
Affective Sentiment and Emotional
Analysis of Pull Request Comments

on GitHub

by

Deepak Rishi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2017

c© Deepak Rishi 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Sentiment and emotional analysis on online collaborative software development forums
can be very useful to gain important insights into the behaviors and personalities of the
developers. Such information can later on be used to increase productivity of developers
by making recommendations on how to behave best in order to get a task accomplished.
However, due to the highly technical nature of the data present in online collaborative
software development forums, mining sentiments and emotions becomes a very challenging
task. In this work we present a new approach for mining sentiments and emotions from
software development datasets using Interaction Process Analysis(IPA) labels and machine
learning. We also apply distance metric learning as a preprocessing step before training a
feed forward neural network and report the precision, recall, F1 and accuracy.

iii

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Jesse Hoey of the David
R. Cheriton School of Computer Science for giving me the incredible opportunity to work
with him. He gave me the freedom to take any number of courses and decide the direction
of my thesis. I could not have asked for a better mentor and supervisor for my masters.

I would like to thank Prof. Mei Nagappan and Prof. Jimmy Lin of the David R.
Cheriton School of Computer Science for reading my thesis. Special thanks to Prof. Mei
Nagappan for his incredible guidance on this thesis.

I would also like to thank my dear friends Josh Jung, Nisarg Bhavsar, Chintak Sheth,
Sukriti Arora, Chris Zhu, Julia Zhou, Alex Sacs, Chengyi Zhou, Hemant Surale, Cheryl
Shang, Dan Wang, Sunjay Varma, Areej Alhothali and Aaron Li for their constant moti-
vation and support.

Finally I would like to thank my parents, my sisters and my grandma for their endless
love and support. I am forever grateful for having you in my life.

iv

Table of Contents

List of Tables vii

List of Figures ix

1 Introduction 1

2 Related Work 4

2.1 GitHub as a Collaborative Software Development Platform 4

2.1.1 Emotional Analysis on GitHub Data 7

2.2 Machine Learning Techniques for Sentiment Analysis 11

2.2.1 Input Feature Vectors . 11

2.2.2 Term frequency−inverse document frequency (tf-idf) 12

2.2.3 Word Vectors . 13

2.2.4 TF-IDF weighted word vectors . 18

2.3 Distance Metric Learning . 18

2.3.1 Supervised Global Distance Metric Learning 20

2.3.2 Supervised Local Distance Metric Learning 20

2.4 Unsupervised Distance Metric learning . 24

2.4.1 Linear Methods . 24

2.5 Interaction Process Analysis . 32

v

3 Dataset description 35

3.1 Dataset . 35

3.2 Annotated Dataset description . 37

3.2.1 Emotions inference from IPA mapping 42

4 Machine Learning experiments 43

4.1 Recurrent Neural Nets . 43

4.1.1 Long Short-Term Memory (LSTM)[30] 44

4.1.2 Gated recurrent units GRUs [8] . 45

4.1.3 Convolutional Neural Nets (CNNs)[40] 45

4.2 Experiment and Results . 46

4.2.1 Results . 50

4.3 Observations and Discussions . 51

5 Metric Learning experiments 53

5.1 Large Margin Nearest Neighbor . 53

5.2 Information-Theoretic Metric Learning . 55

5.3 Experiment and Results . 56

5.3.1 Results . 57

5.4 Observations and Discussion . 60

6 Conclusions 63

6.1 Further work . 64

References 65

A Data Collection and Amazon Mechanical Turk Study 72

B Metric Learning Result Figures 81

vi

List of Tables

2.1 SentiStrength scores of some sentences . 10

2.2 Nearest words to some random words trained by Skipgram on 400k github
pull request comments . 17

2.3 Unsupervised algorithms for dimension reduction 24

2.4 Categories of Interaction Process Analysis (IPA), With Sample Behaviors,
and Average Evaluation, Potency, and Activity Scores for Sample Behaviors 33

2.5 EPA values of some emotions . 34

2.6 Closest two emotions to each IPA category based on EPA mapping 34

3.1 Sample sentences and their IPA/emotions 38

3.2 Number of emotions categories instances 39

3.3 Number of IPA categories instances . 39

3.4 Closest two emotions to the grouped IPAs 42

4.1 One vs All classification results for IPA categories 47

4.2 One vs All classification results for Emotions 47

4.3 Feature vector description for each algorithm 48

4.4 Measures of performance for classification for Agrees/Shows solidarity/Shows
Tension release vs Disagrees/Shows Antagonism/Shows Tension 50

4.5 Measures of performance for Gives opinion/Gives Suggestion/Gives orien-
tation vs Asks for opinion/Asks for orientation/Asks for suggestion 51

4.6 Measures of performance for positive vs negative emotions 51

vii

5.1 Measures of performance with metric learning for Task 1 58

5.2 Measures of performance with metric learning for Task 2 59

5.3 Measures of performance with metric learning for task 3 59

5.4 Sentistrength scores of some negative emotions labelled in our dataset . . . 62

viii

List of Figures

2.1 An overview of GitHub’s data schema[22] 7

2.2 Bag of words feature vector for a sentence [18] 12

2.3 The Skip-gram model architecture. The training objective is to learn word
vector representations that are good at predicting the nearby words [43] . . 14

2.4 CBOW training using k negative examples.For skip-gram the direction is
simply inverted. [20] . 15

2.5 Example of LDA on the MNIST dataset[51] 22

2.6 An example of eigenvectors found by PCA. [59] 26

2.7 LLE applied to the MNIST dataset . 29

2.8 A) TSNE on the MNIST dataset B)Comparison of manifold learning algo-
rithms . 31

3.1 Normalized emotions and IPAs instances among pull requests 40

3.2 Number of normalized instances merged/open/closed(without merged) pull
request comments in aggregated datasets 41

B.1 Measures of performance vs number of ITML constraints for Agrees/Shows
solidarity/Shows Tension release vs Disagrees/Shows Antagnism/Shows Ten-
sion . 82

B.2 Measures of performance vs number of ITML constraints for Gives opin-
ion/Gives Suggestion/Gives orientation vs Asks for opinion/Asks for orien-
tation/Asks for suggestion . 83

B.3 Measures of performance vs number of ITML constraints for positive vs
negative emotions . 84

ix

B.4 Measures of performance vs number of LMNN constraints for Agrees/Shows
solidarity/Shows Tension release vs Disagrees/Shows Antagnism/Shows Ten-
sion . 85

B.5 Measures of performance vs number of LMNN constraints for Gives opin-
ion/Gives Suggestion/Gives orientation vs Asks for opinion/Asks for orien-
tation/Asks for suggestion . 86

B.6 Measures of performance vs number of LMNN constraints for positive vs
negative emotions . 87

x

Chapter 1

Introduction

Sentiment and emotion analysis has become an integral part of social media. All inter-
actions on the internet generate some kind of sentiments or emotions. Emotions and
sentiments can influence our actions in a number of domains. For example, changes in
activity of buying and selling in the stock market can be correlated with the moods of peo-
ple evaluated with tweets [6] and consumer opinions on retailer sites can influence buyer
decisions [47]. Companies all over the world use sentiment analysis for various purposes,
such as:

• Understanding public opinion about products,

• Developing market strategy, and

• Improving customer service

Most sentiment and emotion analysis tasks are performed on datasets such as Twitter
feed, news articles and customer opinions about products (movies reviews, product reviews
on Amazon etc.). One relatively unexplored area in sentiment and emotional analysis
are discussions related to software engineering. Such discussions are very common on
technical blog posts, developer conversations on slack/IRC channels, mailing lists of open
source programming projects and pull request discussions on GitHub. Such discussions can
provide valuable insights into the behaviors and personalities of developers. Fredickson [15]
states that positive emotions like happiness helps people to be more creative, which are
essential for successful software design. On the other hand, Ambler [1] states that negative
emotions, fear or absence of courage might refrain developers from changing/refactoring

1

their code. De Choudhury and Counts [12] also show that emotions affect task quality,
productivity, creativity, group rapport and job satisfaction.

While data regarding discussions related to software engineering is openly available, it
is hard to perform sentiment and emotional analysis on such datasets due to the highly
technical nature of the discussions. The fact that these discussions might contain some
segments of code, only makes it harder to perform sentiment or emotion analysis. Most
of the work done on such datasets is not based on machine learning or natural language
processing. Murgia et al. [44] perform a feasibility study of emotions mining using Parrott’s
framework on the issue reports of Apache software foundation. Guzman et al. [24] use
lexical sentiment analysis to study emotions expressed in commit comments of different
open source projects. Pletea et al. [49] use Natural Language Text Processing (NLTK)
tool to explore sentiment analysis of security related discussions on GitHub. While these
studies are good, they do not necessarily achieve the main purpose of performing sentiment
analysis. The goal of sentiment/emotion analysis on software engineering discussions is
to build a generic model/framework which is able to provide insights into behaviors of
developers. None of Murgia et al. [44], Guzman et al. [24] and Pletea et al. [49] accomplish
this goal. Either the techniques used are not robust or the dataset on which the analysis
is performed is not big enough or it is simply not possible to infer the behaviors of the
developers from that dataset.

As previously mentioned, performing such analysis on software engineering datasets is
difficult. Getting such discussions labelled with emotions is very challenging and expensive.
This thesis aims to solve the problem of performing sentiment/emotional analysis on soft-
ware engineering datasets with limited labelled data. This thesis projects uses pull request
comments from GitHub. GitHub is one of the largest collaborative code hosting site built
on top of the git version control system. Pull request comments are comments written
by developers who are trying to get a patch of code merged with an existing codebase
on GitHub. Such comments are an excellent example of technical conversations between
developers.

The main contributions of this thesis are as follows:

1. We propose a new approach using Interaction Process Analysis (IPA) to perform
sentiment/emotional analysis on pull request comments on GitHub.

2. We created a new dataset of pull request comments from GitHub and got it annotated
into twenty two different categories (12 IPA categories and 10 emotions explained in
Chapter 3).

2

3. We used state of the art deep learning methods to use classify the pull request
comments into some of the categories (explained in Chapter 3) mentioned in step 2.

4. We applied state of the art distance metric learning algorithms: Information The-
oretic Metric Learning and Large margin Nearest Neighbor as a preprocessing step,
before training feedforward neural nets to predict precision, F1, recall and accuracy
while classifying the pull request comments into the different categories mentioned
in step 3.

The rest of the thesis is organized as follows:

1. Chapter 2 discusses some of the related work in this domain.

2. Chapter 3 discusses the dataset used in this thesis.

3. Chapter 4 discusses some deep learning algorithms and the classification results from
them.

4. Chapter 5 discusses two distance metric learning algorithms: Information Theoretic
Metric Learning and Large Margin Nearest Neighbor and the results after applying
them as preprocessing step.

5. Chapter 6 talks about about the conclusions, details some examples of how our
approach works better than an lexical analysis tool called SentiStrength and talks
about further work.

3

Chapter 2

Related Work

Over the past decade machine learning and natural language processing have played a
major role in advances in sentiment analysis. This chapter reviews the related work in
sentiment analysis in software engineering datasets, machine learning, natural language
processing, and Interaction Process Analysis (IPA).

2.1 GitHub as a Collaborative Software Development

Platform

These days, software development is a collaborative activity in which developers interact to
create and maintain a software system. GitHub is a collaborative code hosting site built on
top of the git version control system. In addition to code hosting, collaborative code review,
and integrated issue tracking, GitHub has integrated social features which developers use
to communicate, collaborate, and be aware of changes and others activities. Users are able
to subscribe to information by watching projects and following users, resulting in a feed of
information on those projects and users of interest [32]. Currently, GitHub is one of the
world’s largest code hosting site, with over 10.6 million repositories.

One of the major features of GitHub that enables collaborative development, is the
fork and pull model. In the fork and pull model, developers can create their own
copy of a repository and submit a pull request when they want the project maintainer to
pull their changes into the main branch. A pull request can be in one of the three states:

1. Open: An open pull request means that the pull request can still accept changes in
the code.

4

2. Merged: A merged pull request means that the patch of code sent with the pull
request has been integrated with the repository. After merging the pull request is
usually closed.

3. Closed: A closed pull request means that no further changes can take place for the
code on the pull request. A pull request does not need to be merged in order to be
closed.

Many of the projects hosted on GitHub are public, thus anyone can view the activity
within those projects. The activities includes actions around issues, pull requests, and
commits including comments and subscription information. The large amount of public
data on GitHub makes it possible for researchers to easily mine the project data [32].

To mine the data, GitHub has a public REST (Representation State Transfer) [14]
API that gives access to all of GitHub’s public repositories, user info, and pull request
comments, etc., which researchers can use to access information on GitHub. Although the
REST API is well designed and documented, it suffers from a few shortcomings such as:

1. The REST API has a rate limit of five thousand requests per hour, which makes the
complete download of the data impossible.

2. The overall schema of GitHub’s data is not documented.

3. The API does not provide facilities to obtain collections of the data’s key entities.
The existing API calls mainly allow navigation from one entity to another.

4. Events are only provided as streams, which disappear into a sliding window of 300
entries.

To overcome the aforementioned limitations of mining the data from GitHub, Gousios
and Spinellis [22] came up with GHTorrent: a service that gathers event streams and
data from the GitHub’s hosting site and provides that data back to the community in the
form of incremental MySQL/MongoDB data dumps distributed through the peer-to-peer
BitTorrent [9] protocol.

The main contributions of Gousios and Spinellis [22] are as follows:

1. Creating a documentation for GitHub’s schema by using GitHub’s REST API. Figure
2.1 shows a documentation of the schema created by Gousios and Spinellis [22].

5

2. Design and implementation of an extensible infrastructure for the collection of all
events exposed through GitHub’s API.

3. Development of a scalable mechanism for providing researchers with GitHub’s data,
based on distributing incremental data dumps using a peer-to-peer protocol.

4. Ability to download separate csv (comma separated values) files for tables such as
pull request comments, commit comments 1 etc.

5. The provision of data that can track developers through both a projects process (issue
tracking, wiki) and its corresponding source code without resorting to heuristics.

1Commit comments/messages: are comments written by a developer when a patch of code is comitted
to the local git repository. These are usually short sentences describing the function of the patch of code.

6

Figure 2.1: An overview of GitHub’s data schema[22]

2.1.1 Emotional Analysis on GitHub Data

Section 2.1 describes GitHub as a collaborative software development website. Human
collaboration inevitably evokes emotions like joy or sadness, which can affect the collabo-
ration either positively or negatively [44]. Determining emotions in open source projects
is particularly challenging as traditional ways of collecting information through experience
reports, interviews with managers or surveys are more difficult due to the non-hierarchical
structure of open source projects. The geographical distribution of developers among dif-
ferent regions and the volunteer basis in which developers contribute makes it harder to
infer emotional information present in online software development projects.

7

Guillory et al. [23] and Hancock et al. [26] show that it is possible to detect emotions
through computer-mediated communications systems, such as mailing lists and discus-
sion boards. Mining emotions from online discussion boards is relevant when face-to-face
meetings are not feasible. Most projects in a distributed environment have no personal in-
teraction. In software engineering, emotion mining applied to text artifacts can be further
used to provide hints on factors responsible for joy and satisfaction amongst developers
(e.g., new release), or fear and anger (e.g., deadline or a recurring bug) and also provide a
different perspective to interpret productivity and job satisfaction.

Murgia et al. [44] perform a feasibility study of emotions mining using Parrott’s frame-
work on the issue reports of Apache software foundation.

Parrott’s Framework[45]

Parrott’s framework classifies human emotions into a tree structure with three levels . Each
level refines the granularity of the previous level. Level one consists of 6 primary emotions:
love, sadness, anger, joy, surprise and fear. The other two levels consist of more fine
grained versions of emotions present in the previous level. For example, the second level
of love consists of affection, lust and longing. Level 3 of love consists of emotions such
as: passion, arousal, desire, etc. Murgia et al. [44] only consider the 6 primary emotions
for their work citing concise and intuitive nature of the primary emotions.

Emotion mining on issue commit comments

Murgia et al. [44] chose 392 random issue comments from the Apache software foundation
and then proceeded to label them in the six primary emotions described by Parrott’s
framework. They had a total of sixteen people label a small number of comments in
groups of two individuals. They found that on average 46.11 ± 5% of all comments had
the same rating for all six emotions from both raters. The major results of [44] can be
summarized as follows:

1. Emotions such as love, sadness and joy obtained the least agreement among raters.

2. Raters agree more on the absence of emotions. This means that raters had more
confidence in identifying when an emotion is not present.

3. Knowing a context in which a comment is made does not play a significant role in the
rating of emotions, but when it does, it seems to cast more doubt than confidence,
unless more raters are used.

8

Sentiment analysis of commit comments on GitHub

Guzman et al. [24] use lexical sentiment analysis to study emotions expressed in commit
comments of different open source projects and analyze their relationship with different
factors such as used programming language, time and day of the week in which the commit
was made, team distribution and project approval.

Guzman et al. [24] analyzed a total of 60425 commit comments from the ghtorrent
suite [22]. The commit comments included 90 of the top-10 starred projects on GitHub.
SentiStrength [54], a lexical sentiment analysis extraction tool specialized in dealing
with short low quality texts was used for sentiment analysis of the commit comments.
Thelwall et al. [57] show that, SentiStrength has good accuracy for short texts on Twitter
tweets. Since GitHub commit messages are usually short and written in informal language,
SentiStrength is a good candidate for analyzing emotions in commit messages.

SentiStrength assigns fixed scores to tokens in a dictionary where common emoticons
are also included. Words with a negative emotion are given a value between [-5, -1] and
words with a positive emotion are given a value in the [1, 5] range. The 1 and -1 values
are used to give neutral scores to words, whereas 5 and -5 are used for words with a very
positive and very negative emotion respectively. All the scores assigned by SentiStrength
are integers. For example, love is assigned a score of 3, 1 and hate a 1, 4 score. Modifier
words and symbols also alter the score.

The procedure used by Guzman et al. [24] to find the sentiments in the commit messages
using SentiStrength is as follows:

1. The text in the commit message was divided into snippets of one or more sentences
and assigned a positive and negative score to each of the sentences by taking the
maximum and minimum scores among all the words in the sentence.

2. The positive and negative score of a snippet is calculated by taking the maximum
and minimum scores of the sentences forming it.

3. The emotion of the entire commit was the positive and negative emotion score snippet
average.

4. The whole commit message was assigned a score of zero when the positive and neg-
ative snippet average emotion scores are in the range [−1, 1].

5. The commit emotion score is equal to the negative snippet average score when the
snippets average negative emotion score times 1.5 is less than the average positive

9

score. When the opposite occurs, the commit is assigned the positive snippet average
score.

6. The snippet average negative scores are multiplied by 1.5, because negativity is con-
sidered to be less frequent in human written texts.

Table 2.1 shows an example of SentiStrength scores in some commit comments on
GitHub.

Sentence Positive score Negative score
Sigh? Its fixed, man rejoice!! 5 -2
Wow amazing thread! even If Im not a Rails
developer!

5 -1

MY PRECIOUSSS!!! 5 -1
If PHP code is producing errors with register
globals on you are terrible terrible programmer.
If you are using magic quotes you are
simply stupid.

1 -5

But this commit message makes me sad :cry 1 -5
This is really terrible - changing :private to
:public without any deprecation warning? Not
cool.

1 -5

This is really terrible - changing :private to
:public without any deprecation warning?
Not
cool.

1 -5

Table 2.1: SentiStrength scores of some sentences

Sentiment Analysis of Security Discussions on GitHub

Pletea et al. [49] explore sentiment analysis of security related discussions on GitHub.
Pletea et al. [49] state that it is important to perform sentiment analysis on such discussions
so as to properly train developers to address security concerns in their applications, as
well as the need to test applications thoroughly for security vulnerabilities in order to
reduce frustration and improve overall project atmosphere. This is an another benefit of
sentiment analysis in software engineering in addition to the ones mentioned in Chapter

10

1 and Subsection 2.1.1. Pletea et al. [49] reported that approximately 10% of all the
discussions on GitHub were security related and they tended to have negative sentiments.
Pletea et al. [49] analyzed 60, 658 commits and 54, 892 pull request comments.

Pletea et al. [49] used the Natural Language Text Processing (NLTK) tool [5] for sen-
timent analysis. Given an input text, NLTK outputs the probabilities that the text is
neutral, negative or positive as well as an aggregate label (one of neutral, negative or
positive) summarising the three scores. The probabilities for negative and positive will
add up to 1, while neutral is standalone. If neutral is greater than 0.5 then the label will
be neutral. Otherwise, the label will be negative or positive, whichever has the greater
probability. The tool was trained on movie reviews and uses two classifiers, a Naive Bayes
Classifier and a Hierarchical Classifier.

Using NLTK Pletea et al. [49] inferred that security-related discussions tend to be more
emotional than non-security-related discussions.

2.2 Machine Learning Techniques for Sentiment Anal-

ysis

2.2.1 Input Feature Vectors

Bag of words

In a bag of words representation [53] each feature corresponds to a single word found in
the training corpus, usually with case and punctuation removed. The Bag of words model
is also known as 1-of-N(or ’one-hot’) encoding. Figure 2.2 shows an example of the bag of
words model.

A common preprocessing step is to filter out frequent and infrequent words along with
stop-words (stop words are functional or connective words that are assumed to have no
information content).

In addition to the removal of frequent, infrequent, and stop words, a stemming algorithm
is often used to make the features more statistically independent [63]. Stemming has the
effect of mapping several morphological forms of words to a common feature. For example
the words learner, learning, and learned would all map to the common stem learn, and this
latter string would be placed in the feature set rather than the former three.

11

Figure 2.2: Bag of words feature vector for a sentence [18]

2.2.2 Term frequency−inverse document frequency (tf-idf)

Term frequency inverse document frequency (tf-idf) [31] is a statistical measure which is
used to evaluate how important a word is in a collection of documents or a corpus. The
importance of a particular word increases proportionally to the number of times a word
appears in the document and is offset by the number of times the word appears in the
corpus.

Tf-idf is one of the most popular features vector for text based applications like: search
engines, text summarization and recommender systems [62].

Tf-idf is calculated by the product of Term Frequency (TF) and Inverse Document
Frequency(IDF) which are defined as follows:

Term Frequency (TF): measures how frequently a term occurs in a document. It is
usually normalized by the number of terms in the document (document length).

Inverse Document Frequency(IDF): measures how important a term is. It weighs down
the frequent terms while scaling up the rare ones. It is calculated as eq. 2.1.

IDF (t) = log
N

N(t)
(2.1)

where N is the total number of documents and N(t) is the total number of documents
with the term t in it.

Haddi et al. [25] shows that simply using tf-idf as a preprocessing step for sentiment
analysis on movie reviews sentiments datasets, leads to considerable improvements in ac-
curacy, precision, recall and F1. For text query ranking applications, the sum of all the
tf-idf terms in a text query is also used as a ranking metric for that query.

12

2.2.3 Word Vectors

Subsections 2.2.1 and 2.2.2 describe a feature vector for textual data where the length of the
feature vector is the size of the entire vocabulary. Using the aforementioned approaches,
there isn’t much meaningful comparison that can be made between different feature vectors
other than equality testing. Also, it is impossible to compare the similarity/dissimilarity
of any two words/sentences using just the bag of words or tf-idf.

Word vectors (also known as distributed representation of words) on the other hand,
embed words in a continuous vector space where semantically similar words are mapped
to nearby points.

Distributed representation of words can be learnt with two approaches:

1. Continuous Bag-of-Words model (CBOW) [42]: In this approach, the model
predicts the current word from a window of surrounding context words. The order
of context words does not influence prediction.

2. Skip-Gram model [43]: In this approach, the model uses the current word to predict
the surrounding window of context words. The skip-gram architecture weighs nearby
context words more heavily than more distant context words.

According to Mikolov et al. [43] Skip-gram works well with small amount of the training
data, represents well even rare words or phrases, whereas CBOW can be several times faster
to train than the skip-gram, and have slightly better accuracy for the frequent words.

The concept of distributed representation of words can be traced back to Bengio et al.
[4], where the goal was to learn the joint probability function of sequences of words in a
language which is extremely difficult because of the curse of dimensionality. Bengio et al.
[4] proposed to solve the curse of dimensionality by learning a distributed representation for
words, where word vectors for a word were learnt by conditioning a word with the previous
words. Bengio et al. [4] use a single hidden layer neural network with tanh nonlinearity
followed by a softmax layer. Their approach can be summarized as follows:

1. Each word is mapped to a random fixed sized vector. These are the feature vectors.

2. The joint probability function of word sequences is modelled using feature vectors
described in step 1.

3. The word feature vectors and the parameters of the probability function are learnt
simultaneously.

13

The unnormalized log-probabilities for each output word yi is given by eq. 2.2.

y = b+Wx+ Utanh(d+Hx) (2.2)

Using the trained word vectors, Bengio et al. [4] were able to get better 10-20% im-
provements in perplexity, when compared to the state of the art method of smoothed
trigrams [34] [7].

The word vectors we use are skip gram based word vectors described by Mikolov et al.
[43]. Figure 2.3 shows the skip gram architecture used by Mikolov et al. [43].

Figure 2.3: The Skip-gram model architecture. The training objective is to learn word
vector representations that are good at predicting the nearby words [43]

Skip-gram models are trained using a binary classification objective (logistic regression)
to discriminate the actual target word from the context words. This can be written as a
softmax classifier as shown by eq. 2.3.

14

p(o|c) =
exp(uTo vc)∑W
w=1 exp(uTwvc)

(2.3)

where W is the vocabulary size, o is the output/target word, c is the context word, uTo
is the word vector for the output word, uTw is the word vector for the output word w and
vc is the word vector for the context word. The issue with softmax comes from the fact
the normalization term in the denominator of eq. 2.3 is computationally very expensive
when we have a large vocabulary (usually of the order of tens of millions). To get around
this problem, Mikolov et al. [43] use binary classification objective (logistic regression)
to discriminate the real target words wt from k imaginary (noise) words w̃, in the same
context. This is also known as negative sampling. Figure 2.4 illustrates this for CBOW
[20]. For skip-gram the direction is simply inverted.

Figure 2.4: CBOW training using k negative examples.For skip-gram the direction is simply
inverted. [20]

The objective function used by Mikolov et al. [43] is given by 2.4.

Jt(θ) = logσ(uTo vc) +
k∑
i=1

Ej∼P (w)[logσ(−uTj vc)] (2.4)

where σ is the sigmoid function, o is the output/target word, c is the context word, uTo
is the word vector for the output word, vc is the word vector for the context word and P (w)

15

is the probability distribution from which the negative samples are taken from. Usually,
P (w) is the unigram distribution raised to the power 3/4 as shown by eq. 2.5. This power
enables less frequent words to be sampled more often.

P (w) = U(w)3/4 (2.5)

Equation 2.4 is then summed up for all the time steps as shown by eq. 2.6.

Jt(θ) =
1

T

T∑
t=1

Jt(θ) (2.6)

We trained the skip gram vectors using 64 negative samples on 400, 000 random pull
request comments from GitHub. These 400, 000 pull request comments were not a part of
the dataset we used for this project. These were random comments chosen from the openly
available GHTorrent database (discussed in Section ??). Table 2.2 shows the nearest words
to some random words after 44100000 iterations.

As can be seen in Table 2.2, semantically similar words are closer to each other. Word
vectors are also able to learn the relationship between the words.

Apart from CBOW [42] word vectors and skip gram word vectors [43], Pennington
et al. [46] presented another popular approach to get word vectors called Global Vec-
tors(GloVe). For GloVe the objective function to minimize is given by eq. 2.7.

Jt(θ) =
1

2

W∑
i,j=1

f(Pij)(u
T
i vj − logPij) (2.7)

where Pij is the probability that word j appears in the context of word i, ui and vj
are the word vectors of the two co-occurring words and f() is a weighting function which
should satisfy three properties:

1. f(0) = 0

2. f(x) should be non decreasing

3. f(x) should be relatively small for large values of x.

An example of f(x) given by Pennington et al. [46] is shown by eq. 2.8.

f(x) =

{
(x/xmax)

α if x < xmax

1 otherwise
(2.8)

16

Table 2.2: Nearest words to some random words trained by Skipgram on 400k github pull
request comments

Word Nearest Words
check checks, checking, checked, qpointers, fleko, detect, rp-, settingscache
data stream, disk, payload, chunks, dataset, content, expressionvalueinfo, raw
since likely, longer, especially, currently, however, even, became, albeit
always false, truthy, guaranteed, true, never, beforehand, ever, null
reason reasons, use-case, question, storemixin, motivation, point, ehashman, rubbed
ok okay, yes, yeah, alright, ah, fine, yep, thanks
rather instead, opposed, recommend, suggest, consider, without, simply, avoid
name names, named, id, nam, rename, renamed, identifier, underscorized
change changes, revert, pingall, changed, bump, nononono, punt, reverted
could would, easily, please, maybe, bracers, configureflow, brandwe, possibly
even likely, still, though, since, doubt, anyway, possibly, obviously
probably think, maybe, perhaps, guess, suppose, wonder, might, definitely
test tests, testing, suite, unit, cover, covers, pushapi, locatorio
want need, wan, able, going, wanted, worthwhile, na, wants
right yeah, yes, okay, ok, yep, yah, perfect, idiot
better nicer, best, cleaner, clearer, appropriate, suitable, simpler, safer
class classes, abstract, method, trait, interface, methods, fixedpathtypeddelimited, subclasses
like similar, weird, promising, strange, odd, amiss, sujest, passregistry
move put, moved, extract, moving, extracted, placed, hoist, encapsulate
call calls, calling, called, invoke, invoking, invoked, clientinvocation, onrejected
set setting, sets, unset, assign, overwrite, initialize, default, initialized
two three, couple, several, multiple, many, various, four, consecutive
fix fixing, fixes, fixed, investigate, rebase, correcting, tackle, merging
time minutes, hour, hours, minute, day, seconds, cycles, interval
though hmm, fine, certainly, still, guess, tbh, although, moment
version versions, vers, newer, releases, bumped, release, -snapshot, bump
comment comments, todo, fixme, note, documentation, javadoc, retracted, stableprovenance
object objects, array, obj, easystagedataset, nulltask, collection, model, map
maybe perhaps, probably, might, saying, think, wonder, possibly, could
pull commit, pul, pr, issues, bbbcbad, diff-ea, maybe-upgrade, bfabc
variable variables, varia, vars, var, constant, varaible, shadowing, resetboard
user users, owner, superuser, person, customer, student, administrators, someone

17

2.2.4 TF-IDF weighted word vectors

To get a distributed representation of a sentence, the average of word vectors can be taken
to get the vector representation. Another popular method is to take the weighted average
the vectors of the words according to the tf-idf values. The weighted vector representation
is then used to represent the vector representations of the sentence as a whole.

Wang [60] uses this approach to predict personalities of individuals from twitter.

2.3 Distance Metric Learning

Distance metric learning learns a distance function over a set of objects. The distance
function describes the similarity and dissimilarity among the different objects. Distance
metric learning is needed because each problem (such as recommendation systems, infor-
mation retrieval, image compression) has its own semantic notion of similarity, which is
often badly captured by standard metrics such as Euclidean distance. Distance metric
learning learns a metric that assigns small (resp. large) distance to pairs of examples that
are semantically similar (resp. dissimilar).

Learning a good distance metric in feature space is crucial in real-world applications,
such as information retrieval for learning to rank, in face verification/identification, and in
recommendation systems. For content based image retrieval systems, it is essential to use a
well defined similarity criteria to define similarity between images. Many machine learning
algorithms, such as K Nearest Neighbor (KNN), heavily rely on the distance metric for the
input data patterns since KNN relies on labels of nearby objects to decide on the label of
a new object. Metric learning can significantly improve the performance in classification,
clustering and retrieval tasks.

A distance metric D(x, y) should satisfy the following 4 properties

1. Non negativity: D(x, y) ≥ 0.

2. Identity of indiscernibles: D(x, y) = 0 , iff x=y, else it is called a pseudo distance
metric.

3. Symmetry: D(x, y) = D(y, x).

4. Subadditivity: D(x, y) +D(y, z) ≥ D(x, z).

18

In practice, metric learning algorithms ignore the condition of identity of indiscernibles
and learn a pseudo-metric.

The field of distance metric learning can be divided into two main categories

1. Unsupervised distance metric learning.

2. Supervised distance metric learning: In this case the training examples are divided
into pairwise constraints: the equivalence constraints where pairs of data points that
belong to the same classes, and inequivalence constraints where pairs of data points
belong to different classes. This is further divided into the following two categories:

(a) Global distance metric learning: learns a distance metric in the global sense.
The learned metric satisfies all the pairwise constraints simultaneously.

(b) Local distance metric learning: learns a metric in the local setting. The learned
metric only satisfies local pairwise constraints. This is very useful for informa-
tion retrieval and K nearest neighbours classifiers since both of their performance
is influenced by data instances close to test/query examples.

The pairwise constraints can be represented as follows:

If n is the number of data points, C = x1, x2, x3.....xn are the collection of data points
where xiεR

m is a data vector of m features, the set of equivalence constraints can be
denoted by eq. 2.9.

S = (xi, xj)|xi and xj belong to the same class (2.9)

and the set of inequivalence constraints are denoted by eq. 2.10.

D = (xi, xj)|xi and to xj belong to different classes (2.10)

The distance metric matrix is denoted by MεRm×m and the distance between two points
x and y is given by eq. 2.11.

d2A(x, y) = ||x− y|2A = (x− y)TM(x− y) (2.11)

M in eq. 2.11 is also called as Mahalanobis matrix.

19

2.3.1 Supervised Global Distance Metric Learning

Supervised Global Distance Metric Learning learns a metric which attempts to keep all data
points within the same class close, while keeping all the data points in different classes far.
Xing et al. [65] formulate the metric learning problem as a convex programming problem
which learns a global distance metric that minimizes the distance between data points in the
equivalence constraints, subject to the constraint that the data pairs in the inequivalence
constraints are well separated.

Xing et al. [65] formulate the metric learning problem as follows:

minAεRmxm

∑
(xi,xj)εS

||xi − xj||2A s.t. A ≥ 0,
∑

(xi,xj)εD

||xi − xj||2A ≥ 1 (2.12)

Although eq. 2.12 is a convex programming objective, it is difficult to solve it efficiently
for two reasons:

1. It does not fall into any special classes of convex programming such as quadratic
programming or semidefinite programming.

2. The optimization objective is not scalable as it is quadratic in the number of features.

3. With objective function eq. 2.12 it is not possible to estimate the probability of how
likely two points belong to the same class.

Kwok and Tsang [37] extend the optimization objective eq. 2.12 for non linear case
with the use of kernels.

2.3.2 Supervised Local Distance Metric Learning

This subsections details some of the important supervised local distance metric learning
algorithms.

Local Adaptive Distance Metric Learning

Supervised Local Distance Metric Learning attempts to learn feature weights that are
adapted to the individual test examples. For a given test example x0, the class posterior
probability can be estimated as eq. 2.13.

20

P̂ (j|x0) =

∑n
i=1 θ(xiεN(x0))θ(yi = j)∑n

i=1 θ(xiεN(x0))
(2.13)

where n is the number of examples, xiεR
m, and yiε1, 2, 3....J classes.

Local Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [2] is technique to find a linear combination of features
that separates two or more classes. LDA computes the directions (linear discriminants)
that will represent the axes that that maximize the separation between multiple classes
and minimize the separation within classes. To find such a set of weights, LDA calculates
the eigenvectors of the matrix T as shown by eq. 2.14.

T = S−1w Sb (2.14)

where Sw is the within class covariance matrix (the weighted sum of covariance matrices
of each class) and Sb is the between class covariance matrix. S−1w captures the compactness
of each class, and Sb represents the separation of the class means. The transformed matrix
can be represented by eq. 2.15.

y = STx (2.15)

where ST is formed by stacking the principal eigenvectors of T together.

Figure 2.5 shows an example of LDA when applied to the MNIST dataset. The MNIST
database (Modified National Institute of Standards and Technology database) is a large
database of handwritten digits from 0 to 9. Figure 2.5 shows that LDA is able to discrimi-
nate between different digits to some extent. The x and y axis of Figure 2.5 have no labels
because this is simply a dimension reduction example.

Hastie and Tibshirani [27] state that, LDA can be localized with the following proce-
dure:

1. Initialize distance metric
∑

as an identical matrix.

2. Calculate Sb and Sw using the points which are in the neighborhood of the testing
point x0 measured by distance metric

∑
.

21

Figure 2.5: Example of LDA on the MNIST dataset[51]

3. Update the distance metric
∑

as equation 2.16.∑
= S

−1
2
w [S∗b + εI]S

−1
2
w (2.16)

where S∗b is S
−1
2
w SbS

−1
2
w

Neighborhood Components Analysis

Neighborhood Components Analysis learns a Mahalanobis distance metric by maximizing
the leave one out cross validation.

Given labelled data L = (x1, c1),(xn, cn), NCA learns a distance matrix Q = ATA,
where A can be any matrix. This form of Q guarantees the distance metric to be positive
semi-definite. The distance in eq. 2.11 can now be written as eq. 2.17.

22

d2A(x, y) = ||x− y||2A = (x− y)TA(x− y) = (Ax− Ay)T (Ax− Ay) (2.17)

The probability of a point xi sharing the same label as xj can be written as eq. 2.18.

pij =
exp(−||Axi − Axj||2)∑
k 6=i exp(−||Axi − Axk||2)

(2.18)

The objective function of NCA is the maximization of the expected number of correctly
classified points f(A) given by eq. 2.19.

f(A) =
n∑
i=1

log(
∑
jεCi

pi,j) (2.19)

where Ci is the class i.

Yang and Jin [66] explain a few drawbacks of NCA such as:

1. NCA is not scalable, since its objective function is quadratic in the number of features.

2. Since NCA uses gradient descent, it is not guaranteed to converge to a global optima.

3. NCA can overfit, if the training data is less.

Relevant Component Analysis

Relevant Component Analysis (RCA) learns a full rank Mahalanobis distance metric based
on the weighted sum of in-class covariance matrices. It does so by applying a global linear
transformation to assign large weights to relevant dimensions and low weights to irrelevant
dimensions. These relevant dimensions are estimated using chunklets. In RCA, a chunklet
is defined as a subset of points that are known to belong to the same although unknown
class.

The steps to perform RCA are as follows:

1. Center each chunklet by subtracting its mean.

23

Linear non linear
Global PCA, MDS ISOMAP, TSNE
Local LLP, LLE, Laplacian Eigenmap

Table 2.3: Unsupervised algorithms for dimension reduction

2. Compute the covariance matrix of the chunklets. For p points in k chunklets, each
chunklet containing xji with mean as m̂j, the covariance matrix is computed as eq.
2.20.

Ĉ =
1

p

k∑
j=1

nj∑
i=1

(xji − m̂j)(xji − m̂j)
T (2.20)

3. Whiten the covariance matrix in equation 2.20 by multiplying it with W = Ĉ
−1
2 .

The Mahalanobis distance is the inverse of Ĉ.

4. The new transformed space can be found by xnew = Wx.

Tsang et al. [58] show that RCA can also be kernelized.

2.4 Unsupervised Distance Metric learning

Unsupervised metric learning (also known as manifold learning) learns a low dimensional
manifold where the geometric relationships between most of the data are preserved. Un-
supervised Distance Metric learning is closely related to dimension reduction. Table 2.3
details the different unsupervised learning algorithms.

2.4.1 Linear Methods

The two main linear dimension reduction algorithms are

1. Principal Component Analysis (PCA)

2. Multidimensional Scaling (MDS)

24

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a linear dimensional reduction technique which
finds a subspace that best preserves the variance of the data. Principal components are
orthogonal directions that capture the most variance in the data.

If v1, v2...vd are the d principal components, X = [x1, x2....xn] is the data (column
are the data points) PCA’s objective function is to maximize the sample variance of the
projected data (equation 2.21).

1

n

n∑
i=1

(vTxi) = vTXXTv s.t. vTv = 1 (2.21)

Taking the Lagrangian of the equation 2.21 we get 2.22.

maxvv
TXXTv − λvTv (2.22)

Taking the derivative of 2.22 we get eq 2.23.

(XXT)v = λv (2.23)

Equation 2.23 shows that the principal components are the eigenvectors of the covari-
ance matrix. λ shows the amount of variability captured along that principal component.

An alternative viewpoint on PCA is that PCA finds the vectors v such that projection
onto the vectors yields the minimum mean squared reconstruction error as shown in eq.
2.24.

1

n

n∑
i=1

||xi − (vTxi)v|| (2.24)

Figure 2.6 shows an example of PCA on a sample dataset. The arrows represent the
principal axes of the data, and the length of the vector is an indication of how important
that axis is in describing the distribution of the data. The x and y axis of Figure 2.6 have
no labels because this is simply a dimension reduction example.

25

Figure 2.6: An example of eigenvectors found by PCA. [59]

Multidimensional Scaling (MDS) [36]

Multidimensional Scaling (MDS) finds the rank m projection that best preserves the in-
terpoint distance (dissimilarity) given by a pairwise distance matrix D. It is a means of
visualizing the level of similarity between examples of a dataset. The steps to perform
MDS are as follows:

1. Compute pairwise distance matrix D.

2. Double center D by computing 2.25.

B =
−1

2
HDH where H = I − 1

N
11T (2.25)

where 1εRm is an all one vector.

3. Compute the eigenvectors and eigenvalues of B.

4. The transformed matrix X is given by equation 2.26.

Xnew = V mds(λmds)
1
2 (2.26)

where V mds are the top eigenvectors of B and λmds is the diagonal matrix of top
eigenvalues of B.

26

The relationship between PCA and MDS is shown by equations 2.27 and 2.28.

V pca = XV mds, λpca = λmds (2.27)

Y pca = (λpca)
1
2Y mds (2.28)

In the case of Euclidean metric the MDS only differs from PCA by starting with D and
calculating Xnew. When the distance metric is not Euclidean, it’s better to use MDS.

Locally-Linear Embedding (LLE)

PCA (2.4.1) and MDS (2.4.1) are both linear dimension reduction/metric learning tech-
niques. Being linear algorithms, they cannot find nonlinear structure in the data.

Locally-Linear Embedding (LLE) [52] preserves the local order relation in the low di-
mensional embedding space and the original space. Each data point in the observation
space is a weighted average of its neighbors. LLE assumes that each point and its neigh-
bors lie on a locally linear patch of a manifold.

The steps for LLE can be summarized as follows:

1. Represent each point xi as a weighted sum of its nearest n neighbors.

2. Solve for the weight matrix by minimizing the reconstruction error given by eq. 2.29.

minimize
W

||xi −
n∑
j=1

Wijxij||2

subject to Wij = 0 if xj is not a neighbor of xi and
n∑
j=1

Wij = 1

(2.29)

3. Model the low dimension data points as the weighted sum of the low dimensional
neighbors using the same weight matrix calculated in eq. 2.29. The reconstruction
error in this case can be written as eq. 2.30.

minimize
Y

||yi −
n∑
j=1

Wijyij||2

subject to
∑
i=1

yi = 0 and
∑
i

yiy
T
i /r = I

(2.30)

27

4. Equation 2.30 can be written as eq. 2.31.

argmin
Y

||Y T (I −W)T (I −W)Y ||2 (2.31)

The optimum low dimensional embeddings are the lowest m+ 1 eigenvectors of (I −
W)T (I−W) (since the first eigenvector would be zero, as I−W is the graph laplacian
and the number of zero eigenvalues of a graph laplacian gives the number of connected
components).

There are several different versions of LLE

1. Modified LLE [68]

2. LLE with Hessian Eigenmaps [13]

3. Local tangent space alignment [69]

One disadvantage of LLE is the need to compute the SVD of (I −W)T (I −W) for every
test point. To overcome this, Zhang et al. [67] state that, for a new test point x′ , its
internal coordinates on the manifold can be computed by y′ =

∑n
i=1 αK(xi, x

′) where

K(xi, x
′) = exp(− ||xi−x

′||2
2σ2) and α can be computed by the complete data (X;Y).

Figure 2.7 shows the results when LLE is applied to the MNIST dataset. The x and
y axis of Figure 2.7 have no labels because this is simply a dimension reduction example.
Figure 2.7 shows that LLE is more effective than LDA (Figure 2.5) in segregating the
digits.

ISOMAP [56]

One of the challenges in distance metric learning is that, Euclidean distance would not be
a good distance metric for checking the similarity of the two arbitrary points in a nonlinear
manifold. Instead of Euclidean distance, geodesic distance (distance along the manifold)
should be used to calculate the similarity of the points. In the case of dimension reduction,
points far apart on the manifold should be far apart in the low dimensional representation.
Thus only the geodesic distance is capable of revealing the true low-dimensional geometry
of a nonlinear manifold.

To solve the problem of finding the true low-dimensional geometry, ISOMAP uses eigen
analysis for nonlinear embedding.

The detailed steps for ISOMAP are as follows:

28

Figure 2.7: LLE applied to the MNIST dataset

1. Construct a neighborhood graph for every point on the manifold by using Euclidean
distance as the edge distance. Assign each edge in the graph a weight of dx(i, j).

2. Estimate the geodesic distance dM(i, j) on the manifold M . The geodesic distance is
estimated as the shortest path in the graph constructed in step 1. For neighboring
points, Euclidean distance is a good approximation to geodesic distance; for far away
points, geodesic distance can be estimated by adding up a sequence of short hops
between neighboring points which is actually the shortest paths in a graph with edges
connecting neighboring data points.

3. Apply MDS to the matrix of geodesic distance to construct the low dimensional
embedding.

t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE [41] visualizes high-dimensional data by giving each datapoint a location in a two
or three-dimensional map which can then be visualized in a scatter plot. It is a variation
of Stochastic Neighbor Embedding (SNE) [29]. t-SNE and SNE belong to a class of algo-
rithms which use mutual information as a measurement of the differences of probability
distribution between the observed space and the embedded space.

t− SNE can be described in two steps :

1) Construct a probability distribution on the high dimensional feature space such that
nearby objects have a high probability of being picked, and dissimilar points have an small

29

probability of being picked. This can be done with the help of a Gaussian Kernel. The
probability pij denoting the similarity of points xi and xj is modelled as eq. 2.32. Figure
2.8b shows a comparison of some of the dimension reduction methods discussed here.

pj|i =
exp(−||xi − xj||2/2σ2

i ||)∑
k 6=i exp(−||xi − xk||2/2σ2

i ||)
(2.32)

The bandwidth of the Gaussian kernels σi, is set in such a way that the perplexity of
the conditional distribution equals a predefined perplexity using the bisection method.

2) Model the lower (2 or 3) dimensional representation as a Student-t distribution. If
we had modelled the lower dimensional distribution as a Gaussian Distribution, then we
might have had an imbalance in the distribution of the distances of a points neighbors.

The similarities qij between two points yi and yj, in the learnt lower dimensions is
modelled as eq. 2.33

qij =
(1 + ||yi − yj||2)−1∑

k 6=m(1 + ||yk − ym||2)−1
(2.33)

Then minimize the Kullback-Leibler (KL) divergence between the two distributions
using Gradient Descent. The KL divergence of distribution Q from the distribution P is
written as eq. 2.34.

KL(P ||Q) =
∑
i 6=j

pijlog
pij
qij

(2.34)

Figure 2.8a shows a comparison when t-SNE and PCA are applied to MNIST for
reduction to 2 dimensions. Figure 2.8a shows that, t-SNE is way better when in segregating
the digits into different clusters than PCA.

To end the section of distance metric learning, Figure 2.8b shows a comparison of most
of the metric learning algorithms discussed here on a sample dataset. Figure 2.8b shows the
difference in the way different algorithms discussed in this section reduce the dimensions
of a dataset.

30

(a) Difference between TSNE and PCA on dimension reduction on MNIST dataset

(b) Comparison of Manifold Learning algorithms

Figure 2.8: A) TSNE on the MNIST dataset B)Comparison of manifold learning algorithms

31

2.5 Interaction Process Analysis

Interaction Process Analysis (IPA) is a sentiment analysis technique developed by Robert
Bales [3]. IPA measures a set of labels/sentiments which model the interactions between
small groups. IPA consists of twelve categories.

1. Shows solidarity

2. Shows tension release

3. Agrees

4. Gives suggestion

5. Gives opinion

6. Gives orientation

7. Asks for orientation

8. Asks for opinion

9. Asks for suggestion

10. Disagrees

11. Shows tension

12. Shows antagonism

Given the highly technical nature of the pull request comments on GitHub, the IPA
categories are best suited for modelling the pull request comments.

IPA categories have an advantage that they can be mapped to a certain set of behaviours
and emotions using Affect Control Theory. Affect Control Theory models social interac-
tions on an individual level and assigns an affective meaning to all actions/behaviours and
physical entities. Affective meaning varies on three dimensions: Evaluation, Potency,
and Activity.

Evaluation contrasts pleasant and good with unpleasant and bad. Potency contrasts
powerful and strong with powerless and weak. Activity contrasts lively and active with

32

quiet and inactive. EPA values for over a thousand of words have been calculated by
sociologists by conducting large scale surveys.

Table 2.4 shows the sample behaviors and EPA values of the IPA categories. These
values are taken from the paper Modeling interactions in small groups by Heise [28].

IPA Sample behaviours E P A
Shows solidarity help, compliment, gratify 1.78 1.29 .21
Shows tension release josh, laugh with, cheer 1.48 .91 1.12
Agrees agree with, understand, accomodate 1.6 .91 1.12
Gives suggestion encourage, cue, coach 1.28 1.18 .25
Gives opinion evaluate, analyze, entreat .16 .59 -.02
Gives orientation inform, educate, explain 1.68 1.62 -.14
Asks for orientation quiz, question, ask about .50 .62 .45
Asks for opinion consult, prompt, query .48 .74 .16
Asks for suggestion entreat, ask, beseech .30 .24 .09
Disagrees disagree with, ignore, hinder -1.00 .35 .45
Shows tension fear, cajole, evade -.89 -.16 .35
Shows antagonism argue with, deride, defy -.82 .71 1.32

Table 2.4: Categories of Interaction Process Analysis (IPA), With Sample Behaviors, and
Average Evaluation, Potency, and Activity Scores for Sample Behaviors

Using the EPA values for some emotions shown in Table 2.5, we can find the closest
emotions to each IPA label using Euclidean distance. Table 2.6 shows the closest two
emotions (from the ones mentioned in Table 2.5) to each IPA category using the EPA
mapping.

33

Emotions E P A
Calm 2.18 1.23 2.18

Thanks 2.76 1.54 2.76
Nervous -1.37 -1.05 -1.37
Careless -1.76 -1.10 -1.76
Angry -1.61 -0.5 -1.61

Defensive -0.28 -0.05 -0.28
Cautious 1.39 0.19 1.39
Happy 3.25 2.62 3.25

Aggressive 0.27 1.57 0.27
Sorry -0.49 -0.37 -0.49

Table 2.5: EPA values of some emotions

IPA
Closest 2 emotions

based on EPA mapping
Shows Solidarity Thanks, Cautious
Gives Suggestion Thanks, Cautious

Disagrees Defensive, Angry
Shows Tension Defensive, Nervous

Shows Antagonism Defensive, Angry
Gives Orientation Thanks, Calm
Asks for Opinion Defensive, Cautious

Gives opinion Defensive, Cautious
Asks for Orientation Defensive, Aggressive

Agrees Thanks, Cautious
Asks for Suggestion Defensive, Cautious

Shows Tension Release Aggressive, Thanks

Table 2.6: Closest two emotions to each IPA category based on EPA mapping

34

Chapter 3

Dataset description

3.1 Dataset

We now explain the dataset used in this project. Initially we were using GitHub’s public
API to mine the pull request comments of different repositories. Due to the API’s hit rate
limit, we decided to use the data from GHTorrent [22]. Chapter 2 Section 2.1 describes
the GHTorrent dataset in more detail. We used the GHTorrent’s GitHub dump up to
February 2017. The entire dump consisted of the following tables: commit comments, com-
mit parents, commits, followers, issue comments, followers, issue comments, issue events,
issue labels, issues, organization members, project commits, project languages, projects,
pull request comments, pull request commits, pull request history, pull requests, repo labels,
repo milestones, users, project members and watchers.

For this project we only used the following tables: pull request comments,
pull request commits, pull request history, and pull requests. We loaded the aforementioned
csv files into a MySQL database for ease of querying.

We randomly selected 834 pull requests from GitHub and a total of 3000 pull request
comments. Out of the 834 pull requests, 41 were open , 343 were closed without being
merged and 450 were merged. We set out to annotate these comments into the twelve
Interaction Process Analysis labels and ten emotions. The ten emotions we used were
Thanks, Sorry, Calm, Nervous, Careless, Cautious, Aggressive, Defensive, Happy and
Angry. These particular set of emotions were chosen because all of them a a mapping in
the EPA space. This mapping is later used to get a mapping from the IPA categories to
the emotions.

35

Initially, I was the only one who annotated the 3000 comments. In order to get an
unbiased dataset, we put up the dataset on Amazon Mechanical Turk to be labelled by
three people. We obtained University of Waterloo’s Ethics committee’s approval to get
the dataset labelled on Mechanical Turk. We had a screening process to choose the best
people to get the dataset labelled. Fifty pull requests comments (from the 3000 pull
request comments) were opened to the general public. This means that anyone registered
with Amazon Mechanical Turk could attempt the task of annotating the comments. These
fifty comments were very intuitive and easy to label in the IPA categories and the ten
emotions. They did not require deep understanding of the task at hand. Most of these
fifty comments had emotional and sentimental keywords such as: great, sorry, happy, good,
bad, wrong etc., which made them easy to label.

Calvin Zhou, an undergraduate research assistant also separately annotated these fifty
pull request comments. This was required to avoid any bias in marking the fifty comments.

The best performing people were given an option to continue with the task. The reason
for choosing participants this way was that we wanted to filter out people who were not
qualified to complete the task or the people who were simply marking randomly. A total
of fifteen people took part in the task of annotating these fifty pull request comments.

We chose the top three people by the following criteria:

1. People who had the annotations most similar to mine and Calvin’s.

2. People who had some experience in programming any language and people who had
heard of GitHub.

We hosted the website for Mechanical Turk (written in Python/Django with a MySQL
database) on pythonanywhere.com.

We provided detailed instructions on how to annotate a particular pull request com-
ment. Each pull request comment could be annotated into a maximum of three IPA
categories and a maximum of three emotions. Participants were given an option to choose
from a checkbox. Appendix A has more details on the web interface used for annotation.

Apart from annotating a pull request sentence into the IPA categories and the emo-
tions, the participants were also asked to filter out any unnecessary sections of code in
the comment. Although we had performed a preprocessing (using regular expressions to
filter out code segments) to remove sections of code from the comments, there were some
instances where the code was not formatted properly enough to be filtered by the regular
expressions.

36

A few examples of the sentences and their corresponding IPA and emotions are shown
in Table 3.1.

3.2 Annotated Dataset description

After all three people had completed the annotations on Mechanical Turk, we assigned
each IPA/emotion a value of 1 if three out of four people had assigned it a value of 1 (I
was the fourth person), else the IPA/emotion was assigned a value of 0. Table 3.2 and
Table 3.3 show the number of comments with each emotion/IPA after annotations. Table
3.3 shows the number of comments with each IPA categories in the full dataset. Table 3.2
shows the number of comments with each emotion in the full emotions dataset.

Figures 3.1a and 3.1b show the number of normalized instances present in the merged/
open/and closed(without being merged) pull requests.

Based on the nature of conversations taking place at a particular pull request, we
believe that the following six categories (three classification tasks) appropriately describe
the dataset.

1. Agrees/Shows solidarity/Shows Tension release vs Disagrees/Shows An-
tagonism/Shows Tension: To get the dataset for these categories, we followed the
following steps:

• From the full IPA dataset we collected all comments which were annotated at
least one of Agrees/Shows solidarity/Shows Tension release. There were 1680
comments in this category.

• From the full IPA dataset we collected all comments which were annotated
at least one of Disagrees/Shows Antagonism/Shows Tension. There were 1301
comments in this category.

We did not find any overlap between these two categories.

2. Gives opinion/Gives Suggestion/Gives orientation vs Asks for opinion/Asks
for orientation/Asks for suggestion: To get the dataset for these categories, we
followed the following steps:

• From the full IPA dataset we collected all comments which were annotated at
least one of Gives opinion/Gives Suggestion/Gives orientation. There were 1952
comments in this category.

37

COMMENT IPA EMOTIONS
If the pull request,for #195
gets given the go ahead,
I’d be happy to convert
this to be a new
descriptor-style GSObject.,
It looks very good,
and great to have the
new improved factors
for HLR and FWHM.

Shows Solidarity,Gives orientation Calm,Happy

As has happened before, I
have to confess to not feeling
very qualified to comment
on this Tree stuff, having not
coded up anything similar
in the past myself...

Gives orientation,Shows Tension Nervous,Cautious

Great that you harmonized
these,params to the
python-layer style.

Shows Solidarity,Agrees, Thanks,Happy

As the status of,is not
changing, would it be
faster to move this,switch
outside the ?

Asks for orientation,Asks for opinon Nervous,Cautious

Is this replicating
code in,? If so,
can we do without
the former now?

Asks for orientation,Asks for opinon, Nervous,Cautious,

Am I being totally dense,
or is this a square region?,
(If so, I was a little
confused by the
mention of R at line 390)

Asks for orientation,Asks for opinon Nervous,Cautious

Sorry.,I started this file
by copying the Airy
version and forgot to
edit this description.

Gives orientation Sorry,Careless

Table 3.1: Sample sentences and their IPA/emotions

38

Emotions Aggressive Angry Calm Careless Cautious Defensive Happy Nervous Sorry Thanks
Number

of
instances

375 16 1606 49 1567 335 69 380 76 138

Table 3.2: Number of emotions categories instances

IPA
Shows

solidarity

Shows
tension
release

Agrees
Gives

suggestion
Gives

opinion
Gives

orientation

Asks
for

orientation

Asks
for

opinion

Asks
for

suggestion
Disagrees

Shows
tension

Shows
antagonism

Number
of

instances
1329 27 514 696 1098 1351 608 376 199 1207 17 162

Table 3.3: Number of IPA categories instances

• From the full IPA dataset we collected all comments which were annotated at
least one of Asks for opinion/Asks for orientation/Asks for suggestion. There
were 1025 comments in this category.

There were 254 sentences which had an overlap in both categories which were disre-
garded. This is because wanted explicitly classify one category against the other.

3. Positive vs Negative Emotions: To get the dataset for these categories, we fol-
lowed the following steps:

• From the full emotions dataset we collected all comments which were annotated
at least one of Thanks, Calm, Happy, and Cautious. There were 2555 comments
in this category.

• From the full emotions dataset we collected all comments which were annotated
at least one of Sorry, Nervous, Careless, Aggressive , Defensive, and Angry.
There were 437 comments in this category.

There were 534 comments which had an overlap in both the categories which were
assigned the negative label. This is because most of these 534 comments either had
more negative labels or only had Cautious from the positive category and some label
from the negative category. Finally we had 971 negative comments and 2021 positive
comments.

Figure 3.2 shows the number of normalized instances (normalized means divided by total
number of comments in that state of pull request:open/close/merged) of each of the aggre-
gated categories by merged/open/closed (without merged) pull request comments. Even

39

(a) Normalized emotions instances of open/closed/merged pull requests

(b) Normalized IPAs instances of open/closed/merged pull requests

Figure 3.1: Normalized emotions and IPAs instances among pull requests

though we only had 3000 comments, figures 3.1 and 3.2 show that merged pull requests
have higher proportion of positive emotions and positive IPA categories.

40

(a) Normalized Agrees.../Disagrees... instances of
open/closed/merged pull requests

(b) Normalized Gives opinion.../Asks for opinion... in-
stances of open/closed/merged pull requests

(c) Normalized positive and negative emotion instances of
open/closed/merged pull requests

Figure 3.2: Number of normalized instances merged/open/closed(without merged) pull
request comments in aggregated datasets 41

Aggregated IPA Closest two emotions
Agrees/

Shows solidarity/
Shows Tension release

Thanks, Cautious

Disagrees/
Shows Antagonism/

Shows Tension
Defensive, Angry

Gives opinion/
Gives Suggestion/
Gives orientation

Cautious,Thanks

Asks for opinion/
Asks for orientation/
Asks for suggestion

Defensive, Cautious

Table 3.4: Closest two emotions to the grouped IPAs

3.2.1 Emotions inference from IPA mapping

One of the benefits of using IPA is that, ACT provides a mapping from IPA to the EPA
space as shown in Table 2.4, which gives us the ability to map the aggregated IPA categories
to a set of emotions. Table 2.5 shows the EPA values of the emotions used in this project.
Although we do not use this mapping in further experiments, the purpose of descrbing the
mapping of IPA to emotions is to show that emotions can be inferred from IPAs.

We can infer the emotions closest to a group of IPA labels as follows

1. Average out the EPAs of each IPA category.

2. Use Euclidean distance to find the closest set of EPA’s corresponding to the emotions.

Following the aforementioned steps, we found the closest two emotions to each of the
aggregated IPA categories. Table 3.4 shows the closest emotions to the grouped IPAs.
Note that here we only consider the four grouped IPA categories. The fifth and sixth
category defined earlier already consists of emotions.

42

Chapter 4

Machine Learning experiments

This chapter applies the state of the art machine learning models to the pull request
comments annotated on mechanical turk. We first discuss two state of the art deep learning
methods for sentence classification: Recurrent Neural Nets along with its variants and
Convolutional Neural Nets.

4.1 Recurrent Neural Nets

Recurrent Neural Nets (RNNs) are a class of neural nets which make use of sequential
information. They have a feedback loop which allows them to capture memory of past
events and make use of that memory in the future. They also tie weights at each time
step.

RNNs have been immensely successful in natural language processing. In case of sen-
tences, RNNs are conditioned on all the previous words in a sentence.

Given a list of word vectors x1, x2, x3......xn the RNN equation for each time step can
be written as eq. 4.1.

ht = σ(W hhht−1 +W hxxt)

yt = softmax(wSht)
(4.1)

where σ is the sigmoid function, W hh is the weight matrix for the hidden layer, W hx

is the weight matrix between the hidden layer and input layer, ws is the softmax weight
matrix, ht is the hidden layer output and yt is the output.

43

A popular variant of RNN used in this thesis is called the Bidirectional RNN. In
bidirectional RNNs, there are two RNNs one of which processes the input sentence from
left to right and the other from right to left. Both of their outputs are combined at the
end for further classification.

The loss function that RNNs optimize can either be cross entropy or perplexity. RNNs
are trained using backpropagation through time, which is essentially the same as back-
propagation after unwinding the RNN through all the time steps. Due to the fact that
the same weight matrix gets multiplied at each time step, RNNs suffer from the problem
of vanishing gradient. In case of NLP, it can cause the RNN to forget an important piece
of information at earlier time steps. To overcome this, there are two variants of RNNs
namely: Long Short Term Memory (LSTM) and Gated Recurrent Units GRUs.
Both LSTMs and GRUs perform the following two functions:

1. Store information from past timesteps, and

2. Backpropagate the gradient/error at different strengths depending on the inputs.

4.1.1 Long Short-Term Memory (LSTM)[30]

Long short-term memory (LSTM) is a variant of RNN that helps avoid the vanishing
gradient problem, by preserving the error that can be backpropagated through time which
allows the RNN to learn across many time steps.

LSTMs contain gated cells which allow memory to be retained by storing information
from past time steps. Since LSTMs are gated, information can be written to the cells when
required. A LSTM can be described by the following sets of equations 4.2.

Input gate it = σ(W (i)xt + U (i)ht−1)

Forget gate ft = σ(W (f)xt + U (f)ht−1)

output gate ot = σ(W (o)xt + U (o)ht−1)

New memory cell c̃t = tanh(W (c)xt + U (c)ht−1)

Final Memory cell ct = ft ◦ ct−1 + it ◦ c̃t
Final hidden state ht = ot ◦ tanh(ct)

(4.2)

where σ is the sigmoid function, ◦ is the element wise operator, W and U are the weight
matrices for the respective gates, ht is the hidden layer output and it is the input.

44

4.1.2 Gated recurrent units GRUs [8]

Gated recurrent units GRUs are another gated variant of RNNs, which have fewer param-
eters than LSTM though have similar performance to LSTMs.

GRUs can be summarized by equations 4.3.

Update gate zt = σ(W (z)xt + U (z)ht−1)

Reset gate rt = σ(W (r)xt + U (r)ht−1)

New memory content h̃t = tanh(Wxt + rt ◦ Uht−1)
Final memory ht = zt ◦ ht−1 + (1− zt) ◦ h̃t

(4.3)

where σ is the sigmoid function, ◦ is the element wise operator, W and U are the weight
matrices for the respective gates, ht is the hidden layer output and it is the input.

As per equations 4.3, GRUs will ignore the previous hidden state if the reset gate rt
is 0. The update gate zt controls how much of the past state would matter now. If the
update gate is close to 1, then the GRU can copy information from that unit through many
time steps, thus avoiding the vanishing gradient problem.

It has been observed that for GRUs, units with short term dependencies have very
active reset gates.

4.1.3 Convolutional Neural Nets (CNNs)[40]

Convolutional Neural Nets (CNNs) have been very successful for image and video classi-
fication tasks due to the fact that they preserve the spatial structure of an image while
training. A CNN typically comprises of a few convolutional layers optionally followed by a
fully connected neural network. Convolutional neural nets might also have a pooling layer,
which combines the outputs of the previous layer into one value which later goes as an
input to the next layer. With pooling, it becomes possible to use inputs of various sizes for
training the same neural network. Some of the useful pooling methods are: max pooling,
average pooling and L2-norm pooling.

Kim [33] presented an approach to use CNNs for sentence classification. For a given
sentence Kim [33] used word vectors for every word in a sentence to construct a 2D matrix
for each sentence, resembling that of an image. Given a set of word vectors x1, x2, x3....xn
for each word in a sentence, the 2D matrix is constructed by concatenating each word vector
vertically x1

⊕
x2

⊕
x3.....

⊕
xn. The resultant matrix is then passed through three filters

45

(a hundred of each) of sizes: 3 × k, 4 × k, 5 × k (k is the dimension of the word vector)
following which is a max-pooling layer followed by a dropout and softmax layer.

Kim [33] used four different variants of CNNs:

1. CNN-Rand: Word embeddings initialized with random word vectors.

2. CNN-Static: Word embeddings initialized with google word vectors as word embed-
dings.

3. CNN-Non-static: Word embeddings initialized with google word vectors, which are
fine tuned i.e. the error is back propagated into the word embeddings.

4. CNN-Multi-channel: Word embeddings with two word embedding matrices initialized
with google word vectors, though only one channel is fine tuned.

We use all of the above four variants for our experiments.

4.2 Experiment and Results

We first tried to predict all the IPA categories and the emotions. This was done in order
to get a baseline for the results. We used Linear SVM to train and predict all the IPA
and emotion categories. Since, this was was done just to get a baseline, we used tf-idf
as feature vectors. Tables 4.1 and 4.2 show the results when we tried to predict all IPA
categories and all emotions. We used K = 5 fold cross validation (with random seed and
K-1 folds were used for training and the last fold for testing) and grid search to search for
the optimal parameters for all the algorithms. The results were not good which led us to
the belief that our dataset is either very noisy or we do not have enough labelled examples
to learn from.

We ran a total of twelve algorithms on the aggregated datasets mentioned previously
in Chapter 3. For RNNs, we implemented both bidirectional RNNs: stacked LSTMs and
stacked GRUs. For both RNNs, we implemented two word embeddings versions: random
word embedding and google word embeddings. The output from both directions of the RNN
was concatenated for the softmax layer. We used K = 5 fold cross validation (with random
seed and K-1 folds were used for training and the last fold for testing) and grid search to
search for the optimal parameters for all the algorithms. For each algorithm we report
the best average precision, recall, F1 and accuracy over five fold validation. The metrics

46

IPA Category Precision Recall F1 Accuracy
Shows Solidarity 63.2 55.7 56.8 65.3

Shows tension release 20.0 6.7 10.0 99.1
Agrees 95.2 56.1 64.0 88.0

Gives Suggestion 54.4 34.5 33.4 76.5
Gives opinion 62.6 50.0 51.4 68.9

Gives orientation 62.0 58.3 58.6 64.5
Asks for orientation 88.8 37.7 36.2 81.7

Asks for opinion 30.0 24.1 22.9 87.5
Asks for suggestion 60.0 9.1 10.6 93.4

Disagrees 67.9 55.4 56.6 68.1
Shows Tension 40.0 26.7 30.0 99.5

Shows Antagonism 50.0 10.4 13.2 94.6

Table 4.1: One vs All classification results for IPA categories

Emotion Precision Recall F1 Accuracy
Thanks 100.0 44.1 54.7 96.8
Sorry 93.5 46.1 58.7 98.4
Calm 65.2 75.8 69.3 64.8

Nervous 42.4 24.2 23.6 87.4
Careless 41.3 10.3 15.7 98.4
Cautious 64.8 75.9 69.8 65.8

Aggressive 58.1 23.9 25.2 87.7
Defensive 30.0 15.1 16.7 88.8

Happy 6.7 1.5 2.5 97.7
Angry 0 0 0 0

Table 4.2: One vs All classification results for Emotions

47

reported in this section for each algorithm are the best average metrics. For the non-deep
learning algorithms (Linear SVM, Random forests, Logistic Regression and Gaussian Naive
Bayes) the best average precision/recall/F1 may be from different hyperparameters. The
meaning of this is that we do a separate cross validation to find the best performing metric.
One cross validation is done to performed to find the best average precision. Another cross
validation is done to find the best performing F1. Similarly, a seperate cross validation is
done to find the best performing recall and accuracy. We consider F1 to be the best metric
across algorithms, the other metrics are shown in order to highlight how each algorithm
could perform.

Table 4.3 describes the input feature vector for each of the algorithms used in classifying
the aggregated datasets explained in Chapter 3.

Algorithm Feature Vector

Convolutional Neural Nets:
(all variants)

A 3D feature vector with the
word vector for every word. The
word vector could be a google
word vector or a random word
vector.
Each sentence was padded to a
fixed sentence length of 56
(this was the max sentence
length in the dataset) by 0
to use CNNs efficiently.

Recurrent Neural Nets:
LSTM and GRUs

A 3D feature vector with the
word vector for every word. The
word vector could be a google
word vector or a random word
vector. There was no padding since
we used dynamic RNNs.

Linear SVM,
Random Forests,

Logistic Regression,
Gaussian Naive Bayes

Average of tf-idf weighted
google word vectors.

Table 4.3: Feature vector description for each algorithm

The tuning parameters for the different algorithms are described as follows:

48

1. Convolutional Neural Nets: We performed a grid search over the number of filters, the
sizes of filters, dropout rate and the learning rate. The number of filters were varied
from 50, 100 to 150. The learning rate was varied from 0.1 to 0.0001 in multiples of
0.1. The dropout rate was varied from 0.1 to 0.8 in steps of 0.1.

2. Recurrent Neural Nets (LSTMs and GRUs): We performed a grid search over the
number of hidden layers, the number of LSTM/GRUs in each layer and the learning
rate. The learning rate was varied from 0.1 to 0.0001 in multiples of 0.1. The number
of hidden layers were varied from 1 to 3. The number of LSTM/GRU units in each
layer were varied between 1024, 512, 256 and 128.

3. Linear SVM: We used soft-margin SVM and performed a grid search for the regular-
ization parameter C over the values: 0.1, 0.2, 0.5, 0.7, 0.5, 1, 5, 10, 15, 20, 30, 50, 100, 150
and 200.

4. Logistic Regression: We used logistic regression with L2 regularization and performed
a grid search for the regularization parameter C over the values: 0.001, 0.01, 0.1,
0.2, 0.5, 0.7, 0.5, 1, 5, 10, 15, 20, 30 , 50, 100, 150 and 200.

5. Gaussian Naive bayes: We did not use any class priors for gaussian naive bayes.

6. Random Forests: We performed a grid search for the number of trees in the forest
over the values: 10, 50, 100, 150, 200, 150, 300 and 500.

We refer the three classification experiments as three tasks:

• Task 1: Agrees/Shows solidarity/Shows Tension release vs Disagrees/Shows Antag-
onism/Shows Tension.

• Task 2: Gives opinion/Gives Suggestion/Gives orientation vs Asks for opinion/Asks
for orientation/Asks for suggestion.

• Task 3: Positive vs negative emotions.

The input to each algorithm is described as follows:

• For all RNNs we used the word vector (either random or google word vector) of each
word and implemented dynamic RNN in tensorflow.

49

• For all CNNs we we used the word vector (either random or google word vector) for
each word, and constructed a 2D matrix for a sentence. We padded the sentences to
make all the sentences of same length.

• For linear SVM, logistic regression, random forests and gaussian naive bayes, we used
the tf-idf weighted average of google word vectors.

4.2.1 Results

Table 4.4 shows the results for task 1. Table 4.5 shows the results for task 2. Table 4.6
shows the results of classification of task 3.

Algorithm\Metric Precision F1 Recall Accuracy
CNN-rand 70.9 73.6 98.8 64.8
CNN-static 78.2 72.3 84.9 66.5
CNN-non-static 77.9 74.6 96.93 66.4
CNN-multichannel 81.4 74.2 96.3 66.4
Static Bidir LSTM RNN 75.9 73.4 97.7 64.2
Rand Bidir LSTM RNN 69.9 73.2 89.8 64.0
Static Bidir GRU RNN 74.3 73.1 95.1 63.9
Rand Bidir GRU RNN 69.8 73.3 89.8 64.0
Logistic Regression 65.2 74.1 100 64.75
Linear SVM 65.02 73.2 86.6 64.4
Random Forests 64.9 70.5 77.1 63.6
Gaussian Naive Bayes 61.2 69.6 80.6 60.5

Table 4.4: Measures of performance for classification for Agrees/Shows solidarity/Shows
Tension release vs Disagrees/Shows Antagonism/Shows Tension

50

Algorithm\Metric Precision F1 Recall Accuracy
CNN-rand 75.6 80.5 95.7 70.2
CNN-static 82.5 80.3 90.9 71.3
CNN-non-static 80.3 80.8 91.2 72.1
CNN-multichannel 83.2 81.0 91.2 72.3
Static Bidir LSTM RNN 81.2 80.8 97.6 69.9
Rand Bidir LSTM RNN 75.3 80.2 93.5 69.7
Static Bidir GRU RNN 83.8 80.3 98.6 68.8
Rand Bidir GRU RNN 75.7 80.2 93.4 69.6
Logistic Regression 73.9 81.0 100 71.8
Linear SVM 73.8 81.0 93.4 71.9
Random Forests 74.7 79.3 84.8 70.8
Gaussian Naive Bayes 72.9 77.7 83.2 68.5

Table 4.5: Measures of performance for Gives opinion/Gives Suggestion/Gives orientation
vs Asks for opinion/Asks for orientation/Asks for suggestion

Algorithm\Metric Precision F1 Recall Accuracy
CNN-rand 75.4 79.9 97.6 67.8
CNN-static 77.1 79.9 97.6 67.5
CNN-non-static 70.7 80.1 98.5 67.8
CNN-multichannel 71.2 80.5 99.0 67.9
Static Bidir LSTM RNN 75.4 80.3 100.0 67.1
Rand Bidir LSTM RNN 71.7 79.4 97.2 66.4
Static Bidir GRU RNN 78.0 80.3 100 67.2
Rand Bidir GRU RNN 72.0 76.2 87.1 63.9
Logistic Regression 69.9 80.5 100.0 68.0
Linear SVM 70.5 80.5 98.5 67.8
Random Forests 68.4 80.5 99.0 67.7
Gaussian Naive Bayes 70.9 29.1 41.3 44.2

Table 4.6: Measures of performance for positive vs negative emotions

4.3 Observations and Discussions

Since we started out with a small dataset, we consider F1 score to be a better estimator
of performance over K-Fold cross validation.

51

The observations from the results can be summarized as

• We observed that for CNNs, the minimum learning rate of 0.001 was required to avoid
having high bias. Any learning rate below that would lead to high bias resulting in
underfitting.

• For RNNs a learning rate of 0.01 was good enough to avoid high bias.

• For CNNs, the architecture proposed by Kim [33] worked the best. A hundred filters
each of sizes 3× 300, 4× 300 and 5× 300, dropout of 0.5 performed the best.

• Using pre trained word vectors always resulted in an increase in precision, recall, F1
and accuracy. This was observed for CNNs, LSTM RNNs and GRUs RNNs.

• In case of tasks 2 and 3 CNN-Multichannel had the best F1 score. In case of task 1
CNN-non-static had the best F1 score.

• Static bidirectional GRU RNN achieved the best precision in task 2 and 3. CNN-
multichannel achieved the best precision in task 1.

• In tasks 1,2 and 3 logistic regression achieved the best recall, though static bidirec-
tional LSTM RNN achieves the same recall in task 3.

• For task 1, CNN static achieves the best accuracy. For task 2 CNN multichannel
achieves the best accuracy. For task 3 logistic regression achieves the best accuracy.

• In tasks 2 and 3, linear SVM also achieved the best F1. For task 3 random forests
also achieved the best F1 score.

52

Chapter 5

Metric Learning experiments

Chapter 2 Section 2.3 discusses some of the important distance metric learning algorithms.
This chapter focuses on two algorithms that are used in this thesis namely: Large Mar-
gin Nearest Neighbor (LMNN) and Information Theoretic Metric Learning
(ITML).

5.1 Large Margin Nearest Neighbor

Large Margin Nearest Neighbor (LMNN) [61] learns a Mahalanobis distance metric for
kNN classification which is optimized with the goal that k-nearest neighbors always belong
to the same class while examples from different classes are separated by a large margin.
This approach is different from the ones used in Section 2.3 where most of the approaches
minimize the pairwise distances between all similarly labeled examples. Most classification
algorithms do not require similarly labelled examples to be clustered together. This is be-
cause, to achieve good generalization in classification setting, a good distance metric should
not only achieve high consistency in the neighborhood, but also maintain large margin at
the boundaries between different classes. LMNN also does not make any assumptions
about the distribution of the data.

The optimization goal of LMNN is quite similar to that of SVMs [10]. They both have
a convex optimization objective and a goal of margin maximization.

LMNN aims to learn a linear transformation L, which can be used to compute squared
distances (eq 5.1).

53

D(xi, xj) = ||L(xi − xj||2 (5.1)

where xi and xj are any two data points. Some of the terminology specific to the LMNN
paper by Weinberger et al. [61] is as follows:

1. Target neighbors: Each data point xi has a set of k neighboring data points with the
same label as xi. Weinberger et al. [61] uses ηij ε [0, 1] to indicate whether input xj
is a target neighbor of input xi. The matrix ηij is fixed during training.

2. Cost function: The cost function of LMNN is written as eq. 5.2.

ε(L) =
∑
ij

ηij||L(xi−xj)||2+c
∑
ijl

ηij(1−yil)[1+||L(xi−xj)||2−||L(xi−xl)||2]+ (5.2)

The first term penalizes large distances between each input and its target neighbors
(not between all similarly labeled examples.), while the second term penalizes small
distances between each input and all other inputs that do not share the same label.
The second term denotes the standard hinge loss ([z]+ = max(z, 0)) and c > 0 is
some positive constant (set by cross validation).

3. Large Margin: The second term in equation 5.2 reflects the large margin. For each
input xi, the hinge loss is incurred by differently labeled inputs whose distances do
not exceed, by one absolute unit of distance, the distance from input xi to any
of its target neighbors. The cost function thereby favors distance metrics in which
differently labeled inputs maintain a large margin of distance and do not threaten to
invade each others neighborhoods.

4. Convex optimization: Equation 5.2 can be reformulated as an instance of semidef-
inite programming [70]. A semidefinite program (SDP) is a linear program with
the additional constraint that a matrix whose elements are linear in the unknown
variables is required to be positive semidefinite. SDPs are convex; thus, with this
reformulation, the global minimum of equation 5.2 can be efficiently computed. The
SDP for equation 5.2 can be written as eq. 5.3.

min
∑
ij

ηij(xi − xj)TM(xi − xj) + c
∑
ij

ηij(1− yil)ξijl

subject to ξijl ≥ 0

M ≥ 0

(xi − xl)TM(xi − xl)− (xi − xj)TM(xi − xj) ≥ 1− ξijl

(5.3)

where M = LTL, and ξijl are the slack variables.

54

5.2 Information-Theoretic Metric Learning

Information-Theoretic Metric Learning (ITML) [11] is a novel method of learning the
Mahalanobis matrix by minimizing the logDet divergence between an initial starting metric
and the learnt metric. The LogDet divergence is a loss function that describes the distance
between positive definite matrices. ITML is quite different from all the algorithms described
in section 2.3. ITML offers the following advantages:

1. Though the algorithms described in section 2.3 have good classification results, their
constraints do not generalize beyond the class instances. ITML allows arbitrary linear
constraints on the Mahalanobis matrix such as similarity or dissimilarity constraints,
and relations between pairs of distances. ITML can also incorporate prior information
regarding the distance function itself.

2. Most of the algorithms in section 2.3 require eigenvalue decompositions, an operation
that is cubic in the dimensionality of data or in some cases quadratic in the number
of examples. ITML on the other hand is fast and scalable.

ITML aims to learn the a positive semi-definite matrix A which parametrizes the Maha-
lanobis distance as shown in equation 5.4.

dA(xi, xj) = (xi − xj)TA(xi − xj); (5.4)

The goal of ITML is to learn a similarity metric dA which is close to some starting
metric dA0 . Instead of comparing the distance metrics it compares the relative entropy of
the gaussians formulated by them and minimizes the KL divergence between them.

dA(x, y)→ N(x|µ,A)

dA0(x, y)→ N(x|µ,A0)
(5.5)

The optimization problem can be formulated by eq 5.6.

min
A

∫
N(x|µ,A0) log

N(x|µ,A0)

N(x|µ,A)
dx

subject to dA(xi, xj) ≤ u (i,j)ε S

dA(xi, xj) ≥ l (i,j)ε D

A ≥ 0

(5.6)

55

where S is the set of similar examples, D is the set of dissimilar examples, l and u
are predetermined thresholds (determined by 5th and 95th percentile of distribution) for
similarity and dissimilarity measures.

The ITML optimization problem (eq. 5.6) can be formulated into a Bregman opti-
mization problem by minimizing the LogDet divergence subject to linear constraints. The
LogDet divergence is defined by eq. 5.7.

Dld(X, Y) = trace(XY)−1 − logdetXY −1 − d (5.7)

5.3 Experiment and Results

We use the aggregated dataset from Chapter 3. In order to apply ITML and LMNN to our
problem, we constructed tf-idf weighted average of google word vectors feature vector for
each pull request comment. We then proceeded to apply LMNN and ITML to the dataset.
We used K = 5 fold cross validation (with random seed and K-1 folds were used for training
and the last fold for testing) and grid search to search for the optimal parameters for all
the algorithms.

The hyperparameter to tune in LMNN is k, the number of nearest neighbors. We used
a grid search over the values 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 90 and
100 to find the best value of k. The hyperparameter to tune in ITML is the number of
constraints. We did a grid search over the values 200, 300, 400, 500, 800, 1000, 1200, 1500
and 1600 to find the optimal value of the number of constraints. We used PyMP , an
OpenMP styled multiprocessing library in python to parallelize our grid search.

As earlier, we refer the three classification experiments as three tasks:

• Task 1: Agrees/Shows solidarity/Shows Tension release vs Disagrees/Shows Antag-
onism/Shows Tension.

• Task 2: Gives opinion/Gives Suggestion/Gives orientation vs Asks for opinion/Asks
for orientation/Asks for suggestion.

• Task 3: Positive vs negative emotions.

The tuning parameters for the different algorithms are described as follows:

56

1. Linear SVM: We used soft-margin SVM and performed a grid search for the regular-
ization parameter C over the values: 0.1, 0.2, 0.5, 0.7, 0.5, 1, 5, 10, 15, 20, 30, 50, 100, 150
and 200.

2. Logistic Regression: We used logistic regression with L2 regularization and performed
a grid search for the regularization parameter C over the values: 0.001, 0.01, 0.1,
0.2, 0.5, 0.7, 0.5, 1, 5, 10, 15, 20, 30 , 50, 100, 150 and 200.

3. Gaussian Naive bayes: We did not use any class priors for gaussian naive bayes.

4. Random Forests: We performed a grid search for the number of trees in the forest
over the values: 10, 50, 100, 150, 200, 150, 300 and 500.

5. Fully connected neural network: We performed a grid search over the number of
hidden layers, number of sigmoid activated neurons in each layer, batch size and the
learning rate. The learning rate was varied from 0.00001 to 0.1 in multiples of 10.
The number of hidden layers were varied from one to three. The number of sigmoid
activated neurons were varied between 1024, 512, 256 and 128.

We form the feature vector after transforming the input tfidf weighted google word
vectors by ITML and LMNN before classifying them using linear SVM, gaussian naive
bayes, random forests, logistic regression and a fully connected deep neural net. Cross
entropy loss was used to train the fully neural network. The feedforward neural network
was run for 35 epochs. No increase in any metric was observed after 35 epochs.

5.3.1 Results

For each algorithm we report the best average precision, recall, F1 and accuracy over five
fold validation. The metrics reported in this section for each algorithm are the best average
metrics. The best average precision, F1 and recall may be from different hyperparameters.
The meaning of this is that we do a separate cross validation to find the best performing
metric. One cross validation is done to performed to find the best average precision.
Another cross validation is done to find the best performing F1. Similarly, a seperate cross
validation is done to find the best performing recall and accuracy. We consider F1 to be
the best metric across algorithms, the other metrics are shown in order to highlight how
each algorithm could perform.

The results are summarized in the following tables.

57

• Table 5.1 shows the results for task 1.

• Table 5.2 shows the results for task 2.

• Table 5.3 shows the results for task 3.

Algorithm\Metric Precision F1 Recall Accuracy
FFNN
with ITML

77.1 74.7 99.7 65.4

FFNN with LMNN 73.4 73.8 96.8 64.6
SVM with ITML 67.8 73.4 84.7 65.3
SVM with LMNN 68.8 72.3 83.2 65.8
Logistic Regression
with ITML

66.3 74.0 99.9 65.2

Logistic Regression
with LMNN

67.8 73.1 88.0 66.0

Gaussian Naive
Bayes with ITML

61.5 70.9 83.9 60.6

Gaussian Naive
Bayes with LMNN

64.0 70.1 79.9 64.1

Random Forests
with ITML

65.8 71.2 78.2 64.0

Random Forests
with LMNN

70.6 70.6 75.9 66.1

Table 5.1: Measures of performance with metric learning for Task 1

58

Algorithm\Metric Precision F1 Recall Accuracy
FFNN
with ITML

78.7 81.4 98.9 71.9

FFNN with LMNN 76.3 79.8 96.7 70.1
SVM with ITML 73.8 81.2 92.7 72.3
SVM with LMNN 76.1 79.7 90.9 70.9
Logistic Regression
with ITML

74.2 81.4 100 72.3

Logistic Regression
with LMNN

73.9 80.3 98.7 71.2

Gaussian Naive
Bayes with ITML

73.2 79.3 86.5 70.2

Gaussian Naive
Bayes with LMNN

73.0 77.2 82.3 68.4

Random Forests
with ITML

72.5 80.2 85.8 72.1

Random Forests
with LMNN

74.6 79.6 85.9 71.4

Table 5.2: Measures of performance with metric learning for Task 2

Algorithm\Metric Precision F1 Recall Accuracy
FFNN
with ITML

77.3 80.5 100 67.6

FFNN with LMNN 83.4 80.6 100 68.7
SVM with ITML 74.3 80.3 98.3 68.1
SVM with LMNN 73.0 78.8 92.4 66.9
Logistic Regression
with ITML

70.1 80.5 100 68

Logistic Regression
with LMNN

70.3 80.2 99.6 67.4

Gaussian Naive
Bayes with ITML

70.4 37.0 25.3 42.5

Gaussian Naive
Bayes with LMNN

71.5 30.3 30.0 48.3

Random Forests
with ITML

69.4 80.4 98.4 67.9

Random Forests
with LMNN

70.5 78.2 95.5 68.7

Table 5.3: Measures of performance with metric learning for task 3

59

5.4 Observations and Discussion

After cross validation, we found out the best parameters for the feed forward neural network
were

• Two hidden layers with 512 and 256 sigmod activated neurons.

• Learning rate of 0.001.

As mentioned in Chapter 4, since we started out with a small dataset, we consider F1
score to be a better estimator of performance over K-Fold cross validation. The important
observations can be summarized as follows:

• For task 1, feed forward neural networks with ITML as a preprocessing step leads to
same max F1 score as all the algorithms in Table 4.4.

• Feed forward neural network(FFNN) with ITML as a preprocessing step gives the
highest F1 score for task 2. Logistic regression with ITML also achieves the same F1
score.

• For task 3 feed forward neural networks with LMNN as a preprocessing step gives
the highest F1 score.

• For task 2 we achieved the same best recall with ITML as we did without ITML.

• For task 3 we achieved the same best recall with ITML as we did with without ITML.

The results in this chapter also show that sometimes such as in task 2, a simple logistic
regression model with L2 regularization was able to achieve the same best F1 score. Simpler
models are better because they prevent overfitting.

Appendix B shows the variation of the performance metrics over the hyperparameters
of ITML and LMNN.

The following important observations can be made regarding the plots in appendix B.

• Figure B.1 shows the variation in the measures of performance versus the number of
constraints in ITML for task 1. For precision, F1, recall and accuracy , we observed
that the metrics first increased reaching a maximum between 200-800 constraints,
after which they either remained constant or decreased.

60

• Figure B.2 shows the variation in the measures of performance versus the number of
constraints in ITML for task 2. For this task, we observed that the metrics generally
increased when the number of constraints were increased before dropping off near the
end (around 1500-1600 number of constraints).

• Figure B.3 shows the variation in the measures of performance versus the number of
constraints in ITML for task 3. For F1, recall and accuracy, we observed that increas-
ing the number of constraints had almost no effect on the metrics. For precision, we
observed that it reached a maximum between 400-800 constraints before becoming
constant. For random forests, precision reached a maximum at 1600 constraints.

• Figure B.4 shows the variation in the measures of performance versus the number
of k nearest neighbors in LMNN for task 1. We observed that the precision and F1
increased as we increased the number of nearest neighbors. For recall, we observed a
drop when we increased the number of nearest neighbors. For accuracy, we observed
that it reached a maximum between 20-50 nearest neighbors before decreasing. This
was mostly due to the fact the the model seemed to optimize the number of false
positives which led to an increase in the number of false negatives.

• Figure B.5 shows the variation in the measures of performance versus the number of
k nearest neighbors in LMNN for task 2. We observed that recall, F1 and accuracy
increased before dropping off at 100 nearest neighbors. Precision did not seem to
follow any pattern as the number of neighbors were increased.

• Figure B.6 shows the variation in the measures of performance versus the number of
k nearest neighbors in LMNN for task 3. We observed that recall, F1 and accuracy
almost stay constant as k is increased. Precision did not seem to follow any pattern
as the number of neighbors were increased.

We now compare how SentiStrength performs on some of the comments from our neg-
ative emotions dataset. Table 5.4 shows an example of SentiStrength scores on some of
the negative emotion comments. These negative comments are from the labelled dataset
Table 5.4 shows that the SentiStrength tool is unable to recognize negative emotion
appropriately.

61

Sentence Positive score Negative score
I don’t think this is correct.
If I’m looking at it right,
it would default enabled
to FALSE if does not exist

1 1

This one should have been left out
of the repository

1 -1

I think you might need to prefix the string with ˆ
like above, because of some other processing
we do later on
the chain with error messages.
Also, if we don’t allow the comma at all in
a collection title, the
reserved string ’,,’ doesn’t make sense, sin

2 -1

This line doesn’t do anything?! 2 -1
It’s best we simply close this pr 2 -1
I believe you’re incorrect here:1 for true
0 for false, since you’re doing numeric tests
and not using it as return values.
We’ve also got to think about backwar

2 -2

Why the split between impl and int-tests ?
Do we foresee a api/spi module coming here?
If we only have one ’exported’ artifact,
we should name it (exclude the -impl)

1 -1

Share function header! Move macros inside! 2 -1
I still don’t see any reference to, so how could
it possibly be being used??I would have
expected a line like

1 -1

Table 5.4: Sentistrength scores of some negative emotions labelled in our dataset

62

Chapter 6

Conclusions

Our goal was to solve the problem of sentiment/emotion analysis in software engineering
datasets. Existing work on this was mostly based on lexical analysis. We presented a
machine learning and affect control theory based framework for a better understanding
of the sentiments and the emotions on the pull request comments from GitHub. We
created a new dataset of pull request comments and got it annotated by three different
people on Amazon Mechanical turk and myself. The dataset was labelled in to twelve
Interaction Process Analysis labels and ten emotions. Since, we used concepts from
Affect Control Theory we can also gather valuable insights into the behaviors of the people
writing comments on GitHub. Our machine learning approach is better than the lexical
analysis in terms of generalization and for sentences of longer length.

Based on four aggregated IPA categories we can use Table 3.4 to get an idea of the
different emotions present in a pull request comment. We also presented a metric learning
and deep learning pipeline, involving feedforward neural nets with Information-Theoretic
Metric Learning and Large Margin Nearest Neighbor which resulted in a higher F1 on the
aggregated dataset than when we tried to predict each IPA and emotion separately. ITML
being a scalable and online algorithm, can be used as online preprocessing step with feed
forward neural networks in the event that we have limited training data.

We presented a machine learning based approach to do sentiment and emotional analysis
on pull request comments from GitHub. Based on our aggregated categories, we were able
to get some insights into the pull request comments. Given this dataset, our approach
achieved the best possible results.

63

6.1 Further work

Although we were able to achieve good F1 score, we wanted to perform more fine grained
classification of the individual IPA categories and the individual emotions (rather than
aggregate like we did for this project). We believe the reason for not being able to perform
further classification on the IPA categories and the emotions is that the annotated dataset
was noisy. Next steps would be try and get a much cleaner dataset for IPA and emotions
and then repeat the experiment to get deeper insights into the behaviors of developers.
A cleaner dataset can be obtained by repeating the experiment on Mechanical Turk, but
this time users get an option to mark each label on a separate screen. We had the users
mark all the labels on one screen. This might have led to some bias to some of the labels.
Another method to obtain a cleaner dataset would be to have some known students who
are more familiar with GitHub and programming. This is because there was no way for
us to verify if the people on Mechanical Turk knew about GitHub or how well were they
versed with programming.

Once we are able to predict all the IPA categories or the emotions with a high F1
score, we can use the sample behaviors from Table 2.4 and the emotion mapping from IPA
described in Table 2.6 to get an idea of the different behaviors/emotions taking place at a
pull request comment. The information about the behaviours and the emotions can later
be used to understand the social dynamics of interactions between developers on a pull
request. As mentioned in Chapter 1, positive emotions help in increasing task productivity
and job satisfaction. Analyzing emotions at pull requests can help us assess how a developer
is feeling and appropriate steps can be taken to make sure that negative emotions are kept
to a minimum. Such steps can include recommending the best way to act in order to
achieve a positive emotion. For example, if a person is being very aggressive, the best
way for the other person to act would be to stay calm and cautious. Other more complex
analyses can then be attempted using the social interaction analysis approaches as detailed
in Bales (1950) [3].

64

References

[1] Scott Ambler. Agile modeling: effective practices for extreme programming and the
unified process. John Wiley & Sons, 2002.

[2] Suresh Balakrishnama and Aravind Ganapathiraju. Linear discriminant analysis-a
brief tutorial. Institute for Signal and information Processing, 18, 1998.

[3] Robert F Bales. Interaction process analysis; a method for the study of small groups.
1950.

[4] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of machine learning research, 3(Feb):1137–1155,
2003.

[5] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with
Python: analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”,
2009.

[6] Johan Bollen, Huina Mao, and Xiaojun Zeng. Twitter mood predicts the stock market.
Journal of computational science, 2(1):1–8, 2011.

[7] Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques
for language modeling. In Proceedings of the 34th annual meeting on Association for
Computational Linguistics, pages 310–318. Association for Computational Linguistics,
1996.

[8] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Gated
feedback recurrent neural networks. In International Conference on Machine Learning,
pages 2067–2075, 2015.

[9] Bram Cohen. The bittorrent protocol specification, version 11031, 2008.

65

[10] Corinna Cortes and Vladimir Vapnik. Support vector machine. Machine learning, 20
(3):273–297, 1995.

[11] Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S Dhillon.
Information-theoretic metric learning. In Proceedings of the 24th international con-
ference on Machine learning, pages 209–216. ACM, 2007.

[12] Munmun De Choudhury and Scott Counts. Understanding affect in the workplace via
social media. In Proceedings of the 2013 Conference on Computer Supported Coop-
erative Work, CSCW ’13, pages 303–316, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-1331-5. doi: 10.1145/2441776.2441812. URL http://doi.acm.org/10.

1145/2441776.2441812.

[13] David L Donoho and Carrie Grimes. Hessian eigenmaps: Locally linear embedding
techniques for high-dimensional data. Proceedings of the National Academy of Sci-
ences, 100(10):5591–5596, 2003.

[14] Roy T Fielding. Architectural styles and the design of network-based software archi-
tectures. University of California, Irvine Doctoral dissertation, 2000.

[15] BL Fredickson. The role of positive emotions in positive psychology. American psy-
chologist, 56(3):218–226, 2001.

[16] github.com. Github public api, 2017. URL https://developer.github.com/v3/.
[Online; accessed November 2017, 2017].

[17] Jacob Goldberger, Geoffrey E Hinton, Sam T Roweis, and Ruslan R Salakhutdinov.
Neighbourhood components analysis. In Advances in neural information processing
systems, pages 513–520, 2005.

[18] Google. Bag of words model, 2017. URL https://google.ca/images. [Online;
accessed April 27, 2017].

[19] Google. Applications of autoencoders in natural language processing, 2017. URL
https://www.doc.ic.ac.uk/~js4416/163/website/nlp/. [Online; accessed April
27, 2017].

[20] Google. Vector representations of words, 2017. URL https://www.tensorflow.org/

tutorials/word2vec. [Online; accessed April 27, 2017].

[21] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

66

http://doi.acm.org/10.1145/2441776.2441812
http://doi.acm.org/10.1145/2441776.2441812
https://developer.github.com/v3/
https://google.ca/images
https://www.doc.ic.ac.uk/~js4416/163/website/nlp/
https://www.tensorflow.org/tutorials/word2vec
https://www.tensorflow.org/tutorials/word2vec

[22] Georgios Gousios and Diomidis Spinellis. Ghtorrent: Github’s data from a firehose.
In Proceedings of the 9th IEEE Working Conference on Mining Software Repositories,
MSR ’12, pages 12–21, Piscataway, NJ, USA, 2012. IEEE Press. ISBN 978-1-4673-
1761-0. URL http://dl.acm.org/citation.cfm?id=2664446.2664449.

[23] Jamie Guillory, Jason Spiegel, Molly Drislane, Benjamin Weiss, Walter Donner, and
Jeffrey Hancock. Upset now?: emotion contagion in distributed groups. In Proceedings
of the SIGCHI conference on human factors in computing systems, pages 745–748.
ACM, 2011.

[24] Emitza Guzman, David Azócar, and Yang Li. Sentiment analysis of commit comments
in github: An empirical study. In Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014, pages 352–355, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2863-0. doi: 10.1145/2597073.2597118. URL http://doi.

acm.org/10.1145/2597073.2597118.

[25] Emma Haddi, Xiaohui Liu, and Yong Shi. The role of text pre-processing in sentiment
analysis. Procedia Computer Science, 17:26–32, 2013.

[26] Jeffrey T Hancock, Kailyn Gee, Kevin Ciaccio, and Jennifer Mae-Hwah Lin. I’m sad
you’re sad: emotional contagion in cmc. In Proceedings of the 2008 ACM conference
on Computer supported cooperative work, pages 295–298. ACM, 2008.

[27] Trevor Hastie and Robert Tibshirani. Discriminant adaptive nearest neighbor clas-
sification. IEEE transactions on pattern analysis and machine intelligence, 18(6):
607–616, 1996.

[28] David R Heise. Modeling interactions in small groups. Social Psychology Quarterly,
76(1):52–72, 2013.

[29] Geoffrey E Hinton and Sam T Roweis. Stochastic neighbor embedding. In Advances
in neural information processing systems, pages 857–864, 2003.

[30] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[31] Li-Ping Jing, Hou-Kuan Huang, and Hong-Bo Shi. Improved feature selection ap-
proach tfidf in text mining. In Machine Learning and Cybernetics, 2002. Proceedings.
2002 International Conference on, volume 2, pages 944–946. IEEE, 2002.

67

http://dl.acm.org/citation.cfm?id=2664446.2664449
http://doi.acm.org/10.1145/2597073.2597118
http://doi.acm.org/10.1145/2597073.2597118

[32] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German,
and Daniela Damian. The promises and perils of mining github. In Proceedings of the
11th Working Conference on Mining Software Repositories, MSR 2014, pages 92–101,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2863-0. doi: 10.1145/2597073.
2597074. URL http://doi.acm.org/10.1145/2597073.2597074.

[33] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[34] Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram language mod-
eling. In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 Interna-
tional Conference on, volume 1, pages 181–184. IEEE, 1995.

[35] Donald Knuth. The TEXbook. Addison-Wesley, Reading, Massachusetts, 1986.

[36] Joseph B Kruskal and Myron Wish. Multidimensional scaling, volume 11. Sage, 1978.

[37] James T Kwok and Ivor W Tsang. Learning with idealized kernels. In Proceedings of
the 20th International Conference on Machine Learning (ICML-03), pages 400–407,
2003.

[38] Leslie Lamport. LATEX — A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, second edition, 1994.

[39] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

[40] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 2015.

[41] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9(Nov):2579–2605, 2008.

[42] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[43] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

68

http://doi.acm.org/10.1145/2597073.2597074

[44] Alessandro Murgia, Parastou Tourani, Bram Adams, and Marco Ortu. Do developers
feel emotions? an exploratory analysis of emotions in software artifacts. In Proceedings
of the 11th Working Conference on Mining Software Repositories, MSR 2014, pages
262–271, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2863-0. doi: 10.1145/
2597073.2597086. URL http://doi.acm.org/10.1145/2597073.2597086.

[45] W Gerrod Parrott. Emotions in social psychology: Essential readings. Psychology
Press, 2001.

[46] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors
for word representation. In Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 1532–1543, 2014.

[47] Charles Piller. Everyone is a critic in cyberspace. Los Angeles Times, 3(12):A1, 1999.

[48] Pintrest. Parrott’s Framework of emotions, year = 2017, note = [Online; accessed
April 27, 2017], url = https://www.pinterest.ca/patsyjpayne/emotions-n/?lp=true.

[49] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. Security and emotion:
sentiment analysis of security discussions on github. In Proceedings of the 11th working
conference on mining software repositories, pages 348–351. ACM, 2014.

[50] Robert Plutchik and Herman Van Praag. The measurement of suicidality, aggressivity
and impulsivity. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 13:
S23–S34, 1989.

[51] Sebastian Raschka. LDA vs PCA, year = 2017, note = [Online; accessed April 28,
2017], url = http://sebastianraschka.com/Articles/.

[52] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally
linear embedding. science, 290(5500):2323–2326, 2000.

[53] Sam Scott and Stan Matwin. Feature engineering for text classification. In Proceedings
of the Sixteenth International Conference on Machine Learning, ICML ’99, pages
379–388, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc. ISBN
1-55860-612-2. URL http://dl.acm.org/citation.cfm?id=645528.657484.

[54] sentistrength. Sentistrength, a lexical sentiment analysis tool, year = 2017, note =
[Online; accessed April 27, 2017], url = http://sentistrength.wlv.ac.uk/.

69

http://doi.acm.org/10.1145/2597073.2597086
http://dl.acm.org/citation.cfm?id=645528.657484

[55] Noam Shental, Tomer Hertz, Daphna Weinshall, and Misha Pavel. Adjustment learn-
ing and relevant component analysis. In European Conference on Computer Vision,
pages 776–790. Springer, 2002.

[56] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric frame-
work for nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

[57] Mike Thelwall, Kevan Buckley, and Georgios Paltoglou. Sentiment strength detection
for the social web. Journal of the Association for Information Science and Technology,
63(1):163–173, 2012.

[58] Ivor W Tsang, Pak-Ming Cheung, and James T Kwok. Kernel relevant component
analysis for distance metric learning. In Neural Networks, 2005. IJCNN’05. Proceed-
ings. 2005 IEEE International Joint Conference on, volume 2, pages 954–959. IEEE,
2005.

[59] Analytics Vidhya. PCA, year = 2017, note = [Online; accessed October
29, 2017], url = https://www.analyticsvidhya.com/blog/2016/03/practical-guide-
principal-component-analysis-python/.

[60] Yilun Wang. Understanding personality through social media.

[61] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. Distance metric learning
for large margin nearest neighbor classification. In Advances in neural information
processing systems, pages 1473–1480, 2006.

[62] Wikipedia, the free encyclopedia. Tf-idf, 2013. URL https://en.wikipedia.org/

wiki/. [Online; accessed April 27, 2013].

[63] Peter Willett. The porter stemming algorithm: then and now. Program, 40(3):219–
223, 2006.

[64] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemo-
metrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[65] Eric P Xing, Michael I Jordan, Stuart J Russell, and Andrew Y Ng. Distance metric
learning with application to clustering with side-information. In Advances in neural
information processing systems, pages 521–528, 2003.

[66] Liu Yang and Rong Jin. Distance metric learning: A comprehensive survey. Michigan
State Universiy, 2(2), 2006.

70

https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/

[67] Junping Zhang, Stan Z Li, and Jue Wang. Manifold learning and applications in
recognition. In Intelligent multimedia processing with soft computing, pages 281–300.
Springer, 2005.

[68] Zhenyue Zhang and Jing Wang. Mlle: Modified locally linear embedding using multi-
ple weights. In Advances in neural information processing systems, pages 1593–1600,
2007.

[69] Zhenyue Zhang and Hongyuan Zha. Principal manifolds and nonlinear dimension
reduction via local tangent space alignment. SIAM Journal of Scientific Computing,
26:313–338, 2002.

[70] Zhihua Zhang, James T Kwok, and Dit-Yan Yeung. Parametric distance metric learn-
ing with label information. In IJCAI, page 1450, 2003.

71

Appendix A

Data Collection and Amazon
Mechanical Turk Study

Here we detail the methodology for data collection from Amazon Mechanical turk. We
chose 834 random pull request ids from the database and collected a total of 3000 pull
request comments from those pull request ids.

We filtered the comments using the following procedure

1. We removed all the portions of code from the comment

2. We only used sentences in English. All non english words were filtered out.

After the aforementioned preprocessing steps, the 3000 comments were put on Amazon
Mechanical turk for annotation. Each comment was annotated by four different people.
Three of them were selected from amazon mechanical turk, and I was the fourth person.

We received ethics clearance from University of Waterloo Research Ethics Committee
ORE #22117. We had a selection process for people from mechanical turk. Initially, we
only put up fifty pull request comments for annotation and opened the task to the general
public. The top three best performing people were given an option to continue marking the
rest of the 2500 comments. The top three people were selected on the basis on how close
their annotations were to a set of fifty annotations marked separately by me and Chengyi
Zhou (student ID 20521138, who was an URA in the Computational Health Informatics
lab during Winter 2017.) All the top three performing people completed the task.

We now present the snapshots of the Amazon Mechanical study experiment.

72

04/11/2017 deerishi.pythonanywhere.com

http://deerishi.pythonanywhere.com/ 1/8

Multi Label Classification of Github comments
Please note that further registration to this HIT has been closed. Currently we have the required
number of people working on the HIT.

Thanks for agreeing to take part in the project. The project’s aim is to understand how conversations take place on the
website Github.com.

Pre Requisite knowledge required before doing the task

You should have at some basic programming background in any language. Ideally you should be aware what
Github.com(https://github.com/) is. You should be aware what code segments are and should be able to recognize
that a given line is a piece of code rather than a normal sentence.

Github is like a social network for programmers. For example on Facebook or twitter , people post their pictures and
other people comment on them. On Github people post their segments of code , and other people comment on

how good/bad the code is,
If the code does not work , people suggest ways on how to make it work

Here the data set we are dealing is from such interactions. People commenting on other people’s code. Consider this , if
you send a FRIEND REQUEST to someone on Facebook , the other person would have to ACCEPT it. Github operates
in a similar manner. Instead of friend requests, people send other people something called a PULL REQUEST (which is
basically a couple of lines of code) . On Facebook the friend request is accepted, on Github the Pull Request gets
MERGED (which means that other people have accepted the code you have written). In all the sentences in this
project, one person sends a piece of code (a.k.a. pull request) in hopes of getting it merged (a.k.a accepted) . Other
people comment on the piece of code explaining what needs to be done to improve the code in order to get it merged.
We would want you to label the sentences in the following 2 categories and remove any unnecessary lines of code in the
sentence :

73

04/11/2017 deerishi.pythonanywhere.com

http://deerishi.pythonanywhere.com/ 2/8

Task 1:

First category consists of the following 12 subcategories . The words in the brackets in the bracket signifies type of
behaviour portrayed in the sentence. You have to select at least 1 and a maximum of 3 sub categories for each sentence.

Shows Solidarity (help, compliment, gratify)
Shows tension release (josh, laugh with, cheer)
Agrees (agree with, understand,accommodate)
Gives Suggestion (encourage, cue, coach)
Gives opinion (evaluate, analyze, entreat)
Gives orientation (inform, educate, explain)
Asks for orientation (quiz, question, ask about)
Asks for opinion (consult, prompt, query)
Asks for suggestion (entreat, ask, beseech)
Disagrees (disagree with, ignore, hinder)
Shows Tension (fear, cajole, evade)
Shows Antagonism (argue with, deride, defy)

Task 2:

The second category is the kind of emotion displayed by the person writing the comment. Again there are 10 different
categories. You have to select at least 1 and a maximum of 3 emotions for each sentence.

Thanks
Sorry
Calm
Nervous
Careless
Cautious
Aggressive
Defensive
Happy

74

04/11/2017 deerishi.pythonanywhere.com

http://deerishi.pythonanywhere.com/ 3/8

Angry

Task 3:

Removing unnecessary lines of code. In the website, the section where the sentence is displayed, you are allowed to
modify the sentence. If you come across any unnecessary lines of code (which can be identified as anything not written
in english), you can simple use the backspace key to erase those. A segment of code can be identified as a sequence
of words that do not seem to be a valid english sentence. Such sequence of words should be erased by simply
pressing the backspace key or by selecting that portion of text with a mouse and then pressing backspace key or
delete key. Any line of the sentence that seem rather irrelevant to the classificaton of the sentence into the
specified categories should be removed. For example for the sentence

Added test to ensure single class is passed. Multiple classes gave false positive. e.g. < div id="id" class="class
class2"></div> $("#id").hasClass("class class2") => false

The latter part of the sentence is all code, you should erase that so that the sentence becomes

Added test to ensure single class is passed. Multiple classes gave false positive.

Instructions on how to label a sentence.

You do not have to understand what exactly is going on in a sentence. Since , each comment can involve a lot of
programming dependent terminology. The way to label the sentences is as follows : Looks for a sequence of words
would describe what the person did : For example :

Example 1

fallback for wildcard since there is no support to remove all classes and another loop didn't seem to make sense... there
is an issue with the wildcard (existing) where removeClass("*") gives invalid argument error.

The above sentence is a bit hard to label in the 2 categories. The way to proceed is to look for a sequence of words that
describe what the person did or is trying to convey:

75

04/11/2017 deerishi.pythonanywhere.com

http://deerishi.pythonanywhere.com/ 4/8

fallback for wildcard since there is no support to remove all classes and another loop didn't seem to make sense... there
is an issue with the wildcard (existing) where removeClass("*") gives invalid argument error.

The bold part of the sentence, signifies that the person is trying to convey that there is some issue which gives a error.
Now based on this bolded part, you have to label in the 2 categories. In the first category you could choose : Disagrees ,
Shows antagonism For the emotion you could choose : Aggressive

Example 2

I think you might need to prefix the string with ^ like above, because of some other processing we do later on the chain
with error messages.

The first category could be : Gives opinion The second category could be Cautious , Defensive

Example 3

I'd like to keep the YourKit stuff out of the oae module. You can deliver a custom setenv.sh.erb template via the
setenv_template param to oae::app::server If you add the YK java arguments to localconfig/templates/oae-setenv.sh.erb
then the oae module

The first category could be : Gives orientation, Shows Antagnism,DisAgrees. The second category could be Agressive ,
Defensive

Example 4

Yep, you are right, the problem is that we don't know if more headers have been added. Another option is to create a
'refresh' method and call it from outside every time a new header is created/removed. Makes sense for me.

The first category could be : Shows solidarity, Agrees, Gives suggestion The second category could be Thanks, Calm

Example 5

76

04/11/2017 deerishi.pythonanywhere.com

http://deerishi.pythonanywhere.com/ 5/8

good catch, thought i got everything. On Thu, Aug 9, 2012 at 12:21 PM, Greg Sadowski wrote: > In
GroupCommerce.SDK.V3.PublisherConsumerApp/Form1.Designer.cs: > > > @@ -812,6 +860,12 @@ private void
InitializeComponent()

Since the above comment has some unncessary code (and one not required line), you should simply remove it. So the
sentence now becomes

good catch, thought i got everything.

The first category could be : Shows solidarity, Agrees The second category could be Thanks

Example 6

I agree with Brad; either the *complete* experience, or an unadorned page-refreshing experience. I think a partially-
working automatic filter would be confusing. On 9 Aug 2012, at 17:02, Bradley Wright <notifications@github.com>
wrote: > In app/asse

Since the above comment has some unncessary code (and one not required line), you should simply remove it. So the
sentence now becomes

I agree with Brad; either the *complete* experience, or an unadorned page-refreshing experience. I think a partially-
working automatic filter would be confusing.

The first category could be : Agrees ,Gives Opinion ,Gives Orientation The second category could be Thanks , Calm

Please note that this HIT does not collect any personal information. The Register link down below only requires
a username and password just to keep track of the web sessions

Information and Consent letter

You are invited to participate in a research study conducted by Deepak Rishi, under the supervision of Prof. Jesse Hoey
of the University of Waterloo, Canada. The objectives of the research study are is to classify comments from Github
into certain categories. You should have some programming experience (in any language) to take part in this study.

77

04/11/2017 deerishi.pythonanywhere.com

http://deerishi.pythonanywhere.com/ 6/8

People without programming experience will not produce the necessary results. If you do not have programming
experience, please do not continue with this HIT.

If you decide to volunteer, you will be asked to complete a online survey that is completed anonymously. Participation
in this study is voluntary. There are no known or anticipated risks from participating in this study. The online suvey is
completed in 2 parts. The first 20 sentences are a screening test. Once you finish marking the first 20 sentences and the
results are in accordance to what we expect, you will be given the HIT code and an option to continue on to the 3000
sentences. Please note that you would be given the HIT code, regardless of fact that you get the option to continue on to
the next 3000 sentences. You will be paid 7 cents per sentence annotated, or $1.40 for completing all sentences in the
screening test.

Once we have the required number of people to do the task, further registration to this HIT would be closed. The
register tab on the website will no longer be visible. This will also be indicated at the top of the website. Please do not
attempt to continue with this HIT at that point.

At any point you may logout and continue the work at a later time. If you have already passed the screening , you will
not be required to mark the first 20 again. You would continue from where you left off.

It is important for you to know that any information that you provide will be confidential. All of the data will be
summarized and no individual could be identified from these summarized results. Furthermore, the web site is
programmed to collect responses alone and will not collect any information that could potentially identify you (such as
machine identifiers). You will be paid 7 cents per sentence annotated. We expect that each sentence will take about 25-
30 seconds to complete. A person with some programming experience can complete about 120 sentences in one hour.
After you have annotated 50-60 sentences, your speed for annotation would increase and you would be able to to
annotate a sentence in about 15-20 seconds. In addition, reading the instructions and becoming familiar with the tasks

78

04/11/2017 deerishi.pythonanywhere.com

http://deerishi.pythonanywhere.com/ 7/8

for the first few sentences will take approximately 10 minutes. We hope that each participant will complete 3000
sentences. From the moment you start the task , you would have 120 hours to complete the task. You can take breaks in
between. As mentioned earlier , at any point you can logout and when you login back, you will be continued form the
point you left off . We hope that each participant who passes the screening test will complete 3000 sentences.

If you choose to withdraw from the study, you can click on the get HIT code button and submit the code on Mechanical
turk. You would be given the payment as a bonus payment at the rate of 7 cents a sentence. If you wish to participate,
please visit the website mentioned below. The data, with no personal identifiers, collected from this study will be
maintained on a password-protected computer database in a restricted access area of the university. As well, the data
will be electronically archived after completion of the study and maintained for two years and then erased. Further
instructions on how to start the survey and examples sentences from Github are mentioned in the homepage of the link
given below.

This study has been reviewed and received ethics clearance through a University of Waterloo Research Ethics
Committee (ORE # 22117). If you have questions for the Committee contact the Chief Ethics Officer, Office of
Research Ethics, at 1-519-888-4567 ext. 35217 or ore-ceo@uwaterloo.ca.

For all other questions about the study, please contact (deerishi@gmail.com) Further, if you would like to receive a
copy of the results of this study, please contact either investigator. Thank you for considering participation in this study.

Consent to Participate By clicking on the register/login on the homepage of the survey link given below you agree of
your own free will, to participate in this study. By providing consent, you are not waiving your legal rights or releasing
the investigator(s) or involved institution(s) from their legal and professional responsibilities.

79

04/11/2017 Marking 57

http://deerishi.pythonanywhere.com/59/comment/ 1/1

Logout
Withdraw from task

Check Labelled Sentences So Far

Comment 57
User : calrishi Numarked : 57

This is fantastic news!

Select at least 1 and upto max 3 labels that best describe what the user is trying to convey

 Shows Solidarity (help, compliment, gratify)

 Shows tension release (josh, laugh with, cheer)

 Agrees (agree with, understand,accommodate)

 Gives Suggestion (encourage, cue, coach)

 Gives opinion (evaluate, analyze, entreat)

 Gives orientation (inform, educate, explain)

 Asks for orientation (quiz, question, ask about)

 Asks for opinon (consult, prompt, query)

 Asks for suggestion (entreat, ask, beseech)

 Disagrees (disagree with, ignore, hinder)

 Shows Tension (fear, cajole, evade)

 Shows Antagonism (argue with, deride, defy)

Select max 3 emotions that the person might have had while writing the
comment

 Thanks
 Sorry

 Calm
 Nervous

 Careless
 Cautious
 Aggressive

 Defensive
 Happy

 Angry

Submit and Next commentPrevious comment

Next comment without Submitting

80

Appendix B

Metric Learning Result Figures

This chapter illustrates the variation in the metrics of performance in the three classification
tasks (over six categories) discussed in Chapter 3 over the different parameters of ITML
and LMNN.

81

Figure B.1: Measures of performance vs number of ITML constraints for Agrees/Shows
solidarity/Shows Tension release vs Disagrees/Shows Antagnism/Shows Tension

82

Figure B.2: Measures of performance vs number of ITML constraints for Gives opin-
ion/Gives Suggestion/Gives orientation vs Asks for opinion/Asks for orientation/Asks for
suggestion

83

Figure B.3: Measures of performance vs number of ITML constraints for positive vs neg-
ative emotions

84

Figure B.4: Measures of performance vs number of LMNN constraints for Agrees/Shows
solidarity/Shows Tension release vs Disagrees/Shows Antagnism/Shows Tension

85

Figure B.5: Measures of performance vs number of LMNN constraints for Gives opin-
ion/Gives Suggestion/Gives orientation vs Asks for opinion/Asks for orientation/Asks for
suggestion

86

Figure B.6: Measures of performance vs number of LMNN constraints for positive vs
negative emotions

87

	List of Tables
	List of Figures
	Introduction
	Related Work
	GitHub as a Collaborative Software Development Platform
	Emotional Analysis on GitHub Data

	Machine Learning Techniques for Sentiment Analysis
	Input Feature Vectors
	Term frequency-inverse document frequency (tf-idf)
	Word Vectors
	TF-IDF weighted word vectors

	Distance Metric Learning
	Supervised Global Distance Metric Learning
	Supervised Local Distance Metric Learning

	Unsupervised Distance Metric learning
	Linear Methods

	Interaction Process Analysis

	Dataset description
	Dataset
	Annotated Dataset description
	Emotions inference from IPA mapping

	Machine Learning experiments
	Recurrent Neural Nets
	Long Short-Term Memory (LSTM)hochreiter1997long
	Gated recurrent units GRUs chung2015gated
	Convolutional Neural Nets (CNNs)lecun2015deep

	Experiment and Results
	Results

	Observations and Discussions

	Metric Learning experiments
	Large Margin Nearest Neighbor
	Information-Theoretic Metric Learning
	Experiment and Results
	Results

	Observations and Discussion

	Conclusions
	Further work

	References
	Data Collection and Amazon Mechanical Turk Study
	Metric Learning Result Figures

