if δ == 1 then

Js ← ∂es
∂p

. eq. (3.29)

e> ←
[
e>1 . . . e>|Dtr|

]
if δ == 1 then

J> ←
[
J>1 . . . J>|Dtr|

]
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3.3.4 Simulation Results

The first simulation used to demonstrate the effectiveness of MLFC-RNN for learning

dynamical systems focuses on the altitude of a quadrotor. Three different RNN structures

are compared: MLFC-RNN, NARX and RMLP. It will be demonstrated that MLFC-RNN

outperforms the other two. Thereafter, a full MIMO modelling of a simulated quadrotor

using MLFC-RNN is presented.

3.3.5 Comparison between MLFC-RNN, RMLP and NARX-MLP

The model to generate the altitude data is given by

z̈ =
1

m

(
ktu

2(1 + f 2
ge)− cdż −mg

)
+ η

fge = kge
hge −min(hge, z)

hge
.

(3.32)

In Equation (3.32), z is the altitude of the vehicle and u is the sum of all four motor speeds

(in RPM), which relates directly to the thrust produced. The mass of the quadrotor is m,

kt is the thrust coefficient, cd is the vertical drag coefficient and fge is a simple model for

ground effect. The ground effect acts at altitudes lower than hge, and kge is the ground

effect coefficient. Finally, η is a white noise. Table 3.1 lists the values used for data

generation.

To generate a dataset having flyable trajectories, each altitude trajectory is created

using an input consisting of a sum of 10 sinusoids having uniformly random frequencies

picked in the range of [1, 10] Hz. To capture the ground effect, altitude is varied in the

range of [0, 2] meters over the whole dataset and normalized afterwards. The dataset is
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.
m kge hge kt zmax

1 kg 0.5 1 m 1.95× 10−5 Ns2/rad 2 m

Table 3.1: Quadrotor parameters used in the simulations

collected using a fs = 100 Hz sampling frequency. In Figure 3.3 one sample of the dataset

with normalized values is illustrated.

Figure 3.3: A generated data sample.

Having generated the dataset, the MLFC-RNN, RMLP and NARX-MLP architectures

are trained on it. The experiments on series-parallel learning of NARX-MLP using the

MATLAB toolbox failed when used in a closed loop for multi-step prediction. Therefore,

a parallel-model NARX-MLP is implemented, the analytic derivatives of the network are

derived and a training process based on the same method presented in Section 3.3.2 is

implemented. The implementation was validated on examples given in [68].

The parameters under investigation are: the number of layers N , the number of hidden

neurons in each layer h, and the size of the training set ntr. For NARX-MLP, the number of
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delays over input and output nd is also investigated. Note that in multilayer cases, all layers

are set to have the same number of neurons. Also, recall that the last layer has a linear

output as is the case for function approximation applications. The result are summarized

in Tables 3.2 and 3.3. In these tables, the training time corresponds to the codes run

on an i7 Core machine. In general, it was observed that finding a working configuration

becomes increasingly harder from MLFC-RNN to RMLP and to NARX-MLP. It was not

possible to find a working architecture for NARX-MLP with ntr = 5, 10, 15 and RMLP with

ntr = 5, 10, while MLFC-RNN can learn on ntr = 5 and higher. For each of the reported

cases the training was carried out 5 times, each time with a different weight (random)

initialization in [−1, 1] with small values. The best results are reported only. As a result

of the ability to accurately learn the quadrotor altitude model with a MLFC-RNN with 48

weights, computation times were significantly improved over both RMLP and NARX-MLP,

to approximately 0.5 hours from 5.5 and 7.5, respectively.

.

Network
Number of

hidden neurons
in each layer

Number
of

parameters

Number of
training

samples (ntr)

Number of
delays

(NARX-MLP
only)

Mean
error
value

Training
time

(hours)

MLFC-RNN
5 48 5 NA 0.424 ≈0.5
5 48 10 NA 0.152 1.7
5 48 20 NA 0.197 2.2

RMLP
5, 10, 20 42, 132, 462 5,10 NA - -

10 132 15 NA 1.01 2.1
5 42 20 NA 0.202 5.5

NARX-MLP
5, 10, 20 56, 111, 221 5,10,15 4 - -
5, 10, 20 66, 131, 261 5,10,15 5 - -

10 111 20 4 0.7175 6

Table 3.2: Comparison between 2 layers MLFC-RNN, RMLP and NARX-MLP.
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.

Network
Number of

hidden neurons
in each layer

Number
of

parameters

Number of
training

samples (ntr)

Number of
delays

(NARX-MLP
only)

Mean
error
value

Training
time

(hours)

MLFC-RNN
5 195 5 NA 0.322 1
5 195 10 NA 0.612 1.2
5 195 20 NA 0.088 3.5

RMLP
5,10,20 97,342,1282 5,10 NA - -

5 97 15 NA 0.877 2.9
5 97 20 NA 0.122 9.3

NARX-MLP
5,10,20 86,221,641 5,10,15 4 - -
5,10,20 96,241,681 5,10,15 5 - -

10 221 20 6 0.332 7.5

Table 3.3: Comparison between 3 layers MLFC-RNN, RMLP and NARX-MLP.

MIMO Modeling of a Quadrotor

In this section a full black-box model of a simulated quadrotor using a MLFC-RNN is

trained. The simulator used to generate the training, validation and test data is slightly

more complicated than having implemented the vehicle model (as described in Section 2.7)

only. It also includes a quadratic model of the ground effect, models the rotors angular

velocity and includes noise. Using this simulator, a set of 10000 flights, each having 3

seconds flight time and a sampling frequency equal to fs = 100Hz were generated. For

each flight, there are four desired trajectories to follow, three positions and the yaw motion.

Each of these is a sum of ten sinusoids with random frequencies (less than 10Hz). To test

the generalization capability of the trained networks, 100 flights were randomly picked and

labeled as test dataset. The networks are not exposed with the test dataset during the

training process.

As the positions can grow unboundedly, it is preferred to model the velocities of the

vehicle. The inputs to the model are the individual motor speeds (in RPM) and outputs are

the vehicle translational velocities and velocity in the yaw direction (refer to Figure 2.12
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for a definition of yaw). Therefore, the MIMO system is 4 × 4. Modeling the velocity

in the altitude and yaw directions is straight forward because they are directly related to

the thrust generated by the four motors. However, the vehicle velocities in the x and y

directions (vx and vy) are more challenging to model as they are results of the internal

dynamics of the system. In order to reduce the computational load, the modelling of the

velocities in the x and y directions were divided into two parts: from motor inputs to body

angular rates, and from motor inputs and the predicted body rates to vx and vy. This

is a reasonable division as the body angular rates can be measured using gyroscopic rate

sensors, and as will be explained in the next chapter, using an Indoor Positioning System.

The block diagram of the full MIMO model is illustrated in the Figure 3.4. In this figure,

p, q and r are body angular velocities (refer to Section 2.7 for more details on p, q and r).

MLFC-RNN1

(3×10)

MLFC-RNN2

(4×20)

MLFC-RNN3

(3×8)

u(k)

[vz ψ]

[vx vy]

[p q r]

Figure 3.4: Modeling a MIMO quadrotor system.

One of the differences between a full MIMO modelling and the previously described

SISO modelling is that the input now has many (in our case four) elements. Therefore,

discovering the underlying function that governs the dynamics of the quadrotor from the

samples is more challenging and requires more computational time. Additionally, as the

underlying function becomes more complex, more nonlinearities should be placed inside

the MLFC-RNN, that is, the number of neurons and layers should increase. As for other
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form of neural networks, these number are determined using a trial-and-error procedure.

In the Figure 3.4 the size of the employed MLFC-RNN is written on each block as N × h,

where N is the number of layers and h is the number of neurons inside each layer. These

numbers were obtained after conducting a few experiments. Figures 3.5, 3.6 and 3.7 show

the performance of the trained MLFC-RNNs on a sample test flight (from the test dataset).

Each figure has two plots; the top one illustrates the predicted and the actual outputs in a

multi-step prediction scenario and the bottom one plots the error. The values on the y-axis

are normalized. On the prediction plots, the multi-step predicted outputs are plotted in

solid lines and the actual values (simulator outputs) are plotted in dashed lines. Note

that although the MLFC-RNNs are trained on 3 second flights, they can generalize beyond

3s (the figures show up to 5s). Note also that the inputs to MLFC-RNN2 is the output

produced from MLFC-RNN1, as a result, the error is slightly larger.
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Figure 3.5: The generalization performance of the trained MLFC-RNN1.
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Figure 3.6: The generalization performance of the trained MLFC-RNN2.

As the networks become larger to identify the MIMO system, the computational time

dramatically increases. On the same machine that the SISO results were obtained, on aver-

age training each of the MLFC-RNNs takes approximately 24 hours. The implementation

in this section employed MATLAB with Parallel-Processing-Toolbox. In Chapter 4 and 5,

where a real quadrotor is modeled, the proposed networks and algorithms are implemented

in such a way to fully employ parallelism.

3.3.6 Effect of Forward Connections

In traditional multilayer networks, the error information starts to flow from the output layer

through the middle layers back to the input layer in a sequential manner. The main reason

for the structural vanishing/exploding gradients is that at each layer this information is
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Figure 3.7: The generalization performance of the trained MLFC-RNN3.

either attenuated or amplified, and because network weights are usually initialized in the

range [−1, 1], attenuation occurs. However, in the version of MLFC-RNN with all inter-

layer connections, the problem of vanishing/exploding gradient is less severe because direct

connections from the output layer(s) to all other layers facilitate the error information

transfer between layers. In fact, in an MLFC-RNN, the error information travels through

a number of different paths, this multipath transfer of information contributes to faster

and better learning and less attenuation of the error gradient in former layers.

In Figure 3.8, the evolution of the error gradient for each of the three networks studied

in Section 3.3.5 is illustrated during 60 iterations of the training process. In this figure, the

upper row corresponds to an MLFC-RNN with 3 layers and 5 neurons in each, the middle

one corresponds to an RMLP with 3 layers and 5 neurons in each and the lower row
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corresponds to a NARX-MLP with 2 layers, 10 hidden neurons and 4 delays over the input

and the output. The left column corresponds to the initial gradient. Each column (from

left to right) illustrates the gradients for the corresponding network at 15 iterations after

the one on its left. The x-axis of each graph corresponds to the indexes of weights within

the network sorted from input (index 1) towards output (the last index). For instance,

the first 5 values on the x-axis in MLFC-RNN gradient graphs correspond to the weights

connecting the input to the first layer of the MLFC-RNN (A1 in Equation (3.13)). As

observed, the gradient in the RMLP and NARX-MLP networks is attenuated as it reaches

the input weights, hence has less effect on the weights close to the input. Therefore, in

the RMLP and NARX-MLP networks, the weight space is not being searched evenly in

all directions. This is not the case for the MLFC-RNN. As the MLFC-RNN gradient has

larger values for the weights close to the input, these weights are modified considerably

and therefore the weight space is searched more evenly. The effect is likely the results of

the forward connections that were explicitly added to the MLFC-RNN architecture.
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Figure 3.8: The gradient values during training. The x-axis correspond to the weight
indices (integer values); the higher the x value, the shallower the weight. The y-axis
corresponds to the gradient value of a weight. Ideally, we want to explore the weight space
equivalently, that is, the magnitude of the gradient values should be almost uniformly
distributed over the weights. However, as the learning progresses, for RMLP and NARX
networks, it is observed that the gradient values for deeper weights (smaller x values) are
significantly smaller in magnitude compared to the shallower weights (larger x). However,
this behaviour is not present in MLFC-RNN, due to global connections.
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Chapter 4

State Initialization in RNNs

In Chapter 3, RNNs were used to address the multi-step prediction problem in a special case

where the system trajectories start from a zero initial condition. In the current chapter,

this assumption is relaxed. A method is proposed to initialize the states of an RNN for

multi-step prediction and is compared with the methods currently being used. Equipped

with the proposed state initialization method, many RNN architectures are trained in a

black-box modeling scheme on two experimental datasets which belong to two rotor-craft

vehicles, a helicopter and a quadrotor. The datasets are described and the multi-step

prediction performance of the RNNs are comprehensively studied [67, 66].

4.1 Motivation

The initial state of an RNN has a direct effect on the immediate (and transient) response of

the network. If the feedback source is the RNN output, i.e., an output state, then it can be

initialized using the actual measurements from the system. However, the neuron outputs
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within the network do not have any meaningful physical property. Therefore, there is no

physical measurement that can be used directly as the initial values for the hidden states.

The common approach to initialize the states of an RNN is to set them to zero (or

random values) and then run the RNN for a number of steps until the effect of the initial

state values washes out. This method is commonly referred to as the washout method [95,

39] and it suffers from two major drawbacks. First, the washout period, during which the

predictions are too inaccurate to use, is hard to determine; it may vary for each input

trajectory. Second, during the training, where the RNN may experience some unstable

situations, the states may explode within the washout period. Additionally, in the multi-

step prediction context, an RNN is sought whose output is readily applicable as an accurate

approximation of the system output. Especially in control, the immediate response of the

predictor is of great importance. Therefore, inaccurate early stage predictions are not

acceptable.

As stated before, since modeling a dynamic system is a regression problem, the network

output activation function, i.e., function g(.) in Equation (2.10), is an identity function

which means that the network output is linearly dependent on the network states. This lin-

ear dependence is exploited to formulate the state initialization problem as an optimization

problem.

4.2 State Initialization Problem Formulation

Like any other dynamic system, the solutions to the state and output trajectory of an RNN

depend on the initial condition of the RNN [41]. In this section, the importance of the

initial state of an RNN is outlined, and the state initialization problem is formally defined
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and formulated for modeling dynamic systems with RNNs.

In Chapter 2, the RNN state vector was defined for the case where the feedback con-

nections are from the output of the hidden neurons. In the discrete domain, feedback

connections require some form of a memory buffer. Knowing the RNN architecture and

the weight values, the output of an RNN depends solely on the buffer values. Therefore, it

is reasonable and convenient to generalize the notion of states in an RNN to the buffered

values. There are two types of states in an RNN: the output state, xy(k) ∈ Rn, and the

internal state, xh(k) ∈ Rh. The feedback is sourced from the network output for the for-

mer, and from inside the network for the latter. They are arranged into the state vector

as follows,

x(k) =

xy(k)

xh(k)

 ∈ Rs, (4.1)

where s is the state count (s = n+h). Therefore, Equations (3.6) and (3.7) can be written

as,

xy(k|θ) =ỹ(k − 1|θ), (4.2a)

xh(k|θ) =f(x(k − 1|θ),u(k)), (4.2b)

ỹ(k|θ) =g(x(k|θ),u(k)). (4.2c)

Given an initial state, x(k0), let us rewrite the RNN input-output equation as a

sequence-to-sequence mapping (Section 3.2),

Ỹ(k0 + 1, T ) = F

(
x(k0),U(k0 + 1, T )

)
. (4.3)

67



The function F : Rs × Rm × RT → Rn × RT symbolizes the operations taking place

sequentially inside the RNN by Equations (4.2).

From (4.2) and (4.3) it is evident that the initial state plays a key role in the immediate

response of an RNN. Therefore, to have an accurate estimate one should properly initialize

the RNN.

Definition: The RNN state initialization problem seeks to find initial values for the

state vector of an RNN, x(k0), such that the total prediction error loss (Equation (3.12))

is minimized. 4

A trivial solution to this problem is zero, i.e., x(k0) = 0. However, since the zero

state values correspond to a trivial equilibrium point of the RNNs studied in this thesis,

the trivial solution requires that all of the output sequences in the dataset fulfill two

conditions. Firstly, they should start from a stationary state of the system being modeled,

and secondly, they should be transferable to the origin. These are restrictive assumptions.

In the case of modeling an aerial vehicle, for instance, such restrictions mean that the

sample trajectories should all start from a landing position. Acquiring such a dataset is

not only cumbersome, but also the multi-step prediction which only predicts a take-off

situation is overly restrictive.

In modeling and identification of dynamic systems using RNNs, the function that pro-

duces the network output, i.e., g(.) in Equation (4.2c), is the identity function. Therefore,

a prediction generated at the time instance k can be written as,

ỹ(k) = Ax(k) + Bu(k), (4.4)

where A ∈ Rn × Rs and B ∈ Rn × Rm are the output layer weights (not including the

68



bias term) and their elements are parts of the weight vector θ, hence θ is dropped.1 Using

(4.1) to expand (4.4) and letting k = k0 we have,

ỹ(k0) = Ahxh(k0) + Ayxy(k0) + Bu(k0), (4.5a)

A =

[
Ah Ay

]
. (4.5b)

According to (4.2), at each time instance k ∈ [k0 + 1, k0 + T ], the states x(k) must be

updated prior to generating the output, ỹ(k), which requires the knowledge of x(k − 1).

This sequential dependence can be followed back until the initial time, k0, at which knowing

the initial state, i.e., x(k0), is necessary.

As described and proven in [40], the universal approximation property states that for

an arbitrary ε > 0 and an integer 0 < I < +∞, there exists an s and an RNN in the form

of (4.2) with a proper initial condition x(k0) ∈ Rs such that,

max
0≤k≤I

||e(k)|| < ε, (4.6)

where e(k) is the prediction error at time k and defined in (3.4). Consider the RNN*

output at time k0, ỹ∗(k0), whose prediction error, e∗(k0), is infinitesimal, e∗(k0)� 1,

ỹ∗(k0) = A∗hx
∗
h(k0) + A∗yx

∗
y(k0) + B∗u(k0). (4.7)

To expand (4.7), the prediction error e∗(k0) = y(k0)− ỹ∗(k0) and (4.2a) can be used,

y(k0)− e∗(k0) = A∗hx
∗
h(k0) + A∗yy(k0 − 1)−A∗ye

∗(k0 − 1) + B∗u(k0).

1Note that the bias term is also dropped for the sake of notation simplicity.
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Since e∗(k0)� 1 based on the universal approximation property,

A∗hx
∗
h(k0 − 1) ≈ c∗, (4.8)

where,

c∗ = y(k0)−A∗yy(k0 − 1)−B∗u(k0).

Note that the weights are known at the time of state initialization. However, the optimal

weights of RNN* are not necessarily known.

In the multi-step prediction problem, the main objective for which an RNN is trained,

is to minimize the prediction error over the prediction horizon (Equation (3.12)). For a

fixed network architecture, the prediction error depends on both the network weights, θ,

and initial state values, x(k0). Because the initial states of the ideal RNN, RNN*, should

fulfill (4.8), for an arbitrary RNN, the state initialization problem for multi-step prediction

can be written as the minimization of the following cost,

Lsi = |Ahxh(k0)− c|, (4.9)

subject to a ≤ xh(k0) ≤ b, which enforces the initial state values to remain within the range

of the states’ activation function. For example, if the states are generated by a tanh(.)

then a = −1, b = +1.

Since the RNN state size, s, is usually much larger than the output size, n, directly

optimizing Lsi over the initial states x(k0) leads to solving Lsi = 0 which results in an

infinite number of solutions over x(k0). However, not all of the solutions are pertinent. As

a matter of fact, the main goal in multi-step prediction is to minimize the total prediction
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loss, Lpred, as in Equation (3.12). It is not clear which solutions, if any, of the equation

Lsi = 0 contributes best to minimizing the learning cost function.

Another approach to address the state initialization problem is to augment the initial

states xh(k) to the weight vector θ and then train the network on the augmented weight

vector [10]. Although this approach may address the state initialization problem during

the training phase, it does not provide a mechanism to generate the initial state values

after the training is finished. Clearly the initial state values cannot remain fixed and have

to be set for each input sequence. Therefore, to properly address the state initialization

problem, a mechanism should be devised in a way such that the initial state values are

generated both during and after the training phase.

4.3 History-Based State Initialization

It is also possible to consider the set of RNN states as outputs of the network. Consider the

ideal RNN, RNN*, where the network output defers from the desired output infinitesimally.

Then we can write,

xy(k) =y∗(k − 1) ≈ y(k − 1), (4.10a)

xh(k) =f(x(k − 1),u(k)), (4.10b)

where, x(k) is defined in equation (4.1). Equations (4.10) govern the dynamics of the

RNN* states. To approximate this mapping, it is possible to employ NNs. In the follow-

ing, a solution to the state initialization problem is proposed based on using an auxiliary

neural network, which receives a short history of system input and output, to produce the
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RNN initial state values. To avoid confusion, the auxiliary network will be referred to as

the initializer and the RNN which performs the prediction as the predictor, as previously

defined in Section 3.2.

The idea is to divide the data samples into two segments; the first segment is used as

the input to the initializer, which initializes the predictor states, and the second one is used

to train the whole network, i.e., the initializer-predictor pair. The number of steps in the

prediction and initialization segment will be referred to as the prediction and initialization

length denoted by T and τ respectively, as illustrated in Figure 4.1. The total length of

the training sample is therefore Ttot = τ + T .
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Figure 4.1: Dividing a data sample into initialization (red) and prediction (black) segments.
Each small circle is one measurement from the continuous signal. In this figure, τ = 6 and
T = 40.

The desired values for the output of the initializer network, i.e., the initial RNN state

values, are unknown. However, equation (4.9) proposes a penalty on the initializer network
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output. Therefore, the initializer-predictor pair will be trained on the following cost,

Ltot = αLpred + βLsi = α
1

TD

D∑
i=1

k0+T∑
k=k0+1

e>i (k)ei(k) + β|Ahxh(k0)− c|, (4.11)

where the prediction error, ei(k) is defined in (3.8) and the coefficients α and β can be

used to balance between the two costs.

MLP Initializer Network: An MLP, which receives a history of the measurements

from the system and produces the predictor initial states, will be employed as the initializer

network. Since a history of input and output measurements are used, this idea resembles

the NARX-MLP in a serial-parallel (or teacher forced) manner[68],

xh(k0) = ζ

(
u(k0−τu),u(k0−τu+1), ...,u(k0),y(k0−τy),y(k0−τy+1), ...,y(k0)

)
. (4.12)

In Figure 4.2a the block diagram of this type of the initializer-predictor pair is illus-

trated. The underlying assumption in this approach is that the dynamics of the RNN

states, defined in Equations (4.10), over a fixed period (i.e., the initialization length) can

be approximated by a static function. The initializer network approximates that function.

Recurrent Initializer Network: Since the RNN states also possess dynamics, it is

also viable to employ an RNN to model them. An RNN for the purpose of initialization can

be a sequence-to-sequence model, ξ(.), which sequentially receives the system measurement

history over the initialization length, τ , and produces an output sequence, Ỹh(k0 − τ, τ),

Ỹh(k0 − τ, τ) = ξ

(
U(k0 − τ, τ),Y(k0 − τ, τ)

)
, (4.13)

However, only the last element of the output sequence of the initializer network is used as
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Predictor
RNN

Initializer
MLP

xh(k0)

U(k0 + 1, T ) Ỹ(k0 + 1, T )

u(k0) ...
u(k0 − τu)

y(k0) ...
y(k0 − τy)

(a) MLP initializer

Predictor
RNN

Initializer
RNN

xh(k0)

U(k0 + 1, T ) Ỹ(k0 + 1, T )

U(k0 − τ, k0)

Y(k0 − τ, k0)

(b) RNN initializer

Figure 4.2: The two proposed initializer-predictor pairs for multi-step prediction.

the initial state value for the predictor,

xh(k0) = ỹh(k0). (4.14)

Figure 4.2b illustrates the RNN-RNN initializer-predictor pair. The initial values of

the initializer RNN states are set to zero. Clearly, the length of the initialization segment

should be long enough to capture the dynamics of the predictor states.

4.4 Multi-Step Prediction of Two Real Rotorcraft Ve-

hicles

In this section, the goal is to develop the full black-box model of two aerial vehicles, a

helicopter and a quadrotor, for multi-step prediction using experimental data. For each

vehicle, the black-box models map an input sequence to an output sequence which repre-

sents the vehicle’s 6 Degrees-Of-Freedom (DOF) motion. For this purpose, the previously
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discussed initializer-predictor pairs are trained on two datasets, an AscTec Pelican dataset2

and the Stanford Helicopter dataset3. The AscTec Pelican dataset is gathered for the pur-

pose of this work and consists of the quadrotor indoor flights in various regimes. The

data collection procedure and setup are described in detail. The helicopter dataset belongs

to the Stanford helicopter [1], and a brief summary of the information for the helicopter

dataset is also presented.

In every black-box modeling effort, there are two main components involved: the class

of functions implemented by the black-box method, and the dataset to infer the param-

eters of the black-box. In this thesis, the main focus is on the first component, that is,

the black-box method. However, the generalization capability and prediction quality of

the black-box models directly depend on the dataset representativeness. The representa-

tiveness of a dataset is difficult to quantify. In classic modeling and system identification,

methods have been devised to produce inputs to excite all modes of a system so that the

parameters of a first principles model can be identified. This approach, known as Persistent

Excitation, employs inputs such as pseudo-random sequences, chirps, steps, ramps, etc.,

to generate datasets that capture all modes of the system[55]. The key point, however, is

that the structure of the model is devised and fixed based on the first principles governing

the dynamics of the system. The structure greatly influences the choice for the exciting

input signals by providing information about the nature of the system. However, such

knowledge of the model structure does not exist in the black-box modeling approach. To

the best of the author’s knowledge there is no universally accepted measure to evaluate

the representativeness of a dataset in a black-box modeling problem.

Intuitively, the more the state space of a system is covered in a dataset, the more

2The quadrotor dataset is publicly available at: https://github.com/wavelab/pelican_dataset.
3The helicopter dataset is publicly available at: http://heli.stanford.edu/dataset/.
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representative a dataset should be. Note that the entire state space of a dynamic system

may not be accessible, mainly due to stability issues. Studying the representativeness of a

dataset is beyond the scope of this work, however, distribution of the signals are presented

to provide an idea of how representative the datasets are.

4.4.1 Quadrotor Dataset

The quadrotor dataset consists of time-series samples which are recovered from post-

processing measurements of the states of a real flying quadrotor. The flights are carried

out in 5 × 5 × 5 meters indoor flight volume over the course of several days. The vehicle

states are measured using onboard sensors as well as a precise motion capture system.

The vehicle is operated by a human pilot in various flight regimes, such as hover, slight,

moderate and aggressive manoeuvres.

Hardware

An Asctec4 Pelican5 quadrotor, illustrated in Figure 4.3, is employed to generate the flight

data for the quadrotor dataset in this work. The vehicle dimension is 651 x 651 x 188 mm.

It is equipped with a real-time autopilot board coupled with an onboard computer using

an Intel Core i7 and 4GB of RAM.6 The onboard computer runs Ubuntu 14.04 OS and

communicates with the autopilot board via a UART connection. The Robotic Operating

System (ROS) Indigo7 software running a suitable ROS node8 is used to collect the motor

4Ascending Technologies, is a part of Intel.
5http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-pelican/
6The onboard computer is AscTec Mastermind.
7http://wiki.ros.org/indigo
8http://wiki.ros.org/asctec_mav_framework
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speeds and Inertial Measurement Unit (IMU) measurements. The vehicle is operated by

an expert pilot using a Futaba T7C remote control.

Figure 4.3: The AscTec Pelican quadrotor used for collecting the quadrotor dataset.

The vehicle position and inertial orientation are measured at 100 Hz using a Vicon

motion capture system, equipped with 16 Vantage cameras.9 The position and orientation

of the vehicle are instantaneously read by the Vantage cameras, looking at the IR reflective

markers mounted on the vehicle, and sent to the Vicon server through a LAN communi-

cation (Figure 4.4). To avoid any wireless latency and/or packet drops, the measurements

are logged on the Vicon server computer using the Vicon Tracker software version 3.3

which runs in the Microsoft Windows 10 OS. The Vicon system is calibrated before each

data collection session to account for changes in environmental variables, such as room

temperature, camera body temperature, etc. The data collection diagram is depicted in

Figure 4.5.

9https://www.vicon.com/products/camera-systems
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Figure 4.4: Vicon measurements of the quadrotor position and orientation.

Figure 4.5: Communication block diagram for the quadrotor dataset collection.
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Measurements

The logged measurements are listed in Table 4.1. The position and orientation (Euler an-

gles) are measured in the inertial (Vicon) frame. The body rates, ω̇g(k) = [pg(k), qg(k), rg(k)],

are measured in the quadrotor body frame, where the index g highlights the fact that the

measurement is done by the gyroscopic sensors. All of the listed quantities are measured

at 100Hz. After removing the landing sequences, the total recorded flight time is approx-

imately 3 hours and 50 minutes, which in total corresponds to about 1.4 million samples

per element.
.

Quantity Unit Source Logged in

Motor speeds
u(k) = [u1(k), u2(k), u3(k), u4(k)]

Integer values in
[0, 218]

AscTec
autopilot board

Mastermind

Inertial position
ξ(k) = [x(k), y(k), z(k)]

mm, ±5mm
accuracy

Vicon system Vicon server

Inertial orientation, Euler angles
η(k) = [φ(k), θ(k), ψ(k)]

deg., ±0.1deg.
accuracy

Vicon system Vicon server

Body rates ω̇g(k) = [pg(k), qg(k), rg(k)]
deg., ±300

deg/sec range
Pelican IMU Mastermind

Table 4.1: Pelican measurements.

The ROS node provides two types of motor speed, the commanded and the actual. The

actual motor speed is estimated by the AscTec autopilot board based on the pulse rate for

the three phase excitation of the brushless motor. Both the commanded and actual speeds

are available as integer values. It is possible to experimentally devise a mapping to RPM,

however, the mapping is left to be learned by the NNs internally.

Because the position and heading can grow unboundedly, it is preferable to learn ve-

locity and body rates. The velocity vector, ξ̇(k) = [ẋ(k), ẏ(k), ż(k)], is obtained by taking

the numerical derivative of the position vector, ξ(k). Since the IMU measurements are
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extremely noisy, the Euler readings from the Vicon system, η(k), are converted to body

rates, ω(k). The Euler rates, η̇(k) = [φ̇(k), θ̇(k), ψ̇(k)], are obtained by taking the numer-

ical derivative of the Euler angles and then are transferred to the body frame using the

following equations (refer to Section 2.7 for further detail),

ω(k) = M(φ(k), θ(k), ψ(k))η̇(k), (4.15)

where the matrix-valued function M(.) is given by:

M(φ, θ, ψ) =


1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)

0 − sin(φ) cos(φ) cos(θ)

 . (4.16)

Although the IMU readings are not used for system modeling and identification, they

are employed as a medium to adjust the time delays as described next.

Time synchronization

The Vicon server and the onboard computer run non-realtime operating systems (OS),

which leads to delays and inconsistencies in the timestamps recorded with measurements

on the two systems. There are three sources of delay: the onboard computer OS, the Vicon

server OS and the ROS software. Perfectly synchronizing timestamps between various mea-

surements requires sophisticated hardware and software solutions, which were not available

in this work. However, it is possible to approximately align the separated measurements

of the Vicon and onboard systems in time.
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The IMU measurements and motor speeds are read by the autopilot board and received

by the ROS node at the same time. Thus, they share the same timestamp. Aligning the

IMU body rates with the Vicon converted body rates should fairly compensate for any

time delays. The alignment is simply done by a cross-correlation between the two signals.

Note that both the IMU and Vicon system provide measurements at the same frequency

(100 Hz). The time synchronization process is as follows,

1. Calculate the numerical difference of the measured Euler angles (Euler rates).

2. Transform the Euler rates to the quadrotor body frame using equations (4.15) and (4.16).

3. Smooth the IMU body rate measurements to attenuate the noise.

4. Do a cross-correlation between the IMU body rates and the converted body rates.

5. Apply the calculated delay to align the converted body rates to the IMU body rates,

hence to the motor speeds.

Post-processing

To attenuate noise, a smoothing filter is applied to all of the measurements with a window

size of 5 samples. The filter is a local-regression which approximates the signal at each

sample point by a 2nd degree polynomial. For the actual motor speeds, a robust version

of this filter is applied that assigns lower weight to outliers in the regression to reduce the

effect of current spikes in the motor control units.10 The models developed in this work

map the actual motor speeds to body rates and translational velocity, hence, the quantities

included in the quadrotor dataset for this work are,

10Refer to the MATLAB (The MathWorks Inc.) documentation for the smooth function.
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• actual motor speeds, u(k) = [u1(k), u2(k), u3(k), u4(k)],

• velocity vector in inertial frame, ξ̇(k) = [ẋ(k), ẏ(k), ż(k)],

• body rates, ω(k) = [p(k), q(k), r(k)].

Distributions

The dataset consists of various flight regimes: hover, close to ground, light, moderate and

aggressive manoeuvres in all directions, etc. Figures 4.6 and 4.7 illustrate the distribution

of the measured signals and their rate of change. Figure 4.6 illustrates the actual motor

speeds as well as the rates of change of the actual motor speeds. It can be observed that

the rate of change distributions (plots on the right column) are all symmetric and fairly

similar. The motors are of the same type, however, they are not necessarily identical. Also,

the propellers have been changed many times throughout data acquisition. Therefore, it

was not expected that the actual motor speeds have symmetric and similar distributions.

In Figure 4.7, the distribution of the velocity, acceleration, body rates and body angular

accelerations are illustrated. Noticeably, the distribution of the velocity and body rates

are fairly symmetric and unbiased.

Based on the AscTec Pelican specifications 11, the maximum climb and air speed are

8 and 16 meters per second, respectively. However, because the flights were carried out

in an indoor environment with limited space, the specified maximums were not achieved.

The maximum values for the 6 DOFs are listed in Table 4.2.

11http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-pelican/
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Figure 4.6: Distribution of the quadrotor motor speeds and their rate of change.

.
ui(k) i = 1, 2, 3, 4 ẋ (m/s) ẏ (m/s) ż (m/s) p (rad/s) q (rad/s) r (rad/s)

120 3.9268 3.9721 5.8526 3.9116 3.8506 3.7902

Table 4.2: Maximum values for the Pelican measurements.
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Figure 4.7: Distribution of the quadrotor data. Top: position, velocity and acceleration.
Bottom: Euler angles, body rates and body rotational accelerations, in the body frame.
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4.4.2 Helicopter Dataset

This dataset was collected in August 2008 as a part of research for Apprenticeship Learn-

ing [1] at Stanford University.12 It has also been used for a single-step prediction system

identification problem [78]. In this thesis, many architectures will be trained on this dataset

in a multi-step prediction scenario. For this dataset, the flights are carried out in an out-

door environment, however, the dataset does not provide a wind measurement. The flight

time is approximately 55 minutes and there are 335,258 samples for each quantity.

Hardware

According to the information provided with the Stanford helicopter dataset, the airframe is

a Synergy N9, illustrated in Figure 4.8. The vehicle weight is 4.71 kg and its main propeller

diameter is about 1.5 meter. It is equipped with a single-cylinder, two stroke engine (OS

.91). The IMU sensor is Microstrain 3DMGX113. The vehicle position is acquired using a

ground-based vision system consisting of two cameras mounted at fixed locations on the

field. The dataset provides the position and velocity as time-series signals.

Measurements

The motor speeds are not provided in this dataset. Instead, the commands from the

remote controller in four directions are given; aileron, elevator, rudder and collective stick

positions, which correspond to roll, pitch, yaw rate and total thrust, respectively. Their

values are already normalized in [−1, 1]. In this thesis, the same notation as the quadrotor

dataset, i.e., ui(k), i = 1, 2, 3, 4, is used for the stick position.

12See http://heli.stanford.edu/index.html for details.
13http://www.microstrain.com/inertial/3DM-GX1
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Figure 4.8: The Synergy N9 helicopter vehicle used in the Stanford helicopter dataset.
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Figure 4.9: Distribution of the helicopter pilot commands (stick positions) and their rate
of change.
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The vehicle state measurements used for learning are the three inertial velocity and

three angular rate components. The provided filtered values for the measurements are

used. They are referred to by the same notation as for the quadrotor.

Distributions

Figures 4.9 and 4.10 illustrate the helicopter data distribution. Although the pilot com-

mand distributions are fairly symmetric, they are not evenly distributed, which are the

result of quantization with fixed resolution integer commands. Also, the velocity and body

rate distributions are narrow but heavy tailed, which is likely due to a significant portion

of the dataset being in hover conditions.

As it can be seen, samples in the helicopter dataset are not well distributed. The

dataset is relatively small (less than an hour flight time) and has been collected outdoors

with no wind measurement. Therefore, it is not expected that the black-box model of the

helicopter, based on this dataset, provides an accurate model suitable for control tasks.

However, since all the learning scenarios converged during the experiments and because of

its smaller size, the helicopter dataset is employed mainly for the purpose of comparing the

washout with the history-based initialization method and evaluating the network sizes.

4.4.3 Learning Scenarios

For hyper-parameter optimization, assessment of various network architectures, and the

performance of the proposed state initialization methods, the rotational and translational

velocities are modeled separately. In this way, the problem size is divided by two and the

training time is almost halved. The learning scenarios are summarized in Table 4.3.
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Figure 4.10: Distribution of the helicopter data. Top: position, velocity and acceleration
in the inertial frame. Bottom: Euler angles, rates (angular velocity) and accelerations.
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Dataset Input Output

Helicopter
Pilot commands u(k) Angular rates η̇(k)

Pilot commands u(k) Velocity ξ̇(k)

Quadrotor
Motor speeds u(k) Body rates ω(k)

Motor speeds u(k), Body rates ω(k) Velocity ξ̇(k)

Table 4.3: Learning scenarios.

Each of the above scenarios is carried out for four sample lengths, Ttot = 50, 100, 150

and 200, which correspond to 0.5, 1.0, 1.5 and 2.0 seconds, respectively. The initialization

length (τ) is set to 10 steps throughout the scenarios, which results in a prediction length

T = Ttot− 10 (see Figure 4.1). Therefore, the prediction lengths in seconds are 0.4, 0.9, 1.4

and 1.9 seconds, respectively. Regardless of the scenarios, the input and output signals are

always normalized by the maximum of the absolute value the signal can acquire.

Note that, except in the last scenario, the input and output dimensions are 4 and 3,

respectively. In the conducted experiments for this work, learning the quadrotor transla-

tional velocity directly from the motor speeds always failed. One reason is that the vehicle

orientation plays an important role in determining the translational velocity. However,

learning the body rates alongside the velocity directly from the motor inputs frequently

failed, too, as the velocity x and y components quickly start to overfit and negatively affect

the other predicted outputs.

Instead of learning quadrotor translational velocity directly from the motor speeds, a

two stage prediction approach is proposed. In the first stage, the body rates are predicted

directly from the motor speeds. In the second stage, the velocity is predicted using the

predicted body rates along with the motor speeds. Therefore, in the last scenario, the

actual body rates, converted from the Euler angles measured by the Vicon system, are

included as inputs to the network. The substitution of the predicted values with the actual
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values is called teacher forcing [68]. After the networks are trained, the actual body rates

are substituted by the predicted ones. Since this substitution is needed to employ the

learned models in practice, using the predicted body rates to generate velocity prediction

will be referred to as the practical mode. It will be seen that the error in the predicted

body rates will drastically deteriorate the accuracy of the predicted velocity. In Chapter 5,

this problem is circumvented with a grey-box approach.

To prepare the samples, each flight trajectory is first partitioned. Each partition is

considered as one sample, as depicted by Equation (3.25). The partitions are allowed to

overlap. In the experiments conducted for this thesis the overlap is 50%. The samples

are then shuffled and divided into two sets, 60% training and 40% test. The dataset sizes

are listed in Table 4.4. For each iteration, a batch of 100 training samples are randomly

chosen from the training set and used for training. The training is carried out for a fixed

number of iterations. Throughout the training, the validation error is calculated on the

test dataset every few hundred iterations (100 or 1000). The model with the best validation

error is picked. This method differs slightly from the standard early-stopping [27]. In the

early-stopping method, as soon as the model starts to overfit, the training stops. However,

in this method, the training does not stop after overfitting detection, but the model is

stored. The search continues and occasionally a drop is observed after a slight increase in

the test error which is lower than the last error before the start of overfitting.

4.4.4 Evaluation

For evaluation, the prediction errors and their distributions are studied. The prediction

error in general is defined at each prediction step as in Equation (3.4). Three prediction
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Prediction Length (samples):
T = 40 T = 90 T = 140 T = 190

(Ttot = 50) (Ttot = 100) (Ttot = 150) (Ttot = 200)

Number of samples Training set 33320 16659 11106 8329

(quadrotor dataset) Test set 22212 11106 7404 5553

Number of samples Training set 8046 4023 2682 2011

(helicopter dataset) Test set 5364 2682 1788 1341

Table 4.4: Size of training and test datasets, over the given prediction lengths.

errors are used which correspond to the velocity, body rate and angular velocity vectors,

eξ̇(k) =[eẋ(k) eẏ(k) eż(k)], measured in meters per second (m/s)

eω(k) =[ep(k) eq(k) er(k)], measured in degrees per second (deg/s)

eη̇(k) =[eφ̇(k) eθ̇(k) eψ̇(k)], measured in degrees per second (deg/s).

(4.17)

The velocity error vector, eξ̇(k), is calculated for both vehicles. However, the angular

velocity error, eη̇(k), is only used for the helicopter and the body rate error, eω(k), is only

calculated for the quadrotor.

To study the prediction error distribution, two norms are used; L̄1 norm which is defined

as,

||v||1 =
1

n

n∑
i=1

|vi|, (4.18)

and the standard L2 norm, defined as,

||v||2 =

√√√√ n∑
i=1

v2i (4.19)
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where in (4.18) and (4.19), the vector v ∈ Rn is,

v = [v1 v2 ... vn]>.

The L̄1 norm defined here illustrates the mean of the error magnitude in any of the Eu-

clidean directions while the L2 norm provides information on the magnitude of the error

vector in any direction. The L̄1 norm can be used to get more insight about the error on

each component of the position vector.

To evaluate the performance of the networks based on their size (in terms of number of

weights) the Root-Mean-Sum-of-Square-Error (RMSSE) value is used which is calculated

over the entire prediction length and the test dataset,

RMSSEtot =

√√√√ 1

TnG

nG∑
i=1

T∑
k=τ+1

e>i (k)ei(k), (4.20)

where nG is the size of the test dataset, G.

4.4.5 Architectures and Implementation

The Google Tensorflow package in Python 2.7 is used for implementing and training the

networks. The hardware used to implement and train these architectures are NVIDIA

Titan X and Tesla K80 GPUs. It is important to mention that the optimization method

employed throughout the experiments is ADAM [42] which is a first order method. Because

the size of the implemented networks are very large, with the current state-of-the-art

hardware it is not possible to benefit from a second order optimization method. Using a

first order method, the number of iterations in training is chosen in the range of 300k to
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600k. In this setting, training a network may take from half a day to two weeks, depending

on the size of the network and the length and number of training samples.

The predictor network can be either an MLFC (Section 3.3), LSTM (Section 2.5) or

LSTM with TDLs (Figure 2.7). The TDL size is 10, i.e., t = 10 in Figure 2.7, throughout

the experiments in this thesis. Each of the predictors may be initialized in one of the three

fashions: washout, with an MLP initializer or with an RNN initializer. In case of an RNN

initializer, an LSTM with one layer of LSTM cells is employed. In order to refer to each

configuration, the following notation is used:

[predictor]: [number of layers] × [size of each layer] - [initializer type]: [hidden layer

size]×[initialization length]

For example, an LSTM predictor with 3 layers, each having 200 LSTM cells initialized by

an MLP with 1000 neurons in the hidden layer and an initialization length of 10 is referred

to by LSTM: 3×200-MLP:1000×10. As another example, an MLFC with 2 layers each

having 100 neurons initialized by washout method for 5 steps is referred to by MLFC:

2×100-Washout:5.

4.5 Results

This section presents the results of black-box modeling of the two aforementioned aerial

vehicles. First, the effect of the history-based initialization is studied and comparisons

with the washout method are provided on small size networks. As the results will show,

the history-based initialization methods provide more accurate immediate prediction and

therefore, the rest of the experiments will employ them. Then, various architectures are
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trained on the helicopter dataset and the networks with the best performance are studied

further. Based on these results, a black-box model of the helicopter is presented. The archi-

tectures with the best performance on the helicopter dataset are trained on the quadrotor

dataset and their prediction performance is presented and studied.

4.5.1 History-based Initialization vs. Washout

The first goal is to choose an RNN type along with a proper initialization method for

further training. To this end, the performance of two RNN types, MLFCs and LSTMs,

initialized by either history-based initialization or washout, are studied. To save training

time, the networks are trained on three subsets of the helicopter dataset. Each dataset

belongs to a Multi-Input-Single-Output (MISO) subsystem of the helicopter. It should be

noted that for the experiments with history-based initialization method throughout this

thesis, the balance coefficients in (4.11), α and β, are chosen to be 1.

Figures 4.11 and 4.12 compare the performance of two small size RNNs on predict-

ing the angular rates of the helicopter directly from the pilot commands. The following

architectures are trained and compared:

• MLFC: 1×50 - MLP: 60×10

• MLFC: 1×50 - Washout: 10

• LSTM: 1×50 - MLP: 60×10

• LSTM: 1×50 - Washout: 10

In Figure 4.11a and 4.11b, the plots on the left column illustrate the mean of the valida-

tion error over the course of prediction. On the right column, the plots show the evolution

of the training cost over the training process. Each row corresponds to one prediction
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length, which, from top to bottom, are T = 40, 90, 140, 190 samples. It can be observed

that the history-based initialization method has improved both the immediate prediction

error and the training cost significantly. When the prediction error is long enough, e.g.,

Ttot = 150, 200, the history-based and washout initialized RNN predictors converge to al-

most the same error eventually. However, it is also evident that an efficient washout period

is difficult to determine, whereas in the proposed history-based initialization methods such

a problem does not exist. The results illustrated in Figure 4.12, which belong to the yaw

prediction, also confirm the same observations.

In Figures 4.13 and 4.14 the test costs (RMSSEtot) on the test dataset versus the size

of the networks (number of weights) are plotted for a variety of architectures. In each

figure, the plot titles state the sample lengths. The initialization length is equal to 10

steps for all of the networks. The same datasets as the previous experiments are employed.

In these graphs it is observed that the LSTMs with MLP initialization outperform other

methods. In fact, LSTMs with fewer weights perform better than MLFCs. Considering the

computation time needed for training each single network, as a part of hyper-parameter

optimization, it is a reasonable choice to conduct the remaining experiments with LSTMs

and history-based initialization.

4.5.2 MLP vs RNN Initializers

In this section, variants of LSTM networks initialized with the two history-based initializer

networks are examined. The LSTM networks are comprised of layers of LSTM cells con-

nected in series. The outputs from the last layer are fed back to the first layer. For some

experiments, as will be noted, TDLs are placed at the input and output of the networks.

The results belong to the helicopter scenarios mentioned in Table 4.3.

95



(a) Roll rate (b) Pitch rate

Figure 4.11: Comparison between MLP and washout initialization on the helicopter roll
and pitch rates.

Figures 4.15 and 4.16 illustrate the total RMSSE cost on the test dataset for the

helicopter velocity and angular rates over the previously mentioned sample lengths. Except

for the angular rate where Ttot = 50, the LSTM TDL with RNN initialization outperforms

other architectures. Note that the networks are extremely large and are almost the largest

that could fit into one Titan X GPU. Since the illustrated RMSSE measures correspond

to the test dataset (which is not used for training), the networks did not overfit.
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Figure 4.12: Comparison between MLP and washout initialization on the helicopter yaw
rate.
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Figure 4.13: Network size vs. RMSSEtot for LSTMs and MLFCs using two initialization
schemes. Eight architectures are trained on the helicopter roll rate.
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Figure 4.14: Network size vs. RMSSEtot for LSTMs and MLFCs using two initialization
schemes. Eight architectures are trained on the helicopter inertial pitch (the four top plots)
and yaw (the four bottom plots) rates.
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ż

LSTM: 2x100 -

  MLP: 200x10

LSTM: 3x100 -

  MLP: 200x10

LSTM: 4x100 -

  MLP: 2000x10

LSTM: 6x100 -

  MLP: 4000x10

LSTM: 7x200 -

  MLP: 15000x10

LSTM: 7x200 -

  RNN: 2500x10

LSTM TDL: 6x100 -

  MLP: 4000x10

LSTM TDL: 7x200 -

  MLP: 15000x10

LSTM TDL: 7x200 -

  RNN: 2500x10

10 6 10 7 10 8

Number of weights

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
S

E
to

t

ẋ
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ẏ

10 6 10 7 10 8

Number of weights

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

R
M

S
S

E
to

t

ż
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Figure 4.15: Comparisons of network sizes and initialization schemes on learning the heli-
copter velocity from pilot commands. (From top to bottom: Ttot = 50, 100, 150, 200)
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Figure 4.16: Comparisons of network sizes and initialization schemes on learning the heli-
copter angular rates from pilot commands. (From top to bottom: Ttot = 50, 100, 150, 200)
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A couple of strategies were chosen to avoid overfitting; the network weights were ini-

tialized to tiny numbers, weight decay regularization, and the drop-out method [84] were

also employed. However, training such a large network for 600k iterations on sequences

with 200 samples can last for about 10 to 14 days. It was observed that after almost 400k

iterations the network rarely improves on the validation set.

4.5.3 Black-box Modeling of the Helicopter

Based on Figures 4.15 and 4.16 the networks with the best performance are the following

architectures,

• LSTM: 7×200 - MLP: 15000×10,

• LSTM: 7×200 - RNN: 2500×10,

• LSTM TDL: 7×200 - MLP: 15000×10,

• LSTM TDL: 7×200 - RNN: 2500×10.

In this section, the above architectures are evaluated as black-box models of the he-

licopter vehicle. The total RMSSE errors, illustrated in Figures 4.15 and 4.16, do not

provide much insight into how good the predictions are. To study the reliability and accu-

racy of the predictions it is best to look at the distribution of the prediction error, across

the datasets, throughout the prediction length.

Figure 4.17 compares the mean of the error distributions over the four prediction

lengths. It would have been expected that the prediction error increases monotonically

throughout the prediction length. This is more or less the case for Ttot = 50. However,
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for longer prediction lengths the monotonic increasing behaviour is no longer observed.

Instead, a peak appears at the early stages of the prediction and it is attenuated as we go

forward in time. This is contrary to our expectation.

Figure 4.17: Mean of the L̄1 error distributions for the four black-box models of the
helicopter. The plots on left correspond to the velocity and the plots on right correspond
to angular rates.

Remember that the LSTMs are efficient in learning long-term dependencies. In fact,

through the gated architecture, they can hold on to relevant information over longer peri-

ods. This property can be very beneficial in attenuating the noise. Therefore, the decrease
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in the error over late predictions might be due to noise attenuation and accumulation of

more information about the process by the LSTMs. Also, the peaks may be reduced if the

initialization length increases. However, increasing the initialization length decreases the

lengths to be used for training the predictor networks. It is also observed that the LSTMs,

equipped by TDLs and initialized by RNNs generally perform better for longer horizons,

which reinforces this hypothesis. However, for the Euler rate predictions, the behaviour of

the mean error is not consistent. This inconsistency may be due to the size and quality of

the dataset which will be discussed further at the end of this section.

It should also be noted that during the training process, the optimization cost assigns

the same credit to each step over the prediction horizon. In a black-box scheme, the system

identification is purely based on this optimization and no external information is revealed

to the model that a monotonic increase in the prediction error should appear over the

prediction horizon. Such information can be artificially embedded in the cost, for example

by exponentially weighing the error terms in Equation (4.11). However, doing so slightly

improves the early step predictions at the cost of being less accurate at the later stages.

Another interesting observation from Figure 4.17 is the role of TDLs. Considering the

two types of predictors, LSTM and LSTM with TDLs, each initialized by the MLP and

RNN initializers, it is observed that TDLs improve the prediction error specifically for the

RNN initializer. Over all of the learning scenarios illustrated in Figure 4.17, the LSTM

TDL: 7×200 - RNN: 2500×10 network performs the best. For this particular network,

let us look at the distribution of the L̄1 norm of the error vector. Since the network

behaviour for T = 40 and T = 90 are more or less similar, as well as T = 140 and T = 190,

only the two extremes, i.e., T = 40 and T = 190, are considered.

In Figure 4.18, the distribution of the L̄1 errors are illustrated using box-and-whiskers
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plots. At each prediction step, the red dash represents the median, the lower and upper

bounds of the blue rectangle correspond to the first and third quartiles, q1 and q3, respec-

tively, and the whiskers’ ends correspond to the extreme cases. The Interquartile Range

(IRQ) is defined as Ir = q3− q1. If the norm of a prediction error is greater than q3 + 1.5Ir

or smaller than q1−1.5Ir then it is considered an outlier. In Figure 4.18 the outliers, which

are less than %8 of the test data, are not illustrated. However, in the median and box

size calculations, they are considered. In the plots it is readily seen that the uncertainty

in the prediction quickly grows over time. However, in the long run, not only does the

mean of the L̄1 error decreases, but also the error distribution improves and the predic-

tions become more reliable. As already discussed, it is possible that the reliability of the

immediate predictions improves by increasing the initialization length. It is, therefore, a

trade-off between the longer prediction lengths and longer initialization lengths and the

dataset size.

Figure 4.18: Black-box performance for the helicopter dataset evaluated by illustrating the
L̄1 error distribution. The plots on the top row correspond to the velocity and the plots
on the bottom row correspond to angular rates.
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Outliers

The outliers are separately studied as a worst-case performance of the models. Approxi-

mately 8% of the test samples are outliers. The mean of the L̄1 error norm of the outliers is

plotted in Figure 4.19. Note that the mean is calculated over the outliers only. Remember

that the data distribution in the helicopter dataset, Figures 4.9 and 4.10, suffer from long

tails and therefore the existence of outliers was already expected. Average errors slightly

larger than 1 meter per second and 22 degrees per second are observed which are not sat-

isfactory. In the following, some of the possible reasons are listed and improvements are

suggested.

Figure 4.19: Mean of the prediction error norms over the outliers for the helicopter dataset.

1. The input to the networks is the pilot command and there are many levels of trans-

formation which take place before the commands affect the helicopter motion. Time

synchronization can also become very difficult to manage in such situations. To cir-

cumvent this, using actual motor speeds as the inputs is likely to mitigate effects of

delay and command transformation.
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2. Considering the complex dynamics of a helicopter, the dataset is relatively small.

Better prediction performance is expected if more data is collected in a variety of

flight regimes.

3. The helicopter is flown outdoors and is very likely affected by wind. However, there

is no measurement of the wind available in the dataset. To obtain a predictor for the

vehicle dynamic a controlled environment is more desirable.

In collecting the quadrotor dataset, all of the above drawbacks were considered.

4.5.4 Black-box Modeling of the Quadrotor

In this section, the results of black-box modeling of a quadrotor from experimental data are

presented. The experiments throughout this section are the quadrotor scenarios mentioned

in Table 4.3. The following four architectures are considered,

• LSTM: 7×200 - MLP: 15000×10,

• LSTM: 7×200 - RNN: 2500×10,

• LSTM TDL: 7×200 - MLP: 15000×10,

• LSTM TDL: 7×200 - RNN: 2500×10.

Figure 4.20 compares the mean of the L̄1 norm of the body rate prediction error mea-

sured at each prediction step for the aforementioned architectures. The accuracy of the

predictions on average remains better than 3.5 degrees per second over almost 2 seconds.

Similar to the helicopter case, longer prediction lengths contribute to better accuracy. In
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fact, the predictor receives error information at each step, while the initializer only receives

the error through the predictor and at the initial step. Therefore, more information about

the system dynamics is received by the predictor over the course of prediction. As this

amount of information is increased, the RNNs on average perform better, meaning that

they can efficiently and effectively employ the extra information.

Figure 4.20: Mean of the L̄1 error distributions for the four black-box models of the
quadrotor body rates.

In Figure 4.21 the mean of the L̄1 norm of the velocity prediction errors are illustrated in

a teacher force mode, i.e., the samples in the test dataset include the measured body rates

as inputs. A similar trend to Figure 4.20 is observed. The accuracy of the predictions on

average remains better than 4 centimetres per second over almost 2 seconds. From Figures

4.20 and 4.21, it is also observed that TDLs improve the prediction accuracy, which is

consistent with our observation from the helicopter dataset. It is also observed that the

LSTMs initialized with RNNs (RNN-RNN pairs) have better prediction accuracy over

the longer prediction lengths; a reinforcing observation on the argument that the LSTMs
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efficiently employ information spread across time.

Figure 4.21: Mean of the L̄1 error distributions for the four black-box models of the
quadrotor translational velocity in the teacher forced mode.

The actual body rates are replaced with the predicted ones to generate the velocity

prediction and the results are illustrated in Figure 4.22. In this figure, the mean of the ve-

locity prediction error is plotted for the four architectures over the four prediction lengths.

In comparison with Figure 4.21, where the teacher forced results are illustrated, the ve-

locity prediction accuracy is degraded by a factor of approximately 25. Additionally, in

Figure 4.22, it can be observed that the networks with an RNN initializer suffer more from

the error in body rate prediction.

The teacher force mode to evaluate the prediction performance is not realistic. In a

multi-step prediction, as described in Section 3.1, the behaviour of the system is to be

predicted for many steps ahead in time. Since the behaviour of a quadrotor is partially

described by the body rates, according to the multi-step prediction problem, they are

not available at the prediction stage. Therefore, the networks should be employed in the

108



Figure 4.22: Mean of the L̄1 error distributions for the four black-box models of the
quadrotor translational velocity. The predicted body rates are used (practical mode)

practical mode. However, the teacher forced results are provided to study the network

performance only.

To study the prediction error distributions, the L̄1 and L2 measures are considered

over the two extreme prediction lengths, i.e., T = 40 and T = 190. The network with

the best overall performance is chosen, i.e., LSTM TDL: 7×200 - RNN: 2500×10. In

Figure 4.23, the distributions of the norms of the body rate prediction errors are illustrated.

Note that for the sake of clarity, the outliers are not shown. However, their effect is taken

into account to generate the distributions illustrated by the box-plots.

In Figure 4.23, it is observed that the mean grows and the reliability (how far the

whiskers are stretched) degrades rapidly over the short prediction lengths. According to

this figure, over the test dataset, the predicted body rate errors in each direction (depicted

by the L̄1 norm) remain less than 9 and 7 degrees per second over T = 40 and T = 190

prediction lengths, respectively. The length of the prediction error vector (depicted by the
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Figure 4.23: Black-box performance for the quadrotor body rate dataset evaluated by
illustrating the L̄1 (top) and L2 (bottom) error distribution.

L̄2 norm) remains less than 19 and 15 degrees per second over the same prediction lengths.

The error distribution over long prediction length exhibits a similar behaviour to the

helicopter dataset, which reinforces the hypothesis discussed about the LSTMs capability

in accumulating relevant information over long periods of time.

Figure 4.24 illustrates the velocity prediction error distributions for the practical case,

over the extreme prediction lengths. It is observed that the mean and reliability of the

predictions degrade dramatically; the errors can be as large as 1 meters per second and the

mean of the L̄1 norm of the error can increase to about 0.9 meters per second. Such large

errors are not useful in control applications. Since the teacher forced velocity predictions

are much more accurate, it can be concluded that the body rate prediction errors contribute

mainly to the inaccuracy of the velocity predictions.

Figure 4.24: Black-box velocity prediction errors for the quadrotor dataset in the practical
mode.
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Outliers

The outliers consist of about 5% of the test data, for the body rates and teacher force mode

velocity predictions, and about 10% for the actual mode velocity prediction. For the case

of body rates prediction, over the 5% outliers, the maximum of the mean of the L̄1 norm is

increased to about 14 degrees per second. For the velocity prediction in practical mode, the

mean over the outliers exhibit an unsatisfactory performance; the prediction error norm

grows up to about 3 meters per second, and the number of outliers is also increased. The

mean of the L̄1 norm over the outliers are illustrated in Figure 4.25

Figure 4.25: Mean of the outliers in the body rate and velocity (actual mode) prediction
error distributions of the quadrotor.

111



4.6 Summary and Conclusion

In this chapter, RNN-based black-box architectures are proposed and comprehensively

studied on learning models from experimental data. The importance of RNN state initial-

ization for dynamic system modeling is highlighted and a novel state initialization method,

based on a short history of the system measurements, is proposed. The effect of the pro-

posed method, in comparison with the current methods to initialize the RNN states, are

illustrated on modeling two aerial vehicles from experimental data. The state initialization

method addresses the drawbacks of the washout method which is the inaccurate transient

response of an RNN over an arbitrary length of time. Using the proposed method, various

RNN architectures are trained and the results show consistent behaviour over two different

datasets collected in two entirely different settings. The models studied in this chapter

provide a promising method to develop black-box models purely from input-output data.

The black-box models provide an immense number of DOFs as they have millions of

adjustable weights. Therefore, one possible reason for some of the unsatisfactory prediction

performance in the black-box scheme provided in this chapter is the limited number of

training samples. In fact, small networks, due to their limited number of nonlinearities, do

not provide enough flexibility to capture complex dynamics. Large networks, on the other

hand, demand large datasets that are representative of the underlying dynamics. Reducing

the network size to fit for the datasets does not seem to be a viable approach, and collecting

large datasets from real robotic systems can be a time consuming and expensive task.

However, it is possible to exploit the nature of a robotic system based on their physical

properties and incorporate this knowledge with the flexibility of a black-box model. Based

on this idea, an alternate approach is proposed in the next chapter.
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Chapter 5

Hybrid Models for Multi-Step

Prediction

In this chapter, a hybrid of the quadrotor physics based (white-box) model, introduced

in Section 2.7, and the black-box model, discussed in Chapter 4, is proposed and trained

on the quadrotor dataset, for the multi-step prediction problem [65]. The hybrid model

prediction performance is compared with both the white-box and black-box models. It

is demonstrated that the hybrid models provide a more accurate and reliable prediction

of the quadrotor body rates and velocity in comparison to the white-box and black-box

models, which can be employed in model-based controllers.

5.1 Motivation

Many characteristics of a robotic system can be formulated using the laws of physics. For

instance, a mobile robot, on the macroscopic scale, obeys rigid-body dynamics [21, 28].
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However, some characteristics of the system might be too difficult or expensive to accurately

model, such as the vortex ring effect on a quadrotor. As described in Chapter 1, a grey-box

modeling approach combines two models, a white-box model which formulates the physical

nature of the system using first principles, for instance, the system dynamics, and a black-

box model which is solely based on numerical methods. A grey-box modeling approach can

speed up the modeling process and increase the prediction accuracy of the model. Also,

the model can benefit from physical measurements which are easily measurable and not

variable, such as the mass of a quadrotor. The final model should reliably span a larger

portion of the state-space. See [54] and [56] for more discussion on grey-box modeling.

Dynamic models for quadrotors have been studied extensively in [37, 58, 14]. First

principles models of quadrotors have also been used in control [37, 89, 23]. These mod-

els tend to rely on steady state aerodynamic models that do not capture rapid dynamic

motions. Additionally, to develop a white-box model, as explained in Section 2.7, some

simplifying assumptions are made, such as the symmetric design, the linear dependence

between the generated motor forces and the thrust and torques, the steady state thrust

model, the constant drag, etc. In addition, some parts of the system remained unmodeled

which can be quite complex, such as blade flapping, the vortex effect and the ground ef-

fect. The simplifying assumptions and unmodeled dynamics in the developed models will

result in a rapid divergence of the predicted states when the models are used for multi-step

prediction, as it is demonstrated in this work. As a result, these models are primarily used

in single-step predictions for vehicle control.

A major drawback in the previously proposed black-box methods for learning the

quadrotor model is the difficulty of learning translational velocity directly from motor

speeds. To address this, a two stage process was employed in Chapter 4. However, it
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was demonstrated that using the predicted body rates deteriorates the accuracy of the

velocity prediction. In this chapter, the body rates and translational velocity are predicted

concurrently by the hybrid model, demonstrating a significant improvement in the hybrid

architecture to extract a long-term prediction model from the same datasets provided to

both networks.

5.2 Grey-box Modeling of a Quadrotor

The hybrid model consists of two black-box modules and a white-box module. The two

black-box modules are called the Input Model (IM) and Output Model (OM), and the

white-box module is named the Motion Model (MM). The IM module generates the torques

and thrust which are then plugged into the MM module. The MM module updates the

states of the quadrotor for one step using Equations (2.30). The updated velocity and

body rates are then passed through the OM module to compensate for the prediction

error introduced by the MM module because of the unmodeled dynamics and noise. The

compensated states are then fed back to the MM module. Depending on the assumption

for the relation between the error and the MM output, a Serial and a Parallel configuration

are considered and described next.

5.2.1 Serial Configuration

In this configuration, no restriction is placed on the relation between the MM module

output and the compensation term. In fact, the output of MM does not directly contribute

to the network output. The diagram of the Hybrid-Serial configuration is illustrated in

Figure 5.1.

115



IM MM OM

wω

wξ̇

w−1
ω

w−1
ξ̇

u
τ̃

η̂

ω̂

˙̂
ξ

ξ̂

ω̂n

˙̂
ξn

ω̃n

˙̃
ξn

Figure 5.1: Grey-box model of a quadrotor, serial configuration. The black and light blue
connections are the feedforward and feedback routes, respectively.

The following notions are used in Figure 5.1,

• u is the motor speeds vector, u = [u1 u2 u3 u4],

• τ̃ is the thrust and torque generated by the IM module (Equation 2.32),

• η̂, ω̂, ξ̂ and
˙̂
ξ are the Euler angles, body rates, position and velocity respectively,

which are updated by the MM module (uncompensated),

• wω and wξ̇ are the normalization factors for the body rates and velocity respectively,

• The index n indicates a normalized quantity.

The velocity (
˙̂
ξ) and body rate (ω̂) updates from the MM module are normalized and

then fed to the OM module. The OM module generates the compensated velocity and

body rates, ˙̃ξn and ω̃n, which are scaled back to their physical range to be used by the
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MM module. Note that the normalization factors are needed to avoid saturating the input

activation functions of the OM module.

Since the black-box modules have many DOFs, it is possible that in practice the MM

module is not effectively employed. One way to avoid this possible outcome is to incorpo-

rate the output of the MM module directly into the hybrid model output, which leads to

the second configuration.

5.2.2 Parallel Configuration

The assumption in the Hybrid-Parallel configuration is that the error from unmodeled

dynamics and noise have an additive relation to the MM module output. This configuration

is illustrated in Figure 5.2. The main difference between the Hybrid-Serial and Hybrid-

parallel models is the inclusion of the MM module output in the total model output using

addition.

5.3 Results

The hybrid models proposed in this chapter are trained on the quadrotor dataset. They are

compared with the white-box model, introduced in Section 2.7, and the black-box models

proposed and studied in the previous chapter. The white-box model parameters are either

measured or identified using a Least-Squares (LS) method and reported in Table 5.1.

Using the identified parameter in the white-box model, Figure 5.3 shows the single-

step error distribution as well as the mean error over multi-step prediction. As the error

117



IM MM OM

wω

wξ̇

+

+

w−1
ω

w−1
ξ̇

u
τ̃

η̂

ω̂

˙̂
ξ

ξ̂

ω̂n

˙̂
ξn

ω̃n

˙̃
ξn

Figure 5.2: Grey-box model of a quadrotor, parallel configuration.

.
Param. Value Param. Value Param. Value Param. Value
b1
∗ 0.062 b3

∗ 1.69× 10−3 Ixx 0.002(kg.m2) kr
∗ 0.0099

k1
∗ 7.63× 106 k3

∗ 4.67× 106 Iyy 0.002(kg.m2) kt
∗ 2.35× 10−14

b2
∗ 0.082 b4

∗ 2.28× 10−4 Izz 0.001(kg.m2) l 0.211(m)
k2
∗ 1.21× 107 k4

∗ 4.69× 106 m 1.6(kg) g 9.81(m/s2)

Table 5.1: Quadrotor parameters obtained for the white-box model. The parameters
denoted by ∗ are identified using LS method and the rest are measured.

drastically grows over multi-step prediction, using the white-box is not considered for

multi-step prediction.

In Figure 5.4, the single-step prediction performance is compared between the hybrid-

parallel model and the white-box. Clearly the hybrid-parallel model performs significantly

better than the white-box in the single-step prediction as well. The white-box prediction

has a strong bias and is inaccurate compared to the hybrid model.

Figure 5.5 compares the two hybrid configurations with the best black-box model pre-
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Figure 5.3: White-box model prediction performance. On the left, the prediction error
distribution for the velocity and body rates are illustrated. On the right, the mean of the
L̄1 error distributions over 20 steps are illustrated.

Figure 5.4: White-box model vs. hybrid-parallel model in a single-step prediction scenario.
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sented in the previous chapter, i.e., LSTM TDL: 7×200 - RNN: 2500×10. The network

configuration used in the IM and OM modules of the hybrid models are all LSTM TDL:

4×200 - MLP: 5000×10. For the velocity prediction, the y-axis is logarithmic because

the black-box prediction error, in the practical mode, is much larger than that of the hybrid

models. The hybrid-models dominantly outperform the black-box model. In fact, for the

velocity prediction, the hybrid-models improve the prediction accuracy by approximately

2 orders of magnitude compared to the black-box models. The average velocity prediction

error remains below 3 centimetres per second over 1.9 second prediction length. For the

body rates prediction, the hybrid models improve the prediction accuracy by almost one

degree per second over short prediction lengths. The average body rate prediction error

remains below 2 degrees per second over a 1.9 second prediction length. However, the

black-box model performs only slightly better over the late predictions to about 1.5 de-

grees per second. The combined performance over velocity and orientation prediction, the

significant improvement over the velocity prediction and the improved immediate response

of the hybrid models are the main reasons that the hybrid models are preferred over the

black-box models.

The inclusion of a motion model introduces some preferences to the optimization of the

neural network weights. In fact, the weight space will no longer be explored evenly and

areas that are associated to a better MM output are preferred. Although this preference

pays well for the short term prediction, it may reduce the capability of the networks to

capture long-term dependencies and other inaccuracies. By comparing the late predictions

between the hybrid-parallel and hybrid-serial, it can be seen that the latter generates more

accurate late predictions. This observation aligns with the aforementioned hypothesis;

because the output of the MM module is not directly penalized, the weight optimization
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Figure 5.5: Comparison of the mean of the L̄1 error distributions between the hybrid
models and the best black-box model obtained in Chapter 4. The plots on the top row
correspond to the velocity and the bottom plots correspond to body rate predictions. The
velocity prediction accuracy has improved by almost 2 orders of magnitude.

for the hybrid-serial model is affected less from the preference introduced by the MM

module, and therefore, the black-boxes of the hybrid-serial model can explore the weight

space more freely. This freedom, however, comes at a cost; the hybrid-serial model performs

less accurately than the hybrid-parallel at the early stages of prediction.

From Figure 5.5 it is difficult to study the influence of TDLs. In the case of long

prediction horizons they slightly improve the accuracy of prediction where in the case

of short term predictions they slightly decrease the accuracy. Note also that the peak

observed on the early stages of prediction in the black-box cases are not severely present
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in the hybrid models.

In general, the hybrid-parallel model is a better candidate to be used in a control

application since it provides more accurate early predictions. However, for the case Ttot =

150 a rapid increase is observed after about 100 steps of prediction, which does not exist

in other cases, such as Ttot = 200. It is therefore possible that this increase is anomalous

behaviour that results from the chosen training hyperparameters.

Figure 5.6: Comparison between the hybrid-parallel and black-box prediction error. The
distribution of the L̄1 norm of the body rates prediction error are plotted for two extreme
prediction lengths, T = 40 and T = 190. The plots on the left belong to the hybrid-parallel
model and the ones on the right belong to the black-box model.

In Figures 5.6 and 5.7 the distribution of the body rate and velocity prediction errors for

the hybrid-parallel model are presented and compared with the black-box model. The IM

and OM modules of the hybrid-parallel model employ the LSTM TDL: 4×200 - MLP:

5000×10 architecture. It can be observed that the body rate prediction is improved by

almost 50% in the short prediction horizon (T = 40). The improvement on the longer

prediction horizon, T = 190, is more significant on the early predictions. As we go forward

in time, the black-box performs better, as discussed previously. For the velocity prediction,

the approximately 2 orders of magnitude improvement is also evident on the distributions.

It is worthwhile to mention that both the mean and the uncertainty of the prediction errors
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are improved as observed by the length of the whiskers.

Figure 5.7: Comparison between the hybrid-parallel and black-box prediction error. The
distribution of the L̄1 norm of the velocity prediction error are plotted for two extreme
prediction lengths, T = 40 and T = 190. The plots on the left belong to the hybrid-parallel
model and the ones on the right belong to the black-box model. An improvement more
than an order of magnitude is observed by using the hybrid-parallel model.

5.3.1 Outliers

Overall, the percentage of outliers are slightly improved for the hybrid-parallel model,

in comparison to the black-box model (Section 4.5.4), to 4.4%. The mean of the error

distribution of the outliers are also improved as can be seen in Figures 5.8 and 5.9, for the

body rates and velocity, respectively. In Figure 5.9, the y-axis is logarithmically scaled so

that the velocity prediction error for the case of teacher forcing as well as the practical

mode can be illustrated and compared with the hybrid-parallel model. The approximately

2 orders of magnitude improvement is also observed over the outliers for the velocity

prediction, comparing the hybrid-parallel with the black-box model employed in practical

mode. The outliers of the velocity prediction obtained from the hybrid-parallel model is

also improved compared to the black-box predictions in teacher forced mode.
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Figure 5.8: Mean of the error L̄1 norm over the outliers of the distribution, for the quadrotor
body rates prediction compared between the black-box and the hybrid-parallel models.

Figure 5.9: Mean of the error L̄1 norm over the outliers of the distribution, for the quadrotor
velocity prediction compared between the black-box and the hybrid-parallel models. A
lograithmic scale is used on the y-axis.
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5.3.2 Compensation Effects

In Figures 5.10 and 5.11, the mean of the L̄1 norm of the errors are plotted over the output

of the MM module and the OM module separately. These two plots illustrate the effect of

the output compensation. As it can be observed, the OM module applies a correction of

about 2 degrees per second on the predicted body rates, and 2 centimetres per second on

the predicted velocity at each prediction update. Note that at each prediction step, the

compensated outputs are fed back and used by the MM module to produce the next predic-

tion. Clearly, if the output compensation is removed, the error will exponentially increase,

as it happens for a white-box model being used in a multi-step prediction (Figure 5.3).

Figure 5.10: Compensation effect of the OM module on the predicted body rates from the
MM module. The mean of the errors are plotted.

5.4 Summary and Discussion

A hybrid-serial and hybrid-parallel model, consisting of a first principles based white-box

module and two RNN based black-box modules, are proposed and trained to learn a model
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Figure 5.11: Compensation effect of the OM module on the predicted velocity from the
MM module. The mean of the errors are plotted.

of a quadrotor vehicle from experimental data for multi-step prediction. Because the

updated states from the motion model are included in the output of the hybrid-parallel

model, the hybrid-parallel model performs better than the hybrid-serial one. Evaluating

the trained hybrid-parallel model on the quadrotor dataset shows that the average of the

velocity prediction error remains less than 3 centimetres per second over 1.9 second worth

of prediction, and the mean error of the body rate prediction remains below 2 degrees per

second over the same prediction length.

Based on the presented results, the developed model provides an accurate multi-step

prediction of the quadrotor behaviour as represented by the collected dataset. The max-

imum velocity error (Figure 5.9) over 1.9 seconds of prediction remains less than 10 cen-

timetres per second, and therefore, the maximum position error remains less than 19 cen-

timetres. Using a Pelican quadrotor in the bridge inspection application described in

Section 3.1.1, the error margins introduced in Figure 3.1 can be set as low as 19 centime-

tres. The quadrotor length and width are equal to 65.1 centimetres. Using the developed

model, the error margin is about 30% of the vehicle dimensions. The maximum value for

126



the quadrotor velocity is about 4 meters per second (Table 4.2). Flying at its maximum

speed, the vehicle can traverse a path whose length is approximately 7.6 meters in 1.9 sec-

onds. Therefore, the safe lengths described in Section 3.1.1, are 1.9 seconds in time and 7.6

meters in distance while the position and velocity errors remain less than 19 centimetres

and 10 centimetres per second, respectively.
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Chapter 6

Conclusion and Future Work

Predicting the behaviour of dynamic systems over multiple time steps is a difficult problem

since the error from unmodeled dynamics and noise accumulate and deteriorate the pre-

diction accuracy. This problem is more significant when dealing with real world systems,

such as a quadrotor, which are affected by many complex phenomena that are difficult

to model precisely using physical models. Despite the difficulty, multi-step prediction has

many applications, including model predictive control, feedforward control and simulation.

In this work, Recurrent Neural Networks are studied as a black-box modeling tool that

implement a rich class of dynamic systems. The feasibility of RNNs to develop black-box

models of dynamic systems from input-output data is assessed in modeling a simulated

quadrotor for multi-step prediction. Traditional RNN architectures, such as RMLP and

NARX-MLP, are not fully capable of modeling the simulated vehicle. When using these

architectures the learning process frequently fails to converge or the trained model performs

poorly in generalizing to unseen data. A novel deep RNN architecture, namely the Multi-

Layer Fully Connected or MLFC architecture, is proposed that employs many sigmoid
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layers in series and equips them with interlayer feedforward and feedback connections.

The interlayer (or skip) connections attenuate the vanishing gradient problem that arises

from the deep structure (see Section 3.3.6). The proposed MLFC architecture is formulated

to facilitate and accelerate gradient computation. It is demonstrated in Chapter 3 that

MLFC can be successfully trained to predict the behaviour of a simulated quadrotor with

a simple ground effect model and noise for up to 5 seconds in 100Hz sampling period.

The MLFC architecture is an example of a deep RNN. Generally, deep neural networks

perform better than the shallow ones on various learning tasks, including modeling dynamic

systems as demonstrated by MLFC in this work. However, when introducing hidden layers,

a problem that naturally arises is assigning proper initial values for the output of hidden

layers (RNN states). The current method sets the initial values to zero or random numbers

and runs the RNN until the effect of the initial values is washed out. This method, also

known as the washout method, results in a transient response for an arbitrary length of

time during which it does not represent the behaviour of the modeled system. Therefore,

the washout method is not applicable when initializing RNNs for the multi-step prediction

task in applications that are sensitive to the RNN transient response, such as designing

a model-based controller. To fill the gap, the state initialization problem is defined and

formulated (see Section 4.2). To address the state initialization problem, a history-based

initialization method is proposed that employs neural networks as initializers of the RNN

states. The proposed initialization method facilitates the training of RNNs in modeling

dynamic systems for multi-step prediction and addresses the drawbacks of the washout

method. Using the proposed initialization method, a variety of RNN architectures are

trained and evaluated on experimental datasets. As the training converges successfully

and the trained RNNs show appropriate transient response, the RNNs initialized by the
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proposed method are therefore shown to be a good candidate to model dynamic systems

for multi-step prediction. For the first time, a comprehensive study is presented which

compares the behaviour of various RNN architectures, including LSTMs, on modeling

dynamic systems from experimental data for multi-step prediction.

To learn the model of a dynamic system from experimental data, availability of a

representative dataset is essential for developing and evaluating various modeling methods.

Therefore, a quadrotor dataset consisting of more than 230 minutes indoor flight time in

various regimes, including hover, moderate and aggressive manoeuvres, is collected and

made publicly available. The dataset consists of various trajectories of the motor speeds

(actual and commanded), body rate, and velocity. The vehicle body rate and velocity are

measured using a precise motion capture system. However, the models trained for this

work employ actual motor speeds to predict the velocity and body rate of the vehicle. The

data distribution is presented as well as the collection process and time synchronization

procedure.

In order to improve the prediction accuracy of the proposed black-box model, a grey-

box modeling approach that employs a hybrid of a motion model module and two RNN

modules is proposed. The approach leads to two architectures that, when trained on the

quadrotor dataset, can provide accurate velocity and body rate predictions. The average

prediction errors are less than 1 cm/sec and 1 degrees/sec, for a 0.4 second prediction

window, and less than 3 cm/s and 2 degrees/sec, for a 1.9 second prediction window.

Based on this work, it is clear that the benefits of employing RNNs in predicting motion

for robotic platforms are significant, and will lead to better planning algorithms and more

precise robot control systems.

In summary, the main contributions claimed in this thesis are listed as follows.
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• Traditional RNN architectures in black-box modeling of a simulated quadrotor are

implemented and assessed for multi-step prediction and extended to a novel struc-

turally deep RNN [63, 64]. The proposed architecture models the simulated quadrotor

solely on the input-output data for multi-step prediction providing accurate predic-

tion over 500 time steps for a complex nonlinear MIMO system.

• Two novel deep architectures are proposed to initialize the states of any RNN with

hidden neurons based on a history of observations; one is based on the FFNNs and

the other on RNNs [67, 66]. The proposed methods enable RNNs to be trained on

experimental flight data for which zero initial conditions are not possible for all flight

segments.

• Traditional and gated RNN architectures, initialized by the proposed methods, are

implemented and compared in system identification and modeling of two real aerial

vehicles [66].

• A novel grey-box architecture is proposed which incorporates a motion model of a

quadrotor with black-box models for multi-step prediction of a quadrotor vehicle [65].

The grey-box models lead to state of the art motion prediction capabilities for two

robotic platforms.

6.1 Future Extensions

Given the versatility of the discussed methods in this work, a wide range of future exten-

sions can be considered. In this section some of them are summarized.
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• The developed model can be used in an online MPC. The main challenges for this

extension fall in the hardware and software implementations.

• Wind rejection is another interesting and viable application using the models devel-

oped in this work. When operated outdoors, the observed behaviour is the result

of wind acting on the vehicle as well as the quadrotor dynamics. Since the dy-

namic model of the quadrotor is improved with the method proposed in this work

in the absence of wind, comparing the predicted and the observed behaviours should

provide information about wind dynamics and helps developing methods to operate

quadrotors in windy conditions.

• Inverse control is another interesting and feasible approach using the methods in this

work. A controller can be trained using a black-box method if the input and output

time series are switched. In fact, given a desired velocity and body rate trajectory,

the network may be able to generate trajectories for the four motor speeds.

• More experiments can be run to see the effects of various hyper-parameters involved

in this work. For instance, the initialization length was kept constant throughout

the experiments. Extending the initialization length may contribute to a better early

stage prediction, specifically for cases where an early jump in the prediction error is

observed. Additionally, the effect of modifying the balance coefficient, corresponding

to the initializer-predictor training cost, can be studied in order to improve the RNN

transient response.

• Systems other than quadrotors can be considered to be modeled by the proposed

architectures. For instance, in modeling human motion, primary movements can be

modeled quite well. However, the number of DOFs and the dexterity in human hand

132



make the modeling of hand motions a challenging and interesting problem that can

be tackled using the discussed methods. If successfully developed, the trained model

can then be used in robotic hand movements.

• The models trained in this work were assessed over the collected datasets. As dis-

cussed, in a numerical modeling approach, the prediction accuracy depends on the

representativeness of the dataset. Methods can be developed to automate trajectory

generation in such a way that the state-space of the vehicle is covered uniformly.

Richness of the collected dataset may be assessed with tools other than studying the

distributions and therefore methods to improve the richness of the dataset can be

devised.

• The code developed for this work is currently undergoing revisions to be publicly

released. The code will provide a toolbox that implements the RNNs and methods

discussed in this work.

133



References

[1] Pieter Abbeel, Adam Coates, and Andrew Y Ng. Autonomous helicopter aerobatics

through apprenticeship learning. The International Journal of Robotics Research,

29(13):1608–1639, 2010.

[2] V. A. Akpan and G. D. Hassapis. Nonlinear model identification and adaptive model

predictive control using neural networks. ISA Transactions, 50(2):177 – 194, 2011.

[3] R.K. Al Seyab and Yi Cao. Nonlinear system identification for predictive control using

continuous time recurrent neural networks and automatic differentiation. Journal of

Process Control, 18(6):568 – 581, 2008.

[4] S.R. Anderson, N.F. Lepora, J. Porrill, and P. Dean. Nonlinear dynamic modeling

of isometric force production in primate eye muscle. Biomedical Engineering, IEEE

Transactions on, 57(7):1554–1567, July 2010.

[5] Peter Andras. The equivalence of support vector machine and regularization neural

networks. Neural Processing Letters, 15(2):97–104, 2002.

134



[6] J.C. Atuonwu, Y. Cao, G.P. Rangaiah, and M.O. Tade. Identification and predictive

control of a multistage evaporator. Control Engineering Practice, 18(12):1418 – 1428,

2010.

[7] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep con-

volutional encoder-decoder architecture for image segmentation. arXiv preprint

arXiv:1511.00561, 2015.

[8] I. Baruch and C.R. Mariaca-Gaspar. A Levenberg-Marquardt learning applied for

recurrent neural identification and control of a wastewater treatment bioprocess. In-

ternational Journal of Intelligent Systems, 24:1094–1114, 2009.

[9] M. Basso, L. Giarre, S. Groppi, and G. Zappa. NARX models of an industrial power

plant gas turbine. Control Systems Technology, IEEE Transactions on, 13(4):599–604,

July 2005.

[10] VM Becerra, JMF Calado, PM Silva, and F Garces. System identification using dy-

namic neural networks: training and initialization aspects. IFAC Proceedings Volumes,

35(1):235–240, 2002.

[11] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford,

1995.
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