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Abstract 

The effects of climate change on marine ecosystems are most pronounced in the 

Arctic, where ice free summers have been predicted to occur by mid-century. Climate-

related changes to sea ice phenology, oceanographic habitat characteristics, and 

primary production regimes will likely have strong effects on ecosystem structure that 

could alter energy pathways, species distributions, food web dynamics, and secondary 

production. Knowledge of many offshore Arctic ecosystems remains poor, 

undermining the ability to predict the effects of a changing climate on food web 

structure and function. This thesis capitalizes on the first comprehensive offshore 

sampling program in the Canadian Beaufort Sea and Amundsen Gulf to address 

substantial knowledge gaps regarding fish and invertebrate food web structure in the 

region. Trophic structure and benthic-pelagic linkages for biological communities on 

the continental shelf and slope were examined using stable isotope values measured in 

127 fish and invertebrate taxa, biomass distributions, and a database of biological 

functional traits compiled for 166 taxa. Four empirical studies were conducted to test 

hypotheses regarding the responses of trophic structure to environmental gradients of 

depth, organic matter input regimes, water mass structure, and benthic food supply. 

Understanding food web structure and its link to large-scale environmental gradients 

will be key to assessing and predicting the effects of climate change on offshore 

marine communities in the Canadian Beaufort Sea and Amundsen Gulf. 

 In Chapter 2, benthic-pelagic coupling via active biological transport was 

identified as important for sustaining fish communities in the Beaufort Sea.  Lower 

availability of benthic resources with increasing depth restricted biomass production 

for small size classes of fish in deep habitats. In those same fish communities, pelagic 

subsidies obtained by benthopelagic fishes were important for maintaining a relatively 
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high biomass of large-bodied fish in deep habitats. When fish and invertebrates were 

considered together in Chapter 3, benthic-pelagic coupling weakened eastward 

alongshore, across three regions. Benthic-pelagic coupling was (1) highest west of the 

Mackenzie River where sinking flux of pelagic particulate organic matter (POM) is 

known to be relatively high, (2) intermediate on the Mackenzie Shelf where riverine 

inputs of terrestrial organic matter dominate the sediment, and (3) lowest in the 

Amundsen Gulf where strong pelagic grazing is known to limit POM sinking flux to the 

benthos. Within all regions considered, benthic-pelagic coupling was consistently 

weakest in slope habitats underlying the transition between Pacific- and Atlantic-origin 

waters, where much of the organic carbon is transformed or intercepted in the water 

column. Analyses in Chapter 4 indicated that the dominance of terrestrial POM 

discharged from the Mackenzie River in the Beaufort Sea dampened depth-related 

changes in the δ15N values of suspension/filter feeders, infaunal deposit feeders, and 

bulk sediment. In contrast, a faster rate of change in consumer and sediment δ15N with 

depth was observed in the Amundsen Gulf. Relatively high primary production in the 

Amundsen Gulf likely promoted intensified biological transformation of 

autochthonous POM in the pelagic zone and lower downward POM flux, causing 

greater change in POM δ15N. Surprisingly, when isotopic diversity was weighted by 

species biomasses in Chapter 5, most benthic communities in the Canadian Beaufort 

Sea and Amundsen Gulf were found to rely on similarly diverse ranges of sedimentary 

organic matter, regardless of the sources. Trait-based functional diversity indicated 

that shelf edge communities maintained a relatively high diversity of biological trophic 

traits, presumably to exploit pulsed food inputs associated with dynamic shelf break 

hydrography. Several lines of evidence supported a role for episodic food inputs in 

structuring shelf edge trait composition. However, pairwise relationships between 
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trophic traits and indicators of benthic food supply were not significant at the regional 

scale. Functional redundancy was low across most of the region, suggesting benthic 

food web function will be sensitive to species loss. 

The research in this thesis presents the first comprehensive empirical studies of 

benthic food web structure for offshore fish and invertebrate communities in the 

Canadian Beaufort Sea and Amundsen Gulf. Each study proposes causal explanations 

for spatial patterns in food web structure based on data for habitat characteristics, 

species biomass distributions, and previously documented physical and biological 

properties of the regions. Three emergent properties are identified: (1) the Canadian 

Beaufort Sea and Amundsen Gulf should be considered separate but interconnected 

ecosystems, (2) organic matter pathways are key properties that define and determine 

trophic structure in the study systems, and (3) local habitat complexity interrupts 

linear associations between environmental gradients and trophic structure at the 

regional scale. The research represents a significant advancement in our knowledge of 

food webs in a rapidly changing, and understudied ecosystem. Several significant 

implications for ecosystem-based management are outlined in the General Conclusions 

section. Further study is needed to identify species-specific feeding relationships, 

understand how functional food web structure relates to indicators of ecosystem 

function, characterise winter ecology, and, ultimately, to develop an over-arching food 

web model that can be used to predict the impacts of a changing benthic food supply 

and species loss on community structure and function. 
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1 General Introduction 

General context of thesis 

 

On a global scale, ecological structure and physical-biological coupling are better 

understood for continental shelves than for deep sea habitats (Levinton 2009). This is 

especially true in the Arctic Ocean, where the permanent sea ice pack has historically 

impeded comprehensive sampling programs in offshore habitats. With increasingly 

warmer annual temperatures, sea ice extent is declining at a rate of 11% per decade, 

and much of the central Arctic Ocean is no longer covered with multi-year ice 

(Polyakov et al. 2012). Such rapid change has brought our lack of knowledge regarding 

Arctic offshore ecosystems into sharp focus, but has also facilitated access to areas of 

the Arctic Ocean that were previously difficult to sample and study. The work in this 

thesis capitalizes on the first comprehensive biological sampling program conducted 

in offshore regions (> 200 m depths) of the Beaufort Sea and Amundsen Gulf to 

address knowledge gaps concerning demersal food web structure and trophic 

responses to environmental gradients. The research outlined here pairs trophic 

information derived from > 113 taxa with habitat characteristics, species biomass 

distributions, and the most recent literature on physical-biological forcings to describe 

regional food web patterns and propose mechanistic explanations for them. 

Establishing a knowledge base now is key to assessing and managing future changes in 

food web structure and function in the Canadian Beaufort Sea and Amundsen Gulf. 

 

The physical setting: Bathymetry and hydrography 
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The southern Canadian Beaufort Sea is defined by the relatively narrow 

Mackenzie continental shelf, which extends approximately 120 km offshore. Past shelf 

break, the seafloor descends quickly to several thousand meters. The shelf is narrower 

in the semi-enclosed Amundsen Gulf where maximum depths are approximately 500 

m. The Beaufort Sea and Amundsen Gulf have “interior shelves” that are isolated from 

the direct input of heat, nutrients, and biomass from the north Pacific and Atlantic 

oceans (Carmack et al. 2006). Circulation is therefore largely determined by wind-

forcing, salinity, and the movement of deep water masses along the continental slope 

(Fig. 1.1; Carmack & Wassmann 2006, Williams & Carmack 2015). Open-water surface 

circulation in the Beaufort Sea is typically dominated by westward winds that push 

surface waters seaward in the anti-cyclonic Beaufort Gyre (Carmack & Macdonald 

2002). Below the surface, circulation is topographically steered eastwards, bringing 

waters of Pacific and Atlantic origin along the slope and into the Beaufort Sea before 

entering the Amundsen Gulf (Carmack & Macdonald 2002, Barber et al. 2010). A 

narrow (< 20 km), intensified current known as the shelf break jet is confined to the 

upper slope around 100 to 150 m depths (Pickart 2004). Surface circulation in the 

Amundsen Gulf is more variable than that in the Beaufort Sea and poorly understood 

(reviewed in Barber et al. 2010). 

Because thermal expansion coefficients for seawater are small at low 

temperatures, salinity rather than temperature is the most important determinant of 

density-driven stratification in the Arctic Ocean (Aagaard & Carmack 1989). In the 

Beaufort region, the result is a highly structured water column that can be simplified 

into four vertically stacked layers (Fig 1.2; described by McLaughlin et al. 1996, 2005, 

Lansard et al. 2012). At the surface, the Polar Mixed Layer comprises a low-salinity 

surface layer up to ~ 50 m thick, formed by wind mixing of freshwater inputs with 
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marine water. Underneath, a cold, complex layer called the Pacific Halocline extends 

from ~ 50 to 200 m. Pacific-origin waters are modified by mixing and biogeochemical 

processes on the Chukchi Shelf before they are diverted eastwards into the Beaufort 

Sea (Kadko & Muench 2005, Clement et al. 2005). Consequently, these waters are 

nutrient-dense and carry resuspended particulate organic matter (POM), marine snow, 

and zooplankton into the Beaufort Sea (Ashjian et al. 2005, Kadko & Muench 2005). A 

strong thermohalocline around 200 m marks the relatively narrow transition between 

the Pacific Halocline and the warmer, saltier Atlantic Layer below (McLaughlin et al. 

1996). The deeper Atlantic-origin waters enter from the East Siberian Sea before joining 

with the Pacific undercurrent. Finally, the Atlantic Layer transitions into the very cold 

and saline Arctic Deep Water, also of Atlantic origin, at ~ 750 to 800 m depths across a 

relatively diffuse pycnocline. 

A seasonally variable freshwater plume from the Mackenzie River forms an 

additional layer up to ~ 10 m thick on the inner shelf (Carmack & Macdonald 2002). 

The Mackenzie River discharges > 330 km3 of fresh water and between 40 and 120 x 

106 t of sediment annually, exceeding the sediment input of any other Arctic river 

(Macdonald et al. 1998, Doxaran et al. 2015, Rachold et al. 2004). The small size of the 

Mackenzie Shelf relative to the volume of fresh water makes it the most estuarine of all 

Arctic interior shelves (Williams & Carmack 2015). The sediment and freshwater plume 

typically flows eastward along the Tuktoyaktuk Peninsula, but can be forced offshore 

and westward under the influence of easterly winds (Fig. 1.1; Carmack & Macdonald 

2002).  

 

The biological setting: Status of knowledge on benthic marine ecosystems 
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Faunal distributions 

 

Prior to the initiation of large-scale research projects in the 1980’s, Arctic benthic 

communities were considered depauperate relative to temperate and Antarctic systems 

(Piepenburg 2005). More than 30 years of intensified research across the Arctic, and 

especially on the shelves, have since painted a picture of vibrant benthic faunal 

assemblages characterised by high spatial heterogeneity (Piepenburg 2005). From these 

studies, it is clear that patterns in benthic community structure are affected by a large 

array of complex, interacting biotic and abiotic variables involving hydrography, 

bathymetry, nutrient regime, granulometry, ice cover, and sedimentation rates (e.g., 

Grebmeier & Barry 1991, Dunton et al. 2005, Conlan et al. 2008, 2013, Roy et al. 2014). 

However, localized habitat heterogeneity appears to interrupt spatial relationships 

between benthic community composition and large-scale environmental gradients, 

such as sedimentary characteristics or annual primary production (Conlan et al. 2008, 

Roy et al. 2014). 

The Mackenzie Shelf is typified by muddy-bottom benthic invertebrate 

communities, with higher taxonomic diversity and biomass near the shelf break 

compared to inshore (Conlan et al. 2008, 2013). Taxonomic diversity is more spatially 

variable where communities experience higher temporal variation in habitat 

conditions, such as inshore and near the Mackenzie River (Conlan et al. 2008). 

Macrobenthic biomass on the Mackenzie Shelf generally declines eastward from ~ 80 g 

m-2 near Point Barrow, Alaska, to as low as 0.01 g m-2 near the mouth of the Mackenzie 

River (Dunton et al. 2005), then increases eastward to a maximum of ~ 1016 g m-2 near 

the Cape Bathurst upwelling region (Conlan et al. 2013). There are no strong 

differences in benthic invertebrate community characteristics between the Canadian 

Beaufort Sea and Amundsen Gulf aside from higher richness and beta diversity in 
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Amundsen Gulf, and a higher abundance of estuarine-tolerant species in the Beaufort 

Sea (Conlan et al. 2008, Roy et al. 2015b). 

Fish community composition in the western Arctic appears to be most closely 

associated with the gradients of temperature, depth, and salinity associated with the 

circulation of water masses (Logerwell et al. 2011, Majewski et al. 2013, 2017, Norcross 

et al. 2013). In the Beaufort Sea, small-bodied benthic fishes dominate the nearshore 

shelf, whereas large-bodied predatory fishes dominate the lower slope (Majewski et al. 

2013, 2017). Fish biomass peaks on the upper slope (between 200 to 350 m; Majewski 

et al. 2017). Arctic Cod (Boreogadus saida (Lepechin)) is by far the most abundant and 

well-studied species, and is common at all depths down to 1000 m (Majewski et al. 

2013, 2017).  

 

Basic structure of offshore food webs 

 

Outside of shallow areas where benthic algae occur, benthic food webs typically 

begin in the pelagic zone where carbon is fixed by autotrophs. Here, pelagic 

zooplankton have a strong influence on the quantity and quality of primary production 

that is exported to the benthos below (Grebmeier & Barry 1991). The portion of 

primary production that escapes grazing at the surface is subject to microbial 

remineralization and degradation during sinking (Kellogg et al. 2011). Further 

microbial processing occurs in the sediment, and in some cases can transform 

refractory material into more labile food for higher trophic level benthic invertebrates 

(Lovvorn et al. 2005, Savvichev et al. 2007, Bell et al. 2016).  

At the seafloor, resident members of benthic marine food webs are typically 

grouped into one of three simplified feeding types: suspension/filter feeders that 
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exploit sinking or re-suspended particles, deposit feeders that exploit detritus and 

reworked organic material on the seafloor, and mobile scavenger/predators that 

exploit large food falls and prey on other benthic organisms (e.g., Tamelander et al. 

2006, Divine et al. 2015, Bell et al. 2016). Demersal fauna can be epifaunal (live at the 

sediment surface), infaunal (live below the sediment surface), or benthopelagic 

(commonly utilise habitat some distance above the seafloor). There is evidence that 

highly mobile scavengers/predators in the deep basin such as fish, amphipods, and 

decapods can rely to a great extent on resources from the pelagic environment rather 

than consuming biota that are supported by benthically processed carbon (Iken et al. 

2005). Consequently, deep benthic food webs can display an apparent split between a 

detritus- and pelagic-based food chain (Iken et al. 2005). Aside from the three resident 

feeding types, two additional groups act as temporary members of benthic food webs 

on the shelves. Vertically-migrating pelagic zooplankton and amphipods can occupy 

bottom waters on a seasonal or daily cycle, and can act as both predators and prey 

(Berge et al. 2009, Connelly et al. 2012). Diving seabirds and large benthic-feeding 

marine mammals (e.g., beluga whale Delphinapterus leucas Pallas, Pacific walrus 

Odobenus rosmarus divergens Illiger, grey whales Eschrichtius robustus Lilljeborg, 

ringed seal Pusa hispida Schreber 1775, and bearded seals Erignathus barbatu 

Erxleben) can act as predators in shallow areas during migratory feeding seasons (e.g., 

Bluhm & Gradinger 2008). 

 

Organic matter pathways to the benthos 

 

Climate change is significantly altering the organic matter pathways that fuel 

benthic marine food webs worldwide (Hoegh-Guldberg & Bruno 2010).  In the Arctic, 
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shifts in organic matter pathways are linked to sea ice loss, which has already 

transformed the rates and dominant sources of primary production in some areas 

(McLaughlin & Carmack 2010, Kortsch et al. 2012). Enhanced primary production from 

rising sea temperatures and longer ice-free periods is expected to favour pelagic 

communities on the shelves, driving a shift from benthic- to pelagic-driven food webs 

(Forest et al. 2010, McLaughlin et al. 2011, Wassmann & Reigstad 2011). In contrast, 

increased input of fresh water from melting ice in the Canada Basin has resulted in a 

deepened nutricline that will likely reduce primary production in the deep basin 

(McLaughlin & Carmack 2010). Predicting the effects of climate-driven changes in 

production regimes requires identifying current linkages between organic matter 

pathways and trophic structure.  

The major sources of primary production in the Arctic Ocean are pelagic and 

sympagic (ice-associated) algae. Estimates of the relative importance of sympagic algal 

production range from 0 to 80 % of total annual primary productivity, increasing 

northwards with annual ice cover (Gosselin et al. 1997, Wassmann et al. 2008). 

Longitudinal patterns of primary production in the Beaufort Sea region are somewhat 

variable within and among years (Carmack et al. 2004, Morata et al. 2008, Ardyna et al. 

2013). Generally, annual primary production is relatively high in the Chukchi Sea to the 

west (~100 g C m-2 yr-1) and the Canadian Archipelago to the east (~ 140 g C m-2 yr-1), 

and considerably lower in the Beaufort Sea (~ 62 g C m-2 yr-1; Ardyna et al. 2013). 

Heterotrophic bacteria and benthic algae contribute substantially to production in 

nearshore areas in the Beaufort Sea, but are minor sources at the regional scale 

(Garneau et al. 2006, Oxtoby et al. 2016). Significant macrophyte beds or kelp forests 

have not been identified in the region (Cobb et al. 2008). 
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Pelagic primary production in the Beaufort region follows the same general 

annual cycle as other Arctic marginal seas (Carmack & Macdonald 2002, Sakshaug 

2004). Briefly, primary production is lowest during the Arctic winter when the sea ice 

is extensive and daylight hours are short, allowing unused nutrients to accumulate in 

the upper water column. The return of light, the recession of sea ice, and the onset of 

stratification from melting ice and river input trigger the spring phytoplankton bloom, 

which begins on the shelf and follows the retreating sea ice (Carmack & Macdonald 

2002, Sakshaug 2004). The export of ungrazed phytoplankton, fecal pellets, and other 

biogenic material can increase substantially at this time (up to 75%; Forest et al. 2007), 

creating a moving zone of increased carbon flux to the benthos. Nutrients in the 

strongly stratified euphotic zone are quickly depleted once light becomes available, 

resulting in lower rates of primary production during late summer (Hill & Cota 2005, 

Walsh et al. 2005).  

Aside from the regular seasonal cycle, pelagic primary production in the 

Canadian Beaufort Sea and Amundsen Gulf is punctuated by upwelling events that 

replenish nutrients in surface layers and promote sudden, localised phytoplankton 

blooms (Carmack & Chapman 2003, Carmack et al. 2004). Upwelling can occur at any 

point along the shelf, but Cape Bathurst, Mackenzie Trough, and Kugmallit Valley are 

considered upwelling “hot spots” due to steep topography (Carmack & Kulikov 1998, 

Williams et al. 2008, Williams & Carmack 2015). In contrast, downwelling is important 

for the vertical mixing and resuspension of surface production on the shelves 

(Williams & Carmack 2015). Upwelling/downwelling in the Beaufort Sea is most 

frequent when the ice pack has receded north of shelf break (Carmack & Chapman 

2003), but under-ice upwelling events have also been observed in the Amundsen Gulf 
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(Mundy et al. 2009). The frequency and importance of under-ice upwelling events 

remains uncertain (Mundy et al. 2009).  

The delivery of pelagic production to Arctic benthos is thus characterised by 

pulsed food inputs, some of which are seasonal and fairly predictable (e.g., ice-edge 

bloom), and some of which are episodic (e.g., upwelling). Pulsed pelagic blooms are 

important sources of fresh phytodetritus for benthos, as more primary production is 

typically produced than can be grazed by pelagic communities (e.g., Forest et al. 2007). 

Freshly sedimented phytodetritus can be consumed quickly by benthic communities, 

and is thought to provide rare essential fatty acids that may be important for 

reproduction in some invertebrates (McMahon et al. 2006, Renaud et al. 2007b). 

However, benthic communities appear to be very efficient at long-term carbon 

processing, consuming relatively consistent fractions of sedimentary organic carbon in 

between pulsed food inputs (Lovvorn et al. 2005, Renaud et al. 2008, North et al. 2014).  

Aside from the direct export of pelagic POM, food supply to the benthos can be 

augmented by various other sources. For example, sufficient food may be obtained to 

support rich benthic communities through lateral advection of organic matter from 

adjacent regions (Dunton et al. 2005, Feder et al. 2005, 2007) or even the entrainment 

of nutrient-poor waters long enough for POM to settle (Feder et al. 2011). Terrestrial 

organic matter on the Mackenzie Shelf and inshore areas is thought to be a favourable 

substrate for microbial communities which then fuel productivity at higher trophic 

levels (Dunton et al. 2006, Bell et al. 2016). Indeed, bacteria and bacterial matrices can 

be a direct food source for deposit-feeding invertebrates (Lovvorn et al. 2005, McTigue 

& Dunton 2014, North et al. 2014). On the other hand, many mobile predators and 

scavengers are able to seek prey through vertical or horizontal migrations (e.g., Hovde 

et al. 2002). The frequency of large food falls, like whales, is unquantified in the 
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Beaufort region but such rich food deposits in the Arctic attract scavengers from great 

distances at surprising speed (Klages et al. 2001). Vertically migrating phytoplankton 

grazers may be a particularly important source of lipids for benthic communities 

(Connelly et al. 2012). The result of a diverse food supply is that obvious indicators of 

productivity in the overlying pelagic system are not always good predictors of where 

benthic communities will flourish (e.g., Feder et al. 2011, Roy et al. 2014).  

 

Knowledge gaps 

 

Although a conceptual model of feeding linkages between mammals, fish, and 

invertebrates has been established for the Canadian Beaufort Sea (e.g., Cobb et al. 

2008, Darnis et al. 2012), little is known about trophic niche dimensions, the 

proportional contributions of different energy pathways to diets, or the strength of 

benthic-pelagic trophic coupling for demersal food webs. Even less is known about 

how such food web parameters respond to large-scale habitat heterogeneity or to 

environmental changes. Biological traits analyses, which investigate the distribution of 

functional attributes that contribute to ecosystem function regardless of species 

identities, have not been conducted for demersal communities in the region. Process-

oriented studies of organic matter pathways and benthic remineralisation exist for the 

Canadian Beaufort Sea and Amundsen Gulf (e.g., Renaud et al. 2007a, Darnis et al. 

2012, Roy et al. 2015), but food web structure itself remains understudied. 

Associations between demersal food web structures and the organic matter 

production/input regimes that sustain them have yet to be defined across much of the 

study region. Moreover, significant knowledge gaps remain regarding the distributions 

and occurrences of offshore biota in the Canadian Beaufort Sea and Amundsen Gulf, 
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especially for fish. The lack of baseline knowledge regarding trophic and ecosystem 

structure in the Canadian Beaufort Sea region inhibits effective ecosystem-based 

management in the face of climate change and other potential disturbances (e.g., 

hydrocarbon development, offshore fisheries, and increased shipping).  

 

Stable isotope applications in trophic ecology 

 

The work in this thesis relied largely on sampling events that could not be 

repeated. As such, stable isotope analysis was applied to obtain temporally-integrated 

indications of feeding (weeks to months; e.g., Hesslein et al. 1993, Frazer et al. 1997). 

Stable isotope ratios of nitrogen (δ15N) measured in consumer tissues exhibit stepwise 

enrichment between trophic levels and can be used to estimate relative trophic levels 

(DeNiro & Epstein 1981, Minagawa & Wada 1984, Peterson & Fry 1987). In contrast, δ13C 

changes little between trophic levels and can trace consumer food sources when the 

δ13C values of those sources differ (DeNiro & Epstein 1978, Rounick & Winterbourn 

1986, Cabana & Rasmussen 1996). In the Arctic Ocean, differences in δ13C between 

primary organic carbon sources are usually sufficient to discriminate between open-

water phytoplankton and ice-algae in the pelagic zone (e.g., Søreide et al. 2006), and 

between terrestrial, fresh marine, and refractory marine sedimentary organic carbon in 

the benthic zone (e.g., Magen et al. 2010). Moreover, quantitative isotopic niche metrics 

can be calculated for populations or communities from the distributions of individuals 

in δ15N and δ13C bivariate space, which then act as proxies for trophic niche dimensions 

(Bearhop et al. 2004, Layman et al. 2007, Swanson et al. 2015). Stable isotope analyses 

were therefore well suited to the purposes of this thesis, allowing the identification of 
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the primary energy pathways that fuelled and structured demersal marine 

communities. 

 

Sampling program: The BREA Marine Fishes Project 

 

Sample collection for this thesis was conducted by the Beaufort Regional 

Environmental Assessment Marine Fishes Project (BREA MFP), a multi-stakeholder 

research initiative established by Aboriginal Affairs and Northern Development Canada 

and implemented by Fisheries and Oceans Canada. The BREA MFP was designed to fill 

large knowledge gaps regarding diversity, distributions, and habitat associations of 

offshore fishes in the Canadian Beaufort Sea in support of regulatory decision making 

and conservation initiatives. Prior to the BREA MFP, ecological studies in the Canadian 

Beaufort Sea and Amundsen Gulf had been restricted to nearshore areas (< 200 m; 

reviewed in Majewski et al. 2016). Essentially, the primary objective of the BREA MFP 

was to provide an ecological baseline of ecosystem structure and function in offshore 

regions. 

Although the BREA MFP was touted as a fish-focused research initiative, the 

program aimed to be a comprehensive ecosystem study that described the habitat 

setting and biological communities within which fishes operate. As a result, a stable 

isotope database that included > 4000 individual samples of 127 unique fish and 

invertebrate taxa was developed over the course of this thesis (Table 1.1). Food web 

analyses were supported by data for biomass distributions, physical oceanography, 

sedimentary characteristics, and primary production. Species inventories provided by 

the program extended the scope of research by allowing the development of a 
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biological traits database for many taxa additional to those included in the stable 

isotope database (see Appendices B & C). 

Ultimately, the collaborative sampling program and research network provided by 

the BREA MFP set the physical-biological context for analysing food web structure. 

Understanding the environmental setting was critical for interpreting stable isotope 

data (see Chapter 4) and for developing mechanistic explanations of the spatial 

patterns detected in food web structure (see Chapters 3 and 5).  

 

Research objectives 

 

Understanding the structure of Arctic benthic food webs and their responses to 

environmental gradients is key to predicting ecosystem functioning in future climates. 

To that end, this thesis aimed to (a) build a more comprehensive understanding of 

trophic linkages in marine fish and invertebrate communities between nearshore 

and offshore environments, and between benthic and pelagic habitats, and (b) 

characterise food web responses to gradients in oceanography and benthic food 

availability. These primary research objectives were addressed through four analytical 

chapters, which were conducted as related but independent studies on the trophic 

ecology, structure, and function of benthic fish and invertebrate communities in the 

Canadian Beaufort Sea and Amundsen Gulf: 

In Chapter 2, size spectra were quantified for fish communities at four habitat 

depths along the Canadian Beaufort Sea shelf and continental slope. The objectives of 

the chapter were to assess whether fish food webs were strongly size structured (i.e., 

the largest individuals occupied the highest trophic positions), whether size structure 

changed with depth, and finally whether depth-related patterns in size structure were 
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influenced by the relative use of benthic versus pelagic food sources. By examining the 

link between benthic-pelagic coupling and size spectra, the information in Chapter 2 

may inform the development of methods to monitor changes in fish food web 

structure. Moreover, results contribute to the currently underdeveloped knowledge 

base regarding the ecology of offshore fishes. 

In light of findings from Chapter 2, drivers of benthic-pelagic food web coupling 

for fish and invertebrates across the Canadian Beaufort Sea and Amundsen Gulf were 

explicitly examined in Chapter 3. The objectives of Chapter 3 were to examine how 

trophic structure was influenced by the vertical water mass profile and by alongshore 

gradients in organic matter input regimes. Stable isotope data were used to quantify 

trophic niche indices at the community and functional group level. Trophic niche 

indices were paired with algal biomass and sedimentary data to assess differences in 

trophic structure among four water mass assemblages, and among three longitudinal 

regions. Information provided by Chapter 3 identified benthic areas that will respond 

in different ways to predicted climate-driven changes in hydrography and surface 

production. 

 Investigations in Chapter 4 built on differences in food web structure between 

the Canadian Beaufort Sea and Amundsen Gulf observed in Chapter 3, which were 

hypothesised to be related to POM input and flux dynamics. Microbial processing of 

organic matter during sinking can cause an increase in the δ15N of POM with water 

depth, which is then reflected in the tissues of some benthic functional groups 

(Mintenbeck et al. 2007). The objectives of this chapter were to identify which 

functional groups exhibited significant change in δ15N with water depth, and to assess 

whether the rate of change differed between the Canadian Beaufort Sea and Amundsen 

Gulf, which are subject to different POM flux dynamics in the upper water column (e.g., 
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Sampei et al. 2011). A mixed effects modelling approach was employed to examine and 

compare δ15N-depth relationships among functional trophic groups and regions. The 

conclusions of Chapter 4 have implications for comparing isotopic trophic structure 

among regions and functional groups, and provide more evidence that organic matter 

flux regimes play an important role in structuring benthic food webs across the study 

region. 

Following the conclusions of previous chapters, the aim of Chapter 5 was to 

assess linkages between benthic functional food web structure and environmental 

indicators of benthic food supply and bottom oceanography. Functional diversity 

measures based on biological species traits and stable isotope ratios were calculated 

and combined to examine spatial trends in trophic functional structure across the 

study region. Significant associations between pairwise combinations of biological 

traits and environmental indicators were tested with a multivariate approach. Because 

species with the greatest biomass are likely to have the largest impact on ecosystem 

functioning (Grime 1998), all analyses in Chapter 5 were weighted by relative species 

biomasses. The results of Chapter 5 demonstrate the utility of using traits-based and 

isotopic functional composition as indicators of food web responses to environmental 

change. 

Finally, the main findings of the research are synthesized in Chapter 6 and 

emergent patterns in physical-biological properties that structure benthic food webs in 

the Canadian Beaufort Sea and Amundsen Gulf are outlined. The relevance of new 

knowledge to ecosystem management is discussed, and fruitful avenues for future 

research are suggested.  
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Table 1.1. Summary of the taxonomic distribution of stable isotope samples processed 

for food web studies contained in the thesis. 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Food web 

component 
N 

Num. of 

taxa 

Num. of 

genera 
Phyla 

Fish 1823 30 18 Chordata 

Epifauna 1635 41 29 Mollusca, Cnidaria, 

Echinodermata, 

Arthropoda, Chaetognatha 

Infauna 288 32 19 Mollusca, Annelida, 
Sipuncula, Arthropoda 

Zooplankton 286 24 15 Arthropoda, Mollusca, 

Ctenophora, Cnidaria, 

Chaetognatha, Chordata 
Sediment 70 NA NA NA 
     
Total: 4102 127 81 10 
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Figure 1.1. Map of the Beaufort Sea and Amundsen Gulf. Ice and surface water circulation in the Beaufort Sea is 

dominated by the anti-cyclonic Beaufort Gyre. Pacific-origin waters enter the Beaufort Sea and Amundsen Gulf from the 

Chukchi Sea, whereas Atlantic-origin waters enter from the East Siberian Sea. Subsurface circulation of Pacific- and 

Atlantic-origin waters flows eastward along the continental slope. The freshwater plume from the Mackenzie River is 

typically steered eastward along the shore by the Coriolis force, but can be drawn offshore and to the west by westward 

winds. 
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Figure 1.2. The simplified vertical water mass structure that occurs in the Canadian 

Beaufort Sea and Amundsen Gulf, with mean salinity and temperature for each layer 

(Swift et al. 1997, MacDonald et al. 2000, McLaughlin et al. 1996, 2005; Mulligan et al. 

2010). 

 

 

 

Water mass layer 
Salinity 

range (PSU) Mean temperature (°C) 

Freshwater plume temporally and spatially 
variable, but as low as 10 

temporally and spatially 
variable, but as high as 15 

Polar Mixed Layer 30 to 33.5 ~0 

Pacific Halocline 33 to 34.3 0 to -1.4 

Atlantic Layer 34.5 to 34.9 ~ 0 

Arctic Deep Water 34.9 ~ -0.5 
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2 Influences of depth and pelagic subsidies on the size-based 
trophic structure of Beaufort Sea fish communities 

 

Introduction 
 

Demersal communities depend on energy and matter produced in the near-

surface layers of the ocean. This  imposes depth-related constraints on food 

availability by limiting the amount of carbon flux reaching the seafloor and on food 

quality by increasing the length of time available for organic matter to degrade during 

sinking (Lee et al. 2004, Smith et al. 2008). As a result, shifts in demersal (bottom-

dwelling) community composition, biomass, diversity, and associated trophic 

strategies are commonly observed along depth gradients (e.g., Grebmeier et al. 1989, 

Conlan et al. 2008, Wei et al. 2010, Majewski et al. 2015). To date, most depth-related 

shifts in community structure have been examined from a taxonomic perspective. 

Taking a macroecological approach, however, can shed light on how depth influences 

community structure via the distribution of biomass among body sizes or trophic 

levels irrespective of taxonomy (e.g., Haedrich & Merrett 1992). Investigations of the 

relationship between biomass  and body mass (known as biomass size-spectra 

relationships) can lend insight into energy transfer, metabolic processes, and predator-

prey interactions (Dickie et al. 1987, Brown & Gillooly 2003, Jennings & Mackinson 

2003). Changes in biomass size-spectra relationships can also be employed to track 

changes in community structure incurred from anthropogenic stress (Jennings & 

Blanchard 2004), but processes that contribute to natural variation in biomass size-

spectra relationships must be understood before the relationships are used as a 

monitoring tool. 
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Aquatic food webs are strongly size-structured, with larger predators 

consuming smaller prey (e.g., Scharf et al. 2000). Size is thus often a better predictor of 

trophic level than species identity for individuals feeding within a hierarchal food 

chain, as many aquatic predators increase in size by several orders of magnitude 

through ontogeny (Dickie et al. 1987, Jennings et al. 2001). At the same time, the 

inefficient transfer of energy from prey to predators at each trophic step in the food 

chain constrains the amount of energy available to higher trophic levels (i.e., larger-

bodied individuals), leading to predictable negative relationships between biomass and 

body size (Duplisea & Kerr 1995).  

Not all components of the food web, however, are energy-limited in a size-

dependent manner. Disaggregating communities into feeding guilds for size spectral 

analyses has a significant impact on the slope of size-spectra relationships and can 

provide insight into community dynamics (Blanchard et al. 2009). For example, benthic 

detritivores and filter-feeders at the seafloor share a common resource irrespective of 

body size and, therefore, do not commonly display strong negative size-spectra 

relationships when analysed separately from the remainder of the food web (e.g., Saiz-

Salinas & Ramos 1999). The size-spectra slopes of disaggregated benthic invertebrate 

communities become steeper when they are subject to heavier predation by fish 

because fish tend to prey on the largest invertebrates (Blumenshine et al. 2000, 

Blanchard et al. 2009). Observations of steeper benthic invertebrate size-spectra 

relationships at greater depths (Saiz-Salinas & Ramos 1999) suggest that fish predators 

feed more heavily on benthic prey in deeper habitats. The effect of benthic diets on 

disaggregated predatory fish size spectra remains unclear (Blanchard et al. 2009). 

Modelling exercises performed by Blanchard et al. (2011) demonstrated that high 

benthic-pelagic coupling promoted steeper, truncated size-spectra relationships in 
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predator fish communities compared to scenarios where relatively small proportions 

of detrital fall-out reached the seafloor. As the amount of detrital fall-out reaching the 

seafloor declines rapidly with depth (Lee et al. 2004, Smith et al. 2008), shallower (less 

negative) predator size-spectra slopes should be observed in deeper habitats for fish, 

indicating a weaker relationship between size and biomass production. 

While surface production is the ultimate energy source for deep-sea food webs, 

not all predators wait for it to reach the seafloor passively. Demersal fishes commonly 

take advantage of active biological transport to obtain additional energy from the 

pelagic food web by consuming pelagic organisms that make diel vertical migrations to 

the seafloor (e.g., fishes, zooplankton, jellyfish, euphausiids; Trueman et al. 2014). 

Demersal fish may also make vertical migrations to feed in the upper reaches of the 

water column (Mauchline & Gordon 1991). Consequently, the biomass of strictly 

benthic-feeding fishes declines with depth as resources become restricted, while the 

biomass of benthopelagic fish that supplement their diet with pelagic prey increases 

(Haedrich & Merrett 1992, Trueman et al. 2014). Thus, subsidies from “external” 

ecosystems can sustain high biomass in upper trophic levels even if there is not 

enough energy available from lower trophic levels in the local food web (del Giorgio et 

al. 1999, Hocking et al. 2013). Inverted biomass pyramids and positive size-spectra 

slopes can be observed if subsidies are accessible to only a subset of the community 

(Polis et al. 1997, Trebilco et al. 2013). Therefore, predator size-spectra slopes could 

become shallower with increasing habitat depth via two potential mechanisms. 

Predator communities may become less trophically size-structured with depth due to 

greater reliance on a shared benthic invertebrate resource rather than a hierarchical 

food chain. Alternatively, pelagic subsidies may facilitate reduced competition in deep 
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habitats and allow the maintenance of high biomass in upper trophic levels despite 

strong size-structuring within the predator community. 

The present study investigated depth-related changes in the size structure of 

demersal predator/scavenger fish communities across an Arctic continental slope, and 

tested whether changes in biomass size-spectra relationships were systematically 

related to reliance on benthic-derived carbon sources. Specifically, the following 

predictions were tested: (1) predator size-spectra slopes become shallower (less 

negative) with increasing habitat depth; (2) the trophic structure of predator fish 

communities remains strongly influenced by body size (i.e., size-structured) regardless 

of depth; and (3) the shallowing of size-spectra slopes with increasing habitat depth, 

despite the presence of strong trophic size-structuring, is associated with pelagic 

subsidies to demersal predators rather than with reliance on shared benthic resources.  

 

Methods 

Sample collection and processing 

 

The southern Canadian Beaufort Sea is defined by the broad, rectangular 

Beaufort continental shelf, which extends approximately 120 km offshore to the 200 m 

isobath, past which the seafloor descends quickly to several thousand meters (Cobb et 

al. 2008). The Beaufort Continental Shelf thus provides a wide geographic region with 

relatively similar bathymetry in which to test the effects of depth on size spectra (Fig. 

2.1).  

Sampling was conducted by the Beaufort Regional Environmental Assessment 

Marine Fishes Project (Fisheries and Oceans Canada) aboard the chartered commercial 

stern trawler F/V Frosti during the ice-free season from 5 August to 3 September 2012. 
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Samples were collected along four transects that spanned the Beaufort Shelf and 

associated continental slope (TBS, GRY, KUG, and DAL; Fig. 2.1), each with seven pre-

defined sampling stations at depths of 18-40, 75, 200, 350, 500, 750, and 1000 m. 

Sampling station boundaries were defined by a radius of one nautical mile. Fish were 

collected with a modified Atlantic Western IIA benthic otter trawl (successive mesh 

sizes of 127 and 114 mm for the wings and belly, respectively, and 102 mm with a 13 

mm liner in the intermediate and cod-end to retain small fish). The trawl net was 

attached to Thyborøn Type II, 2.72 m bottom-tending doors to ensure the net remained 

open laterally during trawling. Trawling was targeted at 20 min bottom-time and 

standardized to a target speed-over-ground of 1.49 ms-1 (2.9 knots; 2.7 to 3.1 kn 

acceptable range). Trawling was typically conducted along bathymetric contours unless 

local currents dictated adjustment to ensure acceptable trawl performance.  Scanmar 

CGM-05/TE40-2 net mensuration equipment was used in conjunction with door spread 

and trawleye sensors to monitor net performance and bottom-contact to ensure 

consistent sampling efficiency across stations. A Furuno GP31 global positioning 

system was used to monitor bottom-contact and lift-off positions, and speed-over-

ground. Average door spread, speed, and bottom-time of each net deployment were 

recorded and used to calculate area swept. 

Fish were sorted to the lowest possible taxonomic resolution, weighed (g), 

measured for standard length (mm), and frozen at – 50 °C immediately after collection. 

Where taxonomic doubt existed, voucher specimens were preserved in formaldehyde 

for later examination by taxonomists. Brittle stars from the family Ophiuridae 

(Ophiocten sericeum (Forbes), and Ophiopleura borealis Danielssen & Koren) were also 

collected from trawl catches as a representative benthic primary consumer for later 

calculations of fish trophic levels. The zooplankter Calanus hyperboreus Krøyer was 
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collected as a representative pelagic primary consumer from oblique tows of a bongo 

net (0.25 m2, 500 µm mesh) through the upper 200 m of the water column. 

Analyses were focused on 14 of the most abundant fish species caught, which 

represented a predator/scavenger food web and comprised 97% of the total catch. 

Species not included were considered rare (<10 individuals caught across all sites 

combined and never represented more than 0.01 % of numerical abundance of total 

catch). A subset of individuals from each species was selected for stable isotope 

analysis and included a wide range of sizes, with minimum n = 15 per species (Table 

2.1). Samples of dorsal muscle tissue (fish) and whole body (C. hyperboreus, 

Ophiuridae) were oven-dried at 50 °C, ground to a homogenous powder, and analysed 

for N and C isotopic composition using a Delta Plus continuous flow isotope mass 

spectrometer (Thermo-Finnigan) coupled to a 4010 Elemental Analyzer (Costech 

Instruments) at the University of Waterloo Environmental Isotopes Laboratory. 

Following acidification with 1 N HCl to remove inorganic carbon, ground brittle stars 

were re-analysed to obtain δ13C values that more accurately reflected metabolically 

active tissues (Søreide et al. 2006). The acidification protocol followed the drop-by-

drop method, without rinsing, proposed by Jacob et al. (2005). Elemental stable isotope 

ratios (15N:14N, 13C:12C) were expressed in standard δ notation as parts per thousand (‰) 

relative to the international standards Vienna Pee Dee Belemnite for carbon and 

atmospheric N
2 
for nitrogen (Craig 1957, Mariotti 1983). Working laboratory standards 

included two standards of (NH
4
)

2
SO

4
 for δ15N (0.77 and 20.2 ‰) and one standard of 

cellulose for δ13C (-25.5 ‰). Analytical error for δ15N and δ13C during any given sample 

run did not exceed 0.3 and 0.2‰, respectively, based on repeated measurements of 

working laboratory standards cross-calibrated to the international standards (no less 

than 20% of all samples within a given run were replicates of laboratory standard 



 

25 
 

material). Repeatability based on duplicate measurement of sample material was 0.2 

and 0.1 ‰, respectively, for δ15N and δ13C. 

Lipid extraction can cause significant change in analysed isotope ratios (e.g., 

Logan et al. 2008). Lipid extraction was originally proposed as a procedure for 

removing bias from estimates of food chain length based on δ13C data  (McConnaughey 

& Roy 1979), and is now often suggested as a solution to avoid confusion between 

isotopic variability caused by lipids and variability caused by a habitat or dietary shift 

(Logan et al. 2008). The choice of lipid extraction or mathematical correction technique 

has implications for stable isotope values (Logan et al. 2008, Fagan et al. 2011), 

particularly as not all extraction methods are equally effective at removing polar and 

non-polar lipids (Iverson et al. 2001). Thus, choice of whether to extract and/or 

extraction technique has implications for comparisons among studies (Murry et al. 

2006). However, decisions to use extracted or non-extracted data do not appear to 

affect interpretations of food web structure (Murry et al. 2006). Increasing evidence for 

the inconsistency among species and lack of significance in studied bulk C:N ratio and 

Δ13C relationships (e.g., Fagan et al. 2011; Medeiros et al. 2015) has resulted in a 

consensus in the literature that extraction is unnecessary where C:N ratios are 

consistently < 4 (e.g., Jardine et al. 2013). Given the above and the consistently low C:N 

values observed in the fish included in this study (Table 2.2), lipids were not extracted 

prior to stable isotope analyses (Søreide et al. 2006). 

 

Data analysis 

 

Sampling sites were divided into four habitat depth categories: nearshore shelf 

(18 to 50 m), offshore shelf (75 to 200 m), upper slope (350 to 500 m), and lower slope 



 

26 
 

(750 to 1000 m). Cut-off points between depth categories were based on significant 

differences in fish community composition associated with gradients of depth, salinity, 

and water mass structure (Majewski et al. 2013, Majewski et al. 2015). Fish from each 

depth category were pooled across transects for analyses (Jennings et al. 2001, 

Macdonald et al. 2012). 

To assess changes in biomass size-spectra relationships with depth, normalized 

biomass size spectra were examined for each habitat depth separately. All fish were 

assigned to log
2
 body mass classes which were the midpoints between intervals of 1 on 

the log
2
 scale from 1.5 to 10.5, representing mass intervals of 2-4, 4-8, 8 -16, 16-32, 32-

64, 64-128, 128-256, 256-512, 512-1024, and 1024-2048 g (Jennings et al. 2001). Fish < 

2 g (generally < 65 mm) were excluded from the analysis as a conservative measure 

against potential mesh size-selectivity of trawl catches. Fish that weighed > 2048 g 

were excluded because they represented a very small proportion of the catch (n = 4 

across all sites). Cumulative biomass within each log
2
 body mass class was measured 

as biomass density in g m-2 and normalized by the width of the size class (Duplisea & 

Kerr 1995). All species within the Lycodes genus (L. frigidus Collett 1879, L. seminudus 

Reinhardt 1837, and L. polaris Sabine 1824) displayed negative relationships between 

δ15N and log
2
 body mass, which is likely associated with feeding from 15N-enriched 

infaunal food sources in early life (Atkinson & Percy 1992, Bjelland et al. 2000). When 

included in community-wide δ15N-body mass relationships, Lycodes spp. constituted a 

separate grouping that did not align with the remainder of the community (Fig. 2.2). 

Lycodes spp. were therefore considered uncoupled from the size-structured food web 

and excluded from further analyses. Size spectra were quantified using linear 

regressions of normalized log
2
 biomass density as a function of log

2
 body mass class.  
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A one-way analysis of covariance (ANCOVA) was conducted to determine if size-

spectra slopes differed among habitat depth categories. 

Trophic levels were calculated from δ15N values for all fish using the scaled 

approach developed by Hussey et al. (2014). Trophic levels are commonly calculated 

from δ15N values under the assumption that the trophic enrichment of 15N between 

successive trophic levels (Δ15N) can be treated as constant (assumed to be 3.4 ‰ in 

most aquatic systems, Post 2002). However, empirical evidence and meta-analyses have 

shown that Δ15N  can be negatively related to diet δ15N values such that the Δ15N 

between a predator and its prey decreases up the food chain (Hussey et al. 2014). This 

phenomenon leads to non-linear relationships between δ15N and body mass in size-

structured food webs, a trend observed in the data collected for this study. Trophic 

level was calculated for all individuals using model parameters taken from Hussey et 

al. (2014) and using brittle stars (family Ophiuridae) as the depth-specific benthic 

primary consumers at trophic level 2.5 (Iken et al. 2005). Ophiuridae are deposit 

feeders, and thus would be expected to reflect depth-related increases in δ15N of 

sediment particulate organic matter observed along continental slopes (Mintenbeck et 

al. 2007) 

The presence of trophic size-structuring in food webs was assessed using linear 

regressions between biomass-weighted trophic level and log
2
 body mass class for each 

habitat depth separately (Jennings et al. 2002). Biomass-weighted trophic level was 

calculated as: 

������ =  
∑ ����  ∙  ���

∑ ���
 

where TL
ij
 and W

ij
 are the trophic level and mass, respectively, of individual i in body 

mass class j (Jennings et al. 2002). Minimum n per body mass class was three 
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individuals. Data for the entire size distribution of the fish community were included 

in the linear regressions of trophic level against log
2
 body mass class so size-structure 

could be estimated across all size classes, including those with weights < 2 g. Where 

unknown, δ15N values were estimated from species-specific linear regressions with log
2
 

standard length and used to calculate trophic level to ensure biomass weighting was 

not biased by lack of data (Jennings et al. 2002). Analyses of covariance (ANCOVA) 

were used to assess if depth had a significant effect on the slope of the relationship 

between δ15N and log
2 
standard length for each species. Estimates of δ15N were made 

separately for each depth in cases where depth did have a significant effect on the 

slope of the relationship. Otherwise, estimates of δ15N were made based on all 

individuals pooled across habitats. In all cases, δ15N estimation was restricted to 

individuals within the size range for which observed δ15N data were available.  

A lack of strong negative scaling between biomass and body size can indicate a 

lack of size structure within a community (i.e., that both large and small individuals 

may occupy any given trophic level). Proportions of total biomass density (% g m-2) 

observed within each trophic level were calculated for each habitat depth to assess 

whether shallower size-spectra slopes were associated with more uniform distributions 

of biomass among trophic levels. 

Stable isotopes of C were used to assess whether depth-related changes in size-

spectra slopes were related to greater reliance on benthic resources with increasing 

depth. Sinking particulate organic matter becomes enriched in 13C with depth due to 

preferential uptake of the lighter isotope during microbial decay (Magen et al. 2010). 

As a result, benthic predators have higher δ13C values than those feeding primarily 

from the epibenthic environment (Trueman et al. 2014).  Delta 13C was used to estimate 
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the per-mille isotopic enrichment relative to a pelagic baseline (Δ
pel

 ; referred to as ε by 

Clark & Fritz 1997) for all individuals for which observed δ13C data were available as  

  

∆������
=  �

1000 + ��

1000 + ��
− 1� × 10� 

where δ
i
 is the pelagic baseline δ13C value, and δ

j
 is the consumer δ13C value (Clark & 

Fritz 1997). C. hyperboreus was used as the depth-specific pelagic baseline primary 

consumer. The relationship between Δ
pel

 and log
2
 body mass was then assessed using 

linear regression for each habitat depth separately. 

Fish species were classified as either benthic (feeding predominantly on prey at 

or within the sediment) or benthopelagic (feeding predominantly on prey that live 

above the seafloor) according to published dietary observations (Atkinson & Percy 

1992, Bjelland et al. 2000, Coad & Reist 2004, Norcross et al. 2011). Differences in Δ
pel

 

values were assessed between the two feeding classifications at each depth category to 

assess realized differences in benthic resource use (e.g., Macpherson 1981, Haedrich & 

Merrett 1992, Trueman et al. 2014).  

All statistical and graphical procedures were performed in R (version 3.1.0, R 

Core Team, 2014) using the packages plyr (Wickham, 2011), gplots (Warnes et al., 

2014), ggplot2 (Wickham, 2009), and Hmisc (Harrell 2015). Assumptions of linearity, 

homoscedasticity, and normality of errors for all linear models were evaluated using 

the gvlma package in R (Pena & Slate, 2014), and visually using residual plots. Tests 

were considered significant at α= 0.05. 

 

Results 
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In accordance with the hypothesis, biomass size-spectra slopes decreased 

significantly with habitat depth (ANCOVA, F
4,19

 = 9.98, p < 0.001; Fig. 2.3). Biomass 

density was significantly negatively related to log
2
 body mass class for all habitat 

depths except the deepest habitat, and the proportion of variance in biomass density 

explained by log
2
 body mass class decreased with depth (Table 2.3).  

Maximum observed fish body masses were 35, 61, 4262, and 4597 g for the 

nearshore shelf, offshore shelf, upper slope, and lower slope, respectively. The 

increase in maximum observed body mass with depth by two orders of magnitude was 

due to the occurrence of large-bodied Greenland halibut (Reinhardtius hippoglossoides 

(Walbaum); Table 2.1), which were absent from the shelf habitats. Similarly, the 

proportion of fish biomass in trophic levels 4 and 5, which were almost exclusively 

occupied by Greenland halibut, was greater for the slope compared to the shelf 

habitats (Fig. 2.4). 

Biomass-weighted trophic level was significantly positively related to log
2
 body 

mass class for all habitat depths when individuals were considered regardless of 

species identity (Table 2.3, Fig. 2.5). When analysed individually, most species 

displayed positive linear relationships between δ15N and log
2 
body mass, although the 

relationship was not significant for Icelus spp. (p = 0.33) and Greenland halibut (p = 

0.42). Depth did not have a significant effect on the slope of the relationship between 

δ15N and log
2 
standard length for any individual species except Arctic alligatorfish 

(Aspidophoroides olrikii Lütken; ANCOVA, F
1, 55

 = 5.78, p = 0.02). Accordingly, Arctic 

alligatorfish was the only species for which δ15N estimates were made separately for 

each habitat depth. 

Isotopic enrichment relative to the pelagic baseline (Δ
pel

) was positively related to 

log
2
 body mass at all depths (Fig. 2.6). The relationship was weak for the nearshore 
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shelf habitat (F
1,239

 = 5.00, p = 0.03, r2 = 0.02) and insignificant for the offshore shelf 

habitat (F
1,175

 = 0.45, p = 0.50, r2 = 0.003). Stronger relationships were observed in 

deeper habitats. The positive relationships between Δ
pel

 and log
2
 body mass were 

stronger for the upper slope (F
1,174

 = 274, p < 0.001, r2 = 0.61) than the lower slope (F
1,98

 

= 41.22, p < 0.001, r2 = 0.30). At both shelf habitats, benthic fishes had higher Δ
pel

 

values than benthopelagic fishes for any given body mass (Fig. 2.6 a,b), but this 

distinction was not apparent for the two deeper slope habitats (Fig. 2.6 c,d). The range 

of Δ
pel

 values for the entire community was also larger for the two shelf habitats 

(nearshore = 5.66 ‰, offshore = 5.62 ‰) than for the two slope habitats (upper slope = 

4.28 ‰, lower slope = 3.82 ‰). Fish biomass peaked at the upper slope habitat for both 

benthic and benthopelagic species (Fig. 2.7). 

 

Discussion 

 

Biomass size-spectra relationships became significantly shallower (less negative) 

and weaker with increasing habitat depth for demersal fish communities, to the point 

that the relationship between biomass density and log
2
 body mass class was not 

significant at the deepest habitat. Despite depth-related effects on size spectra, fish 

community food webs at all habitat depths were strongly size-structured (i.e., there 

were significant positive relationships between δ15N and body size), indicating that 

larger individuals consistently occupied higher positions in the food chain. Size 

structuring was supported by the observation that the distribution of biomass among 

size classes was related to the distribution of biomass among trophic levels, such that 

communities in deeper habitats that had shallower size-spectra slopes also had a 

greater proportion of biomass in upper trophic levels. Communities in deeper habitats 
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also had lower size-specific variation in isotopic enrichment relative to the pelagic 

baseline (Δ
pel

). The clear difference in Δ
pel

 values between fish species classified as 

benthic and those classified as benthopelagic was only evident in the two shallower 

shelf habitats, indicating a decline in differences between feeding guilds with depth. 

The presence of size-based hierarchical food chains at all habitat depths should 

result in lower energy availability to larger size classes due to inefficient energy 

transfer through the food chain, and consequently lower relative biomass production 

(Trebilco et al. 2013). In other words, size-spectra slopes should be strongly negative 

for all depths. The maintenance of high relative biomass in large size classes at deeper 

habitats is likely a result of two simultaneous processes: (1) lower particulate organic 

carbon flux restricting resource availability for small benthic feeders with increasing 

depth (i.e., low resource availability for smaller fishes; Carrassón & Cartes 2002, Smith 

et al. 2008), while (2) pelagic subsidies facilitate competitive release for benthopelagic 

feeders and are most accessible to large predators (Haedrich & Merrett 1992, Trueman 

et al. 2014). 

Significant decreases in megafaunal biomass with increasing depth is a global 

trend in marine ecosystems attributed to lower energy availability at great depth due 

to lower downward organic carbon flux (Wei et al. 2010). For demersal fishes, energy 

acquisition from the pelagic zone via vertical migrations of either prey or predators is 

also important for biomass production (Mauchline & Gordon 1991, Trueman et al. 

2014).  When demersal fishes are considered apart from benthic invertebrates, biomass 

in north-temperate oceans generally peaks at mid-slope depths between 1000 and 

2000 m (Gordon & Mauchline 1990, Haedrich & Merrett 1992, Trueman et al. 2014), 

corresponding to the maximum distribution of the vertically migrating pelagic 

community (Mauchline & Gordon 1991, Trueman et al. 2014). Along the Beaufort slope, 
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demersal fish biomass peaked at depths slightly shallower than those previously 

reported for other slope communities, between 350 and 500 m. Shallower biomass 

peaks in the Beaufort Sea may be a result of several potential mechanisms. First, the 

depth distributions of some fishes are generally shallower in the Arctic than in the 

southern limits of their range due to the availability of shallow cold water habitat 

(Møller et al. 2005). Second, the upper slope habitat of the Beaufort Shelf generally 

corresponds to the front between cold Pacific water and the relatively warm, Atlantic 

water below, known as the thermohalocline (200 to 300 m). Large aggregations of 

zooplankton and predatory fishes have been observed where these two water masses 

meet, creating a bathymetric band of concentrated prey and predator abundances 

along the Beaufort slope between 300 to 500 m. Relationships between fish biomass 

distributions and water mass structure have been previously demonstrated in Arctic 

seas, including in the Beaufort Sea (e.g., Bergstad et al. 1999, Majewski et al. 2015). 

Third, diel migration behaviour of pelagic fauna may be affected by  the receding ice 

pack and its associated ice-edge bloom (Wallace et al. 2010) such that maximum 

migratory behaviour may occur over shallower depths than in more temperate seas. 

Total biomass declined beyond 500 m depth, but there was evidence for 

different biomass responses to depth between large and small body size classes in the 

size spectra. In the two shelf habitats, the data supported the modelling results of 

Blanchard et al. (2011) where increased benthic-pelagic coupling characteristic of 

shallower waters led to steeper, truncated size spectra. In the two slope habitats of 

this study, declines in normalized biomass were only observed for smaller size classes 

of fish. Biomass estimates for the larger size classes were much less variable between 

the two deeper slope habitats, indicating that larger individuals were not subject to the 

same resource limitations with depth as smaller individuals (Polis et al. 1997). The 
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three largest size classes were dominated by Greenland halibut, a species known to 

commonly undertake vertical migrations to obtain energy from the pelagic system 

(Jørgensen 1997). Greenland halibut collected during this study similarly had some 

pelagic prey in their stomachs and fatty acid signatures consistent with pelagic feeding 

(W. Walkusz & C. Giraldo, per. communication). Such “external” inputs can result in 

positive or unimodal size spectra despite evidence for hierarchical food chains if 

subsidies are only available to a subset of the community (e.g., Polis et al. 1997, 

Hocking et al. 2013). In the case of demersal fish communities, larger predators are 

more likely than smaller fish to consume prey outside the benthic boundary layer 

(Carrassón & Cartes 2002), likely due to stronger swimming abilities. Although pelagic 

fauna have long been recognized as an important contributor to deep-sea fish 

production, the findings here demonstrate the impact may be size dependent.  

The change in resource availability along the depth gradient appears to facilitate 

a transition in community composition, whereby the number of benthic species is 

greater in the nearshore and offshore shelf habitats than in the upper and lower slope 

(although it should be noted that benthic Lycodes spp. were excluded from analyses; 

see Methods). Similar transitions have been observed in other slope communities 

(Haedrich & Merrett 1992, Trueman et al. 2014). At shallower depths, detrital fall-out 

reaches the seafloor more nutritionally intact (Smith et al. 2008), providing greater 

opportunity for specialization. There are generally more specialist species in the 

benthic than in the benthopelagic guild of demersal fishes, but feeding preferences 

may only be a luxury afforded to those in habitats where resources are abundant 

(Macpherson 1981, Carrassón & Cartes 2002). A decline in the use of benthic resources 

at deeper habitats is evident in this study from Δ
pel

 values, which reached lower 

maximums in the deeper slope habitats. The positive relationship between Δ
pel

 values 
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and log
2
 body mass at all habitats is most likely indicative of the collinearity between 

δ15N, δ13C, and body size rather than indicative of larger individuals having more 

benthic diets. When viewed within body mass classes, there was a clear distinction in 

Δ
pel

 values between the two feeding guilds in the nearshore and offshore shelf habitats 

which disappeared in the upper and lower slope communities, suggesting lower inter-

guild dietary variation with depth. Many of the polar species included in this study 

have poorly characterized, but highly varied diets (Atkinson & Percy 1992, Bjelland et 

al. 2000, Coad & Reist 2004, Norcross et al. 2011). It is likely that they are also 

opportunistic such that fish in both guilds will feed on both benthic and epibenthic 

prey to some degree. Isotopic distinction between feeding guilds may therefore be 

dampened in the deeper zones as a result of lower benthic species richness, reduced 

opportunity to specialize as resources become scarce, or a combination of both. 

Pelagic subsidies in the Beaufort Sea may also provide an important pathway for 

benthic-pelagic coupling at great depth. Direct benthic-pelagic coupling through down-

welled surface production is the most important source of organic matter for 

suspension and deposit feeding invertebrates (Smith et al. 2008, Wei et al. 2010), but 

demersal fish in deep-sea environments create a secondary pathway for benthic-

pelagic coupling via active biological transport (Trueman et al. 2014). Benthopelagic 

fish may transfer energy directly between the pelagic and benthic food webs by 

feeding within one and being consumed in the other. Such direct energetic transfers 

are likely more prevalent amongst small-bodied prey fishes, and likely contribute more 

to benthic fish production than to benthic invertebrate production. Alternatively, 

vertically migrating predators that feed in the pelagic zone may transfer pelagic carbon 

indirectly to the benthos via faecal matter and respiration while alive (Longhurst et al. 

1990), and via detritus when dead. Trueman et al. (2014) estimated that energy export 
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from the pelagic zone by benthopelagic fishes supported an additional 50% of benthic 

fish biomass at depths of 1500 m in the North Atlantic.  

The shallowing effect of large-bodied fish on marine size-spectra slopes is a 

common phenomenon, and is a useful tool for tracking the impacts of fisheries 

activities (i.e., the removal of large-bodied fishes) on ecosystem structure (Jennings & 

Blanchard 2004). Results from the current study lend support for this application of 

size-structure analyses in the Arctic. However, taxonomic-specific information was 

important for disentangling the potential causes for observed patterns, and it is 

argued here that size-based analyses alone lack the detail needed to understand 

potential anthropogenic impacts on community structure. The Beaufort Sea ecosystem 

has never been exploited by large-scale fisheries, such that the size spectra presented 

here may be considered a pre-development baseline. The role of Greenland halibut as 

integrators of benthic and pelagic food webs, and their impact on size-spectra 

relationships, suggests that size spectra could be useful indicators of change for both 

the benthic and pelagic environments.  

In conclusion, findings support the maintenance of high relative biomass in 

large predators by pelagic subsidies in deeper habitats, while decreasing availability of 

benthic resources limited biomass in smaller size classes and the benthic guild. Both 

taxonomic-specific and size-based information suggested pelagic subsidies contributed 

to depth-related changes in size spectra in the Beaufort Sea, but it is unknown if these 

processes are at work in other deep-sea environments. Other investigators are 

encouraged to consider whether subsidies commonly play an important role in 

determining size-spectra relationships of deep sea fish communities, and to quantify 

potential cascading effects on the benthic invertebrate community.
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Table 2.1. Fish species represented in this study, their affiliated habitats, the total number caught across all sampling 

sites (N), the total number submitted for stable isotope analysis (n), maximum standard length (SL) observed in this 

study, maximum weight observed in this study, and the habitat depths at which each species occurred (nearshore shelf, 

NS; offshore shelf, OS; upper slope, UPS, and lower slope, LWS). Fish used in this study comprised 97% of the total catch 

across all sampling sites. 

 

Scientific name Common name Feeding Type 
Total N 
caught 

Total 
biomass 

caught (g) 

n 
submitte
d for SIA 

Habitat depth 
occurrences 

Max 
SL 

(mm) 

Max 
weight 

(g) 
Anisarchus medius Stout Eelblenny Benthic 83 102.9 47 NS 99.4 3.6 

Boreogadus saida Arctic Cod Pelagic/Benthopelagic 3006 24 403.9 292 NS, OS, UPS,    
  LWS 

218.0 86.5 

Gymnocanthus tricuspis Arctic Staghorn  
   Sculpin 

Benthic 48 218.3 33 NS, OS 112.4 30.7 

Icelus bicornis Twohorn Sculpin Benthic 26 51.6 20 NS, OS 62.4 4.6 

Icelus sp. Unknown Icelus  
   sculpin 

Benthic 35 14.6 18 NS, OS 38.3 0.9 

Icelus spatula Spatulate Sculpin Benthopelagic 29 93.6 18 NS, OS, UPS 85.6 14.7 

Liparis fabricii Gelatinous Seasnail Benthopelagic 26 1134.3 15 UPS, LWS 237.0 111.1 

Liparis tunicatus Kelp Snailfish Benthic 95 2646.5 83 NS, OS, UPS,  
   LWS 

207.3 94.1 

Lycodes adolfi Adolf's Eelpout Benthic 104 568.0 75 UPS, LWS 191.9 22.7 

Lycodes polaris Canadian Eelpout Benthic 29 47.8 21 NS, OS, UPS 122.8 9.8 

Lycodes seminudus Longear Eelpout Benthic 28 2713.1 19 UPS, LWS 473.0 716.0 

Reinhardtius  
   hippoglossoides 

Greenland Halibut Benthopelagic 110 99 244.0 103 UPS, LWS 672.0 4597.0 

Triglops pingelii Ribbed Sculpin Benthopelagic 99 72.1 28 NS, OS, UPS 94.2 11.3 

Aspidophoroides olrikii Arctic Alligatorfish Benthic 88 69.4 59 NS, OS 63.6 1.7 
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Table 2.2. Mean δ15N, δ13C, and C:N ratios for marine fish analysed in this study at each habitat depth, summarised by (a) 

species, and (b) log
2
 body mass class. 

 

    Nearshore Shelf   Offshore Shelf   Upper Slope   Lower Slope 

  δ15N δ13C C:N   δ15N δ13C C:N   δ15N δ13C C:N   δ15N δ13C C:N 

(a) Scientific Name Common Name 

                 

Anisarchus medius Stout Eelblenny 15.25 -23.01 3.54 15.22 

Boreogadus saida Arctic Cod 12.57 -24.04 3.55 13.10 -23.74 3.50 14.07 -23.59 3.35 14.57 -23.41 3.35 

Gymnocanthus tricuspis 
Arctic Staghorn  
   Sculpin 13.14 -22.74 3.48 14.89 -21.99 3.50 

Icelus bicornis Twohorn Sculpin 14.95 -21.52 3.49 15.12 -22.41 3.57 

Icelus sp. 
Unknown Icelus  
   Sculpin 13.97 -22.00 3.57 14.47 -22.17 3.67 

Icelus spatula Spatulate Sculpin 15.36 -22.03 3.40 15.93 -21.88 3.39 16.69 

Liparis fabricii Gelatinous Seasnail 15.66 -23.82 3.33 16.82 -22.85 3.60 

Liparis tunicatus Kelp Snailfish 12.68 -23.29 3.47 12.95 -25.21 3.73 14.69 -23.72 3.35 15.75 -23.09 3.44 

Lycodes adolfi Adolf's Eelpout 

Lycodes polaris Canadian Eelpout 

Lycodes seminudus Longear Eelpout 

Reinhardtius 
hippoglossoides 

Greenland Halibut 
16.10 -22.28 3.93 15.82 -22.31 4.23 

Triglops pingelii Ribbed Sculpin 12.46 -23.72 3.49 14.12 -23.29 3.61 14.78 -23.96 3.45 

Ulcina olrikii Arctic Alligatorfish 14.50 -21.70 3.48 15.44 -21.59 3.44 

Ophiuridae Brittle stars 10.40 -22.16 11.73 -22.81 12.42 -20.14 12.12 -21.62 

Calanus hyperboreus 
 8.82 -26.63 9.22 -26.58 8.93 -27.13 9.30 -26.84 

 

  



 

39 
 

 

  

    Nearshore Shelf   Offshore Shelf   Upper Slope   Lower Slope 

δ15N δ13C C:N   δ15N δ13C C:N   δ15N δ13C C:N   δ15N δ13C C:N 

(b) Log
2
 Body Mass Class 

-3.5 11.13 -24.78 3.77 10.05   10.37 

-2.5 11.67 -23.76 3.46 10.93 -24.38 3.51 10.81 

-1.5 12.58 -23.18 3.53 11.93 -23.66 3.61 11.50 -24.67 3.63 12.07 -22.27 3.72 

-0.5 12.95 -23.02 3.48 13.65 -22.22 3.47 11.90 12.43 -22.17 3.36 

0.5 14.40 -22.57 3.53 13.99 -22.86 3.53 12.71 -24.08 3.31 13.58 -24.83 3.30 

1.5 13.63 -23.13 3.57 13.54 -23.44 3.61 13.33 -24.34 3.38 14.07 -24.09 3.34 

2.5 13.85 -23.00 3.45 13.79 -23.40 3.42 13.80 -23.87 3.36 14.12 -24.05 3.27 

3.5 13.76 -23.07 3.48 14.42 -23.24 3.38 14.45 -23.58 3.33 14.60 -23.42 3.27 

4.5 15.60 -21.89 3.40 14.90 -22.94 3.36 14.99 -23.25 3.34 15.50 -23.08 3.43 

5.5 15.56 -22.33 3.34 15.83 -23.37 3.32 16.10 -23.00 3.48 

6.5 15.97 -23.00 3.28 16.48 -22.98 3.49 

8.5 16.50 -22.59 3.66 15.43 -22.61 3.97 

9.5 16.06 -22.25 3.89 15.99 -22.26 4.15 

10.5 15.79 -22.18 4.01 15.52 -22.30 4.38 

11.5 16.92 -22.87 4.33 17.39 -21.89 3.75 

12.5                   18.15 -22.32 4.97   17.69 -22.80 4.29 



 

40 
 

Table 2.3. Linear regression statistics for fish community normalized biomass size spectra slopes, and for the 

relationship between biomass-weighted trophic level (TL) and log
2
 body mass class at four habitat depths in the Beaufort 

Sea. Reported 95% confidence limits (CL) are for slope estimates. 

 

 Habitat Depth (m) Total n Slope Intercept p r2 F df 95% CL 

Biomass size spectra 
 

    
  

 
 Nearshore shelf 18-50 177 -1.73 -6.56 0.02 0.95 38.86 1, 2 1.19 
 Offshore shelf 75-200 348 -1.40 -6.34 0.02 0.89 25.46 1, 3 0.88 
 Upper slope 350-500 2166 -0.73 -5.66 0.01 0.69 15.61 1, 9 0.47 
 Lower slope 750-1000 117 0.07 -13.25 0.48 0.07 0.55 1, 9 0.10 
           
Biomass-weighted TL vs. log

2
 body mass class 

   
  

 
 Nearshore shelf 18-50 562 0.27 3.16 0.001 0.77 23.97 1, 7 0.13 
 Offshore shelf 75-200 571 0.26 2.74 <0.001 0.74 22.34 1, 8 0.13 
 Upper slope 350-500 2228 0.17 2.65 <0.001 0.91 106.25 1, 11 0.04 
 Lower slope 750-1000 124 0.12 3.05 0.008 0.62 12.82 1, 8 0.08 
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Figure 2.1. Locations of sampling stations along four transects (TBS, GRY, KUG, and 

DAL) spanning the Beaufort continental shelf. Sampling depths ranged from 18 to 

1000m, with increasing depth offshore. 
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Figure 2.2. Relationships between δ15N and log
2
 body mass (g) for all species included in 

size spectra analyses. Fish from the Lycodes genus (L. frigidus, L. seminudus, and L. 

polaris; bold dashed lines) appeared decoupled from the size-structured fish 

community. 
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Figure 2.3. Size spectra observed for fish communities in the Beaufort Sea at four 

habitat depth categories: nearshore shelf (18 to 50 m), offshore shelf (75 to 200 m), 

upper slope (350 to 500 m), and lower slope (750 to 1000 m). Size spectra included 

individuals with body mass from 2 to 2048 g. Relationships were significant for all 

habitats except the lower slope. 
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Figure 2.4. Relative distribution of fish biomass (standardized to biomass density as 

gm-2) among trophic levels at four habitat depth categories: nearshore shelf (18 to 50 

m), offshore shelf (75 to 200 m), upper slope (350 to 500 m), and lower slope (750 to 

1000 m) in the Beaufort Sea. 
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Figure 2.5. Relationship between biomass-weighted trophic level and log
2
 body mass 

class for fish communities in the Beaufort Sea at four habitat depth categories: 

nearshore shelf (18 to 50 m), offshore shelf (75 to 200 m), upper slope (350 to 500 m), 

and lower slope (750 to 1000 m). All relationships were significant. Dashed lines 

represent 95 % confidence limits around the slope. 
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Figure 2.6. Relationships between isotopic enrichment (Δ
pel

) from the pelagic δ13C 

baseline (C. hyperboreus) and log
2
 body mass class for fish communities in the 

Beaufort Sea at four habitat depth categories: nearshore shelf (18 to 50 m), offshore 

shelf (75 to 200 m), upper slope (350 to 500 m), and lower slope (750 to 1000 m). 

Benthic species, benthopelagic species, and Greenland halibut are shown in different 

colours to illustrate differences in realized feeding behaviour. 
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Figure 2.7. Total biomass (standardized to biomass density as g km-2) of benthic and 

benthopelagic fishes at four habitat depth categories: nearshore shelf (18 to 50 m), 

offshore shelf (75 to 200 m), upper slope (350 to 500 m), and lower slope (750 to 1000 

m) in the Beaufort Sea. 
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3 Benthic-pelagic trophic coupling in an Arctic marine food 
web along gradients of water mass structure and organic 
matter input 

 

Introduction 

 

Benthic communities in Arctic seas are primarily fuelled by the vertical and/or 

lateral flux of particulate organic carbon (POC) produced at the surface by pelagic 

algae, or in nearshore areas by benthic algae and macrophytes (e.g., Grebmeier et al. 

2015, Renaud et al. 2015). Some Arctic shelves, such as in the Chukchi Sea, are 

characterized by high primary production and high sinking POC flux (e.g., Grebmeier et 

al. 2015). The resulting productive benthic food webs are tightly linked with surface 

production (i.e., strong trophic coupling between benthic and pelagic food webs). Other 

areas experience limited sinking flux either from low surface production or high 

biological interception in the upper water column (Forest et al. 2010, Iken et al. 2010). 

Where downward flux is low, substantial benthic secondary production may still be 

supported by the advection or entrainment of marine POC from nearby regions (Feder 

et al. 2011). In addition, terrestrial carbon from  river discharge and shoreline erosion 

is becoming increasingly recognized as an important energy source for some Arctic 

benthic communities (Dunton et al. 2006, 2012, Feder et al. 2011). Understanding how 

spatial patterns of water movement and organic matter input influence benthic-pelagic 

trophic coupling is key to identifying Arctic marine ecosystems sensitive to climate-

driven changes in surface production (Wassmann & Reigstad 2011). 

Oceanographic conditions that regulate organic matter production and flux 

undergo relatively abrupt transitions where water masses meet (Belkin et al. 2009). 

Water mass boundaries influence faunal distributions and trophic properties at 

multiple scales, from zooplankton to marine birds and mammals (Bost et al. 2009, 
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Smoot & Hopcroft 2017). Most studies in high latitude seas have compared food web 

structure relative to oceanic fronts arranged side-by-side at the surface (Carroll et al. 

2008, Brandt et al. 2014). For example, benthic food web structure in the Chukchi Sea 

varies with the longitudinal distribution of nutrient-rich and nutrient-poor water 

masses (Iken et al. 2010). In contrast, the neighbouring Canadian Beaufort Sea (CBS) 

and Amundsen Gulf (AG) have narrower shelves adjacent to steep continental slopes 

and a relatively stable vertical water mass structure that can be simplified into four 

distinct layers (Fig.3.1; McLaughlin et al. 1996, 2005). Little is known of how vertical 

water mass structure affects Arctic benthic food webs. However, significant spatial 

differences in benthic fish and zooplankton community composition align with major 

depth-stratified water mass boundaries along the CBS continental slope (Majewski et 

al. 2017, Smoot & Hopcroft 2017). Water mass alignment may, therefore, also be 

important in structuring benthic communities at high latitudes regardless of whether 

alignment is primarily vertical or horizontal. 

In addition, large to meso-scale alongshore patterns in organic matter inputs 

(Carmack & Macdonald 2002), pelagic algal production near surface (Carmack et al. 

2004, Ardyna et al. 2013), and POC sinking flux (Sallon et al. 2011) affect linkages 

between the benthic and pelagic communities (Renaud et al. 2007a, Darnis et al. 2012, 

Roy et al. 2015). In areas where the water mass abutting the seafloor depends on water 

column depth, the hydrographic conditions experienced by the benthos can differ 

substantially from those that govern surface production or vertical POC flux. It 

remains unclear whether Arctic fish and invertebrate food web structure is more 

strongly influenced by hydrographic conditions at the seafloor (e.g., Feder et al. 2011), 

or by the gradient in overlying organic matter inputs (e.g., Iken et al. 2010).  

Here, the southern CBS and AG are used to examine the effects of water mass 

distributions and known alongshore patterns of organic matter input on trophic 
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structure in Arctic marine ecosystems, from 20 to 1000 m depths. The southern CBS 

and AG are characterized by clear vertical and alongshore habitat gradients governed 

by water mass assemblages, surface production, and organic matter inputs (see Study 

area and hydrography). C and N stable isotope ratios measured in marine fishes and 

invertebrates were paired with oceanographic profiles, pelagic algal biomass 

measurements, and sedimentary analyses to assess if benthic trophic structure and 

trophic coupling with pelagic food webs are strongly influenced by: a) bottom-water 

conditions and water column processes determined by the vertical water mass profile, 

b) by overlying regimes of organic matter inputs along a longitudinal west-to-east 

gradient, or c) both. Stronger benthic-pelagic trophic coupling was expected in habitats 

where relatively fresh marine-derived POC was more accessible at the seafloor 

(Tamelander et al. 2006), which was predicted to occur in communities directly under 

nutrient-rich water masses (Iken et al. 2010). Alongshore patterns in organic matter 

inputs were also expected to create stronger benthic-pelagic trophic coupling in 

shallow nearshore habitats, where benthos are closer to POC sinking from surface, and 

in regions with relatively high local primary production (Renaud et al. 2007a, Iken et al. 

2010). 

 

Methods 

Study area and hydrography 

 

The southern CBS region is defined by the relatively narrow Mackenzie 

continental shelf, which extends approximately 120 km offshore (Fig. 3.1a). Past shelf 

break, the seafloor descends quickly to several thousand meters. The shelf is much 

narrower in the semi-enclosed AG where maximum depths are approximately 500 m. 

Open-water surface circulation in the CBS is typically dominated by easterly winds that 
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push surface waters seaward in the anti-cyclonic Beaufort Gyre (Fig. 3.1a; Carmack and 

Macdonald 2002). Below the surface, circulation is topographically steered eastwards, 

bringing waters of Pacific and Atlantic origin along the slope and into the CBS (Fig. 

3.1a; Carmack and Macdonald 2002). The Mackenzie Shelf in the central CBS is strongly 

influenced by the Mackenzie River, which discharges > 330 km3 of fresh water and 

between 40 and 120 x 106 t of sediment annually, exceeding the sediment input of any 

other Arctic river (Macdonald et al. 1998). The Mackenzie River sediment and 

freshwater plume typically flows eastward along the Tuktoyaktuk Peninsula, but can 

be forced offshore and westward under the influence of easterly winds (Fig. 3.1a; 

Carmack and Macdonald 2002). Circulation in the AG is more variable than that in the 

CBS and poorly understood, but Atlantic and Pacific waters primarily enter from the 

Beaufort Sea (Barber et al. 2010).  

Water mass structure in the Beaufort Sea region can be simplified into four 

vertically stacked layers established by differences in water origin, salinity, 

temperature, and chemical composition (Fig. 3.1b; described by McLaughlin et al. 1996, 

2005, Lansard et al. 2012). A low-salinity surface layer up to ~ 50 m thick, known as 

the Polar Mixed Layer, is formed by wind mixing of seasonal freshwater inputs with 

marine waters. Underneath, the Pacific Halocline extends from ~ 50 to 200 m depths, 

forming a cold, complex layer of Pacific-origin water with variable salinity. A strong 

thermohalocline around 200 m marks the relatively narrow transition between the 

Pacific Halocline and the warmer, saltier Atlantic Layer below. An important distinction 

between the Pacific Halocline and Atlantic Layer is that Pacific-origin waters have 

higher nutrient concentrations (~ 1 μmol/kg more phosphate for any given nitrate 

concentration; Jones et al. 1998). Finally, the Atlantic Layer transitions into the very 

cold and saline Arctic Deep Water, also of Atlantic origin, at ~ 750 to 800 m depths 

across a relatively diffuse pycnocline. Simplified vertical water mass structure in the 
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AG is generally similar to that in the CBS, except for the absence of Arctic Deep Water 

because the AG is not deep enough to receive it. 

Longitudinal patterns of primary production in the Beaufort Sea region are 

somewhat inter- and intra-annually variable (Carmack et al. 2004, Morata et al. 2008, 

Ardyna et al. 2013), but recent estimates from a large database of historical 

chlorophyll (Chl) a profiles indicate that annual primary production is relatively high 

in the Chukchi Sea to the west (~100 g C m-2 yr-1) and the Canadian Archipelago to the 

east (~ 140 g C m-2 yr-1), and considerably lower in the Beaufort Sea (~ 62 g C m-2 yr-1; 

Ardyna et al. 2013). In the AG, frequent upwelling of nutrient-laden Pacific water and a 

polynya near Cape Bathurst cause particularly high local spatial and inter-annual 

variability in primary production and downward particle flux (Sallon et al. 2011). 

 

Sample collection and processing 

 

Sampling was conducted by the Beaufort Regional Environmental Assessment 

Marine Fishes Project (Fisheries and Oceans Canada) aboard the stern trawler FV Frosti 

during the ice-free season from early August to early September of 2012 and 2013. 

Samples were collected along eight transects that spanned the continental shelves and 

slopes of the CBS and AG, each with five to eight pre-defined sampling stations at 

depths of 20, 40, 75, 200, 275, 300, 350, 450, 500, 750 or 1000 m (Fig. 3.1c). Fish and 

benthic macroinvertebrates were collected with a combination of two demersal trawl 

nets: a modified Atlantic Western IIA benthic otter trawl (13 mm cod end liner) and a 3 

m High-Rise Benthic Beam Trawl (6.3 mm mesh cod end liner). Macrozooplankton were 

collected using a Bongo net (500 μm mesh) towed obliquely from 200 m to surface (or 

from near bottom where sampling depths were shallower). 
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Marine sediments were collected with a 0.25 m2 USNEL box core. The upper 1 cm 

of sediment was sampled for stable isotope analysis, organic matter (OM) content, and 

Chl a. The upper 5 cm were sampled with a 60 cc truncated syringe for granulometry. 

Remaining sediments (~ 25 cm core) were sieved through a 1 mm stainless steel mesh 

to collect macroinfauna for stable isotope analysis. Sediment samples were frozen 

immediately at -50 °C. Sediment Chl a was analysed fluorometrically following a 

modified protocol by Riaux-Gobin and Klein (1993) in a Turner Design 20 fluorometer 

after a 24 h extraction in 90% acetone at 4 °C in the dark. Sediment organic matter 

content (% of total dry weight) was determined as loss-after-ignition following 

combustion for 6 hours at 550 °C. Sediment grain size analysis was performed on a 

minimum of nine replicates of wet sediment using a LS13 320 laser diffraction type 

granulometer (Beckman Coulter) with polarization intensity differential scattering. 

Prior to analysis, sediments were mixed with a 20 g L-1 solution of (NaPO
3
)

6
 as a 

dispersant and shaken for 24 h to break aggregates. 

Oceanographic profiles were taken at each station with a Seabird SBE-25 

conductivity, temperature and depth probe mounted to a rosette equipped with 12 

Niskin bottles for water sampling. Duplicate seawater sub-samples from the 

chlorophyll maximum depth, which can occur as deep as 50 m below surface in the 

region (Carmack et al. 2004), were filtered onboard onto Whatman 25 mm GF/F filters 

and extracted in 90 % acetone for 18 to 24 h at 4 °C in the dark. Chl a biomass was 

then determined using a Turner Designs 10AU fluorometer calibrated using pure Chl a 

from Anacystis nidulans (Sigma Chemicals), according to Parsons et al. (1984).  

A total of 113 taxa were analysed for stable isotopic composition (see Appendix 

B). Biota collected for stable isotope analyses were sorted to the lowest possible 

taxonomic resolution, rinsed with seawater and frozen immediately at -50 °C. Where 

taxonomic doubt existed, voucher specimens were preserved in a formaldehyde 
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seawater solution for later verification by taxonomists (see Acknowledgements). 

Taxonomy was standardized to the currently accepted names in the World Register of 

Marine Species (WoRMS Editorial Board 2016). A representative subset of taxa was 

selected for stable isotope analysis on the basis of ubiquity, relative abundance, and 

taxonomic diversity as assessed during field collection. A minimum of 3 samples per 

taxon per water mass assemblage was targeted (see Stasko et al. 2017). All available 

zooplankton taxa were analysed as a single, bulk sample per station. Fish and 

macroinvertebrates were sampled across the observed range of body sizes to cover 

potential covariation between δ15N and size (e.g., Romanuk et al. 2011). The index of 

taxonomic distinctness based on presence/absence data (Δ+; Clarke and Warwick 1998) 

was used to determine that the species subset selected for stable isotope analysis did 

not deviate significantly from expectation based on the full list of observed species 

(observed values did not fall outside of the 90% confidence limits of expected values).  

 

Classification of trophic functional groups 

 

Taxa were divided into nine functional groups using information derived from 

published trophic marker analyses, feeding observations, and previous classifications 

(see Appendix C). Classification was based on systems proposed by Macdonald et al. 

(2010) and Jumars et al. (2015) using trophic traits relevant to the study: primary 

feeding habitat (benthic, pelagic, benthopelagic, sediment surface, sediment 

subsurface), trophic type (carnivore, herbivore), and further sub-divided into major 

feeding mode for the benthic omnivorous taxa (suspension feeder, deposit feeder, and 

facultative suspension feeders/surface deposit feeders; Table 3.1).  

Fish commonly undergo ontogenetic shifts in habitat or resource use (Garrison 

& Link 2000 and references therein). The literature was reviewed for available stomach 
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contents, size distribution, and length-at-age data for each fish species to identify 

potential ontogenetic diet shifts between benthic and pelagic prey that would affect 

their functional group membership (see references in Appendix C). Diet data were 

scarce for many species, but where available indicated no switch between pelagic and 

benthic feeding, except for Arctic Cod (Boreogadus saida (Lepechin); e.g., Matley et al. 

2013) and Atlantic Poacher (Leptagonus decagonus (Bloch & Schneider); Källgren et al. 

2015). Consequently, standard body length was used to divide Arctic Cod into pelagic 

(< 80 mm) and benthopelagic (> 80 mm) functional groups, and Atlantic Poacher into 

benthopelagic (< 85 mm) and benthic (> 85 mm) groups.  

 

Delineation of vertical water mass structure and longitudinal regions 

 

To assess food web structure along a longitudinal gradient of organic matter 

input regimes, sampling sites were divided into three regions that differ in the 

magnitude of published annual primary production estimates (Carmack et al. 2004, 

Morata et al. 2008, Ardyna et al. 2013). The western CBS region included transects 

immediately west of the Mackenzie River delta on the American Beaufort Shelf (A1 and 

TBS), the central CBS region included transects on the Mackenzie Shelf that are 

regularly influenced by the Mackenzie River plume (GRY, DAL, and KUG; Magen et al. 

2010), and the AG region included transects to the east of the CBS (CBH, DAR and ULU; 

Fig. 3.1c). 

Sites within each longitudinal region were further divided by vertical water mass 

structure to assess the influence of vertical water column properties on food web 

structure. Boundary depths between water masses were delineated using temperature, 

salinity and nutrient profiles taken at each sampling station, and were stable between 

sampling years (Eert et al. 2015, Niemi et al. 2015). Following McLaughlin et al. (1996), 
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the term “water mass assemblage” is used to refer to the vertical package of water 

masses that occupy the water column in a given area. Four primary water mass 

assemblages were defined and named for their position along the slope: (1) the 

nearshore shelf, which contained stations with bottom sampling depths from 20 to 40 

m within the Polar Mixed Layer, (2) the offshore shelf with sampling station depths 

from 75 to 200 m within the Pacific Halocline, (3) the upper slope with sampling station 

depths from 275 to 500 m within the Atlantic Layer, and (4) the lower slope with 

sampling station depths from 750 to 1000 m within Arctic Deep Water (Fig. 3.1b). A 

total of 11 regional faunal communities were therefore analysed for isotopic trophic 

structure: three regions, each of which contained four water mass assemblages, except 

in the AG where the lower slope assemblage was absent.  

 

Stable isotope analysis and isotopic niche metrics 

 

 Stable isotope ratios of nitrogen (δ15N) can be used to infer trophic elevation, 

whereas those of carbon (δ13C) can be used to infer the dietary carbon sources utilized 

by consumers (e.g., Peterson and Fry 1987). Tissues dissected for stable isotope 

analysis included dorsal muscle for fish, whole body for zooplankton and small 

infauna, and various slow turnover tissues consistent with the literature and dissection 

constraints for invertebrates (e.g., Dunton et al. 2006, Stasko et al. 2017). Samples were 

dehydrated in a standard laboratory convection oven at 50 °C for a minimum of 48 

hours until dry (fish and sediments) or a FreeZone 18 freeze-drier (Labconco; benthic 

invertebrates and zooplankton). Dried samples were ground to a homogenous powder 

and analysed for N and C isotopic composition using a Delta Plus continuous flow 

isotope spectrometer (Thermo-Finnigan) coupled to a 4010 Elemental Analyzer 

(Costech Instruments) at the University of Waterloo Environmental Isotopes Laboratory 
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(Waterloo, Canada). Prior to the determination of δ13C, subsamples of sediment and 

invertebrates that contained carbonate were acidified with 1 N HCl to remove inorganic 

carbon following Jacob et al. (2005). Elemental isotope ratios (15N:14N, 13C:12C) were 

expressed in standard δ notation as parts per thousand (‰) relative to the international 

standards Vienna Pee Dee Belemnite for carbon and atmospheric N
2
 for nitrogen (Craig 

1957, Mariotti 1983). Analytical error for δ15N and δ13C during any given sample run did 

not exceed 0.3 and 0.2 ‰, respectively, based on repeated measurements of working 

laboratory standard material cross-calibrated to the international standards mentioned 

above (no less than 20 % of each run). Repeatability of duplicate measurements of 

sample material was 0.3 ‰ for both δ15N and δ13C.  

 Lipids were not extracted from tissues prior to analysis. Lipid extraction can 

cause significant change in analysed isotope ratios and is often suggested as a solution 

to avoid confusion between isotopic variability caused by lipids and variability caused 

by dietary shifts (e.g., Logan et al. 2008). Extraction is considered unnecessary for fish 

muscle when C:N ratios are < 4, assuming C:N is a good proxy for lipid content (e.g., 

Logan et al. 2008). More than 99 % of fish had C:N ratios < 4, whereas 31.3 % of 

invertebrates had higher C:N ratios (Stasko et al. 2017). To assess the potential for 

lipids to bias results, δ13C was regressed by C:N for 13 widespread invertebrate taxa 

(total n per taxon = 30 to 145; C:N from 0.9 to 25.8). C:N did not explain substantial 

variation in δ13C among tested invertebrates (r2 < 0.31), suggesting that lipid extraction 

would not have significantly altered results, in agreement with other stable isotope 

studies on Arctic marine invertebrates (e.g.,  McTigue & Dunton 2014).   

 A representative primary consumer was used to normalize consumer stable 

isotope values to account for spatial heterogeneity. Consumer δ13C values were 

converted to a measurement of isotopic enrichment (Clark & Fritz 1997) relative to a 

pelagic baseline (Δ13C
pel

) as:  
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where δ
c
 is the consumer δ13C value , and δ

w
 is the water mass- or region-specific mean 

δ13C value of the widespread Arctic filter-feeding zooplankter Calanus hyperboreus 

Krøyer (Table 3.2). Consumer δ15N values were baseline-adjusted by subtracting the 

water mass- or region-specific mean δ15N value of C. hyperboreus from the consumer 

δ15N. It must be emphasized that C. hyperboreus is not meant to reflect the base of the 

demersal food web. Rather, C. hyperboreus Krøyer 1838 is a representative pelagic 

primary consumer that marks a consistent “starting point” along the δ13C continuum as 

dietary organic carbon is dynamically transformed during sinking, microbial 

processing, and integration into the benthic food web (e.g., Dunton et al. 1989).  

 Five metrics derived from the dispersion of stable isotope values in bivariate 

δ15N versus δ13C space were used as proxies for realized dietary niche dimensions (Fig. 

3.2; Bearhop et al. 2004). Isotopic niche metrics were calculated at the community and 

functional group level using baseline-adjusted δ15N and Δ13C
pel

. Niche region size (a) was 

calculated as the smallest region in which baseline-adjusted δ15N and Δ13C
pel

 have a 95% 

probability of being found (Swanson et al. 2015). Following Layman et al. (2007), the 

mean Δ13C
pel

 (b) was interpreted as the average position along the benthic-pelagic 

continuum, while the carbon isotopic range (c) was measured as the range of Δ13C
pel

 

values within the niche region and represents the breadth of carbon resources utilized 

by the sampled population. Mean δ15N (d) was interpreted as the average baseline-

adjusted trophic elevation, while nitrogen isotopic range (e) was measured as the range 

of baseline-adjusted δ15N values within the niche region and is similar conceptually and 

computationally to isotopic food web length. All five isotopic niche metrics were 

calculated within a Bayesian framework using the “nicheROVER” package in R 
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(Swanson et al. 2015, R Core Team 2016). An uninformative normal-inverse-Wishart 

prior distribution was used to generate posterior distributions of the niche region 

centroid and covariance matrix, from which 10,000 random permutations were drawn 

and used to calculate posterior distributions of the niche region size and the four 

other associated niche metrics. The posterior modes and 95% credible intervals of the 

niche metrics are reported. At the functional group level, average benthic-pelagic 

coupling was measured as the mean isotopic separation between benthic and pelagic 

functional groups along the δ13C continuum (‰).  

 

Association between trophic structure and proxies for organic matter input 

 

To relate spatial variation in trophic structure to spatial gradients of marine 

POC deposition, five measurements were chosen as proxies for the availability of 

pelagic production to the benthos (Roy et al. 2014, Roy, Iken, Gosselin, et al. 2015). 

Average total Chl a at the subsurface chlorophyll maximum depth (mg m-3) was used as 

a proxy for pelagic primary production, assuming a linear relationship between the two 

(Matrai et al. 2013). Chl a concentrations (mg m-2 of dry weight) and % organic matter 

of surface sediments were used as proxies for marine POC input to the seafloor, where 

higher values usually indicate greater availability of fresh marine organic matter (Roy 

et al. 2014, Cooper et al. 2015). Mean grain size (μm) and C:N ratio of surface 

sediments were used as indicators of organic matter deposition rates, where finer 

sediments and lower C:N are usually associated with areas of high organic matter 

deposition (Cooper et al. 2015). Proxies were averaged across sites within each of the 

11 regional communities (Table 3.3). Regressions were used to assess the significance 

of linear relationships between isotopic trophic niche metrics and each 

production/deposition proxy. Pearson correlation analyses between all possible pairs 
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of proxies were used to assess whether indices of high pelagic POC deposition were 

significantly related to each other. Linear models met all parametric assumptions. 

Robust regressions with MM estimation were used to identify outliers (Rousseuw et al. 

1987). Linear regressions and correlations were considered significant at α = 0.05. 

All statistical and graphical procedures were performed in R (version 3.3.1, R 

Core Team 2016) using the packages “ggplot2”, “gridExtra”, “nicheROVER”, “plyr”, 

“robustbase” and “vegan”.  

 

Raw data reporting 

 

Full station profiles of water temperature, salinity, oxygen, and nutrient 

concentrations are freely available through federal Canadian Data Reports of 

Hydrography and Ocean Sciences (Eert et al. 2015, Niemi et al. 2015). The δ15N, δ13C, and 

C:N for all individual taxa, averaged by region and water mass assemblage, are also 

freely available through a Canadian Data Report of Fisheries and Aquatic Sciences 

(Stasko et al. 2017). Data reports can be accessed via the online WAVES catalogue 

maintained by the Government of Canada (waves-vagues.dfo-mpo.gc.ca/waves-vagues).  

 

Results 

Influence of longitudinal gradient in organic matter inputs 

 

When analysed across regions for any given water mass assemblage, 

community-level niche region size, mean Δ13C
pel

, and carbon isotopic range generally 

increased from west to east in all but the deepest vertical water mass assemblage (Fig. 

3.3a-c). When community-level niche structure was scaled down to the functional 

group level, the eastward increases in community-level niche region size, mean Δ13C
pel

, 
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and carbon isotopic range at the community-level were associated with increasing 

isotopic separation between benthic and pelagic functional groups (Table 3.4). Within 

each water mass assemblage, benthic functional groups shifted to higher Δ13C
pel

 values 

in the AG relative to the western or central CBS (aside from the lower slope which is 

absent in the AG, Fig. 3.4). Consequently, a clear distinction between the mean Δ13C
pel

 of 

pelagic and benthic functional groups was evident (up to 5.7 ‰) and increased from 

west to east (Table 3.4, Fig.3. 4). Pelagic herbivores and carnivores exhibited the lowest 

Δ13C
pel

 values in all water mass assemblages (Fig. 3.4). Benthopelagic carnivores 

generally had Δ13C
pel 

values lower than those of benthic carnivores, but higher than 

those of pelagic carnivores. These same trends of increasing Δ13C
pel

 from west to east 

were observed for many individual benthic taxa. The most variable within- and among-

region Δ13C
pel

 values were exhibited by the facultative SDF/SF brittle stars Ophiacantha 

bidentata (Bruzelius) (1.3 to 14.6 ‰) and Ophiopleura borealis Danielssen & Koren (1.5 

to 14.7 ‰), the deposit-feeding sea star Pontaster tenuispinus (Düben & Koren) (1.8 to 

13.4 ‰), and the carnivorous gastropod Cylichna alba Brown (0.7 to 13.6 ‰); benthic 

SDF/SF and benthic SDF generally had larger niche regions and wider carbon isotopic 

ranges than did most other functional groups in the offshore shelf and upper slope 

assemblages.  

Mean community-level δ15N was generally highest in the central CBS, whereas 

nitrogen isotopic range was highest in the central CBS for the upper and lower slope 

assemblages only (Fig. 3.3d-e). Wide community-level nitrogen isotopic ranges in the 

central CBS (Fig. 3.3e) were associated with the widest ranges of mean baseline-

adjusted δ15N values among functional groups (Fig. 3.5). Nitrogen isotopic range for any 

single functional group, however, did not follow obvious regional trends. 
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Influence of vertical water mass structure 

 

Water mass assemblage had an effect on community-level trophic structure. 

Within any given region, the upper slope assemblage exhibited the highest community-

level mean Δ13C
pel

, and carbon isotopic range in almost all cases, whereas the nearshore 

shelf assemblage exhibited the lowest values for these same niche metrics in most 

cases (Fig. 3.3a-c). Mean community baseline-adjusted δ15N increased from the 

shallowest to the deepest water mass assemblage, whereas there was no consistent 

trend in nitrogen isotopic range across water mass assemblages (Fig. 3.3d-e).  

Scaling niche metrics down to the functional group level revealed that, within 

any given region, the mean Δ13C
pel

 of benthic functional groups generally increased 

from the nearshore shelf to the upper slope (Fig. 3.4). Consequently, benthic functional 

groups became increasingly separated from pelagic functional groups along the δ13C 

continuum along an onshore-offshore gradient. Benthic carnivores had the highest 

mean δ15N in almost every community, whereas pelagic herbivores almost always had 

the lowest (Fig. 3.5). The distance between benthic carnivore and pelagic herbivore δ15N 

increased from the shallowest water mass assemblage to the deepest (Fig. 3.5). No clear 

trends emerged across water mass assemblages for functional group niche size, carbon 

isotopic range, or nitrogen isotopic range. 

 

Association between trophic structure and proxies for pelagic organic matter input  

 

Community-level mean Δ13C
pel

 and carbon isotopic range were significantly 

positively related to % sediment organic matter content (Fig. 3.6a, Δ13C
pel

: F
1,9

 = 28.06, p 

< 0.01, r2 = 0.78; Fig. 3.6c, carbon isotopic range: p = 0.02, r2 = 0.54, F
1,9

 = 9.44). 

Community-level mean Δ13C
pel

 and carbon isotopic range were also significantly 

positively related to total Chl a at the subsurface chlorophyll maximum depth (Fig 
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3.6b, Δ13C
pel

: p < 0.01, r2 = 0.82, F
1,8

 = 36.93; Fig. 3.6d, carbon isotopic range: p = 0.01, r2 

= 0.54, F
1,8

 = 9.55). There were no other significant relationships between community 

isotopic niche metrics and proxies for availability of pelagic production to the benthos. 

Sediment mean grain size was significantly positively correlated with sediment 

Chl a (Pearson correlation, p < 0.01, r = 0.62, df = 47). Sediment % organic matter 

content was positively, but weakly, correlated to total Chl a at the subsurface 

chlorophyll maximum depth (Pearson correlation, p = 0.02, r = 0.38, df = 37). There 

were no other significant associations between pairwise combinations of proxies for 

the availability of pelagic production to the benthos. Two nearshore sites in the central 

CBS (KUG 01 and DAL 02) were identified as outliers with higher than usual total Chl a 

at the subsurface chlorophyll maximum depth and were removed from analysis.  

 

Discussion 

 

Spatial patterns of organic matter input and water mass structure influenced 

trophic connectivity between benthic and pelagic functional groups in an Arctic marine 

system, up to 1000 m downslope, but not as expected. Benthic-pelagic trophic coupling 

was predicted to be highest in shallow areas with high primary production, but instead 

physical and biogeochemical processes controlling the availability of organic matter 

(OM) to the benthos established a two-dimensional regional gradient. First, benthic-

pelagic trophic coupling weakened across an alongshore gradient of organic matter 

inputs and sinking flux regimes. Coupling was weakest in the eastern study region 

where pelagic grazing is known to be high, intermediate in the central study region 

dominated by riverine inputs of terrestrial carbon, and strongest in the western study 

region where carbon export to the benthos is relatively higher. Second, an onshore-

offshore gradient in benthic-pelagic trophic coupling across the entire region was 
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linked to the vertical water mass assemblage. The weakest benthic-pelagic trophic 

coupling consistently occurred in upper slope habitats. Here, benthos underlie the 

transition between Pacific- and Atlantic-origin waters, where much of the organic 

carbon may be transformed or intercepted by aggregations of zooplankton and fish 

(e.g., Crawford et al. 2012), and where intensified current velocities enhance organic 

matter re-suspension and heterogeneity (Forest et al. 2015). 

 

Influence of longitudinal gradient in organic matter inputs 

 

Amundsen Gulf – pelagic retention of autochthonous POC 

 

At the community level, eastward increases in mean enrichment from a pelagic 

baseline (Δ13C
pel

) and wider carbon isotopic ranges were positively related to two 

proxies for the availability of pelagic POC to benthos: sediment organic matter content 

and phytoplankton biomass at the subsurface Chl maximum depth. Both proxies were 

highest in the AG. If higher phytoplankton biomass resulted in a greater availability of 

fresh phytodetritus to the benthos, benthic suspension and deposit feeders would be 

expected to exhibit δ13C values more similar to those of pelagic grazers (i.e., low mean 

Δ13C
pel

; Tamelander et al. 2006). Such a phenomenon has been linked to tight benthic-

pelagic coupling in other Arctic regions with high pelagic production (e.g., marginal ice 

zone, Tamelander et al. 2006, Chukchi Sea, McTigue & Dunton 2014). Instead, it was 

observed that benthic groups underlying sites with high algal biomass in the AG 

exhibited greater Δ13C
pel

 than did their counterparts in the central and western CBS, 

regardless of vertical water mass assemblage. Consequently, pelagic and benthic 

functional groups became increasingly separated in isotopic space from west to east. 

Isotopic separation at the functional group level was associated with larger niche 
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regions, higher mean Δ13C
pel

, and wider carbon isotopic ranges at the whole community-

level. This finding contrasts the prediction that areas with high algal biomass would 

have tighter linkages between benthic and pelagic food webs. However, results are 

consistent with sediment trap-based estimates that 70 to 90 % of autochthonous 

particulate organic carbon (POC) in the AG is retained in the upper 100 m of the water 

column (Forest et al. 2010). Sites with high POC deposition rates are often 

characterized by fine-grained sediment that has high organic matter content, high Chl 

a, and low C:N ratios (Cooper et al. 2015). The weak or insignificant correlations 

between these deposition proxies at sampling sites, along with the unusual positive 

association between coarse-grained sediments and high sedimentary Chl a, suggest 

benthic POC deposition is low in the region of high algal biomass. Instead, the high 

sediment organic matter in the AG may represent a pool of low quality food for the 

benthos as suggested by Magen et al. (2010) and Roy et al. (2014), or may be linked to 

sinking ice algae (see below).  

Retention of new production by the pelagic community explains the 13C 

enrichment of benthic relative to pelagic functional groups in the AG and the resulting 

wider community-level carbon isotopic ranges. Benthic consumers have to rely on a 

more diverse array of alternative carbon sources where fresh phytodetritus is limited 

(McTigue & Dunton 2014, Roy, Iken, Gosselin, et al. 2015, Bell et al. 2016), increasing 

the difference between benthic and pelagic δ13C. Arctic benthos can thrive on sinking 

phytodetritus when it is available (Renaud et al. 2007b, North et al. 2014, Grebmeier et 

al. 2015). However, benthic community structure and biomass at high latitudes are 

more strongly associated with long-term indices of food supply and “food banks” of 

accumulated organic matter than with short-term variability in primary production 

(Renaud et al. 2008, Smith et al. 2012). The impact of long-term changes in food supply 

associated with sea ice loss remains unclear. Increased primary production during a 
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longer ice-free season may promote intensified pelagic herbivory that reduces benthic 

food supply in some areas (Forest et al. 2010, Wassmann & Reigstad 2011). The AG 

may exemplify such a scenario, and provide an opportunity to examine the carbon 

sources that sustain benthic communities in the absence of substantial pelagic POC 

inputs.  

Ice algae are an addition to phytoplankton-derived POC. Ice algae can sink fast 

(Michel et al. 1997) and are consumed by some benthic invertebrates (McMahon et al. 

2006, Renaud et al. 2007b). Benthic deposit and suspension feeders collected in the AG 

for this and another study were enriched in 13C relative to pelagic POC by 3 to 7.5 ‰ on 

average (C. Michel, unpublished data, Roy et al. 2015). These data are consistent with a 

significant dietary contribution of ice algae, as ice algae can have δ13C > 5 ‰ higher 

than that of pelagic POC when ice algal biomass is high (Gradinger et al. 2009). 

Assimilation of ice algal carbon at the seafloor is a circumpolar phenomenon (e.g., 

Brown et al. 2012) that varies among regions and appears most significant for deposit 

feeders (McMahon et al. 2006, Søreide et al. 2013). Ice algae may be a source of 

otherwise limited essential fatty acids, especially where pelagic and terrestrial carbon 

inputs are minimal (McMahon et al. 2006, Sun et al. 2007). Reduced sea ice cover has 

already triggered regime shifts linked to changes in POC sources within some Arctic 

and Antarctic benthic communities (Kortsch et al. 2012, Smith et al. 2012). If ice algae 

are an important food source for benthic communities in areas such as the AG, 

changing sea ice phenology may lead to a reorganization of those communities. 

Some Δ13C
pel

 values observed in AG benthic consumers, however, are greater than 

would be expected from ice algae alone (e.g., Δ13C
pel

 up to 14.7 ‰ for the deep-water 

brittle star O. borealis, with untransformed δ13C values as high as -9.9 ‰; Stasko et al. 

2017). Extensively decomposed organic matter that becomes enriched in 13C via 

microbial remineralization, or the bacteria and extracellular matrices themselves, are 
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likely additional food sources for these organisms (Lovvorn et al. 2005, McTigue & 

Dunton 2014, North et al. 2014). Bacterial products have higher δ13C and are a more 

biologically accessible food than bulk sediments (Decho 1990, Lovvorn et al. 2005). 

Bacterial biomass and recycled organic matter may be especially important for 

maintaining high latitude macroinvertebrate communities when labile marine-derived 

POC is scarce (e.g., McTigue & Dunton 2014, Bell et al. 2016). 

 

The central CBS - influence of terrestrial carbon 

 

Intermediate values of community-level niche region size, mean Δ13C
pel

, and 

carbon isotopic range observed in the central CBS can be linked to a strong terrestrial 

influence from the Mackenzie River. The Coriolis force usually drives the freshwater 

and sediment plume eastward, such that communities within the central CBS are 

exposed to high inputs of terrestrial organic matter (> 50 % of the bulk sediment pool 

as deep as 1000 m; Magen et al. 2010). Recent studies have demonstrated that 

terrestrial inputs can indirectly support a high relative benthic biomass (Dunton et al. 

2006, 2012, Roy et al. 2015), likely by acting as favourable substrate for microbial 

communities that increase its lability (Bell et al. 2016). It is proposed that benthic-

pelagic trophic coupling is dampened  in terrestrially-dominated systems due to high 

benthic reliance on microbially-transformed terrestrial organic matter (Dunton et al. 

2006) and lower pelagic primary production in sediment-laden waters (Carmack et al. 

2004). Greater consumption of transformed terrestrial organic matter is consistent 

with higher mean community δ15N and nitrogen isotopic range in this region compared 

to the western CBS and AG, as extensive microbial processing of sedimentary organic 

matter can lengthen Arctic benthic marine food webs (Dunton et al. 2006, Iken et al. 

2010, Bell et al. 2016). 
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West of the Mackenzie River – lower terrestrial organic matter and grazing 

 

 The western CBS communities exhibited the smallest niche region sizes, lowest 

mean Δ13C
pel

 values, and narrowest carbon isotopic ranges of any region examined. 

When niche metrics were examined at the functional group level, benthic and pelagic 

groups in the western CBS were closer to each other along the 13C continuum than in 

the other two regions. Together, these findings suggest that the western study region 

exhibited the tightest benthic-pelagic trophic coupling. However, benthic-pelagic 

trophic coupling in the western CBS may still be weak compared to other Arctic areas, 

where most benthic fauna have δ13C within 5 ‰ of Calanus spp. (e.g., North Water 

Polynya, Hobson et al. 1995, Barents Sea marginal ice zone, Tamelander et al. 2006, 

Chukchi Sea, McTigue & Dunton 2014). Moreover, benthic biomass on the shelf remains 

relatively low across most of the study region compared to, for example, the Chukchi 

shelf (< 50 g m-2 for macrobenthos; Dunton et al. 2005, Conlan et al. 2013)  

Results from this study appear to be an extension of a larger gradient of 

weakening benthic-pelagic coupling from west to east along the entire Beaufort Sea 

coast (Dunton et al. 1989, Dunton et al. 2005, Bell et al. 2016). Benthic consumers west 

of the Colville River are under a stronger influence of nutrient-rich Pacific waters and 

make greater use of marine-derived POC, coincident with lower δ13C and shorter food 

web lengths (Divine et al. 2015, Bell et al. 2016). East of the Colville River, longer 

benthic food webs have been attributed to the increasing influence of terrestrial 

organic matter (0.5 to 1.7 trophic levels longer; Bell et al. 2016). Macrobenthic biomass 

on the shelf also generally declines eastward from as high as ~ 80 g m-2 near Point 

Barrow, Alaska, to as low as 0.01 g m-2 near the mouth of the Mackenzie River (Dunton 

et al. 2005).  Benthic-pelagic trophic coupling therefore appears to continue to weaken 
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along an eastward, although not necessarily linear, gradient of increasing terrestrial 

organic matter influence and weakening Pacific influence. Since terrestrial influence is 

strongest in the central CBS, the weakest benthic-pelagic trophic coupling in the AG is 

probably a consequence of intense pelagic grazing rather than an extension of the 

same terrestrially-influenced gradient. 

 

Influence of vertical water mass structure 

 

Evidence for differing benthic food web and community structure underneath 

adjacent surficial water masses is mounting for high latitude systems (e.g., Carroll et 

al. 2008, Iken et al. 2010, Brandt et al. 2014). In contrast, studies on how vertical water 

mass distributions affect benthic-pelagic coupling are lacking. Findings here suggest 

subsurface water mass boundaries can weaken trophic connectivity between pelagic 

and benthic food webs where they create hotspots of biological interception and 

transformation of POC. Community-level niche region size and carbon-associated 

isotopic niche metrics increased from the nearshore shelf to the upper slope water 

mass assemblage, and were associated with a clear divergence between benthic and 

pelagic functional groups along the Δ13C
pel

 continuum. These patterns suggest greater 

trophic diversity and lower benthic-pelagic trophic coupling in the upper slope 

assemblage compared to other water mass assemblages. Since the weakest trophic 

coupling was not observed in the deeper lower slope assemblage, the work presented 

here does not support depth as the only explanation. Rather, biological and physical 

processes linked to water profile characteristics likely interact with depth to best 

explain spatial trends in benthic-pelagic trophic connectivity.  

Several physical and biological features of the vertically stacked water masses 

are unique to the study area. Following the spring phytoplankton bloom, nitrate is 
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quickly depleted in Arctic Ocean surface waters (e.g., Carmack et al. 2004, Ardyna et al. 

2013). The chlorophyll maximum layer then becomes deep, often occurring at ~ 40 to 

60 m depths during summer, which is at or near bottom on much of the CBS and AG 

shelves. Benthos on the shelf thus have greater access to relatively fresh and 

untransformed marine organic matter compared to deeper communities. The 

consumption of fresh phytodetritus is reflected in lower mean δ15N values in the shelf 

versus slope habitats (Divine et al. 2015, Bell et al. 2016, this study). Over deeper 

waters in the western Arctic, the subsurface chlorophyll maximum approximately 

corresponds with the transition to the Pacific Halocline and pelagic POC, therefore, has 

a relatively short distance to sink to reach the thermohalocline transition to Atlantic 

water below. A substantial proportion of sinking POC may become entrained near the 

thermohalocline and not reach the seafloor (Forest et al. 2015). Large aggregations of 

zooplankton  are closely associated with the shelf break near the transition between 

the Pacific and Atlantic water masses (Crawford et al. 2012, Smoot & Hopcroft 2017) 

and in turn may explain high Arctic Cod densities in the same layer (Majewski et al. 

2017). These deep zooplankton aggregations may have grazed substantial fractions of 

the above produced POC, limiting POC availability at the seafloor for demersal fauna. 

Indeed, Majewski et al. (2017) speculated that Arctic Cod may out-compete benthic 

fishes in the upper slope habitat where their preferred pelagic zooplankton prey are 

abundant and alternative benthic food sources are limited. Results from the current 

study support this hypothesis. High carbon interception and transformation in the 

upper Atlantic Layer (Crawford et al. 2012, Forest et al. 2015) may explain the largest 

niche size, largest carbon isotopic ranges, and high mean δ15N  values observed for the 

upper slope community. POC consumption by pelagic zooplankton and the microbial 

loop commonly limit benthic food supply in the global ocean, including high latitudes 
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(Grebmeier & Barry 1991), but biological interception by deep aggregations of higher-

trophic fauna is neither well-documented nor well-understood. 

The upper slope community occupies a physically dynamic habitat at the shelf 

break. Habitat heterogeneity associated with steep bathymetry and complex current 

dynamics (e.g., Forest et al. 2015) may have additionally contributed to the wider 

carbon isotopic ranges and larger niche sizes observed in the upper slope. In 

particular, high current velocities and seasonal flow reversals in the shelf break jet 

enhance the transport of re-suspended sediment and distinct water types between the 

shelf and basin (e.g., Nikolopoulos et al. 2009, Forest et al. 2015). The high carbon 

isotopic ranges observed for trophically flexible surface deposit and suspension 

feeders in the upper slope support the notion that food availability was variable (Roy, 

Iken, Gosselin, et al. 2015).  

There is a possibility that microphytobenthos were an additional 

uncharacterised organic matter source for nearshore shelf communities (e.g., McTigue 

& Dunton 2014). The highest sediment Chl a measurements in this study were 

observed at sampling sites ≤ 40 m depths, but the data were not available to estimate 

the proportion of Chl a attributable to pelagic versus benthic algae. It is conceivable 

that the low δ13C values of benthos in the nearshore shelf were partially attributable to 

the assimilation of benthic microalgal carbon (Oxtoby et al. 2016). 

 

Regional context and conclusions 

 

When placed in a larger regional context, findings extend the understanding of 

variation in benthic trophic structure and benthic-pelagic trophic coupling along the 

western Arctic coast of North America. The data show complex spatial patterns in 

benthic-pelagic coupling clearly linked to the local organic matter inputs and flux 
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dynamics that control food supply to the benthos. Near Point Barrow, Alaska, the 

stable isotope values of benthic consumers on the shelf reflect strong reliance on 

marine-derived organic matter, despite evidence for substantial terrestrial inputs from 

small coastal rivers and erosion (Dunton et al. 2006, Divine et al. 2015). The influence 

of nutrient-laden Pacific waters that enter from the nearby Chukchi Sea and 

comparatively low pelagic grazing are considered responsible for the tight benthic-

pelagic trophic coupling in the western American Beaufort Sea (Dunton et al. 2005, 

Divine et al. 2015). Further east toward the Colville River and Camden Bay, benthic 

consumers as deep as 1000 m have greater reliance on terrestrially-derived carbon, 

which is strongest near the Mackenzie River outflow (Dunton et al. 2006, Divine et al. 

2015, Bell et al. 2016). Results from the current study suggest that terrestrial organic 

matter continues to play a role in decoupling pelagic and benthic food webs across the 

central CBS shelf and slope, likely because bacterially-transformed terrestrial matter is 

a labile and attractive benthic food source in areas with limited marine POC (Bell et al. 

2016). Finally, benthic-pelagic trophic coupling is weakest in the AG, where extensive 

grazing by pelagic consumers limits the vertical flux of marine POC despite relatively 

high primary production (Forest et al. 2010, this study). In response, benthic taxa have 

higher 13C enrichment relative to pelagic taxa (this study), benthic carbon 

remineralization is low (Darnis et al. 2012), epibenthic communities exhibit low 

biomass and high spatial heterogeneity in community composition (Roy et al. 2014), 

and benthic primary consumers likely rely more heavily on ice algae and transformed 

sedimentary organic matter (Roy et al. 2015, this study). Across the entire region, the 

difference in carbon use between benthic and pelagic functional groups was largest 

near shelf break on the upper slope, directly under the transition between Pacific- and 

Atlantic-origin waters. Here, benthic food supply was likely limited by biological 
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interception but, perhaps, diversified by carbon transformation and sediment re-

suspension. 

Together with previous work, this study establishes that gradients in food web 

structure do not necessarily follow water depth or obvious indicators of pelagic 

productivity. Rather, Arctic benthic-pelagic trophic coupling is more closely linked to 

biological and physical processes in the water column that govern organic matter 

availability to the benthos. Arctic benthic communities that are at least partially 

sustained by microbially-processed terrestrial OM may be relatively less sensitive to 

changes in sea ice phenology than those that rely predominantly on overlying pelagic 

and/or ice algal production. However, the benthic response to changes at the ocean 

surface may be mediated by subsurface hydrography and by the food web in the upper 

water column that intercepts sinking POC, and is in turn influenced by water mass 

boundaries. 
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Table 3.1. Description of functional trophic groups used in this study. See Appendix C 

for further details and references. 

 

Functional Group Description 
Pelagic herbivore Zooplankton in the pelagic realm that feed primarily on 

photosynthetic, and occasionally heterotrophic, organisms. 

  Pelagic carnivore Animals restricted to feeding in the upper pelagic realm on 
other animals. Includes predatory amphipods, molluscs, 
cnidarians, chaetognaths, ctenophores, and some fishes. 

  Benthopelagic carnivore Highly mobile fishes and invertebrates known to feed 
carnivorously at and above the seafloor as predators, 
scavengers, or both. May consume a mix of benthic and 
pelagic prey. Some taxa may make substantial vertical 
migrations into the upper water column. 

  Benthic suspension 
feeder (SF) 

Omnivorous animals known to live on the seafloor and 
feed on fresh or resuspended particulate organic matter 
(no restriction is made on particle size). 

  Benthic suspension and 
surface deposit feeder 
(SDF/SF) 

Omnivorous animals known to live on the seafloor that can 
switch between the two feeding strategies depending on 
food availability. 

  Benthic surface deposit 
feeder (SDF) 

Omnivorous animals known to live on the seafloor and 
feed on deposited material on the sediment surface 
including, but not limited to, food falls, detritus, bacteria, 
and bacterial products.  

  Benthic subsurface 
deposit feeder (SSDF) 

Omnivorous animals known to feed below the surface of 
the sediment on detritus and/or bacterial products. 

  Benthic subsurface (SS) 
carnivore 

Mostly predatory marine worms that feed carnivorously on 
animals below the surface of the sediment. 

  Benthic carnivore Animals that live on the seafloor and feed carnivorously as 
predators, scavengers or both. May consume some portion 
of pelagic resources in the form of food falls or vertically 
migrating prey. 
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Table 3.2. Unadjusted δ15N and δ13C values for the baseline pelagic primary consumer 

Calanus hyperboreus and for sediment, by water mass assemblage and longitudinal 

region. Number (n) of samples analysed refers to bulk samples. Values are mean ± 

standard deviation. Stable isotope values for individual taxa can be found in Stasko et 

al. (2017).  

 

Water mass 
assemblage Region 

C. hyperboreus  Sediment 

n  δ15N δ13C n δ15N δ13C 

Nearshore shelf       

Western CBS 1 9.2 -26.2  1 3.8 -24.8 

Central CBS 3 8.7 ± 0.2 -26.8 ± 0.2  3 3.3 ± 0.9 -25.9 ± 0.3 

Amundsen Gulf 3 10.2 ± 0.7 -27.4 ± 0.7  3 4.7 ± 2.0 -17.1 ± 11.9 

Offshore shelf        

Western CBS 2 10.4 ± 1.0 -25.8 ± 10 
 

3 4.7 ± 0.3 -24.8 ± 0.1 

Central CBS 6 8.8 ± 0.3 -26.8 ± 0.3  7 4.0 ± 0.8 -25.5 ± 0.3 

Amundsen Gulf 11 10.3 ± 0.5 -27.3 ± 0.5  11 4.2 ± 2.5 -14.7 ± 9.1 

Upper slope        

Western CBS 2 8.7 ± 0.1 -27.1 ± 0.1  3 5.3 ± 0.1 -24.5 ± 0.2 

Central CBS 6 9.0 ± 0.7 -27.1 ± 0.7  7 4.2 ± 0.3 -25.0 ± 0.2 

Amundsen Gulf 9 10.4 ± 0.4 -27.4 ± 0.4  9 6.7 ± 0.9 -20.7 ± 5.5 

Lower slope        

Western CBS 2 9.5 ± 0.2 -26.5 ± 0.2  3 5.1 ± 0.3 -24.3 ± 0.1 

  Central CBS 6 9.2 ± 0.7 -27.0 ± 0.7  6 4.9 ± 0.5 -24.2 ± 0.4 
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Table 3.3. Habitat measurements used as proxies for the availability of pelagic 

production to the benthos, including: total chlorophyll (Chl) a at the subsurface 

chlorophyll maximum (SCM) depth (mg m-3), sediment Chl a (mg m-2 of dry weight), 

sediment organic matter content (%), sediment mean grain size (μm), and sediment C:N 

ratio. Data for each proxy were averaged within regions and water mass assemblages. 

No data (n.d.) were available for sediment organic matter content in the lower slope 

assemblage of the western CBS region. 

 

Water 
mass 

assembly Region 

Total Chl a at 
SCM depth 

(mg m-3) 

Sedimentary characteristics 

Chl a  (mg m-2) 
% organic 

matter 
Mean grain 
size (μm) C:N 

Nearshore shelf         

Western CBS 0.38 21.89 7.86 32.36 9.17 

Central CBS 0.73 ± 0.15 11.11 ± 13.90 8.43 ± 0.30 10.27 ± 10.51 9.35 ± 0.36 

Amundsen Gulf 0.56 ± 0 12.95 ± 0.77 10.46 ± 2.66 9.85 ± 9.43 24.32 ± 25.27 

Offshore shelf 

Western CBS 0.35 ± 0 2.67 ± 0.11 7.97 ± 1.08 12.31 ± 6.86 6.73 ± 1.37 

Central CBS 0.37 ± 0.05 2.65 ± 1.60 7.42 ± 1.86 34.57 ± 69.89 9.19 ± 0.60 

Amundsen Gulf 0.5 ± 0.14 5.68 ± 3.35 10.01 ± 2.29 12.02 ± 5.15 20.33 ± 13.89 

Upper slope 

Western CBS 0.44 ± 0.20 2.76 ± 1.64 9.40 5.88 ± 1.31 7.15 ± 0.56 

Central CBS 0.41 ± 0.08 1.88 ± 0.22 8.54 ± 0.17 5.48 ± 2.18 8.82 ± 1.30 

Amundsen Gulf 0.55 ± 0.15 2.13 ± 0.99 11.57 ± 1.87 8.82 ± 2.68 8.92 ± 5.42 
Lower 
slope 

Western CBS 0.39 ± 0.03 0.69 ± 0.59 n.d. 4.89 ± 1.58 7.81 ± 0.73 

  Central CBS 0.34 ± 0.04 0.24 ± 0.16 8.79 ± 0.43 3.86 ± 0.18 7.65 ± 0.71 
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Table 3.4. Mean difference between Δ13C
pel

 values of pelagic and benthic functional 

groups, showing an increasing difference from west to east, and from the nearshore 

shelf to the upper slope water mass assemblage.  

 

Water mass 
assemblage Region 

Difference 
(‰) 

Nearshore shelf 

Western CBS 2.30 

Central CBS 3.01 

Amundsen Gulf 3.88 

Offshore shelf 

Western CBS 2.86 

Central CBS 4.28 

Amundsen Gulf 4.78 

Upper slope 

Western CBS 3.78 

Central CBS 4.95 

Amundsen Gulf 5.65 

Lower slope 

Western CBS 4.15 

  Central CBS 3.48 
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Figure 3.1. Map and oceanographic setting for the study region. a) Surface circulation 

in the Beaufort Sea is dominated by the anti-cyclonic, wind-driven Beaufort Gyre. 
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Subsurface flow is topographically steered in the opposite direction, bringing Pacific- 

and Atlantic-origin waters eastwards along the continental slope into the Canadian 

Beaufort Sea and Amundsen Gulf. The freshwater discharge from the Mackenzie River 

dominates the central continental shelf, typically flowing eastward along the 

Tuktoyaktuk Peninsula under the Coriolis force. The white dashed box delineates the 

area from which samples were collected. b) Schematic of the simplified, four-layer 

water mass structure in the Canadian Beaufort Sea and Amundsen Gulf. Water mass 

assemblages were delineated based on the unique combination of one to four vertically 

stacked water masses within the vertical profile, and are shown separated by vertical 

dotted lines (McLaughlin et al. 1996, 2005, Lansard et al. 2012). Water mass 

assemblages were named for the positions along the continental slope: the nearshore 

shelf, offshore shelf, upper slope, and lower slope. The chlorophyll maximum depth 

(green) typically occurs ~ 40 to 60 m below surface during the open water season, and 

large aggregations of zooplankton and Arctic Cod (dark gray hashes) have been 

observed near the thermohalocline transition between Pacific and Atlantic waters 

(Crawford et al. 2012, Majewski et al. 2017). c) Positions of sampling transects and 

station within three regions: the western Canadian Beaufort Sea (CBS), central CBS, and 

Amundsen Gulf.  
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Figure 3.2. Mean δ15N versus δ13C for nine functional groups within each water mass 

assemblage, within three regions: the western Canadian Beaufort Sea (CBS), the central 

CBS, and Amundsen Gulf. Benthic functional groups (white) become increasingly 

separated from pelagic groups (black) along the δ13C axis from the western CBS to the 

Amundsen Gulf in the east (rows), and from the shallow nearshore shelf to the upper 

slope water mass assemblage (columns). Isotopic niche regions are drawn for benthic 

(solid ellipse) and pelagic (dotted ellipse) functional groups separately to illustrate 

isotopic separation. Lines represent 1 standard deviation. 
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Figure 3.3. Community-level isotopic niche metrics for each longitudinal region, across 

vertical water mass assemblages: a) niche region size, b) mean 13C enrichment from a 

pelagic baseline (Δ13C
pel

), c) carbon range of the niche region, d) mean baseline-adjusted 

δ15N, and e) nitrogen range of the niche region. Points represent the mode of the 

posterior distribution for each niche metric, created with 10,000 iterative calculations. 

Whiskers represent 95% credible intervals. Lines illustrate trends among discrete water 

mass assemblages (not a continuous scale). The lower slope assemblage does not occur 

in the Amundsen Gulf. Niche region size, Δ13C
pel, 

and carbon isotopic range increased 

from west to east, and were highest in the upper slope assemblage.  
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Figure 3.4. Mean enrichment from a pelagic baseline (Δ13C

pel
) for functional groups 

across water mass assemblages, within each longitudinal region. Points represent the 

modes of the posterior distributions, created with 10,000 iterative calculations. 

Whiskers represent 95% credible intervals. Lines illustrate trends among discrete water 

mass assemblages (not a continuous scale). A clear and increasing divergence between 

benthic (white) and pelagic (black) functional groups along the Δ13C
pel

 continuum 

suggests that benthic-pelagic coupling weakened from west to east and from the 

nearshore shelf to the upper slope. 
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Figure 3.5. Mean baseline-adjusted δ15N for functional groups across water mass 

assemblages, within each longitudinal region.  Points represent the modes of the 

posterior distributions, created with 10,000 iterative calculations. Whiskers represent 

95% credible intervals. Lines illustrate trends among discrete water mass assemblages 

(not a continuous scale). Within regions, mean δ15N for most functional groups 

increased with depth. The central CBS generally exhibited the widest among-group 

spread of mean δ15N values. 
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Figure 3.6. Linear regressions between mean Δ13C

pel
 and (a) sediment organic matter and 

(b) total chlorophyll a at the subsurface chlorophyll maximum depth, as well as linear 

regressions between carbon isotopic range of the niche region and (c)  sediment 

organic matter and (d) total chlorophyll a at the subsurface chlorophyll maximum 

depth. The isotopic niche metrics Δ13C
pel 

and carbon range were calculated at the 

community level for longitudinal
 
regions, within water mass assemblages (n = 11 

communities). Results presented for (b) and (d) do not include consideration of the 

outlier (representing two nearshore sites in the Central CBS). All relationships were 

significant (p < 0.05).  
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4 Relationships between depth and δ15N of Arctic benthos vary 
among regions and trophic functional groups 

 

Introduction 

 

Deep demersal food webs at high latitudes are often characterized by two 

interlinked trophic pathways (e.g., Iken et al. 2001, Trueman et al. 2014). These include 

a benthic pathway in which organic matter available at the seafloor forms the base of 

an obligate benthic food web, and a benthopelagic pathway in which mobile demersal 

species subsidize their diets with prey from the upper water column (e.g., Iken et al. 

2001, Trueman et al. 2014, Stasko et al. 2016). Multiple trophic pathways can 

complicate interpretation of trophic structure in deep-sea food webs, especially when 

inferences are derived from stable isotope ratios of nitrogen (δ15N; e.g., Roy et al. 2015). 

Consumers are generally enriched in 15N relative to their food, so that higher values of 

δ15N indicate a higher relative trophic position (Minagawa & Wada 1984). However, 

interpreting trophic enrichment from the base of the food web is less straightforward 

when the basal resources that sustain benthic versus benthopelagic trophic pathways 

respond differently to environmental gradients, such as depth. 

The δ15N values of benthic suspension/filter feeders commonly increase as a 

function of depth in various marine systems, whereas those of mobile demersal 

predators/scavengers, which can access benthopelagic prey, usually do not (e.g., 

Catalan Sea, Polunin et al. 2001, Weddell Sea, Mintenbeck et al. 2007, Fram Strait, 

Bergmann et al. 2009, San Juan Archipelago, Galloway et al. 2013, Canadian Arctic 

Archipelago, Roy et al. 2015). Reported δ15N-depth relationships for other benthic 

consumer groups are variable, and can be negative for some deposit feeders 

(Bergmann et al. 2009, Roy et al. 2015, Bell et al. 2016). Mintenbeck et al. (2007) were 
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the first to provide a detailed explanation of the depth-dependence of suspension 

feeder δ15N, linking the relationship to the microbial and biochemical transformation of 

fine-scale particulate organic matter (POM) in the water column ( Macko and Estep 

1984, Kellogg et al. 2011). Deeper water depths allow greater time for degradation, and 

although all POM reaching the seafloor undergoes some degree of degradation,  

transformation is greater for the small, slow-sinking particles that are accessible to 

benthic suspension/filter feeders (reviewed in Mintenbeck et al. 2007). Organisms that 

consume larger particle sizes and/or more intact food items tend to exhibit weaker 

δ15N-depth relationships, presumably because the food is less degraded (e.g., large-

particle deposit feeders; Mintenbeck et al. 2007) or includes a mixture of benthic and 

benthopelagic sources (e.g., mobile predators; Bergmann et al. 2009). If particle 

characteristics drive δ15N-depth relationships in suspension feeders, regional variation 

in water column processes that govern particle source, size, sinking flux, cross-shelf 

transport and transformation should underlie variation in the strength of the 

relationships observed among marine regions (Bergmann et al. 2009, Roy et al. 2015, 

Bell et al. 2016) .  

Differences in δ15N-depth relationships among trophic functional groups and 

regions have consequences for inferring relative trophic positions from isotopic data. 

Specifically, organisms that rely on the benthic or benthopelagic pathway may require 

consideration of different, pathway-specific isotopic baselines prior to comparison 

(Papiol et al. 2013, Roy, Iken, Gosselin, et al. 2015). Analysing δ15N-depth relationships 

by trophic functional groups in which taxa share common feeding strategies is useful, 

as it allows investigators to predict which taxa may have δ15N influenced by depth prior 

to investigation (e.g., Papiol et al. 2013). To date, most studies quantifying δ15N-depth  

relationships at the functional group level have used linear regression (Mintenbeck et 



 

87 
 

al. 2007, Bergmann et al. 2009, Roy et al. 2015), which is not ideal given the inherent 

non-independence of multi-species groups (Pinheiro and Bates 2000, Zuur et al. 2009). 

A modelling approach that accounts for non-independence can provide a more robust 

analysis of whether δ15N-depth relationships may be considered characteristic of a 

trophic functional group. Further, demersal carnivores are often considered as a single 

trophic functional group in δ15N-depth analyses despite the fact that some are 

primarily benthic feeders whereas others are benthopelagic feeders (e.g., Bergmann et 

al. 2009, Roy, Iken, Gosselin, et al. 2015). Since their primary consumer prey often 

exhibit significant δ15N-depth relationships themselves, benthic predators may have 

increasing δ15N with depth if they are considered separately from their benthopelagic 

counterparts. 

Here, relationships between δ15N and water depth were examined for six trophic 

functional groups along a depth gradient from 20 to 500 m in two contiguous Arctic 

marine ecosystems, the Canadian Beaufort Sea and Amundsen Gulf (Fig. 4.1). POM 

sources and flux dynamics differ significantly between regions; the Canadian Beaufort 

Sea is dominated by terrestrial organic matter, whereas the Amundsen Gulf is 

dominated by marine-derived organic matter (see further description in Methods; 

Morata et al. 2008, Sallon et al. 2011).  The objective was to identify trophic functional 

groups that display increasing δ15N as a function of water depth in each region using a 

linear mixed-modelling approach that allows for taxon-level variation (Pinheiro and 

Bates 2000). It was predicted that (1) the slope and/or strength of relationships for all 

trophic functional groups would differ between the two adjacent marine regions, and 

(2) the relationship would be significant for benthic carnivores when analysed 

separately from other carnivorous groups. 
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Methods 

Study Area 

 

Samples were collected in the southern Canadian Beaufort Sea and Amundsen 

Gulf (herein collectively referred to as the Canadian Beaufort region; Fig. 4.1) aboard 

the stern trawler FV Frosti as part of the Beaufort Regional Environmental Assessment 

Marine Fishes Project (Fisheries and Oceans Canada, www.beaufortrea.ca). Despite 

being contiguous marine regions, the Beaufort Sea and Amundsen Gulf exhibit 

significant differences in sediment characteristics (Morata et al. 2008), primary 

production regimes (Ardyna et al. 2013), and vertical flux of POM ( O’Brien et al. 2006, 

Forest et al. 2010). Primary production is higher in the Amundsen Gulf than in the 

Beaufort Sea (Sallon et al. 2011, Ardyna et al. 2013), but export to the benthos is lower 

(O’Brien et al. 2006, Sallon et al. 2011). An estimated 70 to 95 % of autochthonous 

particulate organic carbon in the Amundsen Gulf is retained in the upper 100 m of the 

water column by the pelagic community, except in the vicinity of Cape Bathurst (Forest 

et al. 2010, Sampei et al. 2011). The Beaufort Sea shelf is strongly influenced by the 

Mackenzie River, which discharges between 40 and 120 x 106 t of terrestrial sediment 

annually (Macdonald et al. 1998, Doxaran et al. 2015), exceeding that of any other 

Arctic River (Rachold et al. 2004). Consequently, the bulk organic matter pool in the 

Amundsen Gulf is dominated by marine-derived organic carbon, whereas that in the 

Beaufort Sea is dominated by terrigenous organic carbon (Magen et al. 2010). 

 

Sampling and stable isotope analysis 

 

Sampling took place from early August to late September of 2012 and 2013 

along 8 transects that spanned the continental shelf and associated slope. Each 
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sampling transect had five to eight pre-defined sampling stations at depths ranging 

from 20 to 500 m (Fig. 4.1). Demersal fish and epifaunal invertebrates were collected 

with a combination of two demersal trawl nets: a modified Atlantic Western IIA benthic 

otter trawl (13 mm cod end liner to retain small fish) and a 3 m High-Rise Benthic 

Beam Trawl (6.3 mm cod end liner). Trawling protocols are described in detail in 

Chapter 3 and in Majewski et al. (2013). Infaunal invertebrates were retained from the 

upper 30 cm of sediments collected with a 0.25 m2 USNEL box core and sieved through 

a 1 mm stainless steel mesh. A sample of bulk sediment from the top 1 cm was 

retained for stable isotope analysis and used as a reference for the composition of the 

bulk sedimentary organic matter pool. Dominant biota were sorted to the lowest 

possible taxonomic resolution onboard with the help of taxonomists (L. De Montety, 

Université du Québec à Rimouski; W. Walkusz, Fisheries and Oceans Canada), rinsed 

with seawater, and frozen immediately along with sediment at -50 °C. Taxonomy was 

standardized to the currently accepted names in the World Register of Marine Species 

(WoRMS Editorial Board 2016). Fish and macroinvertebrates were selected for stable 

isotope analysis across the observed range of body sizes to capture potential 

covariation between δ15N and size (e.g., Romanuk et al. 2011). 

Bulk sediment and tissue samples dissected for stable isotope analysis were 

dehydrated in a standard laboratory convection oven at 50 °C (fish) or a FreeZone 18 

freeze-drier (Labconco; invertebrates, sediment), then ground to a homogenous powder 

and analysed for N isotopic composition using a Delta Plus continuous flow isotope 

spectrometer (Thermo-Finnigan) coupled to a 4010 Elemental Analyzer (Costech 

Instruments) at the University of Waterloo Environmental Isotopes laboratory 

(Waterloo, Canada). C isotopic composition was additionally analysed in bulk sediment 

samples following acidification with 10 % HCl to remove inorganic carbon (Jacob et al. 
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2005). Slow-turnover tissues were targeted for analysis, consistent with the literature 

and dissection constraints: dorsal muscle for fish, tail muscle for large decapods, and 

whole body for invertebrates that could not be reliably separated from exoskeleton 

(e.g., Dunton et al. 2006, Stasko et al. 2017). Isotope ratios (15N:14N, 13C:12C) were 

expressed in δ notation as parts per thousand (‰) relative to the international 

standards atmospheric N
2
 for nitrogen and Vienna Pee Dee Belemnite for carbon (Craig 

1957, Mariotti 1983). Analytical error for δ15N and δ13C never exceeded 0.3 and 0.2 ‰, 

respectively, based on repeated measurements of working laboratory standard 

materials cross-calibrated to the international standards. Repeatability of duplicate 

measurements of sample material was 0.3 ‰ for both δ15N and δ13C. Stable isotope 

values for all taxa and sediments, averaged by region and depth, can be found in 

Stasko et al. (2017). 

 

Statistical analyses 

 

To account for potential bias caused by differences in species composition, 

statistical analyses were restricted to those taxa that were sampled in both the 

Beaufort Sea and the Amundsen Gulf across the same depth range (20 to 500 m). A 

total of 2239 biological samples representing 38 taxa across 6 phyla, and 56 samples 

of marine sediment were included in analyses (Table 4.1). Analyses were repeated with 

the full set of taxa sampled (74 total) to ensure excluded species did not change 

results (i.e., taxa lists in both regions were not identical in the secondary analyses). 

Taxa were delineated into six trophic functional groups based on published 

trophic marker data and feeding observations (see Appendix C). Trophic functional 

groups were defined as taxa that employ similar feeding strategies and share common 
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resources, but do not necessarily interact strongly with each other (e.g., Bonsdorff and 

Pearson 1999),  including: (1) benthopelagic carnivores that are highly mobile and feed 

both at and above the seafloor as predators, scavengers, or both; (2) epifaunal 

carnivores that are mostly mobile and feed at the sediment surface as predators, 

scavengers, or both; (3) infaunal carnivores that prey on fauna below the sediment 

surface (in this study, all are predatory marine worms); (4) suspension/filter feeders 

that live on the seafloor and feed omnivorously on fresh or resuspended POM filtered 

from the water; (5) epifaunal deposit feeders that feed omnivorously at the sediment 

surface on deposited material that can include decomposed carcasses and 

zooplankton molts, phytodetritus, recycled organic matter, bacteria, or bacterial 

products; and (6) infaunal deposit feeders that feed omnivorously below the sediment 

surface on detritus and/or bacteria and bacterial products (e.g., Coad and Reist 2004, 

Macdonald et al. 2010, Wȩsławski et al. 2010, Jumars et al. 2015). Facultative 

suspension/deposit feeders that switch between feeding modes were excluded to avoid 

unquantified variation.  

Preliminary plotting of δ15N versus depth revealed clear grouping of stable 

isotope data by taxon. Linear mixed effects models were thus used to investigate 

relationships between δ15N and the fixed factor water depth for each trophic functional 

group, allowing the intercept and/or slope to vary randomly by taxon to account for 

non-independence (Pinheiro and Bates 2000). To assess whether relationships between 

δ15N and water depth differed between the Beaufort Sea and Amundsen Gulf, an 

interaction term between depth and region was included in the models. Model 

selection between random effects structures (slope, intercept, or both) was conducted 

using likelihood ratio tests after model fitting with a maximum likelihood procedure 

(Zuur et al. 2009, Bates et al. 2015). Likelihood ratio tests were then used to assess 
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whether the interaction between water depth and region improved fit, and if not the 

interaction term was dropped from the model. To more closely examine regional 

differences, models were fit individually for the Beaufort Sea and Amundsen Gulf for 

those trophic functional groups that displayed both a strong relationship between δ15N 

and water depth, and a significant interaction between water depth and region. Finally, 

the best model in all cases was refit using a restricted maximum likelihood procedure 

for parameter reporting (Zuur et al. 2009). Goodness-of-fit was evaluated using the 

marginal and conditional coefficients of determination (R�
�  and R�

�), which respectively 

describe the proportion of variance explained by the fixed effects alone, and the fixed 

and random effects combined (Nakagawa & Schielzeth 2013).  Following Sullivan & 

Feinn (2012), an R�
�,  ≥ 0.63 was considered strong and indicative of a well-fit model. 

Effect size for well-fit models was considered the average change in δ15N (Δ) estimated 

for the trophic functional group across the entire depth gradient. Relationships 

between sediment δ15N and water depth were assessed using least-squares linear 

regression. In all cases, assumptions of homogeneity of variance and normality of 

errors were assessed with a series of residual plots, and depth was log-transformed 

where it improved linearity (Zuur et al. 2009). Where residual variance increased as a 

function of depth (epifaunal and infaunal deposit feeders), linear mixed effects models 

included a fixed variance structure (Zuur et al. 2009, Pinheiro et al. 2016). Linear 

regression and likelihood ratio tests were considered significant at α = 0.05. 

The isotopic composition of sedimentary organic matter in the Canadian 

Beaufort region is influenced by three primary sources: terrestrial, fresh marine, and 

refractory marine organic matter (Magen et al. 2010). To verify that the composition of 

sedimentary POM differed between the Beaufort Sea and Amundsen Gulf, as previously 

reported (Morata et al. 2008, Magen et al. 2010), the δ15N and δ13C of bulk sediments at 
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each site were plotted relative to the δ15N and δ13C of representative terrestrial, fresh 

marine, and refractory marine source data taken from the literature. The terrestrial 

source data were based on organic material recovered from the Mackenzie and Colville 

River Deltas (δ15N = 1.0 ‰, δ13C = -27.0 ‰; estimated from various studies by Magen et 

al. 2010). The refractory marine source data were taken from Amundsen Gulf 

sediments, where pigment analyses indicated the presence of highly degraded marine 

POM (δ15N = 6.7 ‰, δ13C = -21.1 ‰; Morata et al. 2008). Source values for fresh marine 

organic matter were more difficult to assign due to high spatial and seasonal variation 

in the isotopic composition of primary producers (Morata et al. 2008). Consequently, 

the δ15N and δ13C measured in pelagic POM collected from the chlorophyll maximum 

depth in the Amundsen Gulf for this study (C. Michel, unpublished data) were averaged 

with δ15N and δ13C measured in pelagic POM from the eastern Beaufort Sea and 

Amundsen Gulf reported by Roy et al. (2015). The resulting fresh marine source values 

(δ15N = 5.6 ‰, δ13C = -26.5 ‰) fall within the range reported for summer across the 

Canadian Beaufort region by Morata et al. (2008; δ15N = 1.0 to 7.0 ‰, δ13C = -27.0 to -

21.0 ‰). Some sites in the Amundsen Gulf were excluded as outliers due to anomalous 

δ13C (> median + interquartile range). 

All statistical and graphical procedures were performed in R (version 3.3.1, R 

Core Team 2016) using the packages lme4 (Bates et al. 2015), nlme (Pinheiro et al. 

2016), peicewiseSEM (Lefcheck 2015), ggplot2 (Wickham 2009), ggtern (Hamilton 2016) 

and plyr (Wickham 2011). 

 

 

Results 
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Linear mixed effects models indicated δ15N was strongly related to depth for 

epifaunal carnivores, suspension/filter feeders, epifaunal deposit feeders and infaunal 

deposit feeders, but not for benthopelagic or infaunal carnivores (Table 4.2). The slope 

of the relationship was positive and steepest for suspension/filter feeders and infaunal 

deposit feeders, followed by epifaunal carnivores (Fig. 4.2, Table 4.2). The estimated 

increase in δ15N for these groups between 20 and 500 m depths ranged between 0.82 

and 1.44 ‰ (Table 4.2). Epifaunal deposit feeder δ15N was strongly negatively related to 

depth, but had the shallowest slope of all trophic functional groups when both regions 

were considered together (Table 4.2). Benthopelagic and infaunal carnivores displayed 

a positive trend between δ15N and water depth, but the association was weak (Table 

4.2).  

For those trophic functional groups that displayed a strong relationship 

between δ15N and depth (Table 4.2), a model that included an interaction term between 

water depth and region (Beaufort Sea versus Amundsen Gulf) fit the data significantly 

better than a model with no interaction (likelihood ratio tests; p < 0.01 for epifaunal 

carnivores, suspension/filter feeders, epifaunal deposit feeders and infaunal deposit 

feeders). In other words, the slopes of the δ15N-depth relationships were significantly 

different between the Beaufort Sea and Amundsen Gulf. Slopes were steeper in the 

Amundsen Gulf for suspension/filter feeders and infaunal deposit feeders, whereas 

slopes were steeper in the Beaufort Sea for epifaunal carnivores and epifaunal deposit 

feeders (Table 4.3, Fig. 4.2). When fit for individual regions, infaunal deposit feeders 

displayed the largest increase in δ15N of any group (Table 4.3). Including taxon as a 

random variable (R�
�) explained an additional >40 % of the variance relative to depth 

alone (R�
� ) for all groups except infaunal deposit feeders (Tables 4.2 and 4.3). Including 

all available taxa in analyses (i.e., not restricting taxa assemblages to be identical in 
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both regions) did not reveal any differences between which trophic functional groups 

displayed strong δ15N-depth relationships, but did increase the strength of fit (data not 

shown).  

Bulk sediment δ15N was weakly, but significantly positively related to water 

depth in both the Beaufort Sea (F
1,31

 = 13.12, p < 0.01, r2 = 0.30) and Amundsen Gulf 

(F
1,21

 = 5.19, p = 0.03, r2 = 0.20). The slope of the relationship between δ15N and water 

depth was significantly steeper in the Amundsen Gulf relative to the Beaufort Sea 

(ANCOVA, F
3,34

 = 5.94, p = 0.03; Fig. 4.3). Sediment isotopic composition was clearly 

more influenced by terrestrial sources in the Beaufort Sea than in the Amundsen Gulf,  

where sediment δ15N and δ13C at most sampling sites were well constrained between 

fresh and refractory marine end-members (with the exception of a few terrestrially-

dominated nearshore sites; Fig. 4.4). 

 

Discussion 

 

Enrichment of 15N in consumer tissues with increasing water depth is a 

commonly observed phenomenon among benthic marine organisms at high latitudes 

and elsewhere, particularly in deposit and suspension feeders (e.g., Mintenbeck et al. 

2007, Bergmann et al. 2009, Roy et al. 2015). Here, results demonstrated for the first 

time in the Arctic that the δ15N of epifaunal carnivores can also increase as a function 

of depth. Study results confirmed the phenomenon for suspension and infaunal 

deposit feeders in the Canadian Beaufort region while accounting for taxon-level 

variation, and revealed that the rate of change for δ15N with depth differed between the 

two Arctic marine regions studied. It is proposed that the regional differences in δ15N-
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depth relationships are linked to regional heterogeneity in POM input and vertical flux 

properties. 

The significant, positive effect of water depth on the δ15N values of 

suspension/filter and infaunal deposit feeders is likely linked to the transformation of 

POM during sinking, as suggested by Mintenbeck et al. (2007). Summer maximum 

chlorophyll a concentrations in the Canadian Beaufort region occur deeper than in 

other oceans, between ~ 40 to 60 m depths (Carmack et al. 2004, Ardyna et al. 2013), 

such that fresh, relatively untransformed phytodetritus is more accessible to benthos 

in shallow habitats than in deep habitats. In contrast, marine-derived POM received by 

benthos in deeper habitats is subject to greater degradation, and consequently greater 

enrichment in 15N (Lee et al. 2004). The majority of POM synthesized in the euphotic 

zone during the spring bloom is consumed by heterotrophic zooplankton and bacteria 

in the Canadian Beaufort region (Lee et al. 2004, Sampei et al. 2011). The small fraction 

of POM that escapes the euphotic zone and is exported below 100 m has consequently 

higher δ15N due to biochemical transformation processes that preferentially release the 

lighter 14N isotope, a process that continues during sinking (Kellogg et al. 2011, 

Galloway et al. 2013) . 

Several water column processes in the Canadian Beaufort region may 

additionally contribute to increased consumer δ15N with increasing depth. The 

transition from nutrient-rich Pacific-origin water to warmer Atlantic-origin water 

occurs around 200 to 350 m below surface (McLaughlin et al. 1996). Here, the 

hyperbenthic habitat along the upper continental slope appears to be a hotspot for 

organic matter transformation and interception via large aggregations of zooplankton 

and predatory benthopelagic fish (Crawford et al. 2012, Majewski et al. 2017), which 

may be linked to low POM export below 200 m (Forest et al. 2015). With little fresh 
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marine-derived POM reaching the seafloor along the upper slope, benthic primary 

consumers would be limited to 15N-enriched POM that has either been recycled among 

the benthos and sedimentary bacteria (e.g., North et al. 2014, Bell et al. 2016), or 

resuspended and advected downslope by upwelling/downwelling events characteristic 

of the Beaufort Sea shelf break (Forest et al. 2007). 

In contrast to suspension and infaunal deposit feeders, epifaunal deposit feeder 

δ15N decreased slightly with depth, in agreement with observations in Fram Strait that 

were attributed to the lesser availability of bacterial food sources at greater depths 

(Bergmann et al. 2009). Opposing δ15N-depth relationships between epifaunal and 

infaunal deposit feeding groups is unintuitive, but may be explained by differences in 

trophic flexibility. Epifaunal taxa that feed omnivorously at the sediment surface are 

more trophically flexible than infaunal taxa, both in terms of food source and particle 

size. Such trophic flexibility was supported by the increasing variance of δ15N within 

individual epifaunal deposit-feeding taxa with water depth, especially for the asteroid 

Pontaster tenuispinus (Düben & Koren) (data not shown). Increased variance may be a 

result of highly flexible diets within suspension feeders in the face of limited primary-

producer derived organic matter ( e.g., North et al. 2014, and as suggested by Roy et al. 

2015). Conversely, the two infaunal deposit feeding taxa examined here extract 

nutrition directly from ingested sediment at deeper layers (MacDonald et al., 2010). 

Infauna with similar feeding habits have been observed to exploit more consistent 

fractions of bulk sedimentary organic matter than their epifaunal counterparts (North 

et al., 2014). Infaunal deposit feeder δ15N values would therefore be expected to reflect the of 

bulk sedimentary organic matter more closely than those of epifaunal deposit feeders.In this 

study, the change in epifaunal deposit feeder δ15N between 20 and 500 m depths was 

so small that it is difficult to ascribe its biological significance (< 0.69 ‰), but it may 
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have greater trophic consequences over larger depth gradients (see Bergmann et al. 

2009; Δ15N > -4.5 ‰ from 1000 to 5000 m depths). 

Water depth is thought to have a weaker influence on the δ15N of mobile 

carnivorous predators and scavengers than on primary consumers because the former 

can feed on both benthic and benthopelagic prey (Bergmann et al. 2009, Roy, Iken, 

Gosselin, et al. 2015). However, findings suggest the relationship between δ15N and 

depth differs among finer-scale carnivorous functional groups. In particular, the δ15N-

depth relationship for benthic epifaunal carnivores was significant when analysed 

separately from benthopelagic and infaunal carnivores. It is conceivable that the 

positive trend between epifaunal carnivore δ15N and water depth is a consequence of 

feeding on 15N-enriched prey at depth (e.g., Birkely and Gulliksen 2003, Coad and Reist 

2004). Suspension feeders are an important prey for many of the taxa in this trophic 

group (e.g., Birkely and Gulliksen, 2003; Coad and Reist, 2004). In addition, there is 

likely limited ability to feed opportunistically on pelagic prey, such as vertically 

migrating zooplankton, on the upper slope of the Canadian Beaufort region because 

those prey are intercepted by large aggregations of benthopelagic predators (Crawford 

et al. 2012, Majewski et al. 2017). Curiously, infaunal carnivore δ15N values did not 

reflect those of the infaunal deposit feeders that may comprise an important prey 

base. The infauna are the most data-poor trophic groups in this study (n < 100 

individuals for each group), and without additional dietary information it is difficult to 

estimate the importance of infaunal deposit feeders to the diets of infaunal carnivores 

examined in this study. Regardless, the different δ15N-depth relationships among 

carnivore groups highlight variation in their use of benthic and pelagic trophic 

pathways. Benthopelagic carnivores subsidize their diets with pelagic prey, especially 

fishes such as Arctic Cod (Boreogadus saida (Lepechin); Cui et al. 2012) and Greenland 
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Halibut (Reinhardtius hippoglossoides (Walbaum); Bjelland et al. 2000). Benthopelagic 

predators are, therefore, not restricted to trophic pathways beginning in benthic 

resources that have undergone depth-related 15N enrichment.  Findings thus suggest 

that carnivorous trophic groups should be considered separately in food web analyses 

rather than pooling them as one group. 

Remineralization of organic matter by the pelagic food web, and its link to POM 

sources and flux dynamics (Sallon et al., 2011; Kellogg et al., 2011), may be key to 

steeper δ15N-depth relationships for suspension/filter feeders, infaunal deposit feeders, 

and sediments in the Amundsen Gulf than in the Beaufort Sea. Sediment δ15N and δ13C 

data verified geographic differences previously found in the composition of bulk 

benthic POM between the Beaufort Sea and Amundsen Gulf (Morata et al. 2008, Magen 

et al. 2010). Unlike the Amundsen Gulf, the bulk sedimentary organic matter pool in 

the Beaufort Sea is dominated by terrigenous material from the Mackenzie River plume 

(Magen et al. 2010). Terrestrial organic matter from the Mackenzie River can become 

entrained in upper water masses upon entry into the Beaufort Sea or via frequent 

resuspension events on the shelf (Carmack & Macdonald 2002, Forest et al. 2007). Once 

suspended, terrestrial POM is typically directed eastwards and offshore by winds and 

the Coriolis force at the surface (Carmack & Macdonald 2002), and by eddies and the 

prevailing eastward-flowing Beaufort Undercurrent in deeper waters (Aagaard 1984, 

O’Brien et al. 2006, Forest et al. 2007). Consequently, terrestrial POM can comprise > 

50 % of the bulk sediment pool as far as the eastern tip of Tuktoyaktuk Peninsula and 

as deep as 1000 m (Magen et al. 2010). The quantitative dominance of terrestrial POM 

in the benthic POM pool, even at great depths, may explain why the δ15N measured in 

sediment, suspension/filter feeders and infaunal deposit feeders changes at a slower 

rate with depth in the Beaufort Sea than in the Amundsen Gulf.   
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The stronger and steeper δ15N-depth relationships for suspension/filter and 

infaunal deposit feeders in the Amundsen Gulf relative to the Beaufort Sea may be 

linked to more heterogeneous POM inputs and low vertical sinking flux. Sediment data 

indicated that deep sites in the Amundsen Gulf had higher proportions of marine-

derived organic matter than nearshore sites. Marine organic matter in the Amundsen 

Gulf may have been subject to extensive transformation in the upper water column, 

where the majority of autochthonous organic carbon is retained by the pelagic 

community (Sampei et al. 2011). Sallon et al. (2011) observed that sinking POM 

contained greater proportions of algal cells and exopolymeric substances when 

primary production was high, such as in some areas of the Amundsen Gulf. The 

authors did not measure the quality of material that reached the seafloor, but 

suggested the presence of exopolymeric coatings on algal cells likely intensified 

microbial activity on sinking particles by facilitating bacterial attachment (Parsmore & 

Costerton 2003, Sallon et al. 2011), which would consequently lead to greater 15N 

enrichment (Macko & Estep 1984, Kellogg et al. 2011). Regional differences in the slope 

of the δ15N-depth relationship within suspension and infaunal deposit feeders are, 

therefore, likely related to the dominant POM flux regimes: (1) in the Beaufort Sea, the 

strong influence of a single, terrestrial POM source likely dampens POM δ15N 

heterogeneity with depth, and (2) in the Amundsen Gulf, relatively higher primary 

production likely promotes intensified biological transformation of POM via recycling 

through the pelagic community and enhanced microbial activity on sinking particles, 

resulting in weaker benthic-pelagic coupling (see Chapter 3) and consequently higher 

benthic POM δ15N heterogeneity. 

Conversely, the slope of the epifaunal carnivore δ15N-depth relationship was 

slightly steeper in the Beaufort Sea compared to the Amundsen Gulf. This finding 
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appeared to be most influenced by a few taxa, including the generalist-feeding fishes 

Atlantic Poacher (Leptagonus decagonus (Block & Schneider)), Gelatinous Eelpout 

(Liparis fabricii Krøyer), and Canadian Eelpout (Lycodes polaris (Sabine); Coad and Reist 

2004, Giraldo et al. 2016, Whitehouse et al. 2016). Some generalist benthic fishes can 

switch feeding strategies to take advantage of benthopelagic prey when benthic 

resources are scarce (e.g., Carrassón & Cartes 2002). A switch to benthopelagic prey 

could explain the flatter δ15N-depth relationships in the Amundsen Gulf observed for 

these fishes, however, there is only evidence for such a shift in Atlantic Poacher 

(according to δ13C; see data in Stasko et al. 2017). Without further diet information, the 

flatter δ15N-depth relationships of Gelatinous and Canadian eelpouts in the Amundsen 

Gulf remain difficult to explain. 

Results presented here are relevant to studies that take a functional group 

approach to marine food web analyses, but must be applied with caution. Our dataset 

is limited by taxon occurrences and distributions, as well as sample availability. Many 

taxa occurred across a limited depth range, and some occurred along a limited number 

of transects (Table 1). Any trophic functional group, including suspension feeders, can 

include taxa that feed at substantially different trophic levels from each other (e.g., 

Bergmann et al. 2009), affecting how closely linked their δ15N values are to POM. The 

importance of taxon-level variation was underscored by the fact that including taxon 

as a random variable in the models consistently explained an additional > 40 % of 

variance (R2

c
 > R2

m
). Confidence that the results can be applied more generally to other 

studies should be evaluated in light of the limitations in taxa richness and 

distributions available in this dataset. 
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In conclusion, a linear mixed-effects modelling approach confirmed that δ15N-

depth relationships in the Beaufort Sea and Amundsen Gulf are characteristic of four 

benthic trophic functional groups: epifaunal carnivores, suspension/filter feeders, 

infaunal deposit feeders, and to a lesser degree, epifaunal deposit feeders. The results 

presented here agree with other studies that a depth-stratified normalization approach 

is necessary when making conclusions about primary consumer trophic levels from 

δ15N across depth gradients in marine systems (e.g., Mintenbeck et al. 2007, Roy, Iken, 

Gosselin, et al. 2015). Such an approach may also be necessary for benthic-feeding 

carnivores. This work additionally highlights the need to be cognisant of differences in 

POM input and vertical flux regimes when comparing food webs among distinct marine 

systems, as such differences may alter the rate at which consumer δ15N changes with 

depth.
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Table 4.1.  List of taxa used in the study, sorted by trophic functional group and Phylum. The sample sizes for each 

taxon are given individually for the Beaufort Sea and Amundsen Gulf. Plot ID # is indicated for those taxa shown in Fig. 

4.2. Dashes indicate those taxa missing from Fig. 4.2 because they were only sampled at one water depth. 

 
        Sample size   Depth range 

Functional 
Group Phylum Taxon 

Plot ID 
# 

Beaufort 
Sea 

Amundsen 
Gulf 

Beaufort 
Sea 

Amundsen 
Gulf 

Benthopelagic carnivore 

Arthropoda Argis dentata 49 21 40 - 200 40 - 200 

Arthropoda Eualus gaimardii 92 49 20 - 500 40 - 350 

Arthropoda Lebbeus polaris 6 55 500 75 - 500 

Chordata Boreogadus saida 327 91 20 - 500 40 - 500 

Chordata Icelus spatula 53 3 20 - 200 40 - 75 

Chordata Reinhardtius hippoglossoides 67 10 350 - 500 300 - 350 

Chordata Triglops pingelii 54 14 20 - 350 40 - 200 

Epifaunal carnivore 

Arthropoda Sabinea septemcarinata 1 25 23 40 - 350 40 - 350 

Arthropoda Saduria sabini 2 9 15 20 - 40 40 - 200 

Arthropoda Sclerocrangon ferox 3 73 70 40 - 500 75 - 500 

Chordata Anisarchus medius 4 53 7 40 - 200 40 - 75 

Chordata Aspidophoroides olrikii 5 118 40 20 - 200 40 - 200 

Chordata Gymnocanthus tricuspis 6 49 16 20 - 200 40 - 75 

Chordata Icelus bicornis 7 64 44 40 - 200 40 - 275 

Chordata Leptagonus decagonus 8 10 7 350 - 500 200 - 350 

Chordata Liparis fabricii 9 14 11 40 - 500 200 - 500 

Chordata Lycodes pallidus 10 4 21 40 - 500 200 - 350 

Chordata Lycodes polaris 11 23 11 20 - 200 40 - 75 

Chordata Lycodes sagittarius - 7 3 350 350 

Chordata Lycodes seminudus 12 39 7 350 - 500 350 - 500 

Cnidaria Actiniaria sp. - 13 4 500 200 
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        Sample size   Depth range 

Functional 
Group Phylum Taxon 

Plot ID 
# 

Beaufort 
Sea 

Amundsen 
Gulf 

Beaufort 
Sea 

Amundsen 
Gulf 

Echinodermata Gorgonocephalus sp. 13 35 19 40 - 500 75 - 300 

Infaunal carnivore 

Annelida Abyssoninoe sp. 2 5 350 75 - 350 

Annelida Aglaophamus sp. 5 3 350 - 500 350 - 500 

Annelida Eucranta sp. 6 11 40 - 200 75 - 350 

Annelida Nephtys sp. 4 3 40 - 75 40 -75 

Suspension/filter feeder 

Arthropoda Haploops laevis - 3 5 75 40 

Echinodermata Heliometra glacialis 14 47 45 40-350 75-350 

Mollusca Astarte sp. 15 4 15 75 40 - 350 

Mollusca Bathyarca sp. 16 8 4 75 300 - 500 

Mollusca Similipecten greenlandicus 17 39 10 40 - 75 75 

Mollusca Thyasiridae sp. 18 13 9 75 - 500 200 - 500 

Epifaunal deposit feeder 

Annelida Ampharetidae sp. 19 11 11 350 - 500 200 - 500 

Arthropoda Synidotea sp. 20 17 23 40 - 75 40 - 300 

Echinodermata Ctenodiscus crispatus 21 6 25 200 75 - 350 

Echinodermata Pontaster tenuispinus 22 63 21 75 - 500 200 - 500 

Infaunal deposit feeder 

Annelida Maldane sp. 23 34 24 75 - 500 40 - 500 

  Echinodermata Molpadia sp. 24 19 19   350 - 500 350 - 500 
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Table 4.2. Results of linear mixed effects models describing the relationship between δ15N and water depth for six 

trophic functional groups in the Canadian Beaufort region. Random effects structures allowed either intercept (b), slope 

(m), or both to vary by taxon. Goodness-of-fit was evaluated using the marginal (R�
� ) and conditional (R�

�) coefficients of 

variation, which respectively describe the proportion of variance explained by depth alone and by depth and taxon 

together. An r2 ≥ 0.63 was considered a strong fit and is indicated in bold. The estimated change in δ15N (Δ) across the 

observed water depth range is given for well-fit models. 

 

Trophic functional group 
n 

individuals 
n 

taxa Intercept (b) Slope (m) t 

Goodness of 
fit Random 

effects 
structure 

Depth 
range 
(m) Δ (‰) ��

�  ��
� 

Benthopelagic carnivores 891 7 11.50 ± 0.36 0.67 ± 0.04 16.24 0.25 0.60 b 20 - 500 

Epifaunal carnivores 834 15 12.37 ± 0.55 0.59 ± 0.11 5.42 0.24 0.67 m, b 20 - 500 0.82 

Infaunal carnivores* 39 4 14.77 ± 0.51 40 - 500 

Suspension/filter feeders 202 6 3.79 ± 1.43 1.30 ± 0.20 6.64 0.12 0.83 b 40 - 500 1.43 

Epifaunal deposit feeders 177 4 12.24 ± 1.22 -0.12 ± 0.20 -0.60 0.22 0.89 b 40 - 500 -0.13 

Infaunal deposit feeders 96 2 8.12 ± 1.48 1.03 ± 0.25 4.16 0.84 0.84 m, b 20 - 500 1.44 

 
*No model fit the infaunal carnivore data better than a null model with intercept as the only term (i.e., depth had little effect) 
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Table 4.3. Results of linear mixed effects models describing the relationship between δ15N and water depth for those 

trophic groups that exhibited significantly different slopes in the Beaufort Sea and Amundsen Gulf. Random effect 

structures allowed either intercept (b), slope (m), or both to vary by taxon. Goodness-of-fit was evaluated using the 

marginal (R�
� ) and conditional (R�

�) coefficients of variation, which respectively describe the proportion of variance 

explained by depth alone and by depth and taxon together.  An R2 ≥ 0.63 was considered a strong fit and is indicated in 

bold (Sullivan and Feinn, 2012). The estimated change in δ15N (Δ) across the observed water depth range is given for well-

fit models. 

 
 

Functional Group Region n  
n 

taxa Intercept (b) Slope (m) t 

Goodness of 
fit Random 

effects 
structure 

Depth 
range (m) Δ (‰) ��

�  ��
� 

Epifaunal carnivores Beaufort Sea 536 15 11.97 ± 0.71 0.69 ± 0.15 4.67 0.20 0.70 m, b 20 - 500 0.96 
Amundsen 
Gulf 298 15 12.79 ± 0.79 0.58 ± 0.16 3.66 0.13 0.73 m, b 20 - 500 0.81 

  
Suspension/filter 
feeders Beaufort Sea 114 6 5.69 ± 1.11 0.84 ± 0.14 5.99 0.08 0.89 b 40 - 500 1.17 

Amundsen 
Gulf 88 6 5.62 ± 2.21 1.07 ± 0.36 2.99 0.04 0.81 b 40 - 500 1.50 

            
Epifaunal deposit 
feeders Beaufort Sea 97 4 15.19 ± 1.77 -0.63 ± 0.27 -2.23 0.06 0.93 b 40 - 500 -0.69 

 
Amundsen 
Gulf 80 4 14.42 ± 1.39 -0.26 ± 0.24 -1.10 0.02 0.84 b 40 - 500 -0.29 

  

Infaunal deposit feeders Beaufort Sea 53 2 8.13 ± 1.49 1.04 ± 0.25 4.14 0.61 0.61 b 75 - 500 1.45 

  
Amundsen 
Gulf 43 2 7.12 ± 1.24 1.37 ± 0.22 6.19 0.80 0.81 b 40 - 500 2.08 
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Figure. 4.1. Map of sampling station locations (black circles) along 8 transects in the 

Canadian Beaufort Sea (A1, TBS, GRY, KUG, DAL) and Amundsen Gulf (CBH, DAR, ULU). 

The 200 m isobath that defines the continental shelf break is shown bolder than other 

isobaths. Map was created using Ocean Data View 4. 
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Figure. 4.2. Relationships between δ15N (‰) and log water depth (m) for epifaunal 

carnivores (a, b), suspension/filter feeders (c, d), epifaunal deposit feeders (e, f) and 

infaunal deposit feeders (g, h) in the Beaufort Sea and Amundsen Gulf. Relationships 

estimated from linear mixed effects models for the entire functional group are shown 

in bold lines, whereas those for individual taxa are shown in thin lines. Separate 

intercepts were estimated for each taxon in all cases, but were almost identical for the 

two infaunal deposit feeders (g, h). Separate slopes were estimated for epifaunal 

carnivore taxa (a, b). Taxa are numbered according to Table 4.1 on either the leftmost 

or rightmost extent of the regression line, whichever provided more visual clarity. 
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Figure. 4.3. Regressions of δ15N (‰) against log water depth (m) from sediment sampled 

in the Beaufort Sea (white circles, dashed line; δ15N = 2.5 + 0.35x, r2 = 0.3) and the 

Amundsen Gulf (black circles, solid line; δ15N = -0.7 + 1.2x, r2 = 0.2). Sediment δ15N was 

significantly positively related to depth in both regions, but the slope of the 

relationship was significantly greater in the Amundsen Gulf. 
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Figure. 4.4. Bulk sediment δ15N and δ13C from the Beaufort Sea (filled black circles) and 

Amundsen Gulf (open circles), relative to terrestrial (Terr), fresh marine (Mar-F), and 

refractory marine (Mar-R) isotopic sources (grey triangles). Terrestrial source data were 

estimated by Magen et al. (2010) from samples from the Colville and Mackenzie River 

deltas. Refractory marine source data were taken from Amundsen Gulf sediments 

composed of highly degraded marine POM (Morata et al. 2008). Fresh marine source 

data were estimated from pelagic POM collected in the Amundsen Gulf and Beaufort 

Shelf from the current sampling program (C. Michel, unpublished data) and from data 

reported by Roy et al. (2015). Error bars indicate standard deviation for the fresh 

marine source. Variation associated with terrestrial and refractory marine sources was 

not available. Sediments in the Beaufort Sea were clearly more influenced by terrestrial 

organic matter inputs than those in Amundsen Gulf. Bulk sediments in the Amundsen 

Gulf were more influenced by fresh and refractory marine organic matter (aside from a 

few terrestrially-dominated nearshore sites).  
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5 Responses of benthic functional food web structure to 
variable food supply in two Arctic shelf ecosystems 

 

Introduction 

 

Benthic food web structure and function strongly influence the broader 

ecological functioning of marine ecosystems (e.g., nutrient cycling, sediment 

resuspension; Snelgrove 1997). Benthic trophic processes can significantly affect 

carbon storage (e.g., Trueman et al. 2014), organic matter remineralisation and nutrient 

cycling (e.g., Bourgeois et al. 2017), community resilience (e.g., Blanchard et al. 2011), 

and the locations of important feeding grounds for migratory marine mammals (Bluhm 

& Gradinger 2008). Climate change is altering the organic matter pathways that fuel 

benthic marine food webs worldwide (Hoegh-Guldberg & Bruno 2010).  In the Arctic, 

sea ice loss has already transformed the rates and dominant sources of primary 

production in some areas (McLaughlin & Carmack 2010, Kortsch et al. 2012), raising 

concerns over climate-change impacts on food web functioning (Wassmann & Reigstad 

2011). Enhanced primary production from rising sea temperatures and longer ice-free 

periods on Arctic shelves is expected to be largely retained by pelagic communities, 

decreasing the export of labile organic matter to benthos (Wassmann & Reigstad 2011).  

Monitoring the effects of shifting production regimes in Arctic marine 

ecosystems requires identifying aspects of benthic food web function that vary with 

benthic food supply. To that end, biological traits analysis is a promising approach 

(Bremner et al. 2003). Biological traits analysis aims to describe ecological functioning 

via the abundance and distribution of species’ traits that confer either a response to, 

or an effect on, ecological processes (e.g., Bremner et al. 2003). Multivariate functional 

trait data can be used to calculate a variety of abundance-weighted indices that 
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summarise the range (functional diversity) and dominance (functional composition) of 

functional attributes present in a community, regardless of taxonomic identities (e.g., 

Garnier et al. 2004, Laliberte & Legendre 2010, Villéger et al. 2008). If ecosystem 

functioning is determined by the traits of the most dominant species (Grime 1998), 

measuring community responses to environmental gradients based on the distribution 

of functional attributes will provide a more mechanistic understanding of community 

responses than will taxonomic measurements alone (Bremner et al. 2003, Mouillot et 

al. 2013a, Teresa & Casatti 2017). Indices of functional diversity and composition that 

summarize the influence of habitat filtering on community structure are thus 

potentially powerful ecological indicators (Beauchard et al. 2017). 

Traits-based methods are well developed in plant and terrestrial ecology, where 

many taxa exhibit functional properties that can be measured on similar scales (e.g., 

Lavorel & Garnier 2002). In marine benthic communities, the variety of body forms and 

living habits precludes the use of easily measured quantitative traits that maintain a 

similar function across taxa (e.g., gape size cannot be meaningfully compared between 

fish, echinoderms, and polychaetes). Consequently, biological traits analysis of marine 

benthic communities has mostly relied on fixed, categorical traits. Fixed traits 

summarize important aspects of species’ functional roles (e.g., Bremner et al. 2006, 

Frid et al. 2008, Beauchard et al. 2017); however, they do not represent the inherent, 

and often substantial, spatiotemporal variation in feeding strategies that are important 

to studies of food web function (e.g., Wȩsławski et al. 2010, Jumars et al. 2015). Newly 

proposed indices of isotopic functional diversity (Rigolet et al. 2015) have the potential 

to fill the gap between the “fundamental” trophic diversity summarised by fixed traits, 

and the “realized” trophic diversity expressed by a community. Stable isotope ratios 

(δ15N and δ13C) measured in the tissues of consumers can represent the trophic breadth 
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of each species (Bearhop et al. 2004, Layman et al. 2007). By treating δ15N and δ13C as 

quantitative trophic traits, isotopic functional diversity can be calculated using 

biomass-weighted methods akin to those used for functional and taxonomic diversity 

(Rigolet et al. 2015). Functional food web structure can then be assessed from two sets 

of complementary information: (1) a set of fixed biological traits, which reflects the 

range of possible trophic functions a community can express, and (2) a set of δ15N and 

δ13C values measured in the quantitatively dominant organisms at each site, which 

integrates dietary variation expressed across spatial and/or environmental gradients. 

Here, a biological traits framework with a trophic focus was applied to assess 

trait-environment relationships for benthic fish and epifaunal invertebrate 

communities in two contiguous Arctic marine ecosystems, the Canadian Beaufort Sea 

and Amundsen Gulf. Analyses combined diversity measures based on trophic 

functional traits and stable isotope ratios as complementary approaches to describe 

spatial patterns in functional food web structure, and used taxonomic diversity to 

estimate functional redundancy. In addition, the study assessed whether the spatial 

distribution of trophic functional traits varied with environmental gradients of 

sedimentary food supply and bottom oceanography. Benthic taxonomic composition in 

the region does not appear strongly related to indices of benthic food supply (Conlan 

et al. 2008, Roy et al. 2014). However, a lower sinking flux of pelagic organic matter in 

the Amundsen Gulf relative to the Beaufort Sea (Sallon et al. 2011, Sampei et al. 2011) 

has been linked to weaker benthic-pelagic coupling and the use of a wider diversity of 

carbon sources among benthic consumers (see Chapter 3). Thus, it was predicted that: 

(1) trophic functional diversity would be greater in the Amundsen Gulf where 

communities must rely on more diverse organic matter sources; (2) as a corollary, 

functional redundancy would be lower in the Amundsen Gulf; and (3) the composition 
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of trophic functional traits in communities would be linked to gradients of organic 

matter delivery to the seafloor (e.g., Grebmeier et al. 1989, Link et al. 2013). 

 

Methods 

Study area  

 

Sampling took place in the southern Canadian Beaufort Sea and Amundsen Gulf 

during the ice-free season from early August to mid-September of 2012 and 2013. The 

Beaufort continental shelf extends approximately 120 km offshore to the 200 m 

isobath, past which the seafloor descends quickly to several thousand meters. The 

Beaufort shelf is under a strong freshwater influence from the Mackenzie River, which 

discharges between 40 and 120 x 106 t of terrestrial sediment annually (Doxaran et al. 

2015). The continental shelf in the Amundsen Gulf is much narrower, and maximum 

depths in the gulf are ~500 m. Primary production in the Amundsen Gulf generally 

exceeds that in the Beaufort Sea, but sinking export of pelagic production is lower, 

except in the vicinity of Cape Bathurst (Sallon et al. 2011, Sampei et al. 2011, Ardyna et 

al. 2013). Bottom oceanography in the region varies predictably with depth and water 

mass (reviewed in Lansard et al. 2012).  

 

Collection of biological samples  

 

Sampling occurred along seven transects that spanned the continental shelf and 

associated slope as part of the Beaufort Regional Environmental Assessment Marine 

Fishes Project (Fisheries and Oceans Canada; Fig. 5.1). Each transect had five to eight 

pre-defined sampling stations at depths ranging from 20 to 500 m. Demersal fish and 
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epifaunal invertebrates were quantitatively sampled from the commercial stern trawler 

FV Frosti at 39 stations with a 3 m High-Rise Benthic Beam Trawl (6.3 mm mesh cod 

end liner; 4.27 m headrope and footrope). Trawling was targeted at a speed-over-

ground of 2.0 knots (1.81 to 2.35 acceptable range) for 10 minutes bottom-contact 

time, and was monitored with a Scanmar CGM-05/TE40-2 trawleye sensor (Scanmar, 

Åsgårdstrand, Norway). Biota were sorted onboard to the lowest possible taxonomic 

resolution with the aid of a certified taxonomist (L. de Montety at L’Université du 

Québec à Rimouski). Where taxonomic doubt existed, voucher specimens were frozen 

or preserved in a 10% formalin solution for subsequent verification in the laboratory. 

Taxonomy was standardized to names currently accepted in the World Register of 

Marine Species (WoRMS 2016). 

 

Collection of environmental data 

 

Benthic community composition and food web structure in Arctic seas are 

influenced by large-scale environmental gradients defined by bottom oceanography, 

and by meso-scale environmental gradients that define sedimentary characteristics and 

benthic food supply (Grebmeier et al. 1989, Link et al. 2013, Roy et al. 2014, Majewski 

et al. 2017). Eight habitat variables were chosen to assess the influence of the 

environment and benthic food supply on trait distributions (Table 5.1). Benthic 

Chlorophyll (Chl) a concentrations (mg m-2 of dry weight), sediment organic matter 

content (% of total dry weight), the ratio of Chl a : phaeopigments (an indicator of 

pigment degradation), mean grain size (μm), and the proportion of sediment comprised 

of silt (%) were used as meso-scale descriptors of sedimentary habitat and food 
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availability. Bottom temperature (°C), salinity (PSU), and oxygen concentrations (ml L-1) 

were included as large-scale environmental variables. 

Marine sediments were collected at each station with a 0.25 m2 USNEL box core. 

The upper 1 cm of sediment was sampled for benthic organic matter content and 

pigment concentrations, whereas the upper 5 cm were sampled for granulometry (Bale 

& Kenny 2005). Sediment samples were immediately frozen onboard at -50 °C. Detailed 

methodology for subsequent sedimentary analyses is described in Chapter 3. 

Oceanographic profiles were taken at each station with a Seabird SBE-25 s/n 0415 (Sea-

Bird Scientific) conductivity, temperature and depth probe and oxygen sensor mounted 

to a rosette equipped with 12 Niskin bottles for water sampling. Detailed methods for 

oceanographic profiling are described elsewhere (Eert et al. 2015, Niemi et al. 2015). 

Bottom oceanography variables were averaged from the three bottom-most profile 

measurements (within 4 m above bottom).  

 

Stable isotope analysis 

 

Stable isotope analyses were completed following the protocols described in 

Stasko et al. (2017) at the University of Waterloo Environmental Isotopes Laboratory 

(Canada). Analytical precision for δ15N and δ13C did not exceed 0.3 and 0.2 ‰, 

respectively, based on repeated measurements of working laboratory standard 

material cross-calibrated to the international standards (no less than 20 % of each run). 

Repeatability of duplicate sample measurements was 0.3 ‰ for both δ15N and δ13C. Raw 

isotopic data, summarised by species and location, is available in Stasko et al. (2017). 
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Compilation of taxa biomass and functional trait data 

 

Biomass estimates for epifaunal invertebrates were calculated from wet weights 

measured onboard during field collection, whereas those for fish were calculated from 

wet weights of thawed individuals in the laboratory after field collection. Missing fish 

weights were estimated from species-specific regressions of total length on weight for 

conspecifics caught during sampling, where possible. Estimated weights were used for 

4.1 % of individuals; 1.5% were removed for lack of reliable length measurements due 

to bodily damage or insufficient data to perform length-weight regressions. Biomass 

was standardized to density (g m-2) using the area swept calculated for each trawl. 

Prior to statistical analyses, taxa that never comprised more than 1 % of total 

biomass at any sampling station were removed from analyses to avoid biases created 

by rare taxa (Clarke & Warwick 2001). Constraining the taxa list in this way removed 

most infaunal species that were not sampled effectively by the beam trawl. Planktonic 

species likely caught during net retrieval were also removed. A total of 106 taxa 

representing 62 families, and 12 phyla were retained for final analyses. 

Five trophically relevant functional traits, subdivided into 25 trait modalities, 

were used to represent trophic functionality (Table 5.2). Selected traits either directly 

influence how a species obtains food (e.g., feeding mechanisms), or indirectly influence 

food web functioning (e.g., particle transport and body size). Many of the selected 

trophic functional traits and trait modalities are considered fundamental to describing 

the ecological functioning of benthic marine communities (Bremner et al. 2006, 

Beauchard et al. 2017).  Redundancy and correlation among traits was avoided by 

assessing draftsman plots of community-weighted means of trait values (see 

description of calculation in Testing trait-environment linkages). Information used to 

assign taxa to trophic functional trait modalities was derived from the primary 
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literature, grey literature, taxonomic texts, and online databases (see Appendix C). A 

fuzzy coding approach (Chevenet et al. 1994) was used to assign the affinities of taxa 

to each trait modality, between 0 (no affinity) and 1 (high affinity). Fuzzy coding 

captures trophic flexibility by allowing taxa to be assigned an affinity > 0 for multiple 

trait modalities when there is evidence (e.g., for species that may opportunistically act 

as predators or deposit feeders). Affinity scores were standardized to sum to 1 within 

each trait, to give the same weight to each taxon and each trophic functional trait (e.g., 

a taxon may score 0.25 for deposit feeder, 0.75 for predator, and 0 for all other 

modalities within the trait “feeding type”). In some cases, information for an individual 

species or genus was not available and trait affinities were based on closely related 

species (e.g., trait affinities for Maldane spp. were based on information reported for 

M. calcarea and M. moesta; see Appendix C). When a taxon could not be assigned an 

affinity due to missing information, it took on the mean trait profile for all other taxa 

to avoid influencing subsequent trait analyses (Statzner & Bêche 2010).  

 

Associations between taxonomic, functional, and isotopic diversity 

 

Taxonomic diversity at each sampling station was quantified with Shannon-

Weiner’s diversity index (H’). Trophic functional diversity was measured using 

functional dispersion (FDis), calculated as the mean distance of taxa to the community 

centroid in multivariate trait space, with taxa weighted by their relative biomass 

densities (Laliberte & Legendre 2010). FDis simultaneously quantifies trait dissimilarity 

and evenness, such that high values of FDis indicate an even distribution of dissimilar 

traits within the community. FDis was computed for each sampling station from a 

table containing taxa biomass densities at each station and a Gower distance matrix of 
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the fuzzy coded trophic functional traits, using the R package FD (Laliberté et al. 

2014). Biomass densities were square-root transformed prior to FDis calculations to 

decrease the influence of highly abundant taxa (Clarke & Warwick 2001). Functional 

redundancy was estimated for each station as the ratio between functional and 

taxonomic diversity (FDis : H’; van der Linden et al. 2012). Isotopic functional 

dispersion (IFDis; Rigolet et al. 2015) was calculated for each sampling station using 

the same method as FDis, but with the means and standard deviations of δ15N and δ13C 

for each taxon at each station acting as “traits.” Because IFDis is a relative 

measurement (multivariate distance to biomass-weighted community centroid), there is 

no need to adjust δ15N and δ13C to account for spatial variation in isotopic baselines 

(e.g., Post 2002). IFDis was only calculated for sampling stations where δ15N and δ13C 

data were available for taxa that comprised at least 70 % of the total biomass of the 

community (range of 70.8 to 91.2 % at 24 of 39 stations; Rigolet et al. 2015).  

Spearman’s rank correlations between all pairwise combinations of diversity 

indices (FDis, IFDis, and H’) were used to test whether diversity indices provided 

unique information, and whether communities with higher species diversity possessed 

a greater diversity of functional attributes. Correlations were performed using stations 

with available IFDis. Spatial differences between diversity indices were visualized with 

heat maps using Ocean Data View (Schlitzer 2017). 

 

Testing trait-environment linkages 

 

Trait responses to environmental gradients were assessed using the combined 

RLQ and fourth-corner method described by Dray et al. (2014), which is currently 

regarded as the most robust approach for biological traits analysis (Beauchard et al. 
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2017). Both RLQ and fourth-corner analysis simultaneously analyse the information 

contained in three tables: table R contains a set of environmental variables for each 

sampling site, table L contains abundances or biomass measurements for each taxon 

by station, and table Q contains information for a set of functional traits measured in 

each taxon (in this case, a table of fuzzy coded ordinal variables). RLQ analysis finds 

linear combinations of traits and environmental variables that maximize their squared 

cross-covariance, and provides a graphical summary of the joint structure among the 

three tables via multivariate ordination (Dolédec & Chessel 1994, Dolédec et al. 1996). 

However, RLQ does not provide a method for testing trait-environment relationships.  

Fourth-corner analysis tests the statistical significance of bivariate associations 

between each possible pair of traits and environmental variables, but does not 

consider covariation among traits or environmental variables (Legendre et al. 1997). 

The methods were used jointly to explicitly test how organism traits respond to 

environmental gradients, using the package “ade4” in R (Dray & Dufour 2007). Briefly, 

RLQ analysis was first used to test the significance of the overall link between traits 

and environmental variables, mediated through the distribution of taxa biomasses 

across stations (via correspondence analysis of the square-root transformed table L, 

principal components analysis of table R, and fuzzy correspondence analysis of table 

Q; see detailed methodology in Dray et al. 2014). The resultant multivariate ordination 

scores for environmental variables (sites) and taxa traits (species) were then used in 

fourth-corner analysis to evaluate the statistical significance of their relationships to 

the original trait and environmental variable data. To test for significant relationships 

between all possible pairwise combinations of traits and environmental variables, a 

second fourth-corner analysis was conducted using original trait and environmental 

data. The global significance of the RLQ analysis was evaluated using the S
RLQ

 statistic 
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(Dray & Legendre 2008). Bivariate fourth-corner relationships were evaluated using 

square correlation coefficients (Dray et al. 2014). In both cases, test statistics were 

generated by sequential random permutations of sites and species (Model 6; Dray & 

Legendre 2008). Inflated type I error rates associated with multiple testing were 

accounted for by using a high number of permutations (99,999) and by using the false 

discovery rate method to adjust p values (Benjamini & Hochber 1995). Environmental 

variables were log(x + 1) transformed where necessary to improve normality (mean 

grain size and sediment Chl a). Two stations were removed from RLQ/fourth corner 

analyses because of missing (DAR_01) or outlying (DAL_02, mean grain size) 

environmental data. 

To visualise the distribution of trophic traits among stations regardless of 

environment, functional composition at each station was summarized with community 

weighted means of trait values, wherein the traits present in a community were 

weighted by the relative biomass densities of the species that exhibit them (Garnier et 

al. 2004). Hierarchical clustering using group-average linking was performed on a Bray-

Curtis dissimilarity matrix of community-weighted means of trait values to identify 

sampling stations that had similar functional composition, regardless of the 

environmental variables measured at those stations. The trait modalities 

“M.tubiculous” and “M.sessile” were very rare and removed prior to clustering analysis. 

Significant clusters were identified using approximately unbiased probability values 

calculated via multiscale bootstrap resampling with 99,999 iterations using the R 

package ‘pvclust’ (Suzuki & Shimodaira 2006). Non-metric multidimensional scaling of 

the Bray-Curtis dissimilarity matrix was then used to visualize the rank-order 

dissimilarities among stations in relation to traits, and to verify groupings identified 

by hierarchical clustering, using the R package ‘vegan’ ‘(Oksanen et al. 2017). The 
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number of dimensions to retain in NMDS ordination was evaluated with stress, wherein 

stress < 0.1 indicated good interpretability with two dimensions (Clarke & Warwick 

2001). 

Indicator values (IndVal) were calculated from the community-weighted mean 

trait values to find the trophic functional traits that were most strongly associated 

with each station cluster (Dufrêne & Legendre 1997). An IndVal index of 100% indicates 

a trait that is observed at all stations of one cluster and not in any other cluster. 

Significant IndVal indices were determined using 9999 random permutations of 

stations using the ‘labdsv’ package in R (Roberts 2016). 

All statistical and graphical procedures were performed in R version 3.3.1 (R 

Core Team 2016). Parametric tests were considered significant at p ≤ 0.05. 

Bootstrapped tests were considered significant if the probability of obtaining the test 

statistic was < 0.05 based on permutated data.  

 

Results 

Associations between taxonomic, functional, and isotopic diversity 

 

As predicted, no significant correlations existed between indices of functional, 

isotopic, or taxonomic diversity (Table 5.3). The relationship between FDis and H’ 

appeared quadratic (Fig. 5.2), but a subsequent polynomial regression indicated that 

species richness was not significantly related to functional diversity (F
3,20

=1.40, p = 

0.27, r2 = 0.17). 

Values of FDis and IFDis were generally higher in the Amundsen Gulf compared 

to the Beaufort Sea, although relatively high FDis values also occurred along the shelf 

break of the Beaufort Sea (Fig 5.3a). Especially high FDis occurred along the northern 



 

123 
 

margins of Amundsen Gulf, near the hamlets of Sachs Harbour and Ulukhaktok (Fig. 

5.3a).  IFDis values were less variable than FDis values (Fig. 5.3b). Functional 

redundancy was generally low across the study area, except for a few high values in 

the Amundsen Gulf near the hamlet of Ulukhaktok (Fig. 5.3c). 

 

Testing trait-environment linkages 

 

The overall joint structure between traits and environmental variables was 

significant (S
RLQ

 = 2.26, p = 0.02), with the first and second RLQ axes accounting for 

81.21% and 9.14% of cross-covariance, respectively. Fourth-corner analysis indicated 

that environmental gradients on the first RLQ axis (represented by site scores) were 

significantly positively related to traits associated with obligatorily benthic species, 

including: discrete mobility, crawling, and body size ≤ 20 mm. Environmental gradients 

were significantly negatively related to swimming and predatory feeding type, which 

are generally associated with fish and large decapods (Fig. 5.4a). Overall, the variation 

in trait structure (species scores on the first RLQ axis) was significantly positively 

related to bottom oxygen concentrations and significantly negatively related to bottom 

temperature, indicating a depth gradient (lower temperatures and higher oxygen 

concentrations in shallow relative to deep habitats; Fig. 5.4b). However, there were no 

significant relationships between specific pairwise combinations of traits and 

environmental variables (data not shown). 

Three significant station clusters were identified by hierarchical cluster analysis 

of community-weighted mean trait values and named for their distinctive 

characteristics (Fig. 5.5a). The first group, named the hyperbenthic communities 

cluster, was characterized by trophic functional traits that included predatory feeding 
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modes, swimming, advective particle transport, and feeding on zooplankton (Table 

5.4). Hyperbenthic communities were generally located on the upper continental slope 

(275 to 350 m depths) of the Canadian Beaufort Sea and Amundsen Gulf (Fig. 5.5b). 

The deposit-feeding dominated cluster included stations that were proximate to 

especially steep bathymetric features. This second cluster was characterized by trophic 

functional traits that included deposit feeding, maximum body sizes ≤ 100 mm, and 

bioturbation of sediment (Table 5.4). The third and most distinctive cluster (IndVal 

indices > 0.6) was named the Amundsen Gulf shelf break cluster for its consistent 

station locations within a narrow depth range corresponding to shelf break in the 

Amundsen Gulf (75 to 200 m depths; Fig. 5.5b). The third cluster was characterized by 

trophic functional traits that included discrete motility, suspension-feeding, feeding on 

POM, and sediment resuspension. NMDS ordination agreed well with station clustering, 

and with the associations between station clusters and trophic functional traits (Fig. 

5.6).  

 

Discussion  

 

The trophic functional responses of fish and epifaunal invertebrates to indices 

of benthic food supply and large-scale oceanography were investigated in two 

contiguous, but environmentally heterogeneous Arctic shelf ecosystems. Comparisons 

between traits-based and isotopic functional diversity provided insight regarding 

spatial variation in potential and realized functional food web structure, but did not 

reveal the strong differences expected between the Canadian Beaufort Sea and 

Amundsen Gulf. The distribution of trophic functional traits did not vary significantly 

with proxies for benthic food supply. Instead, several lines of evidence, including the 
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clustering of stations based on trait compositions, suggested communities near shelf 

break habitats in both regions were exposed to similar organic matter delivery 

pathways that made them unique relative to inshore communities. Here, it is argued 

that trophic functional composition appears to respond to local-scale, dynamic habitat 

filters that influence benthic food supply, but those habitat filters are not well 

represented by environmental variables measured at regional scales. 

Traits-based and isotopic functional diversity highlighted different regional 

patterns in functional food web structure, suggesting that each method provided 

distinct, but complementary information. The most striking observation was the 

discrepancy between relatively high traits-based functional diversity and low isotopic 

functional diversity in communities located near the continental shelf break in both 

the Beaufort Sea and Amundsen Gulf. Frequent but episodic hydrographic events at 

continental shelf edges are known to affect local production regimes by facilitating 

exchange of nutrients and biogenic material (e.g., Bering Sea, Springer et al. 1996, 

Barents Sea, Carroll et al. 2008, Svalbard Bank, Wassmann et al. 2010). Nutrient 

delivery from shelf break exchange is particularly important for new primary 

production across the pan-Arctic interior shelves, and upwelling-favourable winds 

dominate in the Beaufort Sea (Williams & Carmack 2015). Moreover, wind forcing 

produces a bottom-intensified shelf break jet around 150 m depths characterised by 

high and temporally variable current velocities, seasonal flow reversals, and eddy 

formation, all of which enhance the transport and resuspension of particulate matter 

across the shelf break (Nikolopoulos et al. 2009, O’Brien et al. 2011, Forest et al. 2015, 

2016). It is proposed here that high trophic functional trait diversity at shelf edge 

habitats facilitates the sharing of pulsed food inputs, which may have relatively 

homogeneous isotopic compositions, by providing a variety of means for sequestering 
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the energy (e.g., capture of different particle sizes, use of fractions that have 

undergone varying degrees of bacterial processing). 

Although polar benthic communities respond quickly and opportunistically to 

freshly sedimented or advected organic matter, they derive the majority of their 

nutrition from a sedimentary “food bank” (Mincks et al. 2005, Renaud et al. 2008). 

Consequently, benthic biomass and consumer stable isotope values in polar seas tend 

to reflect long-term indicators of benthic food supply rather than seasonal or episodic 

food inputs (Renaud et al. 2008, Kędra et al. 2012). If benthos rely primarily on 

sedimentary organic matter, spatial variation in δ15N and δ13C would be expected to 

reflect prominent organic matter sources, regardless of whether communities possess 

trophic traits to capture episodic food inputs. For example, isotopic functional 

diversity was especially low near the outflow of the Mackenzie River where terrestrial 

organic matter is thought to have a strong influence on trophic structure (e.g., Bell et 

al. 2016, Chapter 3 of this thesis). In contrast, the only “hotspot” in isotopic functional 

diversity was near Cape Bathurst. Cape Bathurst is known to experience frequent 

upwelling, regionally high rates of vertical organic matter export, and high benthic 

remineralisation rates (Williams & Carmack 2008, Sampei et al. 2011, Link et al. 2013) 

similar to those found in other Arctic hotspots with tight benthic-pelagic coupling (e.g., 

Chukchi Shelf, Grebmeier et al. 1989, Barents Sea marginal ice zone, Tamelander et al. 

2006). Most polar benthic communities, however, likely exhibit limited temporal 

fluctuation in stable isotope values even if they do consume pulsed food inputs (Kędra 

et al. 2012).  

The clustering of Amundsen Gulf shelf break communities supports the notion 

that episodic organic matter pathways contribute to structuring benthic functional 

composition. Station locations in this cluster were coincident with distinct taxonomic 
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composition relative to other areas in the Canadian Arctic Archipelago (Roy et al. 

2014), and were defined by traits that suggest suspended particulate organic matter 

was a dominant basal resource. Three stations in the Amundsen Gulf shelf break 

cluster, along the northern margins of the gulf, had the highest traits-based functional 

diversity observed across the entire study region. Similarly, most stations within the 

deposit-feeding dominated cluster occurred near the upper slopes at Cape Bathurst, 

Kugmallit Valley, or Mackenzie Trough. Bathymetric features at these locations, as well 

as at other submarine canyons that intersect Arctic shelves, are known to enhance the 

upwelling of nutrient-rich waters (Carmack & Kulikov 1998, Williams & Carmack 2008, 

2015, Williams et al. 2008). A large proportion of the resultant new primary production 

sinks ungrazed to the benthos (e.g., Sampei et al. 2011), where it can promote high 

benthic biomass and a dominance of deposit feeders (Conlan et al. 2013, Link et al. 

2013). It remains unclear why other stations near these upwelling hotspots did not 

have significantly similar trophic functional composition. In addition, the hyperbenthic 

cluster is less easily explained by known habitat features.  

Contrary to study predictions, the distribution of trophic functional traits was 

not significantly related to sedimentary proxies for organic matter delivery to the 

benthos. The relationships between trait structure and bottom oceanography was 

driven by the dominance of hyperbenthic traits on the upper continental slope (200 to 

500 m), where oxygen concentrations are lower, temperatures are higher, and where 

fish reach maximum abundances (Majewski et al. 2017). Recent investigations of Arctic 

benthos have suggested that some aspects of food web structure and function, such as 

benthic remineralisation, taxonomic diversity, and benthic-pelagic coupling, are 

influenced by organic matter input regimes (Tamelander et al. 2006, Link et al. 2013, 

Roy et al. 2014, Chapter 3 of this thesis). The distribution of trophic functional traits 
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was, therefore, expected to directly respond to indices of benthic food supply (e,g., 

high abundance of traits promoting the rapid digestion of freshly deposited food 

where benthic Chl a indicated high phytodetrital inputs; Link et al. 2013). However, if 

episodic processes that influence food availability are indeed linked to regional 

patterns in trophic trait diversity, then sedimentary proxies for benthic food supply 

would not be expected to reliably reflect those processes. In the Arctic, sedimentary 

evidence for pulsed organic matter inputs can be short-lived (e.g., Renaud et al. 2007b). 

Benthic invertebrates can consume newly sedimented organic matter from 

phytoplankton blooms within a few weeks, leaving little evidence in the sediment to be 

measured as part of a regional gradient (e.g., Renaud et al. 2007b, Link et al. 2013).  

In large heterogeneous areas, attempts to link specific environmental variables 

to trait composition may be hampered by local habitat complexity. For example, 

Moretti et al. (2009) found that functional traits could be used to predict the functional 

responses of bees to environmental change, but predictions could not be generalized 

between regions because local habitat configurations altered trait-environment 

relationships. Similarly, local conditions interrupted any linear associations between 

the taxonomic composition of benthic invertebrates and benthic habitat variables 

across the Canadian Arctic Archipelago (Roy et al. 2014). The premise of linking 

biological traits analysis to environmental gradients assumes a strong role of habitat 

filtering, wherein a set of abiotic and biotic constraints determine which traits persist 

in a given location (Keddy 1992). Bremner (2008) advocated the study of trait-

environment linkages in benthic marine communities at regional scales, but perhaps 

the relevant habitat filters acting at local scales on Arctic shelves are not captured by 

variables measured at regional scales. Because the combined RLQ-fourth corner 

approach has rarely been used to study benthic marine assemblages, it is difficult to 
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assess how long the gradients in benthic food supply and oceanographic variables 

must be to detect a strong response in community trait assemblages. The data 

provided here (Table 5.1) will help future investigations determine the gradient lengths 

best suited for detecting change. 

The absence of significant trait-environment linkages in the current study may 

demonstrate an underlying advantage of using functional-based indicators to assess 

food web functioning, even at the regional scale. Stations exposed to similar abiotic 

forcings had similar trophic functional compositions, even without statistical 

descriptions of the specific, underlying trait-environmental relationships. Monitoring 

functional composition may allow detection of environment-driven changes in food 

web functioning even when trait-environment relationships are not well known, or 

when they are complicated by interacting local-scale habitat filters (Moretti et al. 2009, 

van der Linden et al. 2016, Teresa & Casatti 2017). Although emergent patterns in 

functional composition do not facilitate accurate forecasting of food web structure 

under future environmental scenarios, they can still be used successfully to inform the 

designation of marine protected areas (Frid et al. 2008), monitor impacts of stressors 

such as invasive species and abiotic disturbance (e.g., Mouillot et al. 2013a), and 

elucidate mechanisms behind climate-driven changes in food web structure (Kortsch et 

al. 2015). Findings from this study add to growing evidence that indicators based on 

the composition of functional traits themselves are more powerful tools for detecting 

community change than those based on functional diversity indices or taxonomy 

(Mouillot et al. 2013a, van der Linden et al. 2016, Weigel et al. 2016). 

Low levels of functional redundancy across the region reinforce the need to 

monitor trophic functional composition on Arctic shelves, because low functional 

redundancy can place marine communities at risk of losing entire functional groups 



 

130 
 

from stressors (Micheli & Halpern 2005). Low functional redundancy implies that many 

species exhibited unique trophic trait compositions. Because biomass-weighted 

functional and species diversity were not correlated, species with unique trait 

combinations likely had low relative biomasses. If so, food web function in benthic 

shelf communities will be especially sensitive to species loss because rare species with 

unique traits often support unique ecosystem functions (Mouillot et al. 2013b). 

However, such a conclusion is speculative. More evidence is needed to demonstrate 

whether the ratio of functional to taxonomic diversity is a reliable indicator of 

functional redundancy when the traits used in the calculation are qualtitative. 

Moreover, some of the diversity in the system may have been missed due to the use of 

a small 3 m benthic beam trawl in the diversity survey. It is not expected that the use 

of a smaller trawl net would change the conclusions regarding spatial change in 

relative functional diversity values because any associated biases would be applied 

across all sampling stations. However, every method of capture has its biases, and a 

larger trawling net or longer trawling times may have captured greater diversity than 

that measured in this study. 

Indices of food web structure based on δ15N and δ13C have been used for over a 

decade, but they do not provide a framework for considering species’ relative 

biomasses (Bearhop et al. 2004, Layman et al. 2007). Rigolet et al. (2015) argued that 

omitting biomass distributions from isotopic trophic indices ignored the role of energy 

flow, and in doing so distorted the relative importance of trophic processes. Complete 

datasets of both biomass estimates and stable isotope measurements are time 

consuming and difficult to collect. Where such datasets exist, the results of this study 

demonstrate that isotopic functional diversity is a useful descriptor of realized food 

web diversity, especially when used with traits-based metrics that provide important 
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information regarding a community’s potential range of trophic functions. The joint 

use of traits-based and isotopic functional diversity suggested that (1) most 

communities relied on a similar diversity of sedimentary organic matter sources, but 

(2) shelf edge communities maintained relatively high trophic trait diversity to exploit 

pulsed food inputs. More studies are needed to establish whether high trophic 

functional trait diversity is characteristic of interior Arctic shelf break communities. 
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Table 5.1. Mean, standard deviation (SD), maximum, and minimum values for 

oceanographic variables and sedimentary proxies for benthic food supply measured at 

39 sites in the Canadian Beaufort Sea and Amundsen Gulf. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Environmental Variable Mean SD Max. Min. 

Bottom oxygen (ml L-1) 7.18 1.02 10.44 5.90 

Bottom salinity (PSU) 33.34 1.40 34.86 29.43 

Bottom temperature (°C) -0.44 0.76 0.75 -1.43 

Sediment Chl a (m-2) 5.00 5.70 27.15 0.31 

Sediment Chl a : phaeopigments 0.17 0.11 0.53 0.06 

% Sediment organic matter 9.63 2.29 14.58 3.67 

Mean grain size (μm) 9.81 6.62 32.36 0.20 

% Silt 70.37 17.17 90.34 0.20 
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Table 5.2. Descriptions of functional traits and trait modalities selected for analysis. 

Codes are used to represent traits in figures. 

 

Trait Modality Code Description 
Motility sessile M.sess Generally does not move; may be attached. 

 discretely mobile M.dismob Capable of free movement, but does not actively move 
to feed (e.g., sea anemones) 

 crawler M.crawler Crawls freely on the sediment surface 

 swimmer M.swimmer Not restricted to movement directly on the seafloor; 
water-associated. 

 burrower M.burrower Capable of free movement, but dwells in burrows in 
the sediment 

 tubiculous M.tubiculous Tube-dwelling; restricted movement 

    

Feeding type suspension 
feeder 

FM.susp Feeds on fresh or resuspended particulate organic 
matter (no restriction on particle size) 

 deposit feeder FM.dep Feeds on material deposited on the sediment surface 
including, but not limited to, large food falls, detritus, 
carcasses and fecal pellets from the overlying water 
column, bacteria, and bacterial products 

 predator FM.pred Feeds by actively capturing live animal prey 

 scavenger FM.scav Feeds on dead animal material 

    

Body size 20 mm BS.20 Maximum recorded body size ≤ 200 mm 

 100 mm BS.100 Maximum recorded body size ≤ 100 mm 

 250 mm BS.250 Maximum recorded body size ≤ 250 mm 

 500 mm BS.500 Maximum recorded body size ≤ 500 mm 

 750 mm BS.750 Maximum recorded body size ≤ 750 mm 

 1000 mm BS.1200 Maximum recorded body size ≤ 1200 mm 

    

Particle 
transport 

resuspension PT.resusp Actions of the organism resuspend particulate matter  

 sediment mixing PT.mix Actions of the organism mix the sediment; no 
restriction on depth of mixing 

 advective PT.adv Actions of the organism advect particlate matter from 
relatively long distances, either horizontally or 
vertically (e.g., fish migrations) 

    

Food source POM FS.pom Feeds on particulate organic matter (POM) 

 detritus FS.det Feeds on detritus at the sediment surface 

 microfauna FS.mic Feeds on microfauna (e.g., diatoms, bacteria, and other 
single-celled organisms) 

 macrofauna FS.mac Feeds on macrofauna 

 phytoplankton FS.phy Feeds on phytoplankton that has settled to the 
seafloor 

  zooplankton FS.zoo Feeds on zooplankton 
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Table 5.3. Results of Spearman’s rank correlation analyses between pairwise 

combinations of functional diversity (FDis), isotopic functional diversity (IFDis) and 

taxonomic diversity (H’). The relationship between FDis and H’ appeared quadratic and 

was tested with polynomial regression instead.  

 

Test  Method r
s
 R2 p 

FDis vs. IFDis Spearman rank correlation 0.16  0.45 

FDis vs. H’ Polynomial regression 0.17 0.27 

IFDis vs. H’ Spearman rank correlation 0.09  0.66 
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Table 5.4.  Significant indicator traits associated with each station cluster identified by hierarchical cluster analysis of 

community-weighted mean trait values. An IndVal index of 100% indicates a trait that is observed at all stations of one 

cluster and not in any other cluster. The functional diversity (FDis), isotopic functional diversity (IFDis), taxonomic 

diversity (H’), taxonomic distinctness (Δ*), and functional redundancy values are also presented for each cluster as 

means ± standard deviation. Station depth is presented as a mean and range. 

 

 
a Based on 4 of 7 sites with sufficient stable isotope data to compute IFDis 

Station 
cluster 

N 
sites 

Significant 
indicator 

traits 

IndVal 
(%) 

p 
Station 

depth (m) 
FDis IFDis H' Δ* 

Functional 
redundancy 

Hyperbenthic 
communities 

4 FS.zoo 43.33 0.001 249 (350, 20) 0.14 ± 0.01 0.26 ± 0.06 1.31 ± 0.22 76.32 ± 18.25 0.11 ± 0.03 

 M.swimmer 37.51 0.004 

 PT.adv 37.47 0.008 

 FT.pred 35.76 0.001 
Deposit-
feeding 
dominated 

5 FT.dep 34.86 0.026 228 (350, 40) 0.19 ± 0.01 0.27 ± 0.04 1.94 ± 0.39 87.35 ± 2.17 0.10 ± 0.01 

 BS.100 32.51 0.045 

 PT.mix 31.43 0.043 
Amundsen 
Gulf shelf 
break 

7 M.dismob 66.14 0.001 129 (200, 75) 0.20 ± 0.01 0.26 ± 0.04 a 1.15 ± 0.39 94.68 ± 3.84 0.19 ± 0.05 

 FS.pom 64.71 0.001 

 FT.susp 56.34 0.001 

 PT.resusp 39.70 0.006             
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Figure 5.1. Map of the Canadian Beaufort Sea and Amundsen Gulf region, showing the 

locations of sampling stations. Transects TBS, GRY, KUG, and DAL were sampled in 

2012, whereas transects CBH, DAR, and ULU were sampled in 2013. 
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Figure 5.2. Traits-based functional diversity versus a) isotopic functional diversity, with 

Spearman’s rho (r
S
) and p value from Spearman’s rank correlation analyses, and b) 

taxonomic diversity, with R2 and p value from polynomial regression. There were no 

significant relationships between any pairwise combinations of diversity indices. 
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Figure 5.3. Maps showing regional values for a) functional diversity (FDis), b) isotopic 

functional diversity (IFDis), c) functional redundancy, and d) the locations of sampling 

stations in relation to bathymetry, with the shelf break at 200 m outlined. Data for 

IFDis are only displayed for sampling stations where stable isotope data were available 

for taxa that comprised ≥ 70% of the total biomass of the community. FDis highlights a 

relatively high diversity of traits within communities located near shelf break, whereas 

IFDis remains relatively low across both the Beaufort Sea and Amundsen Gulf aside 

from a community off Cape Bathurst (consult Fig. 5.1 for place names). Functional 

redundancy is mostly low across the region.  
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Figure 5.4. Combination of the RLQ and fourth-corner results (Dray et al. 2014), 

displaying relationships between a) the overall structure of environmental gradients 

(represented by site scores on RLQ axes) and specific trophic functional traits, and b) 

between the overall structure of traits (represented by species scores on RLQ axes) and 

specific environmental variables. Numbers in boxes represent square correlation 

coefficients measuring linkages between variables in the fourth-corner analysis. Codes 

for traits are defined in Table 5.1. The overall structure of traits was significantly 

related to bottom oxygen and temperature, reflecting a separation of traits associated 

with obligate benthic species in shallower habitats from traits associated with 

hyperbenthic species in deeper habitats, where there are higher temperatures and 

lower oxygen concentrations. 
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Figure 5.5. a) Dendrogram of station clusters resulting from a hierarchical clustering of 

community-weighted mean trait values, and b) the locations of clustered stations. 

Amundsen Gulf shelf break communities were located in a narrow depth range (72 to 

200m) on the hydrographically dynamic continental shelf edge surrounding the 

Amundsen Gulf, and deposit-feeding dominated stations were mostly located near 

areas with topographically-enhanced upwelling. Habitat features that linked stations in 

the hyperbenthic communities cluster were less apparent.  

  



 

141 
 

 

Figure 5.6. Non-metric multidimensional scaling (NMDS) ordination of a) stations and 

b) traits. Stations belonging to significant clusters identified by hierarchical cluster 

analysis of community-weighted mean trait values are shown as black symbols in (a), 

and as grey symbols in (b) to illustrate cluster associations with trait values. Codes for 

trophic functional traits are defined in Table 5.1. The distribution of stations relative 

to traits in NMDS ordination aligned closely with the results of hierarchical clustering 

and IndVal analyses that assigned indicator traits to each cluster.  
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6 General Conclusion 

 

Synopsis 

 

The research presented in this thesis filled substantial knowledge gaps 

regarding the overall trophic structure of demersal fish and invertebrates in the 

Canadian Beaufort Sea and Amundsen Gulf by quantifying isotopic and biomass-

weighted trophic structure, and by examining how food web structure responded to 

gradients of benthic food supply and oceanography (key findings are summarised 

graphically in Figs. 6.1 and 6.2). 

 Results of the second thesis chapter demonstrated that fish communities in the 

Canadian Beaufort Sea were strongly size-structured at all habitat depths down to 

1000 m, such that the largest individuals occupied the highest trophic levels. Biomass 

production for small-bodied fishes declined with depth, resulting in significantly 

shallower (less negative) relationships between biomass and body size with increasing 

habitat depth. In the two deeper habitats, δ13C indicated low dietary differentiation 

between benthic and benthopelagic fishes. Large size classes in deeper habitats were 

dominated by Greenland Halibut (Reinhardtius hippoglossoides (Walbaum)), known to 

undertake vertical migrations to obtain pelagic prey (e.g., Jørgensen 1997). Overall, 

results suggested that decreasing benthic resources with depth limited the production 

of small size classes of fish in deeper habitats, whereas the biomass of larger size 

classes was maintained by their ability to obtain pelagic subsidies. Benthic-pelagic 

coupling via active biological transport was determined to be important for fish 

production at depth in the Canadian Beaufort Sea.  
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 In Chapter 3, spatial patterns of organic matter input and water mass structure 

were shown to influence trophic connectivity between benthic and pelagic functional 

groups down to 1000 m downslope. First, benthic-pelagic trophic coupling weakened 

alongshore from west to east regardless of primary production at the surface, and 

coincident with the use of a more diverse range of dietary carbon sources among 

benthic functional groups. Benthic-pelagic coupling was weakest in the Amundsen Gulf 

where strong pelagic grazing has been previously observed to limit POM sinking flux, 

intermediate in the central Canadian Beaufort Sea where benthic communities are 

thought to be at least partially sustained by terrestrial organic matter, and strongest 

west of the Mackenzie River where a greater influence of Pacific-origin water likely 

enhances particulate organic matter (POM) delivery to the benthos. Second, the weakest 

benthic-pelagic coupling consistently occurred on the upper slope across the entire 

study region. Here, biological activity at the transition between Pacific and Atlantic 

water masses may limit POM sinking flux to the benthos. In turn, benthos likely rely to 

a larger degree on organic matter that is resuspended by dynamic shelf break 

hydrography. Benthic-pelagic coupling was consistently strongest on the nearshore 

shelf across all study regions, where POM has a short distance to sink from the 

chlorophyll maximum depth. 

 Findings in Chapter 4 revealed that the δ15N of suspension/filter feeders, 

infaunal deposit feeders and bulk sediment increased as a function of water depth, 

which was attributed to preferential uptake of 14N from sinking POM by microbes. 

Significant δ15N–depth relationships are commonly observed for benthic primary 

consumers, but not for mobile predators, presumably because they can access pelagic 

prey that do not rely on 15N-enriched POM at the seafloor (e.g., Mintenbeck et al. 2007, 

Bergmann et al. 2009, Roy et al. 2015). The work in this chapter demonstrated for the 
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first time that mobile epifaunal predators can exhibit significant δ15N–depth 

relationships when they are considered independent of their benthopelagic and 

infaunal counterparts. The slope of δ15N–depth relationships for suspension/filter 

feeders, infaunal deposit feeders and bulk sediment were steeper in the Amundsen 

Gulf than in the Beaufort Sea. Sedimentary analyses indicated that regional differences 

in the relationships could be attributed to differences in the prevalent POM sources 

available to the benthos. In the Beaufort Sea, the dominance of terrestrial POM 

discharged from the Mackenzie River was thought to dampen change in δ15N of POM 

with depth. In contrast, high primary production in the Amundsen Gulf likely 

promoted intensified biological transformation of autochthonous POM in the pelagic 

zone, resulting in lower downward POM flux and a faster rate of change in consumer 

δ15N with depth. 

The influence of trophic functional trait composition on regional differences in 

food web structure between the Canadian Beaufort Sea and Amundsen Gulf was 

explored in Chapter 5. Biomass-weighted isotopic functional diversity was generally 

higher in the Amundsen Gulf compared to the Beaufort Sea. However, the differences 

were more subtle than expected given the differences in benthic food web structure 

and benthic-pelagic coupling identified in Chapters 3 and 4. Biological communities 

across both regions appeared to rely on a similar diversity of sedimentary organic 

matter sources, regardless of the origin of organic matter. Wider community niche 

breadths along the δ13C axis in the Amundsen Gulf (observed in Chapter 3) may have 

been driven by species with lower relative biomass having relatively distinct δ13C 

values, suggesting a unique trophic role for rarer species. High isotopic functional 

diversity was only observed in biological communities near the Cape Bathurst 

upwelling hotspot, and those near coastal human settlements. In contrast, analyses of 
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traits-based functional diversity revealed that communities at the shelf edge 

maintained relatively higher trophic trait diversity than other communities, 

presumably to allow the exploitation of pulsed food inputs associated with dynamic 

shelf break hydrography. The influence of shelf break on benthic functional food web 

structure was not obvious from isotopic functional diversity data in Chapter 5, but was 

consistent with the unique trophic structure observed for upper slope communities in 

Chapter 3. Cluster analyses supported the notion that benthic trophic trait 

composition was influenced by episodic organic matter inputs at the shelf edge. 

However, there were no significant pairwise relationships between trophic traits and 

indicators of benthic food supply at the regional scale. The findings of this chapter 

add to the growing evidence that local habitat complexity can hamper the use of trait-

environment relationships to describe and/or predict community functional responses 

at a regional scale.  Finally, functional redundancy was low across most of the region, 

suggesting benthic food web function will be sensitive to species loss.  

 

What did we learn? 

Emergent properties 

 

When the research in this thesis is considered as a whole, several principal 

properties emerge as characteristic of demersal food webs in the Canadian Beaufort 

Sea and Amundsen Gulf: 

 

The Canadian Beaufort Sea and Amundsen Gulf should be considered separate but 

interconnected ecosystems. Despite mounting evidence for physical differences in 

sediment composition (e.g., Magen et al. 2010), POM sinking flux (Sallon et al. 2011, 
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Sampei et al. 2011), and primary production (Carmack et al. 2004, Morata et al. 2008, 

Ardyna et al. 2013), few differences in taxonomic benthic community structure have 

been identified between the two contiguous regions (Conlan et al. 2008, Roy et al. 

2014). However, the work in this thesis confirms that habitat differences are linked to 

differences in benthic-pelagic coupling (Chapter 3), the diversity of dietary carbon 

sources used by benthic functional groups (Chapter 3), the rate of change in δ15N with 

water depth (Chapter 4), and to a lesser degree biomass-weighted isotopic functional 

diversity (Chapter 5). Food webs in the Canadian Beaufort Sea and Amundsen Gulf are 

likely to respond differently to environmental changes because they are sustained by 

significantly different organic matter pathways.  

 

Organic matter pathways are key properties that define and determine trophic structure 

in the study systems. Trophic structure was found to be influenced by the types of 

organic matter available to benthos and by their modes of delivery, including: active 

benthic-pelagic coupling via vertical migrations (Chapter 2, Giraldo et al. 2016 in 

Appendix A), passive benthic-pelagic coupling controlled by the sinking flux of pelagic 

POM (Chapters 2, 3 and 4), horizontal flux of terrestrial discharge from the Mackenzie 

River (Chapter 3 and 4), and resuspension/advection of sedimentary organic matter 

facilitated by dynamic hydrography near the shelf break (Chapter 5). This emergent 

property confirms that benthic food web structure will be impacted by predicted shifts 

in production regimes under future climate scenarios (Wassmann & Reigstad 2011). 

However, those impacts may not all be negative and will depend on the specific organic 

matter source or pathway being affected. 
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Local habitat complexity interrupts linear associations between environmental gradients 

and trophic structure at the regional scale. Although trophic structure was influenced 

by organic matter input regimes (Chapters 3, 4, and 5) and hydrography (Chapters 4 

and 5), neither of these gradients had linear correlations with specific metrics of 

isotopic trophic structure (Chapter 3) or with specific trophic traits (Chapter 5). 

Consequently, trophic structure will not be easily predicted from any single 

environmental variable, and perhaps not even from a combination of local sedimentary 

or oceanographic measurements from a single temporal sampling event. Instead, 

trophic structure may be more associated with rate processes such as annual POM 

export past the euphotic zone, or the average frequency of upwelling/downwelling 

events. This may be especially true for shelf break communities (Chapter 5), but the 

validity of such a hypothesis has yet to be tested. 

 

Considerations for management 

 

Canada has become a global leader in applying an ecosystem-based 

management approach to fisheries, although there is much room for improvement 

(Pitcher et al. 2009). Ecosystem-based management begins with conservation of the 

ecosystem on which species rely, rather than focusing on conservation of a specific 

target species (e.g., Pikitch et al. 2004). The Beaufort Sea is one of five priority 

management areas in Canada’s Oceans Action Plan, but the lack of knowledge 

regarding food web structure and function restricts effective ecosystem-based 

management in the face of climate change and potential industrial development (e.g., 

hydrocarbon extraction, shipping, fisheries). The research outlined in this thesis has 

contributed knowledge that is directly applicable to management planning in the 
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Beaufort Sea and Amundsen Gulf, outlined below. Although knowledge of food web 

structure and function is still inadequate to precisely predict the impacts of climate 

change, some conjectures can be provided with respect to the implications of thesis 

findings for management. 

First, Greenland Halibut was identified as an important benthic-pelagic 

ecosystem integrator (Chapter 2), and should be a candidate species for monitoring. 

Vertical migrations made by Greenland Halibut and other benthopelagic species likely 

support total production in benthic communities by transporting pelagic nutrients to 

benthic habitats through respiration, defecation, and carcasses (e.g., Trueman et al. 

2014). The delivery of pelagic subsidies to benthic habitats may mitigate some of the 

negative effects of decreased POM sinking flux predicted to occur with sea ice loss 

(Wassmann & Reigstad 2011). 

Second, size spectra relationships are a useful tool for detecting shifts in 

community structure associated with disturbances such as fishing (e.g., Jennings & 

Blanchard 2004). The Beaufort Sea ecosystem has never been exploited by commercial 

fisheries, so the size spectra relationships quantified in Chapter 2 could act as a 

baseline for monitoring future changes in community structure associated with 

development or climate change. 

Third, the discharge of suspended particulate matter from the Mackenzie River 

has increased by 50% since 2003 (Doxaran et al. 2015). Because terrestrial organic 

carbon appears to be an important regulator of food web structure on the Mackenzie 

Shelf (Chapters 3 and 4), benthic food web structure in the Canadian Beaufort Sea may 

be in a state of change. In contrast, benthic communities in the central Amundsen Gulf 

may be less sensitive to climate-driven changes in organic matter inputs because they 

currently receive little autochthonous or terrestrial organic matter. However, care 
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needs to be taken when making inter-regional food web comparisons based on stable 

isotopes, because depth-related changes in consumer δ15N occur at different rates in 

the Amundsen Gulf and Beaufort Sea independent of diet (Chapter 4).  

Finally, analyses suggested that functional redundancy was low across most of 

the Canadian Beaufort Sea and Amundsen Gulf, and that species with unique trait 

composition had lower biomasses (Chapter 5). Consequently, food web function in 

benthic shelf communities will be especially sensitive to species loss in the face of 

decreasing POM sinking flux because rare species with unique traits often support 

unique ecosystem functions (Mouillot et al. 2013b). Monitoring of functional trait 

composition, in addition to taxonomic composition, will provide a better indicator of 

functional food web responses to changing environmental conditions.  

 

Future directions 

 

As this thesis represents some of the first empirical research on offshore food 

webs in the region, it revealed more questions than answers. However, findings from 

this research can help steer future investigations toward developing a mechanistic 

food web model for the Canadian Beaufort Sea and Amundsen Gulf. Some of the most 

fruitful avenues for future study include the following questions: 

 

What are the direct feeding linkages between species? 

Species-specific studies are still needed. This thesis primarily analysed food 

webs at aggregated structural levels, such as functional groups or communities. 

Although aggregate-level analyses allowed the identification of important physical-

biological forcings acting on food web structure and function, feeding linkages and 
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behaviours among specific species have yet to be elucidated. Building a database of 

specific trophic linkages between species and/or aggregated food web components will 

be critical for ecosystem-based management plans. An understanding of energy flow 

and feeding dynamics will be necessary to conserve species of interest. Because species 

with the highest biomasses are likely to have the greatest influence on ecosystem 

function (Grime 1998), dominant species with poorly understood diets, such as 

eelpouts, brittle stars, and some decapods, may be a good place to start. 

 

How does functional food web structure relate to indicators of ecosystem function?  

Functional diversity and composition were determined for benthic communities 

on the shelf and upper slope (Chapter 5), but they were not linked to actual 

measurements of ecosystem function. A next important step is to understand how, or 

if, functional composition is linked to measurements of ecosystem function. Higher 

diversity does not always lead to higher ecosystem functioning (Mouillot et al. 2013a). 

For example, trophic functional diversity is especially low near the Mackenzie River 

outflow (Chapter 4), but other studies have measured regionally high benthic 

remineralisation rates there (Darnis et al. 2012). In benthic environments, benthic 

carbon remineralization is often used as an indicator of biological functioning because 

it measures the rate of detrital recycling and nutrient release into the water column 

(e.g., Renaud et al. 2007b, Darnis et al. 2012, Link et al. 2013). Such a measurement 

would improve our understanding of how food web structure influences actual 

ecosystem function, and would be especially powerful if combined with biomass-

weighted isotopic food webs.  

 

Are shelf break food webs unique? 
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 Thesis findings demonstrated that benthic communities near the shelf break are 

more trophically distinct from the pelagos than communities at other depths (Chapter 

3), and that shelf break communities exhibit a relatively more diverse set of trophic 

traits (Chapter 5). It is plausible that shelf break communities have distinct functional 

and food web attributes due to the specific water mass structure of the area. For 

example, biological activity at the transition between Pacific and Atlantic water masses 

may restrict POM sinking flux, forcing benthic food webs to be more reliant on the 

frequent resuspension events that occur along the Mackenzie Shelf edge. Continental 

shelf edges in many regions are typified by dynamic hydrography and unique 

circulation (e.g., Bering Sea, Springer et al. 1996, Barents Sea, Carroll et al. 2008, 

Svalbard Bank, Wassmann et al. 2010), which may select for communities that can 

exploit pulsed resuspension events. It remains uncertain whether distinct trophic 

functional composition and food web structure are characteristic of shelf break 

communities at a pan-Arctic scale, or whether these properties are unique to the 

Beaufort Sea and Amundsen Gulf.  

 

How does benthic trophic ecology differ in winter? 

Very little is known about benthic food web structure and function during 

winter in the Canadian Beaufort Sea and Amundsen Gulf. Winter-time studies in the 

Bering Sea and in a Norwegian fjord system suggested little seasonal change in benthic 

food web structure based on low seasonal variation is stable isotope values (Lovvorn et 

al. 2005, Kędra et al. 2012). However, vertically migrating fish and zooplankton (e.g., 

Geoffroy et al. 2011, Connelly et al. 2014), as well as intensified winter resuspension 

events (e.g., Mundy et al. 2009, Forest et al. 2015) may have important and 

unquantified consequences for winter food web structure in the Beaufort region.  
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What is the general, over-arching food web model for the Canadian Beaufort Sea and 

Amundsen Gulf? 

Finally, an overall food web model should be a key and over-arching objective 

for future research in the region. General descriptions of food web structure and/or 

quantitative mass-balanced models have been published for the Barents Sea (Blanchard 

et al. 2002, Wassmann et al. 2006), Chukchi Sea (Grebmeier et al. 2006, Whitehouse et 

al. 2014), the deep Arctic Basin (Iken et al. 2005), Lancaster Sound (Hobson & Welch 

1992), and the North Water Polynya of northern Baffin Bay (Hobson et al. 2002). 

Combining knowledge gained from the work in this thesis, species-specific studies, 

functional traits databases, relative biomasses of predators and prey, and a description 

of the major spatial changes in food web structure may help piece together a general 

food web model structure in the Beaufort Sea and Amundsen Gulf. Food web models 

can be important for predicting community-level responses to disturbance. For 

example, simulations from a general metadata model for Arctic ice-associated food 

webs predicted a total species loss of ~ 50 % as a consequence of cascade effects after 

removing only 8 % of species (Carscallen & Romanuk 2012). A similar model developed 

specifically for the Beaufort Sea and Amundsen Gulf ecosystems would be a valuable 

tool for prioritising species or groups of species for conservation and management 

planning. 

 

Concluding remarks 

 

 The work in this thesis represents a significant contribution to understanding 

demersal fish and invertebrate food web structure in the Canadian Beaufort Sea and 
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Amundsen Gulf. Although substantial knowledge gaps remain, the information gained 

through this research can direct future efforts toward developing a mechanistic food 

web model for benthic habitats and, ultimately, predicting the consequences of 

climate-driven change to regional ecosystem function. In the past decade, the 

formation of a pan-Arctic understanding of ecosystem structure and function has 

become a leading priority for investigators working in the Arctic, especially in light of 

fast-paced environmental change and associated implications for international 

governance (Wassmann et al. 2011). The research here contributes to that broader 

understanding by providing information on the ecology of two highly understudied 

interior Arctic shelf ecosystem.
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Figure 6.1. Schematic diagram of key thesis findings regarding food web structure in the Canadian Beaufort Sea, 

numbered in order of their presentation in the thesis. Key findings 2, 3, and 5 are also applicable to food web structure 

in the Amundsen Gulf (see Fig. 6.2).  
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Figure 6.2. Schematic diagram of key thesis findings regarding food web structure in the Amundsen Gulf, numbered in 

order of their presentation in the thesis. Key findings 2, 3, and 5 from Fig. 6.1 are also applicable to food web structure 

in the Amundsen Gulf.
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Appendix A: Additional publications 

 

Two publications resulted from data produced for the thesis in addition to the 

chapters presented: 1) a collaborative paper led by a colleague, and 2) a government 

data report that synthesised stable isotope methodology and raw data. Their abstracts 

and a statement of my contributions are presented here. 

 

Girlado C, Stasko A, Choy ES, Rosenburg B, Majewski A, Power M, Swanson H, 

Loseto L, Reist JD (2016) Trophic variability of Arctic fishes in the Canadian 

Beaufort Sea: a fatty acids and stable isotope approach. Polar Biol 39:1267-1282  

Trophic ecology of most demersal Arctic fishes remains one of the major knowledge 

gaps for understanding food web dynamics and connectivity among ecosystems. In 

this study, fatty acids (FA) and stable isotopes (SI) were used to study the feeding 

ecology of seven species (n = 106) of the most abundant benthic fishes (eelpouts, 

sculpins and agonids) in the Canadian Beaufort Sea from shallow (20–75 m), slope 

(200–350 m) and deep (500–1000 m) habitats. Both FA and SI results revealed among- 

and within-species variability in diet composition. Correspondence analysis of FA 

signatures identified high within-species variability in diet, resulting in high overlap 

among species. Calanus-derived FA were present in all species (Calanus markers up to 

13 % of total FA) and were particularly important in Ribbed Sculpin, Adolf’s and 

Longear Eelpout collected in deep habitats, suggesting a strong contribution of pelagic-

derived FA to benthic fish communities. Incorporation of this signal in the benthos 

may result from either direct consumption of deep over- wintering copepods (i.e., off-

bottom feeding) or through detrital accumulation in benthic invertebrate prey. Mean SI 
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values differed among species and indicated that a large range of trophic positions 

(δ15N varied from 14.09 to 17.71 % for Canadian Eelpout and Adolf’s Eelpout, 

respectively) and carbon dietary sources are preyed upon (δ13C range from -21.13 to -

23.85 % for Longear Eelpout and Ribbed Sculpin, respectively). SI analyses suggested 

that most species examined were low- to mid- trophic generalist benthic carnivores, 

with the exception of Ribbed Sculpin, which was a low-trophic pelagic predator. 

Statement of contribution: I provided the data and statistical analyses for the stable 

isotope portions of the paper. I contributed some writing for methodology and results, 

and contributed significantly to editing the manuscript. 

 

Stasko A, Swanson H, Atchison S, MacPhee S, Majewski A, de Montety L, 

Archambault P, Walkusz W, Reist J, Power M (2017) Stable isotope data (δ15N, δ13C) 

for marine fish and invertebrates from the Beaufort Sea Marine Fishes Project, 

August-September 2012 and 2013. Can Data Rep Fish Aquat Sci 1270:vi + 63 p 

This report presents stable isotope data (δ15N, δ13C and C:N ratios) for marine fishes, 

benthic invertebrates, zooplankton and sediments collected as part of the Beaufort 

Regional Environmental Assessment Marine Fishes Project. Sampling was conducted 

along 12 transects in the Canadian Beaufort Sea and Amundsen Gulf during the open 

water seasons of 2012 and 2013. A total of 113 taxa were selected for stable isotope 

analyses. The δ15N, δ13C and C:N values for all taxa are reported as means for the 

entire study region, as well as means for four water mass assemblages that differ in 

vertical water mass profile, nested within three large-scale regions that differ in 

organic matter input regimes. These data provide key information to infer food web 
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structure and feeding linkages among offshore marine fishes and invertebrates, thus 

may be used as a baseline for future monitoring and regulatory decision-making. 

 

Statement of contribution: I produced the stable isotope data and statistical analyses 

presented in the report. I wrote the report, but all co-authors authors contributed to 

editing. Additionally, SA managed metadata, sample processing, inventory and species 

identifications for fish. SM managed metadata, sample inventory, and some species 

identifications for epifaunal and infaunal invertebrates. LdM provided certified 

taxonomy for epifaunal and infaunal invertebrates. PA managed metadata and study 

design for sample collections of epifaunal and infaunal invertebrates. WW managed 

sample inventory and species identifications for zooplankton. JR facilitated publication 

in the DFO data report framework.
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Appendix B: Taxonomic classifications 

Full taxonomic classifications for all taxa included in thesis research. Taxa with available stable isotope data (SI) and 

those included in biological traits analyses (BTA) in Chapter 5 are indicated by X. Taxa are listed alphabetically, by 

Phylum. 

 

Taxon SI BTA Authority Class Order Family Genus 

Annelida 

Abyssoninoe sp. X Orensanz, 1990 Polychaeta Eunicida Lumbrineridae Abyssoninoe 

Aglaophamus malmgreni X X (Théel, 1879) Polychaeta Phyllodocida Nephtyidae Aglaophamus 

Aglaophamus sp. X Kinberg, 1865 Polychaeta Phyllodocida Nephtyidae Aglaophamus 

Ampharetidae X Malmgren, 1866 Polychaeta Terebellida Ampharetidae 

Cistenides hyperborea X Malmgren, 1866 Polychaeta Terebellida Pectinariidae Cistenides 

Eucranta sp. X X Malmgren, 1866 Polychaeta Phyllodocida Polynoidae Eucranta 

Eucranta villosa X Malmgren, 1866 Polychaeta Phyllodocida Polynoidae Eucranta 

Jasmineira sp. X X Langerhans, 1880 Polychaeta Sabellida Sabellidae Jasmineira 

Maldane arctica X Detinova, 1985 Polychaeta Maldanidae Maldane 

Maldane spp. X Grube, 1860 Polychaeta Maldanidae Maldane 

Melinna cristata X (M. Sars, 1851) Polychaeta Terebellida Ampharetidae Melinna 

Nephtys ciliata X (Müller, 1788) Polychaeta Phyllodocida Nephtyidae Nephtys 

Nephtys sp. X Cuvier, 1817 Polychaeta Phyllodocida Nephtyidae Nephtys 

Nothria conchylega X (Sars, 1835) Polychaeta Eunicida Onuphidae Nothria 

Pista maculata X (Dalyell, 1853) Polychaeta Terebellida Terebellidae Pista 

Arthropoda 

Acanthostepheia malmgreni X X (Goës, 1866) Malacostraca Amphipoda Oedicerotidae Acanthostepheia 

Anonyx nugax X (Phipps, 1774) Malacostraca Amphipoda Uristidae Anonyx 

Argis dentata X X (Rathbun, 1902) Malacostraca Decapoda Crangonidae Argis 

Boreomysis sp. X X G.O. Sars, 1869 Malacostraca Mysida Mysidae Boreomysis 

Bythocaris payeri X (Heller, 1875) Malacostraca Decapoda Bythocarididae Bythocaris 

Bythocaris spp. X G.O. Sars, 1870 Malacostraca Decapoda Bythocarididae Bythocaris 
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Taxon SI BTA Authority Class Order Family Genus 

Calanus glacialis X Jaschnov, 1955 Hexanauplia Calanoida Calanidae Calanus 

Calanus hyperboreus X Krøyer, 1838 Hexanauplia Calanoida Calanidae Calanus 

Colossendeis proboscidea X (Sabine, 1824) Pycnogonida Pantopoda Colossendeidae Colossendeis 

Decapoda (Hippolytidae?) X Latreille, 1802 Malacostraca Decapoda 

Epimeria loricata X G. O. Sars, 1879 Malacostraca Amphipoda Epimeriidae Epimeria 

Eualus gaimardii gaimardii X X 
(H. Milne Edwards, 1837 [in 
Milne Edwards, 1834-1840]) Malacostraca Decapoda Thoridae Eualus 

Halirages qvadridentatus X G.O. Sars, 1877 Malacostraca Amphipoda Calliopiidae Halirages 

Haploops laevis X Hoek, 1882 Malacostraca Amphipoda Ampeliscidae Haploops 

Hyas coarctatus X Leach, 1816 Malacostraca Decapoda Oregoniidae Hyas 

Hymenodora glacialis X (Buchholz, 1874) Malacostraca Decapoda Acanthephyridae Hymenodora 

Hymenodora sp. X G.O. Sars, 1877 Malacostraca Decapoda Acanthephyridae Hymenodora 

Hyperia galba X (Montagu, 1815) Malacostraca Amphipoda Hyperiidae Hyperia 

Lebbeus groenlandicus X (Fabricius, 1775) Malacostraca Decapoda Thoridae Lebbeus 

Lebbeus polaris X X (Sabine, 1824) Malacostraca Decapoda Thoridae Lebbeus 

Michthyops theeli X (Ohlin, 1901) Malacostraca Mysida Mysidae Michthyops 

Mysida X X Boas, 1883 Malacostraca Mysida 

Mysis oculata X (Fabricius, 1780) Malacostraca Mysida Mysidae Mysis 

Mysis polaris X Holmquist, 1959 Malacostraca Mysida Mysidae Mysis 

Mysis spp. X Latreille, 1802 Malacostraca Mysida Mysidae Mysis 

Nymphon hirtipes X Bell, 1855 Pycnogonida Pantopoda Nymphonidae Nymphon 

Onisimus plautus X (Krøyer, 1845) Malacostraca Amphipoda Uristidae Onisimus 

Paraeuchaeta sp. X Scott A., 1909 Hexanauplia Calanoida Euchaetidae Paraeuchaeta 

Rhachotropis aculeata X (Lepechin, 1780) Malacostraca Amphipoda Eusiridae Rhachotropis 

Rhachotropis sp. X S.I. Smith, 1883 Malacostraca Amphipoda Eusiridae Rhachotropis 

Sabinea septemcarinata X X (Sabine, 1824) Malacostraca Decapoda Crangonidae Sabinea 

Saduria sabini X X (Krøyer, 1849) Malacostraca Isopoda Chaetiliidae Saduria 

Saduria sibirica X X (Birula, 1896) Malacostraca Isopoda Chaetiliidae Saduria 

Sclerocrangon boreas X (Phipps, 1774) Malacostraca Decapoda Crangonidae Sclerocrangon 



 

194 
 

Taxon SI BTA Authority Class Order Family Genus 

Sclerocrangon ferox X X (Sars G.O., 1877) Malacostraca Decapoda Crangonidae Sclerocrangon 

Synidotea bicuspida X X (Owen, 1839) Malacostraca Isopoda Idoteidae Synidotea 

Synidotea sp. X Harger, 1878 Malacostraca Isopoda Idoteidae Synidotea 

Themisto abyssorum X (Boeck, 1871) Malacostraca Amphipoda Hyperiidae Themisto 

Themisto libellula X (Lichtenstein in Mandt, 1822) Malacostraca Amphipoda Hyperiidae Themisto 

Thysanoessa inermis X (Krøyer, 1846) Malacostraca Euphausiacea Euphausiidae Thysanoessa 

Thysanoessa raschii X (M. Sars, 1864) Malacostraca Euphausiacea Euphausiidae Thysanoessa 

Tmetonyx sp. X Stebbing, 1906 Malacostraca Amphipoda Uristidae Tmetonyx 

Brachiopoda 

Brachiopoda X Duméril, 1805 

Bryozoa 

Alcyonidium spp.  X J.V.F.Lamouroux, 1813 Gymnolaemata Ctenostomatida Alcyonidiidae Alcyonidium 

Cephalorhyncha 

Priapulopsis bicaudatus X (Koren & Danielssen, 1868) Priapulida Priapulidae Priapulopsis 

Chaetognatha 

Chaetognatha X 

Eukrohnia hamata X (Möbius, 1875) Sagittoidea Phragmophora Eukrohniidae Eukrohnia 

Parasagitta elegans X (Verrill, 1873) Sagittoidea Aphragmophora Sagittidae Parasagitta 

Chordata 

Amblyraja hyperborea X X (Collett, 1879) Elasmobranchii Rajiformes Rajidae Amblyraja 

Anisarchus medius X X (Reinhardt, 1837) Actinopterygii Perciformes Stichaeidae Anisarchus 

Artediellus uncinatus X (Reinhardt, 1834) Actinopterygii Scorpaeniformes Cottidae Artediellus 

Ascidia obliqua X Alder, 1863 Ascidiacea Phlebobranchia Ascidiidae Ascidia 

Aspidophoroides olrikii X Lütken, 1877 Actinopterygii Scorpaeniformes Agonidae Aspidophoroides 

Benthosema glaciale X (Reinhardt, 1837) Actinopterygii Myctophiformes Myctophidae Benthosema 

Boreogadus saida X X (Lepechin, 1774) Actinopterygii Gadiformes Gadidae Boreogadus 

Careproctus mollis X Gilbert & Burke, 1912 Actinopterygii Scorpaeniformes Liparidae Careproctus 

Careproctus rastrinus X Gilbert & Burke, 1912 Actinopterygii Scorpaeniformes Liparidae Careproctus 

Careproctus sp. X Krøyer, 1862 Actinopterygii Scorpaeniformes Liparidae Careproctus 
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Taxon SI BTA Authority Class Order Family Genus 

Cottunculus microps X Collett, 1875 Actinopterygii Scorpaeniformes Psychrolutidae Cottunculus 

Cyclopteridae X Bonaparte, 1831 Actinopterygii Scorpaeniformes Cyclopteridae 

Eumicrotremus derjugini X Popov, 1926 Actinopterygii Scorpaeniformes Cyclopteridae Eumicrotremus 

Eumicrotremus spinosus X (Fabricius, 1776) Actinopterygii Scorpaeniformes Cyclopteridae Eumicrotremus 

Gymnelus hemifasciatus X Andriashev, 1937 Actinopterygii Perciformes Zoarcidae Gymnelus 

Gymnocanthus tricuspis X (Reinhardt, 1830) Actinopterygii Scorpaeniformes Cottidae Gymnocanthus 

Icelus bicornis X (Reinhardt, 1840) Actinopterygii Scorpaeniformes Cottidae Icelus 

Icelus sp. X Krøyer, 1845 Actinopterygii Scorpaeniformes Cottidae Icelus 

Icelus spatula X Gilbert & Burke, 1912 Actinopterygii Scorpaeniformes Cottidae Icelus 

Leptagonus decagonus X (Bloch & Schneider, 1801) Actinopterygii Scorpaeniformes Agonidae Leptagonus 

Liparidae X Gill, 1861 Actinopterygii Scorpaeniformes Liparidae 

Liparis fabricii X Krøyer, 1847 Actinopterygii Scorpaeniformes Liparidae Liparis 

Liparis sp. X Scopoli, 1777 Actinopterygii Scorpaeniformes Liparidae Liparis 

Liparis tunicatus X X Reinhardt, 1836 Actinopterygii Scorpaeniformes Liparidae Liparis 

Lumpenus fabricii X X Reinhardt, 1836 Actinopterygii Perciformes Stichaeidae Lumpenus 

Lycodes adolfi X Nielsen & Fosså, 1993 Actinopterygii Perciformes Zoarcidae Lycodes 

Lycodes eudipleurostictus X Jensen, 1902 Actinopterygii Perciformes Zoarcidae Lycodes 

Lycodes pallidus X X Collett, 1879 Actinopterygii Perciformes Zoarcidae Lycodes 

Lycodes polaris X (Sabine, 1824) Actinopterygii Perciformes Zoarcidae Lycodes 

Lycodes rossi X X Malmgren, 1865 Actinopterygii Perciformes Zoarcidae Lycodes 

Lycodes sagittarius X X McAllister, 1976 Actinopterygii Perciformes Zoarcidae Lycodes 

Lycodes seminudus X X Reinhardt, 1837 Actinopterygii Perciformes Zoarcidae Lycodes 

Lycodes sp. X Reinhardt, 1831 Actinopterygii Perciformes Zoarcidae Lycodes 

Lycodes squamiventer X Jensen, 1904 Actinopterygii Perciformes Zoarcidae Lycodes 

Reinhardtius hippoglossoides X X (Walbaum, 1792) Actinopterygii Pleuronectiformes Pleuronectidae Reinhardtius 

Stichaeidae X Gill, 1864 Actinopterygii Perciformes Stichaeidae 

Triglops nybelini X X Jensen, 1944 Actinopterygii Scorpaeniformes Cottidae Triglops 

Triglops pingelii X X Reinhardt, 1837 Actinopterygii Scorpaeniformes Cottidae Triglops 

Cnidaria 
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Taxon SI BTA Authority Class Order Family Genus 

Actiniaria X X Anthozoa Actiniaria 

Aglantha digitale X (O. F. Müller, 1776) Hydrozoa Trachymedusae Rhopalonematidae Aglantha 

Catablema vesicarium X (A. Agassiz, 1862) Hydrozoa Anthoathecata Pandeidae Catablema 

Lafoeidae X Hincks, 1868 Hydrozoa Leptothecata Lafoeidae 

Nephtheidae X Gray, 1862 Anthozoa Alcyonacea Nephtheidae 

Zoanthidae X Rafinesque, 1815 Anthozoa Zoantharia Zoanthidae 

Ctenophora 

Beroe cucumis X Fabricius, 1780 Nuda Beroida Beroidae Beroe 

Mertensia ovum X (Fabricius, 1780) Tentaculata Cydippida Mertensiidae Mertensia 

Echinodermata 

Asteriidae X Gray, 1840 Asteroidea Forcipulatida Asteriidae 

Crossaster papposus X (Linnaeus, 1767) Asteroidea Valvatida Solasteridae Crossaster 

Ctenodiscus crispatus X X (Retzius, 1805) Asteroidea Paxillosida Ctenodiscidae Ctenodiscus 

Cucumaria sp. X de Blainville, 1830 Holothuroidea Dendrochirotida Cucumariidae Cucumaria 

Eupyrgus scaber X X Lütken, 1857 Holothuroidea Molpadida Eupyrgidae Eupyrgus 

Gorgonocephalus arcticus X X Leach, 1819 Ophiuroidea Euryalida Gorgonocephalidae Gorgonocephalus 

Gorgonocephalus sp. X X Leach, 1815 Ophiuroidea Euryalida Gorgonocephalidae Gorgonocephalus 

Heliometra glacialis X X (Owen, 1833 ex Leach MS) Crinoidea Comatulida Antedonidae Heliometra 

Holothuroidea X Holothuroidea 

Hymenaster pellucidus X Thomson, 1873 Asteroidea Velatida Pterasteridae Hymenaster 

Leptasterias sp. X X Verrill, 1866 Asteroidea Forcipulatida Asteriidae Leptasterias 

Molpadia spp. X X Cuvier, 1817 Holothuroidea Molpadida Molpadiidae Molpadia 

Myriotrochus sp. X X Steenstrup, 1851 Holothuroidea Apodida Myriotrochidae Myriotrochus 

Ophiacantha bidentata X X (Bruzelius, 1805) Ophiuroidea Ophiurida Ophiacanthidae Ophiacantha 

Ophiocten sericeum X X (Forbes, 1852) Ophiuroidea Ophiurida Ophiuridae Ophiocten 

Ophiocten sp.  X Lütken, 1855 Ophiuroidea Ophiurida Ophiuridae Ophiocten 

Ophiopleura borealis X X Danielssen & Koren, 1877 Ophiuroidea Ophiurida Ophiuridae Ophiopleura 

Ophioscolex glacialis X Müller & Troschel, 1842 Ophiuroidea Ophiurida Ophiomyxidae Ophioscolex 

Ophiura robusta X (Ayres, 1852) Ophiuroidea Ophiurida Ophiuridae Ophiura 
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Taxon SI BTA Authority Class Order Family Genus 

Poliometra prolixa X (Sladen, 1881) Crinoidea Comatulida Antedonidae Poliometra 

Pontaster tenuispinus X X (Düben & Koren, 1846) Asteroidea Notomyotida Benthopectinidae Pontaster 

Psilaster andromeda X X (Müller & Troschel, 1842) Asteroidea Paxillosida Astropectinidae Psilaster 

Psolus sp. X X Oken, 1815 Holothuroidea Dendrochirotida Psolidae Psolus 

Pteraster obscurus X (Perrier, 1891) Asteroidea Velatida Pterasteridae Pteraster 

Solaster endeca X (Linnaeus, 1771) Asteroidea Valvatida Solasteridae Solaster 

Strongylocentrotus sp. X Brandt, 1835 Echinoidea Camarodonta Strongylocentrotidae Strongylocentrotus 

Urasterias lincki X X (Müller & Troschel, 1842) Asteroidea Forcipulatida Asteriidae Urasterias 

Mollusca 

Astarte borealis X X (Schumacher, 1817) Bivalvia Carditida Astartidae Astarte 

Astarte montagui/crenata X X (Dillwyn, 1817) / Gray, 1824 Bivalvia Carditida Astartidae Astarte 

Astarte sp. X Sowerby 1816 Bivalvia Carditida Astartidae Astarte 

Bathyarca glacialis X X (Gray, 1824) Bivalvia Arcida Arcidae Bathyarca 

Bathyarca sp. X Kobelt, 1891 Bivalvia Arcida Arcidae Bathyarca 

Bathypolypus arcticus X X (Prosch, 1849) Cephalopoda Octopoda Bathypolypodidae Bathypolypus 

Buccinidae X Rafinesque, 1815 Gastropoda Neogastropoda Buccinidae 

Buccinum hydrophanum X Hancock, 1846 Gastropoda Neogastropoda Buccinidae Buccinum 

Buccinum scalariforme X Møller, 1842 Gastropoda Neogastropoda Buccinidae Buccinum 

Buccinum sp. X Linnaeus, 1758 Gastropoda Neogastropoda Buccinidae Buccinum 

Buccinum undatum X Linnaeus, 1758 Gastropoda Neogastropoda Buccinidae Buccinum 

Clione limacina X (Phipps, 1774) Gastropoda Gymnosomata Clionidae Clione 

Colus sabini X (Gray, 1824) Gastropoda Neogastropoda Buccinidae Colus 

Cylichna alba X (Brown, 1827) Gastropoda Cephalaspidea Cylichnidae Cylichna 

Dendronotus sp. X Alder & Hancock, 1845 Gastropoda Nudibranchia Dendronotidae Dendronotus 

Ennucula tenuis X (Montagu, 1808) Bivalvia Nuculida Nuculidae Ennucula 

Limacina helicina X (Phipps, 1774) Gastropoda Thecosomata Limacinidae Limacina 

Macoma calcarea X (Gmelin, 1791) Bivalvia Cardiida Tellinidae Macoma 

Macoma moesta X (Deshayes, 1855) Bivalvia Cardiida Tellinidae Macoma 

Macoma spp. X Leach, 1819 Bivalvia Cardiida Tellinidae Macoma 
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Taxon SI BTA Authority Class Order Family Genus 

Neptunea heros X (Gray, 1850) Gastropoda Neogastropoda Buccinidae Neptunea 

Nuculana minuta X (O. F. Müller, 1776) Bivalvia Nuculanida Nuculanidae Nuculana 

Nuculana pernula X X (O. F. Müller, 1779) Bivalvia Nuculanida Nuculanidae Nuculana 

Similipecten greenlandicus X X (G. B. Sowerby II, 1842) Bivalvia Pectinida Propeamussiidae Similipecten 

Thyasira sp. X Lamarck, 1818 Bivalvia Lucinida Thyasiridae Thyasira 

Thyasiridae X Dall, 1900 (1895) Bivalvia Lucinida Thyasiridae 

Yoldiella sp. X A. E. Verrill & Bush, 1897 Bivalvia Nuculanida Yoldiidae Yoldiella 

Nemertea 

Nemertea X X 

Porifera 

Radiella hemisphaerica X (Sars, 1872) Demospongiae Polymastiida Polymastiidae Radiella 

Sipuncula 

Phascolionidae X Cutler & Gibbs, 1985 Sipunculidea Golfingiida Phascolionidae 

  Sipunculidae X Rafinesque, 1814 Sipunculidea Golfingiida Sipunculidae   

 

 

  



 

199 
 

Appendix C: Information on trophic attributes 

Notes on feeding and functional attributes for all taxa included in thesis research, based extensive literature review. 

References are included. Information collected was used to estimate trophic functional guilds (Chapters 2, 3 and 4) and 

to assign trophic functional trait affinities for biological traits analyses (Chapter 5). 

 

  Taxon 

Functional 
groups for 
Chapters 

3 & 4 

Notes on diet, feeding behaviour, and inferences from 
biomarkers 

References Online Resources 

Annelida    

 

Abyssoninoe sp. Benthic SS 
Carnivore 

Most Lumbrineridae are burrowers. Somewhat motile. 
Most Lumbrineridae are carnivores on sessile and motile 
prey but some are herbivorous or sub-surface deposit 
feeders. Macdonald et al. (2010) classified Lumbrinidae 
generally as mobile predatory carnivores that feed sub-
subsurface on meiofauna and macrofauna (>500 μm). 

(Macdonald et 
al. 2010, Jumars 
et al. 2015) 

 

 

Aglaophamus malmgreni Benthic SS 
Carnivore 

Nephtyidae are burrowers in soft sediments at any water 
depth; very active. Macdonald et al. (2010) classified this 
species as a free-living, mobile, carnivorous predator that 
feeds below the sediment surface on macrofauna (>500 

μm).Kędra et al. (2010) reported this species as a mobile 

carnivore with Boreal distribution. Maximum size found 
in literature was 120 mm, taken from the Marine Species 
Identification Portal. 

(Kędra et al. 

2010, 
Macdonald et 
al. 2010, Jumars 
et al. 2015) 

Marine Species 
Identification Portal 

 

Aglaophamus sp. Benthic SS 
Carnivore 

Nephtyidae are burrowers in soft sediments at any water 
depth; very active. Macdonald et al. (2010) classified 
Aglaophamus spp. generally as  free-living, motile, 
carnivorous predators that feed sub-surface on 
macrofauna (>500 μm). 

(Macdonald et 
al. 2010, Jumars 
et al. 2015) 

 

 

Ampharetidae Benthic SDF Tube-building and infaunal at all depths. Macdonald et al. 
(2010) classified Ampharetidae generally as discretely 
motile (can move but don't need to for feeding), 
omnivorous detrivores that feed at the sediment surface 
on sediment, POM, microfauna (<500 μm) and diatoms. 

(Macdonald et 
al. 2010, Jumars 
et al. 2015) 

 

 

Cistenides hyperborea Benthic SSDF Head-down sub-surface deposit feeders, possibly feeding 
on fresh detritus in Kongsfjorden. 

(Jumars et al. 
2015) 
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  Taxon 

Functional 
groups for 
Chapters 

3 & 4 

Notes on diet, feeding behaviour, and inferences from 
biomarkers 

References Online Resources 

 

 
Eucranta sp. 

 
Benthic 
Carnivore 

 
No genus-specific information found for Eucranta. 
Fauchald & Jumars (1979) report that Polynoidea are 
generally considered carnivores that feed on small 
crustaceans, echinoderms, polychaetes, gastropods, 
sponges, and hydroids, but Eucranta spp. were not among 
those reviewed. Size of 53 mm based on cogener E. villosa, 
which was also fund in beam trawls for this study. 

 
(Fauchald & 
Jumars 1979) 

 

 

Eucranta villosa Benthic 
Carnivore 

No specific information on this species. Functional group 
and trophic traits classifications are based on cogeners. 
See also Eucranta sp. 

(Fauchald & 
Jumars 1979) 

 

 

Jasmineira sp. Benthic 
SDF/SF 

No species-specific information found. Macdonald et al. 
(2010) classified species within this genus as epibenthic, 
tubiculous suspension-feeding omnivores that feed at the 
surface on POM  and phytoplankton. Size of 20 mm based 
on sizes reported for cogeners in the Marine Species 
Identification Portal. 

(Macdonald et 
al. 2010) 

Marine Species 
Identification Portal 

 

Maldane arctica Benthic SSDF No species-specific diet information found. Functional 
group and trophic trait classifications are based on 
feeding information for cogeners. See also Maldane sp. 

  

 

Maldane spp.  Maldanids are generally considered subsurface deposit 
feeder by Jumars et al. (2015), with more evidence for 
deposit feeding based on fatty acid biomarkers reported 
by Søreide et al. (2013). Macdonald et al. (2010) classified 
Maldane spp. generally as discretely motile, omnivorous 
detrivores that feed sub-surface on sediment, particulate 
organic matter, and microfauna. Holte & Gulliksen (1998) 
report that the cogener M. sarsi is a head-down deposit 
feeder. Size of 32 mm reported for cogener M. arctica on 
the Marine Species Identification Portal, although other  
northern Maldane spp. can reportedly get up to 110 mm. 
M. arctica was also caught in this study. 

(Holte & 
Gulliksen 1998, 
Macdonald et 
al. 2010, 
Søreide et al. 
2013, Jumars et 
al. 2015) 

Marine Species 
Identification Portal 

 

Melinna cristata Benthic SDF Tube-building and infaunal at all depths according to 
Jumars et al. (2015). Macdonald et al. (2010) classified this 
species as a discretely motile (can move but doesn't need 
to for feeding), omnivorous detrivore that feeds at the 
sediment surface on sediment, POM, microfauna (<500 
μm) and diatoms. 

(Macdonald et 
al. 2010, Jumars 
et al. 2015) 
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  Taxon 

Functional 
groups for 
Chapters 

3 & 4 

Notes on diet, feeding behaviour, and inferences from 
biomarkers 

References Online Resources 

 

 
Nephtys ciliata 

 
Benthic SS 
Carnivore 

 
Burrowers in soft sediment according to Jumars et al. 
(2015). Søreide et al. (2013) found high levels of Calanus 
and bacterial fatty acid markers in this genus. Macdonald 
et al. (2010) classified it as a free-living, motile, 
carnivorous predator that feeds on sub-surface 
macrofauna (>500 μm). 

 
(Macdonald et 
al. 2010, 
Søreide et al. 
2013, Jumars et 
al. 2015)  

 

 

Nephtys sp. Benthic SS 
Carnivore 

Burrowers in soft sediment according to Jumars et al. 
(2015). Søreide et al. (2013) found high levels of Calanus 
and bacterial fatty acid markers in this genus. Macdonald 
et al. (2010) classified this genus as a free-living, motile, 
carnivorous predator that feeds on macrofauna (>500 μm) 

below the sediment surface.  Kędra et al. (2010) also 

classified this species as a motile carnivore. 

(Kędra et al. 

2010, 
Macdonald et 
al. 2010, 
Søreide et al. 
2013, Jumars et 
al. 2015)  

 

 

Nothria conchylega  According to Jumars et al. (2015), there is strong evidence 
for omnivory in Onuphidae, including macrophagous and 
microphagous feeding. Their jaws can handle food items 
larger than their mouths. They review that stable isotopic 
evidence supports broad omnivory. Gaston et al. (1987) 
examined stomach contents and literature information 
for many polychaetes in the Middle Atlantic Bight, and 
found this species to be a motile, jawed, surface-deposit 
feeder that had detritus and forams in its stomach. Size 
of 150 mm reported on the Marine Species Identification 
Portal, which agrees with size reported by Pollock (1998). 

(Gaston 1987, 
Pollock 1998, 
Jumars et al. 
2015) 

Marine Species 
Identification Portal 

 

Pista maculata  Macdonald et al. (2010) classify Pista spp. generally as 
discretely motile, tube-dwelling, omnivorous detrivores 
that feed at the sediment surface on sediment, particulate 
organic matter, microfauna, and diatoms. According to 
Pollock (1998), P. maculata prefers sand and mud. Jumars 
et al. (2015) report that Terebellidae are generally surface 
deposit feeders.  Maximum size of 153 mm reported by 
Pollock (1998). 

(Pollock 1998, 
Macdonald et 
al. 2010, Jumars 
et al. 2015) 
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  Taxon 

Functional 
groups for 
Chapters 

3 & 4 

Notes on diet, feeding behaviour, and inferences from 
biomarkers 

References Online Resources 

 
Arthropoda 

 

Acanthostepheia malmgreni Benthopelagic 
Carnivore 

Inhabits soft bottoms. Highly motile. Adults are mainly 
carnivorous, feeding on small zooplankton such as 
harpacticoid and calanoid copepods. Juveniles feed on 
phytoplankton and/or detritus. No known diel vertical 
migration, but individuals are commonly found as high as 
100 m off bottom in the Gulf of the St. Lawrence 
(reviewed in Richoux et al. 2004). Wȩsławski et al. (2010) 

and Kędra et al. (2010) report this species as a motile 

carnivore with Arctic distribution. Maximum body size 

found reported in literature was 36 mm by Wȩsławski et 

al. (2010). 

(Richoux et al. 

2004, Kędra et 

al. 2010, 

Wȩsławski et al. 

2010) 

 

 

Anonyx nugax  Macdonald et al. (2010) describe Anonyx spp. generally as 
free living, motile carnivores that feed at the surface by 
scavenging macrofauna (> 500 μm).Sainte-Marie et al. 
(1989) suggested Anonyx nugax may be an obligate 
carnivore, and found the species to be a very efficient 
feeder. Starvation for up to 30 days did not impact their 

feeding ability or survivorship. Legeżyńska (2008) 

observed that only mature adult A. nugax are true 
scavengers, and that younger individuals feed on both 
animal and non-animal (detritus) food. Fatty acid analyses 
by Graeve et al. (1997) indicated that they may feed to 

some extent on copepods. Legeżyńska (2008) reviewed a 

lab study that documented A. nugax showing mild 
interest in zooplankton prey when offered.  Nygård et al. 
(2012) observed Anonyx spp. preying extensively on 
Calanus copepods in two Arctic fjords. Fatty acid and 

stable isotope analyses in Legeżyńska et al. (2012) 

suggested carrion comprised 90 % of diet in both summer 

and winter. Kędra et al. (2010) reported this species as a 

motile carnivore with Arctic distribution. Wȩsławski et al. 

(2010) reported this species as a nectobenthic, motile 
carnivore with Arctic distribution. Maximum size taken 

from Wȩsławski et al. (2010) and Steele & Brunel (1968) 

was 44 mm. 

(Steele & Brunel 
1968, Sainte-
Marie et al. 
1989, Graeve et 
al. 1997, 

Legezyńska 

2008, 
Macdonald et 
al. 2010, 

Wȩsławski et al. 

2010, Kędra et 

al. 2012, 

Legeżyńska et 

al. 2012, 
Nygård et al. 
2012) 
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  Taxon 

Functional 
groups for 
Chapters 

3 & 4 

Notes on diet, feeding behaviour, and inferences from 
biomarkers 

References Online Resources 

 

 
Argis dentata 

 
Benthopelagic 
Carnivore 

 
Stable isotope values in Sherwood & Rose (2005) places 
this species near the top of the food chain. Carnivore? 
Reportedly circumpolar Arctic distribution from Sokolov 
(2001). Difficult to find general data on size, but 
Sherwood & Rose (2005) reported a length of 100 mm for 
a specimen they captured. Based on other Crangonid 
shrimps, there is probably some degree of deposit feeding 
or scavenging. See also Sclerocrangon spp. 

 
(Sokolov 2001, 
Sherwood & 
Rose 2005) 

 

 

Astarte montagui/crenata Benthic SF Macdonald et al. (2010) classified Astarte spp. generally, 
and A. montagui specifically, as discretely motile, 
epibenthic omnivores that live in burrows and feed on 
particulate organic matter and phytoplankton via 
suspension feeding. Søreide et al. (2013) classified A. 
crenata as a benthic suspension feeder that feeds 
between trophic levels 2.0 and 2.6. Gallagher et al. (1998) 
studied the biochemical composition of A. crenata and 

described it as a facultative deposit-feeding bivalve. Kędra 

et al. (2010) reported A. montagui as a discretely motile 
filter feeder with Arctic-boreal distribution. Size from the 
Encyclopedia of Life for A. crenata was 18.4 mm. Size for 
A. montagui on the Marine Species Identification Portal 

was 13 mm, but Kędra et al. (2010) observed a length of 

21.7 mm. 

(Gallagher et al. 

1998, Kędra et 

al. 2010, 
Macdonald et 
al. 2010, 
Søreide et al. 
2013) 

Enclyclopedia of Life, 
Marine Species 
Identification Poral 

 

Boreomysis sp. Benthopelagic 
Carnivore 

Specific Boreomysids (B. arctica) in the Mediterrannean 
Sea fed on crustacean remains, including those of pelagic 
origin. Pytodetritus became more important with depth 
(Cartes & Sorbe 1998). Fatty acid markers in Cartes (2011) 
suggested a wide range of diet items including carnivory, 
likely on Calanoid copepods, and a link to surface 
production. Fatty acid and stable isotope markers in 
Connelly et al. (2014) also suggested a link to Calanoid 
copepods in B. arctica from the Beaufort Sea and 
Amundsen Gulf. Size of 27 mm based on specimens 
reported in Connelly et al. (2014) from the Canadian 
Beaufort Sea, and on Marine Species Identification Portal 
records for B. arcticus. 

(Cartes & Sorbe 
1998, Cartes 
2011, Connelly 
et al. 2014) 

Marine Species 
Identification Portal 
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Chapters 
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References Online Resources 

 

 
Bythocaris payeri 

 
Benthic 
Carnivore 

 
No species-specific diet information found. Functional 
group and trophic trait classifications are based on 
cofamilials. Macdonald et al. (2010) classified 
Hippolytidae generally as free-living, motile, carnivorous 
predators that feed on macrofauna (>500 μm).  

 
(Macdonald et 
al. 2010) 

 

 

Bythocaris spp.  Difficult to find genus-specific information on Bythocaris 
in the literature. Based on cofamilials, Macdonald et al. 
(2010) classified Hippolytidae generally as free-living, 
motile, carnivorous predators that feed on macrofauna. 
Bergmann et al. (2009) classified Bythocaris spp. as 
predator/scavengers. Nitrogen stable isotope data from 
Bergmann et al. (2009) indicated a mid-trophic level, and 
carbon stable isotope data indicated a fairly benthic diet. 
Connelly et al. (2014) reported stable isotope data that 
indicated a high trophic level of 4.0 for Bythocaris spp., 
and fatty acid data indicated come consumption of 
copepods. Maximum size of 47 mm taken from sizes 
reported for Bythocaris spp. in the Canadian Beaufort Sea 
by Connelly et al. (2014). 

(Bergmann et al. 
2009, 
Macdonald et 
al. 2010, 
Connelly et al. 
2014) 

 

 

Calanus glacialis Pelagic 
Herbivore 

Pelagic filter feeder. According to Mauchline (1998), most 
Calanus spp are predominantly herbivorous. However, 
they review research that indicates Calanus spp. also eat 
pelagic detritus and heterotrophs.  Observational, fatty 
acid, and stable isotope biomarker data reported by 
Søreide et al. (2008) indicated that C. hyperboreus and C. 
glacialis  were essentially herbivores in the spring when 
algal biomass is highest, and generally occur at the same 
depths as maximum algal biomass. C. glacialis preferred 
diatom species. Outside of the bloom, Calanus spp. 
become more omnivorous and have increased trophic 
levels, likely from consuming higher proportions 
heterotrophs and detritus (Basedow et al. 2010). The 
literature on Calanus feeding and lifecycles is extensive. 

(Mauchline 
1998, Søreide et 
al. 2008, 
Basedow et al. 
2010) 
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Calanus hyperboreus 

 
Pelagic 
Herbivore 

 
Pelagic filter feeder.  According to Mauchline (1998), most 
Calanus spp are predominantly herbivorous. However, 
they review research that indicates Calanus spp. also eat 
pelagic detritus and heterotrophs. Conover et al. (1960) 
report that C. hyperboreus ate all types of phytoplankton 
and diatoms offered, and would consume their own eggs 
when starved. Observational, fatty acid, and stable 
isotope biomarker data reported by Søreide et al. (2008) 
indicated that C. hyperboreus and C. glacialis  were 
essentially herbivores in the spring when algal biomass is 
highest, and generally occur at the same depths as 
maximum algal biomass. C. hyperboreus preferred 
Phaecystis.  Outside of the bloom, Calanus spp. become 
more omnivorous and have increased trophic levels, likely 
from consuming higher proportions heterotrophs and 
detritus (Basedow et al. 2010). The  literature on Calanus 
feeding and lifecycles is extensive. 

 
(Conover 1960,  
Mauchline 
1998, Søreide et 
al. 2008, 
Basedow et al. 
2010) 

 

 

Colossendeis proboscidea  According to fact page on the Institute of Marine Research 
website, pycnogonids are benthic predators that are 
genereally slow moving on the surface. They eat 
stationary or slow-moving prey such as sea nettles, 
sponges, gastropods, bristle worms, and algae. Braby et 
al. (2009) observed other Colossendeis spp. preying on 
sponges. In their introduction, Braby et al. (2009) review 
the evidence in the literature for large pycnogonids as 
suctorial predators on slow-moving benthos (sponges, 
cnidarians, molluscs, broyozoans, and small polychaetes). 
They report that feeding information for Colossendeis 
spp. is particularly scarce, although they have been 
observed feeding on limpets, sea anemones, and 
polychaates during Antarctic sampling programs. 

(Braby et al. 
2009) 

Institute of Marine 
Research website 
(http://www.imr.no/te
masider/ 
havedderkopp/en), 

 

Decapoda (Hippolytidae?) Benthopelagic 
Carnivore 

Macdonald et al. (2010) classified Hippolytidae generally 
as free-living, motile, carnivorous predators that feed on 
macrofauna (>500 μm).  

(Macdonald et 
al. 2010) 
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Epimeria loricata 

  
No species-specific information found on feeding. 
Functional group and trophic trait classifications are 
based on cogeners. Epimeria robusta collected in the 
Antarctic accepted all kinds of foods offered in a 
laboratory experiment, including pieces of fish, krill, and 
living zooplankton (Klages and Gutt 1990). Cannibalism 
and feeding on other amphipods was also observed. 
Individuals were up to 50 mm. Similarly, de Broyer & 
Klages (1991) observed E. rubrieques grasped and fed on 
fish and krill tissue offered in the lab, as well as live 
Artemia and chironomid larvae. They suggested E. 
rubrieques was an ambush predator. Both studies 
observed limited movement, unless food was nearby. 
Specimens mostly stayed on the bottom, often walking 
rather than swimming. 

 
(Klages & Gutt 
1990, de Broyer 
& Klages 1991) 

 

 

Eualus gaimardii gaimardii Benthopelagic 
Carnivore 

Graeve et al. (1997) reported that fatty acid biomarkers 
measured in this species aligned with carnivory. 
Macdonald et al. (2010) classified Eulaus spp. generally as 
free-living, motile, carnivorous predators. Birkely & 
Gulliksen (2003) observed pelagic feeding on copepods 
and amphipods, but sediment present in the stomach 
indicated feeding near the seafloor as well. Zimina et al. 
(2015) classified E. gaimadrii gaimadrii as a high boreal-
Arctic species, but distribution extends into the northern 

Atlantic. Wȩsławski et al. (2010) classified this species as 

a motile carnivore with Arctic-boreal distribution. Size on 
the Marine Species Identification Portal is 70 mm, but 
Pollock (1998) reported 101 mm. 

(Graeve et al. 
1997, Pollock 
1998, Birkely & 
Gulliksen 2003, 
Macdonald et 
al. 2010, 
Wȩsławski et al. 
2010, Zimina et 
al. 2015) 

Marine Species 
Identification Portal 

 

Halirages qvadridentatus  No species-specific feeding information found. Stable 
isotope data in Connelly et al. (2014) indicated a trophic 
level of 3.1. Isotopic and fatty acid markers indicate that 
biomarker values measured in this species generally fall 

within the middle range of other species. Kędra et al.  

(2012) classified another Arctic Halirages sp. as a deposit-

feeder. Wȩsławski et al.  classified the same Halirages sp. 

(fulvocinctus) as a deposit feeder in their 2006 paper, and 
as a suspension-feeder in their 2010 paper. Stable isotope 

data in Legezyńska et al. (2012) suggested the genus 

occupies a low trophic level, but has a more "pelagic" 
carbon stable isotope value than other amphipods (still 
not truly pelagic). Possibly feeding on phytodetritus to 
some extent? Size of 31 mm based on individuals caught 
by Connelly et al. (2014). 

(Węsławski et 

al. 2006, 

Wȩsławski et al. 

2010, Kędra et 

al. 2012, 

Legeżyńska et 

al. 2012, 
Connelly et al. 
2014) 
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Haploops laevis 

 
Benthic SF 

 
Haploops spp. generally live in mud and stone. Use a mix 
of benthic and pelagic feeding strategies including 
feeding on sinking POM. Rich in phytoplankton fatty acid 
markers but low in δ15N and δ13C, indicating direct POM 
consumption. Stomach contents show diatoms, protist 
cysts, and formaniferans. Ampelescid amphipods are 
generally considered benthic suspension feeders that 
collect particles with their antennae. 

 
(Rigolet et al. 
2011, 
Legeżyńska et 
al. 2012) 

 

 

Hyas coarctatus Benthic 
Carnivore 

Difficult to find specific diet information in the literature. 
Stable isotope analysis by Gorbatenko et al. (2008) 
indicated benthic δ13C values and high trophic level, 
suggesting benthic carnivory.  

(Gorbatenko et 
al. 2008) 

 

 

Hymenodora glacialis Pelagic 
Carnivore 

Hymenodora glacialis are found in the water column 
(most abundant between 350-1000 m), but have also been 
caught near the seafloor. Stomach contents revealed a 
diverse diet, with copepods as the most important prey 
followed by chaetognaths and radiolarians (Havens & 
Rork 1969). Vertical migration and use of hyperbenthic 
habitat confirmed by Domanaski (1986). 

(Havens & Rork 
1969, Domanski 
1986) 

 

 

Hymenodora sp. Pelagic 
Carnivore 

No genus-specific information found for this species. 
Functional group and trophic trait classifications are 
based on feeding information for cogeners (see also 
Heliometra glacialis).  

(Havens & Rork 
1969, Domanski 
1986) 

 

 

Hyperia galba Pelagic 
Carnivore 

Conover et al. (1960) found this species readily took all 
animal prey offered in laboratory experiments, including 
bits of mussel, smashed snails, and living/dead copepods. 
In general, Hyperiid amphipods may also be 
parasitic/symbiotic on gelatinous zooplankton (Dittrich 
1987).  Wȩsławski et al. (2010) classified this species as a 
pelagic carnivore with Boreal distribution. 

(Conover 1960, 
Dittrich 1987, 
Wȩsławski et al. 
2010) 

 

 

Lebbeus groenlandicus  Birkely & Gulliksen (2003) observed epibenthic feeding 
mostly on hydrozoans and amphipods in Lebbeus spp. 
Macdonald et al. (2010) classified Lebbeus spp. generally 
as free-living, motile, carnivorous predators that feed on 
macrofauna. Squires (1968) observed detritus (including 
phytodetritus), crustaceans, ostracods, euphasids, 
faraminifera, gastropods, kelp, and pelecypods in the 
stomachs of 25 specimens collected in the Canadian 
Arctic Archipelago. According to a literature review by  

(Squires 1968, 
Pollock 1998, 
Sokolov 2001, 
Birkely & 
Gulliksen 2003, 
Macdonald et 
al. 2010) 
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Sokolov (2001), L. groenlandicus has an Arctic-Pacific 
distribution. Size of 107 mm reported by the Census of 
Marine Life's Arctic Ocean Biodiversity database, and a 
size of 101 mm reported by Pollock (1998). 

 

Lebbeus polaris Benthopelagic 
Carnivore 

Squires (1968) observed mostly phytobenthos and 
detritus in stomachs, but occassionally found 
foraminiferans, ostracods, euphasiids, and copepods as 
well.  Fatty acid and stable isotope analyses performed by 
Søreide et al. (2013) and by Graeve et al. (1997) suggested 
carniviory and a link to pelagic production. Birkely & 
Gulliksen (2003) observed epibenthic feeding mostly on 
hydrozoans and amphipods in Lebbeus spp. Macdonald et 
al. (2010) classified Lebbeus spp. generally as free-living, 
motile, carnivorous predators that feed on macrofauna. 
Zimina et al. (2015) reported that this is a circumpolar 

Arctic, high-boreal species. Wȩsławski et al. (2010) 

classified this species as a mobile carnivore with Arctic-
boreal distribution. Søreide et al. (2013) classified this 
species as a benthic suspension feeder. Size of 90 mm 
reported on the Marine Species Identification Portal, and a 
size of 89 mm reported by Pollock (1998). 

(Squires 1968, 
Graeve et al. 
1997, Pollock 
1998, Birkely & 
Gulliksen 2003, 
Macdonald et 
al. 2010, 
Wȩsławski et al. 
2010, Søreide et 
al. 2013, Zimina 
et al. 2015) 

 

 

Michthyops theeli  Stable isotope data in Connelly et al. (2014) suggested a 
trophic level of 3. Fatty acid analyses from Connelly et al. 
(2014) suggested an omnivorous diet with higher Calanus 
markers and lower diatom markers than other mysids. 
The authors review that diet data are scarce for the mysid 
species considered in their study. Size of 22 mm based on 
individuals caught by Connelly et al. (2014). 

(Connelly et al. 
2014) 

 

 

Mysida Pelagic 
Herbivore 

In a review of Mysid taxonomy, Meland et al. (2015) 
describe Mysida as generally epi- to hyperbenthic, 
omnivorous filter-feeders ranging in size from 5 to 25 
mm. Connelly et al. (2014) measured stable isotopes and 
fatty acids in a variety of benthic Mysida collected in the 
Beaufort Sea and Amundsen Gulf (under the older name 
Mysidacea) and found they generally fell within trophic 
levels 2 and 3. Connelly et al. (2014) review that Mysids 
are generally omnivorous, feeding on a wide variety of 
food sources dependent on life history and food 
availability, although some may be opportunistic 
predators. 

(Connelly et al. 
2014, Meland et 
al. 2015) 
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Mysis oculata 

 
Pelagic 
Herbivore 

 
Difficult to find species-specific feeding information. 
Individuals collected from the Yenisei estuary fed on 
phytoplankton in one experiment (Drits et al. 2015).  

Węsławski et al. (2010) classified this species as a pelagic 

suspension feeder. 

 

Węsławski et al. 

2010; Drits et 
al. 2015  

 

 

Mysis polaris Pelagic 
Herbivore 

Ice-associated (Gulliksen & Lønne 1989), but no species-
specific feeding information available. Functional group 
and trophic trait classifications are based on feeding 
information for cogeners. See also Mysidae sp. and Mysis 
oculata. 

(Gulliksen & 
Lønne 1989) 

 

 

Mysis spp.  No genus-specific feeding information available. 
Functional group and trophic trait classifications are 
based on information from other Arctic cogeners. There is 
evidence for vertical migration in the genus, with 
juveniles migrating higher than adults in Mysis mixta 
(Rudstam et al. 1989, Richoux 2004). M. mixta fed on 
phytoplankton, detritus, copepods, cladocerans, rotifers, 
and tintinnids. Mysids lower in the water column had 
higher ingestion of zooplankton and detritus (Rudstam et 
al. 1989, Richoux 2004). M. oculata collected from the 
Yenisei estuary were successfully fed phytoplankton in 

one experiment (Drits et al. 2015). Wȩsławski et al. (2010) 

classified M. oculata as a pelagic suspension feeder with 
Arctic distribution. Maximum size found for any cogener 
was 30 mm (Keast & Lawrence 1990). 

(Rudstam et al. 
1989, Keast & 
Lawrence 1990, 
Richoux et al. 
2004, Wȩsławski 
et al. 2010, 
Drits et al. 
2015) 

 

 

Nymphon hirtipes  Suctorial predators that feed by puncturing a hole in prey 
and sucking out fluid through a probiscus. Feed on 
sessile, small-sized prey such as hydrozoans, 
alyconarians, and bryozoans (Arnaud & Bamber 1987). 
Macdonald et al. (2010) classified Nymphon spp. generally 
as freely motile, carnivorous predators that feed on 
macrofauna at the sediment surface. Adult size reported 
by Mercier et al. (2015) was 55 mm. Mercier et al. (2015) 
observed adults feeding on sea anemones, nudibranchs, 
and possibly coral polyps in the laboratory. Large sponges 
did not die after feeding. Juveniles ate colonial hydroid 
polyps. Richards & Fry (1978) reported observing polar 
Nymphon spp. consume detritus and dead amphipods.  

(Richards & Fry 
1978, Arnaud & 
Bamber 1988, 
Macdonald et 
al. 2010, 
Mercier et al. 
2015) 
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Onisimus plautus 

  
Very little species-specific information found. Functional 
group and trophic trait classifications are based mostly 
on cogeners. Fatty acid and stable isotope data reported 
by Nygård et al. (2012) suggested some Onisimus spp. are 
somewhat herbivorous (O.  Caricus and O. nanseni), and 

O. litoralis was primarily herbivorous.  Legezyńska et al. 

(2012) reported that some Onisimus spp. are sympagic. 
Boudrias and Carey (1988) found that Onisimus plautus 
occurred only in the sediment as opposed to some other 
Onisimus spp. that were also found near the ice.  In a 
study of symapgic fauna in the Beaufort Sea, Carey (1992) 
found that the sympagic amphipod community was 
primarily comprised of benthic species, including O. 
littorialis, but did not mention O. plautus. Size of 25 mm 

based on sizes for cogeners reported in Wȩsławski et al. 

(2010). 

 
(Boudrias & 
Carey 1988, 
Carey 1992, 

Wȩsławski et al. 

2010, 

Legeżyńska et 

al. 2012, 
Nygård et al. 
2012) 

 

 

Paraeuchaeta sp. Pelagic 
Carnivore 

Predatory pelagic copepod genus. Adult Paraeuchaeta 
spp. occupy bathypelagic zones of the water column, but 
in polar regions have also colonised shallower epipelagic 
depths (Fleddum 2001, Auel & Hagen 2005). For example, 
adult P. norvegica in the Norwegian Sea were most 
abudant between 400 and 500 m, whereas younger life 
stages were most abundant between 100 and 300 m 
(Fleddum et al. 2001). Paraeuchaeta spp. are tactile 
predators that prey on moving animals such as other 
mesozooplankton, especially copepods, and fish larvae 
(Fleddum et al. 2001, reviewed in Auel & Hagen 2005). 
Vertical migration does occur, but in the summer they do 
not occupy the upper 100 m of the water column such 
that they do not coincide with copepod prey (Fleddum 
2001). Iken et al. (2005) reported stable isotope values 
that indicated this genus is predatory. 

(Fleddum et al. 
2001, Auel & 
Hagen 2005, 
Iken et al. 2005) 
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Rhachotropis aculeata 

  

Wȩsławski et al. (2010) classified this species as a motile 

carnivore with Arctic distribution. Stable isotope values 

and fatty acid profiles reported by Legeżyńska et al. 

(2012) suggest carnivory with a mix of benthic and 
pelagic diets items. The authors review the literature on 
feeding for  R. aculeata and describe the species as far-
ranging and a strong swimmer (based on Sainte-Marie & 

Brunel 1985). Legeżyńska et al. (2012) suggest pelagic 

crustaceans may be an important part of the diet. High 
levels of phytoplankton-derived fatty acid markers 
suggest strong links to pelagic production. Size of 28 mm 

was maximum found in literature, from Wȩsławski et al. 

(2010). 

 
(Sainte-Marie & 
Brunel 1985 
referenced in   

Legeżyńska et 

al. 2012, 

Wȩsławski et al. 

2010, 

Legeżyńska et 

al. 2012) 
 

 

 

Rhachotropis sp.  Functional group and trophic trait classifications are 
based on cogeners. See also R. aculeata. Size of 17 mm 
reported in Connelly et al. (2014). 

(Connelly et al. 
2014) 

 

 

Sabinea septemcarinata Benthic 
Carnivore 

Most stomachs observed by Squires (1968) contained 
phytobenthos and detritus. However, some specimens 
had foramineriferans, small gastropods, and polychaetes 
in their stomachs. Graeve et al. (1997) also observed fatty 
acid biomarkers indicative of diatoms in a number of 
decapods including this species, but based on previous 
knowledge of predatory behaviour and high proportions 
of carnivory biomarkers, the authors suggested the 
diatom markers may have been transferred through prey. 
Fatty acid markers in McGovern (2016) suggested that this 
species is probably reliant much on bacteria, 
phytodetrutis, or small benthic organisms that eat those 
food sources. Zimina et al. (2015) classified this species 
as a circumpolar Arctic and high-boreal species. 

Wȩsławski et al. (2010) classified this species as a motile 

carnivore with Arctic distribution. Size of 91 mm reported 
by Pollock (1998). 

(Squires 1968, 
Graeve et al. 
1997, Pollock 
1998, Birkely & 
Gulliksen 2003, 
Wȩsławski et al. 
2010, Zimina et 
al. 2015, 
McGovern 2016) 

 

 

Saduria sabini Benthic 
Carnivore 

Euryhaline species. Saduria spp. generally act as 
omnivores and predators according to review by Percy 
(1983). Premke et al. (2003) observed this species 
scavenging on bait in deep-sea experiment, indicating 
chemoreceptivity. Size of 102 mm reported in Bray (1962). 

(Bray 1962, 
Percy 1983, 
Premke et al. 
2003) 
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Saduria sibirica 

 
Benthic 
Carnivore 

 
Euryhaline species. Saduria spp. act as both omnivores 
and predators according to short review by Percy (1983). 
See also cogener S. sabini. Size of 102 mm reported in 
Bray (1962). 

 
(Bray 1962, 
Percy 1983) 

 

 

Sclerocrangon boreas  Birkely & Gulliksen (2003) observed a high diversity of 
foods in the stomachs of S. boreas, making it the most 
opportunistic of the shrimp they observed. Diet included 
polychaetes (highest proportion), amphipods (second 
highest proportion), molluscs, and hydrozoa. Males had 
more epibenthic diets while females had more infaunal 
diets. Zimina et al. (2015) reported S.boreas as a 

circumpolar Arctic, high-boreal species. Wȩsławski et al. 

(2010) classified this species as a motile carnivore with 
Arctic distribution. Squires (1968) observed mostly 
phytobenthos and detritus but also found some 
ostracads, euphasiids, copepods, small gastropods, and 
polychaetes in stomachs. Graeve et al. (1997) observed 
fatty acid markers indicative of diatoms in a number of 
decapods including this species, but based on previous 
knowledge of predatory behaviour and high proportions 
of carnivory biomarkers, the authors suggested the 
diatom markers may have been transferred through prey. 
Largest size found was 129 mm. 

(Squires 1968, 
Graeve et al. 
1997, Birkely & 
Gulliksen 2003, 
Wȩsławski et al. 
2010, Zimina et 
al. 2015) 

 

 

Sclerocrangon ferox Benthic 
Carnivore 

No species-specific information found for this species, 
but high proportions of carnivory biomarkers were 
observed by Graeve et al. (1997). Birkley & Gulliksen 
(2003) observed high diet variability in another 
Sclerocrangon sp. Squires (1968) observed mostly 
phytobenthos and detritus in stomachs but also found 
some ostracads, euphasiids, copepods, small gastropods, 
and polychaetes in the stomach of cogener Sclerocrangon 
boreus. Zimina et al. (2015) reported S. ferox as a 
circumpolar Arctic, high-boreal species. No size 
information found, but images on WoRMS and the Arctic 
Megabenthos Database suggest they can get at least 70 
mm. See also size from cogener S. boreas. 

(Squires 1968, 
Graeve et al. 
1997, Birkely & 
Gulliksen 2003, 
Zimina et al. 
2015) 

Arctic Megabenthos 
Database ; WoRMS 
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Synidotea bicuspida 

 
Benthic SDF 

 
Macdonald et al. (2010) classified Synidotea spp. generally 
as herbivorous browsers that feed by tearing or gathering 
particular items at the surface, and that consume 
macrofaunal algae. Image with size guide on the Barcode 
of Life database suggests a size of at least about 25 mm. 
Morris et al. (1980) claimed this species only reached size 
of 12 mm in its southern range near California. 

 
(Morris et al. 
1980, 
Macdonald et 
al. 2010) 
 

 
Barcode of Life 

 

Synidotea sp. Benthic SDF Macdonald et al. (2010) classified Synidotea spp. generally 
as herbivorous browsers that feed by tearing or gathering 
particular items, and that feed at the sediment surface on 
macrofaunal algae. 

(Macdonald et 
al. 2010) 

 

 

Themisto abyssorum Pelagic 
Carnivore 

Carnivorous predator of zooplankton. Fatty acid 
biomarkers observed by Auel et al. (2002) suggested this 
species had a higher trophic level than T. libellula and 
occurred deeper in the water column where it may feed 
on some omnivorous or carnivorous prey. Biomarker data 
in  Søreide et al. 2013 support pelagic carnivory.  

Węsławski et al. (2010) classified this species as a pelagic 

carnivore. 

(Auel et al. 
2002, Wȩsławski 
et al. 2010, 
Søreide et al. 
2013) 

 

 

Themisto libellula Pelagic 
Carnivore 

Carnivorous predator of zooplankton. Fatty acid 
biomarkers observed by Auel et al. (2002) suggest 
predation mainly on herbivorous Calanus spp., and a 
close association with sympagic production. Lower 
trophic level than T. abyssorum is also in agreement with 
the notion that this species relies on herbivorous prey 
while T. abyssorum probably relies to some degree on 

omnivorous/carnivorous prey.  Węsławski et al. (2010) 

classified this species as a pelagic carnivore. 

(Auel et al. 
2002, Wȩsławski 
et al. 2010, 
Søreide et al. 
2013) 

 

 

Thysanoessa inermis Pelagic 
Herbivore 

Generally herbivorous, and likely a more truly polar life 
cycle than Thysanoessa rashii because it relies solely on 
lipid reserves during the winter (reviewed in Smith 1991). 
Sameoto (1980) observed a small percentage of stomachs 

contained copepod remains, but mostly algae.  Węsławski 

et al. (2010) classified this species as a pelagic herbivore. 

(Sameoto 1980, 
Smith 1991, 

Wȩsławski et al. 

2010) 
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Thysanoessa raschii 

 
Pelagic 
Herbivore 

 
Composition of lipids suggests that it relies to some 
degree on omnivory (animal prey and detritus) during the 
winter, but during the productive season mostly relies on 
herbivory. Sameoto (1980) observed a small percentage of 
stomachs contained copepod remains, but mostly algae.  

Węsławski et al. (2010) classified this species as a pelagic 

herbivore. 

 
(Sameoto 1980, 
Falk-Petersen et 
al. 1982, Smith 
1991, Wȩsławski 
et al. 2010) 

 

 

Tmetonyx sp.  Tmetonyx  spp.are scavenging amphipods. Premke et al. 
(2006) observed them as one of the abundant scavengers 
feeding at large food falls, and they were attracted to 
baited traps near Svalbard (see references in Connelly et 
al. 2014). These observations suggest they can swim far 
distances in search of food. Marine Species Identification 
Portal has sizes for two Tmetonyx spp. (cicada = 25 mm, 
similis = 15 mm), both of which have circumpolar 
distributions. Fatty acid biomarkers in Connelly et al. 
(2014) and Graeve et al. (1997) suggest a scavenging 
lifestyle, which is a general characteristic of Lysianassid 
amphipods (see short review and references in Discussion 
of Connelly et al. 2014). 

(Graeve et al. 
1997, Premke et 
al. 2006, 
Connelly et al. 
2014) 

Marine Species 
Identification Portal 

Brachiopoda    

 

Brachiopoda  Macdonald et al. (2010) classified Brachiopoda generally 
as sessile, epibenthic omnivores that use suspension-
feeding to feed on phytoplankton. Live attached to hard 
substrate. Taxonomic classification too broad to assign a 
size. 

(Macdonald et 
al. 2010) 

 

Bryozoa    

 

Alcyonidium spp.   According to the Smithsonian Institute website, 
Alcyonidium sp. is an encrusting bryozoan, having 
gelatinous colonies. Suspension feeder that filters 

phytoplankton from the water column.  Kukliński & 

Porter (2004) describe A. disciformes as the only free-
living species of Arctic bryozoan. Since our specimens 
were not identified as this unique species, our specimens 
are likely one of the encrusting species. Taxonomic 
classification was too broad to estimate maximum body 
size. 

(Kukliński & 

Porter 2004) 

Smithsonian Institute ( 
http://www.sms.si.edu
/irlspec/alcyon_sp.htm
), Marine Species 
Identification Portal 
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Cephalorhyncha 

 

Priapulopsis bicaudatus  Schmidt-Rhaesa (2013) discussed that Priapulida in 
general are burrowers, and reported longest trunk size 
for P. bicaudatus as 100 mm. Also suggested that 
Priapulida are predators that "plough through muddy 
sediments in search of food", but no specific prey items 
given. Macdonald et al. (2010) describe Priapulids 
generally as mobile, burrowing predatory carnivores that 
feed subsurface on meiofauna.  

(Macdonald et 
al. 2010, 
Schmidt-Rhaesa 
2013) 

 

Chaetognatha    

 

Chaetognatha Pelagic 
Carnivore 

Chateognaths are important pelagic predators that prey 
mostly on copepods, and  Generally, prey size increases 
with chaetognath body size (Pearre 1980). 

(Pearre 1980)  

 

Eukrohnia hamata Pelagic 
Carnivore 

This species occurs mostly below the upper mixed layer 
in the water column (Sullivan 1980). Preys mostly on 
copepods. Stable isotope data reported in Iken et al. 
(2005) suggest carnivory.  Generally, prey size increases 
with chaetognath body size (Pearre 1980). 

(Pearre 1980, 
Sullivan 1980, 
Iken et al. 2005) 
 

 

 

Parasagitta elegans Pelagic 
Carnivore 

Pelagic carnivore that lives and feeds mostly in the upper 
25 m of the water column where prey densities are high 
(Sullivan 1980).  Preys mostly on copepods (Sullivan et al. 
1980). Generally, prey size increases with chaetognath 
body size (Pearre 1980). Biomarkers reported in  Søreide 
et al. (2013) agree with carnivory. 

(Pearre 1980, 
Sullivan 1980, 
Søreide et al. 
2013) 

 

Chordata    

 

Amblyraja hyperborea Benthic 
Carnivore 

Feeds on some benthic crustaceans (krill, decapods, 
amphipods) but mostly on fish. Pelagic fish have been 
found in stomachs in Norwegian/Barents Seas, but may be 
the result of scavenging waste from the fish industry. 
Some evidence for water column feeding. Discussion with 
S. Atchison (DFO, Canada) indicated the Beaufort Sea 
population fed heavily on mysids and may switch to 
larger prey including fish as they grow, but current 
evidence points to very slow maturation rates and mostly 
benthic feeding. Peklova (2012) suggested that Arctic 
skates may switch between benthic and pelagic feeding 
modes. Coad and Reist (2004) report a distribution 
throughout Arctic Canada, as well as in the northern 
Atlantic and Eurasia. Coad and Reist (2004) report 870 
mm as the maximum recorded body size, but Byrkjedal et 
al. (2015) report a female with 903 mm total length. 

(Bjelland et al. 
2000, Coad & 
Reist 2004, 
Peklova 2012, 
Byrkjedal et al. 
2015, S. 
Atchison, DFO 
Canada, 
pers.comm.) 
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Anisarchus medius 

 
Benthic 
Carnivore 

 
Feeds on amphipods, copepods, and polychaetes. 
Norcross et al. (2009) found prey were primarily benthic.  
Nematodes were eaten by fish > 50 mm. Mainly 
harpactacoid copepods for all size classes. Increasing 
consumption of gamarid amphipods with size. Maximum 
known length reported by Mecklenburg et al. (2007) is 
180 mm. 

 
(Mecklenburg et 
al. 2007, 
Norcross et al. 
2011) 
 

 

 

Artediellus uncinatus Benthic 
Carnivore 

Feed on invertebrates. Whitehouse et al. (2017) classified 
another Artedellius sp. (scaber) as a Gammerid consumer. 

(Coad & Reist 
2004, 
Whitehouse et 
al. 2017) 

 

 

Ascidia obliqua  Jorgensen et al. (1984) describe the mucous-net filter 
feeding of this species as highly efficient at capturing 
small particles. Macdonald et al. (2010) describe 
Ascidiacea generally as epibenthic , sessile attached 
omnivores that use suspension feeding to feed on POM 
and phytoplankton. According to the Marine Species 
Identification Portal, this species can be up to 80 mm 
long. Lives attached to a hard substrate by the base and 
left side. Nearly circumpolar distribution.  

(Jørgensen et al. 
1984, 
Macdonald et 
al. 2010) 

Marine Species 
Identification Portal 

 

Aspidophoroides olrikii Benthic 
Carnivore 

Feeds on benthic amphipods, polychaetes, bivalves, 
gastropods. Note: formerly known as Ulcina olrikii. Under 
this older name, Whitehouse et al. (2017) classified this 
species as a Gammarid consumer. Cui et al. (2012) found 
mostly benthic amphipods in stomachs, and large 
numbers of bivalve siphons and crabs. Fatty acid and 
stable isotope data in Giraldo et al. (2015), along with 
dietary literature reviews, suggested this species is a low-
trophic benthic feeder with a preference for bivalves and 
molluscs. 

(Atkinson & 
Percy 1992, Cui 
et al. 2012, 
Giraldo et al. 
2016, 
Whitehouse et 
al. 2017) 
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Benthosema glaciale 

 
Benthopelagic 
Carnivore 

 
Feeds on copepods, amphipods, chaetognaths, 
gastropods, polychaetes. Vertical migrator. Increasing 
prey size and diversity with fish size. Dypvik et al. (2012) 
reported that most individuals occupied waters deeper 
than 200 m, but displayed vertical migrations. Individuals 
2+ years migrated up to depths between 270-200 m in 
daytime and descended below 270 m at night. Stomach 
contents revealed increased daytime feeding on 
overwintering Calanus spp. Review in Dypvik et al. (2012) 
indicates that this species feeds mainly on Calanus spp. 
and other plankton. García-Seone et al. (2013) point out 
that although this species feeds mainly on pelagic 
planktonic crustaceans, benthic prey such as gastropods 
and polychaetes are also found in stomachs. Although 
there was increased use of amphipods with increasing 
size, the smallest size classes (31-40 mm) still mostly fed 
on pelagic prey 

 
(Sameoto 1988, 
Dypvik et al. 
2012, García-
Seoane et al. 
2013) 

 

 

Boreogadus saida Pelagic 
Carnivore (< 
80 mm) / 
Benthopelagic 
Carnivore (> 
80 mm) 

According to Cui et al. (2012), small cod (total length 70-
110 mm) mainly consumed calanoid copepods followed 
by euphasids and oedicerotid amphipods. Large cod (total 
length 140-220 mm) consumed mainly amphipods 
including both benthic (Ampeliscidae and Lysianassidae) 
and pelagic (Hyperidae) taxa. They also consumed fish, 
and euphausids were secondarily important behind fish 
and amphipods. Differences between size groups were 
significant. Matley et al. (2013) found no overlap between 
fish with fork length > 185 mm and those with smaller 
fork length based on Schoener's index (percent 
compositon of prey sizes). There was no overlap between 
4 size classes (fork length of 56-93, 123-159, 160-183, 
185-256 mm) when prey items rather than prey size were 
the variable used in Schoener's Index. Stable isotopic 
niche analysis, however, showed that only the smallest 
size class appeared significantly separated from the other 
size classes. Norcross et al. (2009) found evidence for 
mostly pelagic diets, with some benthic amphipods. All 
cod < 75 mm ate mostly calanoid copepods. Cod > 75 mm 
also consumed gammarid and hyperiid amphipods, 
euphasiids, and fish. Walkusz et al. (2013) observed that 
demersal Arctic Cod with standard length < 80 mm  
generally consumed strictly pelagic zooplankton, while 
adults occupied deeper waters and consumed more 
mysids and amphipods. Geoffroy et al. (2011) used  

(Geoffroy et al. 
2011, Norcross 
et al. 2011, Cui 
et al. 2012, 
Matley et al. 
2013, Walkusz 
et al. 2013, 
Majewski et al. 
2016) 
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hydroacoustics to show that age 0 cod occupied surface 
waters and eventually descended to deeper demersal 
habitats as they grew. 

 

Careproctus mollis  No species-specific dietary information found. Functional 
group and trophic trait classifications are based on 
cogeners. See also C. rastrinus, C. reinhardti, and 
Careproctus sp. Size  reported on FishBase is 74 mm, but 
BREA MFP caught an individual with standard length of 82 
mm. 

 FishBase 

 

Careproctus rastrinus  Laboratory observations of feeding behaviour revealed 
this species uses rays on its pectoral fins to search for 
food in the sediment surface (Sakurai and Kido 1992). 
Glubokov (2010) reported observations within the 
northern Pacific and Pacific-Arctic areas. Individuals 
observed off the coast of Japan fed mostly on gammarid 
amphipods, with smaller contributions from hermit crab, 
polycheates, euphasiids, copepods, large decapods 
(Pandalidae), and fish ( Glubokov 2010). Napazakov & 
Chuchukalo (2005) report a dietary dominance of 
amphipods and Pandalus borealis in waters off 
Kamchatka, with smaller contributions from other 
decapods, Actiniaria spp, cheatognaths, bivalves, octopus, 
fish, and fish eggs. The importance of decapods increased 
with size. Size of 510 mm reported on FishBase. 

(Sakurai & Kido 
1992, 
Napazakov & 
Chuchukalo 
2005, Glubokov 
2010) 

FishBase 

 

Careproctus sp.  Functional group and trophic trait classifications are 
based on feeding information for cogeners. See also C. 
rastrinus  and C. mollis. Size taken as maximum potential 
body size reported for other Careproctus spp. caught in 
the beam trawl nets of the BREA program (C. rastrinus). 

  

 

Cottunculus microps  Coad & Reist (2004) reported benthic feeding on  
polychaetes, crustaceans, and sea spiders. Houston & 
Haedrich (1986) reported finding euphasiids, amphipods 
(most common), cumaceans, polychaetes, and molluscs in 
stomachs of individuals from the Grand Banks. The 
authors concluded diet primarily consisted of benthic 
organisms. Bjelland et al. (2000) reported diets dominated 
by benthic prey, mostly pycnogonids and polychaetes, but 
also hyperbenthic amphipods. Both Mecklenburg et al. 
(2013) and Coad & Reist (2004) reported Arctic-Atlantic 
distributions. Size of 300 mm reported by Coad & Reist 
(2004) 

(Houston & 
Haedrich 1986, 
Bjelland et al. 
2000, Coad & 
Reist 2004, 
Mecklenburg et 
al. 2013) 
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Cyclopteridae 

  
Functional group and trophic trait classifications are 
based on information for cogeners. See also 
Eumicrotremus derjugini and E. spinosus. Size of 132 mm 
taken as maximum size observed for other Cyclopteridae 
caught in beam trawl nets (E. spinosus). 

  

 

Eumicrotremus derjugini Benthic 
Carnivore 

Feeds on benthic crustaceans and oikopleura. See also 
cogener Eumicrotremus spinosus. 

(Coad & Reist 
2004) 

 

 

Eumicrotremus spinosus Benthopelagic 
Carnivore 

Feeds on benthic crustaceans, oikopleura, and fishes. 
Berge et al. (2013) found almost exclusively Themisto 
libella in stomachs near Svalbard, regardless of size class. 
Other lumpsuckers also make vertical migrations. 

(Coad & Reist 
2004, Berge & 
Nahrgang 2013) 

 

 

Gymnelus hemifasciatus Benthic 
Carnivore 

No species-specific information found. Functional group 
and trophic trait classifications are based on feeding 
information for cogeners listed in Coad & Reist (2004), 
which are benthic and eat clams, crustaceans, and worms. 

(Coad & Reist 
2004) 

 

 

Gymnocanthus tricuspis Benthic 
Carnivore 

Atkinson & Percy (1992) identified 86 invertebrate species 
in stomachs. Mostly benthic amphipods, some 
polychaetes, cumaceans, and cropped siphons from 
bivalves. Fish have been observed. Generalist benthic 
feeder according to fatty acid and stable isotope analyses 
in Giraldo et al. (2016). Whitehouse et al. (2017) classified 
this species as a Gammarid consumer.  Norcross et al. 
(2009) found prey in stomachs were primarily benthic. 
Fish of all length classes ate gammarid amphipods. Fish > 
51 mm mainly ate gammarid amphipods and demersal 
polychaete worms, and some pelagic euphasiids. Cui et al. 
(2012) found benthic amphipods were the most important 
prey item with Ampeliscidae being the most common. 
Polychaetes were secondarily important, followed by 
significant numbers of cropped bivalve siphons. 

(Atkinson & 
Percy 1992, 
Coad & Reist 
2004, Norcross 
et al. 2011, Cui 
et al. 2012, 
Giraldo et al. 
2016, 
Whitehouse et 
al. 2017) 

 

 

Icelus bicornis Benthic 
Carnivore 

Atkinson & Percy (1992) observed over 91 prey species in 
stomachs. Amphipods were most abundant in stomachs, 
but stomachs also contained isopods and some copepods 
(Calanus spp.) 

(Atkinson & 
Percy 1992) 
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Icelus sp. 

  
No genus-specific information found. Functional group 
and trophic trait classifications are based on feeding 
information for cogeners (see also Icelus spatula and I. 
bicornis).  

  

 

Icelus spatula Benthopelagic 
Carnivore 

Most prevalent prey items in stomachs were mysids 
(Erythrops sp.), cumaceans, and amphipods (Atkinson & 
Percy 1992) Reportedly seen feeding on plankton 1 m 
below surface. Worms and molluscs also reported as prey 
by Coad & Reist (2004). Whitehouse et al. (2017) classified 
this species as a Gammarid consumer.  

(Atkinson & 
Percy 1992, 
Coad & Reist 
2004, 
Whitehouse et 
al. 2017) 

 

 

Leptagonus decagonus Benthopelagic 
Carnivore 
(< 85 mm) / 
Benthic 
Carnivore 
(> 85 mm) 

This species fed mainly on copepods in a Norwegian fjord  
(Källgren et al. 2015), but stable isotopes and fatty acid 
profiles measured by Giraldo et al. (2015) in the Beaufort 
Sea indicated a mid-trophic benthic carnivore. 
Tamelander et al. (2006) classified this species as 
benthopelagic based on Pethon (1998). Källgren et al. 
(2015) found that the smallest individuals (50-85 mm) fed 
mainly on copepods and amphipods. Larger individuals 
(140-180 mm) included similar proportions of calanoid 
copepods, amphipods, and other large crustaceans such 
as the decapod P. borealis and krill. The two size classes 
had significantly different diets according to Schoener's 
index. 

(Tamelander et 
al. 2006, 
Källgren et al. 
2015, Giraldo et 
al. 2016) 

 

 

Liparidae  No feeding information found for the general family level. 
Functional group and trophic trait classifications are 
based on cofamilials, the majority of which prey on a 
mixture of benthic and pelagic species. See also 
Careproctus rastrinus, C. reinhardtii, and L. tunicatus. Size 
of 524 mm taken as the maximum size for other 
Liparidae spp. caught in the beam trawl (Liparis gibbus). 

  

 

Liparis fabricii Benthic 
Carnivore 

Benthic. Feeds mostly on crustaceans and worms.  (Coad & Reist 
2004) 
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Liparis sp. 

 
Benthopelagic 
Carnivore 

 
Not much genus-specific information found. Functional 
group and trophic trait classifications are largely based 
on feeding information for cogeners. See also Liparis 
fabricii and Liparis tunicatus. Cui et al. (2012) found that 
benthic amphipods were the most important prey for 
general Liparidae spp. Most common amphipod prey in 
stomachs were Ampeliscidae followed by Lysianassidae 
and Melitidae.  

 
(Cui et al. 2012) 

 

 

Liparis tunicatus Benthopelagic 
Carnivore 

Feeds on crustaceans (Coad & Reist 2004), but stable 
isotope values from the thesis show it clearly falls within 
the benthopelagic guild of fishes. Whitehouse et al. (2017) 
classified this species as a Gammarid consumer. Size of 
200 mm reported by Coad & Reist (2004). 

(Coad & Reist 
2004, 
Whitehouse et 
al. 2017, data 
from this 
thesis) 

 

 

Lumpenus fabricii Benthic 
Carnivore 

Atkinson & Percy (1992) observed 86 prey species in 
stomachs, dominated by polychaetes. Amphipods were of 
secondary importance, as well as cropped siphons from 
Macoma spp. and small crustaceans. Whitehouse et al. 
(2017) classified this species as a Gammarid consumer in 
the Chukchi Sea. Size of 365 mm reported by Coad & 
Reist (2004). 

(Atkinson & 
Percy 1992, 
Coad & Reist 
2004, 
Whitehouse et 
al. 2017) 

 

 

Lycodes adolfi Benthic 
Carnivore 

Feeds on polychaetes, some fish, and crustaceans (Coad & 
Reist 2004). High number of diet items, highly variable 
diets, and heavy reliance on demersal prey suggests 
generalist benthic diet. Fatty acid and stable isotope 
analyses in Giraldo et al. (2016) indicated it was a benthic 
consumer. 

(Coad & Reist 
2004, Giraldo et 
al. 2016) 

 

 

Lycodes eudipleurostictus  Bjelland et al. (2000) review feeding literature for this 
species, and found stomachs contained polychaete 
fragments, Themisto libellula, and a mixture of other 
benthic prey (brittle stars, isopods, polychaetes, 
priapulids) and pelagic prey (other Themisto spp., 
carideans). Coad & Reist (2004) classified this species as 
benthic, and reported feeding on crustaceans. 
Circumpolar distribution reported by both Coad & Reist 
(2004) and Mecklenburg et al. (2013). Size of 450 mm 
reported by from Coad and Reist (2004). 

(Bjelland et al. 
2000, Coad & 
Reist 2004, 
Mecklenburg et 
al. 2013) 
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Lycodes pallidus 

 
Benthic 
Carnivore 

 
Feeds on polychaetes, crustacean fragments, amphipods, 
and molluscs (Bjellend et al. 2000). Size of 287 mm 
reported by Coad & Reist (2004). 

 
(Bjelland et al. 
2000, Coad & 
Reist 2004) 

 

 

Lycodes polaris Benthic 
Carnivore 

Feeds on isopods and some copepods (Coad & Reist 
2004). Previously reported to eat bivalves and cropped 
siphons from Macoma spp., but no evidence for it in the 
Beaufort Sea from fatty acid and stable isotope data 
reported by Giraldo et al. (2016), and little evidence for 
Macoma in the diet reported by Dissen (2015). 
Whitehouse et al. (2017) classified this species as a 
Gammarid consumer in the Chukchi Sea. Norcross et al. 
(2009) found that fish of all length classes ate gammarid 
amphipods, and fish > 51 mm also ate fish.  

(Coad & Reist 
2004, Norcros 
et al. 2009, 
Dissen 2015, 
Giraldo et al. 
2016, 
Whitehouse et 
al. 2017) 
 

 

 

Lycodes rossi Benthic 
Carnivore 

Feeds on decapods, benthic amphipods, polychaetes, and 
clams. Size of 380 mm reported by Coad & Reist (2004). 

(Dolgov 1994, 
Coad & Reist 
2004) 

 

 

Lycodes sagittarius Benthic 
Carnivore 

High number of diet items, highly variable diets, and 
heavy reliance on demersal prey suggests generalist 
benthic diet. Poster presented by S. Aspens (MSc., 
University of Alaska Fairbanks) reported that polychaetes, 
benthic amphipods, brittle stars, and harpacticoid 
copepods composed a large part of the diet in the 
Alaskan Beaufort Sea (abstract available from ASLO Ocean 
Sciences Meeting, but thesis not available at the time this 
database was compiled). Diet for L. Sagittarius was 
correlated with longitude and depth (S. Aspens).  Size of 
273 mm reported on FishBase. 

(Coad & Reist 
2004) 

FishBase, S. Aspens 
abstract from ASLO 
Ocean Sciences 
Meeting 21-26 Feb 
2016 available at: 
https://agu.confex.co
m/agu/os16/prelimina
ryview.cgi/Paper92722
.html) 

 

Lycodes seminudus Benthic 
Carnivore 

Feeds on bivalves, molluscs, brittle stars, polychaetes, and 
fish. Mid- to high-trophic benthic generalist according to 
stable isotope and fatty acid analyses reported by Giraldo 
et al. (2016). High number of diet items, highly variable 
diets, and heavy reliance on demersal prey suggests 
generalist benthic diet. Size of 560 mm reported by Coad 
& Reist (2004). 

(Coad & Reist 
2004, Giraldo et 
al. 2016) 
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Lycodes sp. 

  
Functional group and trophic trait classifications are 
based on cogeners.  Hildebrandt et al. (2011) briefly 
review the ecology of Zoarcidae (eelpouts), including their 
preference for deep soft bottom habitats at the outer 
shelves and slopes and cold temperatures. Hildebrandt et 
al. (2011) also review the feeding habits of cogeners L. 
squamiventer and L. frigidus, indicating that both are 
benthic carnivores that eat benthic fauna including 
polychaetes, crustaceans, ophiuroids, molluscs, 
sipunculids, gastropods, amphipods, copepods, and 
sometimes fish. See also L. eudipleurostictus, L. pallidus, L. 
rossi, L. sagittarius, and L. seminudus. Size of 560 mm 
taken as maximum size observed for other Lycodes spp. 
caught in beam trawls (see L. seminudus). 

 
(Hildebrandt et 
al. 2011) 

 

 

Lycodes squamiventer Benthic 
Carnivore 

Growth rates increase with increasing temperature, but 
maximum age declines with temperature (Hildebrandt et 
al. 2011). Prefers soft-bottom habitats and is mostly 
recorded between 700 and 1800 m depths at subzero 
temperatures (Andriyashev 1986, Møller 2001; referenced 
in Hildebrandt et al. 2011). Stable isotope data and 
stomach contents observed by Gebruk et al. (2003) 
supported benthic carnivory on  benthic fauna including 
pogonophores, gastropods, amphipods, polychaetes, and 
copepods. Maximum size reported was 260 mm.  

(Gebruk et al. 
2003, 
Hildebrandt et 
al. 2011 & 
references 
therein) 

 

 

Reinhardtius hippoglossoides Benthopelagic 
Carnivore 

Euphasids were important for young (< 200 mm) Halibut, 
otherwise squid and fish, including Zoarcidae, Capelin, 
and Arctic Cod were important prey. Some cannibalism 
reported. Hovde et al. (2002) found that spatial and 
temporal factors were more important in determining diet 
than biotic variables such as predator size, maturity, and 
sex. Hovde et al. (2002) found some clear ontogenetic 
shifts on the slope where smaller Greenland Halibut (< 
500 mm) preyed mostly on cephalopods and crustaceans 
while larger specimens fed more on fish. Smaller fish 
appeared to be foraging at greater depths than larger fish 
(< 700 m).  Much literature confirms carnivorous diet on 
benthic invertebrates and fish, as well as foraging 
migrations to the upper water column for benthopelagic 
prey. Maximum size of 1190 mm reported by Coad & 
Reist (2004).  

(Rodríguez-
Marín et al. 
1995, Jørgensen 
1997, Michalsen 
& Nedreaas 
1998, Bjelland 
et al. 2000, 
Hovde et al. 
2002, Coad & 
Reist 2004) 
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Stichaeidae 

  
No general diet information found for family level. Diet 
and size inferred from cofamilials (see also Lumpenus 
fabricii). Size taken as 365 mm. 

  

 

Triglops nybelini Benthopelagic 
Carnivore 

Ottesen (2004) found crustaceans and some fish in 
stomachs, with evidence for possible cannibalism in 
Norwegian waters. Otherwise, see cogener Triglops 
pingelii. Stable isotope values from this thesis indicate T. 
nybelini clearly falls within the benthopelagic fishes guild. 
Size of 200 mm reported on FishBase, which was larger 
than that reported by Coad & Reist (2004). 

(Coad & Reist 
2004, Ottesen 
2004) 

FishBase 

 

Triglops pingelii Benthopelagic 
Carnivore 

Feeds on zooplankton, Mysis relicta, amphipods, Themisto 
libellula, Calanus glacialis, Thysanoessa inermis, and 
Sagitta elegans according to Atkinson & Percy (1992). 
Some fish in diet also reported by Coad & Reist (2004). 
Whitehouse et al. (2017) classified this species as a 
benthic invertebrate consumer. Size of 202 mm reported 
by Coad & Reist (2004). 

(Atkinson & 
Percy 1992, 
Coad & Reist 
2004, 
Whitehouse et 
al. 2017) 

 

Cnidaria    

 

Actiniaria Benthic 
Carnivore 

Sea anemone. Generalist, carnivorous predator that 
consumes a wide variety of animals from algae to 
invertebrates (Acuna & Zamponi 1995). Macdonald et al. 
(2010) classified Actiniaria generally as motile, free-living, 
animals that feed at the sediment surface on macrofaunal 
prey (>500 μm). Stable isotope values for Actinaridae 
reported by  Søreide et al. (2013) suggest a mid-trophic 
carnivore, but a potential reliance on phytoplankton-
derived carbon sources. Taxonomic classification is too 
broadly defined to pinpoint a body size. 

(Acuña & 
Zamponi 1995, 
Macdonald et 
al. 2010, 
Søreide et al. 
2013) 

 

 

Aglantha digitale Pelagic 
Carnivore 

Ambush predator that feeds while drifting. Consumes 
copoepods and eggs of other pelagic predators. 

(Matsakis & 
Conover 1991, 
Colin et al. 
2003) 
 

 

 

Catablema vesicarium Pelagic 
Carnivore 

Preys on fish larvae, with some evidence for feeding on 
plankton. 

(de Lafontaine 
& Leggett 1988) 
 

 

 

Lafoeidae  Macdonald et al. (2010) classified Lafoeidae as sessile, 
epibenthic carnivores that feed on zooplankton using 
suspension feeding. They live attached.  Size of 100 mm 
reported on the Encyclopedia of Marine Life of Britain and 
Ireland database. 

(Macdonald et 
al. 2010) 

Encyclopedia of Marine 
Life of Britain and 
Ireland 
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Nephtheidae 

  
Imbs et al. (2016) studied the fatty acid profiles of cold 
water corals for the first time and found that species in 
the Nephtheidae family likely fed opportunistically from a 
variety of food sources, including particulate organic 
matter and phytoplankton/phytodetritus that is likely 
advected from shallower habitats or the upper water 
column. The authors explain that in the absence of 
zooxanthellae, some species of soft corals rely entirely on 
heterotrophy. 

 
(Imbs et al. 
2016) 

 

 

Zoanthidae  Review by Kenchington et al. (2012) describes Arctic 
corals as sessile, benthic suspension feeders. 

(Kenchington et 
al. 2012) 

 

Ctenophora    

 

Beroe cucumis Pelagic 
Carnivore 

Prefers Mertensia ovum. Probably cannot digest 
crustaceans, so relies on other gelatinous prey. 

(reviewed in 
Falk-Petersen et 
al. 2002) 
 

 

 

Mertensia ovum Pelagic 
Carnivore 

Opportunistic plankton feeder, but prefers calanoid 
copepods (Calanus spp. in Svalbard waters). 

(reviewed in 
Falk-Petersen et 
al. 2002) 

 

Echinodermata    

 

Asteriidae  Jangoux (1982) describes Asteroidea as mostly benthic 
predators that will occasionally eat carrion. Size and 
trophic traits estimated from cofamilials (see also 
Lepasterias sp. and Urasterias linckii). 

(Jangoux 1982)  

 

Crossaster papposus  A study of echinoderm predators in commercial sea 
scallop beds in Iceland identified that C. papposus fed 
mostly on other echinoderms such as sea urchins and sea 
cucumbers (Zolotarev 2002). Gale et al. (2015) found that 
C. papposus and Lepasterias spp. were commonly 
associated with invertebrates known to be asteroid prey, 
such as Strongylocentrotus spp., ophiuroids, 
holothuroideans, and bivalves. Other observations of 
preatory behaviour on various benthic invertebrate prey 
are found in Himmelman and Dutil (1991), Mauzey et al. 
(1968) and Mortensen (1927). Deja et al. (2016) classified 
this species as a boreal-Arctic  carnivore, omnivore, and 
scavenger that prefers rocky bottom. Size reported on the 
Marine Species Identification Portal was 340 mm, but the 
178 mm reported by Pollock (1998) was more typical of 
the specimens observed in this thesis. 

(Mortensen 
1927, Mauzey 
et al. 1968, 
Himmelman & 
Dutil 1991, 
Pollock 1998, 
Zolotarev 2002, 
Gale et al. 2015, 
Deja et al. 2016) 

Marine Species 
Identification Portal 
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Ctenodiscus crispatus 

 
Benthic SDF 

 
Combined use of stable isotopes and stomach contents by 
Gale et al. (2013) suggested this species is a mud ingester 
and infaunal predator. Macdonald et al. (2010) classified 
C. crispatus as an omnivorous, motile detrivore that feeds 
on sediment, microfauna and diatoms.  Søreide et al. 
(2013) classified it as a carnivore, and stable isotope 
values indicated a high trophic level of 3.3. Gale et al. 
(2015) observed its infaunal burrowing behaviour directly 
using ROV surveys. Shick et al. (1981) conducted a 
thorough study of deposit feeding in this species and 
concluded that it subsides off POM in detritus, and likely 
much nutrition comes from bacteria in the sediment. Deja 
et al. (2016) classified this species as a boreal-Arctic 
deposit feeder that prefers mixed sediment and mud. Size 
of 50 mm reported on Arctic Megabenthos database. 

 
(Shick et al. 
1981, Jangoux 
1982, Gale et al. 
2013, 2015, 
Søreide et al. 
2013, Deja et al. 
2016) 

 
Arctic Magebanthos 
database 

 

Cucumaria sp.  No genus-specific feedinf information found. Functional 
group and trophic traits are inferred from cogeners. In 
the St. Lawrence estuary, Hamel and Mercier (1998) 
observed distinct seasonal feeding cycles in Cucumaria 
frondosa with most feeding occurring in spring and 
summer. They found C. frondosa ate mostly phtoplankton 
cells, and occasionally ate small crustaceans, eggs, and 
larvae. Fish (1967) reported that C. elongata was a 
suspension feeder, using its tentacles to gather 
suspended particulate matter. Many other studies 
available on the suspension-feeding behaviour of C. 
elongata and C. frondosa. Fankboner (1978) provides a 
good review of how various Cucumaria spp. use 
suspension feeding to feed on small planktonic 
crustaceans and diatoms. Size of 152 mm based on that 
reported for C. frondosa by Pollock (1998). 

(Fish 1967, 
Fankboner 
1978, Hamel & 
Mercier 1998, 
Pollock 1998) 

 

 

Eupyrgus scaber Benthic SSDF No species-specific diet information found. Diet and 
trophic trait classifications are inferred from coarser 
taxonomic levels. Massin et al. (1982) state that Molpadida 
are generally conveyor-belt feeders that ingest sediment 
to extract nutrition. Macdonald et al. (2010) classified 
Dendrochirotidae spp. generally as disceretly motile 
omnivores that feed via detrivory on sediment, POM, 
microfauna, and diatoms. Deja et al. (2016) classified this 
species uncertainly as a deposit feeder with boreal-Arctic 
distribution. 

(Massin 1982, 
Macdonald et 
al. 2010, Deja et 
al. 2016) 
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Gorgonocephalus arcticus 

 
Benthic 
Carnivore 

 
Predatory suspension feeder on macroscopic prey. Uses 
specialised hooks and spines on its arms to capture live 
prey such as krill and zooplankton. Meganyctiphanes 
norvegica was the principal prey in the Bay of Fundy. This 
species is euryhaline and adapted for strong currents 
(Emson et al. 1991). Review of Arctic brittle star 
zoogeography by Piepenburg (2000) reported 
Gorgoncephalus spp. as Atlantic boreal-Arctic, nearly 
cicrumpolar. Size of 38 mm for the lantern reported by 
Pollock (1998). 

 
(Emson et al. 
1991, Pollock 
1998, 
Piepenburg 
2000) 

 

 

Gorgonocephalus sp. Benthic 
Carnivore 

No genus-specific diet information found. Functional 
group and trophic traits inferred from cogener G. 
arcticus.  

  

 

Heliometra glacialis Benthic SF Not much species-specific diet information available from 
the literature for this species, but suspension-feeding diet 
confirmed in a review by Baumiller (2008). Deja et al. 
(2016) classified this species as a boreal-Arctic 
suspension-feeder that prefers silt and sandy silt 
bottoms.  Some trophic traits inferred from general 
Crinoida. Maximum size of 200 mm reported on the 
Marine Species Identification Portal. 

(Baumiller 
2008, Deja et al. 
2016) 

Marine Species 
Identification Portal 

 

Holothuroidea Benthic SDF Can be deposit feeders or suspension feeders. See also 
Cucumaria sp. 

(Massin 1982)  

 

Hymenaster pellucidus   No species-specific diet information found. Functional 
group and trophic traits inferred from cogeners. Wagstaff 
et al. (2014) classified this species as a carnivore based on 
Howell et al. (2003), who studied the stomach contents 
and fatty acid profiles of Hymenaster membranaceus and 
found them to feed on small benthic invertebrates (small 
crustaceans and foraminifera) and planktonic fall-out 
(pteropod moults, planktonic faraminifera). These food 
items agree with those reported by Mortensen (1927). 
Fatty acid profiles suggest that H. membranacues was a 
predator/scavengers, but with some reliance on benthic 
bacterial and pelagic-detrital food sources (Howell et al. 
2003). Deja et al. (2016) classified this species uncertainly 
as an Arctic deposit feeder that prefers muddy bottom. 
No actual references for size found. A size of 30 mm was 
estimated from pictures on the WoRMS database that 
included a size reference. 

 (Mortensen 
1927, Howell et 
al. 2003, 
Wagstaff et al. 
2014, Deja et al. 
2016) 

WoRMS 
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Leptasterias sp. 

 
Benthopelagic 
Carnivore 

 
Zolotarev (2002) studied echinoderms in commercial 
scallop beds in Iceland and found one Lepasterias spp. 
(muelleri hyperborea) was carnivorous and preyed on 
scallops. Gale et al. (2015) observed that the distributions 
of Lepasterias spp. and Crossaster papposus on the Grand 
Banks were associated with several common 
macroinvertebrate species considered to be their prey. 
Direct observations of predatory feeding are also 
available in Himmelman and Dutil (1991). Maximum size 
of 100 mm was estimated from the cogener L. muelleri 
from the Marine Species Identification Portal. 

 
(Himmelman & 
Dutil 1991, 
Zolotarev 2002, 
Gale et al. 2015) 

 
Marine Species 
Identification Portal 

 

Molpadia spp. Benthic SSDF Macdonald et al. (2010) classified Molpadia spp. generally 
as subsurface, discretely motile, omnivores that feed on 
sediment, detritus, particulate organic matter, 
microfauna, and meiofauna. Massin et al. (1982) state that 
Molpadida are generally conveyor-belt feeders that bury 
themselves and ingest sediment to extract nutrition. Size 
of 200 mm based on cogener M. borealis, decsribed as a 
"20-cm long holothurian" by Drozdov et al. (2012), and M. 
oolitic,a for which Pollock (1998) reported a size of 254 
mm. No other size information found. 

(Massin 1982, 
Pollock 1998, 
Macdonald et 
al. 2010, 
Drozdov et al. 
2012) 
 
 

 

 

Myriotrochus sp. Benthic SDF No genus-specific information found. Functional group 
and trophic trait classifications inferred from cogeners 
and coarser taxonomic levels. Deep-sea holothurians are 
typically deposit-feeders (Billett 1991, in Wagstaff et al. 
2014). According to Massin (1982), Apopids are either 
surface, rake, or funnel feeders, all consuming detritus 
along with algae, small crustaceans, worms, and diatoms. 
Deja et al. (2016) classified Myriotrochus rinckii as a 
boreal-Arctic deposit-feeder that prefers muddy gravel 
and mixed sediments. No size information found. 

(Massin 1982, 
Wagstaff et al. 
2014, Deja et al. 
2016) 
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Ophiacantha bidentata 

 
Benthic 
SDF/SF 

 
Brittle stars are generally known to be very opportunistic 
(Warner 1982, in Jangoux 1982). This species can act at 
least temporarily as suspension feeders. Graeve et al. 
(1997) observed diatom markers in specimens collected 
near Greenland. Gallagher et al. (1998) studied the 
biochemical composition of this species and described it 
as a deposit-feeding ophiurid that can modify its feeding 
strategies to deposit feeding, scavenging, or suspension-
feeding. A review of Arctic brittle star zoogeography by 
Piepenburg (2000) reported that this species occurs nearly 
circumpolar, but is also found in temperate regions of the 
Atlantic and Pacific. Deja et al. (2016) classified this 
species as a boreal-Arctic suspension feeder that prefers 
mixed sediments. Disk diameter of 11 mm reported by 
Pollock (1998). Largest individuals observed by Brooks et 
al. (2007) were 11.1 mm in diameter. 

 
(Jangoux 1982, 
Graeve et al. 
1997, Gallagher 
et al. 1998, 
Pollock 1998, 
Piepenburh 
2000, Brooks et 
al. 2007, Deja et 
al. 2016) 
 
 

 

 

Ophiocten sericeum Benthic 
SDF/SF 

Ophiurids are generally known to be opportunistic 
facultative deposit or suspension feeders (Warner 1982, 

in Jangoux 1982). Kędra et al. (2010) classified this 

species as a discretely motile surface deposit feeder with 
Arctic-boreal distribution. Deja et al. (2016) classified this 
species as a boreal-Arctic deposit feeder that prefers soft 
bottom.  A review of Arctic brittle star zoogeography by 
Piepenburg (2000) reported that this is chiefly a cold-
water species with circumpolar distribution, and while it 
is found in some deeper waters of the north Atlantic it is 
absent from the Pacific. Maximum observed disk diameter 
by in the Chukchi and Alaskan Beaufort Sea was 18 mm 
(Ravelo 2015). 

(Jangoux 1982, 
Pollock 1998, 
Piepenburg 

2000, Kędra et 

al. 2010, Ravelo 
et al. 2015, Deja 
et al. 2016) 

 

 

Ophiocten sp.   Functional group and trophic traits inferred from 
cogeners. Ophiuroids are generally known to be 
opportunistic facultative deposit or suspension feeders 
(Warner 1982, in Jangoux 1982).  According to Jangoux 
(1982) and Piepenburg (2000), Ophiurids can have a very 
broad range of benthic food items including predation, 
scavenging, and surface deposit feeding. See also 
Opiocten sericeum. Maximum size of 18 mm reported for 
cogener O. sericeum. 

(Jangoux 1982, 
Piepenburg 
2000) 
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Ophiopleura borealis 

 
Benthic 
SDF/SF 

 
Brittle stars generally known to be very opportunistic 
(Warner 1982, in Jangoux 1982).  Graeve et al. (1997) 
reported relatively high carnivory markers for O. borealis 
based on fatty acid analyses. According to Jangoux (1982) 
and Pipenburg (2000), Ophiuroids can have a very broad 
range of benthic food items and use a number of 
strategies including predation, scavenging, and surface 
deposit feeding. Mortensen (1933) suggested that larger 
ophiurids like O. borealis and O. glacialis prefered to 
forage as macrophagous predators/scavengers. Gallagher 
et al. (1998) studied the biochemical composition of this 
species and described it as a deposit-feeding ophiuroid 
that can modify its feeding strategies to deposit feeding, 
scavenging, or suspension-feeding.  A review of Arctic 
brittle star zoogeography by Piepenburg (2000) reported 
that this is an endemic Arctic species. Deja et al. (2016) 
classified this species as an Arctic carnivore/omnivore 
that prefers soft bottom and mud. Blicher and Sejr (2011) 
observed O. borealis with disk diameter up to 35 mm. 

 
(Mortensen 
1933, Jangoux 
1982, Graeve et 
al. 1997, 
Gallagher et al. 
1998, 
Piepenburg 
2000, Blicher & 
Sejr 2011, Deja 
et al. 2016) 

 

 

Ophioscolex glacialis  According to Jangoux (1982) and Pipenburg (2000), 
Ophiuroids can have a very broad range of benthic food 
items and use a number of strategies including predation, 
scavenging, and surface deposit feeding. Mortensen 
(1933) suggested that larger ophiuroids like Ophiopleura 
borealis and O. phioscolex glacialis prefer to forage as 
macrophagous predators/scavengers.   A review of Arctic 
brittle star zoogeography by Piepenburg (2000) reported 
that this species has a west Atlantic boreal-Arctic 
distribution, ranging from the continental slope of the 
Siberian Chukchi Sea to the northwestern Atlantic. 
Apparently prefers soft sediments. Deja et al. (2016) 
classified this species as a boreal-Arctic carnivore that 
prefers soft bottom and mud. Piepenburg and Schmid 
(1996) reported observing O. glacialis > 30 mm in the 
Barents Sea. 

(Mortensen 
1933, Jangoux 
1982, 
Piepenburg & 
Schmid 1996, 
Piepenburg 
2000, Deja et al. 
2016) 
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Ophiura robusta 

  
Brittle stars generally known to be very opportunistic 
(Warner 1982, in Jangoux 1982). According to Jangoux 
(1982) and Pipenburg (2000), Ophiurids can have a very 
broad range of benthic food items and use a number of 
strategies including predation, scavenging, and surface 
deposit feeding. Pollock (1998) reports this species as a 
deposit feeder and predator that prefers sand and mud. 
Size of 10 mm reported in Pollock (1998) 

 
(Jangoux 1982, 
Pollock 1998, 
Piepenburg 
2000) 

 

 

Poliometra prolixa  Taylor et al. (2016) classified this species as a suspension 
feeder, and crinoids are generally mobile species. 
Functional group and trophic traits are mostly inferred 
from general Crinoida. Not much species-specific diet 
information found, but suspension-feeding diet 
confirmed in review by Baumiller (2008) and by 
Encyclopedia of Life. Anisimova and Cochrane (2003) 
reported an Arctic distribution for this species. Deja et al. 
(2016) classified this species as an Arctic suspension 
feeder that prefers silt and sandy silt bottoms. Size of 200 
mm (Dyer et al. 1984, references in Jorgensen 2016). 

(Anisimova & 
Cochrane 2003, 
Baumiller 2008, 
Deja et al. 2016, 
Jørgensen et al. 
2016, Taylor et 
al. 2016)  
 

Encyclopedia of Life 

 

Pontaster tenuispinus Benthic SDF Carnivore according to Wagstaff et al. (2014), but this 
seems to be a mistake as the reference used to establish 
this claim is Mortensen (1927).  Mortensen (1927) reports 
that ciliary currents appear to play a role in feeding for P. 
tenuispinus, and that its food consists of minute 
organisms and detritus. Summary of feeding observations 
in Jangoux (1982) agrees with Mortensen (1927). High δ13C 
values reported in Søreide et al. (2013) indicate a closer 
link to pelagic production, although the species exhibits 
relatively high δ15N values and is classified as a carnivore.  
Stable isotope values reported in Tamelander et al. (2006) 
are closer to those of other deposit feeders, and δ15N 
indicates a mid-trophic level. Feeding strategy unclear but 
may be a mix? Deja et al. (2016) classified this species as 
a boreal-Arctic deposit feeder that prefers soft bottom 
and mixed sediment. Size of 200 mm reported by the 
Arctic Megabenthose Database. 

( Mortensen 
1927, Jangoux 
1982, 
Tamelander et 
al. 2006, 
Søreide et al. 
2013, Wagstaff 
et al. 2014, Deja 
et al. 2016) 

Arctic Megabenthos 
Database 
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Psilaster andromeda 

 
Benthic 
Carnivore 

 
Carnivore according to Wagstaff et al. (2014), who 
reference Mortensen (1927). Jangoux (1982) summarizes 
earlier observations of this species preying mostly on 
molluscs, some echinoderms, small bivalves, and 
foraminifera. These prey items are also listed in 
Mortensen (1927). Maximum size found for this species 
was 100 mm. 

 
(Mortensen 
1927, Jangoux 
1982, Wagstaff 
et al. 2014) 

 

 

Psolus sp. Benthic 
SDF/SF 

Macdonald et al. (2010) classified Psolidae generally as 
epibenthic, discretely motile omnivores that use 
suspension feeding to feed on POM, phytoplankton, and 
zooplankton. Deja et al. (2016) classified another Arctic 
Psolus sp. (P. squamatus) as a deposit feeder. Size of 200 
mm based on size reported for cogener P. phantapus, 
which also has an Arctic distribution, on Marine Species 
Identification Portal. This size agrees with those reported 
for two other Psolus spp. by Pollock (1998). Fankboner 
(1978) gives a good review of suspension-feeding sea 
cucumbers and studies the suspension-feeding 
mechanisms of P. chitinoides. Fankboner et al. (1978) 
observed fragments and whole crustacean larvae and 
copepods, diatoms, and algal debris in stomachs. 

(Fankboner 
1978, Pollock 
1998, 
Macdonald et 
al. 2010, Deja et 
al. 2016) 

Marine Species 
Identification Portal 

 

Pteraster obscurus  Difficult to find species-specific feeding information. 
Functional group and trophic traits inferred from 
cogeners and coarser taxonomic levels. Jangoux (1982) 
described Asteroidea in general as mostly benthic 
predators that will occasionally eat carrion. Review in the 
introduction of Gale et al. (2013) states that Asteroidea 
are often important benthic predators, but say that 
explicit studies of feeding in deep-water Asteroids are 
rare, and deposit-feeding, mud ingestion, and suspension 
feeding have been observed. Wagstaff et al. (2014) 
classified Pteraster spp. generally as carnivores, inferred 
from cogeners in Mauzey et al. (1968) who observed 
predatory feeding habits of various Asteroids in Puget 
Sound, inlcuding one Pteraster spp. Macdonald et al. 
(2010) classified Pteraster spp generally as mobile, free-
living carnivorous predators that feed at the sediment 
surface on macrofauna. Deja et al. (2016) classified this 
species as boreal-Arctic, potentially a deposit-feeder, with 
a preference for mixed sediments and muddy gravel. Size 
of 35 mm reported on the Russin Arctic Megabenthos 
Database. 

(Jangoux 1982, 
Mauzey et al. 
1968, 
Macdonald et 
al. 2010, Gale et 
al. 2013, 
Wagstaff et al. 
2014, Deja et al. 
2016) 

Russin Arctic 
Megabenthos 
Database. 
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Solaster endeca 

  
Jangoux (1982) described Asteroidea in general as mostly 
benthic predators that will occasionally eat carrion. 
Review in the introduction of Gale et al. (2013) states that 
Asteroidea are often important benthic predators, but say 
that explicit studies of feeding in deep-water Asteroids 
are rare, and deposit-feeding, mud ingestion, and 
suspension feeding have been observed. Direct 
observations of predatory behaviour for this species, in 
the context of a predator-avoidance study, can be found 
in Legault & Himmelman (1993). Direct observations of 
predatory behaviour are found in Himmelman & Dutil 
(1991). Size of 203 mm reported by Pollock (1998). The 
Marine Species Identification reported this species can 
reach 400mm, which seems less likely for the specimens 
collected for this project. 

 
(Jangoux 1982, 
Himmelman & 
Dutil 1991, 
Legault & 
Himmelman 
1993, Pollock 
1998, Gale et al. 
2013) 

 
Marine Species 
Identification Portal 

 

Strongylocentrotus sp.  Strongylocentrotus spp. fatty acid biomarkers implied ice 
algae was a dietary component for this species (Brown & 
Belt 2012; Brown et al. 2012). Macdonald et al. (2010) 
classified Strongylocentrotus spp. generally as free-living, 
mobile herbivores that graze algae on the sediment 
surface. Stable isotope evidence in Renaud et al. (2015) 
suggested this genus acted as a herbivorous grazer, and 
the authors classified it as a benthic, omnivorous grazer. 
Direct observations of macroalgal diets were recorded in 
Kongsfjord (Wessels et al. 2006).  Deja et al. (2016) 
classified Strongylocentrotus droebachiensis, which is an 
Arctic species, as a boreal-Arctic herbivore that prefers 
rocky bottom.  Anisimova and Cochrane (2003) reported a 
boreal-Arctic distribution for two Arctic 
Strongylocentrotus species. Size of 80 mm based on size 
reported for northern cogener S. droebachiensis on Marine 
Species Identification Portal. 

(Anisimova & 
Cochrane 2003, 
Wessels et al. 
2006, 
Macdonald et 
al. 2010, Brown 
& Belt 2012, 
Brown et al. 
2012, Renaud et 
al. 2015, Deja et 
al. 2016) 

Marine Species 
Identification Portal 
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Urasterias lincki 

 
Benthic 
Carnivore 

 
Jangoux (1982) described Asteroidea as mostly benthic 
predators that will occasionally eat carrion. A study of 
commercial scallop beds in Iceland reported that U. linckii 
was carnivorous and preyed upon scallops (Zolotarev 
2002). Atlantic in origin according to ITIS report, but 
distribution map shows it has been sampled throughout 
the Arctic and does appear to be more common in the 
north Atlantic than in other places. Deja et al. (2016) 
reported U. linckii as a boreal-Arctic opportunistic species 
that prefers mixed sediment, and classified them as 
facultative carnivores, omnivores, and scavengers. 
Maxmimum size of 220 mm was reported on the Russian 
Arctic Megabenthos Database. 

 
(Jangoux 1982, 
Himmelman & 
Hamel 1993, 
Zolotarev 2002, 
Deja et al. 2016) 

 
IT IS; Russian Arctic 
Megabenthos Database 

Mollusca    

 

Astarte borealis Benthic SF Fatty acid and stable isotope analyses performed by 
Søreide et al. (2013) suggest low trophic level. Macdonald 
et al. (2010) classified Astarte borealis as an epibenthic, 
discretely motile, suspenion-feeding omnivore that feeds 
on particulate organic matter and phytoplankton. Live in 
burrows. Aitken & Gilbert (1996) referred to Astarte spp. 
as suspension-feeding bivalves and noted the distribution 
of A. borealis in the eastern Canadian Archipelago was 
associated with greater availability of phytoplankton and 
benthic macroalgae. Absence was associated with high 

sediment loads that presumably hampered feeding. Kędra 

et al. (2010) reported this species as a discretely motile 
filter feeder with Arctic-boreal distribution. Size from 
Marine Species Identification Portal was 45 mm, and 51 
mm was reported by Pollock (1998). 

(Aitken & 
Gilbert 1996, 
Pollock 1998, 

Kędra et al. 

2010, 
Macdonald et 
al. 2010, 
Søreide et al. 
2013) 

Marine Species 
Identification Portal 

 

Astarte sp. Benthic SF Fatty acid and stable isotope analyses performed by 
Søreide et al. (2013) suggest low trophic level. Macdonald 
et al. (2010) classified Astarte spp. generally as 
epibenthic, discretely mobile (can move but don't need to 
for feeding), suspenion-feeding omnivores that feed on 
POM and phytoplankton. Aitken & Gilbert (1996) referred 
to Astrate spp. as suspension-feeding bivalves.  See also 
Astarte borealis. 

(Aitken & 
Gilbert 1996, 
Macdonald et 
al. 2010, 
Søreide et al. 
2013) 
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Bathyarca glacialis 

 
Benthic 
SDF/SF 

 
Fatty acid biomarkers analysed by Gaillard et al. (2015) 
indicated this species was a non-selective filter feeder 
that ate microalgae, zooplankton, and bacteria. Coastal 
populations in the Beaufort Sea depended mostly on 
microalgae. Zooplankton and bacteria were more 
important to diet in bathyal populations. Stable isotope 
analyses in Renaud et al. (2011) suggested this species fed 
to some extent on detritus or resuspended material rather 
than just on fresh phytodetritus. Søreide et al. (2013) 
classified this species as a benthic suspension feeder, and 
reported stable isotope values that indicated feeding at 
trophic levels between 2.0 and 2.6. Stable isotope analyses 
for a Bathyarca sp. reported in Iken et al. (2005) agree 
with suspension feeding, and the authors classified 
Bathyarca sp. as an unselective surface deposit feeder. 
Size of 19 mm taken from Sea Life Base.  

 
(Iken et al. 
2005, Renaud et 
al. 2011, 
Søreide et al. 
2013, Gaillard 
et al. 2015) 

 
Sea Life Base 

 

Bathyarca sp. Benthic SF Iken et al. (2005) classified Bathyarca spp. as an 
'unselective' surface deposit feeder. See also B. glacialis. 

(Iken et al. 
2005) 

 

 

Bathypolypus arcticus Benthopelagic 
Carnivore 

O'Dor and Macalaster (1983) described this species as an 
opportunistic feeder that would "eat almost anything" 
according to laboratory experiments and stomach 
contents analyses. Sit-and-wait predators. Food items 
found in stomachs from wild-caught specimens included 
cumaceans, sipunculids, Foraminifera, gastropods, 
bivalves, polychaetes, crustaceans, and ophiuroids. Does 
not appear to require vision for hunting, and may feed by 
probing bottom sediments or taking any mobile prey that 
brush against it. Size of 100 mm taken from Sea Life Base. 
Pollock (1998) reported a maximum length of 610 mm for 
this species, but that is much larger than any of the 
specimens observed in the thesis. 

(O’Dor and 
Macalaster 
1983, Pollock 
1998) 

Sea Life Base 

 

Buccinidae  Functional group and trophic traits inferred from co-
familials. Macdonald et al. (2010) classified Buccinidae 
generally as freely motile predatory carnivores that feed 
on macrofauna at the sediment surface. Information for 
Buccinum spp. (Family: Buccinidae) agree with these 
classifications. See also Buccinum sp., Buccinum undatum, 
B. hydrophanum, and B. scaliarforme. Maximum size of 
110 mm based on cofamilials. 

(Macdonald et 
al. 2010) 
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Buccinum hydrophanum 

  
No species-specific information found. Functional group 
and trophic trait classifications inferred from cogeners. 
Macdonald et al. (2010) described Buccinum spp. 
generally as motile, free-living, predatory carnivores that 
feed at the surface on macrofauna. See also B. undatum. 
Maximum size of 70 mm taken from Marine Species 
Identification Portal 

 
(Macdonald et 
al. 2010) 

 
Marine Species 
Identification Portal 

 

Buccinum scalariforme  Not much species-specific information found. Functional 
group and trophic trait classifications inferred from 
cogeners. Macdonald et al. (2010) described Buccinum 
spp. generally as motile, free-living, predatory carnivores 
that feed at the sediment surface on macrofauna. See also 
B. undatum. Maximum size of 51 mm taken from Pollock 
(1998), who classified the species uncertainly as a 
predator. 

(Pollock 1998, 
Macdonald et 
al. 2010) 

 

 

Buccinum sp.  Functional group and trophic trait classifications inferred 
from.  Macdonald et al. (2010) described Buccinum spp. 
generally as motile, free-living, predatory carnivores that 
feed at the sediment surface on macrofauna. Information 
for other Buccinum spp. agree with these classifications 
See also B. undatum. Maximum size of 110 mm based on 
cogener B. undatum. 

(Macdonald et 
al. 2010) 
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Buccinum undatum 

  
Nielson (1974) reports that B. undatum hunts bivalve prey 
by waiting for them to open, then inserting its lip in 
between the valves so they cannot close. He observed that 
Cardium spp. were especially vulnerable to this type of 
predation, but some others were not (e.g., Nuculana 
pernula swam away quickly and Astarte montagui 
remained closed until the predator left). Nielson (1974) 
concluded generally that B. undatum mainly takes weak 
or dead bivalves. Martel et al. (1986) observed that food 
consumption declines from June to October coincident 
with breeding. Martel et al. (1986) found stomachs full of 
tissue (which the authors thought was likely bivalve 
tissue) and dark silt-like sediment. They directly observed 
feeding on bivalves. Himmelman & Hamel (1993) also 
found low feeding rates during breeding throughout 
summer, and found fragments of organisms such as 
polychaetes, bivalves, and urchins in B. undatum 
stomachs, suggesting they are active predators. The 
species also feeds on carrion. They are frequently 
observed near seastars that are feeding on bivalves pulled 
from the sediment, so may benefit from scavenging on 
prey remains or foraging in disturbed sediments. Size of 
110 mm reported on Marine Species Identification Portal. 
Pollock (1998) classified this species as a predator-
scavenger that prefers hard substrate or sand, and 
reported a maximum size of 140 mm. 

 
(Nielsen 1974, 
Martel et al. 
1986, 
Himmelman & 
Hamel 1993, 
Pollock 1998) 

 
Marine Species 
Identification Portal 

 

Clione limacina Pelagic 
Carnivore 

Pelagic shell-less gastropod. Specializes on two related 
species of pteropods. Appears to elicit a predatory 
response only after it has come into direct contact with 
prey, after which it very quickly grasps the pteropod. 
Slowly pulls the animal out of its shell to swallow it 
whole. 

(Lalli 1970)  

 

Colus sabini  Most Buccinidae are predatory (see also Buccinidae spp, 
and co-familial Buccinum undatum). Macdonald et al. 
(2010) classified Colus sp. generally as free-living, motile, 
predatory carnivores that feed at the sediment surface on 
macrofauna. Jones et al. (1998) directly observed Colus 
sabini attracted to and feeding on a whale carcass 
approximately 12 hours after baiting. Sea Life Base 
indicates the distribution is north Atlantic and Arctic. 
Size of 60 mm reported on Arctic Register of Marine 
Species. 

(Jones et al. 
1998, 
Macdonald et 
al. 2010) 

Arctic Register of 
Marine Species; Sea 
Life Base 
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Cylichna alba 

 
Benthic 
Carnivore 

 
Macdonald et al. (2010) classified this species as a motile, 
predatory carnivore that feeds on subsurface meiofauna. 

 
(Macdonald et 
al. 2010) 

 

 

Dendronotus sp.  Swennen (1961) reviews the feeding of nudibrachs in the 
Netherlands and concludes that many are specialists, but 
mostly the specialisation is on slow moving species like 
sponges, hydroids, and sea anemones. A few are 
Bryozoan or Ascidian specialists. There is much literature 
on the predatory behaviours of specific nudibranch 
species. Macdonald et al. (2010) classify Dendronotus spp. 
as freely motile, predatory carnivores that feed at the 
sediment surface on macrofauna. Pollock (1998) reports 
two Dendrontus spp. as predators, with maximum size 
11.4 mm. 

(Swennen 1961, 
Pollock 1998, 
Macdonald et 
al. 2010) 

 

 

Ennucula tenuis Benthic SDF Sessile surface deposit feeder according to Kędra et al. 

(2010), but Divine et al. (2015) classified this species as 
subsurface. North et al. (2014) used stable isotope, fatty 
acid, and stomach contents analyses to confirm it was a 
deposit feeder. The algae consumed followed seasonal 
patterns in phytoplankton in the upper water column, 
being dominated by ice-associated diatoms at the 
beginning of the spring phytoplankton bloom, and open-
water diatoms after the spring bloom was well underway 
(North et al. 2014). The specimens observed by North et 
al. (2014) from the Bering Sea had shell lengths of 9.8 to 
16.3 mm. 

(Kędra et al. 

2010, North et 
al. 2014, Divine 
et al. 2015) 

 

 

Limacina helicina Pelagic 
Herbivore 

Mostly herbivorous based on stable isotope and fatty acid 
analyses from Søreide et al. (2013). Fatty acid analyses by 
Gannefors et al. (2005) found a switch from diatoms to 
dinoflaggellates in late summer/fall. Some evidence for 
copepod ingestion. 

(Gannefors et 
al. 2005 and 
references 
therein, Søreide 
et al. 2013) 
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Macoma calcarea 

 
Benthic 
SDF/SF 

 
Søreide et al. (2013) classified this genus as a benthic 
deposit feeder, with intermediate levels of bacterial fatty 
acid markers. Divine et al. (2015) classified it as a 
suspension feeder. Macdonald et al. (2010) classified it as 
a free-living, discretely motile (can move but doesn't need 
to for feeding) omnivore that lives at the sediment surface 
and uses a combination of detrivory and suspension 
feeding to feed on sediment, POM, and microfauna (<500 

μm). Kędra et al. (2010) classified M. calcarea as a sessile 

filter feeder with Arctic-boreal distribution.  North et al. 
(2014) observed fatty acid signatures in M. calcarea 
indicated a quick response to freshly deposited algae, but 
longer-term stable isotope markers suggested algae likely 
did not contribute significantly to overall carbon 
assimilation. Instead, M. calcarea likely consumed a fairly 
consistent fraction of heterotrophic organisms/bacteria 
and reworked phytodetritus from the sediment. Gut 
contents examined by North et al. (2014) were dominated 
by centric diatoms, followed by pennate diatoms and 
amorphous detritus. The specimens observed by North et 
al. (2014) had shell lengths from 23.4 to38.7 mm. 
Maximum sizes of 51 and 44 mm reported on the Marine 
Species Identification Portal and by Pollock (1998), 
respectively. 

 
(Pollock 1998, 

Kędra et al. 

2010, 
Macdonald et 
al. 2010, 
Søreide et al. 
2013, North et 
al. 2014) 

 
Marine Species 
Identification Portal 

 

Macoma moesta Benthic 
SDF/SF 

Søreide et al. (2013) classified this genus as benthic, with 
intermediate levels of bacterial fatty acid markers. 
Macdonald et al. (2010) classified the species as a free-
living, discretely motile (can move but doesn't need to for 
feeding) omnivore that lives at the sediment surface and 
uses a combination of detrivory and suspension feeding 
to feed on sediment, POM, and microfauna (<500 μm). 

Kędra et al. (2010) classified M. moesta as a sessile filter 

feeder with Arctic-boreal distribution. Size of 30 mm 
reported on Sea Life Base. 

(Kędra et al. 

2010, 
Macdonald et 
al. 2010, 
Søreide et al. 
2013) 

Sea Life Base 
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Macoma spp. 

  
Functional group and trophic trait classifications inferred 
from cogeners M. calcarea and M. moesta, which were 
pooled with unidentified Macoma spp. species for the 
purposes of Chapter 5. Macdonald et al. (2010) classified 
Macoma spp. generally as free-living, discretely motile 
omnivores that live at the sediment surface and use a 
combination of detrivory and suspension feeding to feed 
on sediment, particulate organic matter, and microfauna.  
Size of 40 mm based on median value between M. 
calcarea and M. moesta. 

 
(Macdonald et 
al. 2010) 

 
Marine Species 
Identification Portal; 
Sea Life Base 

 

Neptunea heros  Most Buccinidae are predatory (see also Buccinidae spp. 
and cofamilial Buccinum undatum). A review by Smith et 
al. (2011) summarized their main diet and feeding habits. 
Neptunea spp. are mostly predatory, and likely scavenge 
only opportunistically. Feed mostly on polychaetes, but 
also on bivalves, barnacles, and trace occurrences of 
gastropods, decapods, ophiuroids, and fish (probably as 
carrion). Macdonald et al. (2010) described Buccinidae 
generally as motile, free-living, predatory carnivores that 
feed at the sediment surface on macrofauna. Maximum 
size of 170 mm reported by Smith et al. (2011). 

(Macdonald et 
al. 2010, Smith 
et al. 2011) 

 

 

Nuculana minuta Benthic SDF Macdonald et al. (2010) classified this species as a free-
living, discretely motile (can move but doesn't need to for 
feeding) omnivorous detrivore that lives at the sediment 
surface and feeds on sediment, POM, and microfauna 
(<500 μm). No other species-specific feeding information 
found. 

(Macdonald et 
al. 2010) 
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Nuculana pernula 

 
Benthic SDF 

 
Fatty acid and stable isotope analyses performed by 
Søreide et al (2013) suggested a low trophic level and 
deposit feeding, with a potential connection to ice algal 
production. Macdonald et al. (2010) classified this species 
as a free-living, discretely motile omnivorous detrivore 
that lives at the surface and feeds on sediment, 
particulate organic matter, and microfauna. Size from 
Marine Species Identification portal. North et al. (2014) 
observed fatty acid, stable isotope, and stomach contents 
for the polar cogener N. radiata and found that stomach 
contents and fatty acid profiles from May-June indicated a 
quick response to freshly deposited algae, but longer-
term stable isotope markers suggested algae likely did 
not contribute significantly to overall carbon assimilation. 
Instead, polar deposit feeders were thought to consume a 
fairly consistent fraction of heterotrophic 
organisms/bacteria and reworked phytodetritus from the 
sediment. 

 
(Macdonald et 
al. 2010, 
Soreide et al. 
2013, North et 
al 2014) 

 

 

Similipecten greenlandicus Benthic SF No species-specific feeding information found, but 

Pieńkowski et al. (2014) and Renaud et al. (2015) 

classified this species as a filter feeder. It has an Arctic 
distribution according to the Natural History Museum of 
Wales and to the distribution map on the Encyclopedia of 
Life. Size of 30 mm reported on the Arctic Megabenthos 
Database. 

(Pieńkowski et 

al. 2014, 
Renaud et al. 
2015) 
 

Arctic Megabenthos 
Database; Encyclopedia 
of Life; Natural history 
Museum of Wales 

 

Thyasira sp. Benthic SF No genus-specific feeding information found. Functional 
group and trophic traits classification were mostly 

inferred from cofamilials. See also Thyasiridae.  Kędra et 

al. (2010) classified three polar Thyasira spp. as discretely 
motile filter feeders. 

(Kędra et al. 

2010) 

 

 

 
Thyasiridae 

 
Benthic SF 

 
Macdonald et al. (2010) classified Thyasiridae generally as 
free-living, discretely motile (can move but don't need to 
for feeding) omnivores that live at the sediment surface 
and use a combination of suspension feeding on POM and 
phytoplankton, and chemosynthetic nutrition from 
symbiotic autotrophic bacteria. 

 

(Kędra et al. 

2010, 
Macdonald et 
al. 2010) 
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Yoldiella sp. 

  
Søreide et al. (2013) classified this species as a benthic 
deposit feeder. Macdonald et al. (2010) classified Yoldiella 
spp. generally as discretely motile, burrow-dwelling, 
omnivorous detrivores that feed subsurface on sediment, 
POM, and microfauna. Holte & Gulliksen (1998) described 
several Arctic Yoldiella spp. from Norwegian and Svalbard 
fjords as subsurface detrivores. Size of 13 mm was 
reported for Arctic cogeners Y. frigida on Marine Species 
Identification Portal and Y. intermedia on the Arctic 
Megabenthos Database. 

 
(Holte & 
Gulliksen 1998, 
Macdonald et 
al. 2010, 
Søreide et al. 
2013) 

 
Arctic Megabenthos 
Database; Marine 
Species Identification 
Portal 

Nemertea    

 

Nemertea Benthic SS 
Carnivore 

Macdonald et al. (2010) classified Nemertea generally as 
free-living, motile, predatory carnivores that feed sub-
surface on macrofauna. Taxonomic classification is too 
broad to estimate size. 

(Macdonald et 
al. 2010) 

 

Porifera    

 

Radiella hemisphaerica  No species-specific information on feeding found. 
Macdonald et al. (2010) classified Porifera generally as 
sessile, encrusting, epibenthic omnivores that use 
suspension feeding to consume POM. Size of 50 mm 
reported on Marine Species Identification Portal. 

(Macdonald et 
al. 2010) 

Marine Species 
Identification Portal 

Sipuncula    

 

Phascolionidae  Macdonald et al. (2010) classified Golfingiidae generally 
as discretely motile, free-living omnivorous detritivores 
that feed at the sediment surface on POM, microfauna, 
and macrofauna. Most sipunculids are deposit feeders, 
consuming detritus, fecal matter, bacteria, algae, 
protozoans, and small invertebrates (reviewed by 
Maiorova & Adrianov 2013). Edmonds (2001) reports that 
members of this family can have trunks from 5 to 100 
mm long. 

(Edmonds 2001, 
Macdonald et 
al. 2010, 
Maiorova & 
Adrianov 2013) 

 

  

Sipunculidae Benthic SDF Macdonald et al. (2010) classified Sipuncula generally as 
discretely mobile (can move but don't need to for feeding) 
herbivorous detrivores and browsers that feed at the 
sediment surface on POM and algae by tearing or 
gathering specific particles. Sipuncula are mostly deposit 
feeders, and may be burrowers that indiscriminately 
ingest sediment, may occupy vacant shelters and collect 
detritus, may wait for seston to arrive near them, or may 
scrape detritus and food from the surface (Murina 1984). 

(Murina 1884, 
Macdonald et 
al. 2010) 

  

 


