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Abstract

We present approaches utilizing aspects of data analytics and stochastic modeling tech-

niques and applied to various areas in healthcare. In general, the thesis has composed of

three major components.

Firtsly, we propose a comparison analysis between two of the very well-known infectious

disease modeling techniques to derive effective vaccine allocation strategies. This study,

has emerged from the fact that individuals are prioritized based on their risk profiles

when allocating limited vaccine stocks during an influenza pandemic. Computationally

expensive but realistic agent-based simulations and fast but stylized compartmental models

are typically used to derive effective vaccine allocation strategies. A detailed comparison of

these two approaches, however, is often omitted. We derive age-specific vaccine allocation

strategies to mitigate a pandemic influenza outbreak in Seattle by applying derivative-free

optimization to an agent-based simulation and also to a compartmental model. We compare

the strategies derived by these two approaches under various infection aggressiveness and

vaccine coverage scenarios. We observe that both approaches primarily vaccinate school

children, however they may allocate the remaining vaccines in different ways. The vaccine

allocation strategies derived by using the agent-based simulation are associated with up to

70% decrease in total cost and 34% reduction in the number of infections compared to the

strategies derived by the compartmental model. Nevertheless, the latter approach may still

be competitive for very low and/or very high infection aggressiveness. Our results provide

insights about the possible differences between the vaccine allocation strategies derived by

using agent-based simulations and those derived by using compartmental models.

Secondly, we introduce a novel and holistic scheme to capture the gradual amyotrophic

lateral sclerosis progression based on the critical events referred as tollgates. Amyotrophic

lateral sclerosis is neuro-degenerative and terminal disease. Patients with amyotrophic lat-

eral sclerosis lose control of voluntary movements over time due to continuous degeneration

of motor neurons. Using a comprehensive longitudinal dataset from Mayo Clinic’s ALS

Clinic in Rochester, MN, we characterize the progression through tollgates at the body

segment (e.g., arm, leg, speech, swallowing, breathing) and patient levels over time. We

describe how the progression based on the followed tollgate pathways varies among patients
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and ultimately, how this type of progression characterization may be utilized for further

studies. Kaplan-Meier analysis are conducted to derive the probability of passing each

tollgate over time. We observe that, in each body segment, the majority of the patients

have their abilities affected or worse (Level1) at the first visit. Especially, the proportion

of patients at higher tollgate levels is larger for arm and leg segments compared to others.

For each segment, we derive the over-time progression pathways of patients in terms of the

reached tollgates. Tollgates towards later visits show a great diversity among patients who

were at the same tollgate level at the first clinic visit. The proposed tollgate mechanism

well captures the variability among patients and the history plays a role on when patients

reach tollgates. We suggest that further and comprehensive studies should be conducted

to observe the whole effect of the history in the future progression.

Thirdly, based on the fact that many available databases may not have detailed medical

records to derive the necessary data, we propose a classification-based approach to estimate

the tollgate data using ALSFRS-R scores which are available in most databases. We

observed that tollgates are significantly associated with the ALSFRS-R scores. Multi-

class classification techniques are commonly used in such problem; however, traditional

classification techniques are not applicable to the problem of finding the tollgates due

to the constraint of that a patients’ tollgates under a specific segment for multiple visit

should be non-decreasing over time. Therefore, we propose two approaches to achieve a

multi-class estimation in a non-decreasing manner given a classification method. While

the first approach fixes the class estimates of observation in a sequential manner, the

second approach utilizes a mixed integer programming model to estimate all the classes of

a patients’ observations. We used five different multi-class classification techniques to be

employed by both of the above implementations. Thus, we investigate the performance of

classification model employed under both approaches for each body segment.
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Chapter 1

Introduction

This thesis focuses on the use of stochastic modeling and data analytics techniques in sev-

eral healthcare applications. This chapter discusses a brief review of these techniques and

their studied applications in the current healthcare literature. We also present backgrounds

on the healthcare problems we have studied in detail. Finally, the the outline of thesis is

presented.

1.1 Preface

Healthcare is a perpetually expanding industry and operations research (operations re-

search (OR)) has been used for providing effective solutions for healthcare issues for many

years (Dobrzykowski et al., 2014). Due to growing health expenditures and increase in

demand for quality of life, healthcare field arouses many OR problems with distinctive

characteristics (Eveborn et al., 2006; Wang, 2009). Although problem structures are sim-

ilar to those in other industries, searching for high-quality-of-life resolutions differentiates

OR problems in healthcare from other cost-oriented OR problems (Kaplan and Bush, 1982).

Rais and Viana (2011) provided a detailed classification of OR problems in healthcare:

• healthcare planning (demand forecasting, location selection, capacity planning),
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• healthcare management and logistics (patient scheduling, resource scheduling, logis-

tics),

• healthcare practice (disease diagnosis, treatment planning),

• specialized and preventive healthcare (organ donation and transplant, prevention of

diseases).

Our studies in this thesis can be categorized under “disease diagnosis”, “treatment plan-

ning”, and “prevention of diseases”.

Many OR tools are employed in modeling and solving challenging problems in health-

care (Brandeau et al., 2004). Simplifying assumptions enable deterministic models ap-

plicable for OR problems in healthcare despite their stochastic nature (Harper et al.,

2005). Deterministic models provide great insights and derive effective solutions. However,

methodologies with stochastic capabilities become popular due to their accuracy in rep-

resenting the real life and thanks to ever-increasing computational power. In particular,

queuing models have been employed many times in healthcare literature (Preater, 2002;

Fomundam and Herrmann, 2007; Lakshmi and Iyer, 2013). They usually require little

data and are easy to use. On the other hand, they require analytic approaches; there-

fore, are suitable for systems that have relatively low or medium complexity. Simulation

is another very prevalent tool in healthcare applications (Jacobson et al., 2006; Robinson

et al., 2012). Its capability for modeling highly complex systems grants the opportunity

to design real-life-like models. Thus, researchers benefit from easy policy evaluation in

a realistic environment (Robinson, 2002). However, due to vast amount of computation

needs, simulations are usually not preferable in optimization applications. Moreover, they

usually require large amounts of data (Caro et al., 2010). Reviews of simulation literature

in healthcare field are presented in Fone et al. (2003); Brailsford et al. (2009); Günal and

Pidd (2010); Katsaliaki and Mustafee (2011); and Sobolev et al. (2011).

On the decision analysis side, Markov decision process (MDP) models draw a growing

attention (Ayer et al., 2012; Alagoz et al., 2015; Yaesoubi and Cohen, 2011). Schaefer et al.

(2005) presented a broad review of MDP models in healthcare. MDP models are very

advantageous for healthcare problems which require dynamic decisions under uncertainty.
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Treatment planning, organ donation and transplant, and dynamic resource allocation are

major healthcare problems employing MDP models. As it is the case in many other fields,

data analytics applications are also frequently highlighted in healthcare. Simpao et al.

(2014); Raghupathi and Raghupathi (2014); Srinivasan and Arunasalam (2013) reported

the necessity, importance, and opportunities of data analytics in medical fields. Due to

the trend in digitization of health records, more and more health data becomes available

for healthcare researchers (Raghupathi and Raghupathi, 2014). Potential benefits includ-

ing early detection of the disease, accurate disease progression patterns, effective health

demand forecast may improve patients’ life quality and reduce health expenditures sub-

stantially (Raghupathi and Raghupathi, 2014).

1.2 Influenza, infectious disease modeling, and vacci-

nation

Influenza is a highly contagious viral disease. Each year a large portion of the worlds’

population is infected with influenza resulting in 3-5 million severe cases and 250,000-

500,000 deaths (CDC, 2010). Together with pneumonia, influenza is the seventh leading

cause of death in the U.S. (CDC, 2014). Considering all the direct and indirect effects such

as the cost of medical treatments, working day losses etc., Molinari et al. (2007) estimated

the annual burden of influenza epidemics to the U.S. economy as $87.1 billion (95% CI:

$47.2-$149.5) in 2003.

An emerging virus that spreads globally may lead to an influenza pandemic (Parvin

et al., 1986). Unlike seasonal epidemics, pandemics occur abruptly and cause horrendous

death tolls, e.g., the 1918 Spanish influenza pandemic infected around 500 million and killed

approximately 50 million people worldwide Taubenberger and Morens (2006). Among

pandemic mitigation interventions (e.g., social distancing, public health measures, antiviral

prophylaxis), vaccination provides the most efficient and durable response (Chao et al.,

2010; Talbot et al., 2013). However, the amount of influenza vaccines during a pandemic

is limited due to production restrictions. Thus, the population is prioritized based on risk-

factors related to influenza exposure and transmissibility when distributing the available
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doses Nichol and Treanor (2006).

To study infection dynamics and evaluate effects of different public health interventions,

several studies in the literature proposed compartmental models (Hethcote, 2000; Zaric

and Brandeau, 2001; Dasbach et al., 2006; Huang and Li, 2009; Eames et al., 2012), agent-

based models (Das et al., 2008; Ventresca and Aleman, 2013; Andradóttir et al., 2014), and

discrete-time generation models. We review studies that are closely related to our paper

and refer the reader to Anderson et al. (1991) and Jackson et al. (2014) for more general

reviews and to Anderson et al. (1991) for a review of earlier studies. In addition, several

issues related to control of influenza pandemics/epidemics such as vaccine composition

selection Wu et al. (2005); Özaltin et al. (2011), vaccine supply chain design Chick et al.

(2008); Deo and Corbett (2009), and optimal allocation of influenza intervention resources

are studied in the OR literature.

Medlock and Galvani (2009) considered an influenza pandemic in the U.S., and pro-

posed a deterministic transition model with Susceptible, Exposed, Infectious and Recovered

compartments (SEIR model). They found the optimal age-specific vaccine allocation with

respect to five performance measures: number of infections, number of deaths, years of

life lost, contingent valuation, and total cost. They parametrized their model with survey-

based contact data and mortality data from 1918 A (H1N1) and 1957 A (H2N2) influenza

pandemics. Medlock and Galvani (2009) suggested prioritizing 5-19 and 30-39 age groups.

as 5-19 year-old school children can transmit the disease to their 30-39 year-old parents

serving as a bridge to the rest of the population. Medlock et al. (2009) extended the

analysis of Medlock and Galvani (2009) by incorporating the vaccine availability schedule.

Araz et al. (2012) used a compartmental model of an influenza pandemic to find effec-

tive strategies for allocating vaccines to different communities characterized by geographic

region and age group. They evaluated four allocation strategies where vaccines become

available according to particular schedules. Their analyses showed that when vaccines are

delayed until later during a pandemic, communities that are expected to be worst affected

by the latest waves of the outbreak should be prioritized. However, allocating the vaccines

among different communities proportional to their population size yields minimum waiting

time for vaccination. Das et al. (2008) developed a network-based simulation model to

evaluate the effect of vaccination, prophylaxis, hospitalization, and social distancing for an
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influenza pandemic in a synthetic population with heterogeneous mixing groups and daily

schedules for inhabitants.

Uribe-Sánchez et al. (2011) proposed a simulation-based predictive method for dynamic

mitigation of influenza pandemics affecting multiple regions. Their approach progressively

allocates a limited budget to procure vaccines, antivirals, administration capacity and

resources for enforcing social distancing. They considered a synthetic outbreak involving

over four million people, and presented a sensitivity analysis to estimate the impact of

changes in the budget. Their numerical experiments showed that the marginal effect of

vaccine efficacy in a pandemic with a low transmission rate is less significant than in a

pandemic with high transmission rate. Patel et al. (2005) built an agent-based simulation

of an influenza pandemic, and used a meta-heuristic to find effective age-specific vaccine

allocation strategies with respect to the number of infections and deaths. Their numerical

experiments showed that the proposed vaccine allocation strategies are up to 84% more

effective than randomly vaccinating the population.

In a closely related study, Yaesoubi and Cohen (2011) formulated a Markov decision

process (MDP) model, and derived dynamic intervention policies to mitigate an influenza

pandemic in a small and closed population. Parvin et al. (2012) also formulated an MDP

model to control an infection, and derived asymptotically optimal solutions based on fluid

approximation. Finally, Yarmand et al. (2014) formulated a two-stage stochastic linear

programming model to minimize the expected cost of vaccination for containing the infec-

tion. In the first stage, the model determines the proportion of the vaccines allocated to

different regions before the influenza season begins; while the second stage determines how

the remaining vaccines are allocated after the onset of the influenza season. They calibrated

the model for a hundred counties in North Carolina, and showed that their proposed two-

stage vaccination policy potentially results in lower attack rates as well as lower vaccine

procurement and administration costs. Rahmandad and Sterman (2008) compared com-

partmental models and agent-based simulation models under different network structures

and heterogeneity conditions. They analyzed differences in disease propagation patterns

generated by these two types of models.

5



1.3 Natural history of amyotrophic lateral sclerosis

Amyothropich lateral sclerosis (ALS) is a disease which causes the degeneration of motor

neurons reaching from the brain to the spinal cord (upper motor neurons) and from the

spinal cord to the muscles (lower motor neurons) (Rowland and Shneider, 2001). The

perpetual degeneration leads to the loss of the motor neurons; thereby, the loss of brain

function on voluntary muscle movements (National Institute of Neurological Disorders

and Stroke, 2015). As a result, muscles controlling the voluntary movement weaken and

atrophy. Patients may suffer from losing their ability to speak, eat, move and breathe. In

90–95 percent of all cases in the U.S., ASL is sporadic; while the remaining 5–10 percent

is familial (inherited) ALS (Kiernan et al., 2011). Families carrying the disease have 50

percent chance that each offspring will inherit the gene developing the disease. There

is no known cure or treatment for its diminution or termination (National Institute of

Neurological Disorders and Stroke, 2015). Patients have mean survival duration of 2–4

years after the onset of the disease (Hobson and McDermott, 2016). An FDA approved

medication called Riluzole may extend patients survival duration by several months (Miller

et al., 2012). Other major interventions, including endoscopic gastrostomy, ventilation

support, recombinant human insulin-like growth factor 1 treatment, are known to modestly

increase the survival duration and improve the quality of life (Miller et al., 2012). Although

the world wide incidence rate has not been estimated yet the disease affects about two

people per 100 000 each year in Europe and the United States (Cronin et al., 2007; Kiernan

et al., 2011). In the U.S., around 5 600 people are diagnosed with ALS each year and

approximately 30 000 patients have the disease in the population (National Institute of

Neurological Disorders and Stroke, 2015). Due to patients’ constant need for caregivers,

expensive interventions, and hospital care, the financial burden of ALS disease extends to

$1.5 million per patient in the total disease duration (Obermann and Lyon, 2015).

ALS is a progressive disease and eventually affects all voluntary movements. However,

disease progression may differ among patients. A salient distinction among patients is

the disease onset site. The disease is mainly categorized as either bulbar onset or limb

onset (Magnus et al., 2002). Bulbar-onset ALS starts with degenerating the motor neurons

in the brain stem. Primarily, muscles used in speech, swallowing, and/or chewing become
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weak by the progress of the degeneration (Kiernan et al., 2011). On the other hand, limb-

onset ALS affects arms and legs of patients at early stages of the disease (Kiernan et al.,

2011). Muscles controlling the limbs become impaired. Arms and/or legs may display

poor performance resulting in having difficulties in daily tasks such as walking, buttoning

a shirt, or reaching a shelf (Boillée et al., 2006).

Although patients’ level of impairment cannot be truly quantified, an instrument called

ALS functional rating scale (ALSFRS) provides a detailed assessment for the impacts on

patients (Brooks et al., 1996). ALSFRS is a questionnaire-based scale that monitors the

physical condition in performing 10 functionality items of daily tasks. Each function-

ality item is evaluated with a five-level scale (0: not able, 4: normal) making a total

score between 0 (severe impairment) and 40 (normal capability). Cedarbaum et al. (1999)

referred to a disproportionate weighting to limbs and bulbar functions compared to respira-

tory function in ALSFRS and proposed revised ALS functional rating scale (ALSFRS-R).

ALSFRS-R replaces breathing item in ALSFRS with three other items. Table 1.1 shows

the functionality items in ALSFRS and ALSFRS-R. Both scales are validated to predict

survival, whereas ALSFRS-R is a better survival predictor due to its broader evaluation of

respiratory symptoms (Cedarbaum et al., 1999). Simon et al. (2014) provided a systematic

comparison for the instruments which quantify the clinical progression of ALS.

As in many fatal diseases, determining prognostic factors plays an important role in

ALS patients’ anticipation for achieving a decent disease period and death. Therefore,

making accurate predictions on the disease progression or survival time imposes a big

burden on clinicians. Küffner et al. (2015) remarked on the necessity and the importance

of different methodologies used in predicting the progression of the ALS disease. Since

the disease progression in ALS displays a huge variability among patients, accuracy of the

estimators is crucial to identify the next sites of disease spread and survival time.

1.4 Thesis outline

In this thesis, our main purpose is to combine analytics and stochastic modeling techniques

to derive effective predictions and applicable solutions for important healthcare problems.
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Table 1.1: Functionality items in ALSFRS and ALSFRS-R.

Item ALSFRS ALSFRS-R

1 Speech
√ √

2 Salivation
√ √

3 Swallowing
√ √

4 Handwriting
√ √

5 Cutting food and handling utensils
√ √

6 Dressing and hygiene
√ √

7 Turning in bed and adjusting bed clothes
√ √

8 Walking
√ √

9 Climbing stairs
√ √

10 Breathing
√

–
11 Dyspnea –

√

12 Orthopnea –
√

13 Respiratory insufficiency –
√

Our studies shine a light on the possible improvements of applying analytics and stochastic

modeling techniques in the medical field. In particular, we study three problems, i) deriving

effective vaccine allocation strategies for pandemic influenza, ii) Tollgate-based progression

pathways of ALS patients, and iii) Deriving tollgates from ALSFRS-R scores using multi-

class classifiers.

In the first problem, we study age-specific vaccine allocation strategies in a pandemic

influenza outbreak. We apply derivative-free optimization to an agent-based simulation

and a compartmental model to obtain effective vaccine allocation strategies. This study

has been published in the journal, PLOS One (Dalgıç et al., 2017)

In the second problem, we propose a novel holistic mechanism to monitor the progres-

sion of patients with amyotrophic lateral sclerosis in terms of the critical events referred

to as tollgates. We perform an extensive data analysis on data from the Mayo clinic,

Rochester, MN. to illustrate how patients progress based the proposed mechanism esti-

mate. Moreover, we estimate the likelihood of the critical events over time.

In the third problem, considering that deriving the tollgates for the existing databases

is not possible due to lack of detailed medical records, we propose a mapping approach from

8



the ALSFRS-R scores to the tollgates with the help of various classification techniques.

Problem definitions, objectives, literature reviews, solution approaches and related anal-

yses for the first and second problem are briefly discussed in Chapter 2, Chapter 3, and

Chapter 4, respectively.
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Chapter 2

Deriving Effective Vaccine Allocation

Strategies for Pandemic Influenza

In the literature, compartmental models (Hethcote, 2000; Zaric and Brandeau, 2001; Das-

bach et al., 2006; Huang and Li, 2009; Medlock and Galvani, 2009; Medlock et al., 2009;

Eames et al., 2012; Araz et al., 2012) and agent-based simulations (Patel et al., 2005; Das

et al., 2008; Basta et al., 2009; Lee et al., 2010; Uribe-Sánchez et al., 2011; Andradóttir

et al., 2014) are frequently employed to make mitigation plans for influenza pandemics

and evaluate the effectiveness of various public health interventions (Dhamodharan and

Proano, 2012; Feng et al., 2013; Chhatwal and He, 2015). Although it is known that

the infection propagation is different in these two approaches (Rahmandad and Sterman,

2008), a detailed comparison of the strategies derived by using them is often omitted.

On the one hand, compartmental models represent the number of individuals in each

stage (or compartment) of the epidemic (e.g., susceptible, exposed, infected, recovered) by

continuous-time state variables, and formulate the transitions among different compart-

ments using differential equations. These models can rapidly evaluate many scenarios and

intervention strategies, but they assume that individuals in each compartment mix uni-

formly and randomly with each other. Moreover, deterministic compartmental models do

not consider the uncertainties in disease propagation (e.g., stochasticity in transmission

events, incubation, and recovery periods) (Andradóttir et al., 2014). Thus, such models
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may not accurately model infection dynamics, especially at the initial and final stages of a

pandemic when few infectious individuals exist (Germann et al., 2006). Despite their sim-

plifying assumptions, compartmental models have proved to be predictive (Anderson et al.,

1991; Mollison et al., 1994; Bansal et al., 2007), and they have been successfully extended

to capture large-scale host heterogeneities. These extensions of the simple compartmental

framework include age-specific contact patterns (Medlock and Galvani, 2009) and hetero-

geneities induced by spatial structure (Lloyd and May, 1996). Agent-based simulations,

on the other hand, consider uncertainties about the infection parameters; and they store

individual-level information to model contact patterns in a population at the expense of

increased computational burden (Ferguson et al., 2006; Merler et al., 2009; Hladish et al.,

2012).

Our goal in this paper is to identify possible scenarios under which performances of the

effective age-specific vaccine allocation strategies derived by using compartmental mod-

els and agent-based simulations may differ significantly in practical settings. For this

purpose, we consider an influenza pandemic in Seattle using a custom-built deterministic

compartmental model and an agent-based simulation developed by Chao et al. (2010). The

compartmental model is calibrated to closely approximate the results of the agent-based

simulation under no vaccination. We apply mesh-adaptive optimization to derive effec-

tive age-specific vaccine allocation strategies based on four different objective functions.

At each iteration of the optimization process, the performances of the newly generated

vaccine allocation strategies are evaluated using the agent-based simulation in one set of

experiments, and using the compartmental model in the other set of experiments. We per-

form sensitivity analysis to identify potential distinctions between these two approaches

under different vaccine coverage and infection aggressiveness scenarios.

We observe that age-specific vaccine allocation strategies derived by using computation-

ally expensive but more realistic agent-based simulation and those derived by using fast

but more stylized compartmental model are different, although both models are calibrated

to generate similar results under no vaccination. We use the agent-based simulation to

evaluate the performances of strategies derived by the compartmental model. Our results

show that the vaccine allocation strategies derived by the agent-based simulation are asso-

ciated with up to 70% decrease in total cost and 34% reduction in the number of infections

11



compared to the strategies derived by the compartmental model. Nevertheless, the latter

approach may still be competitive for very low and/or very high infection aggressiveness

scenarios.

It is clear that any two infectious disease spread models can differ from each other with

respect to the assumptions in their design and parametrization. Furthermore, the degree to

which each modeling approach allows for inclusion of heterogeneity and uncertainty varies.

Therefore, the empirical comparison presented in this study is valid for the considered

agent-based influenza pandemic simulation that is well-known and commonly used in the

literature (Chao et al., 2010). Our results, however, still provide important insights into

the possible differences between the vaccine allocation strategies derived by agent-based

simulations and deterministic compartmental models.

2.1 Materials and methods

We consider different levels of vaccine coverage and infection aggressiveness, and apply

mesh-adaptive optimization (Audet et al., 2009) to find effective strategies for allocating

limited vaccine doses to different age-groups in the population with respect to four different

performance measures: total cost, number of deaths, number of infections, and years of life

lost. We evaluate the performances of the trial vaccine allocation strategies at each iteration

of the optimization algorithm using an agent-based simulation in one set of experiments,

and a compartmental model in the other set of experiments.

2.1.1 Agent-based simulation

We employ FluTe, an open-source and validated agent-based pandemic influenza simulation

developed by Chao et al. (2010). FluTe’s contact network is composed of census tracts

divided into communities of 500-3,000 individuals. Each community consists of randomly

generated households of 1-7 individuals in one of the five age-groups: preschool children

(0-4), school children (5-18), young adults (19-29), adults (30-64), and seniors (65 and

over). Individuals can be members of multiple community-based mixing groups such as
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households, household clusters (composed of socially close households), neighborhoods and

communities. The simulation has two time epochs for each day: day- and night-time.

At night time, individuals can only make contacts within their community-based mixing

groups, whereas they may contact other individuals in day-time if they share the same

social mixing group, e.g., daycare, school, workplace.

In each time epoch, a contact for potential disease transmission between any two indi-

viduals sharing a mixing group is generated. During a contact between a susceptible and

an infectious individual, influenza transmission may occur with a probability that depends

on vaccine efficacy, virus load and symptoms of the infectious individual. Each infected

individual follows a predefined daily viral load profile representing the level of infectious-

ness on each day of the disease duration. Infected individuals may become symptomatic

after an asymptomatic incubation period of one to three days (Carrat et al., 2008). Symp-

tomatic individuals are twice as infectious as the asymptomatic ones. Infected individuals

recover and become immune after six days.

The vaccinated individuals have reduced likelihood of getting infected during a contact,

becoming symptomatic when infected, and transmitting the disease (Struchiner et al.,

2010). The vaccine efficacy reaches its maximum level in two weeks with exponential

increments after the vaccination, and the maximum vaccine efficacy varies among the age

groups. Due to incremental nature of vaccine efficacy, the timing of vaccine interventions

affects success in containing influenza pandemics. FluTe allows administrating vaccines

before (pre-vaccination) or after (reactive vaccination) the onset of the pandemic. We

refer the reader to Chao et al. (2010) for further details about FluTe.

2.1.2 Compartmental model

We propose a deterministic compartmental model that closely approximates the results

of FluTe for Seattle under no vaccination. Similar to FluTe, we divide the population

into five age groups, AG = {preschool children (0-4), school children (5-18), young adults

(19-29), adults (30-64), seniors (65+)}. Each age group i ∈ AG includes vaccinated and

unvaccinated individuals in five compartments: susceptible (S), exposed (E), infected (I),

recovered (R), and dead (D). We denote the susceptible individuals in age group i ∈ AG
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with vaccination status h ∈ H = {(u)nvaccinated, (v)accinated} by Shi , for example. The

exposed compartment (E) corresponds to the asymptomatic individuals in FluTe. In addi-

tion, the infected compartment (I) corresponds to the symptomatic individuals in FluTe.

A proportion of asymptomatic individuals never develop symptoms in FluTe, therefore,

we split the exposed compartment into two sub-compartments: those who eventually show

disease symptoms (E→I), and those who recover without showing symptoms (E→R). The

symptomatic individuals are twice as infectious as asymptomatic ones in both FluTe and

the SEIR model.

The incidence rate of new infections in age group i caused by infectious individuals in

age group j, denoted by λij, is given by:

λij =
Φij(β

u
j (Iuj + Eu

j /2) + βvj (Ivj + Ev
j /2))

Nj

. (2.1)

In Eq (2.1), Φij is the contact rate from age group i to j. Parameter βuj (βvj ) denotes the

transmission rate of unvaccinated (vaccinated) infectious individuals in age group j given

a single contact with a susceptible individual. Variables Iuj (Ivj ) and Eu
j (Ev

j ) represent

the number of unvaccinated (vaccinated) infected and exposed individuals in age group j,

respectively. Note that Eu
j = (E→I)uj + (E→R)uj and Ev

j = (E→I)vj + (E→R)vj . Finally,

Nj is the size of age group j, and
∑

j∈AGNj = N where N denotes the total population

size. The overall infection rate of individuals in age group i is equal to λi =
∑

j∈AG λij.

Note that vaccinated (v) and unvaccinated (u) compartments are interdependent because

the infection rate λi depends on the number of vaccinated and unvaccinated infectious

individuals. Figure 2.1 depicts the transitions among the compartments, and the model
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equations are given by:

dShi
dt

=− (1− εhi )λiShi h ∈ H, i ∈ AG (2.2a)

d(E→I)hi
dt

=(1− εhi )λiωhi Shi − τhi (E→I)hi h ∈ H, i ∈ AG (2.2b)

d(E→R)hi
dt

=(1− εhi )λi(1− ωhi )Shi − γhi (E→R)hi h ∈ H, i ∈ AG (2.2c)

dIhi
dt

=τhi (E→I)hi − (ξhi + χhi )I
h
i h ∈ H, i ∈ AG (2.2d)

dRh
i

dt
=ξhi I

h
i + γhi (E→R)hi h ∈ H, i ∈ AG (2.2e)

dDi

dt
=
∑
h∈H

χhi I
h
i i ∈ AG (2.2f)

𝐸𝐸  𝐼𝐼𝑖𝑖𝑣𝑣  

 𝑆𝑆𝑖𝑖𝑢𝑢  𝐸𝐸  𝐼𝐼𝑖𝑖𝑢𝑢   𝐼𝐼𝑖𝑖𝑢𝑢  

𝐸𝐸  𝑅𝑅𝑖𝑖𝑢𝑢  

 𝑆𝑆𝑖𝑖𝑣𝑣   𝐼𝐼𝑖𝑖𝑣𝑣  

𝐸𝐸  𝑅𝑅𝑖𝑖𝑣𝑣  

𝐷𝐷𝑖𝑖  

𝜔𝜔𝑖𝑖
𝑢𝑢𝜆𝜆𝑖𝑖 𝜏𝜏𝑖𝑖𝑢𝑢 

𝛾𝛾𝑖𝑖𝑣𝑣 

𝜒𝜒𝑖𝑖𝑢𝑢 

𝜒𝜒𝑖𝑖𝑣𝑣 

𝜏𝜏𝑖𝑖𝑣𝑣 1 − 𝜖𝜖𝑖𝑖𝑣𝑣 𝜔𝜔𝑖𝑖
𝑣𝑣𝜆𝜆𝑖𝑖 

𝛾𝛾𝑖𝑖𝑢𝑢 

𝑅𝑅𝑖𝑖  

Figure 2.1: Transition rates between compartments.

Parameter εhi ∈ [0, 1] denotes the reduction in the likelihood of becoming infected after

vaccination, naturally εui = 0 for unvaccinated individuals. Parameter ωhi ∈ [0, 1] denotes

the proportion of exposed individuals who eventually become symptomatic. Parameters
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τhi , γhi , ξhi , and χhi denote the Exposed-to-Infected, Exposed-to-Recovered, Infected-to-

Recovered, and Infected-to-Death transition rates, in that order. We set γhi =
1

1/ξhi + 1/τhi
to ensure that those exposed individuals who recover without showing symptoms stay

asymptomatic during the course of the disease. The D compartment is included in the

model for tracking the number of influenza-related deaths.

Let pi denote the vaccinated proportion of age group i. Moreover, let bi denote the

initial number of infecteds in age group i. The boundary conditions ∀i ∈ AG are given

by Svi (0) = pi(Ni − bi), S
u
i (0) = (1 − pi)(Ni − bi), I

v
i (0) = pibi, I

u
i (0) = (1 − pi)bi,

Ev
i (0) = Eu

i (0) = Rv
i (0) = Ru

i (0) = Di(0) = 0. We solve the system of differential

equations in the SEIR model numerically using the fourth-order Runge-Kutta method

(Atkinson, 1989).

2.1.3 Formulating the optimization problem

The optimization aims to find an effective age-specific allocation of a given vaccine supply

V such that
∑

i∈AG piNi ≤ V . We consider four different performance measures:

• Total expected cost is equal to the sum of vaccination, infection and mortality costs.

Vaccination cost (cbi) includes the vaccine price, work time lost, and the cost of

potential side effects. Infection cost refers to the sum of medication, outpatient visits,

and hospitalization expenses, which is different for unvaccinated (cui ) and vaccinated

(cvi ) individuals. Mortality cost (cdi ) stands for the terminal care expenses.

• Total number of infections is equal to the number of individuals affected by the

pandemic.

• Total number of deaths is equal to the number of influenza-related deaths.

• Total years of life lost (YLL) weighs each death with the expected remaining life time

based on the U.S. life tables and the age distributions (Arias, 2014; United States

Census Bureau, 2014).
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In particular, at any time during the course of the pandemic, the four performance

measures are calculated as follows:

Total cost (TC) =
∑
i∈AG

(cbNipi + cuiNIui
+ cviNIvi

+ cdiNDi
),

Total number of infections (TI) =
∑
i∈AG

(NIui
+NIvi

),

Total number of deaths (TD) =
∑
i∈AG

NDi
,

Total YLL (TY ) =
∑
i∈AG

YiNDi
,

where Yi denotes the YLL value of age group i ∈ AG. Moreover, NIui
(NIvi

), and NDi

represent the total number of infections among unvaccinated (vaccinated) individuals and

influenza-related deaths in age group i ∈ AG, respectively.

2.1.4 Calibration

We run FluTe using the population file for Seattle (around 560,000 residents) that is

included in the software distribution package. Contact rates within mixing groups and

infectious disease parameters of influenza are set based on the values estimated in Chao

et al. (2010) so that attack rates are consistent with the 1957 Asian A(H2N2) and 2009

A(H1N1) influenza pandemics without vaccination (Chao et al., 2010). We seed the model

with 10 randomly generated infected people. The vaccinated individuals have 40% reduced

probability of becoming infected, 40% reduced probability of becoming symptomatic given

infection, and 67% reduced probability of transmitting infection. These values represent

the effectiveness of a well-matched seasonal influenza vaccine (Basta et al., 2008). The

vaccine is only 60% as effective in seniors as everyone else, since older people with weaker

immune systems often have a lower immune response to influenza vaccine (CDC, 2016).

The homogeneous mixing assumption of the compartmental model (referred to as SEIR

model hereafter) results in faster and more diverse disease spread, whereas the infection
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follows a more tranquil pattern in FluTe, i.e., individuals can transmit the disease only

to those in their contact list. For a fair comparison of the age-specific vaccine allocation

strategies derived by using the SEIR model and FluTe, we calibrate the SEIR model so

that the number of new infections for each day of the pandemic closely matches to the

corresponding average outcome from FluTe over 100 replications under no vaccination. In

particular, we calibrate the SEIR model by varying the contact rates (Φij), transmission

rates (βhi ), and initial number of infections (bi). As a goodness of fit measure, we use Pear-

son’s chi-square statistic (χ2 measure), and employ the numerical optimization algorithm

described in the following section to find parameters of the SEIR model that minimize the

maximum χ2 measure over all age groups.

We first perform the calibration for R0 = 1.2. We then repeat the process for each

R0 value considered in our numerical analyses using the previous calibration results as the

initial solution. We keep the contact rates the same as those found for R0 = 1.2 (see Figure

A.1) because initial tests show that further calibration of the contact rates for different R0

values is not necessary to obtain good matches between the results of FluTe and the SEIR

model. Figure 2.2(a)a depicts the cumulative number of infections in each day after the

calibration process.

The cumulative number of infections in different age groups are presented in Fig-

ures 2.2b-2.2f. Furthermore, Figure A.1 shows the similarity of the age-specific attack

rates from FluTe and from the SEIR model. The parameters of FluTe and the calibrated

SEIR model are provided in Table 2.1. We do not present the parameters of FluTe related

to network structure and virus load profile and refer the readers to Chao et al. (2010) for

more details.

2.1.5 Solution approach

The pandemic propagation is nonlinear because the incidence of new infections depends on

the current number of infectious and susceptible individuals. Moreover, the size and dura-

tion of outbreaks are uncertain in agent-based simulations like FluTe. All of these factors

render traditional gradient-based optimization methods inapplicable. We therefore use a

derivative-free approach, in particular, the mesh-adaptive direct search (MADS) algorithm
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(b) Preschool children (0-4)
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(c) School children (5-18)
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(d) Young adults (19-29)
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(e) Adults (30-64)
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(f) Seniors (65+)

Figure 2.2: Cumulative number of infections in each age group of FluTe and
the SEIR model after the calibration process for R0 = 1.2 without vaccination.

as implemented in open-source software NOMAD (Abramson et al., 2009). Starting from

an initial solution, the MADS algorithm iteratively tries to improve the current best solu-

tion by generating trial points on a mesh, which is a discretization of the variable space.

Each iteration is composed of two main steps: the search and the poll steps. The search

step evaluates a number of trial mesh points. If an improved mesh point is found, then

the next iteration is initiated with the new incumbent solution using a larger mesh size.

Whenever the search step fails to generate an improved mesh point, then the poll step is
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invoked. The poll step explores the variable space near the current incumbent solution. If

the poll step also fails to improve the current best solution, then the mesh size and poll size

parameters are reduced in order to increase the search resolution. The MADS algorithm

stops after a given number of iterations or when the mesh size reaches a precision limit.

We refer the reader to Le Digabel (2011) for more information about the MADS algorithm

and NOMAD (Le Digabel, 2011).

All numerical experiments are conducted using a PC with 48 cores (2.85 Ghz and 128

GB memory). We run both FluTe and the SEIR model up to one year. We generate 10

trial solutions in each iteration of the MADS algorithm. In one set of experiments, we use

FluTe to evaluate the performance of trial solutions (FluTe+MADS), and in another set

of experiments we use the SEIR model (SEIR+MADS). When using FluTe, we perform 24

replications to estimate the average performance of each trial solution. Based on our initial

experiments, this sample size is sufficient to reduce the effects of sample variance on the

results. We terminate the MADS algorithm after 1,000 trial solutions or when the mesh

size is less than or equal to 10−13. The SEIR model evaluates trial solutions much faster

than FluTe. Therefore, when using the SEIR model, we terminate the MADS algorithm

after 100,000 trial solutions or when the mesh size is less than or equal to 10−13. We select

pi = 0.5, ∀i ∈ AG as the initial solution in the MADS algorithm, i.e., vaccinate 50% of

the population in each age group. Although this solution may be infeasible under some

vaccine coverage scenarios, it is still a proper initial solution because the MADS algorithm

allows constraint violations in the intermediate iterations to diversify the search.

2.2 Results

We present the age-specific vaccine allocation strategies derived by FluTe+MADS and

SEIR+MADS. We highlight the age groups prioritized by each approach and evaluate

the relative performance of the proposed strategies under various scenarios for multiple

objective functions.

The basic reproductive number (R0) represents the average number of infections gen-

erated by a typical infectious person in a completely susceptible population. If R0 > 1, the
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infection spreads within the population. Otherwise, the infection eventually dies out with-

out any intervention (Heffernan et al., 2005). Fraser et al. (2009) estimated the R0 value

of the 2009 H1N1 pandemic between 1.4 and 1.6. Medlock and Galvani (2009) reported

that 30% vaccine coverage can mitigate a pandemic like the 2009 H1N1 if there is no delay

in response time (i.e., vaccination starts on the first day of the pandemic). We therefore

use R0 = 1.6, 30% vaccine coverage, and no delay in response time as the base case in

our experiments. Note that the capacity of mitigating a pandemic with a certain level of

vaccine coverage depends on the vaccine efficacy; that is, a greater coverage is required for

mitigation when using a less effective vaccine. Moreover, the whole process of producing

a pandemic vaccine for a novel influenza virus takes four to six months (WHO, 2009).

Therefore, a base case scenario with no delay in response time may not seem practical.

However, we consider no other pandemic interventions such as isolation and quarantine,

public health measures, and antivirals, which have substantial effect on delaying an in-

fluenza pandemic spread. This delay in pandemic spread may render the no-delay scenario

more acceptable as a base case.

Table 2.2 reports the age-specific vaccine allocation strategies derived by FluTe+MADS

and SEIR+MADS in the base case. SEIR+MADS vaccinates only school children (5-18)

to minimize the total cost (TC) objective. For other objectives, preschool (0-4) and school

children are mainly vaccinated, and the remaining vaccines are allocated to young adults

(19-29). FluTe+MADS vaccinates school children for the most part, and allocates the

remaining vaccines to preschool children and young adults. Observe that SEIR+MADS

uses fewer vaccine doses than FluTe+MADS for the TC objective, possibly because the

effect of vaccination is more pronounced in the SEIR model as a result of the homogeneous

mixing assumption.

In Figure A.1, we compare the overall attack rates of the SEIR model and FluTe for

different R0 values and vaccine coverage levels under the same vaccination policy — the

available vaccine stocks are initially allocated to school children, the remaining doses are

first allocated to preschool children, and then to young adults. For each coverage level and

R0 value, the SEIR model has resulted in less overall attack rate than Flute, illustrating

the more pronounced effect of vaccination.

For comparison, we evaluate performances of the vaccine allocation strategies derived
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Table 2.2: Vaccine allocation strategies obtained by FluTe+MADS and
SEIR+MADS under the base-case scenario.

Performance Vaccination fractions for each age group
measure 0-4 5-18 19-29 30-64 65+

TC
SEIR+MADS - 87% - - -
FluTe+MADS - 99% 34% - -

TI
SEIR+MADS 100% 100% 9% - -
FluTe+MADS 89% 100% 9% 1% 1%

TD
SEIR+MADS 100% 100% 9% - -
FluTe+MADS 5% 97% 50% 3% 2%

TY
SEIR+MADS 100% 100% 9% - -
FluTe+MADS 21% 98% 50% 1% -

R0 = 1.6, 30% vaccine coverage, no delay in response time. TC: Total cost, TI: Total
number of infections, TD: Total number of deaths, TY: Total YLL

by FluTe+MADS and SEIR+MADS using FluTe with 100 replications. As seen in Table

2.3, the strategy derived by FluTe+MADS is significantly better than the one derived

by SEIR+MADS for the TC objective. This is mainly due to the fact that the amount

of vaccine used in the strategy derived by SEIR+MADS, while containing the disease

effectively in the SEIR model, is insufficient to do so in FluTe.

Table 2.3: Objective values of recommended vaccine allocation strategies.

Performance Sample mean
measure SEIR+MADS FluTe+MADS Difference p-value

TC ($M) 23.2 6.5 16.7 < 0.001
TI (infections) 1,170.3 945.2 225.1 0.117
TD (deaths) 10.7 9.9 0.8 0.584
TY (life years lost) 459.8 367.5 92.3 0.094

R0 = 1.6, 30% vaccine coverage, no delay in response time. The performance measures are calculated
using FluTe with 100 replications.
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2.2.1 Sensitivity analysis on R0

We vary the basic reproduction number R0 between 1.2 and 2.4 under 30% vaccine cov-

erage with no delay in response time to analyze the sensitivity of the proposed vaccine

allocation strategies to R0. For the total cost (TC) objective, SEIR+MADS increases the

vaccinated proportion of school children from 47% to 100% as R0 increases from 1.2 to 2.0

(see Figure 2.3a). After covering school children, the remaining vaccines are allocated to

preschool children when R0 ≥ 2.0. FluTe+MADS vaccinates 45% of school children as well

as a small portion of preschool children and young adults when R0 = 1.2 (see Figure 2.3b).

Furthermore, FluTe+MADS covers all school children when R0 ≥ 1.6. SEIR+MADS al-

locates 35% of the available vaccine when R0 = 1.2 and all of the available vaccine when

R0 ≥ 2.2. On the other hand, FluTe+MADS allocates 43% of the available vaccine when

R0 = 1.2 and all of the available vaccine when R0 ≥ 1.8. Intuitively, both methods use

fewer vaccine doses for smaller R0 values to keep the vaccination cost low.

For the total number of infections (TI) objective, SEIR+MADS recommends a similar

strategy for each R0; vaccinate all preschool and school children as well as small portions of

young adults and/or seniors (65+) (see Figure 2.3c). However, vaccine allocation strategies

from FluTe+MADS vary by R0 (see Figure 2.3d). These strategies cover all school children

and allocate the remaining vaccines to preschool children and young adults when R0 ≥ 1.4.

Note that both approaches use all available vaccine stocks, as vaccination cost is no longer

a concern. This result is also valid for the total number of deaths (TD) and total YLL

(TY) objectives.

For the TD and TY objectives, there is a trade off between reducing the number in-

fections (by vaccinating school children) and reducing the casualties in high-mortality age

groups (by vaccinating preschool children and young adults). SEIR+MADS again vac-

cinates all preschool and school children for all R0 values (see Figures 2.3e and 2.3g).

FluTe+MADS covers all school children in addition to some proportions of preschool chil-

dren and young adults when R0 ≤ 2.2 (see Figures 2.3f and 2.3h). However, when R0 = 2.4,

FluTe+MADS vaccinates preschool children and young adults for the most part rather

than school children. This unique case is due to high mortality rates of preschool chil-

dren and young adults (see Table 2.1). The vaccine stocks become insufficient to contain
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Figure 2.3: Vaccine allocation strategies derived by FluTe+MADS and
SEIR+MADS under all objective functions for various R0 values (30% vac-
cine coverage, no delay in response time).
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the pandemic when R0 = 2.4, therefore, the recommended strategy focuses on minimizing

casualties in high-mortality age groups.

The vaccine allocation strategies from FluTe+MADS perform better than those from

SEIR+MADS when R0 is between 1.4 and 2.2, i.e., when the effective vaccine alloca-

tion becomes critical to control the pandemic (see Figure A.2). However, SEIR+MADS

performs better than FluTe+MADS or the difference is not significant when R0 < 1.4

or R0¿2.2. Recall that we run the MADS algorithm for at most 1,000 trial solutions in

FluTe+MADS, while we allow for 100,000 trial solutions in SEIR+MADS. Therefore, it is

not unlikely that SEIR+MADS finds better strategies than FluTe+MADS, especially when

a small vaccination level is enough to contain the infection (i.e., R0 < 1.4). On the other

hand, when the infection is very aggressive, i.e., R0¿2.2, 30% vaccine coverage in the base

case is not enough for containing the pandemic, and therefore, there is limited room for

improvement by optimizing the vaccine allocation. One exception to this pattern is for TD

and TY objectives where FluTe+MADS performs 7% and 9% better than SEIR+MADS,

respectively, by prioritizing high-mortality age groups, i.e., preschool children and young

adults when R0 = 2.4.

2.2.2 Sensitivity analysis on vaccine coverage and response time

We set R0 = 1.6 and analyze the sensitivity of the recommended age-specific allocation

strategies to vaccine coverage and response time. Table 2.4 presents the strategies from

FluTe+MADS and SEIR+MADS for 20%, 30%, and 40% vaccine coverage with no delay

in response time (i.e., vaccination starts on the first day of the pandemic). SEIR+MADS

vaccinates preschool and school children for the most part, and allocates the remaining

vaccines to young adults for all objectives except the total cost (TC) objective for which

only 87% of school children is vaccinated under all coverage levels to reduce the vaccination

cost. FluTe+MADS vaccinates school children, and allocates the remaining vaccines to

preschool children and young adults.

Table 2.5 presents the strategies from FluTe+MADS and SEIR+MADS for three differ-

ent cases of response time under R0=1.6 and 30% vaccine coverage. Prevaccination refers

to the scenario where the vaccine is administered two weeks before the beginning of the
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Table 2.4: Vaccine allocation strategies for different coverage scenarios.
FluTe+MADS SEIR+MADS

Vaccine
Vaccination fraction
for each age group (pi)

Vaccination fraction
for each age group (pi)

coverage 0-4 5-18 19-29 30-64 65+ 0-4 5-18 19-29 30-64 65+

TC

20% 1% 88% 1% - - - 87% - - -
30% - 99% 34% - - - 87% - - -
40% 34% 98% 22% 2% 3% - 87% - - -

TI

20% 2% 87% 2% - 1% - 90% - - -
30% 89% 100% 9% 1% 1% 100% 100% 9% - -
40% 64% 98% 99% 2% 1% 100% 100% 84% - 3%

TD

20% 15% 80% - - 10% - 90% - - -
30% 5% 97% 50% 3% 2% 100% 100% 9% - -
40% 6% 100% 96% 11% - 100% 100% 80% 2% -

TY

20% 34% 70% 6% - 12% - 90% - - -
30% 21% 98% 50% 1% - 100% 100% 9% - -
40% 64% 98% 98% 2% 2% 84% 100% 95% - -

R0 = 1.6, no delay in response time

pandemic so that it reaches maximum effectiveness by the time the virus starts spreading.

Others refer to the scenarios where the vaccination start d (d =0, 10, 20, 30, 40, 60, 80,

or 90) days after the first day of the outbreak. In these delayed scenarios, the vaccine

effectiveness will increase gradually reaching its maximum level in two weeks during the

course of the pandemic both for the SEIR model and FluTe (Chao et al., 2010).

FluTe+MADS outperforms SEIR+MADS for all objective types when vaccine coverage

is 30% see Figure A.3). However, strategies derived by SEIR+MADS for total number of

deaths (TD) and total YLL (TY) objectives on average perform better than those derived

by FluTe+MADS when the vaccine coverage is 20% or 40% (see Figure A.3). When the

vaccine coverage is 20%, there is a small set of effective vaccine allocation strategies that

can contain the pandemic. On the other hand, when the vaccine coverage is 40%, the set

of effective strategies is large with many local optimums. In both cases, a large number of

trial solutions should be evaluated. FluTe+MADS may not find an effective strategy with

1,000 trial solutions when the vaccine coverage is 20%, and gets stuck at a local optimum

when the vaccine coverage is 40%. Furthermore, the random noise around the objective

values of each FluTe replication may make it difficult for the MADS algorithm to find an

effective improvement direction.
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Table 2.5: Vaccine allocation strategies for different response time scenarios.
SEIR+MADS FluTe+MADS

Response

time
Vaccination fraction
for each age group (pi)

Vaccination fraction
for each age group (pi)

(days) 0-4 5-18 19-29 30-64 65+ 0-4 5-18 19-29 30-64 65+

TC

P – 86% – – – 19% 100% – – 4%
0 – 87% – – – – 99% 34% – –
10 – 89% – – – 77% 100% 15% – 5%
20 – 91% – – – 46% 100% 31% – 4%
40 – 96% – – – – 96% 49% 5% –
60 – 100% – – – 23% 83% 71% – 8%
80 1% 100% – – – 48% 6% – 54% –
90 72% 100% – – – 4% 5% – 55% –

TI

P 100% 100% 1% – 9% 16% 100% 43% – –
0 100% 100% 9% – – 89% 100% 9% 1% 1%
10 100% 100% 9% – – 67% 99% 16% 2% 2%
20 100% 100% 7% 1% – – 100% 39% 5% –
40 100% 100% 9% – – 19% 100% – 14% –
60 100% 100% 9% – – 30% 93% 52% – 5%
80 100% 100% 1% 2% – 56% 65% 88% – 4%
90 100% 100% 1% 2% – 59% 40% – 36% –

TD

P 100% 100% 9% – – 13% 100% 17% 9% 1%
0 100% 100% 9% – – 5% 97% 50% 3% 2%
10 100% 100% 9% – – – 100% 60% – –
20 100% 100% 9% – – 14% 100% 27% 6% 6%
40 100% 100% 9% – – – 100% 60% – –
60 100% 100% 5% 1% – 66% 98% 23% – 8%
80 100% 100% 9% – – 100% – 100% 22% –
90 100% 100% 9% – – 87% – 100% 24% –

TY

P 100% 100% 9% – – 71% 100% 10% 2% 6%
0 100% 100% 9% – – 21% 98% 50% 1% –
10 100% 100% 9% – – 93% 98% – 4% –
20 100% 100% 9% – – 36% 100% 37% – 4%
40 100% 100% 9% – – 1% 100% 59% – –
60 100% 100% 9% – – 100% 100% 9% – 1%
80 100% 100% 9% – – 100% 47% 100% – –
90 100% 100% 9% – – 100% 100% – 2% –

R0 = 1.6, 30% vaccine coverage. P: Prevaccination.
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In Table 2.5, SEIR+MADS vaccinates preschool children and school children for all

objectives except for the TC objective and 90-day delay scenario of TC objective. More

interestingly, it is very insensitive to response time for TI, TD, and TY objectives. This

result is due to the fact that the impact of vaccination is so pronounced in the SEIR

model that it can still contain the infection even after a 90-day delay in response time

by vaccinating high transmitters. On the other hand, the vaccine allocation strategies

from FluTe+MADS significantly vary with response time, although vaccinating the school

children is still the main focus in most cases. For total number of deaths (TD) objective,

FluTe+MADS mainly increases the vaccinated proportions of age groups who are in high-

risk in terms of mortality as the response time is delayed further. When the delay in

response time reaches 80 days, the proportion of school children suddenly drops to 0%.

These results comply with the literature which suggests prioritizing vaccination of high

transmitters (e.g., school children) earlier and prioritizing vaccination of those who have

high mortality rate (e.g., young adults, preschool children, adults) later in the pandemic

(Matrajt and Longini Jr, 2010; Medlock et al., 2009; Mylius et al., 2008).

For different response time scenarios, the strategies from FluTe+MADS generally out-

perform those derived by SEIR+MADS (see Figure A.3). However, the performance differ-

ences mainly decrease as the response time is delayed further, except TD objective where

significant differences are obtained by focusing on high-risk age groups even when late

response (60-, 80-, 90-day delay) scenarios.

2.3 Conclusions

Health policy makers commonly use agent-based simulations and compartmental models

when evaluating and designing effective vaccine allocation strategies. Our study shines a

light on the possible differences between the strategies obtained by these two approaches.

In particular, we observe that age-specific vaccine allocation strategies derived using a

computationally expensive but realistic agent-based simulation and those derived using a

fast but stylized compartmental model may be different from each other. They, however,

both recommend vaccinating school children for the most part, which complies with the
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literature (Basta et al., 2009; Mylius et al., 2008).

The age-specific vaccine allocation strategies derived using the agent-based simulation

significantly outperforms those derived using the compartmental model especially for mod-

erate levels of basic reproduction number (i.e., 1.4 ≤ R0 ≤ 2.2) when vaccine stocks are

not very scarce. In other cases, either it is rather easy to control the pandemic (e.g.,

when R0 = 1.2), so there are several strategies that can effectively control the infection,

or vaccination is not sufficient to control the pandemic. In such extreme scenarios, the

performance gap between the two approaches is small because there is limited room for

improvement.

We also note the following two observations. First, SEIR+MADS tries to limit the

number of infected individuals for all R0 levels using almost the same vaccine allocation

strategy for all objective functions under all scenarios. On the other hand, strategies

from FluTe+MADS significantly varies for different objective functions and parameter

scenarios seeking a balance between the number of infections and influenza-related deaths.

Second, the impact of vaccination is very significant in SEIR+MADS possibly due to the

homogeneous mixing assumption. Therefore, once evaluated by FluTe, the performance

of the strategies from SEIR+MADS appears to be less effective compared those derived

by FluTe+MADS. Similar observations are reported by other studies that evaluate the

performances of strategies derived by compartmental models using agent-based simulations

(Lee et al., 2010).

Our observations summarized above are based on the comparison of a specific agent-

based simulation and a compartmental model. However, FluTe is commonly used and

well-received in the literature (Cowling et al., 2010; Lazer et al., 2014; Pastor-Satorras

et al., 2015). Therefore, although they are not directly generalizable, our observations

are likely to hold for other agent-based simulations and compartmental models whose

assumptions are similar to those analyzed in this study. The differences between the

age-specific vaccine allocation strategies derived by SEIR+MADS and FluTe+MADS are

possibly due to the combined effect of considering the heterogeneity in contact patterns

and stochasticity in disease progression. However, we left measuring the individual effect

of heterogeneity and stochasticity for future research as such an analysis requires a more

simplified methodological setting.
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There are a few limitations of our analysis. First, we examine age-specific vaccine

allocation but do not consider other important risk factors, e.g., chronic medical condi-

tions and pregnancy. Moreover, we use a deterministic numerical optimization algorithm,

which does not incorporate the variance in the simulation replications when updating the

search direction. Using a faster agent-based simulation, the number of replications can

be increased to reduce the variance. Alternatively, ranking and selection methods can be

applied to find the proper number of replications for each allocation strategy, which is left

for future research.
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Chapter 3

Tollgate-based Progression Pathways

of ALS patients

3.1 Introduction

Patients with amyotrophic lateral sclerosis (ALS) lose control of voluntary movements

over time due to continuous degeneration of motor neurons (Morris, 2015). ALS typically

begins in a particular body segment such as arm, leg, and speech and the progression can

be in any anatomical direction (rostral, caudal, contralateral) at various paces (Armon,

2008; Mazzini et al., 2008).Although there exist general average progression expectations;

from a clinical standpoint, the information is limited to counsel patients about their own

specific likely progression pathways (Kiernan et al., 2011). Therefore, there is a need

for instruments to better educate providers, patients, and caregivers about what critical

events, e.g., weakness starting in a limb, needing feeding tube, or respiratory support, to

expect and when to expect them Mitsumoto and Del Bene (2000). Such instruments not

only can better prepare the patient and care providers for possible upcoming clinical needs,

but also provide a frame of reference to patients when making critical life decisions (e.g.,

when to retire, remodel a house, consider hospice care, etc.).

Most studies have investigated ALS progression through instruments such as ALSFRS-
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R and factors such as site of onset, time between onset and diagnosis, etc. (Brooks et al.,

1996; Louwerse et al., 1997; Magnus et al., 2002; Chio et al., 2002; Kimura et al., 2006;

Kollewe et al., 2008). Few have analyzed the longitudinal progression for individual ALS

patients by tracking changes in ALSFRS-R score (Gomeni and Fava, 2014; Swinnen and

Robberecht, 2014; Küffner et al., 2015). Although ALSFRS-R may predict survival well and

capture the overall aggressiveness of progression (Kollewe et al., 2008), using ALSFRS-R to

determine the timing of specific clinical tollgates or to foresee future needs of ALS patients

is challenging due to its design. That is, even though some of the item scores in ALSFRS-R

are highly correlated with a few critical events (ALSFRS-R Q3-Swallowing score is 1 =

Needs supplemental tube feeding), ALSFRS-R scores do not necessarily characterize the

timing of all anticipated tollgate events. Moreover, there is limited research analyzing ALS

progression in regards to the time of critical events such as needing respiratory support or

wheelchair and studies generally focused on a few critical events for a specific body segment

instead of the patient as a whole (Bromberg et al., 2010; Turner et al., 2010; Roche et al.,

2012; Balendra et al., 2015).

We introduce a novel and holistic scheme to capture gradual ALS progression based

on the critical events referred as tollgates. Using a comprehensive longitudinal dataset

from Mayo Clinic’s ALS Clinic in Rochester, MN, we characterize the progression through

tollgates at the segment and patient levels over time. We describe how the progression

based on the followed tollgate pathways varies among patients and ultimately, how this

type of progression characterization may be utilized for further studies.

3.2 Methods

3.2.1 Patients and clinical data

In order to analyze the tollgate pathways, we compile a longitudinal dataset containing

ALS progression reports for a cohort of 514 ALS patients from Mayo Clinic, Rochester,

MN. These patients were referred to the ALS Clinic at Mayo Clinic for their quarterly ALS

examinations and to undergo at least one examination. The medical records of the patient
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cohort are extracted from Mayo Clinic Amyotrophic Lateral Sclerosis (ALS) Evaluation and

Neurologic Examination Forms. The longitudinal data derived from these medical records

includes demographics, diagnosis records, ALSFRS-R scores, and assessment reports from

neurologists, physiatrists, nurses, speech pathologists, speech therapists, dieticians, and

social workers for each examination visit. The assessment reports include a large amount

of medical information mostly in free-text form on detailed assessments of the disease

progression, medical history of the patients, medication and assistive tools used by the

patients. This study was reviewed by the Mayo Clinic Institutional Review Board (IRB)

and was deemed as an exempt study.

3.2.2 Tollgate-based staging analysis

For each body segment, we defined a set of critical events which highlights impairment in

a segment and any associated assistive technology/equipment needs among ALS patients

based on expert opinion. The expert panel, consisting of neurologists, physiatrists, nurses,

speech pathologists/therapists, dieticians, and social workers practicing in the ALS Clinic

of Mayo Clinic, Rochester, MN, provided their opinions about tollgates related to impair-

ment and disability due to ALS. A set of tollgates are specified for each of five different

segments of the body, namely arms, legs, speech, swallowing, and breathing. Table 3.1

summarizes the panel’s opinions as a multi-level tollgate scheme for these body segments.

For example, the leg tollgate “No weakness” is the initial tollgate when the disease has

not affected a patient’s legs, whereas Dependent on a wheelchair is the final tollgate when

a patient can no longer walk and is always in need of a wheelchair to move around and

travel. For each body segment, associated tollgates are labeled with a level value signifying

the order of appearance. Considering the irreversible nature of ALS (Orrell et al., 1999),

patients reach the tollgates defined for a segment in a non-improving manner in respect to

the given level value. That is, once a tollgate was reached by a patient, she cannot return

to the tollgates prior to that one in the following visits.
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Table 3.1: Tollgates and their definition for each segment
Leg

Level Tollgate Definition
0 No weakness No leg weakness.
1 Slight weakness The patient’s leg(s) is weak. However, the weakness does not prevent the patient from

performing daily activities such as walking, climbing stairs, or running, etc.
2 Modifying activi-

ties
The weakness in the legs requires modification in the patient’s activities, such as avoiding
long-distance walks, or tripping/falling when walking, but still, no assistance is required.

3 Needing assistance
with walking

The patient requires a lightweight assistance tool such as a walker, or cane, but does not
use heavyweight assistance tools (e.g., wheelchair, scooter).

4 Needing to use
a wheelchair, at
least sometimes

The patient starts using a wheelchair-like assistance occasionally but still can walk with
a lightweight assistance tool.

5 Dependent on a
wheelchair

The patient cannot walk with a lightweight assistance tool and/or has no use (or very
little) of legs.

Arm

Level Tollgate Definition
0 No weakness No arm weakness.
1 Slight weakness ALS has started weakening the arm(s). However, the weakness does not prevent the

patient performing daily activities such as dressing, grooming, bathing.
2 Modifying activi-

ties
The weakness in the arms requires modification in patient’s activities, such as using a
button-hook, not being able to raise arms or open lids. Some assistance may be required.

3 Losing useful func-
tion of one arm

One arm becomes completely useless. Assistance is required with most of the daily
activities.

4 Losing useful func-
tion of both arms

Both arms become entirely useless. Constant assistance required with all of the daily
activities.

Swallowing

Level Tollgate Definition
0 No weakness ALS has not yet affected the patient’s swallowing abilities.
1 Eating/drinking

affected
Some difficulty when eating and drinking but still following a regular diet.

2 Modifying what
you eat

Eating/drinking is significantly affected. The patient avoids particular foods and/or
drinks that are hard to swallow.

3 Needing a feeding
tube

The patient cannot swallow consistently; thus, requires a feeding tube.

Breathing

Level Tollgate Definition
0 No weakness ALS has not yet affected the patient’s breathing abilities.
1 Limited activity

because of SOB
The patient reports shortness of breath (SOB) with exertion or when performing daily
activities.

2 Needing BiPAP
device at night

The patient requires Bi-level Positive Airway Pressure (BiPAP) device when sleeping.
However, BiPAP is not required when awake.

3 Needing BiPAP
device during the
day

The patient requires Bi-level Positive Airway Pressure (BiPAP) device during the day.

4 Use a ventilator The patient is using a ventilator.

Speech

Level Tollgate Definition
0 No weakness ALS has not yet affected the patient’s speaking ability.
1 Speech affected The patient’s speaking ability is slightly affected resulting in slurred speech. Verbal

communication is still possible.
2 Needing a device

to assist communi-
cation

The patient’s speaking abilities are significantly affected. It is difficult to understand
the patient. The patient requires a communication device such as IPAD, boogie board,
writing to communicate at least some of the time.

3 Losing the ability
to talk

The patient is not able to verbally communicate and requires a communication device all
the time.
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3.2.3 Extracting tollgate data from medical records

The exact time of when a patient reaches a certain tollgate level is not available because

medical records usually reflect the patient’s condition at regular clinic visits. In addition, a

patient may advance several tollgates between two visits for any segment based on the pace

of the progression. Therefore, for each body segment, we derived only the tollgate most

recently reached at a clinic visit. To do this, we employed natural language processing

techniques, using NLTK package in Python (Bird, 2006), as the initial step of extracting

and cleaning the data from the free-text clinical notes. These techniques detect specific

structures in the free-text data to decompose verbal statements into more quantifiable and

standard measures (Cambria and White, 2014).

Firstly, we determined several key-phrases (regularly repeated in the medical records)

which might be related to the tollgates reached at each visit. For this purpose, we de-

termined whole sentences in the medical records and excised the commonly-used but not-

contributing words known as stopping words (e.g., I/he/she, is, and/or, etc.) from the

sentences. Then, two- or three-word phrases (bigrams and trigrams) that frequently repeat

in clinical notes were specified. For example, consider the words “right”, “arm”, “useless”

that appear in a clinical note in the respective order. These three words form a trigram

possibly indicating the patient has reached Level 3 tollgate of the arm segment, namely

losing useful function of one arm. Secondly, because not all bigrams or trigrams were as

predictive, we estimated tollgates reached by a classification approach (i.e., classification

tree (Loh, 2011)) adopting the bigrams and trigrams as the predictors of tollgates. The

classification model was trained by the manually determined tollgates for 10% of patient

clinic visits. For the remaining 90%, the tollgates were estimated using the classification

model. Note that the described approach was only used for easing the burden of manual

abstraction process. Nonetheless, the accuracy and consistency of the tollgate assignments

to the visits were verified through a manual review process to correct any false assignment,

e.g., it is guaranteed that a patient at a particular tollgate level does not return back to

preceding tollgates in subsequent follow-ups.
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3.2.4 Handling missing data

Patients are expected to visit the ALS clinic every three months. However, some clinic visits

were missed or postponed by patients, resulting in unevenly spaced observations of medical

records. In order to simplify the analysis, we considered evenly spaced data points for every

three months between the first and the last visits of patients. If any of these evenly spaced

data points was not matched with an actual observation (i.e., more than one and a half

months away from the closest observation), the reached tollgates and ALSFRS-R scores of

that data point were considered to be missing and imputed using available data points. We

employed last-observation-carried-forward and linear interpolation techniques for imputing

the missing values Chow and Lin (1971); Lane (2008). Considering the performance of the

test samples based on cross-validation, we observed that the linear interpolation technique

generated more accurate estimates than the last-observation-carried-forward technique (See

Figure B.2). Therefore, other analyses were conducted using the dataset where the missing

values were imputed by the linear interpolation method. Moreover, ALSFRS-R scores of

some patients were missing for some clinic visits. These missing ALSFRS-R scores were

imputed based on a classification tree approach using MICE package in R environment

(Van Buuren and Groothuis-Oudshoorn, 2011).

3.2.5 Statistical analysis

We conducted Kaplan-Meier analyses to derive the probability of reaching each tollgate at

each clinic visit for all body segments considering a 12-month period after the first clinic

visit (Kaplan and Meier, 1958). That is, we focused on the ALS progression in the first

five consecutive clinic visits (if, of course, a patient did not drop out earlier) including the

first visit to the clinic. Patients who dropped out or died by the end of the first year were

considered to be censored. Kaplan-Meier curves, including 95% confidence intervals, are

generated using Survival package in R environment (Therneau and Lumley, 2015).
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3.2.6 Tollgates vs ALSFRS-R scores

ALSFRS-R21 is a questionnaire that monitors the physical conditions of the patients by

answering 12 questions (functionality items) related to performing daily tasks (see Table

2). Each item can be answered using a five-level scale (4: normal, 0: unable) making

a total score between 0 (severe impairment) and 48 (normal capability). ALSFRS-R is

reported as a good predictor of ALS outcomes such as respiratory symptoms failure and

survival(Brooks et al., 1996). For many years, ALSFRS-R is used as the standard tool

for assessing the conditions of ALS patients and detailed ALSFRS-R score data is avail-

able in most databases. Many studies evaluated the progression of the disease based on

ALSFRS-R by specifying which factors affects ALSFRS-R scores. We investigate the rela-

tionship between the ALSFRS-R items and our tollgates by performing a Spearman’s rank

correlationanalysis(Sedgwick, 2014).

3.3 Results

3.3.1 Patient characteristics and data

In our patient cohort, there are slightly more males (i.e., 55.3% male), and the mean age

is 62.82 (min: 24, max: 93, SD: 11.74). 514 patients visited the ALS clinic at least one

time in total with a median of 2 visits per patient. Among patients who had more than

one visit, the average time between consecutive visits is around 3.76 months (SD: 2.11).

At their first clinic visits, 92.8% of patients displayed some level of limb weakness. Among

those who had limb weakness, 17.39% had only arm weakness, 10% had only leg weakness,

and both segments were affected in the in the remaining at the first clinic visit. 70.2% of

the patients displayed bulbar weakness at the first clinic visit. Among these, respectively,

22.5% and 9.14% had only speech and only swallowing weakness at the first clinic visit.

The breathing segment were affected in 59.92% of the population at the first clinic visit.

The average ALSFRS-R score in our cohort at their first clinic visit is 36 out of 48. We

limited our analysis to the first year after the patients’ first clinic visit which makes a total

of at most five clinic visits. The number of patients who attended their 1st, 2nd, 3rd, 4th,
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and 5th visits are 514 (100%), 346 (67%), 264 (51%), 199 (38%), 164 (32%), respectively.

3.3.2 Tollgate profile over time

Figure 3.1(a) illustrates the proportions of patients at each tollgate at each visit (among

those who attended the visit) for all segments over a 12–month period. Note that Level

4 is not applicable to speech and swallowing segments, and Level 5 is only applicable to

leg segment. See Table 1 for the detailed explanation of tollgate levels. In each segment,

the majority of the patients had their abilities affected or worse (Level≥1) at the first

visit. Especially, the proportion of patients at higher tollgate levels is larger for arm and

leg segments compared to others. Over time, patients moved to higher tollgates due to

loss of abilities and had increasing needs for assistive devices. As a result, proportions of

patients at Level 3–5 in arm, at 4–5 in leg, 3–4 in other segments increases at each visit.

The transition rates to higher tollgate levels are larger in arm, leg, and swallowing than

speech and breathing.

The Kaplan-Meier curves in Figure 3.1(b) illustrates the probability of being at a cer-

tain tollgate or better at each visit. Thus, for any point in the curve, (1 − probability)

indicates probability of reaching beyond the tollgate associated with the curve; i.e., curves

with faster decrease over time imply more aggressive ALS progression. In arm segment,

the probability of modifying of activities or worse (Arm-Level>2) increases from 0.074 (CI:

0.051–0.096) to 0.268 (CI: 0.212–0.320) in a year; while, probability of losing useful func-

tion of at least one arm (Arm-Level>3) increases from 0.035 (CI: 0.019–0.051) to 0.187 (CI:

0.136–0.236). Similarly, the probability of needing a wheelchair or similar equipment dras-

tically increases from 0.243 (CI: 0.205–0.279) to 0.692 (CI: 0.631–0.742) within one year;

while, the probability of becoming dependent on the wheelchair (Leg–Level 5) increases up

to 0.337 (CI: 0.276–0.393) in one year. Although half of all the comers eventually require an

assistive device/tool to communicate or worse (Speech-Level>2); the probability of com-

pletely losing ability to speak (Speech–Level=3) is relatively low (0.215, CI: 0.162–0.264,

by the end of the year). Finally, the likelihoods of requiring a feeding tube (Swallowing–

Level=3) and BiPAP (Breathing-Level>1) increase from 0.078 (CI: 0.101–0.054) to 0.414

(CI: 0.349–0.473) and 0.2 (CI: 0.165–0.234) to 0.448(CI: 0.386–0.503), respectively. Re-
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(b) Kaplan-Meier curves representing the probability of patients being at a
certain tollgate level or better over the 12-month period from the initial ALS
clinic visit.

Figure 3.1: Overall tollgate statistics of the population.
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quiring BiPAP day-and-night or ventilator is not common among the all comers.

3.3.3 Segment-based tollgate pathways

A patient’s ALS progression pathway observed until the current point in time may contain

clues about the outlook of the pathway. Figure 3.2 illustrates the individual tollgate

progression pathways of all patients under each segment. Each patient’s pathway is drawn

as a line composed of multi-toned sections, each representing the tollgate at a particular

visit. These lines are combined in a way that patients sharing the same progression history

are grouped together. For instance, patients, who need assistance with walking at the first

visit, are represented by the region encapsulated by the red frame under the leg segment

column. Of these 81 patients (excluding the drop-outs after the first visit), 39 (45.68%)

stayed at the same tollgate, while 38 patients (46.91%) moved to the tollgate for needing a

wheelchair at least sometimes (Leg-Level 4), and the remaining 4 (4.94%) patients became

dependent on the wheelchair (Leg-Level 5) in their second clinic visit (month 3). In the

third visit (month 6), among 38 (46.91%) patients who needed assistance in the second

visit, 10 (12.35%) patients dropped-out, 19 (23.46%) patients stayed at the same tollgate, 9

(11.11%) patients moved to Leg-Level 4. By applying the same approach, the proportions

of patients following all segment-based pathways can be derived.

From one visit to the next, the majority of the non-dropout patients stay at their

previous tollgate level in each segment, e.g., around 71–79%, 81–90%, 84–88%, 81–90%,

86–91% of non-dropout patients stayed in their previous tollgates in arm, leg, speech,

swallowing, and breathing segments, respectively, at each visit over a one-year period.

Although these proportions are solely high, the proportion of patients who stayed in the

same tollgate combination over all segments is much lower (29.48–41.16%) indicating that

some progression could be observed in most patients within a 3-month interval. The

majority of patients pass at most two tollgates between two consecutive clinic visits, except,

in the case of leg segment, a small number of patients have been observed to pass three

tollgates in one visit. Figure 2 illustrates that, in arm, speech, and swallowing segments,

transition from Level 1 to 2 is relatively more likely (14.95–48.05%, 12.90–55.70%, 10–

35.71%, respectively) over all transitions in other tollgate levels, whereas, Level 0 to 1 and
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Level 3 to 4 transitions are relatively more frequent (12.71–55.56%, 10.39–26.35%) over all

transitions in breathing and leg segments. For the arm and leg segments, tollgates towards

later visits show a great diversity among patients who were at the same level at their first

visit.

3.3.4 Tollgate-based ALS progression based on the affected seg-

ments at the first clinic visit

To illustrate the effect of the disease history on the future ALS progression in terms of

tollgates, the Kaplan-Meier curves in Figure 3.3 characterize the tollgate-specific ALS

progression for particular patient groups based on the affected segments in the first clinic

visit. As in Figure 3.1(b), (1 − probability) specifies the likelihood of reaching to the

next tollgate (or above) at each visit for each patient group. For instance, Figure 3.3g

shows that the overall likelihood of not requiring assistance with walking decreases from

0.531 (CI: 0.49–0.576) to 0.225 (CI: 0.183–0.277) in a year, while the same likelihoods of

patients in ALSFB (weakness in all segments at the initial visit) and ALB (weakness in

arm (A), leg (L), and breathing (B)) groups, decrease from 0.321 (CI: 0.25–0.41) to 0.046

(CI: 0.013–0.16) and from 0.417 (CI: 0.283–0.613) to 0.156 (CI: 0.062–0.394), respectively.

Figure 3 provides some key insights about the tollgate-based ALS progression. First, the

Kaplan-Meier curves in Figure 3.3 illustrate the timing of various intervention and assistive

device needs within one year from the initial visit for patient groups with different ALS

history profiles. For instance, Figure 3.3h shows that patients in groups such as ALSFB

and ALB are very likely to need a wheelchair at their third visit around month 9, and up

to 45% of those patients will be dependent on a wheelchair by the end of the year. On

the other hand, for patients who had weakness only in speech, swallowing, and breathing

(SFB), these likelihoods are relatively lower (0 to 0.143 (CI: 0–0.367)).

Second, the Kaplan-Meier curves for the overall patient cohort, i.e., the timing of the

transition to the next tollgate for all-comers, may be quite different than those for specific

patient groups depending on segment and tollgate type. The differences are especially

visible for speech, swallowing, and breathing segments. For groups ALFB (all segments
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are affected but speech), ALB, and AL (arm and leg are affected), whose speech and

swallowing segments are not affected at the first visit, the likelihood of speech being affected

or better stays high (>0.9) within one year, whereas the same probability drops from

0.603 (CI: 0.525–0.693) to 0.226 (CI: 0.135–0.379) for ALSFB patients and from 0.65 (CI:

0.471–0.897) to 0.096 (CI:0.016–0.576) for SFB patients. In addition, these differences are

relatively milder for higher tollgates (level≥3) compared to those with lower tollgates. For

example, the likelihood of losing the useful function of both arms stays under 0.15 except

for patients in SFB.

Third, for a specific patient group, the Kaplan-Meir curves for the tollgates associated

with segments that show weakness at the initial visit are lower than those for tollgates of

segments that patient does not have any weakness yet. However, even when the curves

of the patient’s groups for initially affected segments are compared among themselves,

significant differences can still be observed. For example, although ALB and SFB patient

groups initially had their breathing segment affected, the likelihood (0.95–0.731) for SFB

is much higher compared to that (0.611–0.288) for ALB (Figure 3.3q).

With a likelihood of 0.91, patients in SFB display arm weakness at the end of the first

year. Losing useful function of both arms is very unlikely for any group within the first

year. For the leg segment, SFB curve behaves very distinctly from others for all tollgate

levels. Patients in other groups may require wheelchair-like equipment within the first

year with likelihood over 0.65. For the speech segment, the probabilities of ALSFB and

SFB groups stay below the those of overall, whereas others’ likelihoods of staying under

a certain tollgate are generally higher than those of the overall. Patients in SFB may

lose their ability talk with a probability over 0.5 within the first year. This probability

stays below 0.3 for those in ALSFB. Other groups are not likely to lose their ability to

talk within the first year. For the swallowing segment, there is a greater chance to modify

eating habits within the first year if the patients are in either of the groups ALFB, SFB,

or ALSFB. Patients in SFB are very likely to need a feeding tube within the first year.

For the breathing segment, all patients in all groups showing breathing weakness (except

SFB) generate similar probability curves. Patients in these groups may require a BiPAP

device with likelihood over 0.6.
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Figure 3.3: Kaplan-Meier curves representing the probability of being at a cer-
tain tollgate level or better for a set of patient groups† over the 12-month
period from the initial ALS clinic visit.

†: Patients are grouped based on the affected segments at the first clinic visit to indicate the effect of the
history. Each line in the graphs corresponds to a particular patient group where the initial affected
segments are denoted by a combination of the letters: A (Arm), L (Leg), S (Speech), F (Swallowing), B
(Breathing). The “Overall” lines illustrate the corresponding probabilities for the all-comers. Note that,
among all possible patient groups, only the results for a sample of five are illustrated: ALSFB (131
patients), AL (43 patients), ALB (36 patients), SFB (20 patients), ALFB (21 patients). SOB: shortness
of breath, BiPAP: Bi-level Positive Airway Pressure
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3.4 Discussion

In this study, we introduced a tollgate mechanism to monitor in which order and when

ALS affects different segments of a patient’s body. For each segment, tollgates correspond

to a set of critical events in a certain order of appearing. The medical records of 514

patients were analyzed in terms of the times when they reach tollgates. We observed that

in most patients, the proportions of patients at the high-level tollgates of arms and legs

(e.g., losing useful function of an arm or start to use a wheelchair-like equipment) are

larger than the those of patients reaching the high-level tollgates of speech, swallowing

and breathing segments. This can be explained by the higher prevalence rate of limb-

onset patients in the population possibly having relatively milder impairment in the other

segments compared to limbs 4. Breathing seems to be the least affected segment, which is

expected considering respiratory functions are usually affected later (Gautier et al., 2010).

A very small portion of the patients use the BiPAP mask during the day or use a ventilator

after the first clinic visit, which agrees with the current literature (Kiernan et al., 2011).

The results also show that from one visit to the next, the proportion of patients not showing

further impairment (in terms of tollgates) in any of the segments is below 50% within the

one year from the first clinic visit. When further impairment was observed, most patients

developed symptoms that cause her to reach one upper-level tollgate of a segment within

the time between visits.

We showed that when used as a progression monitoring instrument, the proposed toll-

gate mechanism is capable of capturing the heterogeneity among patients’ individual dis-

ease courses. A very diverse set of progression pathways is observed among patients for all

segments (see Figure 3.2 for details). Using the analysis in Figure 3.2, one may be able to

answer what is more likely for a particular patient, given the patient’s disease history in

terms of when and which of the tollgates are reached. As an example, if a patient uses a

cane to assist walking at the first clinic visit, by looking at the existing pathways, we know

that there is a high likelihood of needing a wheelchair in the next three months. Moreover,

based on the affected regions at the first clinic visit for a specific patient, the likelihood

of reaching tollgates over time may vary significantly. For example, the likelihood of re-

quiring a wheelchair for patients not having limb weakness and having all other segments
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affected stays under 0.15 during one year after the first clinic visit. Thus, a more conser-

vative recommendation about the acquisition of a wheelchair may be more appropriate for

such patients, compared to those having limb weakness at the first clinic visit. Moreover,

tollgates can also be employed as a staging system. Noting that the tollgate definitions

themselves exhibit an apparent staging scheme within each segment, more comprehensive

schemes can be constructed by combing the tollgates from different segments. For example,

a staging scheme where the tollgates from all segments are combined, displays the current

state (condition) of a patient, i.e., an array with five elements (one value for each segment).

The progression of the disease can be monitored in terms of how elements for all segments

vary over time. Such schemes are often employed in other disease models. Finally, the

proposed mechanism is straightforward to use because the required data can be derived

by recording the most recent tollgate level, reasonably by its level value, for each segment

at each clinic visit. This is very similar to the way ALSFRS-R scores are recorded, which

is the most commonly used instrument to track patients’ individual disease course (Marin

et al., 2016).

Estimating when and predicting in which order the tollgates are reached could be very

useful to better facilitate cooping with the disease burden. The proposed tollgate mech-

anism could be a useful instrument to track the disease history and predict the future

progression. One might question the contribution of the tollgates, considering overlaps

between some levels of the tollgates and some items in ALSFRS-R. While likely to be

correct at some level, there exist certain discrepancies between them. Firstly, ALSFRS-R

scores are usually assessed by patients (or by caregivers), whereas tollgates reached by a

patient are proposed to be determined by a clinical team after a comprehensive examina-

tion (Montes et al., 2006). Therefore, the assessment of the progression, as captured by

the tollgate mechanism, might be a more reliable source of data, considering that the psy-

chological mode is highly associated with the physical impairment of the patients (Böcker

et al., 1990). Secondly, ALSFRS-R is designed to capture the current condition of a patient

independently of the patient’s disease history. As a result, increases in scores of individ-

ual ALSFRS-R items are often encountered, implying a betterment in patients’ abilities.

However, ALS is known to be an irreversible disease. Therefore, a non-improving staging,

similar to the one captured by our tollgate mechanism, might be more suitable and infor-
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mative in terms of what to expect during the course of the disease. Nevertheless, many

studies showed that ALSFRS-R is a very informative measuring tool and ALSFRS-R scores

are available in most databases. Therefore, we investigated the associations between the

tollgate mechanism and ALSFRS-R questions. We illustrated strong correlations between

the segment tollgates and the scores of the questions of the ALSFRS-R (see Figure B.1).

To conclude, the proposed tollgate mechanism can be useful as a clinical progression

monitoring system. We observed that it well captures the variability among patients and

the history plays a role on when patients reach tollgates. We suggest that further and

comprehensive studies should be conducted to observe the whole effect of the history in

the future progression. Although the current databases may not have the detailed medical

records needed to derive tollgate information to build such models, it might be possible to

estimate them via implementing various classification techniques on other available data

such ALSFRS-R scores.
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Chapter 4

Deriving Tollgates from ALSFRS-R

Scores Using Multi-Class Classifiers

Although the aforementioned tollgate mechanism is shown to be informative and easy

to interpret, many available databases may not have detailed medical records to derive

the necessary data. Therefore, in this chapter, we propose a classification-based ap-

proach to estimate the tollgate data using ALSFRS-R scores, which are available in most

databases such as Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) Database

(https://nctu.partners.org/ProACT/). Recalling Figure B.1, we know that tollgates

are significantly associated (correlated) with the ALSFRS-R scores. Here, we want to in-

vestigate how this association can be used to estimate the tollgates reached by patients by

the time that their ALSFRS-R scores are recorded.

Multi-class classification techniques are commonly used in similar problems to estimate

the class given the features of an observation (Aly, 2005). However, traditional classifi-

cation techniques are not applicable to the problem of deriving tollgate information, due

to the constraints requiring a patients’ tollgates under a specific segment for multiple vis-

its to be non-decreasing over time (see Section 3.2.3 for details). Therefore, we propose

two approaches to achieve a multi-class estimation in a non-decreasing manner given a

classification method. The first is the naive approach, which fixes the tollgate estimates

of observation in the forward direction in terms of time. The second is the optimization
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approach which utilizes a mixed integer programming model to estimate all the tollgates

of a patients’ observations at the same time. The detailed descriptions of these approaches

are presented in Sections 4.3.1 and 4.3.1.

Both of the aforementioned approaches require a multi-class classification model as an

input. We use five different multi-class classification techniques. Therefore, in total, 10

different classification models (five models for each approach) are proposed to estimate

the tollgates. Note that we investigate the disease progressions in different body segments

independently; therefore, the performances of the models are presented for each segment.

4.1 Classification models

Statistical classification is the process of estimating to which of the several predetermined

classes/subgroups a new observation pertains, based on a known set of features of the

observation. The classification problem where there are only two classes to which observa-

tions can be assigned is known as binary classification (Crammer and Wagner, 2012). As

an example, specifying if a tumor is benign or malignant based on the size of a tumor is

a well-known binary classification problem. If the number of classes are greater than two,

it becomes a multi-class classification (Hsu and Lin, 2002). A well-known example is the

classification performed on Iris flower data set (Fisher, 1936), which estimates the species

(from a set of three) of a flower based on its petal (colorful part) and sepal (green part)

size dimensions. In our problem, the classes are the tollgates levels for a specific segment

and the features are the ALSFRS-R scores, both of which are available in our data set.

Classification models (also called as classifiers) are studied under the umbrella of super-

vised learning methods. That is, classification models are trained by a set of observations

whose classes are already known, so that associations between the features and classes of

the observations can be constructed (Hastie and Tibshirani, 2011).

Let us denote classifier G which estimates the classes (y) of a given observation based

its features (X).

G:X∼y (4.1)
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The classifier G maps X to the class estimation ŷ based on the classifier parameters, θ.

G(X|θ)=ŷ (4.2)

Although characteristics of the parameters vary significantly among different classification

techniques, all classifiers aim to minimize the classification error incurred by the model.

The classification error can be measured in different ways. In this study, we use three well-

known performance metrics for classification error in a multi-class classification setting.

Performance metrics

Overall accuracy (OA) measures the ratio of the observations whose classes are correctly

estimated by the model (Briem et al., 2002):

OA=

∑N
i=1Ai
N

(4.3)

where N denotes the total number of observations and Ai=1 is if yi=ŷi, or Ai=0, otherwise.

Mean squared error (MSE) measures the average of the squared difference between the

estimated class and the actual class of the observations (Kohn and Ansley, 1986):

MSE=

∑N
i=1 (yi − ŷi)2

N
. (4.4)

Coefficient of determination (R-squared) is defined as the the proportion of the variance

in the class that is predictable from the features (Mittlböck and Schemper, 1996). Given

ȳ=
∑N

i=1 yi/N is the average class of all observations, the R-squared can be expressed as

the following:

R-squared=1− SSest
SStot

(4.5)

where SStot=
∑N

i=1(yi− ȳ)2 is the total some of squares of classes and SSest=
∑N

i=1(yi− ŷ)2

is the total sum of squares of residuals.

Note that both MSE and R-squared can be used only if classes have an ordinal structure
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so that the difference, yi − ŷi, has a practical meaning.

4.2 Problem definition and notation

If we assume that the observations of a patient are independent of each other and try to

estimate each observation individually, a traditional classifier could be employed to predict

the tollgate levels at each visit. The difficulty arises when we try to predict the tollgates

of all observations in a non-decreasing fashion over time. This comes from the fact that

patients reach the tollgates for a segment in a particular order and the progression is

considered to be irreversible. For example, if a patient reaches the leg tollgate Needing

assistance with walking (Leg-Level 2) at her first clinic visit, we want to make sure that

the tollgate level at the second visit (or later visit) is at least the tollgate level at the

second clinic visit (leg tollgate level ≥ 3). We should also make sure that this condition is

satisfied in the reverse direction. For example, the tollgate level at the first clinic visit can

be at most the leg tollgate level at the second visit (leg tollgate level ≤ 3). On the other

hand, the ALSFRS-R scores, by definition, is not necessarily restricted to a non-improving

assessment of the disease, since it aims to investigate the current condition of a patient

independent of her history.

For each segment, we want to estimate the response variable (class) yp,t where t denotes

the response (tollgate level) at the tth observation of Patient p. We want to estimate the

yp,t, using the feature set (scores from a subset of ALSFRS-R items) denoted as Xp,t. The

following is the notation of the classification model, G. For now, we ignore the patient

index, p, for brevity of the representation.

G:(X1, X2, X3, . . . , XT )∼(y1, y2, y3, . . . , yT ) (4.6)

where T is the total number observations of a given patient. Let ŷt; t=1, 2, . . . , T be the

estimated classes derived using the model defined in (4.6) such that,

G(X1, X2, X3, . . . , XT |θ)=(ŷ1, ŷ2, ŷ3, . . . , ŷT ). (4.7)
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The estimated classes must satisfy the following monotonicity constraint.

ŷ1≤ŷ2≤ŷ3≤. . .≤ŷT (4.8)

4.3 Solution approaches

In this section, we propose two classification approaches where the monoticity constraint

(4.8) is guaranteed by the class estimations. Both approaches employ a traditional classi-

fier, assuming observations of patients are independent of each other. Traditional classifiers

estimate the corresponding class of an observation using only the features of that observa-

tion (G:Xt∼yt). In order to be applicable, a traditional multi-class classifier (e.g., multi-

nomial logistic regression, random forests, etc.) must be able to generate the likelihood

of all classes, given futures of the observation t. That is, an estimation of the following

probability it required:

Dtl=PG {yt=l|Xt}; l=1, 2, . . . , L (4.9)

where L denotes the total number of classes.

4.3.1 The naive approach

The idea behind this approach is fixing the classes of observations one by one in the

direction from the first observations to the last observations. At each step, the class with

the highest probability (Dtl) is selected among the classes which are greater than or equal

to the estimated class of the previous observation. Algorithm 1 presents the procedure of

the naive approach.

4.3.2 The optimization approach

The idea behind this approach to determine the classes of all observations together. This

is done by a mixed integer programming model that maximizes the sum of probabilities of
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Algorithm 1 Naive approach

1: procedure
2: for t∈{1, 2, . . . , T}
3: if t=1 then
4: ŷt← max

l=1,2,...,L
{D1l}

5: if t>1 then
6: ŷt← max

l=ŷ(t−1),...,L
{Dtl}

the selected classes over all the observations of a patient.

L : Total number of classes

T : Total number of observations

Dtl : Probability of the class of observation t∈{1, 2, . . . , T} being l∈
{1, 2, . . . , L}

utl : 1, if l∈{1, 2, . . . , L} is the selected class of observation t∈{1, 2, . . . , T}
; 0, otherwise

Maximize z=
T∑
t=1

L∑
l=1

Dtlutl (4.10)

subject to
L∑
l=1

utl=1, ∀t∈{1, 2, . . . , T} (4.11)

L∑
l=1

lu(t−1)l≤
L∑
l=1

lutl, ∀t∈{2, . . . , T} (4.12)

utl∈{0, 1}, ∀t∈{1, 2, . . . , T}; ∀l∈{1, 2, . . . , L}. (4.13)

.

Once the solutions are obtained, the class estimation can be easily derived using the

following equation.

ŷt=
L∑
l=1

lutl ∀t∈{1, 2, . . . , T} (4.14)
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Note that the above MIP model (4.10-4.13) needs to be solved for the observations set of

each patient and for each segment, which is done using IBM ILOG Cplex 12.7.1.

Most classifiers such as multinomial logistic regression allow to generate the probability

estimates, Dtl, after the training processes

4.3.3 Classifiers

Multinomial logistic regression

Multinomial logistic regression classifiers establish logistic regression frameworks to multi-

class problems (Kwak and Clayton-Matthews, 2002). The model estimates the probability

of each class using the following equation:

P {y=l|X={x1, x2, .., xn}}=
exp(β0,l +

∑n
i=1 βi,lxi)∑L

l=1 exp(β0,l +
∑n

i=1 βi,lxi)
; l=1, 2, . . . , L (4.15)

where xn is the value of feature i. The model optimizes the coefficient parameters βi,l, i∈
{1, 2, .., n} to maximize the likelihood of observed classes.

Support vector classifiers

Support vector classifiers come from a statistical learning theory aiming to determine

the decision boundaries on a multi-dimensional space of features, which yields the best

separation of classes (Vapnik, 2013). In the simplest case, there are only two classes and

a support vector classifier divides two-dimensional feature space into two regions with a

linear hyperplane so that the margin is maximized. The margin is denoted by the sum of

distances between the hyperplane and the closest data points of the two classes (Vapnik,

2013). These closest data points are called the “support vectors”. When there is no

hyperplane that can isolate the points from the classes on two sides of the hyperplane,

the algorithm then tries to minimize the classification error aside from maximizing the

margin (Vapnik, 2013). The algorithm can also be used to handle non-linear separations
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with kernel functions (e.g., linear, polynomial, Gaussian, etc.) that aim to alleviate the

computational burden (Vapnik, 2013).

Random forest classifier

Random forest classifiers consist of a random mixture of multiple tree classifiers (Breiman,

2001). In each of the single tree classifiers, subgroups (branches) of observations showing

low variability among them are created by conditioning on the values from the feature

set (Safavian and Landgrebe, 1991). There are many methods for the selection of features

to be conditioned on and most approaches utilize a proxy performance measure such as

Gini Index (Breiman et al., 1984). Once the branches are created based on training data

and the class of a new observation is to be estimated, the observation is matched with one

of the branches according to the values of the features; then, the class of the observation is

estimated by selecting the most frequent class of a branch (Safavian and Landgrebe, 1991).

In the case of the random forest, the classifier first creates many single tree classifiers from

random combinations of features. When estimating a class, each tree uses a unit vote on

one of the classes as its class estimation, and the highest-voted class becomes the estimation

of the random forest (Breiman, 2001).

Classifier settings

We employ all the classifiers mentioned above using the scikit-learn library in a python

environment in their default settings (Pedregosa et al., 2011). For the multiple logistic

regression, to solve the optimization problem of maximizing the likelihood of observations,

the nonlinear conjugate gradient method is used with upto 100 iterations. For support

vector classifier, we used three different kernel functions: linear, third-degree polynomial,

and Gaussian. For each kernel function, a support vector classifier is introduced. Therefore,

a total of three classifiers are investigated under the support vector classification context.

For all three classifiers, the parameter C defining the trade-off between the total margin

and the classification error is set to the default value, 1. For the random forest classifier,

the total number of trees in the forest is set to the default value, 10. Moreover, Gini Index

is used for the branching operations.
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For all of the five classifiers, the balanced sample option is considered to reduce the

dominance of the frequent classes. However, this option may possibly reduce the total

classification accuracy. For the feature selection, we employ recursive feature elimination

with cross-validation (recursive feature elimination with cross validation (RFECV)) algo-

rithm as implemented in scikit-learn package in python environment to select the best set

of features (Guyon et al., 2002; Pedregosa et al., 2011). As a prepossessing, we eliminated

the ALSFRS-R questions whose correlation are less than 0.4 for all segments. RFECV

eliminates features based on their weights assigned using a given classifier. Futures having

the smallest weights are removed from set of estimator features. The algorithm repeatedly

eliminates features until the scoring metric (e.g., accuracy) no longer improves. Note that,

recursive feature elimination is a greedy backward features elimination method (Ellis and

Petridis, 2009). Therefore, it does not guarantee to find the optimal set of features.

Note that each classifier has one navie and one optimization approaches. Therefore, a

total of 10 classifiers are proposed, the performances of the classifiers based on numerical

analysis are presented in the next section.

4.4 Selected futures and numerical results

For all segments and classifiers, the selected features are presented in Table 4.1. On the

support vector classifiers with polynomial and Gaussian kernels, RFECV algorithm was

not applied because these classifiers do not produce the feature coefficients to score features

to be used in the elimination steps (for details see http://scikit-learn.org/stable/

modules/generated/sklearn.feature_selection.\gls{rfecv}.html). Under the leg

segment, out of the proposed features Q5-Q9, RFECV algorithm eliminates Q6 and Q7

for the multinomial logistic regression and linear SVC classifiers, whereas Q4, Q6, and Q7,

are eliminated for the random forest classifier. Under the arm segment, out of the same

proposed features for the leg segment, RFECV eliminates Q8 and Q9 for all the classifiers

and additionally, Q7 is eliminated for the random forest classifier. Under the speech

segment, among Q1-Q3, for both the linear support vector and random forest classifiers,

Q1 is kept as the single predictor, while Q1 and Q3 reside in the proposed predictor set
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for the multinomial logistic regression classifier. Under the swallowing segment, Q1-Q3 are

the proposed features and only for the random forest classifier, Q2 is eliminated from the

predictor set. Lastly, under the breathing segment, RFECV eliminates only Q11 for the

multinomial logistic regression classifier among Q10-Q12.

Table 4.1: Selected ALSFRS-R questions to predict the tollgate level of a seg-
ment.

Classifier

ALSFRS-R question
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

S
e
g
m

e
n
t

L
e
g

MLR X X X X
SVCL X X X X
SVCP X X X X X X
SVCG X X X X X X

RF X X X

A
r
m

MLR X X X X
SVCL X
SVCP X X X X X X
SVCG X X X X X X

RF X X X

S
p

e
e
c
h

MLR X X
SVCL X
SVCP X X X
SVCG X X X

RF X

S
w

a
ll

o
w

in
g MLR X X X

SVCL X X X
SVCP X X X
SVCG X X X

RF X X

B
r
e
a
th

in
g MLR X X

SVCL X X X
SVCP X X X
SVCG X X X

RF X X X

4.4.1 Cross validation results

Figure 4.1 illustrates the mean performances of the proposed classifiers based on 10-fold

cross validation under äıve (N) and optimization (O) approaches for the leg segment. Based

on the accuracy metric, among the optimization approaches, the all classifiers perform

similarly. The support vector classifier with linear kernel (SV C
(O)
L ) achieves the highest
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accuracy (0.631), while on-average performance of all classifiers with the optimization

approach above 0.6. On the other hand, all the näıve approaches perform poorly compared

to optimization approaches and their performances are between 0.4 and 0.5. The highest

accuracy difference between the optimization and näıve approaches of a classifier is achieved

by the support vector classifier with the Gaussian kernel (SV C
(O or N)
G ), which incurs an

accuracy difference of 0.203 between the optimization and the näıve approaches. Based on

the MSE and R-squared metrics, the performances of the classifiers show similar patterns

to those observed for the accuracy metric. That is, all optimization approaches of the

classifiers perform better than their näıve approach pairs. For all the näıve approaches,

the MSE values stay above 1.6 and the R-squared values stay below 0.4. On the other

hand, among the optimization approaches, the MSE values stay close to 0.4 while R-

Squared values reach above 0.75. The lowest MSE (0.618) and the highest R-Squared

(0.772) values are achieved by the optimization approach of the multiple logistic regression

classifiers (MLR(O)).
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Figure 4.1: The mean performances of the proposed classifiers based on 10-fold
cross validation under the näıve (N) and the optimization (O) approaches for
the leg segment.

Figure 4.2 illustrates the mean performances of the proposed classifiers based on 10-fold

cross validation under näıve (N) and optimization (O) approaches for the arm segment.
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Based on the accuracy metric, among the optimization approaches, support vector classi-

fiers with polynomial (SV C
(O)
P ) , Gaussian (SV C

(O)
G ), and polynomial (SV C

(O)
P ) kernels

perform favorable compared to other classifiers. Both näıve and optimization approaches

of the multiple logistic regression classifier (MLR(N) and MLE(O)) perform poorly com-

pared to the classifiers within the same approach group. The support vector classifier with

Gaussian kernel (SV C
(O)
G ) achieves the highest mean accuracy (0.682) among all classi-

fiers, while mean performance of all classifiers with the optimization approach above 0.6

except MLR(O). On the other hand, all the näıve approaches perform poorly compared

to optimization approaches while the performance of SV C
(N)
G , SV C

(N)
P , and SV C

(N)
L stay

above 50%. Based on the MSE and R-squared metrics, the performances of the all classi-

fiers present similar characteristics to those for the accuracy metric on general. However,

MLR(O) performs better than SV C
(N)
G , SV C

(N)
P , and SV C

(N)
L in both MSE and R-squared

metrics although the opposite is true for the accuracy metric. For all the näıve approaches,

the MSE values stay above .8 and the R-squared values stay below 0.21. Among the the

optimization approaches, for SV C
(O)
P , SV C

(O)
G , and SV C

(O)
P , the MSE values stay below

0.6 while R-Squared values stay close to 0.5. The lowest MSE value (0.517) is achieved by

SV C
(O)
G while the highest R-Squared value (0.495) is by SV C

(O)
L .

Figure 4.3 illustrates the mean performances of the proposed classifiers based on 10-fold

cross validation under näıve (N) and optimization (O) approaches for the speech segment.

All the optimization approaches of the classifiers outperform those with the näıve approach.

All the optimization approaches of classifiers perform except the support vector classifier

with polynomial kernel (SV C
(O)
P ) perform above 0.74. The optimization approach of the

support vector classifiers with linear kernel (SV C
(O)
L ) achieves the best accuracy (0.744),

MSE (0.269), and R-squared (0.689) values. The näıve approaches of all classifiers achieve

accuracy values above 0.5. Expect SV C
(O)
P , MSE values of the optimization approaches

of the classifiers stay between 0.25 and 0.30 while the same metric stays between 0.45 and

0.55 for the näıve approaches of the classifiers. All the optimization approaches incur an

R-squared value above 0.6 whereas it stays close to 0.4 for the classifiers with the näıve

approaches.

Figure 4.4 illustrates the mean performances of the proposed classifiers based on 10-

fold cross validation under näıve (N) and optimization (O) approaches for the swallowing

60



0.0 0.1 0.2 0.3 0.4 0.5 0.6

Accuracy

SVCP
(O)

SVCP
(N)

SVCL
(O)

SVCL
(N)

SVCG
(O)

SVCG
(N)

Rf(O)

RF(N)

MLR(O)

MLR(N)

0.0 0.2 0.4 0.6 0.8 1.0

MSE

SVCP
(O)

SVCP
(N)

SVCL
(O)

SVCL
(N)

SVCG
(O)

SVCG
(N)

Rf(O)

RF(N)

MLR(O)

MLR(N)

−0.1 0.0 0.1 0.2 0.3 0.4

R−squared

SVCP
(O)

SVCP
(N)

SVCL
(O)

SVCL
(N)

SVCG
(O)

SVCG
(N)

Rf(O)

RF(N)

MLR(O)

MLR(N)

Figure 4.2: The mean performances of the proposed classifiers based on 10-fold
cross validation under the näıve (N) and the optimization (O) approaches for
the arm segment.
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Figure 4.3: The mean performances of the proposed classifiers based on 10-fold
cross validation under the näıve (N) and the optimization (O) approaches for
the speech segment.
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segment. Similarly, all the optimization approaches of the classifiers outperform those

with the näıve approach. All the optimization approaches of classifiers perform similarly

by achieving an accuracy above 0.65. The optimization approach of the support vector

classifier with Gaussian kernel SV C
(O)
G achieves the highest accuracy (0.696), while opti-

mization approach of the random forest classifier (RF (O)) achieves the best MSE (0.460)

and R-squared (0.595) values. Similar the speech segment, the näıve approaches of all

classifiers achieve accuracy values above 0.5. All the optimization approaches attain an

R-squared value between 0.5 and 0.6 whereas it stays below 0.3 for the classifiers with the

näıve approaches.
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Figure 4.4: The mean performances of the proposed classifiers based on 10-fold
cross validation under the näıve (N) and the optimization (O) approaches for
the swallowing segment.

Figure 4.5 illustrates the mean performances of the proposed classifiers based on 10-fold

cross validation under näıve (N) and optimization (O) approaches for the breathing seg-

ment. All the optimization approaches of the classifiers perform than those with the näıve

approach. Based on the accuracy metric, among the optimization approaches, support vec-

tor classifiers with polynomial (SV C
(O)
P ) , Gaussian (SV C

(O)
G ), and polynomial (SV C

(O)
P )

kernels perform more favorable compared to the remaining optimization approaches. The

support vector classifier with Gaussian kernel (SV C
(O)
L ) achieves the best mean accuracy
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(0.901), MSE (0.109), and R-squared (82.7) among all classifiers. The mean performances

of all classifiers stay above 0.70.
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Figure 4.5: The mean performances of the proposed classifiers based on 10-fold
cross validation under the näıve (N) and the optimization (O) approaches for
the breathing segment.

Figure 4.6 illustrates the normalized confusion matrices for the classifiers, achieving

the highest accuracy under all segments. The diagonal of confusion matrices denotes the

accuracy of a particular tollgate level. For example, among the tollgates levels of the leg

segment, the highest accuracy is 93%, achieved for Level 0, while lowest accuracy is 1%,

obtained for level 1.

We observe a great variation between the accuracy of different levels. Figure 4.7 illus-

trates confusion matrices of classifiers SV C
(O)
L and RF (O) for the leg tollgates. Although

the overall accuracy score of SV C
(O)
L is higher than RF (O), the accuracy of the levels resides

in a smaller range for RF (O).
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Figure 4.6: The normalized confusion matrices for the classifiers achieving the
highest accuracy under all segments.
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Figure 4.7: The normalized confusion matrices for the classifiers achieving the
highest accuracy under all segments.

4.4.2 Risk prediction using the estimated tollgates

The estimated tollgates of the patients may allow more comprehensive analysis to be

conducted. To illustrate how the estimated tollgate levels can be employed, we build a

basic risk prediction model based on the history of patients. Figure 4.4.2 illustrates the

probability of reaching a tollgates by the next clinic visit (3 months) for patients having

a particular disease history. For example, the probability of staying at Level 1 for the leg

segment is 0.5 if the next visit is 10 months after the onset of the disease. This probability

steadily increases as the next visit shifts towards later times, indicating a slower pace of

progression in the leg segment.

4.5 Conclusion

In this chapter, we tackle the problem of estimating the tollgates reached by patients

based on their ALSFRS-R scores. We formulate the estimation problem as a multi-class

65



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  0 , Leg Level:  0 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  0 , Leg Level:  1 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  0 , Leg Level:  2 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  0 , Leg Level:  3 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  0 , Leg Level:  4 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  1 , Leg Level:  0 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  1 , Leg Level:  1 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  1 , Leg Level:  2 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  1 , Leg Level:  3 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  1 , Leg Level:  4 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  2 , Leg Level:  0 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  2 , Leg Level:  1 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  2 , Leg Level:  2 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  2 , Leg Level:  3 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  2 , Leg Level:  4 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  3 , Leg Level:  0 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  3 , Leg Level:  1 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  3 , Leg Level:  2 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  3 , Leg Level:  3 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  3 , Leg Level:  4 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  4 , Leg Level:  0 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  4 , Leg Level:  1 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  4 , Leg Level:  2 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 53 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  4 , Leg Level:  3 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 months ago: Arm Level:  4 , Leg Level:  4 
 6 months ago: Arm Level: 0, Leg Level: 0

Time from onset of the next visit (months)

P
ro

ba
ba

bi
lit

y 
of

 r
ea

ch
in

g 
th

e 
le

g 
to

llg
at

e 
le

ve
l

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Figure 4.8: Probabilities of reaching the leg tollgates levels in the next next
clinic visit (3 months) over the time of the next clinic visit from the onset time
of the disease for patients showing no arm weakness in the last six months, and
having no leg weakness six months ago but showing slight leg weakness three
months ago.
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classification model subject to a monotonicity constraint. The monotonicity constraint

renders the traditional classification techniques inapplicable. Therefore, we propose two

alternative approaches (the näıve and optimization) which take the probability estimations

of a classification model as the input, and find the tollgates satisfying the monotonicity

constraint. As an input for the näıve and optimization approaches, we employ five different

classification techniques namely multinomial logistic regression, support vector classifiers

with linear, polynomial, and Gaussian kernels, and random forest classifier. All of the

classification techniques are used in their default setting, as implemented in scikit-learn

package in python environment (Pedregosa et al., 2011).

In term of the performance of the classifiers, the support vector type classifiers generally

produce favorable results for most segments. In addition, the performances of the all

classifiers with the optimization approach are very similar in most cases. The exception is

the swallowing segment, where the optimization approach of the support vector classifier

with linear kernel achieves the best accuracy scores, whereas the optimization approach

of the support vector classifier with Gaussian kernel outperforms other classifiers for the

swallowing segment.

For the leg, arm, and swallowing segments, the highest mean accuracy achieved by a

classifier is between 0.6 and 0.7. The highest accuracy obtained reaches above 0.74 and 0.90

for the speech and breathing segments, respectively. The high accuracy achieved in the

breathing segment is as a result of better relevance of the the breathing related ALSFRS-R

questions (Q10-Q12) to the breathing tollgate definitions. The overall performances of the

classifiers seem low especially for arm, leg, and swallowing segments. When we allow one

level deviation from the true tollgates levels, accuracy values more than 0.92 are achieved

for all segments.

We also provided the normalized confusion matrices for the classifiers who achieves

the highest accuracy under a particular segment. We observe that some classifiers fail to

predict certain tollgate levels although their overall accuracy scores is the highest among

all others. For the leg segment, other classifiers (e.g, RF (O)) may result in a normalized

matrix having a more balanced diagonal while producing slightly lower overall accuracy.

In such cases, it might be better to chose a classifier with a more balanced diagonal.
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Our observations summarized above are based on the computational comparisons of

several specific classification techniques under two different approaches. The poor perfor-

mance of the näıve approach can be explained by the fact that when fixing the tollgate

level of an observation, the accuracy of the observation greatly depends on the accuracy of

the previous estimations for those patients. That is, if there is a misclassification, in any

of the observations, it may cause the later observations to be misclassified.

Although obtaining the true performances of the classification techniques would require

further analysis, given that the classification parameters are not tuned, we can still con-

clude that using off-the-shelf classification techniques may produce reasonable results. By

tuning the parameters of classifiers, it might be possible to obtain better performances.

Another method to increase the overall accuracy could be the by merging some sequential

tollgates levels. Despite the fact that this would reduce the specificity granted by the

current definitions of the tollgates levels, the estimations and any other model depending

on these estimations would have a higher accuracy. Additionally, considering other demo-

graphical factors such as age, disease onset age, and time from onset may also improve the

performances of the classifiers.

We also conducted some preliminary study on how the historical tollgate information

of a patient can be used in assessing the over-time risk of reaching tollgates that has not

yet been reached by the patients. However, this model depends on the assumption that

the aforementioned tollgate estimation methodology in this chapter estimates the tollgates

with a great accuracy. Although the initial results imply a promising contribution, the

validity of the proposed risk prediction model not been should be investigated by further

studies.
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Chapter 5

Conclusion and Future Work

This chapter gives a summary of the methodologies and discusses the results of the proposed

models presented in the thesis. We also briefly describe the future work directions and their

potential benefits.

In the first chapter, we study the problem of deriving effective vaccine allocation strate-

gies for pandemic influenza. This study compares two commonly-used infectious disease

modeling techniques from the literature, based on their performance of deriving effective

vaccine allocations in the case of an influenza pandemic. Our results show the more re-

alistic but computationally taxing agent-based simulation model produces more favorable

vaccine allocation strategies compared to those from a stylized but easy-to-compute com-

partmental model on general. However, there are certain scenarios where deriving vaccine

allocation strategies from the compartmental model may be still effective.

Regarding the comparison of the strategies derived by both modeling techniques and

their resulting performances, we conclude that behaviors of two commonly-used artifacts

may fail to agree after a valid optimization process, even though the models behave very

similarly before the vaccination. Our study highlights the differences in derived vaccine

allocation strategies, as well as the significance and magnitudes of the performance differ-

ences. Health policy makers may benefit from applying the optimization techniques using

the agent-based simulation and compartmental models together when searching for effec-

tive vaccine allocation strategies. Our study shines a light on the differences between the
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strategies obtained by these two approaches. The results of this study may advise policy

makers to design and employ appropriate modeling techniques to enhance their expectation

in real life applications.

There are a few limitations of our analysis. First, we examine age-specific vaccine

allocation, but do not consider other important risk factors, e.g., chronic medical conditions

and pregnancy. Moreover, we use a deterministic numerical optimization algorithm, which

does not incorporate the variance in the simulation replications when updating the search

direction. Adjusting the optimization algorithm to consider the stochastic model results is

a promising future research direction. Additionally, the employed agent based simulation

is not fast enough to test very comprehensive allocation strategies, such as time-dependent

dynamic vaccination strategies or strategies considering the composition of social mixing

groups. Using a faster model that still captures both the network structure and randomness

may enable a more robust analysis, which is also left for future studies. We set the number

of replications at each iteration of the optimization algorithm to 24 in order to alleviate the

computational burden of the analysis. Using a faster agent-based simulation, the number

of replications can be increased to reduce the variation among the outcomes. Alternatively,

ranking and selection methods can be applied to find the proper number of replications for

each allocation strategy, which is left for future research.

In the second chapter, we study the problem of tollgate-based progression pathways of

ALS patients. In this problem, we introduce a novel mechanism to monitor the disease

progression of patients with amyotrophic lateral sclerosis (ALS) disease. This mechanism

proposes critical events, named as tollgates, to track patients throughout the course of their

disease. Using medical records of 514 patients from the ALS clinic at the Mayo Clinic,

Rochester, MM, we present the progression pathways of the patients over multiple visits

in terms of these tollgates.

We observe that the proposed mechanism is powerful enough to present the variability

among patients. Moreover, we estimate the probabilities of reaching each tollgate, based on

the time from their first clinic visits, to illustrate how the disease can effect the functional

abilities of patients over time. The analyses and results might be helpful for clinicians to

educate their patients when making critical decisions. Analysis in Section 3.3 shows the

effect of history on the future progression, where very little of the disease history (the first
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clinic visit) is utilized. More comprehensive studies using patients’ histories at multiple

points over time and several other factors (e.g., age, onset age, onset region) might be more

helpful on the prognosis.

Therefore, more comprehensive studies are needed for better characterization of ALS

progression. For examples, a risk prediction model created from the whole history and

demographics of patients could help more accurately estimate the likelihood of reaching

each tollgate over time (Tripepi et al., 2013). There are certain limitations of our study.

First, the sample size is limited. This one of the very common problems in the literature

because ALS is a rare disease (Al-Chalabi and Hardiman, 2013). Creating comprehensive

models may require more data to yield a strong prediction power level. However, for the

existing databases which have ALSFRS-R scores but not having tollgate information, the

previously mentioned association between ALSFRS-R and the tollgates can be further

investigated to estimate the times of patients reaching tollgates in existing databases.

Second, the fact that the disease onset dates are not available restricts our analysis to

be based on the first clinic visits of the patients. While not the best method, analyses

based on the first clinic visit are not uncommon in medical studies (Gitau et al., 1999;

Swinnen and Robberecht, 2014). Third, drop-outs significantly influenced the scope of the

analysis. By the end of one year from the clinic visit, approximately 70% of the patients

dropped out. To overcome this, we performed a Kaplan-Meier analysis, which is known to

be robust against the negative effects of drop-outs(Rich et al., 2010).

In the third chapter, we study the problem of deriving tollgates from ALSFRS-R scores

using multi-class classifiers. In this study, we tackle the problem of estimating the tollgates

reached by patients using their ALSFRS-R scores. We first formulate the problem as a

multi-class classification model subject to a monotonicity constraint. Due to the fact that

the monotonicity constraint render the traditional classification techniques inapplicable, we

propose two alternative approaches (the näıve and optimization). Both of these take the

probability estimations from traditional classification methods as the input, and find the

tollgates satisfying the monotonicity constraint. As the traditional classification methods,

we employ five different classification techniques namely multinomial logistic regression,

support vector classifiers with linear, polynomial, and Gaussian kernels, and random forest

classifier. All of the classification techniques are used in their default setting as imple-
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mented in scikit-learn package in python environment (Pedregosa et al., 2011). The results

illustrates that the optimization approach greatly outperforms the näıve approach. Over-

all, each of the classification methods perform similarly with the same approach group,

while the support vector type classifiers are observed to be slightly more powerful.

The results of this study can be especially useful considering the fact that most available

databases may not have the detailed patients record to derive the tollgate information.

One might criticize the power of the classification models based on the low accuracy scores

produced. Although likely to be correct for some cases, the performance of the classifiers are

presented without any parameter tuning. By find the a good set of model parameters, the

performance of the classification models can be greatly improved. Moreover, the proposed

classifiers estimate the tollgates based solely on the ALSFRS-R scores. Incorporating

other factors such as demographics (e.g., age, gender) and disease history may improve the

performances of the classifiers. The risk prediction model discussed at the end of Chapter

3 is a very promising potential future direction. However, pursuing such an analysis may

require improving the accuracy of the classification methods. This is because the error

propagated from the estimated tollgates for each body segment may cause a deviation

from the actual outcomes, and misinterpretation of the results.
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Günal, M. M. and Pidd, M. (2010). Discrete event simulation for performance modelling
in health care: a review of the literature. Journal of Simulation, 4(1):42–51.

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer
classification using support vector machines. Mach. Learn., 46(1-3):389–422.

Harper, P. R., Shahani, A., Gallagher, J., and Bowie, C. (2005). Planning health services
with explicit geographical considerations: a stochastic location–allocation approach.
Omega, 33(2):141–152.

Hastie, T. and Tibshirani, R. (2011). Statistical learning. Learning, 2:08.

Heffernan, J., Smith, R., and Wahl, L. (2005). Perspectives on the basic reproductive ratio.
Journal of the Royal Society Interface, 2(4):281–293.

Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review, 42(4):599–
653.

Hladish, T., Melamud, E., Barrera, L. A., Galvani, A., and Meyers, L. A. (2012). Epifire:
An open source C++ library and application for contact network epidemiology. BMC
Bioinformatics, 13(76):1–12.

Hobson, E. V. and McDermott, C. J. (2016). Supportive and symptomatic management
of amyotrophic lateral sclerosis. Nature Reviews Neurology.

Hsu, C.-W. and Lin, C.-J. (2002). A comparison of methods for multiclass support vector
machines. IEEE Trans. Neural Networks, 13(2):415–425.

Huang, G. and Li, L. (2009). A mathematical model of infectious diseases. Annals of
Operations Research, 168(1):41–80.

Jackson, C., Mangtani, P., Hawker, J., Olowokure, B., and Vynnycky, E. (2014). The
effects of school closures on influenza outbreaks and pandemics: systematic review of
simulation studies. PLoS ONE, 9(5):e97297.

78



Jacobson, S. H., Hall, S. N., and Swisher, J. R. (2006). Discrete-event simulation of health
care systems. In Patient flow: Reducing delay in healthcare delivery, pages 211–252.
Springer.

Kaplan, E. L. and Meier, P. (1958). Nonparametric Estimation from Incomplete Observa-
tions. Source J. Am. Stat. Assoc., 53(282):457–481.

Kaplan, R. M. and Bush, J. W. (1982). Health-related quality of life measurement for
evaluation research and policy analysis. Health psychology, 1(1):61.

Katsaliaki, K. and Mustafee, N. (2011). Applications of simulation within the healthcare
context. Journal of the Operational Research Society, 62(8):1431–1451.

Kiernan, M. C., Vucic, S., Cheah, B. C., Turner, M. R., Eisen, A., Hardiman, O., Burrell,
J. R., and Zoing, M. C. (2011). Amyotrophic lateral sclerosis. The Lancet, 377(9769):942–
955.

Kimura, F., Fujimura, C., Ishida, S., Nakajima, H., Furutama, D., Uehara, H., Shinoda,
K., Sugino, M., and Hanafusa, T. (2006). Progression rate of ALSFRS-R at time of
diagnosis predicts survival time in ALS. Neurology, 66(2):265–267.

Kohn, R. and Ansley, C. F. (1986). Prediction mean squared error for state space models
with estimated parameters. Biometrika, 73(2):467–473.

Kollewe, K., Mauss, U., Krampfl, K., Petri, S., Dengler, R., and Mohammadi, B. (2008).
Alsfrs-r score and its ratio: a useful predictor for als-progression. Journal of the neuro-
logical sciences, 275(1):69–73.
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Appendix A

Supporting information for Chapter 2

A.1 Age-specific contact rates

Table A.1: Age-specific contact rates† from age group i to age group j (Φij) used
in the SEIR model after the calibration process.

i\j 0-4 5-18 19-29 30-64 65+

0-4 2.98 32.69 4.71 0.20 0.62
5-18 9.62 35.49 13.36 48.31 8.44
19-29 2.41 23.28 1.26 0.55 0.40
30-64 0.03 22.75 0.15 1.56 2.43
65+ 0.35 16.13 0.43 9.85 0.48

†:We assume that the total number of daily contacts between age groups i and j is symmetric. To
calculate the daily contact rate from age group i to j, we divided the total number of daily contacts by
the population of age group i. So, the age-specific contact rates are asymmetric because the population
of age groups i and j are different.
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A.2 Overall attack rates for different vaccine coverage

levels and R0 values
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Figure A.1: Overall attack rates for different vaccine coverage levels and R0

values.

Both Flute and the SEIR model evaluate the same vaccine allocation policy for all vaccine coverage
levels. In this policy, available vaccine stocks are allocated first to school children, then to preschool
children, and last to young adults.
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A.3 The objective values of vaccine allocation strate-

gies derived by FluTe+MADS and SEIR+MADS

under various R0
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Figure A.2: Objective values of vaccine allocation strategies derived by
FluTe+MADS and SEIR+MADS under various R0 values (30% vaccine cover-
age, no delay in response time).
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A.4 Objective values of vaccine allocation strategies

for different coverage scenarios (R0=1.6, no delay

in response time) and response time scenarios
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Figure A.3: Objective values of vaccine allocation strategies for different coverage
scenarios (R0=1.6, no delay in response time) and response time scenarios
(R0=1.6, 30% vaccine coverage).
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Appendix B

Supporting information for Chapter 3

B.1 Correlation between tollgates and ALSFRS-R

We examined the relationship between tollgates and the ALSFRS-R scores by performing
a Spearman’s rank correlation analysis (Sedgwick, 2014).

We observed a strong negative correlation between the tollgates and the scores of
ALSFRS-R questions and magnitudes of the correlations present a time-invariant. For
the arm segment tollgates, most correlated (>0.6) ALSFRS-R questions were Q4-Q6 with
negative correlations of 0.56, 0.62, 0.62, respectively. For the leg segment tollgates, most
correlated ALSFRS-R questions are Q7-Q9 with respective negative correlations of 0.60,
0.78, 0.73. Q1-Q3 are the most correlated ALSFRS-R questions for the tollgates of both
the speech and swallowing segments with the respective negative correlations of 0.79, 0.60,
0.67 for speech and 0.69, 0.55, 0.75 for swallowing. Finally, for the breathing segment
tollgates, Q10-Q12 are the most correlated questions with a negative correlation of 0.52,
0.44, 0.71, respectively.

91



Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

ARM TOLLGATES

ALSFRS−R question
N

eg
at

iv
e 

C
or

re
la

tio
n

−
0.

2
0.

2
0.

6
1.

0

● ● ●

● ● ●

●

● ●

● ● ●
● ●

●

● ● ●
●

● ●

●
●

●

● ●Visit 1 Visit 2 Visit 3 Visit 4 Visit 5

(a) Arm

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

LEG TOLLGATES

ALSFRS−R question

N
eg

at
iv

e 
C

or
re

la
tio

n

−
0.

2
0.

2
0.

6
1.

0

●
●

●

●
●

●
●

●
●

● ● ●

● ●

●

● ●
● ●

● ●

●
●

●

● ●Visit 1 Visit 2 Visit 3 Visit 4 Visit 5

(b) Leg

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

SPEECH TOLLGATES

ALSFRS−R question

N
eg

at
iv

e 
C

or
re

la
tio

n

−
0.

2
0.

2
0.

6
1.

0

●

●
●

●
● ●

●
● ●

●
●

●

●

●
●

●
● ●

●

● ● ●

●
●

● ●Visit 1 Visit 2 Visit 3 Visit 4 Visit 5

(c) Speech

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

SWALLOWING TOLLGATES

ALSFRS−R question

N
eg

at
iv

e 
C

or
re

la
tio

n

−
0.

2
0.

2
0.

6
1.

0

●

●

●

● ● ●
●

● ●

●
●

●

●

●

●

●
● ● ●

●
●

●

●
●

● ●Visit 1 Visit 2 Visit 3 Visit 4 Visit 5

(d) Swallowing

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

BREATHING TOLLGATES

ALSFRS−R question

N
eg

at
iv

e 
C

or
re

la
tio

n

−
0.

2
0.

2
0.

6
1.

0

●
●

●
●

● ●
● ● ●

●

●

●

●
●

● ● ● ● ●

● ●

●
●

●
● ●Visit 1 Visit 2 Visit 3 Visit 4 Visit 5

(e) Breathing

Figure B.1: Correlation analysis between the questions of ALSFRS-R and toll-
gate levels for each segment.
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B.2 Comparison of missing data imputation methods
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Figure B.2: Average performances of imputation methods using 100 randomly
selected sample sets.
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