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Abstract 

Mitochondria are double membrane-bound organelles present in all eukaryotic 

organisms and are involved in myriad cellular pathways. Cytochrome c oxidase (COX) is a 

mitochondrial inner membrane protein complex that is an essential component of the electron 

transport chain. The assembly of this multi-subunit protein complex is aided by the activities of 

proteins referred to as COX assembly factors. Mutations in COX assembly factors result in 

assembly failure and therefore cause COX deficiencies, which are associated with human 

diseases, such as Leigh syndrome. 

In this study, we used the model organism Saccharomyces cerevisiae to characterize 

phenotypes resulting from the loss of any one of a subset of COX assembly factors in cells 

grown to stationary phase. The vast majority of studies that involve yeast mitochondria have 

been performed in cells at late exponential phase/early diauxic shift, while the behaviours of 

mitochondrial mutants at stationary phase are still largely unexplored. 

Analyses of cellular functions such as growth, viability and budding index led us to 

uncover phenotypic differences among the COX assembly mutant strains that were further 

investigated as a first step towards identifying potential secondary functions of these proteins. 

Analysis of the cell cycle in a wild-type, respiratory competent strain and in COX assembly 

mutants led to the novel finding that strains unable to synthesize proteins involved in COX 

copper metalation, namely Cox17, Sco1 and Cox11, are characterized by a cell cycle 

progression defect. The same strains also displayed higher sensitivity to hydroxyurea, which is 

known to increase oxidative stress levels in yeast, leading us to propose that yeast strains 

defective for these proteins are subject to higher oxidative stress levels than mutants defective 

for COX assembly factors involved in other assembly pathways. The results of this study 

represent a major step forward in the phenotypic differentiation of COX deficiencies that arise 

from the loss of different assembly factors and may be relevant for future studies of human 

neurodegenerative disorders resulting from faulty COX assembly. 
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1 Chapter 1 

Introduction and Goals of the Study 

1.1 Mitochondria 

Mitochondria are subcellular organelles that are present in all eukaryotic cells and are 

known as “the powerhouse of the cell” due to their roles in energy producing processes such as 

oxidative phosphorylation (OXPHOS) and Krebs cycle. However, mitochondrial function 

relates to a variety of other pathways, including fatty acid oxidation, urea cycle and multiple 

biosynthetic reactions (Scheffler, 2007). 

Investigation of mitochondria for over a century has made these organelles well 

characterized. Structurally, mitochondria contain an outer membrane (OMM) and an inner 

membrane (IMM); the outer membrane is structured in a way that makes it permeable to 

molecules of the size of small proteins (Vander Heiden et al., 2000). On the other hand, the 

inner membrane constitutes an impermeable barrier where the electron transport chain 

components (ETC) are assembled (Mannella, 2006). Typical of the IMM are its folds, also 

known as cristae, which originate from invaginations of the membrane itself and provide an 

extended surface area (Mannella, 2006). The portion between the two membranes is called the 

intermembrane space (IMS), where protons originating from the electron transport pathway 

accumulate to form a gradient. Another mitochondrial compartment is the protein-rich matrix 

that is confined by the IMM and that contains the mitochondrial DNA (mtDNA). 

1.2 Yeast Mitochondria 

Mitochondrial biogenesis and function have been studied using a variety of 

experimental systems, with the yeast, Saccharomyces cerevisiae, being one of the most 

commonly used model organisms. Pioneering studies were performed by taking advantage of 

the high degree of conservation between human and yeast mitochondria at both structural and 

functional levels (Scheffler, 1999). One of the advantages of using yeast to study 

mitochondrial defects lies in the metabolism of this unicellular eukaryotic organism, as it can 

rely entirely on fermentation as a source of energy, allowing yeast to survive both mutations 
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that disrupt oxidative phosphorylation and even those resulting from the complete loss of 

mtDNA (Lasserre et al., 2015). 

Under appropriate environmental conditions, yeast can adopt respiratory metabolism to 

utilize non-fermentable carbon sources and generate ATP. The electron transport chain is the 

final step of the respiratory pathway and is composed of multi-subunit complexes embedded in 

the IMM (Figure 1.1). In most fungi and other eukaryotic organisms, electrons generated from 

NADH and FADH2 are sequentially transferred between four complexes (I-IV); Complex IV 

catalyzes the last step of this process, which is the transfer of electrons to molecular oxygen 

(Joseph-Horne et al., 2001; Stuart, 2008). Among the multi-subunit complexes of the ETC, 

NADH:ubiquinone oxidoreductase (Complex I), ubiquinol:cytochrome c oxidoreductase, also 

known as cytochrome bc1 (Complex III) and cytochrome c oxidase (Complex IV) couple the 

transfer of electrons to proton pumping from the mitochondrial matrix into the IMS (Saraste, 

1999); the succinate dehydrogenase complex (Complex II) mediates electron transfer from 

succinate to ubiquinone without the associated movement of protons (Joseph-Horne et al., 

2001). The mobile electron carriers that play a role in the ETC are ubiquinone, localized within 

the IMM, and cytochrome c, localized in the IMS (Stuart, 2008). The electrochemical gradient 

established by the ETC is essential for the production of ATP through the F1F0 ATP synthase, 

also known as Complex V (Joseph-Horne et al., 2001). One distinctive feature of the S. 

cerevisiae ETC is the absence of the traditional Complex I, found in all higher eukaryotes, 

replaced in its function by three NADH dehydrogenases, namely Nde1, Nde2 and Ndi1 

(Joseph-Horne et al., 2001). 
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Figure 1.1 Schematic of Saccharomyces cerevisiae electron transport chain showing the 
different molecules and protein complexes involved. IMM, inner mitochondrial membrane; 
OMM, outer mitochondrial membrane; IMS, mitochondrial intermembrane space; M, Matrix; 
Nde1/2, external NADH dehydrogenases; NDI1, external NADH dehydrogenases; II, succinate 
dehydrogenase complex; III, ubiquinol:cytochrome c oxidoreductase; IV, cytochrome c 
oxidase; V, F1F0 ATP synthase; UQ, ubiquinone; cyt c, cytochrome c; H+, proton gradient 
generated by the activity of some complexes of the electron transport chain. 

1.3 Cytochrome c Oxidase 

Cytochrome c oxidase (COX) is a multi-subunit protein complex of the IMM that plays 

a fundamental role during aerobic respiration by transferring electrons to molecular oxygen, 

which is the final electron acceptor of the ETC (Rich & Marechal, 2010). Investigation of 

COX started early in the 20th century and remains the subject of great interest for researchers 

worldwide today (Soto et al., 2012). Isolation of intact and functional COX by Fowler et al., 

(1962) was a breakthrough in the study of this enzyme, allowing subsequent characterization of 

its subunits (Rubin & Tzagoloff, 1973a). Another pioneering study, performed by Clark-

Walker & Linnane, (1966), led to the conclusion that synthesis of yeast respiratory complexes 

is carried out by two distinct protein synthesis machineries. Later, it was found that the core 

subunits (subunits 1, 2 and 3) of Complex IV are synthesized by mitochondrial ribosomes and 

have different chemical and structural properties when compared to the subunits synthesized 

by cytosolic ribosomes (Poyton & Schatz, 1975; Rubin & Tzagoloff, 1973b). 
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Another crucial achievement in COX research was the determination of the bovine 

COX crystal structure in the 1990s (Tsukihara et al., 1995, 1996; Yoshikawa et al., 1998), 

allowing the study of interface contacts between the various subunits. The knowledge obtained 

from the crystal structure was instrumental in discovering the presence of zinc, magnesium and 

sodium atoms within the protein complex; however, the roles played by these metals in COX 

are still unclear (Fontanesi et al., 2008). 

1.4 Assembly of Yeast Cytochrome c Oxidase 

Thirteen COX subunits have been characterized in humans while eleven are known in 

yeast. Among the structural subunits, COX1, COX2 and COX3 are large, hydrophobic trans-

membrane proteins that form the catalytic core of the complex and are encoded by 

mitochondrial DNA. The enzyme core is also known to contain two copper centers, namely 

CuA and CuB, and two heme groups, namely heme A and heme a3. The CuA copper center is 

located in subunit 2, while CuB and the two heme groups are found in subunit 1. All other 

subunits are encoded by nuclear DNA. Their roles vary from assembly and stabilization of the 

complex to determination of the dimeric active form of the enzyme and to formation of a 

protective shield around the core (Fontanesi et al., 2008). 

The assembly of this essential enzyme has been investigated extensively and most of 

what is known is due to work performed in mammalian systems and, to a lesser extent, in yeast 

(McStay et al., 2013). A first model was proposed in the 1980s following an experimental 

approach that included insertion of radiolabeled subunits into the nascent complex in rat liver 

mitochondria. It was also hypothesized that the insertion of the various subunits into the 

assembling complex would happen in a sequential, ordered manner (Wielburski & Nelson, 

1983). This model was confirmed by a study of human COX assembly intermediates by Blue-

Native gel electrophoresis. From this study it was concluded that COX assembly likely initiates 

around a seed formed by one of the three core subunits, COX1, and then proceeds with the 

insertion of the other subunits through formation of intermediates (Nijtmans et al., 1998). 

Subassemblies similar to those found in human cells were identified in yeast mutants for the 

core subunit cox2 and for the assembly chaperone pet100 (Church et al., 2005; Horan et al., 

2005), indicating that this pathway is conserved among eukaryotes. After formation of the first 

assembly intermediate, S1, composed of COX1 alone, COX4-I and COX5a subunits (Cox5a 



5 
 

and Cox6 in yeast) are inserted, marking the progression towards assembly of the second 

intermediate, S2 (Fontanesi et al., 2008). However, a necessary step between the first two 

assembly intermediates is the insertion of heme into COX1. It has been hypothesized that 

introduction of heme A into subunit 1 might have a role in stabilizing the COX1-COX4-

COX5a intermediate (Fontanesi et al., 2008). 

After formation of S2, all other subunits are inserted into the forming complex with the 

exceptions of COX6a and COX7a/b (yeast subunits 13 and 7, respectively), which are added to 

the holoenzyme at the end (Nijtmans et al., 1998; Williams et al., 2003) (Figure 1.2). 

 

Figure 1.2 Schematic of the initial phases of COX biogenesis. Cox1 is synthesized from 
mRNA through the functions of translational regulators such as Mss51 and Pet309. The first 
COX assembly intermediate, S1, is composed by Cox1 alone. The insertion of copper and iron 
redox centers marks progression to the second assembly intermediate, S2, which consists of the 
Cox1-Coa5a-Cox6 complex. COX assembly is then completed by the addition of all of the 
other subunits. COX, cytochrome c oxidase. Modified after Fontanesi et al., (2008). 

1.4.1 Cytochrome c Oxidase Assembly Factors 

Besides the structural subunits, a large number of COX assembly factors have been 

discovered and characterized. Yeast strains carrying mutations affecting COX assembly have 

provided a powerful tool for identifying genes encoding proteins that play a role in this process 

(Soto et al., 2012). The functions of assembly factors are multiple and include 
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activation/regulation of translation, membrane insertion, copper transport and heme 

biosynthesis (Zee & Glerum, 2006). However, none of the COX assembly factors 

characterized so far is known to associate with the assembled, functional enzyme. Although 

thorough research to identify and characterize factors involved in COX assembly has been 

conducted, functions of some of these proteins are still unknown. Yeast COX assembly factors, 

their human homologs and their functions are reported in Table 1.1. 
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Table 1.1 Yeast assembly factors sorted by their roles in cytochrome c oxidase biogenesis 
(modified after Zee & Glerum, 2006) 1. 

Protein Reference Function Localization Human 
Homolog 

Translational activators or regulators 
Pet309 (Manthey & McEwen, 1995) Cox1 translation Matrix LRPPRC 
Mss51 (Barrientos et al., 2004) Regulation of Cox1 translation Matrix  
Cox14 (Barrientos et al., 2004) Regulation of Cox1 translation IMM  
Coa3 (Mick et al., 2010) Regulation of Cox1 expression IMM CCDC56 
Pet111 (Mulero & Fox, 1993) Cox2 translation Matrix  
Pet54 (Brown et al., 1994) Cox3 translation Matrix  
Pet122 (Brown et al., 1994) Cox3 translation Matrix  
Pet494 (Brown et al., 1994) Cox3 translation Matrix  
Membrane Insertion 
Oxa1 (Hell et al., 1998) Insertion of charged domains IMM OXA1 
Mba1 (Ott et al., 2006) Insertion of uncharged domains IMM  
Cox18 (Saracco & Fox, 2002) Cox2 C-terminus insertion IMM  
Mss2 (Saracco & Fox, 2002) Cox2 C-terminus insertion IMM  
Pnt1 (Saracco & Fox, 2002) Cox2 C-terminus insertion IMM  
Subunit-specific chaperones 
Cox20 (Hell et al., 2000) Cox2 chaperone IMM COX20 
Copper insertion 
Cox17 (Glerum et al., 1996a) Copper chaperone Cytosol/IMS COX17 
Cox11 (Carr et al., 2005) Copper insertion into Cox1 IMM COX11 
Sco1 (Dickinson et al., 2000) Copper insertion into Cox2 IMM SCO1/SCO2 
Heme biosynthesis 
Cox10 (Tzagoloff et al., 1993) Heme b to heme O conversion IMM COX10 
Cox15 (Barros et al., 2001) Heme O to heme A conversion IMM COX15 
Pet117 (Taylor et al., 2017) Heme A synthesis Matrix  
Assembly chaperones 
Shy1 (Mashkevich et al., 1997) Subcomplex assembly IMM SURF1 
Pet100 (Church et al., 2005) Nuclear-encoded subunit assembly   
Unknown/Recently Characterized 
Cmc1 (Horn et al., 2008) Mitochondrial copper metabolism IMM CMC1 
Coa1 (Pierrel et al., 2007) Cofactor Insertion IMM  
Cox19 (Bode et al., 2015) Folding modulator in the IMS Cytosol/IMS COX19 
Cox23 (Barros et al., 2004) Copper chaperone Cytosol/IMS COX23 
Fmp32 (Paupe et al., 2015) Unknown Unknown CDC90A 
Pet191 (Khalimonchuk et al., 2008) Complex Maturation IMM PET191 
Cox16 (Carlson et al., 2003) Unknown IMM COX16 

                                                 
1 Imp1, Imp2 and Som1 are not included in this list as their specificity is not limited to COX assembly. 
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1.4.2 Assembly Factors in Heme A Biosynthesis  

As mentioned above, COX is the terminal enzyme of the mitochondrial electron 

transport chain where it catalyzes the oxidation of cytochrome c and the reduction of molecular 

oxygen to water. Essential to this function are heme A and a3 groups, which allow binding of 

oxygen to the complex. At least three ancillary factors are thought to be involved in the 

biogenesis of heme A molecules in yeast, namely Shy1, which is the yeast homolog of human 

SURF1, Cox10 and Cox15 (Barros et al., 2001; Smith et al., 2005; Tzagoloff et al., 1993). A 

model for heme A assembly involves Cox10, a heme O synthase, which generates a 

hydroxyethyl farnesyl heme by transferring a farnesyl diphosphate to protoheme. The heme O 

intermediate is then substrate of heme A synthase, Cox15, which oxidizes the heme O 

intermediate to generate heme A (Hederstedt, 2012; Moraes et al., 2004). Shy1, the yeast 

homolog of SURF1, is a protein thought to function in the early steps of COX assembly. The 

exact role played by Shy1 has not been completely defined. A study performed in Rhodobacter 

sphaeroides suggested a role for Shy1 in either formation or stabilization of heme a3 (Smith et 

al., 2005). Another hypothesis is that Shy1 might play a role in incorporating COX subunits 

into early subassemblies (Fontanesi, Jin, et al., 2008; Pierrel et al., 2007). 

Another study, by Bareth et al., (2013) identified a protein complex in yeast that 

includes Cox15 and Shy1, suggesting a functional link between these two factors (Bareth et al., 

2013). In the same study, association of Cox15 and Cox1 in the absence of Shy1 was also 

found, possibly explaining the residual COX activity detected in patients affected by Leigh 

syndrome caused by mutations of SURF1 (Coenen et al., 1999; Tiranti et al., 1998; Zhu et al., 

1998). Moreover, in the absence of Cox1, Cox15 still associated with early assembly 

intermediates while Shy1 did not. This led to the hypothesis that Shy1 might interact with 

Cox1 to prevent progression of COX assembly until the insertion of heme A by Cox15 is 

complete (Bareth et al., 2013). 

Adding to the knowledge provided by investigations of Shy1, Cox10 and Cox15, a recent 

study shed light on the function of a still uncharacterized assembly factor, Pet117, in yeast. 

This protein appears to localize in the mitochondrial matrix where it associates with the IMM 

and was found to interact with Cox15, possibly playing a role in Cox15 oligomerization, a 

necessary step for its function as a heme A synthase (Taylor et al., 2017).  
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1.4.3 Assembly Factors in Cytochrome c Oxidase Copper Metalation  

The insertion of redox centers is fundamental to the assembly of functional COX. In 

yeast, insertion of copper into CuA and CuB centers is facilitated by the activity of proteins 

capable of binding these ions. Cox17 is a small, natively unfolded (Abajian et al., 2004; Punter 

& Glerum, 2003), cysteine-rich protein that plays an essential role in COX assembly. Yeast 

cox17 null mutants fail to assemble a functional COX complex; however, this phenotype is 

rescued by the addition of copper to the growth media (Glerum et al., 1996a). The discovery of 

Cox17 dual localization to the cytoplasm and mitochondria led to the hypothesis of a copper-

shuttling function between the two cellular compartments for this protein (Beers et al., 1997). 

Once in the IMS, Cox17 is responsible for delivering copper ions to two other cuproproteins, 

namely Cox11 and Sco1 (Horng et al., 2004). Sco1 is a metallochaperone responsible for the 

transfer of copper to the copper center CuA in Cox2 (Dickinson et al., 2000; Lode et al., 2000). 

Sco1 is essential for COX assembly in yeast and its overexpression can rescue the phenotype 

of a cox17 null mutant, likely by increasing the efficiency of copper intake from alternate 

sources of cellular copper (Glerum et al., 1996b). In yeast, as well as in humans, a Sco1 

homolog, called Sco2 is present (Smits et al., 1994). However, it is believed that genes 

encoding yeast Sco1 and Sco2 resulted from a duplication event that occurred independently 

(paralogs) from the eponymous respective human genes (Papadopoulou et al., 1999). 

Interestingly, yeast strains depleted of Sco2 still succeed in assembling functional COX. 

Conversely, overexpression of this protein can rescue the phenotype resulting from point 

mutations of Sco1 but cannot compensate for the complete lack of Sco1; Sco2 overexpression 

can also rescue the respiratory deficiency of a strain lacking Cox17 (Glerum et al., 1996b). 

Another essential assembly factor in COX metalation is Cox11, a metallochaperone that 

receives copper ions from Cox17 and is responsible for the formation of the copper center, 

CuB, in Cox1 (Horng et al., 2004). 

The model for COX copper metalation based on Cox17 functioning as a shuttle 

between cytoplasm and mitochondria has been challenged. A study provided evidence that the 

Cox17-copper complex exists as a dimer in the cytosol and as a tetramer in the IMS (Heaton et 

al., 2001); therefore, the free passage of such a complex through the OMM would be unlikely 

(Banci et al., 2009). Reinforcing this theory, results of another study showed that when Cox17 
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is tethered to the inner mitochondrial membrane, the assembly of COX is not adversely 

affected (Cobine et al., 2004; Maxfield et al., 2004). Adding to the complexity of this pathway, 

a study by Cobine et al., (2004), demonstrated the existence of a copper pool in the 

mitochondrial matrix. Further investigations led to the identification of a low molecular weight 

complex formed by copper ions and a copper ligand (CuL). The copper ligand has not been 

fully characterized yet but it appears to be an anionic, fluorescent, non-proteinaceous molecule 

(Vest et al., 2013). CuL has been proposed to bind and transport copper ions from the cytosol 

to the IMS. Here, copper ions would be imported into the mitochondrial matrix with the aid of 

Pic2, a member of the mitochondrial carrier family (MCF) (Vest et al., 2013). The current 

model for copper provision to Sco1 and Cox11 is that Cox17 would enter the IMS in an 

unfolded state. Cox17 then becomes a substrate of Mia40, resulting in the formation of two 

disulfide bonds in Cox17 (Banci et al., 2009), allowing it to bind one copper molecule and 

subsequently transfer it to Sco1 and Cox11 (Figure 1.3). 
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Figure 1.3 Schematic of COX copper metalation pathway. Cox17 enters the IMS in a reduced 
state and becomes substrate of Mia40. Upon interaction with Mia40, Cox17 transitions to its 
oxidized state and becomes capable of binding copper ions that are then delivered to another 
two cuproproteins, Sco1 and Cox11, and ultimately to COX. How copper reaches Cox17, 
however, is unknown and matter of debate. A model has been proposed suggesting copper is 
shuttled from cytoplasm to the intermembrane space (IMS) with the aid of a non-proteinaceous 
copper ligand (CuL). Once in the IMS, ions would be transferred to the mitochondrial matrix 
through Pic2. The efflux of copper from the pool in the matrix, however, is still poorly 
understood and subject of investigation. Another two proteins, namely Cox19 and Cox23, are 
thought to play a yet unknown role in COX assembly. According to this model, an unknown 
transporter would be playing a role in the efflux of copper ions from the copper pool in the 
matrix to the IMS (Leary et al., 2009). Modified after Banci & Bertini, (2013). 

1.5. Mitochondrial Disease 

Decades of research devoted to the study of mitochondria and their functions have 

identified a number of mitochondria-related disorders and their underpinning mechanisms. The 

study of COX alone, as an example, has helped the understanding of a number of aberrant 

phenotypes caused by COX deficiencies. 
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The first mitochondrial disorder was observed by Luft et al., (1962) in a 30 year old 

woman who presented with symptoms that arose at a young age. Symptoms included extensive 

perspiration, a very high caloric intake and muscle weakness. At a cellular level, abnormal 

accumulation of variably sized mitochondria in muscle cells was observed. Moreover, electron 

microscopy of the organelles revealed the presence of paracrystalline inclusions (Luft, 1995). 

Over the years, an increasing number of mitochondrial disorders have been described. 

Interestingly, in spite of the fact that mitochondria are actively involved in several metabolic 

pathways, all the cases initially investigated were related to dysfunctions of the mitochondrial 

respiratory chain (Koenig, 2008). Sequencing and elucidation of the mitochondrial genome 

organization in the early 1980s (Anderson et al., 1981) represented a step forward in the 

identification of mitochondrial disorders. By 1989, the first deletion in the mtDNA that was 

associated with disease in humans was described (Holt et al., 1989). In the intervening years, 

over 200 mutations in the mtDNA associated with disease have been identified. These 

mutations are associated with mitochondrial disorders such as mitochondrial 

encephalomyopathy, lactic acidosis, stroke-like episodes (MELAS), and a host of other 

(McFarland et al., 2002, 2010) mitochondrial disorders that are caused by dysfunctions 

affecting the metabolic pathways in which mitochondria play a role (DiMauro et al., 2013). 

1.5.1 Leigh Syndrome and Respiratory Deficiency 

Leigh syndrome, also known as necrotizing encephalomyopathy, was first described by 

Denis Leigh in 1951 while studying the cause of death of an infant presenting symptoms that 

included, among others, blindness, deafness and spasticity of the limbs. Following autopsy, no 

abnormalities were recorded with the exception of the nervous system of the patient, which had 

necrotic lesions associated with demyelination, vascular proliferation and other aberrations 

(Finsterer et al., 2008; Leigh, 1951). Leigh syndrome is nowadays considered the most 

common mitochondrial disease in infants (Munaro et al., 1997), with an estimated frequency of 

1:40,000 births (Rahman et al., 1996). Typical manifestations of this disorder include 

developmental delay, lactic acidosis, necrotic lesions that affect the nervous system, and 

psychomotor regression (Leigh, 1951). 

The outcome of diagnosed Leigh syndrome is generally poor (Piao et al., 2006). In 

most cases, the disease is fatal and patients die during childhood (before age 5) (Bénit et al., 
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2004). The low frequency of this disorder and its lethality at a young age are some of the 

reasons why a curative treatment is not available yet. The onset of Leigh disease is often due to 

defects affecting mitochondrial enzymes. For example, deficiencies at the level of pyruvate 

dehydrogenase, coenzyme-Q and defects in mitochondrial respiratory chain complexes I, II, IV 

and V, have been shown to be associated with Leigh syndrome (Cooper et al., 2006; Horváth et 

al., 2006; Rahman et al., 1996). In the majority of Leigh disease cases that are related to 

respiratory chain deficiencies, mutations affect the subunits of the complexes (i.e. SDHA), or 

other factors involved in the assembly of the complexes (Debray et al., 2007). However, Leigh 

disease is not exclusively caused by mutations in nuclear encoded genes, as certain mutations 

of the mtDNA are a known determinants of Leigh disease (Rahman et al., 1996). 

1.5.2 Assembly Factors in Mitochondrial Disease 

The importance of COX assembly factors is underlined by the severity of phenotypes 

resulting from their aberrations. As mentioned above, Leigh syndrome is one of the most 

common mitochondrial diseases, especially among infants (Munaro et al., 1997). Mutations of 

SURF1 have been found in the majority of patients affected by this mitochondrial disorder 

(Brown & Brown, 1996; Munaro et al., 1997). 

Mutations of SCO1 and SCO2 result in diseases that occur as a consequence of COX 

deficiency. Interestingly, in spite of the cooperative functions of these proteins, their mutations 

result in very different clinical manifestations. Defects in both SCO1 and SCO2 can cause 

encephalopathy. However, mutations affecting SCO1 often associate with hepatopathy, while 

those affecting SCO2 result in cardiomyopathy. Similarly to what was observed for SCO2, 

aberrant versions of COX10, COX15 and COA5 were also found to associate with 

cardiomyopathy (Dimauro et al., 2012). While no diseases in humans are known to originate 

from mutations affecting the cuproprotein COX11, a single-nucleotide polymorphism found in 

the human COX11 gene has been identified as a significant risk factor in breast cancer (Ahmed 

et al., 2009; Fasching et al., 2012). 
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1.6. Secondary Functions of Cytochrome c Oxidase Assembly Factors 

A common belief that developed from studies performed in yeast is that mutations 

affecting COX assembly factors would result in very similar biochemical phenotypes in spite 

of the variety of functions performed by this multitude of proteins (Zee & Glerum, 2006). 

However, recent studies have provided evidence supporting the hypothesis that ancillary 

factors involved in the assembly of COX might have secondary functions not necessarily tied 

to the electron transport chain. 

Cox17, Cox11 and Sco1 are the three cuproproteins that, among the assembly factors, 

are proposed to carry out novel functions. As mentioned above, these proteins are all involved 

in delivering copper ions to COX during formation of the prosthetic centers in Cox1 and Cox2, 

a process in which Sco1 and Cox11 act downstream of Cox17. However, the steps of the 

pathway that precede interactions between Cox17 with both Cox11 and Sco1 are still partially 

unknown and a matter of debate. An open question, for example, is how Cox17 receives 

copper ions in the IMS, since a non-proteinaceous copper ligand that would replace Cox17 as a 

copper shuttle was identified (Vest et al., 2013). The hypothesis that Cox17 is not involved in 

shuttling copper ions to the IMS opens up the possibility that the cytosolic pool of the protein 

might be tied to a different function of the protein. 

1.6.1 Function of Cox17 in maintenance of Inner Membrane Integrity 

A recent study by Chojnacka et al., (2015), unveiled a novel function of Cox17, namely 

as a regulator of the assembly of the mitochondrial contact site complex (MICOS). 

MICOS is a six-subunit protein complex that was recently characterized. Localized to the 

cristae junction (Rabl et al., 2009), MICOS is essential in establishing and maintaining the 

mitochondrial inner membrane architecture and integrity. Among its six subunits, Mic60 and 

Mic10 constitute the core of the complex and their deficiency results in detachment of the 

cristae from the IM (John et al., 2005; Rabl et al., 2009). Both core components of the MICOS 

complex have been found interacting with proteins believed to function as stability and or 

biogenesis regulators. One regulator is the IMM protein Aim24, which interacts with Mic10 

(Harner et al., 2014), and the other one is Cox17, which was found to associate with Mic60. 
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The interaction between Cox17 and Mic60 seems to be independent of the Cox17-Sco1 

interaction that occurs during COX assembly (Chojnacka et al., 2015). Based on experimental 

evidence, two hypotheses were formulated with regards to Cox17’s novel role. One is that the 

small metallochaperone is necessary for assembly and stability of MICOS in a way that 

depends on its capability of binding copper ions. Alternatively, Cox17 activity could be limited 

to delivering copper ions to the complex, which might regulate the levels of mature MICOS 

(Chojnacka et al., 2015). 

1.6.2 Cox11 and Sco1 in Redox Metabolism 

The recently discovered connection of Cox17 to a pathway that regulates the 

architecture of the mitochondrial inner membrane was not the first time COX assembly factors 

have been proposed to carry out secondary functions. Sco1 and Cox11 were proposed to be 

involved in cellular processes related to redox metabolism (Banting & Glerum, 2006; Williams 

et al., 2005). Reactive oxygen species (ROS) are highly reactive molecules that can induce 

cellular damage through the modification of DNA and proteins. A variety of enzymes such as 

superoxide dismutases, catalases and peroxidases are utilized by the cells to prevent ROS-

induced damage (Figure 1.4) (Herrero et al., 2008). 

As mentioned above, Sco1 is a metallochaperone that receives copper ions from Cox17 

and delivers them to the copper center CuA in subunit 2. Nonetheless, studies performed over 

the past decade indicate that the activity of this protein might not be limited to formation of 

COX prosthetic centers. A Sco1 homolog in Neisseria has been shown to function in the 

protection of cells from oxidative stress (Seib et al., 2003). PrrC, a Sco1 homolog in 

Rhodobacter sphaeroides is a component of a signal transduction pathway involved in sensing 

changes to the oxygen tension and it was proposed to function as a copper binding protein as 

well as a thiol-disulfide oxidoreductase (McEwan et al., 2002). Interestingly, no copper ions 

were found in either human or Bacillus subtilis Sco1 crystal structures (Williams et al., 2005; 

Ye et al., 2005). Furthermore, similarities between SCO1 and the structures of peroxiredoxins 

and thioredoxins were found, suggesting that perhaps SCO1 could be involved in redox 

metabolism (Williams et al., 2005). This theory found support in the finding that a yeast sco1 

null mutant strain displayed hypersensitivity to concentrations of hydrogen peroxide in the 

millimolar range (Banting & Glerum, 2006). Another study investigated the effects of scox 
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knockdown (KD) in Drosophila. In this experimental system, scox is a single ortholog of the 

Sco proteins (Porcelli et al., 2010) and scox KD resulted in flies developing a severe 

cardiomyopathy. Affected cells displayed a metabolic switch from respiration to glycolysis and 

an increased amount of ROS. Ultimately, scox KD triggered p53-dependent apoptosis as a 

consequence of the increased oxidative stress. However, the disruption of either the p53 or of 

the apoptotic pathways rescued the effects of scox KD, reinforcing the theory that Sco1 might 

have a role in redox regulation (Martinez-Morentin et al., 2015; Williams et al., 2005). 

Cox11, another key component of the COX copper provision pathway has also been 

proposed to carry out a secondary function. Similarly to what was described for Sco1, yeast 

cox11 null mutant cells also displayed hypersensitivity to peroxide concentrations in the 

millimolar range (Banting & Glerum, 2006). Further investigation led to finding that 

hypersensitivity of sco1 mutants can be partially suppressed by overexpression of SCO2 or 

COX11, perhaps due to partially overlapping functions of Sco1 and Cox11 under oxidative 

stress conditions. On the other hand, overexpression of SCO1 or SCO2 cannot rescue peroxide 

sensitivity of a cox11 null mutant (Veniamin et al., 2011). Consolidating the theory of 

assembly factors being involved in redox metabolism was the finding that sco1 and cox11 null 

mutants clear exogenous peroxide to a lesser extent than a wild type strain (Veniamin et al., 

2011). 

In spite of the accumulating evidence in support of the notion that Cox11 and Sco1 

might be involved in redox metabolism, their precise roles remain unknown. Further 

investigation is therefore required, especially in the case of Sco1, where contradictory findings 

and hypotheses have been formulated. 
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Figure 1.4 Schematic of yeast redox metabolism. Cellular processes such as the oxidative 
phosphorylation can generate reactive oxygen species, namely oxygen superoxide, hydrogen 
peroxide and the hydroxyl radical. Activities of catalases, glutathione/thioredoxin peroxidases 
and superoxide dismutases are fundamental in counteracting the presence of highly reactive 
molecules within a cell. A reducing intracellular environment, which plays an important role in 
the defense against oxidative stress is ensured by proteins such as thioredoxins and 
glutaredoxins. REDOX, oxidation/reduction reactions that neutralize ROS and control the state 
of sulphydril groups. According to Herrero et al., (2008).  

1.7. Cellular Processes Linked to Mitochondrial Defects 

1.7.1 Yeast Apoptosis 

Mitochondria, as mentioned above, host numerous essential cellular processes, such as 

the electron transport chain. At the same time, these organelles are a known source of 

intracellular ROS. Increased ROS levels as a consequence of mitochondrial dysfunction have 

been associated with mechanisms involved in neurodegenerative disorders such as Parkinson’s 

disease (Sherer et al., 2003). Oxidative stress resulting from ROS accumulation beyond the 



18 
 

capacity of the cellular scavenging mechanisms has also been associated with cell death 

through the apoptotic pathway (Kannan et al., 2000). 

Apoptosis, also known as programmed cell death (PCD) is a process that allows 

removal of damaged cells within a population without negative impacts to the surrounding 

cells. Necrosis, in contrast, is a form of cell death that may occur in heavily damaged cells and 

that culminates in cell lysis with consequent release of cytoplasmic content in a manner that 

can have negative effects on other cells. In humans, apoptosis is an important factor in 

homeostasis and it is known to play a role in pathways linked to tumor suppression, 

neurodegenerative diseases and viral infections (Steller, 1995). 

In yeast, the existence of a PCD pathway had been uncertain for a long time. In fact, no 

protein homologous to human apoptotic regulators were found in either Schizosaccharomyces 

pombe or Saccharomyces cerevisiae. This uncertainty was removed by the pioneering work of 

Madeo et al., (1997), which demonstrated that deletion of cell cycle gene CDC48 resulted in 

Saccharomyces cerevisiae cells presenting with the hallmarks of apoptosis (Madeo et al., 

1997). Signs of activation of the PCD pathway are the presence of DNA cleavage, chromatin 

condensation, externalization of phosphatidylserine to the outer leaflet of the plasma 

membrane and the release of cytochrome c from mitochondria into the cytosol (Ludovico et al., 

2002; Madeo et al., 1997; Manon et al., 1997). 

To explain the debated “need” for a unicellular organism to undergo programmed cell 

death, it has been suggested that yeast apoptosis should be considered in the context of a cell 

population rather than focusing on individual cells. A study of yeast grown for prolonged 

lengths of time showed that chronological aging correlates with death by activation of the 

apoptotic pathway. Interestingly, it was found that yeast lacking Yca1, a yeast ortholog of 

mammalian caspases (Madeo et al., 2002), did not survive longer than wild-type cells with a 

functional apoptotic response pathway. Apoptosis might therefore benefit a population by 

safely removing less adapted cells, whose degradation releases simple nutrients that become 

available to other cells (Herker et al., 2004). 

A large body of knowledge has accumulated since the first evidence of apoptosis in 

yeast was provided. The many biochemical and morphological similarities between S. 

cerevisiae and human PCD uncovered by years of research make yeast a good model for the 

study of this cellular process. All the same, despite the similarities, yeast and human apoptosis 
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mechanisms also display some divergent characteristics (Guaragnella et al., 2012). The 

execution of mammalian apoptosis typically occurs through accumulation of Bcl2 homology 3 

(BH3) proteins on the OMM. An example of a BH3 containing protein that is involved in 

promoting apoptosis in humans is Bax, which acts to form pores on the OMM, in turn causing 

the release of cytochrome c to the cytoplasm (Danial et al., 2004). Cytochrome c then binds the 

adaptor protein Apaf1 causing it to oligomerize into a heptamer, called the apoptosome, which 

is responsible for the subsequent recruitment of caspase-9 proteins. Finally, caspase-9 proteins 

activate downstream caspases resulting in apoptotic induction. In yeast, on the other hand, only 

one gene homolog of caspases has been found to date, YCA1, which encodes a metacaspase 

that is characterized by substrate specificity different from that of the mammalian caspases 

(Wilkinson & Ramsdale, 2011). Similarly, only one BH3 protein was discovered in yeast, 

Ybh3, which was shown to translocate to mitochondria and induce programmed cell death by 

functioning in membrane depolarization upon treatment with acetic acid and hydrogen 

peroxide (Büttner et al., 2011). 

Intriguingly, yeast apoptosis has been shown to occur in a caspase-dependent, as well 

as a caspase-independent, fashion (reviewed by Madeo et al., 2009). However, some of the 

mechanisms underlying these pathways, as well as some of the factors involved, are not 

understood and remain the subject of investigation. A striking feature of yeast PCD is that its 

modes of activation and execution in response to stimuli seem to depend on the status of a cell. 

Phase of growth, metabolic state and environmental conditions are all factors that seem to have 

a role in determining the apoptotic route followed by cells (Guaragnella et al., 2012). For 

example, acetic acid treatment of cells with increased respiratory activity triggers a Nuc1-

dependent PCD (Büttner et al., 2007). On the other hand, cells at the stationary phase of 

growth were shown to be less sensitive to acetic acid treatment (Ludovico et al., 2002) and to 

become highly resistant to the presence of acetic acid after adaptation to acid stress 

(Guaragnella et al., 2008; Ždralević et al., 2012). 

1.7.1.1 Roles of Mitochondria in Yeast Apoptosis 

A link between mitochondria and apoptosis is known in both yeast and mammalian 

systems. In fact, these organelles are thought to be one of the major players in determining the 
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fate of a cell with respect to either a pro-survival or pro-apoptotic route. Evidence of a 

mitochondrial-dependent PCD in yeast was obtained after cytochrome c release in cells treated 

with acetic acid was observed. Reinforcing this theory, cells lacking mtDNA or the ATP 

synthase and cells unable to synthesize cytochrome c showed higher resistance to PCD 

induction upon exposure to acetic acid (Ludovico et al., 2002). 

A clear discriminant between the caspase-dependent and caspase-independent PCD pathways 

is the release of cytochrome c. In yeast, an equivalent of the human apoptosome has not been 

identified and yeast cytochrome c has been shown incapable of activating metazoan caspases 

(Bender et al., 2012; Hüttemann et al., 2011; Kluck et al., 2000). However, central questions 

regarding the exact function of cytochrome c in yeast apoptosis remain unanswered. For 

instance, the specific mechanisms and factors triggering cytochrome c release and the exact 

mode of function of this protein in this process are still unknown (Guaragnella et al., 2012). 

Despite evident gaps in knowledge, several studies have contributed to define a 

chronological model of the events occurring during a typical PCD response of yeast cells 

induced with acetic acid (Figure 1.5). Exposure to acetic acid shows its effect on cellular 

homeostasis, starting about 15 minutes after induction, through accumulation of ROS. 

Cytochrome c release has been shown to initiate approximately one hour post-induction and it 

continues for up to two and half hours. Afterwards, released cytochrome c is degraded, likely 

by the action of proteases whose identity remains unknown. Lastly, about three and a half 

hours after induction, cell death occurs through caspase-like activation (Giannattasio et al., 

2008, 2005, Guaragnella et al., 2008, 2006; Guaragnella, et al., 2010; Guaragnella et al, 2007; 

Pereira et al., 2007; Ribeiro et al., 2006). The pro-apoptotic roles of cytochrome c and Yca1 

are known, as it was found that defects in these two factors reduce the death rate. On the other 

hand, this also means that, even though at a lower rate, cells lacking cytochrome c and Yca1 

are still able to undergo PCD. Such evidence clearly indicates the presence of a caspase-

independent apoptotic pathway that is not characterized by cytochrome c release. Another 

notable feature of the Yca1-independent pathway is its insensitivity to the antioxidant N-acetyl 

cysteine, whose presence would prevent ROS formation, cytochrome c release and therefore 

disrupt the caspase-dependent PCD (Guaragnella et al., 2010; Guaragnella et al., 2011; 

Guaragnella, Passarella, et al., 2010; Pereira et al., 2007). 
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1.7.1.2 Other Mitochondrial Factors in Programmed Cell Death 

Besides the mechanisms and their components described above, other mitochondrial-

related factors have been implicated in yeast PCD. 

Considering the electron transport chain as a possible cell death trigger upon production of 

ROS through electron slippage, for instance, would be logical. In keeping with this this idea, 

investigations led to the identification of NDI1, a NADH dehydrogenase that is a homolog of 

AMID, a metazoan apoptotic inducing factor. Overexpression of NDI1 resulted in induction of 

apoptosis, perhaps due to ROS accumulation, in cells grown in glucose-rich media (Li et al., 

2006). 

In a discussion of yeast PCD, two other mitochondrial proteins, namely Nuc1 and Aif1, 

have been identified as players in this pathway. Aif1 is the yeast homolog of human AIF, a key 

player in caspase-independent apoptosis (Hangen et al., 2010). In yeast, as in humans, Aif1 

translocates from mitochondria to the nucleus upon apoptotic induction (Wissing et al., 2004). 

Interestingly, it appears that Aif1 might be especially involved in PCD associated with oxygen 

stress and aging (Xu et al., 2010). 

Similarly, Nuc1 is the yeast homolog of EndoG, a metazoan endonuclease G characterized by 

DNase/RNase activity, which is necessary for DNA degradation during apoptosis (Li et al., 

2001). Like Aif1, Nuc1 also translocates to the nuclear compartment after apoptosis has been 

triggered. However, when overexpressed, Nuc1 promotes PCD in a way that is independent of 

Aif1 and Yca1 (Büttner et al., 2007), indicating that PCD might be regulated by multiple, 

redundant pathways (Guaragnella et al., 2012). 
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Figure 1.5 Yeast caspase-dependent and caspase-independent apoptotic pathways (according to 
Guaragnella et al., 2012). The caspase-dependent pathway relies on the function of the yeast 
caspase Yca1 and on the release of cytochrome c to the cytosol following a burst in ROS 
generation. Disruption of the caspase-dependent route reduces but does not stop apoptotic 
activation, which can proceed in a caspase-independent manner and that is insensitive to the 
presence of a strong anti-oxidant such as N-Acetyl cysteine (NAC). Findings from numerous 
studies have generated a significant body of knowledge since yeast PCD was first described. 
Nevertheless, numerous questions are still unanswered and molecular mechanisms remain 
poorly understood and require further investigation. 

1.8. Yeast Stationary Phase 

Until about 30 years ago, common belief among the scientific community was that 

glucose depletion by growing yeast cells would result in growth arrest with “cell shut down” 

followed by death within a few days. This concept was later challenged by a series of studies 

that started a new chapter of yeast research. This work led to the discovery that, not only do 

cells not die after glucose depletion, they are capable of undergoing at least another cell 

division, allowing the whole growth cycle to be divided into three distinct phases. Exploration 

of this new scenario was stimulated by the thinking that, after all, most of the known cell types 
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exist in a non-dividing state and that yeasts survived for millennia under growth conditions far 

different from those provided in a typical research laboratory (Werner-Washburne et al., 2015). 

A common method used to grow yeast cells for research purposes involves incubation 

of this unicellular organism in glucose-rich media. This experimental set-up allows cells to 

rapidly grow and multiply exponentially by adopting fermentative metabolism based on the 

consumption of available simple sugars. This initial stage is known as the logarithmic phase of 

growth and it ends upon the exhaustion of the glucose in the media. The time required to reach 

this phase of growth may vary depending on the yeast strain used; however, as a general rule, 

cells will reach the end of logarithmic phase after growing for at least 24 hours. At this point, a 

switch from fermentative to respiratory metabolism is necessary to initiate the consumption of 

the non-fermentable carbon sources present in the media that are a by-product of fermentation. 

This phase is also referred to as the diauxic shift and is characterized by a slower growth rate, 

in comparison to the logarithmic phase. It can take several days for a yeast culture to deplete 

the carbon sources (Figure 1.6), whereupon, once resources to support cellular growth are no 

longer available, the culture reaches saturation and the cell density plateaus. This stage, which 

is usually reached after about a week, is known as stationary phase (Gray et al., 2004; Werner-

Washburne et al., 1993). 

 

Figure 1.6 Growth curve of yeast grown in glucose-containing media. Typically, a yeast 
culture will deplete glucose after about one day and enter the diauxic shift. Once the non-
fermentable carbon source are also exhausted, growth rate reaches a plateau determining the 
shift to the stationary phase of growth (According to Werner-Washburne et al., 2015). 
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1.8.1 Characteristics of Cells in Stationary Phase Cultures 

In considering cells in stationary phase cultures, it is important to distinguish between 

the terms “stationary phase” and “quiescence”. The “stationary phase” refers specifically to the 

state of a culture that has reached saturation, while the term quiescence relates to the state of a 

cell in such a culture (Gray et al., 2004). In the past, stationary phase cultures were seen as 

homogenous cell populations composed of individual cells characterized by an identical 

intrinsic status. This assumption was recently proved wrong by the identification of two 

distinct cell types within a saturated culture: quiescent and non-quiescent cells (Allen et al., 

2012). 

Upon density gradient separation of cell populations in a stationary phase culture, it 

was found that quiescent cells appeared more refractile by phase contrast microscopy and were 

more thermotolerant. These cells were also shown to retain high level of viability, to maintain 

reproductive capability for at least three weeks, to be genomically stable and to contain low 

amounts of ROS (Allen et al., 2012; Aragon et al., 2007). Synchronization is another feature 

typical of cells at this phase of growth. It is worth pointing out that synchronous, aging cells 

make an ideal candidate for the study of other processes such as aging and the cell cycle (Laun 

et al., 2006; Moore & Miller, 2007). 

In contrast, non-quiescent cells differ from quiescent cells in many substantive ways. 

While non-quiescent cells also show high levels of viability for up to three weeks, they do not 

seem to be able to retain their reproductive capability in a way that is independent of the 

replicative age. Interestingly, non-quiescent cells do not stop proliferating after glucose 

exhaustion and show significant accumulation of ROS after 7 days and apoptotic induction at 

14 days of incubation (Allen et al., 2012). Another significant difference between quiescent 

and non-quiescent cells comes from the analysis of mRNA content. Quiescent cells, in fact, 

displayed mRNA profiles that would fit cells that are preparing to face conditions of stress and 

therefore require mRNA encoding proteins involved in vesicle-mediated transport and ROS 

metabolism. Non-quiescent cells, instead, showed abundance of mRNA encoding proteins 

involved in DNA repair, recombination and rearrangement, consistent with a high proportion 

of these cells undergoing apoptosis or necrosis (Allen et al., 2012). 
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1.8.2 Mitochondrial Function in Stationary Phase Cultures 

Mitochondria have been proposed to exert an essential role in cell survival, especially 

after glucose depletion when cells switch from fermentative to respiratory metabolism. In 

stationary phase cultures, mitochondrial function seems to differ depending on the cell 

population. Cells in a quiescent state were found to contain intact and fully functional 

mitochondria characterized by high respiratory rate. On the contrary, mitochondria of cells that 

do not enter quiescence and keep dividing instead, seem to have no detectable respiratory 

function after seven days (Davidson et al., 2011). Moreover, it was found that a portion of non-

quiescent cells produce petite mutants at a high rate, a sign of increased mutations affecting 

mitochondrial function (Davidson et al., 2011). Trying to explain the heterogeneity of 

stationary cultures in a functional context, Werner-Washburne et al., (2015), hypothesized that 

non-quiescent cells in stationary phase cultures are the yeast equivalent of the “hypermutable” 

sub-population described in the microbial literature (Gonzalez et al., 2008; Sniegowski, 1995; 

Sundin & Weigand, 2007). In such a scenario, the predictable mutability would be triggered by 

stress conditions and would contribute to yeast evolution (Werner-Washburne et al., 2015). 

1.8.3  Yeast Stationary Phase Cultures as a Model for the Study of Higher 

Eukaryotes 

The intrinsic status of yeast cells in stationary phase cultures makes them suitable for 

the study of aging processes that could subsequently be inferred in higher eukaryotes. For 

instance, synchronization, which is a hallmark of quiescence (Laun et al., 2006; Moore & 

Miller, 2007), could be exploited for studies that could provide insights about cell cycle-related 

processes during aging. 

Programmed cell death pathways represent another relevant area of research involving 

stationary phase cells. Apoptotic pathways have already been proposed to play a role in the 

physiology of aging yeast populations (Herker et al., 2004). In higher eukaryotes, such as 

Drosophila and humans, aging of stem cell niches is the subject of extensive research 

(Drummond-Barbosa, 2008; Rossi et al., 2008; Wallenfang, 2007). Although many hypotheses 

for models of aging have been made, whether aging causes a decline in stem cell function or 

stem cells decline is responsible for aging remains unclear (Drummond-Barbosa, 2008). 
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Quiescent yeast cells share a number of physiological tracts with certain human cell 

types such as eggs, stem cells and neurons. Biochemical properties common to these cell types 

include high abundance of mRNAs associated with protein-mRNA complexes, low ROS 

levels, low apoptotic rate and the retention of reproductive capability (Allen et al., 2012; 

Aragon et al., 2007). 

1.9. Roles of Mitochondria in Yeast Cell Cycle 

1.9.1 Yeast Cell Cycle 

The cell cycle consists of a set of events that occur in a specific order and that are 

necessary to ensure cell growth and division. Cell cycle progression and its control systems 

within a cell have been investigated for a long time and studies performed using S. cerevisiae 

have contributed greatly to the understanding of this process in higher eukaryotes (Nasmyth, 

1996). 

As a fundamental element in the life cycle of a cell, proper execution of cell division requires 

tight control. Cell cycle phases and their control systems were found to be strongly conserved 

among eukaryotes from unicellular organisms, such as yeast, to humans. Given the nature of 

cell cycle control networks, it is possible to approximate cell cycle events as an alternation 

between two self-maintaining stable steady states (G1 and S/G2/M) (Nasmyth, 1996). Work 

performed in the 1970s by Hartwell and co-workers has built the foundation of our current 

understanding of cell cycle events. A series of experiments led to the isolation and 

characterization of 150 temperature-sensitive Saccharomyces cerevisiae mutant strains. These 

cells were capable of reproducing at the permissive temperature of 23 °C but not at the 

restrictive temperature of 36 °C, allowing for the identifications of 32 genes encoding proteins 

that are essential for completing cell division (Hartwell et al, 1973). Cells defective for 

essential cell cycle proteins displayed growth arrest at specific stages and allowed the building 

of models that defined the order of cell cycle events based on the phenotypes observed. For 

example, cdc28 mutant cells did not display any of the typical cell cycle events, leading to the 

conclusion that the encoded protein was involved in one of the early steps, later defined as 

START (Hartwell et al, 1973). Research conducted in the following years has revealed that 

Cdc28 belongs to a group of cyclin-dependent protein kinases (CDKs), which are fundamental 
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in regulating cell cycle progression. These proteins, upon interaction with certain cyclins, are 

responsible for phosphorylation of target proteins needed to initiate processes such as DNA 

replication, breakdown of the nuclear envelope, chromosome condensation and spindle 

assembly (Morgan, 1995; Murray, 2004). 

1.9.1.1 Cell Cycle Phases 

A growing cell initially undergoes a Gap1 phase, G1, the longest of the Gap periods, 

and it will then face three different choices. First, a cell might decide to proceed with DNA 

replication and division. Alternatively, if conditions are unfavourable, a cell might exit the cell 

cycle and enter a G0 or quiescent state. Ultimately, haploid yeast strains might undergo mating 

with cells of the opposite mating type; the response to release of mating hormones is arrest of 

the cell cycle in G1 (Forsburg & Nurse, 1991). 

A cell is committed to completing division once it has reached a sufficient size and has 

passed the START point (Figure 1.8). At this stage, increased cyclin-CDK activity induces 

activation of G1-S transcription factors. Among the first cyclins to be transcribed are yeast 

Cln1 and Cln2 (Eser et al., 2011).Through a positive feedback mechanism, G1 cyclins are 

capable of increasing their own transcription. This sequence of events culminates with 

increased CDK-cyclin activity which commits a cell to complete division (Bertoli et al., 2013). 

Hence, a cell that passes the START must complete the processes that eventually lead to 

division, starting with replication of the genomic content during the synthesis (S) phase. DNA 

synthesis takes approximately 25 % of the time required for a cell to proliferate (Hartwell, 

1974). Generally, DNA replication also corresponds to the emergence of a bud from the 

mother cell. In cell cycle research, morphological changes associated with progression are an 

important feature that can be used to estimate the phase a certain cell is at by visual 

observation. Duplication of the DNA content is a multi-step process that starts with unwinding 

of the double helix and proceeds through the action of DNA polymerases (reviewed in Labib, 

(2010)). 

When DNA replication is complete, cells will transition through a Gap2 (G2) phase 

before initiating nuclear and cellular division. G2 phase is generally shorter than G1 and allows 
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mother and daughter cells to grow in size before entering mitosis. Also, at this stage the 

nucleus starts to migrate towards the bud neck (Hartwell, 1974). 

The events that come after G2 and that conclude cellular reproduction, are nuclear and 

cellular division. Prophase is the first step of mitosis and is characterized by attaching of 

microtubules to sister kinetochores. Chromosome alignment follows during metaphase and 

sister chromatids are separated during anaphase. Lastly, spindle disassembly and nuclear 

membrane constriction during telophase are some of the events associated with the conclusion 

of mitosis (Winey & O’Toole, 2001). The execution of the cell cycle leads to a mother cell 

from which a small bud has emerged (Figure 1.7). At this point, separation of the bud from the 

mother will happen following constriction of an actomyosin ring, septum formation and 

subsequent destruction. The separation of the bud from a mother cell is also characterized by 

the formation of a chitin bud scar that will remain on the mother cell (Hartwell, 1974). 

 
Figure 1.7 Photograph of wild-type yeast budding cell. Arrowhead highlights a mitochondrion. 
According to Srikumar et al., (2013). Morphological changes, such as the emergence of a bud 
when cells enter the S phase can be used to monitor cell cycle progression. 



29 
 

 
Figure 1.8 Typical yeast cell cycle progression (according to Delobel & Tesnière, (2014)). A 
cell will initially grow during a Gap1 (G1) phase until a critical size is reached. Once the 
START checkpoint is passed, a cell will initiate the DNA replication phase (S). A Gap2 (G2) 
phase, where chromosome segregations occurs, precedes the mitosis phase (M) and the 
cytokinesis. 

1.9.1.2 Mitochondrial Involvement in Regulation of Cell Cycle Events 

The involvement of mitochondria in myriad pathways makes these organelles a crucial 

factor in cell homeostasis, particularly given their multiple functions in cellular metabolism. In 

the recent past, the hypothesis of a connection between metabolic processes and cell cycle has 

received support from growing experimental evidence. Being fundamental in many 

biochemical pathways, mitochondria have also been the subject of investigation in this area. 

Studies in human cells have shown that the use of serum deprived media stops DNA 

replication, while removal of glucose or certain amino acids results in arrest at G0/G1 phase 

(Holley & Kiernan, 1974; Lee & Finkel, 2013). 

One pathway associated with growth arrest in the absence of glucose was found to be mediated 

by p53 and dependent on AMP-activated protein kinase activity. Other energetic stresses such 

as ETC disruption were also found to trigger p53-mediated cell cycle arrest (Mandal et al., 

2005). Two pathways have been linked to cell cycle arrest induced by mitochondrial 

dysfunction in Drosophila. Growth arrest can occur through p53-mediated degradation of 
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cyclin E (Mandal et al., 2010, 2005) or via ROS-dependent induction of Dacapo, which is the 

Drosophila homolog of human p27 (Owusu-Ansah et al., 2008). 

Evidence of mitochondrial influence on cell cycle events in yeast is also emerging. A 

study in S. cerevisiae showed that cells lacking mtDNA are characterized by a slower G1-S 

progression in comparison to wild-type. The same study demonstrated that the lack of mtDNA 

per se, and not the lack of mtDNA-encoded gene products, determines G1 arrest. Interestingly, 

it was also demonstrated that this G1 arrest is mediated by Rad53, the yeast ortholog of the 

CHK2 kinase. This finding is a first indication that proteins involved in response to DNA 

damage might also function in mtDNA maintenance and checkpoint (Lee & Finkel, 2013). 

A connection between oxidative stress and cell cycle defects has also been established. When 

synchronized yeast cells were treated with a known reactive oxygen species, such as hydrogen 

peroxide, a delayed S phase was initially detected, followed later by arrest at G2/M (Shapira et 

al., 2004). Such a defect was attributed to hydrogen peroxide effects on gene regulation 

associated with the G2/M transcriptional complex Mcm1-Fkh2-Ndd1 (Shapira et al., 2004). It 

was also proposed that this distinct cell cycle response could be due to the modification of 

protein cysteines or methionines by the peroxide treatment. Another, more recent study, 

reported that S. pombe cells carrying a mutated version of a gene involved in heme 

biosynthesis were hypersensitive to hydroxyurea treatment (HU). The authors suggested that 

the mitochondrial defect caused by heme deficiency, combined with HU treatment, might 

increase ROS production to levels that exceed the capability of cellular ROS scavenging 

mechanisms (Singh & Xu, 2017). 

1.10. Goals of the Study 

Cytochrome c Oxidase is a mitochondrial inner membrane protein complex that plays a 

fundamental role in the electron transport chain. The importance of this complex is underlined 

by human diseases caused by defects in COX function and assembly. Extensive research in 

mammals and other model organisms has led to an improved understanding of COX function 

and assembly; however, there remain many open questions and molecular mechanisms not yet 

understood. In the recent past, evidence has emerged that certain COX assembly factors may 

have secondary functions unrelated to their roles in the assembly of a functional electron 

transport chain. 
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The majority of studies performed in yeast, and involving the COX complex, have 

utilized cells grown to late exponential phase/early diauxic shift. However, preliminary 

experiments for the study presented here suggested a differential expression of Cox17 at 

different phases of growth, namely exponential and stationary phases. Detection of increased 

Cox17 protein levels in whole cell lysates at stationary phase led us to hypothesize that Cox17 

might have a novel, secondary function in the yeast stationary phase. 
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2 Chapter 2 

Materials and Methods 

2.1 Yeast Strains 

Table 2.1 Yeast strains used in this study 

Strain Genotype Source 

W303 MATa, ade2-1 his3-1,15 leu2-3,112 trp1-1 ura3-1 Glerum Lab 

W303 MATα, ade2-1 his3-1,15 leu2-3,112 trp1-1 ura3-1 Glerum Lab 

W303 ρ0 MATa, ade2-1 his3-1,15 leu2-3,112 trp1-1 ura3-1 Glerum Lab 

W303 ρ0 MATα, ade2-1 his3-1,15 leu2-3,112 trp1-1 ura3-1 Glerum Lab 

W303ΔCOX17 MATa, ade2-1 his3-1,15 leu2-3,112 trp1-1 ura3-1 COX17::TRP1 This Study 

W303ΔCOX17 MATα, ade2-1 his3-1,15 leu2-3,112 trp1-1 ura3-1 COX17::TRP1 Glerum Lab 

W303ΔSCO1  MATa, ade2-1 his3-1,15 leu2-3,112 trp1-1 ura3-1 SCO1::URA3 Glerum Lab 

W303ΔCOX11  MATa, ade2-1 his3-1,15 leu2-3,112 trp1-1 ura3-1 COX11::HIS3 Glerum Lab 

W303ΔCOX4  MATa, ade2-1 his3-1,15 leu2-3,112 trp1-1 ura3-1 COX4::URA3 This Study 

W30Δ3COX4  MATα, ade2-1 his3-1,15 leu2-3,112 trp1-1 ura3-1 COX4::URA3 Glerum Lab 

W30Δ3COX15 MATa, ade2–1 his3–1,15 leu2–3,112 trp1–1 ura3–1 cox15::HIS3 Glerum Lab 

KL14 MATα met-6 Glerum Lab 

CB11 MATa ade-1 Glerum Lab 

Strains Used for LacZ Assay 

W303plNEG MAT a ade2-1 his3-11, 15 leu2-3,112 trp1-1 ura3-1 + YEp 351 - LacZ Glerum Lab 

W303plCOX17  MAT a ade2-1 his3-11, 15 leu2-3,112 trp1-1 ura3-1 + 5’- COX17 UTR + LacZ Glerum Lab 

W303plSCO1  MAT a ade2-1 his3-11, 15 leu2-3,112 trp1-1 ura3-1 + 5’- SCO1 UTR + LacZ Glerum Lab 

W303plCOX11 MAT a ade2-1 his3-11, 15 leu2-3,112 trp1-1 ura3-1 + 5’- COX11 UTR + LacZ Glerum Lab 

2.2 Yeast Growth Curve 

Yeast growth curves were obtained by measuring the optical density of a wild-type and 

mitochondrial mutant strains at 600 nm (OD600). Cells were incubated overnight at 30 °C and 

230 rpm in YPD media (2 % glucose, 2 % peptone, 1 % yeast extract). The following day, 

cultures were normalized to an OD600 = 0.1 (t = 0 h) and incubated under the same conditions. 

The time of incubation represents the starting point (t = 0 h) of the growth curve. To determine 
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transitions through different phases of yeast growth, OD600 was measured and the values 

plotted against time to obtain the growth curve. 

2.3 Mating and Sporulation 

Mating and subsequent sporulation of diploid strains were used to obtain MAT a 

W303ΔCOX17 and MAT a W303ΔCOX4. These strains were used to perform synchronization 

experiments using the mating hormone α-factor. 

Diploid patches were made on YPD agar by mating the respiratory competent, parent strain 

W303 (MAT a) with W303ΔCOX17 and W303ΔCOX4 (MAT α). Following overnight 

incubation at 30 ºC, patches were replica-plated onto minimal agar media WO (2 % glucose, 

0.67 % nitrogen base without amino acids but with ammonium sulfate, 2 % agar) to which the 

strain-specific supplements were added to complement auxotrophies (see Table 2.1). After an 

overnight incubation, the patches were replica-plated onto plates containing sporulation media 

(1 % potassium acetate, 0.05 % glucose, 2 % agar). Plates were incubated for approximately a 

week at room temperature and sporulation verified using a light microscope. Glusulase 

treatment (15 μL of glusulase added to a loopful of tetrads suspended in H2O, incubated 15 

minutes at RT) was used to isolate spores which were then plated on WO plates with the 

addition of the strain-specific supplements. Following growth, approximately 150 colonies per 

strain were re-patched on fresh WO added with supplements. Colonies were then replica-plated 

onto ethanol-glycerol plates (1 % yeast extract, 2 % peptone, 2 % glycerol, 2 % ethanol) 

containing plated cells of rho0 strains of the opposite mating types. Colonies capable of 

growing on non-fermentable carbon sources after mating with a MAT α rho0 strain were 

selected, re-streaked and their genotype further verified. 

2.4. Determination of Cell Viability 

Cellular viability was assessed by the capability of the cells to form colonies. Cultures 

were started as described above and aliquots were taken at determinate time points (24, 48, 144 

and 192 hours), serially diluted, plated on YPD media in triplicate and incubated 48 hours at 

30°C. Afterwards, the number of colony-forming units (CFU) was determined by counting 

colonies and viability calculated as number of viable cells per millilitre of culture. 
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2.5 Determination of Yeast Replicative Lifespan 

Yeast replicative lifespan analysis (RLS) was carried out as described by Steffen et al., 

(2009). RLS defines the number of times a cell can replicate during its lifetime. Growth of the 

yeast cultures started from aliquots stored at -80 °C by plating on YPD agar (2 % Glucose, 2 % 

Peptone, 1 % Yeast Extract, 2 % Agar) and incubated at 30 ºC for 48 hours. Single colonies 

were then used to re-patch strains on fresh YPD agar plates, which were incubated overnight at 

30 ºC. The following day, for each strain, a light patch was streaked onto a new YPD plate and 

incubated overnight at RT. These plates were then used to carry out the RLS analysis. 

Approximately 50 cells from each strain were selected and, among these, a minimum of 

20 cells were arrayed vertically and incubated for approximately two hours at 30 ºC. Once each 

cell completed division, newly-formed virgin daughter cells were separated from the mother 

cells and the generation of the bud represents one replicative cycle. From this point forward, 

cells were incubated for intervals of time necessary to complete replication (approximately two 

hours for young cells, three or more hours for older cells) and the buds separated with the aid 

of a micro-dissecting needle and counted. 

Strains were considered to have reached the end of their replicative lifespan when an 

individual cell did not complete division for four consecutive time points. The plates were kept 

at 4 °C overnight between successive days of RLS testing. A non-parametric, Wilcoxon Rank-

Sum test was performed to determine whether or not the differences in lifespan among the 

strains were significant. A wild-type strain was included in each experiment as a reference. 

2.6 Determination of Yeast Budding Index 

The budding index of the strains used in this study was determined as the percentage of 

cells presenting with a bud at 24, 48, 144 and 192 hours of incubations in YPD media. A 

minimum of 600 cells were counted at each time point for each strain. Visual observation of 

the cells was performed with the use of a microscope (100x magnification) connected to a 

camera and the images used for counting purposes. 
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2.7 Analysis of DNA Content with Fluorescence-Activated Cell Sorting 

To analyze cell cycle progression of wild-type and mitochondrial mutant cells, standard 

approaches require synchronization. For these experiments, MAT a strains were used and 

synchronized by treatment with 10 μg/mL α-factor for approximately 3 hours, which causes 

cells to arrest in G1 phase and to acquire the typical “schmoo” morphology. Synchronized cells 

were washed twice with pre-warmed YPD media and centrifuged at 4,000 x g for 5 minutes at 

RT to remove the extra α-factor. 5*106 cells/mL were released by re-suspension into pre-

warmed medium and incubated at 30ºC and 230 rpm. When diluted in fresh medium, cells will 

re-enter the cell cycle in a synchronous fashion. To monitor progression through the cell cycle, 

1 mL aliquots were taken from synchronous cultures every 20 minutes until up to 140 minutes 

(2 hours and 20 minutes) past release. At the end of each time point cells were spun down at 

14,000 x g for a few seconds, washed with 1 mL dH2O and fixed by re-suspension in 1 mL of 

absolute ethanol. Fixed cells were stored at 4 ºC. After fixation, approximately 5*106 cells 

were spun for 30 seconds at 16,000 x g, re-suspended in 500 μL of dH2O and spun down once 

more. Samples were then re-suspended in 500 μL of 50 mM Tris-HCl pH 8.0, treated with 

DNase-free RNase A (80 μg/mL) and incubated at 37 ºC for three hours. Following RNase 

treatment, samples were spun under the conditions described above and re-suspended in 500 

μL of 50 mM Tris-HCl pH 7.5. Proteinase K was added to each sample (0.25 mg/mL) and 

incubated for one hour at 50 ºC. Finally, cells were spun down and re-suspended in 100 μL 200 

mM Tris-HCl pH 7.5, 200 mM NaCl, 78 mM MgCl2. SYTOX Green stain was then added to a 

final concentration of 1 mM. Prior to loading onto a BD FACSAria Fusion flow cytometer, 

cells were briefly sonicated. The fluorescence of 20,000 cells was measured and data analyzed 

with a FACSDiva 8.0.1 software. An unstained sample was used as a negative control. 

Cell fixation and subsequent preparation for flow cytometric analysis of asynchronous 

cultures was carried out as described by Zhang & Siede, (2004). Briefly, overnight cultures 

were started and normalized to OD600 = 1 the following day. Aliquots (approximately 1*107 

cells approximately) were taken at 24 and 192 hours after normalization, respectively. Cells 

were centrifuged at 14,000 x g five seconds, re-suspended in dH2O and centrifuged once more. 

Pellets were re-suspended in the remaining traces of water by vortexing and fixed by adding 1 

mL of absolute ethanol to the re-suspended yeast cells. Once fixed, samples were stored at 4 
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ºC. Prior to flow cytometry, cells were re-suspended, centrifuged at 14,000 x g for a few 

seconds, washed with dH2O and pelleted once again. 

At this point, cells were re-suspended in 50 mM Sodium citrate and treated with a DNase-free 

RNase A (80 µg/mL) for 1 hour at 50 ºC. This step was followed by another hour of incubation 

at 50 ºC after addition of Proteinase K (0.25 mg/mL). Afterwards, 1 mL of Propidium Iodide 

(PI, 16 µg/mL in 50 mM sodium citrate pH 7.0) was added to each cell suspension. Lastly, 

cells were briefly vortexed and the fluorescence of 20,000 cells measured with a BD 

FACSAria Fusion flow cytometer. An unstained sample served as a negative control. Raw data 

were processed using the FACSDiva 8.0.1 software. 

2.8 Preparation of Cell Extracts 

Crude protein extracts were generated from yeast cultures grown overnight and 

subsequently normalized to OD600 = 0.1 in 100 mL of YPD media. For each strain, 45 mL 

aliquots were taken after 24 and 192 hours incubation, respectively. Cells were harvested by 

centrifugation at 4,500 x g for 10 min at 4ºC, re-suspended in 20 mL of dH2O and centrifuged 

again under the same conditions. The supernatant was discarded and cells were re-suspended in 

10 mL of 1.2 M Sorbitol. Following another centrifugation at 4,500 x g, cell wet weight was 

determined and cell walls digested through the addition of 3 mL per gram of pellet of a buffer 

containing Zymolyase 20T (1.2 M Sorbitol, 75 mM Na2HPO4/NaH2PO4, pH 7.5, 1 mM EDTA, 

1 % (v/v) 2-mercaptoethanol, 9.9 Units/mL of Zymolyase). The wild-type strain was incubated 

at 30ºC for 2h and 40 minutes while 2 hours was sufficient to obtain spheroplasts from mutant 

strains. Spheroplasts were then harvested by centrifugation at 4,500 x g for 5 minutes, washed 

twice with 1.2 M Sorbitol and re-suspended in a 2-fold volume of STE Buffer (0.5 M Sorbitol, 

20mM Tris-HCl pH 7.5, 0.5 mM EDTA pH 8.0). A protease inhibitor cocktail was added to 

the suspension prior to manual homogenization with a Dounce homogenizer kept on ice. Cell 

homogenates were then spun at 7,000 x g for 10 min and the supernatants saved and stored at -

80 ºC for further analysis. Protein determination was carried out according to Lowry et al., 

(1951). 
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2.9 Isolation of Mitochondria 

Mitochondria from cells at late exponential phase and stationary phase of growth were 

isolated as described previously (Banting & Glerum, 2006). 

Briefly, overnight yeast cultures were prepared and normalized to an OD600 = 0.1 in 800 mL of 

YPD media the following day. Cells were harvested by centrifugation after 24 and 192 hours 

incubation at 30 ºC and 230 rpm shaking. After washing step with dH2O and 1.2 M Sorbitol, 

wet weights of pellets were determined and 3 mL per gram of pellet of digestion buffer 

containing Zymolyase 20T (1.2 M Sorbitol, 75 mM Na2HPO4/NaH2PO4, pH 7.5, 1 mM EDTA, 

1 % (v/v) 2-mercaptoethanol, 9.9 Units/mL of Zymolyase) added to the cells. Cells were 

incubated in digestion buffer as for cell extracts described above. The resulting spheroplasts 

were harvested by centrifugation, washed with 1.2 M Sorbitol and re-suspended in STE buffer. 

A Waring® blender was used to generate a cell homogenate that was subsequently spun down 

twice at low speed (1,500 x g for 10 minutes at 4 ºC). The supernatant from each centrifugation 

was saved and later centrifuged at 17,000 x g for 15 minutes at 4 ºC to isolate mitochondria. 

An aliquot of the post-mitochondrial supernatant (PMS) fraction was saved for further 

analysis. The mitochondrial pellet was then re-suspended in STE and centrifuged at 20,000 x g 

for 15 minutes at 4 ºC. The washing step was repeated once more prior to re-suspension of 

mitochondria in 200 μL of STE buffer. Phenylmethane sulfonyl fluoride (PMSF, 1 mM) was 

added to inhibit protease activity. 

2.10 SDS-PAGE and Western Blotting 

Protein extracts were separated by electrophoresis through SDS-polyacrylamide gels. 

Prior to electrophoresis, proteins were mixed with an appropriate amount of 4 x loading buffer 

(200 mM Tris-HCl, pH 6.8, 4 % SDS, 40 % Glycerol, 4 % β-Mercaptoethanol, 0.4 % 

Bromophenol blue). When blotting for small, hydrophobic proteins such as certain COX 

subunits, protein samples were not boiled to prevent aggregation; otherwise, samples were 

boiled at 95 °C for five minutes prior to loading. For the experiments presented here, 5 or 6 % 

polyacrylamide stacking gels and 6, 7, 10, or 12 % separating gels were used, depending on the 

molecular weight of the proteins of interest. Electrophoresis was generally carried out for one 

hour at 150 V. Following SDS-PAGE, proteins were transferred onto a nitrocellulose 
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membrane. PVDF was the membrane used when transferring larger proteins. Transfer of 

proteins from gel to the membrane was carried out at 100 V for 30 minutes in a cooled unit 

filled with transfer buffer (192 mM Glycine, 25 mM Tris, 20 % Methanol with the addition of 

0.05 % SDS when the size of proteins of interest was over 100 kDa). Equal loading and 

transfer efficiency was determined by staining with Ponceau S (0.2 % Ponceau S, 3 % TCA, 3 

% Sulfosalicylic acid). Membranes were incubated for an hour at RT in blocking solution first 

and for another hour with a primary antibody appropriately diluted in blocking solution (10 

mM Tris – HCl, pH 8.0, 1 mM EDTA, 150 mM NaCl, 0.1 % Triton X-100, 1.5 % milk). TEN-

T buffer (10 mM Tris – HCl, pH 8.0, 1 mM EDTA, 100 mM NaCl, 0.1 % Tween 20, 1.5 % 

milk) was used as blocking solution when blotting for Mcm2, while a TBS-T buffer (20 mM 

Tris, 150 mM NaCl, 0.1 % Tween 20, 4 % milk, pH 7.6) was used for Western blotting of 

Rad53. In between primary and secondary antibodies incubations, membranes were washed 

three times for 10 minutes at RT with blocking solution without milk. Incubation with a 

secondary antibody conjugated to horse radish peroxidase was carried out under the same 

conditions used for the primary and was followed by another three washing steps. 500 µL of 

Clarity ECL substrate were spread over the membrane surface and chemiluminescence 

detected using a ChemiDoc MP system. Raw images were processed using BIO-RAD “Image 

Lab 5.2” software. Densitometric analysis was performed using ImageJ 1.50i software. A list 

of the antibodies used and the respective dilutions are reported below. 
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Table 2.2 List of the antibodies used in this study and their respective dilution factors. 

Primary Dilution Source Secondary Dilution Source 

α-Cox17 
1:200 (mito); 

1:500 (WCL) 

Glerum Lab α-Rabbit 

IgG 
1:10,000 Abcam 

α-Aco1 1:1,000 Bulteau Lab α-Rabbit 

IgG 

1:10,000 Abcam 

α-Act1 1:10,000 Thermo Fisher α-Rabbit 

IgG 

1:25,000 Abcam 

α-Cox11 1: 1,000 Glerum Lab α-Rabbit 

IgG 

1:10,000 Abcam 

α-Cox4 1: 1,000 Sigma-Aldrich α-Mouse 

IgG 

1:5,000 Thermo Fisher 

α-Mcm2 1: 500 Santa Cruz α-Goat IgG 1:5,000 Promega 

α-Por1 1:10,000 Molecular Probes α-Mouse 

IgG 

1:10,000 Thermo Fisher 

α-Rad53 1: 1,000 Abcam α-Rabbit 

IgG 

1:10,000 Abcam 

α-Sco1 1: 500 Glerum Lab α-Rabbit 

IgG 

1:10,000 Abcam 

α-Sod1 1: 500 Online 

Antibodies 

α-Rabbit 

IgG 

1:10,000 Abcam 

N.B. Mito = mitochondrial isolations, WCL = whole cell lysates 

2.11 Phosphatidyl Serine Externalization Assay 

Externalization of phosphatidylserine (PS) on the outer leaflet of the plasma membrane 

is one of the early hallmarks of apoptosis. A commonly used method to detect apoptosis 

consists of staining cells with Annexin V-FITC, which specifically binds to PS. 

In this study, yeast cultures were grown for 24 and 192 hours. At each time point, cultures 

were normalized to 1*107 cells/mL in YPD for late exponential phase and PBS for stationary 

phase cells and incubated in the presence of 3 mM hydrogen peroxide for exponential phase 
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cells or 90 mM in the case of stationary phase cultures. Incubation in the presence of peroxide 

was used to induce the apoptotic response in cells. After peroxide treatment, cells were 

harvested by centrifugation, re-suspended in wash buffer (1.2 M Sorbitol, 0.1 M potassium 

phosphate pH 6.5 1 % β-Mercaptoethanol) and treated with Zymolyase 20T (46.1 mg/mL) for 

10 minutes at 30°C and 150 rpm. For stationary phase cultures, cell wall digestion required a 

longer incubation (20 minutes). Spheroplasts were harvested by centrifugation, washed in wash 

buffer without β-Mercaptoethanol, re-suspended and diluted in binding buffer (10 mM Hepes-

NaOH, pH 7.4, 140 mM NaCl, 2.5 mM CaCl2, 1.2 M sorbitol) to obtain 1*106 cells/mL. 

Staining was performed with Annexin V-FITC/PI using a commercially available kit (Biotool, 

Houston, TX, USA). PI staining was included as a way to assess the integrity of the cells. Each 

run included an unstained sample (negative control), samples stained with either only FICT or 

only PI (positive controls) and double stained samples. The fluorescence intensity of at least 

30,000 cells was analyzed using a BD FACSAria Fusion flow cytometer. Data were analyzed 

using the FACSDiva 8.0.1 software. Analysis of unstained samples revealed a significant 

presence of background fluorescence, which was particularly pronounced in the wild-type 

strain. For this reason, sets of samples from each strain were run with an unstained control 

specific for that strain. 

2.12 LacZ Assay 

LacZ assays were used to determine whether the promoters of several COX assembly 

factors genes were sensitive to hydrogen peroxide. This method quantitates LacZ expression in 

constructs containing the promoter region of the genes COX17, SCO1 and COX11. LacZ 

expression was quantified spectrophotometrically following incubation with the substrate 

ortho-Nitrophenyl-β-galactoside (ONPG). 

Overnight cultures were incubated in YPD at 30 ºC and 230 rpm. The following day, cultures 

were normalized to an OD600 = 0.1 and treated with different concentrations of hydrogen 

peroxide (0 mM, 0.02 mM, 0.2 mM, 0.5mM) for two hours at 30 ºC and 230 rpm. Afterwards, 

the samples were centrifuged at 2,500 rpm for 10 minutes, re-suspended in 10 mL of Z-Buffer 

(60 mM Na2HPO4, 40 mM NaH2PO4 * H2O, 10 mM KCl, 1.0 mM Mg2SO4 * 7 H2O, 0.27 % β-

mercaptoethanol) and centrifuged once more. Cells were re-suspended in 1 mL of Z-Buffer in 

glass tubes and lysed by the addition of three drops of chloroform and two drops of 0.1 % SDS. 
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ONPG substrate was added (0.2 mL of a 4 mg/mL stock solution) and samples were incubated 

for 5 minutes at 37 ºC. The reaction stopped by adding sodium carbonate (100 mg/mL). 

Absorbance at 420 nm was measured and LacZ expression quantified. The absorbance of a 

W303plNEG strain was subtracted from those of the strains containing the plasmid with the 

promoter regions of the genes COX17, SCO1 and COX11 to eliminate any background 

expression as the plasmid of W303plNEG contains only the LacZ gene but no upstream 

promoters. A plasmid loss assay was also performed to determine the percentage of cells that 

retained the plasmid. This data was then accounted for when calculating LacZ expression. 

2.13 Yeast Spot Assay 

Standard spot assay were used to assess sensitivity of cells to hydroxyurea (HU). Yeast 

cultures were grown overnight in YPD and normalized to OD600 = 1 in sterile water the 

following day. For each strain, serial dilutions were prepared (100 - 10-5) and 5 μL of each 

dilution were spotted on YPD and YPD containing 240 mM hydroxyurea plates. Once dry, 

plates were incubated for six days at 30 °C and growth scored. 

2.14 Statistical Analyses 

Error bars reported in figures indicate the standard error of the mean (S.E.M). To appreciate 

significance of the difference between the replicative lifespan of wild type and mitochondrial 

mutant strains (Figure 3.10), a non-parametric Wilcoxon Rank-Sum test was performed. 

Differences between experimental groups were significant for p ≤ 0.01. 

Where indicated, a one way ANOVA statistical analysis was performed to determine whether 

differences between the means of multiple data groups were significant (p < 0.05). To compare 

the means of individual groups further, a Games-Howell post hoc test was utilized. Differences 

were considered significant for p < 0.05. 
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3 Chapter 3 

Results 

3.1 Identifying a Role for Mitochondrial Cuproproteins in Peroxide 

Metabolism 

Mutations affecting COX ancillary factors were historically thought to yield virtually 

identical respiration deficient phenotypes as a consequence of faulty COX assembly (Zee & 

Glerum, 2006). In the recent past, however, this common belief has been challenged by 

growing experimental evidence in support of the idea that assembly factors might be involved 

in secondary functions. A scenario in which activities of assembly factors are not exclusively 

limited to the ETC might lead to the identification of as-yet unknown phenotypes and link 

mutations in mitochondrial proteins with different cellular pathways. 

As described previously, some studies have already linked COX assembly factors with novel 

functions. Cox11 and Sco1 have been associated with an uncharacterized role in redox 

metabolism, as shown by studies that demonstrated hydrogen peroxide hypersensitivity of 

yeast cells lacking these cuproproteins (Banting & Glerum, 2006; Veniamin et al., 2011). 

Cox17, another key player in the COX copper metalation pathway, was found to play a role in 

the maintenance of the mitochondrial inner membrane architecture by interacting with Mic60, 

a core component of the MICOS complex (Chojnacka et al., 2015). A yeast cox17 knockout 

strain fails to clear concentrations of hydrogen peroxide in the micromolar range (Glerum lab, 

unpublished results). This finding suggested a potential role for Cox17 as a peroxide sensor. 

Given the hypersensitivity of cells lacking Sco1 or Cox11, it was hypothesized that these 

proteins might function as peroxidases. Alternatively, if not acting as peroxidases themselves, 

Sco1 and Cox11 might regulate the activity of other peroxidases. 

As a first approach to determining whether these cuproproteins might respond to 

hydrogen peroxide, the existence of peroxide-responsive elements in the promoter region of 

the genes encoding these proteins was investigated. For this purpose, yeast strains transformed 

with plasmids containing the promoter regions of the genes COX17, SCO1 and COX11 fused 

with the LacZ gene were used. A W303plNEG was used as a negative control, as this strain 
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was transformed with a plasmid that contains the LacZ gene without an upstream promoter. 

The plasmids used for this experiment were prepared by Dr. Graham Banting and Andrea 

Pellegrino (University of Alberta). 

As displayed in Figure 3.1, no relationship appears to exist between the expression of the 

proteins tested and exposure to hydrogen peroxide as none of the strains showed a significant 

change in target gene expression upon peroxide treatment. While expression levels did not 

seem related to changes in peroxide concentrations, they seemed to differ based on the strain. 

More specifically, expression levels from the COX17 promoter were consistently higher than 

for all other promoters. Because these experiments were conducted using cells grown to late 

exponential/early diauxic shift, we then wondered whether expression of Cox17 could vary 

based on the yeast growth phase. 

 

Figure 3.1 LacZ assay of S. cerevisiae W303plCOX17, W303plSCO1 and W303plCOX11. 
These strains have been transformed with plasmids that contain the promoter region of the 
genes COX17, SCO1 and COX11 respectively, fused with the LacZ gene. The W303plNEG 
(the plasmid does not contain upstream promoter) was used as a negative control and its 
absorbance values were used to normalize the absorbance values of the other strains. 
Absorbance values reported here account for plasmid loss. A420, absorbance measured at 420 
nm. Error bars indicate the standard error of the mean. Each assay was repeated at least twice 
for each hydrogen peroxide concentration. A one-way ANOVA, followed by Games-Howell 
post hoc test, failed to reveal significant differences (i.e. p<0.05) in LacZ expression levels 
after treatment with different peroxide concentrations (see Supplementary Table  1) 
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3.2 Mitochondrial Aberrations Cause Reduced Growth and Viability at 

Stationary Phase 

Preliminary experiments aimed at identifying potential peroxide-responsive elements in 

the genes encoding Cox17, Sco1 and Cox11 revealed a higher expression of the reporter gene 

when associated with the promoter of COX17 than with the promoters of the other two genes. 

An initial step towards verifying this hypothesis consisted of estimating the growth kinetics of 

our strains and identifying the different growth phases, namely exponential phase, diauxic 

shift, post-diauxic shift and stationary phase. The viability of each strain was also determined 

at the different growth phases, allowing us to assess phenotypic variability among the 

mitochondrial mutants. 

A variety of mitochondrial mutant strains was investigated, including null mutants for genes 

encoding the cuproproteins Cox17, Cox11 and Sco1, which are involved in COX copper 

metalation and are thereby necessary for the assembly of functional COX. Depletion of either 

Cox15 or Cox4 results in similar COX-deficient phenotypes, although these mutants are 

functionally different. Cells defective for the heme A synthase Cox15 are heme deficient and 

fail to assemble a functional COX. Cox4-deficient cells are also characterized by defective 

COX assembly, but the assembly failure is due to the lack of the structural subunit Cox4. Rho0 

cells, which lack mtDNA, cannot synthesize any of the three COX core subunits (Cox1, Cox2 

and Cox3), or subunits of Complex III and the ATP synthase. 

The optical density at 600 nm (OD600) over a 192 hour period served as a measure of cell 

growth. Yeast strains were cultured in YPD media, which provides a fermentable carbon 

source (glucose), and allows the growth of respiratory deficient strains that would otherwise be 

incapable of growing if provided with non-fermentable carbon sources such as ethanol and 

glycerol. 

As expected, a wild-type respiratory competent strain, W303, showed the most robust growth 

throughout the incubation period reaching the highest OD600 among the strains tested. The 

growth of all of the mutants was negatively impacted as shown by a lower OD600 in 

comparison to the wild-type strain (Figure 3.2). Interestingly, the cox11 null mutant was 

characterized by having the lowest growth rate among all strains. Moreover, the growth curve 

for this strain shows a decline in the optical density from 24 to 192 hours incubation, 
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suggesting that cells lacking Cox11 might undergo cell death at a higher rate than the other 

mitochondrial mutants at stationary phase. The rho0 strain and those lacking Sco1 or Cox4 

grew to OD600 between 3 and 4, while a cox17 null mutant reached a slightly higher value, 

between 4 and 5. 

Other than allowing a comparison among the strains in terms of growth, these experiments also 

gave an estimation of growth kinetics. Within the first 24 hours of incubation, cells grew 

exponentially. Afterwards, yeast growth slows down and once all the non-fermentable carbon 

sources are depleted, cultures reach saturation. As seen in Figure 3.2, after exponential growth 

and the diauxic shift, yeast growth arrests or increases just minimally, with OD600 reaching a 

plateau. Generally, yeast cultures are believed to reach stationary phase after five to seven days 

of incubation. Given that our strains showed little to no change in optical density between 48, 

144 and 192 hours of incubation, it was decided that eight days was an appropriate length of 

time for incubation. 
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Figure 3.2 Growth curves of a wild-type W303 strain and selected mitochondrial mutants. 
Cells were grown in YPD media at 30 ºC for 192 hours. At t = 0 h, OD600 was normalized to 
0.1 from overnight cultures. Growth curves were performed a minimum of three times for each 
strain. As expected, wild-type, respiratory competent cells could grow to higher density levels 
than respiratory deficient mutant strains. Among the mitochondrial mutant strains, a cox11 null 
mutant was characterized by the lowest growth levels. Error bars indicate the standard error of 
the mean. Asterisks denote a statistically significant difference (p < 0.05: ΔSCO1 SP, 1.2E-03; 
ΔCOX11 SP, 2.0E-11; ΔCOX15 SP, 3.2E-08; ρ0 SP, 3.6E-06) between the OD600 of wild type 
and mitochondrial mutant strains at 192 h incubation. Statistical significance was determined 
by performing a one-way ANOVA followed by Games-Howell post hoc test (see 
Supplementary Table  2). 

To gain further insight into the cell physiology of the mutants, especially at stationary phase, 

the viability of the strains was determined at different time points. Cultures were prepared as 

described for growth curve experiments and viability was determined by serial dilution 

followed by plating on YPD and incubation for 48 hours at 30 °C. At a density of 30*106 
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cells/mL, a wild-type strain was more viable than mutants defective for COX assembly factors 

(17-26*106 cells/mL) (Figure 3.3). Consistent with the lower growth state, a cox11 null mutant 

was also the least viable strain, barely reaching 50 % of the wild-type viability levels at 

exponential phase. Surprisingly, the viability of mtDNA-less cells was found to be slightly 

higher than that of wild-type cells at 24 hours. The same rho0 strain however, showed the most 

significant difference between the two phases of growth, with a 70 % reduction in viability 

levels from exponential to stationary phase. Viability of all of the other mitochondrial mutants 

tested also showed a more robust decrease at stationary phase than wild-type cells. While the 

lower viability of respiratory deficient cells at stationary phase could be predicted, the 

differences between some of the mutants were unexpected. Cox11, Sco1 and Cox17 are all 

proteins involved in copper delivery to COX. Nevertheless, the survival rates of these mutants 

were found to be different, with cox17 and sco1 mutants displaying viability levels 

corresponding to 30-40 % of those of the wild-type at stationary phase. In contrast, the survival 

rate of a cox11 mutant was more than ten times lower than that of respiratory competent cells. 

Strains defective for Cox4 and Cox15 and mtDNA-less cells, on the other hand, displayed 

survival rates at stationary phase similar to that of the cox17 and sco1 knockout strains. 
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Figure 3.3 Viability of wild-type (WT) and mutant strains at late exponential (24 hours, EP) 
and stationary phases (192 hours, SP). Viability was determined in at least three biological 
replicates by serial dilution of cultures and plating on YPD media for 48 hours at 30 °C. 
Colony forming units (CFU) were counted and viability expressed as number of cells per mL. 
A minimum of 200 colonies were counted for yeast grown for 24 and 48 hours samples while 
100 colonies were counted in plates inoculated with cultures after 144 and 192 hours of 
incubation. Error bars indicate standard error of the mean. Experiments were carried out in 
collaboration with Polina Myrox and Manisha Bhojwani. Asterisks denote a statistically 
significant difference (p < 0.05: ΔCOX17 SP, 2.3E-07; ΔSCO1 SP, 3.0E-04; ΔCOX11 SP, 
5.0E-09; ΔCOX15 SP, 1.3E-06; ρ0 SP, 5.0E-02) between viability levels of wild-type and 
mitochondrial mutants at a given time point. Statistical significance was determined by 
performing a one-way ANOVA followed by Games-Howell post hoc test (see Supplementary 
Table  3). 

3.3 Protein Abundance at Different Phases of Growth 

Results of initial experiments aimed at identifying peroxide-responsive elements in the 

promoter regions of COX17, COX11 and SCO1 genes suggested that expression of Cox17 was 

higher in cells grown to late exponential/early diauxic shift phases (Figure 3.1), leading us to 

ask whether Cox17 expression would increase over time through the various growth phases. 

To test this hypothesis, yeast cells were grown in rich YPD media (2 % glucose, 2 % peptone, 

1 % yeast extract) for eight days. Cells were harvested at different stages of growth and whole 
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cell lysates generated. Protein abundance was determined via Western Blotting and, as shown 

in Figure 3.4, the abundance of Cox17 increased at stationary phase of growth in respiratory 

competent, W303, wild-type cells. A densitometric analysis established that Cox17 abundance 

at stationary phase is almost double that at exponential phase. Superoxide dismutase 1 (Sod1) 

protein levels also increased at stationary phase, with a band intensity at stationary phase 

approximately 6-fold higher than at exponential phase in the wild-type strain and 2.5 times 

higher in the cox17 mutant. However, increased Sod1 steady state protein levels at stationary 

phase were expected as this protein has shown to be essential for cell survival at stationary 

phase (Longo et al., 1996). As a loading control, Act1 levels showed no change in abundance 

at different phases. 

 

Figure 3.4 (A) Western Blot analysis of Cox17, Sod1 and Act1. Abundance of Cox17, Sod1 
and Act1 at different phases of growth was assessed via Western Blotting of whole cell lysates 
generated from cells grown for 24, 48, 144 and 192 hours in YPD media. 15 µg of protein were 
loaded in each lane. (B) Comparative densitometric analysis of protein abundance in whole cell 
lysates generated from wild-type and cox17 null mutant strains. The intensity of the cross-
reacting band in stationary phase samples was normalized to the protein intensity of cell lysates 
obtained at exponential phase. EP, exponential phase (24 h); SP, stationary phase (192 h). The 
blots shown here are best representatives of three biological replicates. 
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Mitochondria are believed to play an important role in the survival of yeast cells at 

stationary phase. Therefore, an increased abundance of certain mitochondrial proteins at this 

stage of growth could be related to roles that such proteins might play in cell survival. 

Evidence that Cox17 steady-state levels in whole cell lysates increased at stationary phase led 

us to investigate how this protein is distributed between the cytoplasm and mitochondrial inner 

membrane space at different phases of yeast growth. 

To observe the distribution of Cox17, as well as that of other mitochondrial proteins, at 

different time points, cell fractionation and Western blotting of mitochondria and post-

mitochondrial supernatant fractions were performed. The strains used for these experiments 

were the cox17 null mutant and the wild-type parent strain. 

As shown in Figure 3.5-A, Cox17 abundance decreased in mitochondria at stationary phase 

while it slightly increased in the post-mitochondrial supernatant fraction. It would be tempting 

to speculate that increased cytosolic steady-state levels at stationary phase might be indicative 

of a secondary function of this protein at this phase of growth. Alternatively, increased 

cytosolic Cox17 steady-state levels at stationary phase might result from a re-distribution of 

the protein upon reduction of the disulfide bonds, as demonstrated by Bragoszewski et al., 

(2015). Mitochondrial fractions were also blotted to detect cuproproteins Cox11 and Sco1, 

along with Cox4. Steady-state levels of these proteins did not seem to change based on the 

yeast growth phase in wild-type cells, while they decreased in stationary phase cox17 mutant 

cells (Figure 3.5-B). Porin, Por1, is commonly used as loading control when immunoblotting 

mitochondrial preparations. However, since Por1 levels declined in Cox17 deficient cells at 

192 hours, as confirmed by densitometric analysis, Ponceau S general protein stain was used to 

ensure equal amounts of mitochondrial protein were loaded in each lane. A decrease in the 

abundance of the loading control, Por1, as well as of the other proteins tested in the mutant 

strain at stationary phase suggests that a generalized reduction of steady-state protein levels 

might be a consequence of other cellular processes such as mitophagy. Experiments aimed at 

investigating mitophagy were not performed in this study. Nevertheless, an analysis of steady-

state protein levels of markers for autophagy, such as Atg8, would be a good starting point to 

evaluate the involvement of this cellular process to explain the low mitochondrial protein 

abundance in our respiratory mutants at stationary phase. 
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Figure 3.5 Western Blotting of mitochondrial fractions (Mitos) and post-mitochondrial 
supernatant fractions (PMS) to assess steady state levels of mitochondrial proteins at different 
growth phases in a wild-type (A) and cox17 mutant strains (B). Antibodies specific for Cox17, 
Sco1, Cox11 and Por1 were used to determine abundance of these proteins in mitochondrial 
preparation of wild-type (WT) and cox17 mutant cells. For blotting of mitochondrial proteins, 
10 μg of protein were loaded in each lane while for western blotting of post-mitochondrial 
supernatant (PMS) 20 μg of protein were loaded. Because we found that the abundance of 
Por1, which is used as a marker for mitochondrial proteins, decreased in our respiration 
deficient mutant strain, we have included the Ponceau S general protein stain to show that 
equal amounts of mitochondrial protein have been loaded into each well of the gel. A 
comparative densitometric analysis of protein abundance in mitochondrial and post-
mitochondrial fractions from wild-type and cox17 null mutant strains was performed. The 
intensity of the cross-reacting band in stationary phase samples was normalized to the protein 
intensity of samples collected at exponential phase. EP, exponential phase (24 h); SP, 
stationary phase (192 h). The blots shown here are best representatives of three biological 
replicates. 
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3.4 COX Assembly Mutations Alter Budding Index at Stationary Phase 

Visualization of cells with a phase-contrast microscope during growth curve 

experiments revealed that some respiratory deficient strains appeared to have a higher 

proportion of budded cells when compared to a respiratory competent strain at stationary phase 

of growth. This was surprising since synchronization in a non-budded state is considered to be 

a hallmark of stationary phase cells. Thus, budding indices of mitochondrial mutants and 

respiratory competent strains were determined to verify this initial observation. Cells were 

grown under the same conditions used to generate growth curves, in YPD media and starting at 

an OD600 = 0.1. Cells were applied to microscope slides and imaged with a phase-contrast 

microscope connected to a camera. Budding indices were determined as the percentage of 

budding cells of at least 600 cells per strain after 24, 48, 144 and 192 hours of incubation. As 

shown in Figure 3.6, all of the strains showed a decreasing budding index from late 

exponential phase (24 hours) to stationary phase (192 hours). At exponential phase, all strains 

had budding indices between 50 and 60 %, with the exception of the rho0 strain, which had a 

budding index significantly lower, around 30 %. Once glucose becomes depleted in a culture, 

cells will switch to respiratory metabolism and then, once all sources of energy in the media 

are exhausted, cultures become saturated and enter stationary phase with OD600 values 

reaching a plateau. All of the mitochondrial mutants tested are respiratory deficient and 

therefore cannot grow if provided only with non-fermentable carbon sources. Under these 

circumstances, budding indices of mutant strains would be expected to be lower than that of a 

wild-type strain at stationary phase. Surprisingly, only the rho0 strain was characterized by a 

budding index lower than that of the wild-type. At stationary phase, cox11 and sco1 null 

mutants had budding indices at stationary phase very close to that of the wild-type, which was 

approximately 30 %. Budding indices of the other mutant strains were found to be higher than 

that of the wild-type, especially in the case of a cox17 null mutant, which displayed a number 

of cells with buds at stationary phase accounting for approximately 50% of the number of cells 

counted. Budding indices of each strain at different growth phases are reported in Table 3.1. 

The strains with a high percentage of budding cells at stationary phase are all defective for 

COX activity and lack proteins that play independent roles in the assembly of the COX 

complex. Therefore, it seemed unlikely that the phenotypes observed could be linked to the 
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known functions of these proteins. Rather, anomalies in the budding indices suggested the 

possibility of cell cycle defects for these mutants. It is also clear from these results that strains 

lacking different COX assembly factors can display divergent phenotypes when assessed for 

functions seemingly unrelated to the mitochondrial respiratory chain.  

 

Figure 3.6 Budding indices of wild-type (WT) and mitochondrial mutants at late exponential 
and stationary phases. Budding indices were plotted based on the data reported in Table 3.1. 
EP, exponential phase measured after 24 hours incubation; SP, stationary phase, measured 
after 192 hours incubation. Error bars represent the standard error of the mean. Asterisks 
denote a statistically significant difference (p < 0.05: ΔCOX17, 7.6E-04; ρ0, 4.0E-05) between 
the budding indices of wild-type and mitochondrial mutants at a given time point. Statistical 
significance was determined by performing a one-way ANOVA followed by Games-Howell 
post hoc test (see Supplementary Table  4). Determination of the budding index at different 
growth phases was performed at least three times for each strain. 
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Table 3.1 Budding Indices of wild-type and mitochondrial mutants at exponential (EP) and 
stationary phases (SP). Each budding index was calculated as the percentage of cells with buds 
after counting 600 cells for each strain per time point. Budding indices are the results of at least 
three biological replicates. p values indicate the significance at 0.05 level of the difference 
between the means of wild-type and each mitochondrial mutants at exponential and stationary 
phases. Significance levels were determined by a one-way ANOVA followed by Games-
Howell post hoc test. 

Strain Growth Phase Budding Index p value 

WT EP 55 ± 3  SP 35 ± 2 

ΔCOX17 
EP 62 ±3 0.921 

SP 50 ± 1 0.001 

ΔSCO1 EP 57 ± 3 1.000 
SP 34 ± 5 1.000 

ΔCOX11 EP 53± 1 0.997 
SP 34± 4 1.000 

ΔCOX4 EP 57± 1 1.000 
SP 44± 3 0.558 

ΔCOX15 EP 59 ± 2 0.996 
SP 46 ± 3 0.258 

ρ0 EP 35± 1 3.953E-05 

SP 23± 2 0.168 
 

3.5 COX Assembly Defects Correlate with Accumulation of Cells at 

G2/M Phase in Non-Synchronous Cultures 

To explore a connection between mutants with respiratory chain deficiencies and cell 

cycle defects, a flow cytometry-based approach was adopted. Non-synchronous cultures were 

analyzed to infer the proportion of cells with different DNA content at both late exponential 

and stationary phases. Culture aliquots taken at 24 and 192 hours were stained with propidium 

iodide (PI) and the fluorescence of 20,000 events assessed. As seen in Figure 3.7, most of the 

mitochondrial mutants displayed a higher proportion of cells in G2/M than that of the wild-

type strain at both late exponential and stationary phases. The ratio between the “area under the 

curve” of the peak corresponding to cells at G1 and the “area under the curve” of the peak 

corresponding to cells at the G2/M phase was then calculated for each strain. High G1/G2 

ratios correspond to cultures with higher numbers of cells in G1 rather than G2/M phase at 

harvesting. 
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As shown in Figure 3.8, at the late exponential phase of growth, rho0 cells showed a G1/G2-M 

ratio between 4 and 5, the highest among all strains. This result is in accordance with a study 

that reported a G1-S transition defect in rho0 cells (Crider et al., 2012). In contrast, the 

respiratory competent strain revealed a G1/G2 ratio of 3. In spite of the fact that the budding 

indices of all of the other mutants were similar to wild-type at exponential phase, their G1/G2 

ratios were found to be approximately half of that of wild-type, indicating a significantly 

higher proportion of cells in G2/M phase. 

When cultures reached stationary phase, analysis of DNA content showed that, as expected, 

G1/G2 ratios increased in all strains as nutrient depletion corresponds to growth arrest. 

However, the proportion of the increase seemed to vary depending on the strain. A cox11 null 

mutant displayed the biggest difference between the two phases of growth and cox4 displayed 

the smallest. Rho0 cells were once again characterized by having the highest number of cells in 

G1, with a G1/G2 ratio higher than 5. Strains that could not express COX11, COX17, SCO1, 

COX4 and COX15, on the other hand, had ratios significantly lower than that of wild-type at 

stationary phase. Interestingly, as shown previously (Figure 3.6), cox17, cox4 and cox15 

mutants were also the strains with the highest budding indices at 192 hours incubation. These 

results in part confirm observations made of budding indices and reinforce the hypothesis that 

mutations affecting COX assembly mutants have repercussions for cell cycle mechanisms. 
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Figure 3.7 DNA content analysis of non-synchronous cultures grown in YPD and harvested at 
exponential (EP) and stationary (SP) phases. Fluorescence of 20,000 cells was analyzed and 
data analyzed with a FACSDiva 8.0.1 software. An unstained sample was used as a negative 
control. This figure is the best representative of experiments conducted at least three times for 
each strain. 

 



57 
 

 

Figure 3.8 DNA content analysis of wild-type (WT) and mitochondrial mutants non-
synchronous cultures. Cells were grown in YPD starting from an OD600 = 0.1 and incubated at 
30 ºC for up to 192 hours. Aliquots were collected at 24 and 192 hours and processed for PI 
staining. Data was analyzed with FACSDiva 8.0.1 software. The area under the curve was 
calculated for each fluorescence peak and the ratio between G1/G2 peaks calculated. Error bars 
indicate the standard error of the mean. EP, Exponential phase; SP, stationary phase. Asterisks 
denote a statistically significant difference (p < 0.05: ΔCOX17 EP, 3.2E-03; ΔCOX17 SP, 
1.1E-03; ΔSCO1 EP, 8.0E-03; ΔSCO1 SP, 3.6E-02; ΔCOX11 EP, 1.0E-02; ΔCOX11 SP, 
4.6E-02; ΔCOX4 EP, 1.4E-02; ΔCOX4 SP, 2.1E-03; ΔCOX15 EP, 1.4E-02; ΔCOX15 SP, 
7.7E-03) between G1/G2 ratios of wild type and mitochondrial mutants at a given time point. 
Statistical significance was determined by performing a one-way ANOVA followed by 
Games-Howell post hoc test. Measurement of DNA content at different growth phases was 
performed at least three times for each strain (see Supplementary Table  5). 
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3.6 COX Assembly Defects Result in Divergent Cell-Cycle Aberrations 

As previously mentioned, it has been shown that the lack of mtDNA triggers a 

checkpoint that blocks G1-S transition. It is also known that this cell cycle block is not caused 

by loss of mitochondrial function, but rather that it is specifically due to the lack of mtDNA 

(Crider et al., 2012). 

The rho0 strain used in this study displayed a lower budding index than any other strain and 

non-synchronous rho0 cells revealed the highest G1/G2 ratio at exponential and stationary 

phases. However, other mitochondrial mutants were phenotypically different from rho0 cells. 

This led us to hypothesize that other factors might be involved in the impacts on the cell cycle 

and that this response might be triggered only by certain mutations. A flow cytometry-based 

analysis of cell cycle progression using synchronous cultures was initiated. Cultures were 

synchronized at G1 phase by exposure to the mating hormone α-factor and subsequently 

released by re-suspension in fresh media. Aliquots were taken every 20 minutes for up to 140 

minutes and analyzed by fluorescent activated cell sorting (FACS) using SYTOX Green. The 

choice of a fluorophore, other than PI, was driven by the higher accuracy and reproducibility 

that is provided by SYTOX Green. 

As depicted in Figure 3.9, a rho0 strain shows almost no G2/M cells, when compared to the 

wild-type, at 80 minutes after release, further confirming the mtDNA-dependent cell cycle 

defect. cox4 and cox15 null mutants display a DNA content as a function of time very similar 

to that of wild-type, consolidating the hypothesis that loss of mitochondrial function per se 

does not trigger a checkpoint response, as both mutants are characterized by a complete lack of 

COX activity (Banting & Glerum, 2006; Glerum et al., 1996a). While loss of COX activity in 

the mutants was described already, activity assays performed by other members of the lab 

confirmed the lack of COX activity in these strains. In contrast with cox4 and cox15 mutants, 

strains lacking the cuproproteins Cox17, Sco1 and Cox11 displayed DNA content distributions 

over time that more closely resembled that of rho0 cells rather than wild-type cells or cox15 

and cox4 mutants.  
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Figure 3.9 Analysis of DNA content of wild-type (WT) and mitochondrial mutant strains. Cells 
were synchronized with α-factor and incubated in YPD for three hours at 30 ºC. Release in 
fresh YPD media represented the start of cell cycle progression (t = 0 min). Samples were 
collected every 20 minutes up to 140 minutes. Cells were fixed and later prepared for staining 
with SYTOX Green followed by flow cytometry to determine DNA content. At least three 
replicates of each strain were performed. 
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3.7 Yeast Replicative Lifespan Is Not Affected by Respiratory Deficiency 

At first glance, the experimental data reported above might seem contradictory. In fact, 

DNA content of cells in non-synchronous cultures indicated that some mitochondrial mutants 

had significantly lower G1/G2 ratios than wild-type. This finding was supported by the 

budding index of some mutants being higher than wild-type at stationary phase. On the basis of 

these results, it would be tempting to speculate that some mitochondrial mutants are still 

capable of undergoing cell division after 192 hours incubation. On the other hand, it should to 

be noted that a respiratory competent strain still reaches the highest OD600 throughout the 

whole growth period and that it is characterized by higher viability than all of the 

mitochondrial mutants tested at stationary phase. 

Taken together, these show a situation in which, as one would expect, wild-type cells 

grow more and are more viable than respiratory deficient cells; at the same time, however, 

certain mitochondrial mutations appear to yield cells with a budding index higher than wild-

type and populations with a higher proportion of cells having DNA content typical of G2/M 

phase. 

To determine whether respiratory deficient cells possess a higher replicative capability 

than wild-type cells, which could explain the anomalous budding indices of the mutants, the 

replicative lifespan (RLS) of wild-type and mitochondrial mutants was examined. RLS is a 

measure of how many times a cell can divide prior to becoming senescent, and differs from the 

chronological life span (CLS), which is a measure of how long a cell can survive before death. 

RLS was determined by following a well-established protocol (Steffen et al., 2009). Cells were 

grown on YPD agar plates, virgin cells isolated and incubated for the time necessary to 

complete one division. Newly formed buds were counted, removed from mother cells and the 

process repeated until cells could no longer divide. 
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Figure 3.10 Replicative lifespan of wild-type and mitochondrial mutant cells. Yeast strains 
were retrieved from frozen aliquots (stored at -80 °C) prior to each experiment, grown on YPD 
for two days at 30°C, re-patched on fresh YPD plates and grown overnight at 30°C. Finally, 
cells were lightly patched onto fresh YPD plates and incubated overnight at room temperature. 
The following day, virgin cells were isolated from the patches and incubated for the time 
required to complete one division. Daughter cells were counted and removed from mother cells 
and the process repeated until all cells stopped dividing. Plates were sealed and stored at 4ºC 
overnight. For each strain, 20-25 cells were selected to carry out the assay. Error bars represent 
standard error of the mean. To determine whether differences between experimental groups 
were significant (p ≤ 0.01), a non-parametric Wilcoxon Rank-Sum test was performed. RLS of 
each strain was determined a minimum of three times for each strain. 

As shown in Figure 3.10, no significant differences in RLS between wild-type and 

mitochondrial mutants were found. These results seem to exclude reproductive capability as a 

factor in determining the unexpected phenotypes described for a subset of the mutants. 

Western blotting of whole cell lysates to assess Mcm2 steady-state protein levels was 

performed to verify further whether mitochondrial mutants still undergo cell replication in 

stationary phase cultures. Mcm2 is a component of the Mcm2-7 hexameric helicase complex, 

and it is consitutively expressed in cells that are replicating their genomic material (Young & 

Tye, 1997). As shown in Figure 3.11, Mcm2 steady-state levels do not appear to change in the 

wild-type strain from exponential to stationary phases. On the other hand, Mcm2 abundance 

was below detection limits at stationary phase in all of the mitochondrial mutants and because 
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this protein is necessary for DNA replication, it seems unlikely that the mutants could still 

undergo cell division at this stage of growth. 

 

Figure 3.11 Western Blotting of whole cell lysates generated from cultures harvested at 
exponential and stationary phases were performed to assess Mcm2 steady state levels. Act1 
steady-state levels were also determined and served as a loading control. 55μg of protein were 
loaded in each lane. EP, Exponential phase; SP, stationary phase. 

As it appears that mutant cells are not different from the wild-type in terms of replicative 

ability, it is possible that high budding indices and low G1/G2 ratios of certain mutants at 

stationary phase could be a consequence of G2/M arrest. Cell cycle checkpoints have been 

investigated extensively from yeast model systems such as S. cerevisiae and S. pombe to 

humans. DNA damage occurring during cell replication generally results in the production of 

an intermediate composed of single-stranded DNA coated by a Replication Protein A (RPA). 

In S. cerevisiae, the kinase Rad53 is considered the main effector in response to DNA damage, 

which determines cell cycle arrest between metaphase and anaphase. Dun1, another protein 

kinase, is also activated in the response to DNA damage and is capable of mediating 

transcriptional responses that include the activation of the enzyme necessary for dNTP 

production, ribonucleotide reductase (Barnum & O’Connell, 2014). Another factor that plays a 

role in cell cycle checkpoint activation is cell size. In S. cerevisiae, a cell size control at the 

G1-S transition is well characterized. On the other hand, definitive proof of the existence of a 

similar checkpoint at the G2/M transition has not been obtained yet and conflicting theories 

exist (Turner et al., 2012). 

The DNA content analysis of synchronized cells performed in this study revealed that strains 

lacking the cuproproteins involved in COX copper metalation are characterized by a delayed S 

phase, resembling the defect caused by treatment with hydrogen peroxide described by Shapira 

et al., 2004. In non-synchronous cultures, with the exception of the rho0 strain, all of the 
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mitochondrial mutants showed a lower G1/G2 ratio than wild-type at late exponential and 

stationary phases, potentially resulting from a G-M arrest, which could be caused by increased 

oxidative stress due to the COX assembly defect. In contrast, a rho0 strain was characterized by 

the highest G1/G2 ratio at late exponential and stationary phases and showed a delayed G1/S 

transition in synchronized cells. Accordingly, the budding index of this strain was the lowest 

among all strains at both phases of growth. The budding index of the COX assembly mutants, 

on the other hand, is similar to wild-type at late exponential phase. Once cultures reach 

stationary phase, a subset of the mutants, namely cox17, cox15 and cox4, display a higher 

budding index than the wild-type, while sco1 and cox11 null mutants do not show any 

differences from the respiratory competent strain. A possible explanation for why only certain 

mitochondrial mutants show a delayed S phase could be that an oxidative stress threshold is 

reached earlier by cells defective for proteins involved in copper delivery to COX such as 

Cox17, Cox11 and Sco1. cox4 and cox15 null mutants, on the other end, might reach the 

threshold at a later time point as cultures approach stationary phase and their oxidative stress 

levels increase. It should be noted that according to this model, cox11 and sco1 mutants would 

also be expected to display budding indices higher than that of the wild-type, similar to the 

other COX assembly mutants. However, anomalous budding indices at stationary phases in 

cox11 and sco1 mutants were not observed in the experiment described in this study and 

possible explanations for this phenotype are further discussed below (Discussion, 4.2). 

Western blotting to assess Rad53 steady-state protein levels in whole cell lysates prepared 

from cultures harvested at different growth phases was performed to observe any differences 

between mitochondrial mutants and the wild-type strain that could have been related to the cell 

cycle phenotypes described above. As seen in Figure 3.12, no changes in Rad53 steady-state 

protein levels were detected in the wild-type strain from exponential to stationary phase. 

Interestingly, Rad53 protein levels were below detection limits in all of the mitochondrial 

mutant strains at stationary phase while in exponentially growing cultures the abundance of 

this protein did not differ from that of the wild-type strain. 



64 
 

 

Figure 3.12 Abundance of Rad53 at different phases of growth (EP, Exponential phase; SP, 
stationary phase) was determined via Western blotting of whole cell lysates obtained from 
cultures grown in YPD and harvested at exponential and stationary phases. 55μg of protein 
were loaded in each lane. 

3.8 Mitochondrial Defects Correlate with Increased Oxidative Stress 

The mitochondrial electron transport chain is thought to be one of the main factors 

contributing to ROS generation within a cell. Accordingly, oxidative stress levels of cells 

carrying ETC-related defects are expected to be higher in comparison to respiratory competent 

cells. A specific role for COX in ROS production has not been identified yet, but COX 

deficiency has been associated with increased ROS levels in many instances. It has been 

hypothesized that in sequential systems, such as the electron transport chain, dysfunction of a 

single complex might influence ROS production at other ETC sites (Srinivasan & Avadhani, 

2012). 

In this study, several approaches were adopted to provide insights into a connection 

between the cell cycle defects described above and the physiological status of stationary phase 

cells. This was done by studying markers associated with oxidative stress levels in wild-type 

and respiratory deficient cells. ROS negatively impact a variety of cellular components and 

functions. For this reason, cells are equipped to counteract oxidative damage and defense 

mechanisms against ROS involve enzymes such as catalases, peroxidases and superoxide 

dismutase (Fridovich, 1999). 

The enzyme superoxide dismutase converts superoxide (O2
-), a known reactive oxygen species 

to hydrogen peroxide. Superoxide dismutase 1 (Sod1) localizes to both cytosol and the 

intermembrane space of mitochondria (Sturtz et al., 2001) and it is known to play a crucial role 

in the survival of cells at stationary phase (Longo et al., 1996). 

The abundance of Sod1 in whole cell lysates from wild-type and mitochondrial mutant cells at 

late exponential and stationary phases was assayed. Cells were grown for 24 and 192 hours, 
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respectively, and processed to generate whole cell lysates that were used to detect the presence 

of the Sod1 protein via Western blotting and to determine its enzymatic activity. 

As shown in Figure 3.13-A, a slight increase in the abundance of Sod1 from exponential to 

stationary phase was observed in whole cell lysates in wild-type cells. Sod1 steady-state 

protein levels in all the respiratory deficient strains, however, were lower than that of the wild-

type at 24 hours, but increased strikingly at stationary phase, surpassing levels seen in the 

respiratory competent cells. The abundance of actin, Act1, showed no change between 

different phases of growth in any strain, demonstrating that differences in the levels of the 

protein detected were not due to erroneous loading onto the gel. From these results, it would be 

tempting to speculate that increased Sod1 steady-state levels at stationary phase might be 

related to increased levels of oxidative stress. An in-gel activity assay was performed to 

compare Sod1 enzymatic activity with its protein abundance. Unexpectedly, activity decreased 

in wild-type cells from exponential to stationary phase, despite the fact that protein levels 

showed a mild increase. Mitochondrial mutants, on the other hand, did not display significant 

variation in Sod1 activity levels between the different phases of growth, with the exception of 

cox11 mutant cells, which displayed an increased enzymatic activity at stationary phase. 

Overall, it appears that Sod1 abundance in mitochondrial mutants is higher than in a wild-type 

strain at stationary phase, while the enzymatic activity does not seem to change from 

exponential to stationary phase but it remains higher in comparison to that of wild-type cells. 

The finding that only a small portion (approximately 2 %) of Sod1 is necessary to scavenge 

oxygen superoxide might be the reason for the disconnect between steady-state protein and 

activity levels we found (Reddi & Culotta, 2013). 
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Figure 3.13 Oxidative stress analysis in wild-type (WT) and mitochondrial mutant cells. (A) 
Sod1 steady-state levels and enzymatic activity were measured. The respiratory competent, 
wild-type strain and the respiration-deficient strains were grown as previously described and 
whole cell lysates generated. 20 μg of protein were immunoblotted to assess the steady-state 
levels of Sod1 at exponential (EP) and stationary (SP) phases. Act1, which served as a loading 
control, was visualized on the same blot. Sod1 activity was measured in whole cell lysates (18 
μg) using an in-gel assay originally developed by Beauchamp & Fridovich, (1971). 
Immunoblotting of mitochondria (10 μg) was carried out to detect the abundance of Aco1 at 
both exponential (EP) and stationary (SP) phases. Because we found that the abundance of 
Por1, which is used as a marker for mitochondrial proteins, decreased in our respiration 
deficient mutant strains, we have included the Ponceau S general protein stain to show that 
equal amounts of mitochondrial protein have been loaded into each well of the gel. (B) Aco1 
activity was assayed in mitochondria isolated from the wild-type and the respiration deficient 
mutant strains at both the exponential and stationary phases. The spectrophotometric assay 
used citrate as the substrate and measured the production of NADPH at 340 nm. Activities 
(measured in duplicate) represent the average of 4 separate assays; error bars represent the 
standard error of the mean. These experiments were carried out by Alicia Dubinski and Seville 
Scarcello. 
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Investigating the abundance and activity levels of aconitase, Aco1, was another 

approach to assess oxidative stress. Aco1 localizes to both the cytoplasm and the mitochondrial 

matrix, where it carries out functions in citric acid cycle and mtDNA maintenance (Chen et al., 

2005). This protein is easily inactivated by oxidative damage (Murakami & Yoshino, 1997) 

and for this reason provides a reliable marker for oxidative stress. Mitochondrial samples were 

isolated from exponential and stationary phase cultures of each strain and tested for aconitase 

activity. As shown in Figure 3.13-A, the transition from exponential to stationary phase of 

growth correlated with a marked decline in Aco1 steady-state protein levels. Despite the 

general trend being similar for all strains tested, Aco1 abundance seemed to vary based on the 

strain. A cox11 mutant, for example, revealed lower steady state protein levels than any other 

strain at exponential phase while protein levels were below detection limit at stationary phase. 

Cells lacking mtDNA and all other COX assembly mutants were characterized by aconitase 

steady-state protein levels similar to wild-type at 24 hours, while the protein was barely 

detectable or below detection limit after 192 hours. Likewise, Aco1 steady-state protein levels 

decreased in wild-type cells at stationary phase, although the abundance of this protein was 

significantly higher when compared to mutant strains. 

A dramatic difference between aconitase activity of wild-type and respiratory deficient 

cells at different growth stages was revealed by an indirect enzymatic activity assay. At 24 

hours, Aco1 activity of the mutants varied between 7 and 30 % of that of wild-type strains. 

Among these strains, rho0 cells and a cox17 mutant showed activity levels that were two to five 

times higher than that measured in cox4, cox11 and cox15 mutants, despite the fact that steady-

state protein levels did not show such diversity. At the stationary phase of growth, Aco1 

activity decreased significantly in all of the strains tested, indicating increased oxidative stress 

in comparison to exponentially growing cultures. Aconitase activity, however, was preserved 

to a small extent in stationary phase wild-type cells while it was barely detectable in mutant 

samples. 

Overall, these results are consistent with the hypothesis that oxidative stress is increased in 

cells bearing mitochondrial defects. It also seems that the effects of mitochondrial aberrations 

are more pronounced once cultures reach stationary phase. 
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3.9 Sensitivity to Hydroxyurea-Induced Oxidative Stress Is Increased in 

COX Assembly Mutants 

Studies performed in the recent past have shed light on phenotypes caused by treatment 

of yeast cells with hydroxyurea (HU). While the effects of HU as a ribonucleotide reductase 

inhibitor, and the consequent depletion of the dNTPs pool are well known (Herman, 2002), 

induction of oxidative stress in eukaryotic cells is not. A study by Singh and Xu, 2017, 

demonstrated that a Schizosaccharomyces pombe heme-deficient strain was hypersensitive to 

HU treatment. In an effort to elucidate the mechanisms behind this phenotype, the authors 

hypothesized that ROS production was induced in HU-treated cells to levels that a heme-

deficient strain, unlike wild-type, was unable to counteract (Singh & Xu, 2017). 

This discovery prompted us to investigate whether HU exposure could produce a similar effect 

in S. cerevisiae cells lacking COX assembly factors. Among the proteins that are the subject of 

this study are Cox17, Cox11 and Sco1, which are known to bind copper ions, and the heme A 

synthase Cox15. Lack of these proteins might have yet unexplored implications in redox 

metabolism that could potentially correlate with the observed cell cycle defects. 

As mentioned above, it could be that yeast cells lacking the cuproproteins Cox17, Cox11 and 

Sco1 reach an oxidative stress threshold earlier than other mitochondrial mutants due to higher 

ROS production rates. Oxidative damage above cellular scavenging capabilities would induce 

a bi-phasic cell cycle defect characterized by delayed S phase and subsequent G2/M arrest, 

similar to the results we found for cell cycle progression in synchronized cells, DNA content in 

non-synchronized cultures and budding index. 

A standard spot assay was performed to assess the sensitivity of yeast cells to 

hydroxyurea. Wild-type and mitochondrial mutant cells were grown overnight in YPD media 

and normalized to OD600 = 1 the following day. Serial dilutions were then plated onto YPD 

(untreated control) and YPD containing 240 mM HU. Plates were incubated at 30 °C for six 

days and growth was then scored. All of the strains tested were characterized by lower growth 

when exposed to HU in comparison to untreated cells. However, as shown in Figure 3.14, 

sensitivity to HU varied among the strains tested. In the presence of HU, wild-type and rho0 

cells displayed the most abundant growth. Among the other strains, a cox11 mutant displayed 

the highest sensitivity to HU, followed by strains defective for the other two cuproproteins 
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Sco1 and Cox17. Cells lacking Cox4 were characterized by sensitivity to HU similar to a 

cox17 mutant strain. Intriguingly, a cox15 null mutant, incapable of synthesizing the heme A 

synthase, was characterized by growth similar to wild-type even in the presence of HU. These 

results support the idea that mutants lacking cuproproteins might have higher endogenous ROS 

productions rates, and when treated with HU, these cells are not capable of counteracting the 

increased levels of ROS. 

Strikingly, the cytotoxic effect of hydroxyurea among the mitochondrial mutants seemed to 

follow a pattern similar to that observed with cell cycle defects. A cox15 mutant, for example, 

showed cell cycle progression very similar to wild-type. Similarly, this strain displayed a more 

robust growth in YPD+HU than the other mutants. In contrast, a cox11 mutant, the strain most 

sensitive to HU, showed a cell cycle defect that manifested as a delayed S phase. Exceptions to 

this trend seem to be cells deprived of mtDNA, which did not show the hypersensitivity to HU 

that characterized other mitochondrial mutants. However, these cells are also characterized by 

cell cycle arrest at G1 (Crider et al., 2012). Moreover, as shown previously, rho0 cells also 

differed from the other mitochondrial mutants by displaying a significantly lower budding 

index at stationary phase, which corresponds to a high proportion of cells at G1 phase. 
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Figure 3.14 Spot assay of yeast cells treated with hydroxyurea. Cells were grown overnight at 
30 °C in liquid YPD media and then normalized to OD600=1. 5 μL of 10-fold serial dilutions of 
each strain were then plated onto YPD and YPD containing 240 mM HU agar plates. Cells 
were incubated for six days at 30 °C before growth was scored. HU, hydroxyurea. 

3.10 Induced Oxidative Stress Correlates with Higher Death Rate in 

Certain COX Assembly Mutants at Stationary Phase 

As mentioned previously, loss of COX assembly factors was found to have a 

deleterious impact on yeast growth and viability at stationary phase. While a respiratory 

competent strain had approximately 2.4*107 viable cells/mL in stationary phase cultures, a rho0 

strain, the most viable mitochondrial mutant, only had approximately 1*107 viable cells/mL. 

The media used contained glucose, which is rapidly exhausted by cells during fermentative 

metabolism. Once the diauxic shift is reached and glucose is no longer available, a switch from 

fermentative to respiratory metabolism is necessitated to utilize non-fermentable carbon 

sources. However, COX-deficient cells are unable to utilize non-fermentable carbon sources 

and this might be one of the causes of the low viability of mitochondrial mutants at stationary 

phase. Despite the fact that all of the mutants tested in this study were characterized by COX 

deficiency, it seemed clear that certain mutations had a more dramatic impact on survival at 

stationary phase. 
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Such variability among mutant phenotypes caused by mitochondrial defects led us to 

investigate what pathways might be involved. A common feature among the mitochondrial 

mutants is an increased oxidative stress due to COX deficiency. While cells are capable of 

counteracting ROS, in some cases programmed cell death pathways are activated to prevent 

necrotic death that could damage surrounding cells (Carmona-Gutierrez et al., 2010). 

The involvement of apoptosis and necrosis in the low survival rate of respiratory deficient cells 

was investigated by using a flow cytometry-based approach. 

Cells harvested from cultures at 24 and 192 hours, were normalized to OD600 = 1.0 and treated 

with hydrogen peroxide at concentrations that should induce cell death. It is known that 

treating cells with low peroxide concentrations will induce apoptosis, while high 

concentrations of peroxide will induce necrosis. Cells at late exponential phase of growth were 

therefore treated with 0 mM, 3 mM and 90 mM hydrogen peroxide concentrations 

respectively. As cells in stationary phase cultures tend to be more resistant to oxidative stress, 

90 mM hydrogen peroxide was used to induce apoptosis while 180 mM hydrogen peroxide 

was used to trigger necrosis. Cultures were exposed to varying hydrogen peroxide 

concentrations for 3 hours at 30 ºC and then harvested and cell walls removed through 

Zymolyase 20T treatment. Exposure of phosphatidylserine on the outer leaflet of the plasma 

membrane, which is a hallmark of early apoptosis, was assayed by using Annexin V 

conjugated to the fluorophore FITC, while PI was used as counterstain to identify cell death via 

necrosis. Flow cytometry was performed to measure fluorescence signals from 30,000 cells 

and data acquired with this approach were plotted as shown in Figure 3.15. At exponential 

phase, a wild-type strain showed approximately a 20 % increase in the number of cells that 

stained positive for the cell death marker following treatment with 3 mM hydrogen peroxide, 

indicating a clear cellular response to the treatment. Among the mitochondrial mutants, a sco1 

null mutant and the rho0 were the only strains that showed a cell death induction similar to that 

of the wild-type upon peroxide treatment. Interestingly, the other strains, namely cox15, cox17, 

cox4 and cox11 null mutants, displayed activation of cell death pathways to a lower extent, 

even when compared to respiratory competent cells. Among these strains, a cox17 mutant 

distinguished itself by displaying a mere 5 % increase in the number of Annexin V-FITC 

positive cells after treatment with peroxide. 
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At stationary phase, cells tend to be more resistant to peroxide treatment as shown by wild-type 

cells, which displayed a lower cell death induction after treatment in comparison to the same 

cells at exponential phase. 

In contrast, all of the COX assembly mutants displayed cell death induction upon incubation 

with 90 mM hydrogen peroxide. Among these strains, cox15 and sco1 mutants showed the 

most dramatic effect of oxidative stress on cell death induction, with a 40-50 % increase in the 

number of cells that stained positively for the death marker. Cells defective for Cox17 or Cox4 

displayed a milder response to hydrogen peroxide with a 25-30 % increase in cell death. 

Somewhat surprisingly, mtDNA-less cells were not affected by oxidative stress like the other 

mitochondrial mutants and were characterized by a number of cells positive for death markers 

before and after 90 mM very similar to what was observed in respiratory competent cells. 

Taken together, these results suggest that while certain mitochondrial mutants revealed a 

correlation between oxidative stress and cell death, particularly at stationary phase, others 

seemed to be affected to a lesser extent. More specifically, cox11, sco1 and cox15 mutants 

displayed strong cell death induction after peroxide treatment at stationary phase while cox4 

and Cox17 mutants had less robust induction levels. Overall it is also evident how cell death 

induction seems to be growth phase dependent in the mutants, with little to no induction in 

exponentially growing cultures and moderate to strong induction at stationary phase. 
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Figure 3.15 Cell death induction of yeast strains treated with hydrogen peroxide. Cells were 
grown and harvested at 24 and 192 hours (exponential and stationary phases), normalized to 
OD600 = 1 and incubated with different hydrogen peroxide concentrations. Exponential phase 
(EP) cells were incubated with 3 mM hydrogen peroxide while 90 mM peroxide was used for 
stationary phase cultures (SP), as these are more resistant to oxidative stress. As strain-
dependent internal controls, 0 mM, 90 mM (induction of necrosis at exponential phase) and 
180 mM (induction of necrosis at stationary phase) peroxide-treated cells were also analyzed. 
Each column represents the subtraction between the percentages of cells emitting fluorescence 
in the FITC and PI channels alone and in the double-stained channel after and before peroxide 
treatment. Asterisk denotes a statistically significant difference (p < 0.05: ΔSCO1 SP, 3.6E-02) 
between the induction levels of a wild type and mitochondrial mutant strains at a given time 
point. Statistical significance was determined by performing a one-way ANOVA followed by 
Games-Howell post hoc test (see Supplementary Table  6). 
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3.11 Summary 

Taken together, the results of this study support the idea that functionally divergent 

COX assembly mutants are also phenotypically diverse, contrary to the belief that loss of COX 

assembly results in an identical phenotype characterized by loss of COX function. Yeast strains 

bearing selected COX assembly factor mutations were used to investigate the impact of COX 

deficiencies on a variety of cellular functions, with variability thought to be related to potential 

secondary functions of these COX assembly factors. Monitoring of cell cycle progression led 

to the novel finding that strains defective for proteins involved in COX copper metalation, such 

as Cox17, Cox11 and Sco1, are characterized by a cell cycle progression defect. The metal 

binding capability of these ancillary factors suggests that oxidative stress arising from an 

altered copper metabolism could be responsible for the cell cycle aberrations, with analysis of 

oxidative stress markers such as aconitase confirming that mitochondrial mutants are subject to 

higher oxidative stress levels than the respiratory competent strain. Together with a greater 

sensitivity to HU, which is a known oxidative stress agent in yeast, we propose that the 

cuproprotein mutants are characterized by higher levels of oxidative stress than mutants with 

defects in non-copper related pathways and that potential unbalances in cellular copper 

metabolism might be responsible for the cell cycle defect observed. 
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4 Chapter 4 

Discussion 

4.1. COX Assembly Mutants and the Yeast Stationary Phase 

The identification of alternate functions for any given protein has become increasingly 

common, particularly in the era of large-scale proteomics screens. 

Amongst the set of COX assembly factors, Sco1 and Cox11 have been proposed to have roles 

in redox metabolism. Strains defective for these cuproproteins bear a COX deficiency caused 

by the disruption of the COX copper metalation pathway. Sco1 was first associated with a role 

in redox metabolism given the similarities between the structure of this cuproprotein and the 

structures of peroxiredoxins and thioredoxins (Williams et al., 2005). Other studies have linked 

both Sco1 and another COX ancillary factor, Cox11, to secondary functions based on the 

hypersensitivity of the null mutant strains to hydrogen peroxide concentrations in the 

millimolar range (Banting & Glerum, 2006; Veniamin et al., 2011). These results suggested the 

possible involvement of these two COX assembly factors in redox metabolism, as peroxidases 

or, alternatively, as peroxide sensors. 

In the course of experiments designed to determine whether peroxide sensing elements are 

present in the promoters of the COX11 and SCO1 genes, we found that the promoter for 

COX17 drove increasing levels of expression with increased time in culture, raising the 

possibility that Cox17 expression levels might vary based on the phase of growth. The strains 

were selected to allow a comparison of the phenotypes caused by functionally diverse 

mutations. Cells incapable of synthesizing the cuproproteins Cox17, Sco1 and Cox11 cannot 

provide COX with copper. 

A strain incapable of synthesizing heme A synthase, (ΔCox15), was included to study 

COX deficiency due to heme A assembly failure. A mutant strain defective for structural 

subunit Cox4 was also studied, as it differs from the mutants described above in that Cox4 is 

not involved in redox reactions. A rho0 strain was also studied here, as loss of mtDNA makes 

rho0 cells incapable of synthesizing the COX core subunits (Cox1, Cox2 and Cox3), as well as 

subunits for Complex III and Complex V. Since rho0 strains carry defects that are not limited 
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to COX but rather affect the electron transport chain at multiple levels, they are employed 

extensively in mitochondria-related research, as a respiration-deficient reference strain. 

A yeast culture is thought to reach full saturation after approximately one week 

(Herman, 2002) and so the time point chosen to represent the stationary phase in the present 

work was eight days. All the strains tested underwent an initial exponential phase of growth, as 

expected, and as reflected in the 24 h time point. At the diauxic shift (48 h time point), wild-

type, respiratory competent cells kept growing and then reached a plateau, indicating stationary 

phase (144 and192 h). The respiratory deficient mutant strains cannot utilize non-fermentable 

carbon sources and their growth was characterized by lower OD600 than wild-type throughout 

the incubation period (Figure 3.2). 

Even though all of the mutants share the common defect of a lack of COX activity, their 

growths were affected differently. The cox11 mutant strain was the only strain showing a net 

OD600 decrease between exponential and stationary phase, which might be a consequence of a 

higher cell death rate.  

Interestingly, cells lacking Cox17 grew to a higher optical density than cells lacking either 

Sco1 or Cox11, even though all three of these cuproproteins are involved in the COX copper 

metalation pathway. These data, while still preliminary, may mean that failure in the assembly 

of the CuB redox center has a stronger negative impact on cellular homeostasis.  

Viabilities of wild-type and mutant strains were determined at late exponential and 

stationary phases and yielded results that correlated well with the growth curves. After 24 

hours of incubation, mutant cells were approximately 20 % less viable than wild-type cells; at 

192 hours, mitochondrial mutant strains had less than half the number of viable cells of a wild-

type strain. cox11 mutant cells were characterized by the lowest viability at stationary phase 

(Figure 3.3) while the rho0 strain showed the biggest drop in viability. Despite their inability to 

synthesize COX core subunits, the viability of rho0 cells at exponential phase was slightly 

higher than that of wild-type, as has also been observed by others (Stuart et al., 2006) while at 

stationary phase the viability decreased to levels that are similar to those of the other mutants. 

The residual viability of respiratory-deficient strains at stationary phase may be surprising due 

to the lack of fermentable carbon sources. However, it is possible that a portion of the yeast 

population is capable of surviving by utilizing nutrients released by apoptotic cells. 
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Taken together, these analyses show that COX assembly aberrations can result in 

phenotypes that differ to a greater extent than previously thought. In particular, a defect in 

copper delivery to redox center CuB seems to affect yeast growth and viability to a greater 

extent than other mutations. According to the accepted model for COX copper metalation, 

Cox17 delivers copper ions to Cox11 and Sco1 during COX assembly. Thus, it is somewhat 

surprising that a cox17 mutant showed a more robust growth than strains lacking the other two 

cuproproteins. Direct interaction between Cox19, a protein capable of binding metals, and 

Cox11 was recently demonstrated and is required for Cox11 activity (Bode et al., 2015). In this 

study a cox19 mutant was not tested, but based on our results it seems plausible that Cox19 and 

Cox17 might have some overlap in function so that loss of Cox17 does not have as dramatic an 

impact on cellular homeostasis as the loss of Cox11. 

As originally suggested by our promoter studies, we found that steady-state levels of 

Cox17 increased from exponential to stationary phase in wild-type cells; Sod1 protein levels 

were also assayed and displayed an even stronger increase at stationary phase. Superoxide 

dismutase has long been known known for its critical role in cell survival in stationary phase 

yeast cultures (Longo et al., 1996). It should be noted that variation in the increase of Sod1 

abundance at stationary phase likely depended on the method used to generate the whole cell 

lysate (Figures 3.4-3.13). 

Higher Cox17 steady-state protein levels at stationary phase also led us to investigate the 

partitioning of this cuproprotein between cytosol and mitochondria at stationary phase. We 

found that, while the abundance of Cox17 decreased in mitochondria at stationary phase, it 

slightly increased in the post mitochondrial supernatant fraction (Figure 3.5-A). Under 

reducing environmental conditions, Cox17 and other intermembrane space proteins have been 

shown to retro-translocate to the cytosol (Bragoszewski et al., 2015), suggesting that the 

change in partitioning we observed in our mitochondrial preparations might be the result of a 

retro-translocation event that followed reduction of Cox17 disulfide bonds. A secondary 

function of Cox17 within the mitochondria has also been described (Chojnacka et al., 2015); 

although the increased abundance of Cox17 in its cytosolic pool at stationary phase combined 

with the redox-potential of the protein suggest that this protein might exert yet another 

function. Western blotting of mitochondrial preparations also revealed decreased steady-state 

levels of a number of mitochondrial proteins (Cox11, Sco1, Cox4 and Por1) between the 
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exponential and stationary phases in the cox17 null mutant strain (Figure 3.5-B). Interestingly, 

no changes in the abundance of these proteins were observed in the wild-type. Ponceau S 

staining was regularly performed during Western Blotting to ensure equal loading of 10 μg of 

mitochondrial protein on the polyacrylamide gel. Lower abundance of mitochondrial proteins 

at stationary phase in the respiratory deficient strain could be due to increased mitophagy, 

which is known to be induced in stationary phase cultures (Kanki et al., 2015). Another 

hypothesis that could explain a decrease in Cox11 and Sco1 protein levels at stationary phase 

in a cox17 mutant strain is that the absence of Cox17 might be responsible for a decrease in the 

abundance of the other two cuproproteins in a feedback-loop system. 

4.2. COX Defects Adversely Impact the Cell Cycle 

Visual inspection of yeast cells during growth curve experiments led to the initial 

observation that a cox17 mutant strain seemed to have a higher proportion of budded cells 

when compared to wild-type cells at stationary phase. Budding indices of wild-type and 

mitochondrial mutant cells were determined to verify this initial observation and to explore 

whether this phenotype might be common to other respiratory deficient mutants. This approach 

revealed an unexpected scenario where mitochondrial mutants not only behaved differently 

from one another but also from the wild-type strain. 

The budding index of respiratory competent cells was approximately 60 % at exponential 

phase, which decreased to 35 % at stationary phase. A lower budding index at stationary phase 

is expected as cells stop growing and should remain in a non-budded state (G0 phase). In 

contrast, cells depleted of mtDNA were characterized by budding indices lower than any other 

strain at both phases of growth. As reported by Crider et al., (2012), yeast rho0 cells manifest a 

defect while transitioning from G1 to S phase during the cell cycle, which might explain the 

lower budding index of a rho0 strain when compared to respiratory competent cells. 

Furthermore, the increase in cellular volume associated with G1 arrest (Bryan et al., 2010) 

might be responsible for altering light absorption, ultimately leading to rho0 cells displaying a 

faster growth rate than other mitochondrial mutants at exponential phase (Figure 3.2). 

Budding index analyses of the other mitochondrial mutants provided further proof of diversity 

between COX deficiencies caused by different defects. At the exponential phase of growth, the 

COX assembly factors mutant strains had budding indices similar to that of the wild-type, with 



79 
 

differences emerging at the stationary phase. Confirming initial observations, the budding 

index of a cox17 mutant was about 15 % higher than that of the wild-type after 192 hours. cox4 

and cox15 mutants also displayed budding indices slightly higher than that of wild-type. On the 

other hand, strains defective for Cox11 and Sco1 revealed proportions of budded cells at 192 

hours that were lower than the other COX assembly mutants but not lower than wild-type 

(Figure 3.6). This approach thus served to distinguish defects caused by the loss of mtDNA 

from those with a loss of assembled COX. The anomalous budding indices of the COX 

assembly mutants suggested the presence of possible cell cycle-related defects distinct from 

that of the rho0 strain. 

In an effort to explore the connection between mitochondrial defects and the cell cycle, 

flow cytometry-based approaches were adopted to assess the DNA content of cells from both 

synchronous and non-synchronous cultures. Flow cytometry of non-synchronous cultures at 

different growth phases revealed a general trend among all strains, defined by an increased 

G1/G2 ratio in moving from exponential to stationary phase. This was not surprising since 

synchronization in an non-budded state is a known hallmark of quiescent cells in stationary 

phase cultures (Gray et al., 2004). The increased G1/G2 ratios after eight days of incubation 

also provided further evidence that cultures had indeed reached stationary phase. 

The highest G1/G2 ratios at both exponential and stationary phases were found in the rho0 

strain. Evidence that the majority of mtDNA-less cells had 1-N DNA content also matched the 

low budding indices determined for this strain, suggesting that this phenotype is likely linked 

to the known cell cycle defect of mtDNA-less cells. 

DNA content analysis of COX assembly mutants provided a clear contrast with rho0 cells, 

providing an indication of different cell cycle anomalies affecting these strains. At stationary 

phase, cox17, cox4 and cox15 null mutant strains were characterized by G1/G2 ratios that were 

half of that of wild-type, indicating a greater number of cells at G2/M, which was in keeping 

with the high budding indices found in these strains at stationary phase. 

The G1/G2 ratios of sco1 and cox11 mutants were also lower than that of the wild-type at 

stationary phase. Interestingly, the budding indices for these two strains at stationary phase did 

not show differences from wild-type, unlike the other assembly mutants. 

Overall, these results provided evidence that higher percentages of budded cells in 

certain mitochondrial mutants at stationary phase correlated with higher proportions of cells at 
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G2/M. This pattern was not observed in exponentially growing cultures, where G1/G2 ratios of 

COX assembly mutants were approximately half of that of the wild-type after 24 hours, but 

with no differences in budding indices. A rho0 strain, on the other hand, showed the highest 

G1/G2 ratios, in keeping with low budding indices at both growth phases. Because this strain is 

characterized by a known cell cycle defect, it served as internal control for a comparison with 

the COX assembly mutants. 

Techniques typically used to monitor cell cycle progression in S. cerevisiae involve 

flow cytometry and visual analysis. In the work presented here, visual analysis was employed 

to determine the budding index of each strain. Generally, morphological changes in cells are 

associated with cell cycle transitions. A limitation of visual analysis, however, is that it 

requires a correlation between cytoskeletal events and DNA replication (Calvert et al., 2008). 

Uncoupling between bud emergence and DNA replication has been reported in specific mutant 

strains and under specific growth conditions, such as nitrogen starvation (Piatti et al., 1995; 

Rivin & Fangman, 1980; Schwob & Nasmyth, 1993), and may underlie the discrepancies 

between DNA content analysis and budding indices we found in our mutants. The effects of 

COX assembly aberrations on the cell cycle were further investigated by analyzing cell cycle 

progression of cultures synchronized at G1. 

These experiments led to a further diversification of phenotypes caused by mutations of 

different COX assembly factors. It was found that cox15 and cox4 null mutants were 

characterized by a cell cycle progression very similar to that of respiratory competent, wild-

type cells. Interestingly, cox4 and cox15 mutants, together with cells defective for Cox17 were 

the strains that presented with the highest percentages of budded cells at stationary phase. 

However, progression between cell cycle phases seemed slightly delayed in a cox17 mutant 

strain (Figure 3.9). A delayed progression through cell cycle phases was even more evident in 

cells lacking the other two cuproproteins, Sco1 and Cox11, respectively. In contrast to the 

DNA content analysis of non-synchronous cultures, which showed higher numbers of cells at 

G2/M in COX assembly mutants, the analysis of DNA content post-synchronization allowed 

us to identify a cell cycle defect that appears limited to the cuproproteins mutants, at least in 

cells grown for less than 24 h. Indeed, FACS analyses of synchronized cultures revealed that 

strains lacking cuproproteins showed a delayed cell cycle progression that appeared similar to 

the delayed G1-S transition observed in a rho0 strain (Crider et al., 2012). However, the defect 
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shared among cuproprotein mutants seemed to differ from that of a rho0 strain. The latter, in 

fact, showed a delay in progression through cell cycle phases as well as a high proportion of 

cells that arrest at G1, whereas the cuproprotein mutants displayed higher proportions of cells 

that arrest at G2 at both phases of growth in non-synchronous cultures. In addition, the cell 

cycle progression of cuproprotein mutants was not characterized by the post-release 

predominant G1 peak shown by cells that lack mtDNA, which arrested at G1. To our 

knowledge, this is the first report of cell cycle defects associated with COX assembly mutants. 

In summary, while minimal or no apparent difference from respiratory competent cells was 

found for the cox15 and cox4 mutants, strains defective for the cuproproteins were 

characterized by a slower cell cycle progression, displaying 2-N DNA content at a later time 

point after release. 

The strategies applied to investigate the cell cycle in wild-type and respiratory deficient 

cells generated results that led to seemingly contradictory conclusions. While initial 

experiments revealed impaired growth and lower viability of cells that are unable to respire, 

analysis of budding indices identified COX assembly mutants with increased proportions of 

budded cells at stationary phase. Because the anomalous budding indices observed in cox17, 

cox4 and cox15 mutants could have been related to their replicative capability, the replicative 

lifespan (RLS) of each strain was determined. RLS is defined as the number of times a virgin 

cell divides before becoming senescent (Mortimer & Johnston, 1959). This technique is 

currently a common tool in aging studies. RLS analyses of the mutants used in this study did 

not reveal significant differences between lifespans of the wild-type and those of the 

mitochondrial mutants (p > 0.01), thereby ruling out the possibility that these mitochondrial 

mutants could be more prolific than the respiratory competent cells. However, while our strains 

did not show differences in RLS, results reported in the literature are contradictory. It appears 

that yeast lifespan may vary depending on genetic background and on growth conditions 

(Longo et al., 2012). Indeed, the RLS of certain rho0 strains was found to be higher than that of 

the wild-type, although this phenotype was not observed in rho0 strains with different genetic 

backgrounds (Kirchman et al., 1999). 

The rho0 strain used in this study was in the W303 genetic background and its replicative 

lifespan was not different from that of the parent, respiratory competent strain, as described by 

others (Kirchman et al., 1999). A cox4 null mutant has been studied in the YPK9-background 
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and its lifespan was found to be mildly higher than that of the wild-type, although it should be 

noted that the “corresponding rho0 strain was characterized by a strong RLS increase. 

A discrepancy between our results and data from the literature is the overall lower RLS 

that characterized our strains. Pioneering RLS experiments estimated a yeast lifespan ranging 

between 20-25 divisions (Mortimer & Johnston, 1959), while recent studies have estimated 

that yeast RLS varies between 20 and 30 divisions (Steffen et al., 2009). Cells with the W303 

background, like the ones used in the work presented here, fall in the category of “short-lived” 

strains and their RLS was reported to be approximately 20 to 23 divisions (Kaeberlein et al., 

1999). In contrast with what was reported in the literature, our strains were characterized by 

shorter lifespans, with mean RLS ranging from 12 to 15.  

The reason(s) for this discrepancy are not clear as a nearly identical methodology was 

used. One possibility is that long-term storage of our strains may have played a role in the 

shorter lifespans. Given the lack of an observable defect in replicative lifespan, experiments 

were undertaken to further explore the possibility that COX assembly mutants might still be 

proliferating at stationary phase, as suggested by the anomalous budding indices. 

Western blotting for Mcm2, a component of the Mcm2-7 hexameric helicase complex, 

showed high levels of this protein in proliferating cells, as expected (Young & Tye, 1997). 

Immunoblotting of whole cell lysates revealed that Mcm2 steady-state protein levels in all of 

the mitochondrial mutants were below detection limits, after 192 hours in culture. This 

contrasted with Mcm2 steady-state levels in the wild-type strain, which did not appear to 

change based on the growth phase. This was somewhat surprising, as little to no cell 

replication would be expected to happen in stationary phase cultures. 

In summary, these results suggest that the anomalous budding indices of certain COX 

assembly mutants are not connected to the replicative lifespan of the strains investigated. 

4.3. Role of Oxidative Stress in Cell Cycle Defects 

On the basis of the cell cycle progression analyses, mutants that could not express the 

COX assembly cuproproteins, together with a rho0 strain, were characterized by delays in cell 

cycle progression. However, based on subtle differences, we hypothesized that lack of mtDNA 

and the lack of cuproproteins interfered with the cell cycle in different ways. This hypothesis 

was based on evidence that, after 192 hours of incubation, rho0 cells displayed the lowest 
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budding indices and the highest proportion of cells at G1, reflecting G1 arrest. In comparison, 

the G1/G2 ratios of cuproprotein mutants indicated a much higher abundance of cells at G2/M 

at both exponential and stationary phases, suggesting they may be undergoing a G2/M arrest. 

Steady-state levels of Rad53, one of the key players in G2/M arrest in S. cerevisiae, were 

below detection limits in all of the mitochondrial mutants at stationary phase. In contrast, 

Rad53 steady-state levels did not appear to change from exponential to stationary phases in 

wild-type cells, possibly representing the need for this protein in response to DNA damage due 

to increased oxidative stress levels (Schroeder & Shadel, 2014). Why Rad53 was not detected 

in whole cell lysates from mitochondrial mutant cultures at stationary phase remains unclear, 

although it is possible that the cell cycle defects in COX assembly mutants affect mechanisms 

that act upstream of Rad53. 

In the absence of obvious replicative defects among our strains, we considered another 

potential source of cell cycle defects, namely oxidative stress. Reactive oxygen species are 

involved in a myriad of cellular pathways and in most cases have a negative impact on cellular 

homeostasis. Because mitochondria are thought to be one of the main sources of cellular ROS, 

the idea that oxidative stress could be linked to the phenotypes observed in our mutants seem 

plausible, given that induced oxidative stress has been reported to cause a bi-phasic cell cycle 

arrest in yeast, with S phase arrest followed by G2/M arrest at a later point in time (Shapira et 

al., 2004). The behaviours of our COX assembly mutants fit with the model of a bi-phasic cell 

cycle arrest, as high budding indices and low G1/G2 ratios of COX assembly mutants could be 

indicative of G2/M phase arrest. cox17, sco1 and cox11 mutants displayed a delayed cell cycle 

progression, leading to the possibility that strains lacking proteins involved in COX copper 

metalation might have higher endogenous ROS production rates. cox4 and cox15 mutants, on 

the other hand, displayed cell cycle progression similar to that of the wild-type, but the high 

budding indices and low G1/G2 ratios of these strains at stationary phase suggest that these 

cells might reach deleterious ROS intracellular levels at a later point. In fact, a culturing period 

of 192 hours implies a prolonged exposure of cells to oxidative stress, ultimately inducing the 

cell cycle defect observed in the cuproprotein mutants at an earlier time point, in late 

exponential phase (Figure 4.1).
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Figure 4.1 Differential impact of mitochondrial defects on cellular homeostasis. Oxidative stress levels, which increase in all strains 
from exponential to stationary phase, vary depending on the nature of COX deficiency. A wild-type strain is characterized by higher 
growth, higher viability and lower oxidative stress than mutant strains. Depletion of mtDNA in rho0 cells causes G1 arrest, impaired 
growth and low budding indices. COX assembly mutants are characterized by higher ROS generation rates that associate with bi-
phasic cell cycle arrest, impaired growth and low viability, especially at stationary phase. These effects are especially pronounced in 
cuproprotein mutant strains cox17, sco1 and cox11, which also displayed higher sensitivity to hydroxyurea treatment. WT, wild-type; 
ROS, reactive oxygen species; COX, Cytochrome c Oxidase 
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Mitochondria are a known source of ROS through different intra-organellar sites such 

as the external mitochondrial NADH dehydrogenase (Davidson & Schiestl, 2001), coenzyme 

Q (Guo & Lemire, 2003) and succinate dehydrogenase (Outten & Culotta, 2003). 

Aconitase is used as a sensitive detector of oxidative stress and we found decreased steady-

state levels of Aco1 at stationary phase in both the wild-type and mutant strains, with the 

mutants having no or barely detectable Aco1 levels. Enzymatic activity of this protein was also 

marked by a significant decrease at stationary phase (Figure 3.13), suggesting that an intact 

electron transport chain is necessary for cells to be able to counteract oxidative damage. 

Alternatively, defects of individual complexes could lead to increased ROS production through 

electron slippage. 

Likewise, increased steady-state levels of Sod1were found at stationary phase in mutant 

strains, although superoxide dismutase activity levels did not increase accordingly, possibly 

due to the fact that only a rather small portion of Sod1 is required to scavenge cellular oxygen 

superoxide (Reddi & Culotta, 2013) Further experiments will be required to determine whether 

mutant strains have higher rates of Sod1 protein turnover. 

The discrepancy between Sod1 activity and steady-state protein levels has also been described 

in a cmc1 null mutant in which mitochondrial Sod1 activity increased, while steady-state 

protein levels did not; the same study reported no differences in Sod1 activity in whole cell 

lysates (Horn et al., 2008). The inability to grow on non-fermentable carbon sources of another 

Cmc1 mutant was rescued with the addition of the anti-oxidant dithiothreitol (DTT), without 

notable increase in either Sod1 activity or steady-state levels (Bode et al., 2013). It should be 

noted that these studies examined mitochondria isolated from cells harvested at exponential 

phase/early diauxic shift, conditions that are different from those described here. A more recent 

investigation of Sod1 at stationary phase has found increased amounts of the Sod1 protein in 

soluble aggregates (Martins & English, 2014). Neither this possibility nor the involvement of 

Sod2, the mitochondrial matrix Mn-superoxide dismutase, was assessed during this work. 

Taken together, analyses of oxidative stress markers such as aconitase and superoxide 

dismutase protein levels and enzymatic activities suggest that mitochondrial mutants are 

subject to higher oxidative stress levels than the wild-type strain, especially at stationary phase. 
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The approaches discussed above analyzed endogenous oxidative stress levels in 

stationary phase culture, and we wondered how our mitochondrial mutants would respond to 

an exogenously-induced oxidative offense. 

It has very recently been reported that a S. pombe heme-deficient strain is hypersensitive to 

treatment with hydroxyurea, with the cytotoxic effect of hydroxyurea due to induction of ROS 

levels beyond the capacity of cellular scavenging mechanisms (Singh & Xu, 2017). The strains 

studied in the work presented here responded differently, based on the nature of the COX 

defect, when exposed to hydroxyurea. Interestingly, as reported in Figure 3.14, a cox15 null 

mutant, which is defective for the heme A synthase, was the least affected by HU treatment 

among the assembly mutants. On the other hand, the cuproprotein mutants showed the 

strongest sensitivity to HU, supporting the hypothesis that COX assembly mutants lacking one 

of the cuproproteins might be subject to higher endogenous ROS production rates.  

Similarly to what was shown in heme deficient S. pombe cells (Singh & Xu, 2017), HU 

treatment might induce oxidative damage to levels that the cuproprotein mutants cannot 

manage. Experiments aimed at confirming that the reduced growth of the cuproprotein mutants 

in the presence of HU is due to increased ROS levels and not to the depletion of the dNTP pool 

are currently ongoing. Interestingly, the cox11 and sco1 mutants are known to be 

hypersensitive to hydrogen peroxide, while the cox17 and cox4 null mutants are not 

characterized by sensitivity to peroxide (Banting & Glerum, 2006). An investigation of the 

promoter regions of the genes encoding Cox17, Cox11 and Sco1 failed to find any evidence of 

peroxide-responsive elements (Figure 3.1). While potential roles for Cox11 and Sco1 in redox 

metabolism cannot be excluded, it is possible that the peroxide sensitivity of the null mutants is 

a consequence of the same mechanism that results in the sensitivity of these strains to 

hydroxyurea. It should be noted that while a cox17 mutant did not show hypersensitivity to 

induced oxidative stress as reported previously (Banting & Glerum, 2006), it could be that 6 

mM hydrogen peroxide was too low a concentration to affect this mutant. Our FACS analysis 

of cell death markers in cells treated with hydrogen peroxide showed that cox17 mutant cells 

hardly responded to treatment with 3 mM hydrogen peroxide. On the other hand, when the 

same cells were treated with 90 mM hydrogen peroxide after 192 hours in culture, induction of 

cell death pathways was significant (Figure 3.15). 
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Mutation of any of the COX assembly factors described in the present work results in COX 

assembly failure and the subsequent loss of activity. Still, cuproproteins mutants were found to 

be more sensitive to an oxidative offense than the other mutants and the underlying 

mechanisms are not clear and require further investigation. The presence of copper ions within 

the cell needs to be tightly regulated as these ions can otherwise contribute to formation of 

dangerous hydroxyl radicals through Fenton reactions in the presence of hydrogen peroxide 

(Halliwell & Gutteridge, 1990). Because Cox17, Cox11 and Sco1 are all proteins capable of 

binding copper ions, it is possible that their loss could interfere with mitochondrial copper 

metabolism, leading to increased ROS production rates. Mitochondrial copper regulation is 

still poorly understood and a matter of debate, especially with regard to how copper reaches the 

IMS and the mitochondrial copper pool in the matrix. A study performed in human cells 

showed that a COX17 deficiency was associated with increased mitochondrial copper 

concentration, suggesting that COX17 could play a role in copper efflux from mitochondria 

(Wang et al., 2013). Another protein thought to be playing a role in copper efflux is SCO1, as 

cells with mutated SCO1 have a mitochondrial copper deficiency, although similar effects were 

found in sco2 and cox15 backgrounds (Leary et al., 2007). Another more recent study 

contributed to the development of a model that involves SCO1, SCO2, COX19 and ATP7A in 

coordinating copper efflux from the cell. Briefly, according to this model, mutant SCO1 is 

characterized by an altered status of its redox-active cysteines, which simulates a status of 

“copper overload” and triggers release of COX19 from the IMS. COX19 release ultimately 

leads to cellular copper efflux mediated by the Golgi-localized, ATP7A copper-transporting 

ATPase (Leary et al., 2013). In this regard, it would be interesting to study Cox19, Cmc1, Sco2 

and Cox23, which are all localized to mitochondria and have metal-binding functions. Among 

these proteins, Cox23 is thought to have a role in copper homeostasis and to act in a common 

pathway upstream of Cox17 (Barros et al., 2004). It would be interesting to investigate the 

phenotypes of mutants for the proteins with regards to cell cycle and sensitivity to oxidative 

stress, especially when considering the recent discovery of a direct interaction between Cox19 

and Cox11 prior to copper delivery to Cox1 (Bode et al., 2015). 

The requirement of copper in mitochondria is not limited to the electron transport chain, but 

extends to other enzymes such as the superoxide dismutase Sod1. Thus, unbalances in copper 

homeostasis might have repercussions on the functions of this protein as well. Interestingly, it 
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was previously reported that the lack of Sod1 interferes with the regulation of copper genes in 

response to DNA damaging agents such as methyl methanesulfonate, suggesting a direct role 

for this protein in a pathway that connects copper metabolism with cellular antioxidant defense 

mechanisms (Dong et al., 2013). 

The mitochondrial mutants studied in this work showed differences in viability, as 

discussed earlier, suggesting the possibility of diversified activation of cell death pathways. 

Moreover, respiratory deficient strains revealed increased oxidative stress, which is known to 

trigger the apoptotic pathway. 

Cell death in the wild-type and COX deficient strains at different phases of growth was 

therefore investigated by testing for the externalization of phosphatidylserine to the outer 

leaflet of the plasma membrane. However, these data should be considered preliminary, as it is 

recommended that more than one approach should be used when investigating apoptosis 

(Carmona-Gutierrez et al., 2010), especially considering the challenges of the strong 

autofluorescence, especially in a wild-type strain. Despite adopting gating strategies specific 

for individual strains and using unstained cells as “negative control”, a clear distinction 

between early apoptotic cells (single stained, FITC positive cells) and late apoptotic/necrotic 

cells (double stained, FITC+PI) was not achievable. For this reason, “cell death induction” was 

determined as the difference between numbers of single and double stained events after and 

before incubation with peroxide. 

Interestingly, exposure of exponentially growing cells to 3 mM hydrogen peroxide did 

not appear to trigger cell death in mutant cells to a greater extent than in wild-type cells, with 

the exception of the sco1 mutant strain. On the other hand, cox17, cox4 and cox15 mutant 

strains displayed lower cell death induction rates in comparison to the wild-type. In particular, 

the cox17 mutant showed a mere 5 % increase in the number of cells undergoing cell death 

upon treatment with peroxide, while the induction rate in wild-type cells at exponential phase 

was about 20 %. 

In contrast, at the stationary phase of growth, all of the COX assembly mutants 

displayed higher levels of cell death upon incubation with 90 mM hydrogen peroxide. Among 

these strains, sco1, cox15 cox11 and cox4 mutants were found to be particularly sensitive to 

peroxide treatment and were characterized by an increase in the numbers of events positive for 

cell death markers of between 30 and 50 % (Figure 3.15). Rho0 cells did not appear more 
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sensitive to peroxide-induced cell death than the wild-type strain at stationary phase, as has 

been reported by others (Büttner et al., 2007), and both strains displayed lower cell death levels 

at stationary phase as compared to exponential phase. 

Taken together, our analysis of cell death in wild-type and mitochondrial mutants 

revealed that stationary phase COX assembly mutant cells were more sensitive to oxidative 

damage than wild-type or rho0 cells. Moreover, among the COX assembly mutants, cells 

defective for Cox17 appeared less sensitive to peroxide, potentially unveiling a role for this 

protein in cell death pathways. 

In summary, results of this study revealed divergent phenotypes of yeast strains that 

were characterized by failure in COX assembly and the subsequent loss of COX function. 

Analysis of the phenotypic variability among these mitochondrial mutants led us to uncover a 

cell cycle defect associated with the loss of COX assembly factors that is likely due to higher 

oxidative stress levels that were observed in respiratory deficient strains. To our knowledge, 

this is the first report of a cell cycle aberration caused by COX assembly factors mutations. 
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Chapter 5 

Conclusions and Future Directions 

5.1. COX Assembly Factors Defects Lead to Diverse Phenotypes 

In the recent past, the common belief that all COX assembly mutants present a virtually 

identical phenotype has been challenged by studies that have unveiled novel, secondary 

functions for some of these proteins. The experiments described here revealed a phenotypic 

diversity caused by mutations in different ancillary factors. Analyses of growth curves and 

cellular viabilities at different phases of growth uncovered divergent phenotypes among the 

strains studied, with cox11 exhibiting the lowest growth and viability, while a cox17 mutant 

was found to grow to higher density levels than any of the other COX mutants, both during the 

exponential and stationary phases.  

Phenotypic differences among the COX assembly mutants extended to cell cycle progression, 

with strains defective for proteins involved in COX copper metalation displaying a defect that 

was not observed in other COX assembly mutants such as cox15 and cox4. 

The COX assembly mutant strains selected for this work included cells defective for 

proteins involved in the assembly of the COX complex at different levels. However, scientific 

research makes COX assembly factors a group of proteins that is still growing in number and 

that includes functions that have not been considered in this study. Cox17, Cox11 and Sco1 are 

not the only copper-binding COX assembly factors; Cox23, Cmc1 and Cox19 are also capable 

of binding copper and localize to the IMS. It would be interesting to see whether strains 

defective for these proteins show a cell cycle defect similar to that of the cox17, sco1 and 

cox11 mutants. Another protein that was not investigated in this study, but that falls within the 

category of proteins involved in COX assembly, is Sco2. The function of Sco2 is believed to 

be partially redundant with that of Sco1 (Lode et al., 2000), although overexpression of this 

protein cannot rescue the loss of Sco1 (Glerum et al., 1996b). The approaches used in the 

present work could be applied to study a sco2 null mutant, possibly leading to an improved 

understanding of the functional relationship between Sco1 and Sco2 as homologous COX 

assembly factors. 
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5.2. Novel Functions of COX Assembly Factors 

Since the hypothesis for secondary roles of Cox11 and Sco1 was initially formulated 

(Banting & Glerum, 2006), definitive evidence of their specific roles in redox metabolism has 

not been attained. Some of the functions proposed for these cuproproteins included roles as 

peroxidases or, alternatively, as peroxide sensors in the IMS. Other studies have linked human 

SCO1 with a pathway that regulates copper efflux from the mitochondria (Leary et al., 2013). 

In the work described here, no peroxide-responsive elements in the SCO1 and COX11 

promoter regions were identified, ruling out roles for these two cuproproteins in peroxide 

sensing. An alternate function in redox metabolism, however, cannot be excluded. Experiments 

aimed at finding whether Cox11 and Sco1 can function as peroxidases would be another step 

towards exploring the roles of these proteins in peroxide metabolism. To this aim, His-tag 

versions of Sco1 and Cox11 could be purified via affinity chromatography and tested for 

peroxidase activity using an Amplex Red assay. Alternatively, these cuproproteins could be 

acting by regulating the activity of other peroxidases. In this case, co-immunoprecipitation 

experiments might reveal new interactions between Sco1 and Cox11 and proteins involved in 

peroxide metabolism, such as the mitochondrial peroxiredoxin Prx1, and Ccp1, a cytochrome c 

peroxidase localized to the IMS. 

Cox17, the cuproprotein functioning upstream of Cox11 and Sco1, has also been 

associated with functions not directly related to COX assembly. The interaction between 

Cox17 and a core component of the MICOS complex, Mic60, indicates the involvement of 

Cox17 in a pathway required for the maintenance of the IMM integrity (Chojnacka et al., 

2015). Another study linked this small cuproprotein to a role in copper efflux from human 

mitochondria (Wang et al., 2013). Experiments described here, which were aimed at 

characterizing broader phenotypes of the COX assembly mutants, showed that the growth of 

cells defective for Cox17 is not affected as much as observed in other strains, such as a cox15 

mutant. The cell cycle defect that was observed in a cox17 mutant, as well as in cells defective 

for Sco1 and Cox11, might be related to the metal-binding ability of these proteins rather than 

being specific to the function of a single protein. However, the exact cause of the cell cycle 

delay that was found in the cuproproteins mutants requires further investigation. To further 

confirm the role of oxidative stress as the cause of the cell cycle defect we observed, 
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experiments will be aimed at demonstrating that under certain growth conditions such as the 

absence of oxygen and/or the presence of N-acetylcysteine, a strong anti-oxidant, the 

sensitivity of the cuproprotein mutants to HU can be reversed. 

Flow cytometric analysis of cell death markers has shown that treating cells with 

hydrogen peroxide induces cell death to a lesser extent in a cox17 mutant than in the other 

strains tested at late exponential phase. While these results are preliminary, they suggest the 

potential involvement of Cox17 in cell death pathways. As mentioned previously, multiple 

approaches should be adopted when investigating apoptosis (Carmona-Gutierrez et al., 2010) 

and other methods that could be used to confirm these preliminary data include terminal 

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), a technique that is commonly 

used to detect apoptosis in its late stages and DAPI staining to observe the status of chromatin. 

The retro-translocation of Cox17 from the IMS to the cytosol we observed in our 

mitochondrial preparations had been previously reported already and demonstrated to be linked 

to the reduction of Cox17 disulfide bonds (Bragoszewski et al., 2015). However, we also found 

that Cox17 steady-state protein levels increased in whole cell lysates between exponential to 

stationary phases. Thus, it is possible that the increased abundance and retro-translocation of 

Cox17 associate with yet another function of the protein in the cytosol. 

5.3. Correlation between COX Deficiency and Cell Cycle Defects 

The initial observation that some COX assembly mutants had more cells with buds than 

the wild-type strain at stationary phase prompted us to explore a possible association between 

COX defects and the cell cycle. Visual analysis, followed by determination of budding indices, 

confirmed that cox17, cox4 and cox15 mutants had a higher abundance of budding cells in 

comparison to the wild-type. Flow cytometric data supported the budding indices, revealing 

that cox4, cox15 and cox17 mutants have a high proportion of cells at G2/M in the stationary 

phase. Monitoring of cell cycle progression allowed us to discriminate between two different 

cell cycle defects: a G1-S transition defect that had previously been described in a rho0 strain 

(Crider et al., 2012), and a second anomaly consisting of a delayed cycle progression, as seen 

in the cuproprotein mutants. Treating cells with a known ROS, such as hydrogen peroxide, 

induces a bi-phasic cell cycle arrest, first at G1-S phase and later at G2/M, leading us to 

hypothesize that cuproprotein mutants could be under increased oxidative stress. Indeed, 



93 
 

analysis of oxidative stress revealed that the mitochondrial mutants displayed increased 

oxidative damage, as shown by the reduced aconitase activity. Furthermore, the cuproproteins 

mutants displayed hypersensitivity to hydroxyurea, which is known to increase cellular 

oxidative stress levels (Singh & Xu, 2017). The mechanisms that underlie the oxidative stress-

dependent cell cycle defect are not yet clear and require further investigation. Proteins such as 

the transducer, Mec1, and the downstream effector proteins Rad53 and Rad9, which are known 

to function in a checkpoint in response to DNA damage, represent a starting point for future 

experiments aimed at elucidating the mechanisms underlying the cell cycle defect described 

here. Studying the phosphorylation of Pif1, a downstream player in the Rad53-induced 

response to DNA damage (Makovets & Blackburn, 2009) could give a first indication of the 

involvement of Rad53 in the cell cycle defect observed in a subset of our mutants. 

While human disease associated with COX deficiency has not been the focus of this 

work, the results described in this study shed light on the phenotypic variability caused by 

COX deficiencies in yeast cells and uncovered a potential link between the loss of certain COX 

assembly factors and cell cycle defects. These findings are therefore relevant to the phenotypic 

impact of COX deficiencies associated with human disease, particularly in terminally 

differentiated cells, such as neurons. 

Mitochondrial disease is commonly defined as defects of the respiratory chain, and despite the 

efforts of scientific research, no cures currently exist. Therapeutic approaches to treat 

mitochondrial disorders are mainly limited to pharmacological and surgical treatment. A 

common approach in treating mitochondrial disease consists of enhancing the respiratory chain 

function to attenuate the energy deficiency and to prevent ROS accumulation and the 

subsequent oxidative stress. A compound frequently used to treat respiratory deficiencies is 

coenzyme Q10, thanks to its antioxidant properties and the important role that it plays in the 

electron transport (Dimauro et al., 2012). This pharmacological strategy, however, lead to 

modest and often subjective results (Glover et al., 2010). The experiments performed in the 

work presented here unveiled a connection between the loss of COX assembly factors and cell 

cycle defects. This connection bears the potential of becoming a starting point for future 

research aimed at exploring new therapeutic approaches that are not solely focused on the 

energy-related aspect of mitochondrial disorders. 
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Appendix 

Supplementary Table  1 Statistical analysis of the LacZ assay reported in Figure 3.1. A one 
way ANOVA test was performed to determine the significance (p < 0.05) of the differences 
among the data groups. A post-hoc Games-Howell test was performed to determine the 
significance of the differences between the means of anyone data group. Games-Howell test 
accounts for unequal sample sizes. df, degrees of freedom; A420, absorbance at 420 nm. 

ANOVA 

A420 Sum of Squares df Mean Square F p 

Between Groups 2.441 11 0.222 2.871 0.008 

Within Groups 2.783 36 0.077 
  

Total 5.225 47 
   

Games-Howell Post Hoc Test 

Sample for multiple 

comparison 
Compared to p 

Sample for multiple 

comparison 
Compared to p 

plCOX17 0 mM H2O2 

plCOX17 0.02 mM H2O2 1.000 

plSCO1 0.2 mM H2O2 

plCOX17 0 mM H2O2 0.158 

plCOX17 0.2 mM H2O2 1.000 plCOX17 0.02 mM H2O2 0.235 

plCOX17 0.5 mM H2O2 1.000 plCOX17 0.2 mM H2O2 0.525 

plSCO1 0 mM H2O2 0.136 plCOX17 0.5 mM H2O2 0.482 

plSCO1 0.02 mM H2O2 0.258 plSCO1 0 mM H2O2 1.000 

plSCO1 0.2 mM H2O2 0.158 plSCO1 0.02 mM H2O2 0.990 

plSCO1 0.5 mM H2O2 0.105 plSCO1 0.5 mM H2O2 1.000 

plCOX11 0 mM H2O2 0.911 plCOX11 0 mM H2O2 0.674 

plCOX11 0.02 mM H2O2 0.309 plCOX11 0.02 mM H2O2 0.562 

plCOX11 0.2 mM H2O2 0.264 plCOX11 0.2 mM H2O2 0.813 

plCOX11 0.5 H2O2 0.136 plCOX11 0.5 mM H2O2 0.806 

plCOX17 0.02 mM H2O2 

plCOX17 0 mM H2O2 1.000 

plSCO1 0.5 mM H2O2 

plCOX17 0 mM H2O2 0.105 

plCOX17 0.2 mM H2O2 1.000 plCOX17 0.02 mM H2O2 0.202 

plCOX17 0.5 mM H2O2 1.000 plCOX17 0.2 mM H2O2 0.494 

plSCO1 0 mM H2O2 0.326 plCOX17 0.5 mM H2O2 0.432 

plSCO1 0.02 mM H2O2 0.449 plSCO1 0 mM H2O2 0.999 

plSCO1 0.2 mM H2O2 0.235 plSCO1 0.02 mM H2O2 0.982 

plSCO1 0.5 mM H2O2 0.202 plSCO1 0.2 mM H2O2 1.000 

plCOX11 0 mM H2O2 0.914 plCOX11 0 mM H2O2 0.617 

plCOX11 0.02 mM H2O2 0.646 plCOX11 0.02 mM H2O 0.452 

plCOX11 0.2 mM H2O2 0.527 plCOX11 0.2 mM H2O2 0.731 

plCOX11 0.5 mM H2O2 0.484 plCOX11 0.5 mM H2O2 0.715 
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plCOX17 0.2 mM H2O2 

plCOX17 0 mM H2O2 1.000 

plCOX11 0 mM H2O2 

plCOX17 0 mM H2O2 0.911 

plCOX17 0.02 mM H2O2 1.000 plCOX17 0.02 mM H2O2 0.914 

plCOX17 0.5 mM H2O2 1.000 plCOX17 0.2 mM H2O2 0.994 

plSCO1 0 mM H2O2 0.672 plCOX17 0.5 mM H2O2 0.999 

plSCO1 0.02 mM H2O2 0.787 plSCO1 0 mM H2O2 0.836 

plSCO1 0.2 mM H2O2 0.525 plSCO1 0.02 mM H2O2 0.950 

plSCO1 0.5 mM H2O2 0.494 plSCO1 0.2 mM H2O2 0.674 

plCOX11 0 mM H2O2 0.994 plSCO1 0.5 mM H2O2 0.617 

plCOX11 0.02 mM H2O2 0.933 plCOX11 0.02 mM H2O2 1.000 

plCOX11 0.2 mM H2O2 0.854 plCOX11 0.2 mM H2O2 0.982 

plCOX11 0.5 mM H2O2 0.819 plCOX11 0.5 mM H2O2 0.955 

plCOX17 0.5 mM H2O2 

plCOX17 0 mM H2O2 1.000 

plCOX11 0.02 mM H2O2 

plCOX17 0 mM H2O2 0.309 

plCOX17 0.02 mM H2O2 1.000 plCOX17 0.02 mM H2O2 0.646 

plCOX17 0.2 mM H2O2 1.000 plCOX17 0.2 mM H2O2 0.933 

plSCO1 0 mM H2O2 0.644 plCOX17 0.5 mM H2O2 0.954 

plSCO1 0.02 mM H2O2 0.797 plSCO1 0 mM H2O2 0.712 

plSCO1 0.2 mM H2O2 0.482 plSCO1 0.02 mM H2O2 0.939 

plSCO1 0.5 mM H2O2 0.432 plSCO1 0.2 mM H2O2 0.562 

plCOX11 0 mM H2O2 0.999 plSCO1 0.5 mM H2O2 0.452 

plCOX11 0.02 mM H2O2 0.954 plCOX11 0 mM H2O2 1.000 

plCOX11 0.2 mM H2O2 0.863 plCOX11 0.2 mM H2O2 0.930 

plCOX11 0.5 mM H2O2 0.809 plCOX11 0.5 mM H2O2 0.594 

plSCO1 0 mM H2O2 

plCOX17 0 mM H2O2 0.136 

plCOX11 0.2 mM H2O2 

plCOX17 0 mM H2O2 0.264 

plCOX17 0.02 mM H2O2 0.326 plCOX17 0.02 mM H2O2 0.527 

plCOX17 0.2 mM H2O2 0.672 plCOX17 0.2 mM H2O2 0.854 

plCOX17 0.5 mM H2O2 0.644 plCOX17 0.5 mM H2O2 0.863 

plSCO1 0.02 mM H2O2 1.000 plSCO1 0 mM H2O2 0.972 

plSCO1 0.2 mM H2O2 1.000 plSCO1 0.02 mM H2O2 1.000 

plSCO1 0.5 mM H2O2 0.999 plSCO1 0.2 mM H2O2 0.813 

plCOX11 0 mM H2O2 0.836 plSCO1 0.5 mM H2O2 0.731 

plCOX11 0.02 mM H2O2 0.712 plCOX11 0 mM H2O2 0.982 

plCOX11 0.2 mM H2O2 0.972 plCOX11 0.02 mM H2O2 0.930 

plCOX11 0.5 mM H2O2 0.971 plCOX11 0.5 mM H2O2 1.000 

plSCO1 0.02 mM H2O2 

plCOX17 0 mM H2O2 0.258 

plCOX11 0.5 mM H2O2 

plCOX17 0 mM H2O2 0.136 

plCOX17 0.02 mM H2O2 0.449 plCOX17 0.02 mM H2O2 0.484 

plCOX17 0.2 mM H2O2 0.787 plCOX17 0.2 mM H2O2 0.819 

plCOX17 0.5 mM H2O2 0.797 plCOX17 0.5 mM H2O2 0.809 

plSCO1 0 mM H2O2 1.000 plSCO1 0 mM H2O2 0.971 

plSCO1 0.2 mM H2O2 0.990 plSCO1 0.02 mM H2O2 1.000 

plSCO1 0.5 mM H2O2 0.982 plSCO1 0.2 mM H2O2 0.806 

plCOX11 0 mM H2O2 0.950 plSCO1 0.5 mM H2O2 0.715 

plCOX11 0.02 mM H2O2 0.939 plCOX11 0 mM H2O2 0.955 

plCOX11 0.2 mM H2O2 1.000 plCOX11 0.02 mM H2O2 0.594 

plCOX11 0.5 mM H2O2 1.000 plCOX11 0.2 mM H2O2 1.000 
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Supplementary Table  2 Statistical analysis of growth curves data depicted in Figure 3.2. A one 
way ANOVA test was performed to determine the significance (p < 0.05) of the differences 
among the data groups. A post-hoc Games-Howell test was performed to determine the 
significance of the differences between the means of anyone data group. Games-Howell test 
accounts for unequal sample sizes. df, degrees of freedom; OD600, absorbance at 600 nm. 

ANOVA 

OD600 Sum of Squares df Mean Square F p 

Between Groups 131.101 13 10.085 15.807 3.0E-21 

Within Groups 85.491 134 0.638 
  

Total 216.592 147 
   

Games-Howell Post Hoc Test 
Sample for multiple 

comparison 
Compared to p 

Sample for multiple 

comparison 
Compared to p 

WT EP 

WT SP 0.015 

WT SP 

WT EP 1.5E-02 

ΔCOX17 EP 0.992 ΔCOX17 EP 2.6E-03 

ΔCOX17 SP 1.000 ΔCOX17 SP 0.135 

ΔSCO1 EP 0.277 ΔSCO1 EP 2.1E-04 

ΔSCO1 SP 0.276 ΔSCO1 SP 1.2E-03 

ΔCOX11 EP 1.0E-03 ΔCOX11 EP 5.5E-07 

ΔCOX11 SP 1.5E-12 ΔCOX11 SP 2.0E-11 

ΔCOX4 EP 0.262 ΔCOX4 EP 1.6E-04 

ΔCOX4 SP 1.000 ΔCOX4 SP 0.425 

ΔCOX15 EP 1.4E-07 ΔCOX15 EP 4.6E-08 

ΔCOX15 SP 4.5E-08 ΔCOX15 SP 3.2E-08 

Rho0 EP 5.5E-06 Rho0 EP 3.2E-07 

Rho0 SP 2.9E-03 Rho0 SP 3.6E-06 

ΔCOX17 EP 

WT EP 0.992 

ΔCOX17 SP 

WT EP 1.000 

WT SP 2.6E-03 WT SP 0.135 

ΔCOX17 SP 0.987 ΔCOX17 EP 0.987 

ΔSCO1 EP 0.932 ΔSCO1 EP 0.387 

ΔSCO1 SP 0.783 ΔSCO1 SP 0.307 

ΔCOX11 EP 4.8E-02 ΔCOX11 EP 1.0E-02 

ΔCOX11 SP 1.2E-07 ΔCOX11 SP 3.8E-06 

ΔCOX4 EP 0.956 ΔCOX4 EP 0.409 

ΔCOX4 SP 1.000 ΔCOX4 SP 1.000 

ΔCOX15 EP 2.1E-03 ΔCOX15 EP 2.1E-03 

ΔCOX15 SP 1.1E-03 ΔCOX15 SP 1.4E-03 

Rho0 EP 2.3E-02 Rho0 EP 1.0E-02 

Rho0 SP 0.326 Rho0 SP 7.0E-02 
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ΔSCO1 EP 

WT EP 0.277 

ΔSCO1 SP 

WT EP 0.276 

WT SP 2.1E-04 WT SP 1.2E-03 

ΔCOX17 EP 0.932 ΔCOX17 EP 0.783 

ΔCOX17 SP 0.387 ΔCOX17 SP 0.307 

ΔSCO1 SP 1.000 ΔSCO1 EP 1.000 

ΔCOX11 EP 0.790 ΔCOX11 EP 1.000 

ΔCOX11 SP 0.000 ΔCOX11 SP 1.6E-02 

ΔCOX4 EP 1.000 ΔCOX4 EP 0.999 

ΔCOX4 SP 0.998 ΔCOX4 SP 0.978 

ΔCOX15 EP 0.287 ΔCOX15 EP 0.959 

ΔCOX15 SP 0.194 ΔCOX15 SP 0.901 

Rho0 EP 0.803 Rho0 EP 1.000 

Rho0 SP 1.000 Rho0 SP 1.000 

ΔCOX11 EP 

WT EP 1.0E-03 

ΔCOX11 SP 

WT EP 1.5E-12 

WT SP 5.5E-07 WT SP 2.0E-11 

ΔCOX17 EP 4.8E-02 ΔCOX17 EP 1.2E-07 

ΔCOX17 SP 1.0E-02 ΔCOX17 SP 3.8E-06 

ΔSCO1 EP 0.790 ΔSCO1 EP 3.6E-04 

ΔSCO1 SP 1.000 ΔSCO1 SP 1.6E-02 

ΔCOX11 SP 8.8E-04 ΔCOX11 EP 0.001 

ΔCOX4 EP 0.542 ΔCOX4 EP 0.000 

ΔCOX4 SP 0.747 ΔCOX4 SP 7.3E-02 

ΔCOX15 EP 1.000 ΔCOX15 EP 2.0E-05 

ΔCOX15 SP 0.997 ΔCOX15 SP 4.7E-05 

Rho0 EP 1.000 Rho0 EP 2.9E-06 

Rho0 SP 0.807 Rho0 SP 9.2E-06 

ΔCOX4 EP 

WT EP 0.262 

ΔCOX4 SP 

WT EP 1.000 

WT SP 1.6E-04 WT SP 0.425 

ΔCOX17 EP 0.956 ΔCOX17 EP 1.000 

ΔCOX17 SP 0.409 ΔCOX17 SP 1.000 

ΔSCO1 EP 1.000 ΔSCO1 EP 0.998 

ΔSCO1 SP 0.999 ΔSCO1 SP 0.978 

ΔCOX11 EP 0.542 ΔCOX11 EP 0.747 

ΔCOX11 SP 2.6E-04 ΔCOX11 SP 7.3E-02 

ΔCOX4 SP 0.999 ΔCOX4 EP 0.999 

ΔCOX15 EP 0.121 ΔCOX15 EP 0.580 

ΔCOX15 SP 0.080 ΔCOX15 SP 0.523 

Rho0 EP 0.488 Rho0 EP 0.797 

Rho0 SP 0.997 Rho0 SP 0.968 

      



118 
 

      

ΔCOX15 EP 

WT EP 1.4E-07 

ΔCOX15 SP 

WT EP 4.5E-08 

WT SP 4.6E-08 WT SP 3.2E-08 

ΔCOX17 EP 2.1E-03 ΔCOX17 EP 1.1E-03 

ΔCOX17 SP 2.1E-03 ΔCOX17 SP 1.4E-03 

ΔSCO1 EP 0.287 ΔSCO1 EP 0.194 

ΔSCO1 SP 0.959 ΔSCO1 SP 0.901 

ΔCOX11 EP 1.000 ΔCOX11 EP 0.997 

ΔCOX11 SP 2.0E-05 ΔCOX11 SP 4.7E-05 

ΔCOX4 EP 0.121 ΔCOX4 EP 8.0E-02 

ΔCOX4 SP 0.580 ΔCOX4 SP 0.523 

ΔCOX15 SP 1.000 ΔCOX15 EP 1.000 

Rho0 EP 0.537 Rho0 EP 0.210 

Rho0 SP 6.8E-02 Rho0 SP 3.3E-02 

Rho0 EP 

WT EP 5.5E-06 

Rho0 SP 

WT EP 2.9E-03 

WT SP 3.2E-07 WT SP 3.6E-06 

ΔCOX17 EP 2.3E-02 ΔCOX17 EP 0.326 

ΔCOX17 SP 1.0E-02 ΔCOX17 SP 7.0E-02 

ΔSCO1 EP 0.803 ΔSCO1 EP 1.000 

ΔSCO1 SP 1.000 ΔSCO1 SP 1.000 

ΔCOX11 EP 1.000 ΔCOX11 EP 0.807 

ΔCOX11 SP 0.000 ΔCOX11 SP 9.2E-06 

ΔCOX4 EP 0.488 ΔCOX4 EP 0.997 

ΔCOX4 SP 0.797 ΔCOX4 SP 0.968 

ΔCOX15 EP 0.537 ΔCOX15 EP 6.8E-02 

ΔCOX15 SP 0.210 ΔCOX15 SP 3.3E-02 

Rho0 SP 0.641 Rho0 EP 0.641 
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Supplementary Table  3 Statistical analysis of cell viability data depicted in Figure 3.3. A one 
way ANOVA test was performed to determine the significance (p < 0.05) of the differences 
among the data groups. A post-hoc Games-Howell test was performed to determine the 
significance of the differences between the means of anyone data group. Games-Howell test 
accounts for unequal sample sizes. df, degrees of freedom. 

ANOVA 

Viability Sum of Squares df Mean Square F p 

Between Groups 6387.531 13 491.349 21.255 4.6E-18 

Within Groups 1433.226 62 23.117 
  

Total 7820.758 75 
   

Games-Howell Post Hoc Test 

Sample for multiple 

comparison 
Compared to p 

Sample for 

multiple 

comparison 

Compared to p 

WT EP 

WT SP 0.329 

WT SP 

WT EP 0.329 

ΔCOX17 EP 0.068 ΔCOX17 EP 1.000 

ΔCOX17 SP 1.7E-12 ΔCOX17 SP 2.3E-07 

ΔSCO1 EP 0.997 ΔSCO1 EP 1.000 

ΔSCO1 SP 3.0E-05 ΔSCO1 SP 3.0E-04 

ΔCOX11 EP 0.098 ΔCOX11 EP 0.595 

ΔCOX11 SP 1.8E-12 ΔCOX11 SP 5.0E-09 

ΔCOX4 EP 0.857 ΔCOX4 EP 1.000 

ΔCOX4 SP 0.066 ΔCOX4 SP 0.120 

ΔCOX15 EP 0.318 ΔCOX15 EP 0.999 

ΔCOX15 SP 2.1E-11 ΔCOX15 SP 1.3E-06 

Rho0 EP 0.705 Rho0 EP 0.062 

Rho0 SP 9.8E-03 Rho0 SP 5.0E-02 

ΔCOX17 EP 

WT EP 0.068 

ΔCOX17 SP 

WT EP 1.7E-12 

WT SP 1.000 WT SP 2.3E-07 

ΔCOX17 SP 0.000 ΔCOX17 EP 4.1E-05 

ΔSCO1 EP 0.999 ΔSCO1 EP 0.089 

ΔSCO1 SP 2.0E-03 ΔSCO1 SP 0.903 

ΔCOX11 EP 0.812 ΔCOX11 EP 0.318 

ΔCOX11 SP 5.3E-06 ΔCOX11 SP 1.5E-03 

ΔCOX4 EP 1.000 ΔCOX4 EP 0.228 

ΔCOX4 SP 0.173 ΔCOX4 SP 0.993 

ΔCOX15 EP 1.000 ΔCOX15 EP 0.041 

ΔCOX15 SP 1.3E-04 ΔCOX15 SP 0.968 

Rho0 EP 2.6E-02 Rho0 EP 6.0E-04 

Rho0 SP 0.101 Rho0 SP 0.821 
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ΔSCO1 EP 

WT EP 0.997 

ΔSCO1 SP 

WT EP 3.0E-05 

WT SP 1.000 WT SP 3.0E-04 

ΔCOX17 EP 0.999 ΔCOX17 EP 2.0E-03 

ΔCOX17 SP 0.089 ΔCOX17 SP 0.903 

ΔSCO1 SP 0.136 ΔSCO1 EP 0.136 

ΔCOX11 EP 0.744 ΔCOX11 EP 0.693 

ΔCOX11 SP 3.8E-02 ΔCOX11 SP 0.054 

ΔCOX4 EP 1.000 ΔCOX4 EP 0.291 

ΔCOX4 SP 0.190 ΔCOX4 SP 1.000 

ΔCOX15 EP 0.996 ΔCOX15 EP 0.080 

ΔCOX15 SP 0.112 ΔCOX15 SP 0.999 

Rho0 EP 0.770 Rho0 EP 2.7E-04 

Rho0 SP 0.238 Rho0 SP 1.000 

ΔCOX11 EP 

WT EP 0.098 

ΔCOX11 SP 

WT EP 1.8E-12 

WT SP 0.595 WT SP 5.0E-09 

ΔCOX17 EP 0.812 ΔCOX17 EP 5.3E-06 

ΔCOX17 SP 0.318 ΔCOX17 SP 1.5E-03 

ΔSCO1 EP 0.744 ΔSCO1 EP 3.8E-02 

ΔSCO1 SP 0.693 ΔSCO1 SP 0.054 

ΔCOX11 SP 0.065 ΔCOX11 EP 0.065 

ΔCOX4 EP 0.899 ΔCOX4 EP 0.138 

ΔCOX4 SP 0.851 ΔCOX4 SP 0.469 

ΔCOX15 EP 0.965 ΔCOX15 EP 1.4E-02 

ΔCOX15 SP 0.455 ΔCOX15 SP 2.6E-03 

Rho0 EP 0.027 Rho0 EP 5.3E-04 

Rho0 SP 0.973 Rho0 SP 0.155 

ΔCOX4 EP 

WT EP 0.857 

ΔCOX4 SP 

WT EP 0.066 

WT SP 1.000 WT SP 0.120 

ΔCOX17 EP 1.000 ΔCOX17 EP 0.173 

ΔCOX17 SP 0.228 ΔCOX17 SP 0.993 

ΔSCO1 EP 1.000 ΔSCO1 EP 0.190 

ΔSCO1 SP 0.291 ΔSCO1 SP 1.000 

ΔCOX11 EP 0.899 ΔCOX11 EP 0.851 

ΔCOX11 SP 0.138 ΔCOX11 SP 0.469 

ΔCOX4 SP 0.335 ΔCOX4 EP 0.335 

ΔCOX15 EP 1.000 ΔCOX15 EP 0.252 

ΔCOX15 SP 0.263 ΔCOX15 SP 1.000 

Rho0 EP 0.512 Rho0 EP 2.3E-02 

Rho0 SP 0.415 Rho0 SP 1.000 
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ΔCOX15 EP 

WT EP 0.318 

ΔCOX15 SP 

WT EP 2.1E-11 

WT SP 0.999 WT SP 1.3E-06 

ΔCOX17 EP 1.000 ΔCOX17 EP 1.3E-04 

ΔCOX17 SP 0.041 ΔCOX17 SP 0.968 

ΔSCO1 EP 0.996 ΔSCO1 EP 0.112 

ΔSCO1 SP 0.080 ΔSCO1 SP 0.999 

ΔCOX11 EP 0.965 ΔCOX11 EP 0.455 

ΔCOX11 SP 0.014 ΔCOX11 SP 2.6E-03 

ΔCOX4 EP 1.000 ΔCOX4 EP 0.263 

ΔCOX4 SP 0.252 ΔCOX4 SP 1.000 

ΔCOX15 SP 0.059 ΔCOX15 EP 0.059 

Rho0 EP 0.084 Rho0 EP 8.7E-04 

Rho0 SP 0.282 Rho0 SP 0.966 

Rho0 EP 

WT EP 0.705 

Rho0 SP 

WT EP 0.010 

WT SP 0.062 WT SP 0.050 

ΔCOX17 EP 2.6E-02 ΔCOX17 EP 0.101 

ΔCOX17 SP 6.0E-04 ΔCOX17 SP 0.821 

ΔSCO1 EP 0.770 ΔSCO1 EP 0.238 

ΔSCO1 SP 2.7E-04 ΔSCO1 SP 1.000 

ΔCOX11 EP 2.7E-02 ΔCOX11 EP 0.973 

ΔCOX11 SP 5.3E-04 ΔCOX11 SP 0.155 

ΔCOX4 EP 0.512 ΔCOX4 EP 0.415 

ΔCOX4 SP 2.3E-02 ΔCOX4 SP 1.000 

ΔCOX15 EP 0.084 ΔCOX15 EP 0.282 

ΔCOX15 SP 8.7E-04 ΔCOX15 SP 0.966 

Rho0 SP 2.6E-03 Rho0 EP 2.6E-03 
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Supplementary Table  4 Statistical analysis of budding indices data depicted in Figure 3.6. A 
one way ANOVA test was performed to determine the significance (p < 0.05) of the 
differences among the data groups. A post-hoc Games-Howell test was performed to determine 
the significance of the differences between the means of anyone data group. Games-Howell 
test accounts for unequal sample sizes. df, degrees of freedom. 

ANOVA 

Budding Index Sum of Squares df Mean Square F p 

Between Groups 7648.557 13 588.351 18.829 1.5E-14 

Within Groups 1499.851 48 31.247   

Total 9148.407 61    

Games-Howell Post Hoc Test 

Sample for multiple 

comparison 
Compared to p 

Sample for multiple 

comparison 
Compared to p 

WT EP 

WT SP 1.3E-05 

WT SP 

WT EP 1.3E-05 

ΔCOX17 EP 0.921 ΔCOX17 EP 2.2E-02 

ΔCOX17 SP 0.559 ΔCOX17 SP 0.001 

ΔSCO1 EP 1.000 ΔSCO1 EP 8.5E-02 

ΔSCO1 SP 0.252 ΔSCO1 SP 1.000 

ΔCOX11 EP 0.997 ΔCOX11 EP 1.6E-03 

ΔCOX11 SP 0.166 ΔCOX11 SP 1.000 

ΔCOX4 EP 1.000 ΔCOX4 EP 1.3E-06 

ΔCOX4 SP 0.349 ΔCOX4 SP 0.558 

ΔCOX15 EP 0.996 ΔCOX15 EP 8.9E-03 

ΔCOX15 SP 0.423 ΔCOX15 SP 0.258 

Rho0 EP 4.0E-05 Rho0 EP 1.000 

Rho0 SP 2.1E-03 Rho0 SP 0.168 

ΔCOX17 EP 

WT EP 0.921 

ΔCOX17 SP 

WT EP 0.559 

WT SP 2.2E-02 WT SP 7.6E-04 

ΔCOX17 SP 0.334 ΔCOX17 EP 0.334 

ΔSCO1 EP 0.995 ΔSCO1 EP 0.746 

ΔSCO1 SP 0.135 ΔSCO1 SP 0.441 

ΔCOX11 EP 0.619 ΔCOX11 EP 0.892 

ΔCOX11 SP 0.081 ΔCOX11 SP 0.327 

ΔCOX4 EP 0.925 ΔCOX4 EP 0.113 

ΔCOX4 SP 0.170 ΔCOX4 SP 0.864 

ΔCOX15 EP 0.999 ΔCOX15 EP 0.308 

ΔCOX15 SP 0.221 ΔCOX15 SP 0.961 

Rho0 EP 3.6E-02 Rho0 EP 5.1E-03 

Rho0 SP 5.1E-03 Rho0 SP 1.9E-02 
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ΔSCO1 EP 

WT EP 1.000 

ΔSCO1 SP 

WT EP 0.252 

WT SP 0.085 WT SP 1.000 

ΔCOX17 EP 0.995 ΔCOX17 EP 0.135 

ΔCOX17 SP 0.746 ΔCOX17 SP 0.441 

ΔSCO1 SP 0.233 ΔSCO1 EP 0.233 

ΔCOX11 EP 0.982 ΔCOX11 EP 0.328 

ΔCOX11 SP 0.158 ΔCOX11 SP 1.000 

ΔCOX4 EP 1.000 ΔCOX4 EP 0.249 

ΔCOX4 SP 0.432 ΔCOX4 SP 0.872 

ΔCOX15 EP 1.000 ΔCOX15 EP 0.194 

ΔCOX15 SP 0.535 ΔCOX15 SP 0.689 

Rho0 EP 0.115 Rho0 EP 1.000 

Rho0 SP 2.1E-02 Rho0 SP 0.721 

ΔCOX11 EP 

WT EP 0.997 

ΔCOX11 SP 

WT EP 0.166 

WT SP 1.6E-03 WT SP 1.000 

ΔCOX17 EP 0.619 ΔCOX17 EP 0.081 

ΔCOX17 SP 0.892 ΔCOX17 SP 0.327 

ΔSCO1 EP 0.982 ΔSCO1 EP 0.158 

ΔSCO1 SP 0.328 ΔSCO1 SP 1.000 

ΔCOX11 SP 0.234 ΔCOX11 EP 0.234 

ΔCOX4 EP 0.684 ΔCOX4 EP 0.181 

ΔCOX4 SP 0.543 ΔCOX4 SP 0.779 

ΔCOX15 EP 0.703 ΔCOX15 EP 0.126 

ΔCOX15 SP 0.647 ΔCOX15 SP 0.557 

Rho0 EP 1.5E-02 Rho0 EP 1.000 

Rho0 SP 1.3E-02 Rho0 SP 0.665 

ΔCOX4 EP 

WT EP 1.000 

ΔCOX4 SP 

WT EP 0.349 

WT SP 1.3E-06 WT SP 0.558 

ΔCOX17 EP 0.925 ΔCOX17 EP 0.170 

ΔCOX17 SP 0.113 ΔCOX17 SP 0.864 

ΔSCO1 EP 1.000 ΔSCO1 EP 0.432 

ΔSCO1 SP 0.249 ΔSCO1 SP 0.872 

ΔCOX11 EP 0.684 ΔCOX11 EP 0.543 

ΔCOX11 SP 0.181 ΔCOX11 SP 0.779 

ΔCOX4 SP 0.260 ΔCOX4 EP 0.260 

ΔCOX15 EP 0.996 ΔCOX15 EP 0.207 

ΔCOX15 SP 0.315 ΔCOX15 SP 1.000 

Rho0 EP 2.7E-04 Rho0 EP 0.519 

Rho0 SP 2.0E-02 Rho0 SP 0.064 
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ΔCOX15 EP 

WT EP 0.996 

ΔCOX15 SP 

WT EP 0.423 

WT SP 8.9E-03 WT SP 0.258 

ΔCOX17 EP 0.999 ΔCOX17 EP 0.221 

ΔCOX17 SP 0.308 ΔCOX17 SP 0.961 

ΔSCO1 EP 1.000 ΔSCO1 EP 0.535 

ΔSCO1 SP 0.194 ΔSCO1 SP 0.689 

ΔCOX11 EP 0.703 ΔCOX11 EP 0.647 

ΔCOX11 SP 0.126 ΔCOX11 SP 0.557 

ΔCOX4 EP 0.996 ΔCOX4 EP 0.315 

ΔCOX4 SP 0.207 ΔCOX4 SP 1.000 

ΔCOX15 SP 0.255 ΔCOX15 EP 0.255 

Rho0 EP 3.2E-02 Rho0 EP 0.275 

Rho0 SP 6.0E-03 Rho0 SP 4.1E-02 

Rho0 EP 

WT EP 
4.0E-05 

 

Rho0 SP 

WT EP 2.1E-03 

WT SP 1.000 WT SP 0.168 

ΔCOX17 EP 3.6E-02 ΔCOX17 EP 5.1E-03 

ΔCOX17 SP 5.1E-03 ΔCOX17 SP 0.019 

ΔSCO1 EP 0.115 ΔSCO1 EP 2.1E-02 

ΔSCO1 SP 1.000 ΔSCO1 SP 0.721 

ΔCOX11 EP 1.5E-02 ΔCOX11 EP 1.3E-02 

ΔCOX11 SP 1.000 ΔCOX11 SP 0.665 

ΔCOX4 EP 0.000 ΔCOX4 EP 2.0E-02 

ΔCOX4 SP 0.519 ΔCOX4 SP 0.064 

ΔCOX15 EP 3.2E-02 ΔCOX15 EP 6.0E-03 

ΔCOX15 SP 0.275 ΔCOX15 SP 4.1E-02 

Rho0 SP 0.194 Rho0 EP 0.194 
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Supplementary Table  5 Statistical analysis of G1/G2 ratios obtained by flow cytometry, 
depicted in Figure 3.8. A one way ANOVA test was performed to determine the significance 
(p < 0.05) of the differences among the data groups. A post-hoc Games-Howell test was 
performed to determine the significance of the differences between the means of anyone data 
group. Games-Howell tests accounts for unequal sample sizes. df, degrees of freedom. 

ANOVA 

G1/G2 Ratio Sum of Squares df Mean Square F p 

Between Groups 82.788 13 6.368 28.873 3.1E-16 

Within Groups 8.823 40 0.221   

Total 91.611 53    

Games-Howell Post Hoc Test 

Sample for multiple 

comparison 
Compared to p 

Sample for multiple 

comparison 
Compared to p 

WT EP 

WT SP 0.186 

WT SP 

WT EP 0.186 

ΔCOX17 EP 3.2E-03 ΔCOX17 EP 3.7E-04 

ΔCOX17 SP 0.024 ΔCOX17 SP 1.1E-03 

ΔSCO1 EP 8.0E-03 ΔSCO1 EP 9.7E-04 

ΔSCO1 SP 0.573 ΔSCO1 SP 3.6E-02 

ΔCOX11 EP 1.0E-02 ΔCOX11 EP 4.6E-04 

ΔCOX11 SP 0.950 ΔCOX11 SP 4.6E-02 

ΔCOX4 EP 1.4E-02 ΔCOX4 EP 1.5E-03 

ΔCOX4 SP 0.056 ΔCOX4 SP 2.1E-03 

ΔCOX15 EP 1.4E-02 ΔCOX15 EP 1.1E-03 

ΔCOX15 SP 0.262 ΔCOX15 SP 7.7E-03 

Rho0 EP 0.244 Rho0 EP 0.962 

Rho0 SP 0.008 Rho0 SP 0.367 

ΔCOX17 EP 

WT EP 3.2E-03 

ΔCOX17 SP 

WT EP 2.4E-02 

WT SP 3.7E-04 WT SP 1.1E-03 

ΔCOX17 SP 0.718 ΔCOX17 EP 0.718 

ΔSCO1 EP 0.791 ΔSCO1 EP 0.986 

ΔSCO1 SP 0.309 ΔSCO1 SP 0.709 

ΔCOX11 EP 1.000 ΔCOX11 EP 0.988 

ΔCOX11 SP 0.100 ΔCOX11 SP 0.168 

ΔCOX4 EP 0.421 ΔCOX4 EP 1.000 

ΔCOX4 SP 0.522 ΔCOX4 SP 1.000 

ΔCOX15 EP 0.380 ΔCOX15 EP 1.000 

ΔCOX15 SP 2.2E-02 ΔCOX15 SP 0.244 

Rho0 EP 3.8E-02 Rho0 EP 4.7E-02 

Rho0 SP 2.0E-03 Rho0 SP 1.8E-03 
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ΔSCO1 EP 

WT EP 0.008 

ΔSCO1 SP 

WT EP 0.573 

WT SP 9.7E-04 WT SP 3.6E-02 

ΔCOX17 EP 0.791 ΔCOX17 EP 0.309 

ΔCOX17 SP 0.986 ΔCOX17 SP 0.709 

ΔSCO1 SP 0.461 ΔSCO1 EP 0.461 

ΔCOX11 EP 1.000 ΔCOX11 EP 0.442 

ΔCOX11 SP 0.196 ΔCOX11 SP 0.915 

ΔCOX4 EP 0.736 ΔCOX4 EP 0.576 

ΔCOX4 SP 0.837 ΔCOX4 SP 0.895 

ΔCOX15 EP 0.811 ΔCOX15 EP 0.666 

ΔCOX15 SP 3.1E-03 ΔCOX15 SP 1.000 

Rho0 EP 5.0E-02 Rho0 EP 8.4E-02 

Rho0 SP 4.9E-03 Rho0 SP 9.2E-03 

ΔCOX11 EP 

WT EP 1.0E-02 

ΔCOX11 SP 

WT EP 0.950 

WT SP 4.6E-04 WT SP 4.6E-02 

ΔCOX17 EP 1.000 ΔCOX17 EP 0.100 

ΔCOX17 SP 0.988 ΔCOX17 SP 0.168 

ΔSCO1 EP 1.000 ΔSCO1 EP 0.196 

ΔSCO1 SP 0.442 ΔSCO1 SP 0.915 

ΔCOX11 SP 0.085 ΔCOX11 EP 0.085 

ΔCOX4 EP 0.970 ΔCOX4 EP 0.248 

ΔCOX4 SP 0.891 ΔCOX4 SP 0.248 

ΔCOX15 EP 0.942 ΔCOX15 EP 0.195 

ΔCOX15 SP 0.125 ΔCOX15 SP 0.687 

Rho0 EP 3.2E-02 Rho0 EP 0.151 

Rho0 SP 6.9E-04 Rho0 SP 1.4E-02 

ΔCOX4 EP 

WT EP 1.4E-02 

ΔCOX4 SP 

WT EP 0.056 

WT SP 1.5E-03 WT SP 2.1E-03 

ΔCOX17 EP 0.421 ΔCOX17 EP 0.522 

ΔCOX17 SP 1.000 ΔCOX17 SP 1.000 

ΔSCO1 EP 0.736 ΔSCO1 EP 0.837 

ΔSCO1 SP 0.576 ΔSCO1 SP 0.895 

ΔCOX11 EP 0.970 ΔCOX11 EP 0.891 

ΔCOX11 SP 0.248 ΔCOX11 SP 0.248 

ΔCOX4 SP 0.982 ΔCOX4 EP 0.982 

ΔCOX15 EP 1.000 ΔCOX15 EP 1.000 

ΔCOX15 SP 5.9E-03 ΔCOX15 SP 0.455 

Rho0 EP 5.6E-02 Rho0 EP 0.052 

Rho0 SP 6.5E-03 Rho0 SP 2.1E-03 
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ΔCOX15 EP 

WT EP 1.4E-02 

ΔCOX15 SP 

WT EP 0.262 

WT SP 1.1E-03 WT SP 7.7E-03 

ΔCOX17 EP 0.380 ΔCOX17 EP 2.2E-02 

ΔCOX17 SP 1.000 ΔCOX17 SP 0.244 

ΔSCO1 EP 0.811 ΔSCO1 EP 3.1E-03 

ΔSCO1 SP 0.666 ΔSCO1 SP 1.000 

ΔCOX11 EP 0.942 ΔCOX11 EP 0.125 

ΔCOX11 SP 0.195 ΔCOX11 SP 0.687 

ΔCOX4 EP 1.000 ΔCOX4 EP 5.9E-03 

ΔCOX4 SP 1.000 ΔCOX4 SP 0.455 

ΔCOX15 SP 2.4E-02 ΔCOX15 EP 2.4E-02 

Rho0 EP 0.055 Rho0 EP 0.106 

Rho0 SP 3.7E-03 Rho0 SP 9.9E-03 

Rho0 EP 

WT EP 0.244 

Rho0 SP 

WT EP 8.3E-03 

WT SP 0.962 WT SP 0.367 

ΔCOX17 EP 3.8E-02 ΔCOX17 EP 2.0E-03 

ΔCOX17 SP 4.7E-02 ΔCOX17 SP 1.8E-03 

ΔSCO1 EP 5.0E-02 ΔSCO1 EP 0.005 

ΔSCO1 SP 0.084 ΔSCO1 SP 9.2E-03 

ΔCOX11 EP 3.2E-02 ΔCOX11 EP 6.9E-04 

ΔCOX11 SP 0.151 ΔCOX11 SP 1.4E-02 

ΔCOX4 EP 0.056 ΔCOX4 EP 6.5E-03 

ΔCOX4 SP 0.052 ΔCOX4 SP 2.1E-03 

ΔCOX15 EP 0.055 ΔCOX15 EP 3.7E-03 

ΔCOX15 SP 0.106 ΔCOX15 SP 9.9E-03 

Rho0 SP 1.000 Rho0 EP 1.000 
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Supplementary Table  6 Statistical evaluation of cell death marker analysis performed by flow 
cytometry depicted in Figure 3.15. A one way ANOVA test was performed to determine the 
significance (p < 0.05) of the differences among the data groups. A post-hoc Games-Howell 
test was performed to determine the significance of the differences between the means of 
anyone data group. Games-Howell test accounts for unequal sample sizes. df, degrees of 
freedom. 

ANOVA 

Induction Sum of Squares df Mean Square F p 

Between Groups 6693.094 13 514.853 6.551 3.6E-06 

Within Groups 2829.287 36 78.591   

Total 9522.381 49    

Games-Howell Post Hoc Test 

Sample for multiple 

comparison 
Compared to p 

Sample for multiple 

comparison 
Compared to p 

WT EP 

WT SP 0.893 

WT SP 

WT EP 0.893 

ΔCOX17 EP 6.2E-02 ΔCOX17 EP 0.859 

ΔCOX17 SP 0.996 ΔCOX17 SP 0.512 

ΔSCO1 EP 0.999 ΔSCO1 EP 0.893 

ΔSCO1 SP 4.0E-02 ΔSCO1 SP 1.2E-02 

ΔCOX11 EP 0.992 ΔCOX11 EP 1.000 

ΔCOX11 SP 0.583 ΔCOX11 SP 0.157 

ΔCOX4 EP 0.999 ΔCOX4 EP 0.999 

ΔCOX4 SP 0.583 ΔCOX4 SP 0.157 

ΔCOX15 EP 0.205 ΔCOX15 EP 1.000 

ΔCOX15 SP 0.250 ΔCOX15 SP 0.099 

Rho0 EP 1.000 Rho0 EP 0.931 

Rho0 SP 0.586 Rho0 SP 1.000 

ΔCOX17 EP 

WT EP 6.2E-02 

ΔCOX17 SP 

WT EP 0.996 

WT SP 0.859 WT SP 0.512 

ΔCOX17 SP 0.195 ΔCOX17 EP 0.195 

ΔSCO1 EP 0.598 ΔSCO1 EP 1.000 

ΔSCO1 SP 1.8E-02 ΔSCO1 SP 0.158 

ΔCOX11 EP 0.777 ΔCOX11 EP 0.832 

ΔCOX11 SP 6.4E-02 ΔCOX11 SP 0.889 

ΔCOX4 EP 0.427 ΔCOX4 EP 0.850 

ΔCOX4 SP 6.4E-02 ΔCOX4 SP 0.889 

ΔCOX15 EP 0.611 ΔCOX15 EP 0.376 

ΔCOX15 SP 0.077 ΔCOX15 SP 0.421 

Rho0 EP 0.151 Rho0 EP 0.826 

Rho0 SP 0.656 Rho0 SP 0.383 
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ΔSCO1 EP 

WT EP 0.999 

ΔSCO1 SP 

WT EP 0.040 

WT SP 0.893 WT SP 1.2E-02 

ΔCOX17 EP 0.598 ΔCOX17 EP 1.8E-02 

ΔCOX17 SP 1.000 ΔCOX17 SP 0.158 

ΔSCO1 SP 0.661 ΔSCO1 EP 0.661 

ΔCOX11 EP 0.968 ΔCOX11 EP 0.082 

ΔCOX11 SP 1.000 ΔCOX11 SP 0.385 

ΔCOX4 EP 0.983 ΔCOX4 EP 5.2E-02 

ΔCOX4 SP 1.000 ΔCOX4 SP 0.385 

ΔCOX15 EP 0.765 ΔCOX15 EP 5.5E-02 

ΔCOX15 SP 0.886 ΔCOX15 SP 0.998 

Rho0 EP 0.991 Rho0 EP 0.067 

Rho0 SP 0.838 Rho0 SP 2.9E-02 

ΔCOX11 EP 

WT EP 0.992 

ΔCOX11 SP 

WT EP 0.583 

WT SP 1.000 WT SP 0.157 

ΔCOX17 EP 0.777 ΔCOX17 EP 0.064 

ΔCOX17 SP 0.832 ΔCOX17 SP 0.889 

ΔSCO1 EP 0.968 ΔSCO1 EP 1.000 

ΔSCO1 SP 0.082 ΔSCO1 SP 0.385 

ΔCOX11 SP 0.433 ΔCOX11 EP 0.433 

ΔCOX4 EP 1.000 ΔCOX4 EP 0.385 

ΔCOX4 SP 0.433 ΔCOX4 SP 1.000 

ΔCOX15 EP 0.986 ΔCOX15 EP 0.150 

ΔCOX15 SP 0.193 ΔCOX15 SP 0.861 

Rho0 EP 0.999 Rho0 EP 0.365 

Rho0 SP 1.000 Rho0 SP 0.139 

ΔCOX4 EP 

WT EP 0.999 

ΔCOX4 SP 

WT EP 0.583 

WT SP 0.999 WT SP 0.157 

ΔCOX17 EP 0.427 ΔCOX17 EP 0.064 

ΔCOX17 SP 0.850 ΔCOX17 SP 0.889 

ΔSCO1 EP 0.983 ΔSCO1 EP 1.000 

ΔSCO1 SP 0.052 ΔSCO1 SP 0.385 

ΔCOX11 EP 1.000 ΔCOX11 EP 0.433 

ΔCOX11 SP 0.385 ΔCOX11 SP 1.000 

ΔCOX4 SP 0.385 ΔCOX4 EP 0.385 

ΔCOX15 EP 0.769 ΔCOX15 EP 0.150 

ΔCOX15 SP 0.188 ΔCOX15 SP 0.861 

Rho0 EP 1.000 Rho0 EP 0.365 

Rho0 SP 0.962 Rho0 SP 0.139 
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ΔCOX15 EP 

WT EP 0.205 

ΔCOX15 SP 

WT EP 0.250 

WT SP 1.000 WT SP 0.099 

ΔCOX17 EP 0.611 ΔCOX17 EP 0.077 

ΔCOX17 SP 0.376 ΔCOX17 SP 0.421 

ΔSCO1 EP 0.765 ΔSCO1 EP 0.886 

ΔSCO1 SP 0.055 ΔSCO1 SP 0.998 

ΔCOX11 EP 0.986 ΔCOX11 EP 0.193 

ΔCOX11 SP 0.150 ΔCOX11 SP 0.861 

ΔCOX4 EP 0.769 ΔCOX4 EP 0.188 

ΔCOX4 SP 0.150 ΔCOX4 SP 0.861 

ΔCOX15 SP 0.137 ΔCOX15 EP 0.137 

Rho0 EP 0.377 Rho0 EP 0.223 

Rho0 SP 0.999 Rho0 SP 0.120 

Rho0 EP 

WT EP 1.000 

Rho0 SP 

WT EP 0.586 

WT SP 0.931 WT SP 1.000 

ΔCOX17 EP 0.151 ΔCOX17 EP 0.656 

ΔCOX17 SP 0.826 ΔCOX17 SP 0.383 

ΔSCO1 EP 0.991 ΔSCO1 EP 0.838 

ΔSCO1 SP 0.067 ΔSCO1 SP 2.9E-02 

ΔCOX11 EP 0.999 ΔCOX11 EP 1.000 

ΔCOX11 SP 0.365 ΔCOX11 SP 0.139 

ΔCOX4 EP 1.000 ΔCOX4 EP 0.962 

ΔCOX4 SP 0.365 ΔCOX4 SP 0.139 

ΔCOX15 EP 0.377 ΔCOX15 EP 0.999 

ΔCOX15 SP 0.223 ΔCOX15 SP 0.120 

Rho0 SP 0.593 Rho0 EP 0.593 
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