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Abstract

Sentiment and emotional analysis on online collaborative software development forums
can be very useful to gain important insights into the behaviors and personalities of the
developers. Such information can later on be used to increase productivity of developers
by making recommendations on how to behave best in order to get a task accomplished.
However, due to the highly technical nature of the data present in online collaborative
software development forums, mining sentiments and emotions becomes a very challenging
task. In this work we present a new approach for mining sentiments and emotions from
software development datasets using Interaction Process Analysis(IPA) labels and machine
learning. We also apply distance metric learning as a preprocessing step before training a
feed forward neural network and report the precision, recall, F1 and accuracy.
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Chapter 1

Introduction

Sentiment and emotion analysis has become an integral part of social media. All inter-
actions on the internet generate some kind of sentiments or emotions. Emotions and
sentiments can influence our actions in a number of domains. For example, changes in
activity of buying and selling in the stock market can be correlated with the moods of peo-
ple evaluated with tweets [0] and consumer opinions on retailer sites can influence buyer
decisions [17]. Companies all over the world use sentiment analysis for various purposes,
such as:

e Understanding public opinion about products,
e Developing market strategy, and

e Improving customer service

Most sentiment and emotion analysis tasks are performed on datasets such as Twitter
feed, news articles and customer opinions about products (movies reviews, product reviews
on Amazon etc.). One relatively unexplored area in sentiment and emotional analysis
are discussions related to software engineering. Such discussions are very common on
technical blog posts, developer conversations on slack/IRC channels, mailing lists of open
source programming projects and pull request discussions on GitHub. Such discussions can
provide valuable insights into the behaviors and personalities of developers. Fredickson [15]
states that positive emotions like happiness helps people to be more creative, which are
essential for successful software design. On the other hand, Ambler [1] states that negative
emotions, fear or absence of courage might refrain developers from changing/refactoring



their code. De Choudhury and Counts [12] also show that emotions affect task quality,
productivity, creativity, group rapport and job satisfaction.

While data regarding discussions related to software engineering is openly available, it
is hard to perform sentiment and emotional analysis on such datasets due to the highly
technical nature of the discussions. The fact that these discussions might contain some
segments of code, only makes it harder to perform sentiment or emotion analysis. Most
of the work done on such datasets is not based on machine learning or natural language
processing. Murgia et al. [11] perform a feasibility study of emotions mining using Parrott’s
framework on the issue reports of Apache software foundation. Guzman et al. [21] use
lexical sentiment analysis to study emotions expressed in commit comments of different
open source projects. Pletea et al. [19] use Natural Language Text Processing (NLTK)
tool to explore sentiment analysis of security related discussions on GitHub. While these
studies are good, they do not necessarily achieve the main purpose of performing sentiment
analysis. The goal of sentiment/emotion analysis on software engineering discussions is
to build a generic model/framework which is able to provide insights into behaviors of
developers. None of Murgia et al. [11], Guzman et al. [241] and Pletea et al. [19] accomplish
this goal. Either the techniques used are not robust or the dataset on which the analysis
is performed is not big enough or it is simply not possible to infer the behaviors of the
developers from that dataset.

As previously mentioned, performing such analysis on software engineering datasets is
difficult. Getting such discussions labelled with emotions is very challenging and expensive.
This thesis aims to solve the problem of performing sentiment/emotional analysis on soft-
ware engineering datasets with limited labelled data. This thesis projects uses pull request
comments from GitHub. GitHub is one of the largest collaborative code hosting site built
on top of the git version control system. Pull request comments are comments written
by developers who are trying to get a patch of code merged with an existing codebase
on GitHub. Such comments are an excellent example of technical conversations between
developers.

The main contributions of this thesis are as follows:

1. We propose a new approach using Interaction Process Analysis (IPA) to perform
sentiment/emotional analysis on pull request comments on GitHub.

2. We created a new dataset of pull request comments from GitHub and got it annotated
into twenty two different categories (12 IPA categories and 10 emotions explained in
Chapter 3).



3. We used state of the art deep learning methods to use classify the pull request
comments into some of the categories (explained in Chapter 3) mentioned in step 2.

4. We applied state of the art distance metric learning algorithms: Information The-
oretic Metric Learning and Large margin Nearest Neighbor as a preprocessing step,
before training feedforward neural nets to predict precision, F1, recall and accuracy
while classifying the pull request comments into the different categories mentioned
in step 3.

The rest of the thesis is organized as follows:

1. Chapter 2 discusses some of the related work in this domain.
2. Chapter 3 discusses the dataset used in this thesis.

3. Chapter 4 discusses some deep learning algorithms and the classification results from
them.

4. Chapter 5 discusses two distance metric learning algorithms: Information Theoretic
Metric Learning and Large Margin Nearest Neighbor and the results after applying
them as preprocessing step.

5. Chapter 6 talks about about the conclusions, details some examples of how our
approach works better than an lexical analysis tool called SentiStrength and talks
about further work.



Chapter 2

Related Work

Over the past decade machine learning and natural language processing have played a
major role in advances in sentiment analysis. This chapter reviews the related work in
sentiment analysis in software engineering datasets, machine learning, natural language
processing, and Interaction Process Analysis (IPA).

2.1 GitHub as a Collaborative Software Development
Platform

These days, software development is a collaborative activity in which developers interact to
create and maintain a software system. GitHub is a collaborative code hosting site built on
top of the git version control system. In addition to code hosting, collaborative code review,
and integrated issue tracking, GitHub has integrated social features which developers use
to communicate, collaborate, and be aware of changes and others activities. Users are able
to subscribe to information by watching projects and following users, resulting in a feed of
information on those projects and users of interest [32]. Currently, GitHub is one of the
world’s largest code hosting site, with over 10.6 million repositories.

One of the major features of GitHub that enables collaborative development, is the
fork and pull model. In the fork and pull model, developers can create their own
copy of a repository and submit a pull request when they want the project maintainer to
pull their changes into the main branch. A pull request can be in one of the three states:

1. Open: An open pull request means that the pull request can still accept changes in
the code.



2. Merged: A merged pull request means that the patch of code sent with the pull
request has been integrated with the repository. After merging the pull request is
usually closed.

3. Closed: A closed pull request means that no further changes can take place for the
code on the pull request. A pull request does not need to be merged in order to be
closed.

Many of the projects hosted on GitHub are public, thus anyone can view the activity
within those projects. The activities includes actions around issues, pull requests, and
commits including comments and subscription information. The large amount of public
data on GitHub makes it possible for researchers to easily mine the project data [32].

To mine the data, GitHub has a public REST (Representation State Transfer) [11]
API that gives access to all of GitHub’s public repositories, user info, and pull request
comments, etc., which researchers can use to access information on GitHub. Although the
REST API is well designed and documented, it suffers from a few shortcomings such as:

1. The REST API has a rate limit of five thousand requests per hour, which makes the
complete download of the data impossible.

2. The overall schema of GitHub’s data is not documented.

3. The API does not provide facilities to obtain collections of the data’s key entities.
The existing API calls mainly allow navigation from one entity to another.

4. Events are only provided as streams, which disappear into a sliding window of 300
entries.

To overcome the aforementioned limitations of mining the data from GitHub, Gousios
and Spinellis [22] came up with GHTorrent: a service that gathers event streams and
data from the GitHub’s hosting site and provides that data back to the community in the
form of incremental MySQL/MongoDB data dumps distributed through the peer-to-peer
BitTorrent [9] protocol.

The main contributions of Gousios and Spinellis [22] are as follows:

1. Creating a documentation for GitHub’s schema by using GitHub’s REST API. Figure
2.1 shows a documentation of the schema created by Gousios and Spinellis [22].



2. Design and implementation of an extensible infrastructure for the collection of all
events exposed through GitHub’s APL.

3. Development of a scalable mechanism for providing researchers with GitHub’s data,
based on distributing incremental data dumps using a peer-to-peer protocol.

4. Ability to download separate csv (comma separated values) files for tables such as
pull request comments, commit comments * etc.

5. The provision of data that can track developers through both a projects process (issue
tracking, wiki) and its corresponding source code without resorting to heuristics.

!Commit comments/messages: are comments written by a developer when a patch of code is comitted
to the local git repository. These are usually short sentences describing the function of the patch of code.
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Figure 2.1: An overview of GitHub’s data schema[22]

2.1.1 Emotional Analysis on GitHub Data

Section 2.1 describes GitHub as a collaborative software development website. Human
collaboration inevitably evokes emotions like joy or sadness, which can affect the collabo-
ration either positively or negatively [11]. Determining emotions in open source projects
is particularly challenging as traditional ways of collecting information through experience
reports, interviews with managers or surveys are more difficult due to the non-hierarchical
structure of open source projects. The geographical distribution of developers among dif-
ferent regions and the volunteer basis in which developers contribute makes it harder to

infer emotional information present in online software development projects.




Guillory et al. [23] and Hancock et al. [26] show that it is possible to detect emotions
through computer-mediated communications systems, such as mailing lists and discus-
sion boards. Mining emotions from online discussion boards is relevant when face-to-face
meetings are not feasible. Most projects in a distributed environment have no personal in-
teraction. In software engineering, emotion mining applied to text artifacts can be further
used to provide hints on factors responsible for joy and satisfaction amongst developers
(e.g., new release), or fear and anger (e.g., deadline or a recurring bug) and also provide a
different perspective to interpret productivity and job satisfaction.

Murgia et al. [14] perform a feasibility study of emotions mining using Parrott’s frame-
work on the issue reports of Apache software foundation.

Parrott’s Framework[45]

Parrott’s framework classifies human emotions into a tree structure with three levels . Each
level refines the granularity of the previous level. Level one consists of 6 primary emotions:
love, sadness, anger, joy, surprise and fear. The other two levels consist of more fine
grained versions of emotions present in the previous level. For example, the second level
of love consists of affection, lust and longing. Level 3 of love consists of emotions such
as: passion, arousal, desire, etc. Murgia et al. [11] only consider the 6 primary emotions
for their work citing concise and intuitive nature of the primary emotions.

Emotion mining on issue commit comments

Murgia et al. [11] chose 392 random issue comments from the Apache software foundation
and then proceeded to label them in the six primary emotions described by Parrott’s
framework. They had a total of sixteen people label a small number of comments in
groups of two individuals. They found that on average 46.11 + 5% of all comments had
the same rating for all six emotions from both raters. The major results of [11] can be
summarized as follows:

1. Emotions such as love, sadness and joy obtained the least agreement among raters.

2. Raters agree more on the absence of emotions. This means that raters had more
confidence in identifying when an emotion is not present.

3. Knowing a context in which a comment is made does not play a significant role in the
rating of emotions, but when it does, it seems to cast more doubt than confidence,
unless more raters are used.



Sentiment analysis of commit comments on GitHub

Guzman et al. [21] use lexical sentiment analysis to study emotions expressed in commit
comments of different open source projects and analyze their relationship with different
factors such as used programming language, time and day of the week in which the commit
was made, team distribution and project approval.

Guzman et al. [21] analyzed a total of 60425 commit comments from the ghtorrent
suite [22]. The commit comments included 90 of the top-10 starred projects on GitHub.
SentiStrength [51], a lexical sentiment analysis extraction tool specialized in dealing

with short low quality texts was used for sentiment analysis of the commit comments.
Thelwall et al. [57] show that, SentiStrength has good accuracy for short texts on Twitter
tweets. Since GitHub commit messages are usually short and written in informal language,
SentiStrength is a good candidate for analyzing emotions in commit messages.

SentiStrength assigns fixed scores to tokens in a dictionary where common emoticons
are also included. Words with a negative emotion are given a value between [-5, -1] and
words with a positive emotion are given a value in the [1, 5] range. The 1 and -1 values
are used to give neutral scores to words, whereas 5 and -5 are used for words with a very
positive and very negative emotion respectively. All the scores assigned by SentiStrength
are integers. For example, love is assigned a score of 3, 1 and hate a 1, 4 score. Modifier
words and symbols also alter the score.

The procedure used by Guzman et al. [24] to find the sentiments in the commit messages
using SentiStrength is as follows:

1. The text in the commit message was divided into snippets of one or more sentences
and assigned a positive and negative score to each of the sentences by taking the
maximum and minimum scores among all the words in the sentence.

2. The positive and negative score of a snippet is calculated by taking the maximum
and minimum scores of the sentences forming it.

3. The emotion of the entire commit was the positive and negative emotion score snippet
average.

4. The whole commit message was assigned a score of zero when the positive and neg-
ative snippet average emotion scores are in the range [—1, 1].

5. The commit emotion score is equal to the negative snippet average score when the
snippets average negative emotion score times 1.5 is less than the average positive



score. When the opposite occurs, the commit is assigned the positive snippet average
score.

6. The snippet average negative scores are multiplied by 1.5, because negativity is con-

sidered to be less frequent in human written texts.

Table 2.1 shows an example of SentiStrength scores in some commit comments on
GitHub.

Sentence Positive score | Negative score
Sigh? Its fixed, man rejoice!! 5 -2
Wow amazing thread! even If Im not a Rails 5 1
developer!
MY PRECIOUSSS!!! 5 -1

If PHP code is producing errors with register
globals on you are terrible terrible programmer.

i : 1 -5
If you are using magic quotes you are
simply stupid.
But this commit message makes me sad :cry 1 -5
This is really terrible - changing :private to
:public without any deprecation warning? Not 1 -5
cool.
This is really terrible - changing :private to
:public without any deprecation warning?

1 -5

Not
cool.

Table 2.1: SentiStrength scores of some sentences

Sentiment Analysis of Security Discussions on GitHub

Pletea et al. [19] explore sentiment analysis of security related discussions on GitHub.
Pletea et al. [19] state that it is important to perform sentiment analysis on such discussions
so as to properly train developers to address security concerns in their applications, as
well as the need to test applications thoroughly for security vulnerabilities in order to
reduce frustration and improve overall project atmosphere. This is an another benefit of
sentiment analysis in software engineering in addition to the ones mentioned in Chapter

10



1 and Subsection 2.1.1. Pletea et al. [19] reported that approximately 10% of all the
discussions on GitHub were security related and they tended to have negative sentiments.
Pletea et al. [19] analyzed 60, 658 commits and 54,892 pull request comments.

Pletea et al. [19] used the Natural Language Text Processing (NLTK) tool [5] for sen-
timent analysis. Given an input text, NLTK outputs the probabilities that the text is
neutral, negative or positive as well as an aggregate label (one of neutral, negative or
positive) summarising the three scores. The probabilities for negative and positive will
add up to 1, while neutral is standalone. If neutral is greater than 0.5 then the label will
be neutral. Otherwise, the label will be negative or positive, whichever has the greater
probability. The tool was trained on movie reviews and uses two classifiers, a Naive Bayes
Classifier and a Hierarchical Classifier.

Using NLTK Pletea et al. [19] inferred that security-related discussions tend to be more
emotional than non-security-related discussions.

2.2 Machine Learning Techniques for Sentiment Anal-
ysis

2.2.1 Input Feature Vectors
Bag of words

In a bag of words representation [53] each feature corresponds to a single word found in
the training corpus, usually with case and punctuation removed. The Bag of words model
is also known as 1-of-N(or ’one-hot’) encoding. Figure 2.2 shows an example of the bag of
words model.

A common preprocessing step is to filter out frequent and infrequent words along with
stop-words (stop words are functional or connective words that are assumed to have no
information content).

In addition to the removal of frequent, infrequent, and stop words, a stemming algorithm
is often used to make the features more statistically independent [63]. Stemming has the
effect of mapping several morphological forms of words to a common feature. For example
the words learner, learning, and learned would all map to the common stem learn, and this
latter string would be placed in the feature set rather than the former three.

11



the dog is sitting on the mat
e | s | e [ cown | e | g [ sung | on | mar |

Figure 2.2: Bag of words feature vector for a sentence [1]

2.2.2 Term frequency—inverse document frequency (tf-idf)

Term frequency inverse document frequency (tf-idf) [31] is a statistical measure which is
used to evaluate how important a word is in a collection of documents or a corpus. The
importance of a particular word increases proportionally to the number of times a word
appears in the document and is offset by the number of times the word appears in the
corpus.

Tf-idf is one of the most popular features vector for text based applications like: search
engines, text summarization and recommender systems [62].

Tf-idf is calculated by the product of Term Frequency (TF) and Inverse Document
Frequency(IDF) which are defined as follows:

Term Frequency (TF): measures how frequently a term occurs in a document. It is
usually normalized by the number of terms in the document (document length).

Inverse Document Frequency(IDF): measures how important a term is. It weighs down
the frequent terms while scaling up the rare ones. It is calculated as eq. 2.1.

IDF(t) = log % 2.1)

where N is the total number of documents and N (t) is the total number of documents
with the term ¢ in it.

Haddi et al. [25] shows that simply using tf-idf as a preprocessing step for sentiment
analysis on movie reviews sentiments datasets, leads to considerable improvements in ac-
curacy, precision, recall and F1. For text query ranking applications, the sum of all the
tf-idf terms in a text query is also used as a ranking metric for that query.

12



2.2.3 Word Vectors

Subsections 2.2.1 and 2.2.2 describe a feature vector for textual data where the length of the
feature vector is the size of the entire vocabulary. Using the aforementioned approaches,
there isn’t much meaningful comparison that can be made between different feature vectors
other than equality testing. Also, it is impossible to compare the similarity /dissimilarity
of any two words/sentences using just the bag of words or tf-idf.

Word vectors (also known as distributed representation of words) on the other hand,
embed words in a continuous vector space where semantically similar words are mapped
to nearby points.

Distributed representation of words can be learnt with two approaches:

1. Continuous Bag-of-Words model (CBOW) [12]: In this approach, the model
predicts the current word from a window of surrounding context words. The order
of context words does not influence prediction.

2. Skip-Gram model [13]: In this approach, the model uses the current word to predict
the surrounding window of context words. The skip-gram architecture weighs nearby
context words more heavily than more distant context words.

According to Mikolov et al. [13] Skip-gram works well with small amount of the training
data, represents well even rare words or phrases, whereas CBOW can be several times faster
to train than the skip-gram, and have slightly better accuracy for the frequent words.

The concept of distributed representation of words can be traced back to Bengio et al.
[1], where the goal was to learn the joint probability function of sequences of words in a
language which is extremely difficult because of the curse of dimensionality. Bengio et al.
[1] proposed to solve the curse of dimensionality by learning a distributed representation for
words, where word vectors for a word were learnt by conditioning a word with the previous
words. Bengio et al. [1] use a single hidden layer neural network with tanh nonlinearity
followed by a softmax layer. Their approach can be summarized as follows:

1. Each word is mapped to a random fixed sized vector. These are the feature vectors.

2. The joint probability function of word sequences is modelled using feature vectors
described in step 1.

3. The word feature vectors and the parameters of the probability function are learnt
simultaneously.

13



The unnormalized log-probabilities for each output word y; is given by eq. 2.2.

y=b+ Wz + Utanh(d + Hx) (2.2)

Using the trained word vectors, Bengio et al. [1] were able to get better 10-20% im-
provements in perplexity, when compared to the state of the art method of smoothed
trigrams [34] [7].

The word vectors we use are skip gram based word vectors described by Mikolov et al.
[13]. Figure 2.3 shows the skip gram architecture used by Mikolov et al. [13].

Output
w(t-2)
Embedding w(t-1)
matrix
w(D)
w(t+1)
w(t+2)

Figure 2.3: The Skip-gram model architecture. The training objective is to learn word
vector representations that are good at predicting the nearby words [13]

Skip-gram models are trained using a binary classification objective (logistic regression)

to discriminate the actual target word from the context words. This can be written as a
softmax classifier as shown by eq. 2.3.

14



exp(ug ve)

> exp(ufve)

p(ole) = (2.3)

where W is the vocabulary size, o is the output/target word, ¢ is the context word, u?
is the word vector for the output word, ul is the word vector for the output word w and
v, 1s the word vector for the context word. The issue with softmax comes from the fact
the normalization term in the denominator of eq. 2.3 is computationally very expensive
when we have a large vocabulary (usually of the order of tens of millions). To get around
this problem, Mikolov et al. [13] use binary classification objective (logistic regression)
to discriminate the real target words w; from k imaginary (noise) words w, in the same
context. This is also known as negative sampling. Figure 2.4 illustrates this for CBOW
[20]. For skip-gram the direction is simply inverted.

Noise Classifier
W v W) W W w W @ @

Embeddings

the | dog | is |[sitting/under| the | tall |green| tree | tree

Figure 2.4: CBOW training using k negative examples.For skip-gram the direction is simply
inverted. [20]

The objective function used by Mikolov et al. [13] is given by 2.4.

Ji(0) = logo(ulv.) + Z Ejp(w)|logo(—u] v.)] (2.4)

=1

where o is the sigmoid function, o is the output/target word, c is the context word, ul
is the word vector for the output word, v, is the word vector for the context word and P(w)
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is the probability distribution from which the negative samples are taken from. Usually,
P(w) is the unigram distribution raised to the power 3/4 as shown by eq. 2.5. This power
enables less frequent words to be sampled more often.

P(w) = U(w)** (2.5)

Equation 2.4 is then summed up for all the time steps as shown by eq. 2.6.

T(6) = 7 3" (0) (26)

We trained the skip gram vectors using 64 negative samples on 400,000 random pull
request comments from GitHub. These 400,000 pull request comments were not a part of
the dataset we used for this project. These were random comments chosen from the openly
available GHTorrent database (discussed in Section ??). Table 2.2 shows the nearest words
to some random words after 44100000 iterations.

As can be seen in Table 2.2, semantically similar words are closer to each other. Word
vectors are also able to learn the relationship between the words.

Apart from CBOW [12] word vectors and skip gram word vectors [13], Pennington
et al. [16] presented another popular approach to get word vectors called Global Vec-
tors(GloVe). For GloVe the objective function to minimize is given by eq. 2.7.

T(6) =5 37 F(Py)lv; ~ logPy) (2.7

,j=1

where P;; is the probability that word j appears in the context of word ¢, w; and v,
are the word vectors of the two co-occurring words and f() is a weighting function which
should satisfy three properties:

L. f(0)=0
2. f(z) should be non decreasing

3. f(z) should be relatively small for large values of z.

An example of f(z) given by Pennington et al. [16] is shown by eq. 2.8.

1 otherwise

f(x) = {(x/xmw)a if © < Tynaw
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Table 2.2: Nearest words to some random words trained by Skipgram on 400k github pull
request comments

Word Nearest Words

check checks, checking, checked, qpointers, fleko, detect, rp-, settingscache

data stream, disk, payload, chunks, dataset, content, expressionvalueinfo, raw
since likely, longer, especially, currently, however, even, became, albeit

always false, truthy, guaranteed, true, never, beforehand, ever, null

reason reasons, use-case, question, storemixin, motivation, point, ehashman, rubbed
ok okay, yes, yeah, alright, ah, fine, yep, thanks

rather instead, opposed, recommend, suggest, consider, without, simply, avoid
name names, named, id, nam, rename, renamed, identifier, underscorized

change changes, revert, pingall, changed, bump, nononono, punt, reverted

could would, easily, please, maybe, bracers, configureflow, brandwe, possibly

even likely, still, though, since, doubt, anyway, possibly, obviously

probably | think, maybe, perhaps, guess, suppose, wonder, might, definitely

test tests, testing, suite, unit, cover, covers, pushapi, locatorio

want need, wan, able, going, wanted, worthwhile, na, wants

right yeah, yes, okay, ok, yep, yah, perfect, idiot

better nicer, best, cleaner, clearer, appropriate, suitable, simpler, safer

class classes, abstract, method, trait, interface, methods, fixedpathtypeddelimited, subclasses
like similar, weird, promising, strange, odd, amiss, sujest, passregistry

move put, moved, extract, moving, extracted, placed, hoist, encapsulate

call calls, calling, called, invoke, invoking, invoked, clientinvocation, onrejected
set setting, sets, unset, assign, overwrite, initialize, default, initialized

two three, couple, several, multiple, many, various, four, consecutive

fix fixing, fixes, fixed, investigate, rebase, correcting, tackle, merging

time minutes, hour, hours, minute, day, seconds, cycles, interval

though hmm, fine, certainly, still, guess, tbh, although, moment

version versions, vers, newer, releases, bumped, release, -snapshot, bump

comment, | comments, todo, fixme, note, documentation, javadoc, retracted, stableprovenance
object objects, array, obj, easystagedataset, nulltask, collection, model, map
maybe perhaps, probably, might, saying, think, wonder, possibly, could

pull commit, pul, pr, issues, bbbcbad, diff-ea, maybe-upgrade, bfabc

variable | variables, varia, vars, var, constant, varaible, shadowing, resetboard

user users, owner, superuser, person, customer, student, administrators, someone
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2.2.4 TF-IDF weighted word vectors

To get a distributed representation of a sentence, the average of word vectors can be taken
to get the vector representation. Another popular method is to take the weighted average
the vectors of the words according to the tf-idf values. The weighted vector representation
is then used to represent the vector representations of the sentence as a whole.

Wang [60] uses this approach to predict personalities of individuals from twitter.

2.3 Distance Metric Learning

Distance metric learning learns a distance function over a set of objects. The distance
function describes the similarity and dissimilarity among the different objects. Distance
metric learning is needed because each problem (such as recommendation systems, infor-
mation retrieval, image compression) has its own semantic notion of similarity, which is
often badly captured by standard metrics such as Euclidean distance. Distance metric
learning learns a metric that assigns small (resp. large) distance to pairs of examples that
are semantically similar (resp. dissimilar).

Learning a good distance metric in feature space is crucial in real-world applications,
such as information retrieval for learning to rank, in face verification/identification, and in
recommendation systems. For content based image retrieval systems, it is essential to use a
well defined similarity criteria to define similarity between images. Many machine learning
algorithms, such as K Nearest Neighbor (KNN), heavily rely on the distance metric for the
input data patterns since KNN relies on labels of nearby objects to decide on the label of
a new object. Metric learning can significantly improve the performance in classification,
clustering and retrieval tasks.

A distance metric D(x,y) should satisfy the following 4 properties

1. Non negativity: D(z,y) > 0.

2. Identity of indiscernibles: D(z,y) = 0 , iff x=y, else it is called a pseudo distance
metric.

3. Symmetry: D(z,y) = D(y,x).
4. Subadditivity: D(z,y) + D(y,2) > D(x, z).
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In practice, metric learning algorithms ignore the condition of identity of indiscernibles
and learn a pseudo-metric.

The field of distance metric learning can be divided into two main categories

1. Unsupervised distance metric learning.

2. Supervised distance metric learning: In this case the training examples are divided
into pairwise constraints: the equivalence constraints where pairs of data points that
belong to the same classes, and inequivalence constraints where pairs of data points
belong to different classes. This is further divided into the following two categories:

(a) Global distance metric learning: learns a distance metric in the global sense.
The learned metric satisfies all the pairwise constraints simultaneously.

(b) Local distance metric learning: learns a metric in the local setting. The learned
metric only satisfies local pairwise constraints. This is very useful for informa-
tion retrieval and K nearest neighbours classifiers since both of their performance
is influenced by data instances close to test/query examples.

The pairwise constraints can be represented as follows:

If n is the number of data points, C'= x1, 2, x3.....7,, are the collection of data points
where z;6 R™ is a data vector of m features, the set of equivalence constraints can be
denoted by eq. 2.9.

S = (24, z;)|z; and z; belong to the same class (2.9)
and the set of inequivalence constraints are denoted by eq. 2.10.

D = (z;,z;)|z; and to z; belong to different classes (2.10)

The distance metric matrix is denoted by MeR™*™ and the distance between two points
x and y is given by eq. 2.11.

di(z,y) =z —yli = (2 —y) M(z —y) (2.11)

M in eq. 2.11 is also called as Mahalanobis matrix.
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2.3.1 Supervised Global Distance Metric Learning

Supervised Global Distance Metric Learning learns a metric which attempts to keep all data
points within the same class close, while keeping all the data points in different classes far.
Xing et al. [65] formulate the metric learning problem as a convex programming problem
which learns a global distance metric that minimizes the distance between data points in the
equivalence constraints, subject to the constraint that the data pairs in the inequivalence
constraints are well separated.

Xing et al. [65] formulate the metric learning problem as follows:
Minacgmen Y |z —zjl[3 st A>0, > |l — ]3> 1 (2.12)
(z4,25)€eS (x4,25)eD

Although eq. 2.12 is a convex programming objective, it is difficult to solve it efficiently
for two reasons:

1. It does not fall into any special classes of convex programming such as quadratic
programming or semidefinite programming.

2. The optimization objective is not scalable as it is quadratic in the number of features.

3. With objective function eq. 2.12 it is not possible to estimate the probability of how
likely two points belong to the same class.

Kwok and Tsang [37] extend the optimization objective eq. 2.12 for non linear case
with the use of kernels.
2.3.2 Supervised Local Distance Metric Learning

This subsections details some of the important supervised local distance metric learning
algorithms.

Local Adaptive Distance Metric Learning

Supervised Local Distance Metric Learning attempts to learn feature weights that are
adapted to the individual test examples. For a given test example xq, the class posterior
probability can be estimated as eq. 2.13.
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> iy O(ieN (0))0(y; = j)
> imy 0(wieN ()

where n is the number of examples, x;e R™, and y;el, 2, 3.....J classes.

P(j|x0) =

(2.13)

Local Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [2] is technique to find a linear combination of features
that separates two or more classes. LDA computes the directions (linear discriminants)
that will represent the axes that that maximize the separation between multiple classes
and minimize the separation within classes. To find such a set of weights, LDA calculates
the eigenvectors of the matrix 7" as shown by eq. 2.14.

T=S,S, (2.14)

where S, is the within class covariance matrix (the weighted sum of covariance matrices
of each class) and Sj, is the between class covariance matrix. S,! captures the compactness
of each class, and S}, represents the separation of the class means. The transformed matrix
can be represented by eq. 2.15.

y = Srx (2.15)

where St is formed by stacking the principal eigenvectors of T' together.

Figure 2.5 shows an example of LDA when applied to the MNIST dataset. The MNIST
database (Modified National Institute of Standards and Technology database) is a large
database of handwritten digits from 0 to 9. Figure 2.5 shows that LDA is able to discrimi-
nate between different digits to some extent. The x and y axis of Figure 2.5 have no labels
because this is simply a dimension reduction example.

Hastie and Tibshirani [27] state that, LDA can be localized with the following proce-
dure:

1. Initialize distance metric ) as an identical matrix.

2. Calculate S, and S, using the points which are in the neighborhood of the testing
point zy measured by distance metric ) .
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Dimension Reduction by LDA

10

-20 -10 1] 10 20

Figure 2.5: Example of LDA on the MNIST dataset[51]

3. Update the distance metric ) as equation 2.16.

—1
2

d = S [+ el]Su (2.16)

B |
where Sy is S SpSu

Neighborhood Components Analysis

Neighborhood Components Analysis learns a Mahalanobis distance metric by maximizing
the leave one out cross validation.

Given labelled data L = (x1,¢;), .....(Zn, ¢,), NCA learns a distance matrix Q = AT A,
where A can be any matrix. This form of () guarantees the distance metric to be positive
semi-definite. The distance in eq. 2.11 can now be written as eq. 2.17.
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di(r,y) = |lv —ylfd = (v — )" Az — y) = (Az — Ay)" (Az — Ay) (2.17)

The probability of a point z; sharing the same label as z; can be written as eq. 2.18.

- exp(—||Az; — Az;|*)
Y s exp(— || Az — Axy|?)

(2.18)

The objective function of NCA is the maximization of the expected number of correctly
classified points f(A) given by eq. 2.19.

F(A) =3 log(>_pis) (2.19)

jeC

where C; is the class 7.

Yang and Jin [66] explain a few drawbacks of NCA such as:

1. NCA is not scalable, since its objective function is quadratic in the number of features.
2. Since NCA uses gradient descent, it is not guaranteed to converge to a global optima.

3. NCA can overfit, if the training data is less.

Relevant Component Analysis

Relevant Component Analysis (RCA) learns a full rank Mahalanobis distance metric based
on the weighted sum of in-class covariance matrices. It does so by applying a global linear
transformation to assign large weights to relevant dimensions and low weights to irrelevant
dimensions. These relevant dimensions are estimated using chunklets. In RCA, a chunklet
is defined as a subset of points that are known to belong to the same although unknown

class.

The steps to perform RCA are as follows:

1. Center each chunklet by subtracting its mean.
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Linear non linear
Global | PCA, MDS ISOMAP, TSNE
Local | LLP, LLE, Laplacian Eigenmap

Table 2.3: Unsupervised algorithms for dimension reduction

2. Compute the covariance matrix of the chunklets. For p points in £ chunklets, each
chunklet containing x;; with mean as 712;, the covariance matrix is computed as eq.
2.20.

Z Z]:(xﬁ — 1) (i — 1) " (2.20)

3. Whiten the covariance matrix in equation 2.20 by multiplying it with W = C=.
The Mahalanobis distance is the inverse of C.

4. The new transformed space can be found by ., = Wx.

Tsang et al. [58] show that RCA can also be kernelized.

2.4 Unsupervised Distance Metric learning

Unsupervised metric learning (also known as manifold learning) learns a low dimensional
manifold where the geometric relationships between most of the data are preserved. Un-
supervised Distance Metric learning is closely related to dimension reduction. Table 2.3
details the different unsupervised learning algorithms.

2.4.1 Linear Methods

The two main linear dimension reduction algorithms are

1. Principal Component Analysis (PCA)

2. Multidimensional Scaling (MDS)
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Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a linear dimensional reduction technique which
finds a subspace that best preserves the variance of the data. Principal components are
orthogonal directions that capture the most variance in the data.

If v1,vs...uq4 are the d principal components, X = [z1,xs....x,] is the data (column
are the data points) PCA’s objective function is to maximize the sample variance of the
projected data (equation 2.21).

1 n
— Z(UTSBZ') =T XXTvst. vTv=1 (2.21)
n

i=1
Taking the Lagrangian of the equation 2.21 we get 2.22.

max,v’ X XTv — Avlv (2.22)

Taking the derivative of 2.22 we get eq 2.23.

(XX = (2.23)

Equation 2.23 shows that the principal components are the eigenvectors of the covari-
ance matrix. A shows the amount of variability captured along that principal component.

An alternative viewpoint on PCA is that PCA finds the vectors v such that projection
onto the vectors yields the minimum mean squared reconstructi