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Abstract 

The biogeochemical cycling of nutrient silicon (Si) through rivers, wetlands, lakes, and artificial 

reservoirs regulates the magnitude and bioavailability of Si delivered downstream and to the ocean (Frings et al. 

2014; Maavara et al. 2014; Laruelle et al. 2009; Struyf & Conley 2012). Lakes are areas of Si retention along 

the land to ocean continuum due to uptake of dissolved Si (DSi) by silicon-requiring phytoplankton, such as 

diatoms, and burial of biogenic Si (BSi) as siliceous frustules in sediments (Frings et al. 2014). The nearshore 

zones of lakes and the coastal ocean directly receive nutrient inputs from the watershed, which may lead to 

eutrophication (Haffner et al. 1983; Jickells 1998; Mackenzie et al. 2000; Strayer & Findlay 2010). Enrichment 

with the nutrients phosphorus (P) and nitrogen (N) can enhance DSi uptake, which can ultimately lead to Si 

depletion and limitation of siliceous phytoplankton growth in the water column (Schelske & Stoermer 1971; 

Schelske & Stoermer 1972). Sediments can play an important role in water column nutrient dynamics through 

acting as a source or a sink of Si and P (Orihel et al. 2017; Nriagu 1978; Schelske 1985). Interactions between 

dissolved Si and P in pore waters and oxygenation at the sediment-water interface may influence the release of 

Si and P from sediments (Tuominen et al. 1998; Hartikainen et al. 1996; Tallberg & Koski-Vahala 2001; Koski-

Vähälä et al. 2001; Tallberg et al. 2008; Siipola et al. 2016; Lehtimäki et al. 2016). Relatively little is known 

about Si cycling in the sediments and water column of nearshore zones of large lakes, such as the Laurentian 

Great Lakes, and it’s response to eutrophication.  

This thesis examined the biogeochemical cycling of reactive Si in the Hamilton Harbour Area of 

Concern, a highly eutrophic and human impacted nearshore area of Lake Ontario. The Hamilton Harbour Area 

of Concern includes Cootes’ Paradise marsh and Hamilton Harbour. The mechanisms influencing internal 

loading of Si and P were investigated in sediments collected from Cootes’ Paradise marsh (Chapter 2). 

Sediment core flow through systems were used to test the effects of oxic and anoxic conditions at the sediment-

water interface, and the relative concentrations of Si and P in pore waters on the internal loading of Si and P. 

Both P and Si appeared to be retained and released by iron(Fe)(III) oxide minerals through adsorption to or 

coprecipitation with Fe(III) oxides under oxic conditions, and reductive dissolution of Fe(III) oxides and release 

of sorbed P and Si under anoxic conditions. Compared to oxic conditions, anoxic release of P increased by 8 

times while anoxic release of Si increased by only 1.4 times. Thus, sorption to and release from Fe(III) oxides 

was proportionally a more important mechanism of internal loading for P than Si, leading to greater P retention 

under oxic conditions and release under anoxic conditions relative to Si. In contrast, dissolution of biogenic Si 

was likely the dominant source of Si release under oxic and anoxic conditions, however anoxic conditions 

increased Si release by approximately 40%. The decoupling of Si and P cycles under oxic and anoxic conditions 

resulted in the Si:P ratio of anoxic release being low (mean Si:P < 16) relative to the Si:P ratio of oxic release 

(mean Si:P >23), which may potentially contribute to Si limitation of siliceous phytoplankton growth in the 

water column.  

A reactive Si mass balance model was constructed for Hamilton Harbour to determine if Hamilton 

Harbour is a net source or sink of reactive Si, and if Si is stoichiometrically limiting to diatom growth with 

respect to P. This was achieved through quantification of reactive Si inputs, outputs, and transformations within 
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the water column and sediments through field sampling and experimental work, followed by mass balance 

modelling. Si limitation was determined by calculation of Si:P ratios in the water column of Hamilton Harbour 

throughout the growing season of 2016, and stoichiometric limitation was defined as a Si:P ratio less than 16:1 

(Redfield 1958; Brzezinski 1985). Hamilton Harbour was found to be a net sink of reactive Si, retaining 

approximately 16% of total reactive Si inputs. Internal loading, water exchange between Hamilton Harbour and 

Lake Ontario, and discharge from wastewater treatment plants were the largest fluxes of Si to the Hamilton 

Harbour water column. Si was stoichiometrically and likely physiologically limiting to siliceous phytoplankton 

growth between May and November 2016, which is in contrast to the assumption of P limitation of 

phytoplankton growth and may be contributing to the seasonally recurring harmful algal blooms in Hamilton 

Harbour (Hiriart-Baer et al. 2009).  

This research demonstrates that freshwater nearshore zones, such as coastal wetlands and embayment’s 

are important areas of nutrient cycling that can alter nutrient fluxes from the watershed to the open lake. Coastal 

wetland sediments may act as a source or sink of Si and P to the water column depending on redox conditions at 

the sediment-water interface. Different mechanisms of internal loading decouples the Si and P cycles in 

sediments. The nearshore zones of large lakes can reduce Si export offshore and downstream through nutrient 

retention. Anthropogenic sources of Si such as wastewater treatment plant effluent can be a larger source of Si 

than tributaries and groundwater, and as such humans are directly affecting the biogeochemical cycling of Si in 

nearshore zones. Cultural eutrophication in nearshore zones can lead to Si limitation, which may have critical 

implications for ecosystem functioning and repercussions for nutrient cycles offshore and downstream. This 

knowledge enhances our understanding of the effects of human activities and cultural eutrophication on 

biogeochemical Si cycling along the land to ocean continuum. This knowledge may better inform ecosystem 

modelling and the impacts that climate change may have on Si biogeochemistry, such as spreading hypoxic 

zones (Rabalais et al. 2010). Through furthering our understanding of factors influencing phytoplankton 

dynamics, this knowledge may be beneficial to remediation efforts and the protection of nearshore zones in 

freshwater lakes. 
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Chapter 1 

 

General Introduction  
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1.1 The global biogeochemical silicon cycle 

1.1.1 Forms of silicon in the environment 

Nutrient silicon (Si) exists in dissolved and particulate forms in nature. Dissolved Si (DSi) is originally 

produced through the chemical weathering of silicate minerals in the earth’s crust and is predominantly in the form 

of orthosilicic acid (H4SiO4) below pH 9.7 (Dietzel 2000). Particulate Si includes 1) biogenic Si (BSi) produced 

through the biological assimilation of DSi, 2) DSi adsorbed to the mineral surfaces (adsorbed Si), 3) Si contained in 

primary and secondary crystalline silicate minerals such as quartz, feldspars, micas and clays, and 4) Si 

coprecipitated in minerals such as iron(III) oxides (Tallberg et al. 2012; Mayer & Jarrell 2000; Sauer et al. 2006 and 

references therein). DSi, BSi, adsorbed Si and coprecipitated Si are bioavailable or potentially bioavailable and 

therefore are considered reactive forms of Si (Tallberg et al. 2012).   

 

1.1.2 Silicon cycling along the land to ocean continuum 

 

The past few decades of research have revealed that there is the strong biological component of the Si cycle 

all along the land to ocean continuum (Figure 1.1) (Frings et al 2014). Of the 14.6 Tmol Si yr
-1

 estimated to be 

produced through chemical weathering, only slightly more than half of this (7.7 Tmol Si yr
-1

) reaches the coastal 

ocean due to biological assimilation and retention of Si in soils, lakes and artificial reservoirs (Laruelle et al. 2009). 

Annual fixation of DSi on the continents is comparable to the annual fixation of DSi in the global ocean (Conley 

2002). In soils and freshwater aquatic environments, DSi is assimilated by terrestrial and aquatic plants, testate 

amoebae, freshwater sponges, and siliceous phytoplankton including diatoms, chrysophytes and silicoflagellates to 

build internal or external siliceous structures (Figure 1.2) (Epstein 1994; Aoki et al 2007; Conley 1988; Yang et al 

1993). Terrestrial and aquatic plants can accumulate BSi in significant amounts in siliceous deposits known as 

phytoliths (Figure 1.2a), which provide rigidity and may improve plant resistance to biotic and abiotic stress 

(Epstein 1994; Struyf & Conley 2009; Schoelynck et al. 2010; Schoelynck & Struyf 2016). Testate amoebae, which 

have siliceous tests (shells) (Figure 1.2b), have been estimated to assimilate as much Si as higher plants (Aoki et al. 

2007). DSi and BSi are heavily recycled in soils, and export to rivers, lakes, and reservoirs has a strong biological 

control (Figure 1.1) (Derry et al. 2005; Conley 2002). 

Diatoms are an important primary producer in freshwater and marine aquatic environments and require DSi 

to build siliceous frustules (shells) (Figure 1.2c) (Willen 1991; Treguer et al. 1995). Lakes and reservoirs are areas 

of Si retention due to uptake of DSi primarily by diatoms and burial of BSi in sediments (Frings et al. 2014; 

Maavara et al. 2014; Taylor Maavara et al. 2015). Frings et al. (2014) estimated the global retention of Si by lakes to 

be 1.3 Tmol DSi yr
-1

 and artificial reservoirs 0.23 Tmol DSi yr
-1

, which combined equates to 21-27% of the global 

riverine DSi load. Maavara et al. (2014) estimated the global retention of Si by artificial reservoirs to be 0.16 Tmol 
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Figure 1.1. Past (top) versus present (bottom) conceptualisation of Si cycling along the land to ocean continuum where biological 

processes play a major role in Si cycling and retention. Consumption of CO2 through chemical weathering of silicate minerals 

and transport of organic carbon to the deep ocean through sedimentation and burial of BSi link the Si and carbon cycles. Figure 

taken from Frings et al. (2014) Lack of steady-state in the global biogeochemical Si cycle: Emerging evidence from lake Si 

sequestration. Biogeochemistry, 117:255-277. 
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Figure 1.2. Scanning electron microscope images of siliceous structures of plants and organisms.  

A. Silica cell phytolith from wheat Triticum aestivum. Image taken from Ball et al. (1999) Identifying inflorescence phytoliths 

from selected species of wheat (Triticum monococcum) and barley (Hordeum vulgare and H. spontaneum) (Gramineae). 

American Journal of Botany, 86(11):1615-1623. 

B. Testate amoebae test. Image taken from Mitchell et al. (2008) Testate amoebae analysis in ecological and paleoecological 

studies of wetalnds: Past, present and future. Biodiversity and Conservation, 17(9):2115-2137.   

C. Diatom frustule. Image taken from Hildebrand et al. (2009) 3D imaging of diatoms with ion-abrasion scanning electron 

microscopy. Journal of Structural Biology, 166:316-328. 

D. Sponge spicule. Image taken from Uriz et al. (2003) Siliceous spicules and skeleton frameworks in sponges: Origin, diversity, 

ultrastructural patterns, and biological functions. Microscopy Research and Technique, 62:279-299. 

E. Chrysophyte stomatocyst. Image taken from Duff et al. (1992) Chrysophyte cysts in 36 Canadian high arctic ponds. Nordic 

Journal of Botany. 12(4):471-499.  

F. Silicoflagellate. Image taken from McCartney et al. (2014) Fine structure of silicoflagellate double skeletons. Marine 

Micropaleontology, 113:10-19.  

 

DSi yr
-1

 and 0.37 Tmol reactive Si yr
-1

 (dissolved + particulate), which is equivalent to 5.3% of the global reactive 

Si load to rivers. 

Upon reaching the ocean, a substantial portion of the Si delivered is retained in the nearshore coastal zone 

and on the continental shelf (Laruelle et al. 2009). Burial of BSi was estimated to be 1.4 Tmol Si yr
-1 

in nearshore 

coastal zone sediments, and 1.7 Tmol Si yr
-1 

on the continental shelf, which combined is approximately 40% of the 

total marine burial (Laruelle et al. 2009).  

BSi deposited in lacustrine and marine sediments may be resuspended, dissolved and thereby recycled to 

DSi, or buried (Van Cappellen 2003). In this way sediments can act as both a sink and a source of reactive Si. 

Globally, freshwater and marine sediments are a net sink of Si as net sedimentation (gross sedimentation minus 

 C 

E 

10 µm 

50 µm 

50 µm 

F 

B 

2 µm 

 

A 
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resuspension) exceeds recycling over an annual time scale (Laruelle et al. 2009). However, the recycling rate of BSi 

at the sediment-water interface is high and only 3% of BSi is permanently buried in ocean sediments (Treguer et al. 

1995). 

 

1.1.3 Cycling of silicon in sediments and interactions with phosphorus 

 

The internal loading of Si can contribute over 40% of the total annual DSi to lakes and thus may be an 

important flux in the overal Si budget and for sustaining the growth of siliceous phytoplankton (Johnson & 

Eisenreich 1978; Nriagu 1978; Schelske 1985). In sediments, there are several potentially mobile Si pools: DSi in 

pore water, Si adsorbed to mineral surfaces, Si coprecipitated with amorphous minerals such as iron(Fe)(III) oxides, 

and BSi (Siipola et al. 2013; Tallberg et al. 2012; Mayer & Jarrell 2000). Studies on sediment Si release have 

predominantly focused on BSi, as this tends to be the largest potentially bioavailable pool of Si in sediments 

(Tallberg et al. 2008; Tallberg et al. 2012). Temperature, pH and salinity have all been shown to increase BSi 

dissolution rates (Kamatani 1982; Loucaides et al. 2008a). However, Si adsorbed to or coprecipitated with Fe(III) 

oxide minerals may be influenced by redox conditions at the sediment-water interface, and by other anions 

competing for sorption sites such as phosphate (PO4
3-

) (Siipola et al. 2016; Hartikainen et al. 1996; Tuominen et al. 

1998; Tallberg & Koski-Vahala 2001; Tallberg et al. 2008). 

Both silicate (SiO4
-
) and phosphate can be specifically adsorbed to the surfaces of Fe(III) oxide minerals by 

ligand exchange, and thus the two anions may compete for sorption sites if they become limited (Hingston et al. 

1967; Obihara & Russell 1972). The ability for each anion to compete for sorption sites is influenced by pH as the 

charge at the mineral surface and the charge of each anion changes with pH due to dissociation (Figure 1.3) 

(Brinkman 1993; Lumsdon and Evans 1994). The point of zero net proton charge (PZNPC) is the pH at which the 

charge on the mineral surface is 0 (Lumsdon & Evans 1994). As pH decreases or increases away from the PZNPC, 

the charge on the mineral surface becomes increasingly positive and negative respectively (Figure 1.3) (Lumsdon & 

Evans 1994). Experimentally determined PZNPC for Fe(III) oxide minerals such as goethite, hematite, and hydrous 

ferric oxides range from 7.5 to 9.38 (Lumsdon & Evans 1994). Phosphoric acid and silicic acid dissociate and 

become increasingly negatively charged at pKa values of 7.1 and 12.7 for phosphoric acid, and 9.8 and 13.2 for 

silicic acid (Figure 1.3). Therefore, sorption of P to Fe(III) oxide minerals is preferred over Si below pH 9, as the 

charge on the mineral surface is positive below the PZNPC and the charge on phosphoric acid is more negative (-1 

or -2) than that of silicic acid (0) (Figure 1.3) (Brinkman 1993). This results in a stronger attraction between the 

mineral surface and phosphoric acid than silicic acid (Figure 1.3) (Brinkman 1993). Whereas, at pH greater than 9, 

Si sorption to Fe(III) oxide minerals is preferred over P, as the charge on the mineral surface becomes negative 

above the PZNPC and phosphoric acid is more negatively charged (-2 or -3) than silicic acid (-1 or -2) (Figure 1.3) 

(Brinkman 1993). This causes strong repulsion between the mineral surface and phosphoric acid, which is less so 

between the mineral surface and silicic acid (Figure 1.3) (Brinkman 1993). 
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Figure 1.3. Speciation of phosphoric (top) and silicic acid (middle) and the charge density on the surface of hematite (bottom) 

across a range of pH. Phosphoric acid has pKa’s at 7.1 and 12.7, and silicic acid has pKa’s at 9.7 and 13.2. Speciation diagrams 

were made using PHREEQC and PHREEPLOT and the included thermodynamic database (Parkhurst and Appelo 1999; 

Kinniburgh and Cooper 2011). Bottom figure taken from Brinkman (1993) A double-layer model for ion adsorption onto metal 

oxides, applied to experimental data and to natural sediments of Lake Veluwe, the Netherlands. Hydrobiologia, 253:31-45. 
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Previous studies suggest that high concentrations of Si are able to desorb and/or prevent sorption of P 

thereby increasing P release from sediments to the interstitial water (Tallberg and Koski-Vahala 2001; Tallberg et al. 

2008; Tuominen et al. 1998; Siipola et al. 2016; Koski-Vähälä et al. 2001). The deposition and dissolution of a large  

diatom bloom may provide high enough Si concentrations for this to occur in nature (Tallberg 1999). Competitive 

sorption may have important implications for the recycling of both Si and P  in freshwater and marine sediments, 

particularly in areas of nutrient loading where there may be substantial accumulation of Fe-bound P in sediments 

(Søndergaard et al. 2003). Competitive sorption between P and Si has only been demonstrated in lake sediments in 

Finland and coastal marine sediments of the coast of France (Tallberg and Koski-Vahala 2001; Tallberg et al. 2008; 

Tuominen et al. 1998; Siipola et al. 2016; Koski-Vähälä et al. 2001). Thus, competitive sorption has not been 

investigated in eutrophic wetland sediments or in areas outside Europe. As well, the relative importance of 

competitive sorption in the context of other physical, chemical, and biological processes potentially influencing 

release of Si and P from sediments, such as groundwater discharge, anoxic conditions and bioturbation, has not been 

thoroughly investigated (Boström et al. 1988).  

Due to the association of Si with Fe(III) oxides, anoxic conditions may result in the release of Si through 

the reduction of solid Fe(III) to aqueous Fe(II) and subsequent dissolution of Fe(III) oxide minerals. Fe(III) oxides 

can be reductively dissolved by both chemical (abiotic) and biological (biotic) means (Schwertmann 1991; Lovely et 

al. 1991). In aquatic sediments, the dominant mechanism of Fe(III) reductive dissolution is the dissimilatory 

reductive dissolution of Fe(III) to Fe(II) by anaerobic microorganisms using Fe(III) as a terminal electron acceptor 

(Lovely et al. 1991). Reductive dissolution of Fe(III) oxides and release of sorbed P is the classic model of internal P 

loading from anoxic sediments (Einsele 1936; Einsele 1938; Mortimer 1941; Mortimer 1942), but this mechanism 

has not been studied as thoroughly for Si (Siipola et al. 2016). 

There is some evidence that suggests that anoxic conditions may increase Si release from sediments 

(Danielsson 2014; Rabalais et al. 2010; Siipola et al. 2016; Lehtimäki et al. 2016). In the Baltic Sea and the northern 

Gulf of Mexico, bottom water DSi concentrations were negatively correlated with dissolved oxygen concentrations, 

suggesting increased Si release or less Si removal from sediments under hypoxic/anoxic conditions (Danielsson 

2014; Rabalais et al. 2010). However, the effect of anoxia on sediment Si release is not well understood as very few 

studies have investigated this (Siipola et al. 2016; Lehtimäki et al. 2016). Siipola et al. (2016) found that DSi release 

from the loosely sorbed and redox-sensitive fractions of Si in sediment decreased under anoxic conditions compared 

to oxic, which may have been due to resorption of Si to aluminum oxides and formation of colloidal mixed Fe-Si 

oxides. As well, on a monthly time scale, Siipola et al. (2016) found that DSi release from sediments was slower 

under anoxic compared to oxic conditions. However, over a period of 7 months, Lehtimäki et al. (2016) found that 

the total amount of DSi released from BSi was higher under hypoxic conditions compared to oxic, which may have 

been related to the microbial community. Understanding how oxygen depletion affects the Si cycle is critical 

knowledge currently lacking given that hypoxic areas in coastal zones are growing in size due to eutrophication 

(Rabalais et al 2010).  
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1.2 Human perturbations to the biogeochemical silicon cycle 

The cycling of Si through terrestrial and aquatic ecosystems is being altered by human activities, the 

cumulative effects of which are difficult to predict. Reservoirs have been found to retain approximately 5% of river 

reactive Si loads and decrease export of the reactive Si species downstream (Maavara et al. 2014; Frings et al. 2014; 

Humborg et al 2000). Deforestation has been shown to initially increase Si fluxes to rivers, but over time leads to 

decreased Si fluxes with sustained soil disturbance due to depletion of soil Si pools (Conley et al. 2008; Struyf et al. 

2010). Agriculture removes BSi from the terrestrial ecosystem through crop harvest (Vandevenne et al. 2012). 

Urbanization and development may increase the export of DSi to rivers compared to forested watersheds as the 

removal of vegetation decreases DSi uptake by plants (Carey & Fulweiler 2012). Wastewater treatment plant 

(WWTP) effluent contains Si from sewage and household detergents and thus is an anthropogenic point source of Si 

(Sferratore et al. 2006; Maguire & Fulweiler 2016; Maguire & Fulweiler 2017; Van Dokkum et al. 2004). Cultural 

eutrophication has altered the nutrient stoichiometry (P:N:Si) of many rivers and receiving waters around the world, 

which may lead to Si limitation of diatom growth and harmful algal blooms (Justic et al. 1995; Dubravko Justic et 

al. 1995; Danielsson et al. 2008; Viaroli et al. 2013).  

1.2.1 Eutrophication and silicon limitation 

In freshwater environments, P is typically the limiting nutrient to primary productivity (Blomqvist et al. 

2004). Enrichment of water bodies with P can enhance the growth of diatoms and increase DSi uptake, which over 

time leads to depletion of water column DSi concentrations and a switch from P limitation to Si limitation of diatom 

growth (Schelske & Stoermer 1971; Schelske & Stoermer 1972). Si limitation of diatom growth also limits the 

uptake of P from the water column by diatoms, thereby increasing the pool of available P for non-siliceous 

phytoplankton, which can lead to a shift in phytoplankton community composition from a diatom-dominated to a 

non-diatom dominated system (Schelske & Stoermer 1971; Schelske & Stoermer 1972).  

The Redfield-Brzezinski Si:P ratio of 16:1 is often taken as the stoichiometric delineation between P 

limitation (Si:P > 16:1) and Si limitation (Si:P < 16:1) of diatom growth, which is based on the average content of 

marine diatoms grown under non-limiting conditions (Redfield 1958; Brzezinski 1985). Therefore, increases in P 

concentration and/or decreases in Si concentration lower the Si:P ratio. Laboratory studies have shown that the 

transition from diatom to non-diatom dominance occurs between Si:P ratios of 3:1 to 30:1, with diatoms dominating 

at high Si:P ratios, non-siliceous phytoplankton dominating at low Si:P ratios, and diatoms and non-siliceous 

phytoplankton coexisting at intermediate Si:P ratios (Sommer et al. 2002; Sommer 1983; Sommer 1985; Peterson 

Holm & Armstrong 1981). Similar results were obtained in a mesocosm experiment where diatom dominance 

occurred at concentrations greater than 2 µmol Si L
-1

, dominance by other phytoplankton species only occurred 

below 2 µmol Si L
-1

, and an initially flagellate-dominated community switched to a diatom-dominated community 

within a few days after adding Si to a concentration above 2 µmol L
-1

 (Egge & Aksnes 1992).   

Nutrient enrichment followed by Si depletion and shifts in phytoplankton community composition have 

been found in many areas including Lake Michigan (Schelske & Stoermer 1971; Schelske & Stoermer 1972; 
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Schelske et al. 1986), Chesapeake Bay (Conley & Malone 1992), the Bay of Brest (Chauvaud et al. 2000), the 

northern Gulf of Mexico (Dubravko Justic et al. 1995), the Guadiana estuary (Rocha et al. 2002), the East River-

Long Island Sound system (Gobler et al. 2006), the Baltic Sea (Danielsson et al. 2008), the Black Sea (Garnier et al. 

2002), the northern Adriatic Sea (Dubravko Justic et al. 1995), and the North Sea (Peeters et al. 1991). The risk of Si 

limitation may increase in the future for many coastal areas due to continued enrichment of P and N coupled with 

decreasing Si delivery to oceans due to Si retention in reservoirs (Garnier et al. 2010; Turner et al. 2003). However, 

retention of Si in freshwater bodies including lakes, rivers, and wetlands may also play an important role in shifting 

nutrient ratios, but few studies of Si cycling and limitation in lakes have been conducted in comparison to marine 

coastal areas.  

Shifts in phytoplankton community composition towards non-diatom dominance may have negative 

consequences for aquatic food webs. Diatoms are generally a quality food source for zooplankton and fish, while 

flagellates are a poor food source and are not grazed (Officer & Ryther 1980). In the Mississippi continental shelf, 

copepod zooplankton abundance decreased and the risk of flagellate phytoplankton blooms increased when the 

Si:DIN (dissolved inorganic nitrogen – the sum of ammonia, nitrite, and nitrate) ratio dropped below the 1:1 

Redfield ratio (Turner et al. 1998). Non-diatom dominance can alter energy transfer to higher trophic levels and may 

result in lower fish production:primary production ratios than in diatom dominated systems such as coastal 

upwelling areas (Sommer et al. 2002). Further, flagellate blooms persist for longer periods of time, and lack of 

grazing may lead to higher deposition of organic matter to sediments and anoxic conditions (Officer & Ryther 

1980).  

However it should be noted that not all diatom blooms are beneficial to aquatic ecosystems (Wright et al. 

1989). Blooms of the marine species Pseudo-nitzschia can release domoic acid, a neurotoxic amino acid, causing 

Amnesic Shellfish Poisoning events (Wright et al. 1989). Domoic acid is thought to be produced during times of 

nutrient stress when growth slows or ceases (Bates & Trainer 2006). Studies suggest that domoic acid production is 

enhanced by Si or P limitation with respect to N when light is non-limiting, although low concentrations of domoic 

acid have also been found to be produced in the absence of nutrient limitation (Bates & Trainer 2006; Terseleer et al. 

2013; Thorel et al. 2014). As well, Parsons et al (2002) found that Pseudo-nitzschia abundance increased with 

decreasing Si:N ratios. Thus, increasing N concentrations in the ocean through cultural eutrophication may also 

increase the occurrence of harmful diatom blooms (Bates & Trainer 2006; Terseleer et al. 2013; Parsons et al. 2002).  

1.3 The large lake nearshore environment 

              The nearshore zone of large lakes such as the Laurentian Great Lakes is the transition from the watershed to 

the open lake (Haffner et al. 1983). Nearshore zones receive nutrient inputs from the watershed from sources such as 

atmospheric deposition, groundwater, rivers and surface runoff, and also through exchange with offshore waters 

(Figure 1.4) (Haffner et al. 1983; Mackenzie et al. 2000). Biogeochemical processes in the nearshore zone both 

retain and release nutrients through biological uptake and burial, and regeneration in the water column and 

sediments (Figure 1.4) (Strayer & Findlay 2010). Changes in nutrient supply from watershed sources or offshore 

exchange are likely to affect nutrient cycling and stoichiometry in the nearshore zone (Strayer & Findlay 2010; 
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Mackenzie et al. 2000). Such changes occur in nearshore zones impacted by human activities where nutrient inputs 

are dominated by anthropogenic sources such as sewage, and urban and agricultural runoff (Strayer & Findlay 

2010). Nearshore zones with restricted exchange with offshore waters are the most seriously affected by human 

impacts as these areas have longer residence times sufficient to enable phytoplankton growth, and lower dilution of 

watershed inputs by inflowing offshore waters (Haffner et al. 1983; Jickells 1998). Many nearshore zones 

experience high human pressure through urbanization, industry, and recreation, and use of the nearshore zone as a 

water source, a waste disposal site, and for transportation (Strayer & Findlay 2010). These pressures and demands 

on nearshore zones will increase in the future with increasing global population (Strayer & Findlay 2010).  

 

 

 

Figure 1.4. Schematic diagram showing nutrient sources, sinks, and internal cycling in coastal zones. Figure taken from Jickells 

(1998) Nutrient biogeochemistry of the coastal zone. Science, 281:217-222. 

 

1.3.1 Hamilton Harbour Area of Concern 

 

At the western end of Lake Ontario, Hamilton Harbour and the adjoining Cootes’ Paradise marsh were 

identified as one of 43 Great Lakes Areas of Concern in 1987 by the Canada-U.S. International Joint Commission, 

due to several beneficial use impairments (International Joint Commission United States and Canada 1987; Hiriart-

Baer et al. 2009; Hiriart-Baer et al. 2016). Industry, agriculture, and urbanization have all contributed to the 

degradation and eutrophic state of both Cootes’ Paradise marsh and Hamilton Harbour (Barica 1989; Hiriart-Baer et 

al. 2009; Hiriart-Baer et al. 2016; Chow-Fraser et al. 1998).  

Cootes’ Paradise marsh is a hypereutrophic urban wetland that experiences excessive green filmentous 

algae growth every summer (Chow-Fraser et al. 1998; Parsons et al. 2017). Prior to the building of the Dundas 

WWTP in 1919, raw sewage was discharged into West Pond of Cootes’ Paradise marsh (Kelton & Chow-Fraser 

2005). Successive WWTP upgrades from a primary to a secondary treatment plant in 1962, a tertiary treatment plant 
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in 1978, and addition of sand filters in 1987 have reduced P loading from the WWTP from 45 kg d
-1

 in the 1970s to 

less than 4 kg d
-1

 in the 1990s (Chow-Fraser et al. 1998). However, after many years of high external P loading, 

Cootes’ Paradise sediments have high concentrations of legacy P and internal loading of P contributes more than 

20% of total P sources, delaying the progress of remediation efforts (Parsons et al. 2017; Chow-Fraser et al. 1998; 

Kelton & Chow-Fraser 2005).  

              Cootes’ Paradise marsh flows into Hamilton Harbour, an urbanized eutrophic embayment with a history of 

industrial activity, sediment contamination, high nutrient loading, hypolimnetic anoxia, and nuisance and harmful 

algal blooms (Hiriart-Baer et al. 2009; Hiriart-Baer et al. 2016; Barica 1989). In 1985, loadings of P and N to 

Hamilton Harbour were 609 kg d
-1

 and 7076 kg d
-1

 respectively, with concentrations in the range 40-200 µg L
-1

 of 

total P and 50-4000 µg L
-1

 of ammonia (Barica 1989). High nutrient loading combined with a sufficiently long 

residence time resulted in extensive eutrophication of Hamilton Harbour (Haffner et al. 1983). At that time, diatom 

communities were maintained year round (Haffner et al. 1983). In response to remediation efforts such as WWTP 

upgrades and watershed best management practices, total P concentrations have significantly declined since 1987 

but no significant improvements occurred between 1999 and 2016, and total P concentrations in surface water 

remain high (surface total P concentrations averaged 39.7 ± 3.4 µg L
-1

 in 2012) and above the target concentration of 

20 µg L
-1

 (Hiriart-Baer et al. 2016). Chlorophyll a concentrations have not significantly changed since 1987, which 

may be due to high P concentrations and therefore a lack of nutrient limitation altogether (Hiriart-Baer et al. 2016).  

Today, diatom growth tends to be restricted to blooms in the spring and fall with summer growth being dominated 

by chlorophytes, crypotophytes, dinophytes and sometimes cyanobacteria (Dermott et al. 2007; Munawar et al. 

2017). Cyanobacteria growth accounted for over 60% of phytoplankton biomass in late July of 2006 (Munawar et al. 

2017). Low diatom abundance may be the result of Si limitation due to nutrient enrichment, but may also be 

influenced by other factors such as water temperature and top-down control by zooplankton grazing (Dermott et al. 

2007). 

1.4 Thesis outline 

This thesis investigates the biogeochemical cycling of Si in a human impacted large lake nearshore 

environment – the Hamilton Harbour Area of Concern (AOC), Lake Ontario, Canada including Cootes’ Paradise 

marsh and Hamilton Harbour.  
Chapter 2 investigates the mechanisms of internal loading of P and Si from Cootes’ Paradise sediments 

including 1) oxic and anoxic conditions at the sediment-water interface, and 2) the concentrations of dissolved P and 

Si in pore waters. This was investigated through sediment core flow through systems under oxic and anoxic 

conditions where different concentrations of P and Si were introduced to the sediment and the release of P and Si 

from sediment measured.  

Chapter 3 investigates the biogeochemical cycling of reactive Si in Hamilton Harbour in order to determine 

if 1) Hamilton Harbour is a net source or sink of Si and 2) Si is stoichiometrically limiting to diatom growth with 

respect to P. A reactive Si mass balance model that accounted for Si inputs, outputs, and internal cycling in 
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Hamilton Harbour was constructed through extensive field sampling and experimental work. Water column molar 

Si:P ratios were calculated throughout the growing season of 2016 to determine stoichiometric Si limitation.  

Chapter 4 summarizes research findings, discusses study limitations and proposes areas of future research. 
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Chapter 2 

 
Mechanisms of internal loading of phosphorus and silicon 

in a eutrophic coastal wetland (Cootes’ Paradise, Ontario, 

Canada) 
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2.1 Introduction 

              Internal loading from sediments can be a substantial source of the nutrients phosphorus (P) and silicon (Si) 

to freshwater bodies, with internal P loading often exceeding 30% of the external total P (TP) load, and internal Si 

loading exceeding 40% of the total annual Si inputs in some cases  (Orihel et al. 2017; Schelske 1985; Nriagu 1978). 

Many physical, chemical and biological factors influence sediment release rates of P and Si, which can vary both 

temporally and spatially (Orihel et al. 2017; Spears et al. 2008; Srithongouthai et al. 2003; Cowan et al. 1996). One 

such factor is competition between phosphate (PO4
3-

) and other anions for sorption sites on the surfaces of 

iron(Fe)(III) oxide minerals, such as hydroxyl ions, arsenate, sulfate, bicarbonate, oxalate, and dissolved Si (DSi) in 

the form of silicate (SiO4
-
) (Orihel et al. 2017 and references there in). DSi is of particular importance as it is 

generally present in sediment pore water in high concentrations relative to phosphate (Sholkovitz 1973; Gaillard et 

al. 1987; Urban et al. 1997). Competition between phosphate and DSi may influence the retention and release of 

both nutrients in sediments (Hartikainen et al. 1996; Koski-Vähälä et al. 2001; Tallberg & Koski-Vahala 2001; 

Tallberg et al. 2008; Tuominen et al. 1998).  

              Phosphate and DSi have a high affinity for the sorption sites on the surfaces of Fe(III) oxide minerals 

(Slomp et al. 1996). At the common pH in aerated freshwater systems, Fe primarily exists as low solubility Fe(III) 

oxide  minerals (Schwertmann 1991).  Fe(III) oxides have a pH dependent surface charge which enables both 

phosphate and DSi to specifically adsorb to the surface through ligand exchange (Hingston et al. 1967; Obihara & 

Russell 1972; Brinkman 1993). Thus, in the oxic zone of surficial sediments, phosphate and DSi in pore water may 

adsorb or coprecipitate with Fe(III) oxides (Hingston et al. 1967; Obihara & Russell 1972; Brinkman 1993). Under 

anoxic conditions, Fe(III) oxides can  be reductively dissolved through the reduction of solid Fe(III) to aqueous 

Fe(II) by anaerobic microorganisms, which can use Fe(III) as a terminal electron acceptor after depletion of oxygen, 

nitrate, and manganese (IV) oxides (Lovely & Phillips 1988; Lovely et al. 1991). Consequently, under anoxic 

conditions, adsorbed and coprecipitated P and Si can be released to the pore water and may diffuse across the 

sediment-water interface to the water column (Boström et al. 1988).  

              The retention and release of P from Fe oxides under oxic and anoxic conditions is a well-known mechanism 

of internal loading first described by Einsele (1936; 1938) and Mortimer (1941; 1942) (Hupfer & Lewandowski 

2008). Similar concentrations of Fe-bound P and Si have been measured in sediments but far less attention has been 

given to the role of Fe(III) oxides on Si retention and release in sediments (Hartikainen et al. 1996; Tallberg et al. 

2008; Tallberg et al. 2009; Tallberg et al. 2012).  There have been few studies investigating the effect of anoxia on 

DSi release from sediment, and the findings have been unclear (Siipola et al. 2016; Lehtimäki et al. 2016). Siipola et 

al. (2016) performed sediment sequential extractions under oxic and anoxic conditions and found that DSi release 

from the loosely sorbed and redox-sensitive fractions of Si in sediment decreased under anoxic conditions compared 

to oxic. The authors proposed resorption to aluminum oxides and formation of colloidal mixed Fe-Si oxides as 

possible explanations. Siipola et al. (2016) also performed a water extraction on sediment for 28 days and found that 

DSi release from sediments was slower under anoxic compared to oxic conditions. Lehtimäki et al. (2016) found 

that biogenic Si (BSi) dissolution rates were initially faster under oxic than hypoxic conditions, in agreement with 
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Siipola et al. (2016), but that the total amount of DSi released over 7 months was higher under hypoxic conditions. 

Lehtimäki et al. (2016) also found that microbial activity enhanced BSi dissolution under both oxic and anoxic 

conditions and suggested that the increased BSi dissolution under hypoxic conditions was due to the differences in 

microbial communities under oxic and hypoxic conditions (Lehtimäki et al. 2016).  

              If sorption sites on Fe(III) oxides become limited phosphate and DSi may compete for sorption sites and 

laboratory studies have shown increased dissolved P concentrations in pore water upon large additions of DSi 

(Tuominen et al. 1998; Koski-Vähälä et al. 2001; Tallberg & Koski-Vahala 2001; Tallberg et al. 2008). Competition 

between phosphate and DSi for sorption sites may be environmentally relevant as calculations suggest that the 

deposition and dissolution of a large diatom bloom may result in high enough DSi concentrations to increase P 

release from sediments (Tallberg 1999; Tallberg & Koski-Vahala 2001). These results were corroborated in a 

sediment core incubation experiment where addition of diatoms increased P release (Tallberg et al. 2008).  

              The aims of this research were to investigate the mechanisms of retention and release of P and Si in Cootes’ 

Paradise sediments. Cootes’ Paradise has experienced many decades of high external P loading, which has resulted 

in the accumulation of legacy P in sediments, approximately 24% of which is Fe-bound (Parsons et al. 2017). 

Cootes’ Paradise also experiences substantial internal P loading that contributes 22.7% of the total P inputs to the 

water column (Kelton & Chow-Fraser 2005). Conversely, little is known about Si dynamics and internal loading in 

Cootes’ Paradise sediments and Si internal loading may influence the bioavailability of Si in the water column, 

which is an essential nutrient for diatom algae.  

              The objectives of this research were to determine if and to what extent internal loading of P and Si from 

Cootes’ Paradise sediment is influenced by 1) oxic and anoxic conditions at the sediment-water interface, and 2) the 

relative concentrations of dissolved P and Si in pore waters, which may promote competition for sorption sites under 

oxic conditions. This was investigated through sediment core flow through reactor systems incubated under oxic and 

anoxic conditions and which received different combinations of nutrient (P, Si) additions.  We hypothesized that 1) 

P and Si release from sediments would both increase under anoxic conditions due to reductive dissolution iron(III) 

oxide minerals and release of adsorbed and coprecipitated P and Si, and 2) under oxic conditions, addition of 

aqueous Si to sediment pore water would increase the release of P to the overlying water through competitive 

sorption on Fe(III) oxide minerals.  

              Competitive sorption of P and Si may reduce to the sorption capacity of Cootes’ Paradise sediments 

towards P and contribute to greater internal P loading. This research will improve our understanding of the 

interactions of P and Si in sediments as well as the influence of anoxic conditions on sediment Si release.  

2.2 Methods 

2.2.1 Field site and sampling 

              Sediment cores were collected from West Pond (43°16’12.0” N 79°55’43.9” W) in Cootes’ Paradise marsh 

(Figure 2.1) in September 2015 using a hand corer lined with a Plexiglas ring, 8 cm in length and 4.7 cm in inner 
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diameter (Figures 2.2a and 2b).  Cootes’ Paradise is a 2.5 km
2
 severely degraded, hypereutrophic coastal wetland at 

the western end of Hamilton Harbour, Lake Ontario (Chow-Fraser et al. 1998). Cootes’ Paradise has a history of  

high P loading from a nearby wastewater treatment plant that discharges into West Pond (Chow-Fraser et al. 1998). 

Cootes’ Paradise also receives P inputs from urban runoff, combined sewer overflows, and several tributaries 

(Spencer Creek, Borer’s Creek, Chedoke Creek, Ancanster Creek) (Hamilton Harbour RAP Technical Team 2010). 

Eutrophication has contributed to the loss of approximately 90% of the emergent vegetation in the marsh since the 

early 1900s, and Cootes’ Paradise experiences extensive green filamentous algae growth in the summer (Figure 

2.2c) (Chow-Fraser et al. 1998; Parsons et al. 2017). 

 

 

 

Figure 2.1. Map of Cootes’ Paradise marsh showing the location of discharge from the WWTP and the sampling location 

(yellow star) in West Pond. Water depth is shown by blue colours (adapted from Parsons et al 2017). 
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Figure 2.2. Photos of field sampling and sediment core flow through reactors. (A) Sediment cores were collected by crouching in 

the water and pushing the hand corer into the sediment. (B) A rubber stopper was inserted in the bottom to plug the hand corer 

and retrieve a sediment core. (C) There was extensive filamentous green algae growth in Cootes’ Paradise marsh on the day of 

sampling. Sediment cores back to the laboratory in a cooler. (D) Sediment cores were collected without disturbing the sediment-

water interface. (E) The lining of the hand corer with intact sediment served as the reactor vessel in the sediment core flow 

through reactors used in the experimental setup.  

A 

B 

C 

D 

E 
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 2.2.2 Experimental setup 

              The sediment core flow through reactor experiment consisted of 8 flow through reactors similar to the 

design of Pallud & Van Cappellen (2006) and Pallud et al. (2007). Each reactor contained a 5 cm long core of intact 

sediment in the Plexiglas ring in which the sediments were collected, which served as the reactor cell (Figures 2.2d, 

2e and 2.3). Reactor cells were enclosed on either end by caps lined with o-rings to prevent leakage of gas and water 

and a 47 mm diameter 0.2 µm pore size nitrocellulose filter on the bottom cap to evenly distribute flow across the 

bottom of the core and to prevent blockage of the inflow port by sediment (Figure 2.3, o-rings and filters not 

shown). Threaded rods and nuts kept the top and bottom caps in place and a tight seal on the reactor cell (Figures 

2.2e and 2.3). Flow-through reactor cells were kept in the dark by covering with aluminum foil in order to prevent 

phytoplankton growth. 

              Influent solution entered the reactor through the side of the bottom cap, which opened in the center (Figures 

2.2e and 2.3). Effluent flowed out of the reactor at an exit port located 6 cm from the bottom of the reactor cell, 

creating a water column of approximately 1 cm above the sediment (Figures 2.2e and 2.3). Influent was delivered 

and effluent withdrawn at a rate of approximately 1 mL h
-1

 using peristaltic pumps. Two holes 1 cm in diameter 

were cut into the top cap to allow gas exchange between the atmosphere and the 2 cm of headspace of the reactor 

cell (Figure 2.3). The holes were covered with Parafilm that was punctured with small holes to prevent excessive 

loss of solution by evaporation (Figure 2.3). Four sediment core flow through reactors were incubated under oxic 

conditions on the lab bench, and 4 were incubated under anoxic conditions in an anaerobic chamber (98% N2 2% H2 

atmosphere, <1 ppmv O2, Coy laboratory products). Temperature was not controlled, and oxic reactors were 

incubated at approximately 22 ± 3°C and anoxic reactors at approximately 30 ± 2°C. This difference in temperature 

between the lab bench and the anaerobic chamber was not foreseen and the influence of temperature on the results is 

discussed.  

              The influent solution to each reactor consisted of a deoxygenated artificial pore water (APW) solution 

amended with different nutrient additions: a “control”, a “P addition”, a “Si addition” and a “P+Si addition” 

solution. The APW solution composition was based on pore water concentrations at 5 cm depth previously measured 

at the sampling site using peeper’s (Table 2.1) (Hesslein 1976; Chris Parsons’, unpublished data). The “control” 

APW solution contained no P or Si, the “P addition” APW solution contained 29 µmol L
-1

 P as KH2PO4, the “Si 

addition” APW solution contained 107 µmol L
-1

 Si as Na2SiO3, and the “P + Si addition” APW solution contained 

both 29 µmol L
-1

 P as KH2PO4 and 107 µmol L
-1

 Si as Na2SiO3 (Table 1). One of each of the 4 sediment core flow 

through reactors incubated under oxic and anoxic conditions received the “control”, “P addition”, “Si addition”, and 

the “P + Si addition” solutions. The solutions were deoxygenated by vigorously sparging with N2 gas for 2-3 hours 

and storing solutions in the anaerobic chamber overnight. The solutions were delivered to the sediment core flow 

through reactors through Viton tubing to prevent entry of oxygen. Except for the reactor cell, all parts coming into 

contact with the inflowing solutions were acid washed and/or sterilized by autoclaving as appropriate.  
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Figure 2.3. Sediment core flow through reactor setup. 

 

2.2.3 Sediment core flow through experiment 

              Prior to the start of the incubation experiment, all 8 sediment core flow through reactors were flushed with 

the control APW solution at a rate of 1 mL h
-1

 on the lab bench under oxic conditions to ensure the saturation of 

pore space with solution. An APW solution amended with 130 µmol L
-1

 Br
-
, a conservative tracer, was flushed 

through for approximately 8 days to investigate the transport properties of the sediment.  

              During the sediment core flow through experiment, the deoxygenated APW solutions were pumped through 

the flow-through reactors for approximately 16 days. Effluent from each reactor was continuously collected for 

varying time intervals, more frequently at the beginning of the experiment (3 times per day) and less frequently near 

the end (1-2 times per day). The sampling resolution was higher at the beginning of the experiment in order to  
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Table 2.1. Pore water concentrations measured by peepers at the sampling site in West Pond and the artificial pore water 

elemental concentrations for the nutrient treatment solutions. No Fe or Mn was added to the inflow solutions although they were 

present in the pore water.  

Constituent Concentration (µmol L
-1

) 

Pore water  

(5 cm depth) 

Artificial pore water solution 

Control P addition Si addition P+Si addition 

Al
3+ 0 0 0 0 0 

Ca
2+ 511 736 736 736 736 

Mg
2+ 270 378 378 378 378 

Na
+ 1261 1713 1713 1927 1927 

K
+ 88 69 102 69 102 

Cl
- 4041 2535 2535 2535 2535 

DIC-C (as HCO3) 2230 1713 1713 1713 1713 

DOC-C (as glucose) 358 489 489 489 489 

SO4
 102 104 104 104 104 

NH4 771 1202 1202 1202 1202 

Fe
2+ 44 0 0 0 0 

Mn
4+ 7 0 0 0 0 

P
 44 0 29 0 29 

Si 107 0 0 107 107 

 

capture the initial changes in P and Si release expected to occur. The effluent was filtered through 0.45 µm 

polypropylene syringe filters for analysis of total dissolved P (TDP), Si (DSi), Mn (TDMn), Fe (TDFe), S (TDS), 

and soluble reactive P (SRP), and filtered through 0.2 µm supor (PES) Ion Chromatography certified syringe filters 

for analysis of Br
-
, NO2

-
, NO3

-
, and SO4

2-
. Samples for analysis of TDP, DSi, TDMn, TDFe and TDS were acidified 

to 2% nitric acid and measured by Inductively Coupled Plasma-Optical Emission Spectrophotometry (ICP-OES,  

Thermo Scientific iCAP 6300). SRP was measured on unacidified filtered samples by a molybdenum blue method 

(Murphy & Riley 1962) on a UV-Visible Spectrophotometer (UV-Vis) (Thermo Evolution 260). Anions were 

measured by Ion Chromatography (IC) (Dionex ICS-5000). Limits of detection, limits of quantification, and 

precision of analytical methods are listed in Table 2.2. 

              Upon completion of the experiment, sediments in flow-through reactors were frozen at -80°C and sliced 

into 3 sections (0-1 cm, 1-3 cm, and 3-5 cm) using a bandsaw. Ascorbate extractions were performed in the 

anaerobic chamber on the top section (0-1 cm) of thawed and homogenized wet sediment according to Hyacinthe & 

Van Cappellen (2004). Ascorbate has been shown to extract highly reactive solid phase Fe, such as ferrihydrite 

(Kostka & Luther III 1994). Approximately 0.5 g of wet sediment was mixed with 12.5 mL of the ascorbate solution 

and shaken for 24 hours at 22 ± 3°C. The extraction vessels were centrifuged at high speed (5000 rpm or 

approximately 2500 x g) for 15 minutes and the supernatant removed, filtered to 0.45 µm pore size using 

polypropylene syringe filters, diluted to 2% nitric acid and analysed for DSi, TDP, TDMn and TDFe by ICP-OES.  
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Table 2.2. Limits of detection (LOD), limits of quantification (LOQ), and precision of analytical methods. 

Analytical Method Element LOD (µmol L
-1

) LOQ (µmol L
-1

) Precision (%) 

ICP-OES Fe 0.007 0.02 20 

 P 0.08 0.25 7 

 Mn 0.04 0.01 - 

 S 0.06 0.28 - 

 Si 0.04 0.13 4 

IC Br 1.2 6.0 - 

 NO2
-
 2.1 10.5 - 

 NO3
-
 1.5 7.5 10 

 SO4
-2

 0.8 4.1 10 

SRP P 0.5 1.4 10 

 

 

2.2.4 TDP, SRP, and DSi steady-state fluxes and total release  

              Steady-state (SS) fluxes (µmol m
-2

 h
-1

) of TDP, SRP, and DSi were calculated according to Equation 2.1:  

𝑆𝑆 𝐹𝑙𝑢𝑥 =
𝐶𝑠𝑠∗𝑄

𝑆𝐴
 Eq. 2.1 

where Css is the steady state concentration (µmol L
-1

), Q is the flow rate (L h
-1

), and SA is the surface area of the 

sediment core (m
-2

). For oxic reactors, concentrations of TDP, SRP, and DSi were fairly consistent throughout the 

experiment and so Css was calculated as the mean concentration over the 16 days. For anoxic reactors, segmented 

linear regression of concentration and time was conducted using the SegReg free software program 

(www.waterlog.info/segreg.htm) and the breakpoint (time) between increasing and plateauing concentrations was 

identified. For TDP, SRP, and DSi in all reactors, except the “P+Si addition” reactor for SRP, the slope of the line 

after the breakpoint was 0, indicating a constant flux of TDP, SRP, and DSi had been reached. The mean 

concentration of TDP, SRP, and DSi after the breakpoint was used as the Css. There was no breakpoint for SRP 

concentrations in the “P+Si addition” reactor and so the Css was calculated from the mean concentration of the last 6 

samples, which by visual inspection appeared to be the plateau.  

              Total release of TDP and DSi over the entire experiment in unites of µmoles was calculated according to 

Equation 2.2:  

𝑇𝑜𝑡𝑎𝑙 µ𝑚𝑜𝑙𝑒𝑠 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 = ∑ 𝐶 ∗ 𝑄 ∗ 𝑡𝑖
29
𝑖=1                                                                                                           Eq. 2.2 

 

where i is the sample number (i.e. 1 through 29), C is the concentration of TDP or DSi measured in the ith sample 

(µmoles L
-1

), Q is the flow rate (L h
-1

), and t is the time interval over which the ith sample was collected (h). 

 

 

http://www.waterlog.info/segreg.htm
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2.3 Results 

2.3.1 Transport properties 

              Figure 2.4 shows the Br
-
 breakthrough curves for oxic and anoxic reactors where C is the concentration of 

Br
-
 in the effluent, C0 is the initial concentration of Br

-
 in the influent, and C/C0 is relative Br

-
 concentration. Pore 

volumes were calculated according to Equation 2.3:  

 𝑝 =
𝑄∗𝑡

ø∗𝐿∗𝐴
          Eq. 2.3 

where p is the number of pore volumes of fluid passed through a medium in time, Q is the flow rate (cm
3
 h

-1
), t is 

time (h), ø is porosity, L is the length of the sediment core (cm), and A is the cross-sectional area of the sediment 

core (cm
2
). Porosity was calculated according to Equation 2.4: 

ø = 1 −
𝜌𝑏𝑢𝑙𝑘

𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
                                                                                                                                                     Eq. 2.4 

where ρbulk is the bulk density of the sediment calculated as the dry sediment weight (wet sediment weight divided 

by the moisture content plus 1) divided by the saturated sediment volume, and pparticle is the particle density assumed 

to be 2.65 g cm
-3

. 

              The Br
-
 breakthrough curves were similar for all reactors, where breakthrough occurred almost immediately 

(Figure 2.4). C/C0 reached 0.9 by 1 pore volume, and 1 by approximately 1.4 pore volumes. The similarity of Br
-
 

breakthrough curves indicates that reactors were comparable in terms of physical transport prior to the start of the 

sediment core flow through experiment.   

2.3.2 Oxic reactors effluent concentrations 

              In oxic reactors, concentrations of NO2
- 
were generally below the detection limit (2.1 µmol L

-1
), but reached 

up to approximately 40 µmol L
-1

 in a few samples (Figure 2.5).  No large differences in NO2
-
 concentrations were 

observed between nutrient treatments (Figure 2.5). Concentrations of NO3
-
 generally increased over time (Figure 

2.5). The “Si addition” reactor had the highest mean NO3
-
 concentration (109.40 µmol L

-1
) and the “control” reactor 

the lowest (44.87 µmol L
-1

). NO2
-
 and NO3

-
 concentrations were well below the inflow concentration of NH4

+
 (1202 

µmol L
-1

), however NH4
+
 was not measured in the effluent (Figure 2.5). 

              TDMn and TDFe concentrations were low in all oxic reactors, often near or below detection limits (0.04 

µmol Mn L
-1

; 0.007 µmol Fe L
-1

) (Figure 2.6). TDMn concentrations were generally in the range of 0.1-5 µmol L
-1, 

but increased to 10-18 µmol L
-1 

in the “control”, “P addition” and “Si addition” reactors between 10 and 12 days  

(Figure 2.6). TDFe concentrations were generally in the range of 0.1-1 µmol L
-1

 with some spikes in concentration 

up to about 8 µmol L
-1

 (Figure 2.6).  
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Figure 2.4. Br- breakthrough curves for oxic and anoxic flow-through reactors measured prior to the incubation experiment 

under oxic conditions where C is the concentration of Br- in the effluent, C0 is the initial concentration of Br- in the influent, and 

C/C0 is relative Br- concentration. Relative Br- concentrations of 1 were reached  by approximately 1.4 pore volumes for all 

reactors. 

 

              TDS and SO4
2-

 concentrations were similar in oxic reactors and exceeded that of the influent SO4
2-

 

concentration (Figure 2.7). SO4
2-

 concentrations were highest in the “Si addition” reactor, followed by the “control”, 

the “P+Si addition”, and the “P addition” reactors, which had mean concentrations of 800.79 µmol L
-1

, 717.64 µmol 

L
-1

, 401.93 µmol L
-1

, and 205.58 µmol L
-1

 respectively (Figure 2.7). 

              TDP concentrations remained low in the oxic “control”, “P addition” and “P+Si addition” reactors, 

generally ranging between 2-10 µmol L
-1

 (Figure 2.8). TDP concentrations in the “Si addition” reactor were low and 

in a similar range as the other nutrient treatments in the first 8 days of the experiment, then increased up to 30 µmol 

L
-1

 in the last 8 days of the experiment (Figure 2.8). The effluent concentrations in the “P addition” and “P+Si 

addition” reactors were lower than that of the influent, while that of the “control” and “Si addition” reactors were 

higher (Figure 2.8). SRP concentrations generally followed the same trend as TDP, with SRP accounting for 17-50% 

0

0.25

0.5

0.75

1

0 0.5 1 1.5 2

R
e

la
ti

ve
 B

r-  C
o

n
ce

n
tr

at
io

n
 (

C
/C

0)
 

Pore Volume 

Oxic control

Oxic P addition

Oxic Si addition

Oxic P+Si addition

0

0.25

0.5

0.75

1

0 0.5 1 1.5 2

R
e

la
ti

ve
 B

r-  C
o

n
ce

n
tr

at
io

n
 (

c/
C

0
) 

Pore Volume 

Anoxic control

Anoxic P addition

Anoxic Si addition

Anoxic P+Si addition



24 
 

of TDP in the “control”, 59-98% of TDP for the “P addition”, 35-90% of TDP for the “Si addition” and 23-73% for 

the “P+Si addition” reactors (Figure 2.8).  

              DSi concentrations in the oxic reactors were fairly constant and varied approximately 10-15% from the 

mean over the duration of the experiment (Figure 2.9). The “P addition” reactor had the highest mean DSi 

concentration followed by the “Si addition”, the “P+Si addition”, and the “control” reactors, which had mean  

concentrations of 279.64 µmol L
-1

, 250.93 µmol L
-1

, 245.71 µmol L
-1

, and 229.99 µmol L
-1

 respectively (Figure 

2.9). In all reactors, DSi concentrations in the effluent were higher than the influent by at least 2 times (Figure 2.9). 

2.3.3 Anoxic reactors effluent concentrations 

              NO2
-
 concentrations were generally below the detection limit in anoxic reactors, but had large spikes in 

concentration of up to 400 µmol L
-1

 in a few samples (Figure 2.5). NO3
-
 concentrations were initially around 8-30 

µmol L
-1

 and decreased to values in the range of 1-10 µmol L
-1

 within the first day (Figure 2.5). As no NO3
-
 was in 

the inflow solution, the initially present NO3
-
 was likely produced before the experiment when sediment flow 

through reactors were outside the anaerobic chamber. NO3
-
 concentrations remained low for the rest of the 

experiment, with all treatments having mean concentrations in the range of 6-7 µmol L
-1

 (Figure 2.5). NO2
-
 and NO3

-
 

concentrations were below the inflow concentration of NH4
+
 (Figure 2.5). 

              TDMn concentrations in the effluent peaked at about 1 day then decreased to around 5-10 µmol L
-1 

and 

remained low (Figure 2.6). The “P+Si addition” reactor had the highest peak concentration of 100.49 µmol L
-1

, 

followed by the “control” (48.87 µmol L
-1

), the “Si addition” (44.62 µmol L
-1

), and the “P addition” reactors (34.03 

µmol L
-1

) (Figure 2.6).  

              TDFe concentrations followed a similar trend as TDMn but peaked around 2-3 days when TDMn 

concentrations started declining (Figure 2.6). The “P+Si addition” reactor reached the highest peak TDFe 

concentration of 139.9 µmol L
-1

, followed by the “P addition” (99.32 µmol L
-1

), the “control” (69.89 µmol L
-1

), and 

the “Si addition” (64.06 µmol L
-1

) reactors (Figure 2.6). While TDFe concentrations decreased after the peak, 

concentrations remained fairly high in the range of 20-60 µmol L
-1

 for all nutrient treatments (Figure 2.5).  

              TDS and SO4
2-

 concentrations in anoxic reactors were initially similar (Figure 2.7). Both TDS and SO4
2-

 

concentrations decreased to below that of the influent within the first day of the experiment, but SO4
2-

 concentrations 

fell below that of TDS (Figure 2.7). SO4
2-

 concentrations decreased to below 20 µmol L
-1

 with many samples below 

the detection limit (0.8 µmol L
-1

), but TDS concentrations decreased to only 20-30 µmol L
-1

 (Figure 2.7). Apart 

from the initial concentrations, there were no large differences in TDS and SO4
2-

 concentrations between nutrient 

treatments (Figure 2.7). 

              TDP and SRP concentrations increased at the same time as TDFe and continued increasing until around 10-

11 days when concentrations plateaued (Figures 2.6 and 2.8). The “P+Si addition” reactor reached the highest 

plateau TDP concentration of 166 µmol L
-1

, followed by the “Si addition” (139 µmol L
-1

), the “control” (126 µmol 

L
-1

), and the “P addition” (117 µmol L
-1

) reactors (Figure 2.8). SRP reached concentrations of 147 µmol L
-1 

for the 

“P+Si addition” reactor, 114 µmol L
-1

 for the “Si addition” reactor, 109 µmol L
-1

 for the “control” reactor, and 102 

µmol L
-1

 for the “P addition” reactor (Figure 2.8). On average SRP concentrations accounted for 80-85% of TDP for  
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Figure 2.5. Concentrations of NO2
- and NO3

- in the effluent of oxic and anoxic sediment core flow through reactors over the 

course of the experiment. The influent concentration of NH4
+ is shown by the dashed line (1202 µmol L-1). NH4

+ was not 

measured in the outflow. 
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Figure 2.6. Concentrations of total dissolved Mn (TDMN) and total dissolved Fe (TDFe) in the effluent of oxic and anoxic 

sediment core flow through reactors over the course of the experiment. The influent solutions contained no Mn or Fe. 
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Figure 2.7. Concentrations of total dissolved S (TDS) and SO4
2- in the effluent of oxic and anoxic sediment core flow through 

reactors over the course of the experiment. The influent concentration of SO4
2- (104 µmol L-1) is shown with the dashed black 

line. 
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Figure 2.8. Concentrations of total dissolved P (TDP) and soluble reactive P (SRP) in the effluent of oxic and anoxic sediment 

core flow through reactors over the course of the experiment. The influent concentration of dissolved P for the “P addition” and 

“P+Si addition” reactors is shown with the dashed line. The “control” and “Si addition” reactors did not have P in the influent 

solution. 
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Figure 2.9. Concentrations of total dissolved Si (DSi) in the effluent of oxic and anoxic sediment core flow through reactors over 

the course of the experiment. The influent concentration of DSi for the “Si addition” and “P+Si addition” reactors is shown with 

the dashed line. The “control” and “P addition” reactors did not have DSi in the influent solution. 

 

all nutrient treatments. For all reactors, the TDP and SRP concentrations of the effluent were initially less than that 

of the influent, but surpassed that of the influent within 1-3 days (Figure 2.8). 

              DSi concentrations increased in the first day of the experiment at the same time that TDMn concentrations 

increased and continued increasing at the same time as TDFe (Figures 2.6 and 2.9). DSi concentrations plateaued 

around 8 days (Figure 2.9). All nutrient treatments followed a similar trend but reached different plateau 

concentrations of approximately 699 µmol L
-1

 for the “control” and “Si addition” reactors, approximately  601 µmol 

L
-1

 for the “P addition” reactor, and approximately 826 µmol L
-1

 for the “P+Si addition” reactor (Figure 2.9). DSi 

concentrations in the “P+Si addition” reactor suddenly decreased from 810 µmol L
-1 

to 682 µmol L
-1

 and back up to 

816 µmol L
-1

 at 11-12 days, and it is unknown what caused this sudden and short-lived decrease in concentration 

(Figure 2.9). In all reactors, DSi concentrations in the effluent were higher than the influent by at least 3 times 

(Figure 2.9). 

2.3.4 Oxic and anoxic reactor effluent Si:P, Fe:P and Fe:Si ratios 

              Aqueous Si:P ratios of the effluent from oxic reactors were high and fluctuated over a large range 

throughout the experiment, while the Si:P ratios of the effluent from anoxic reactors were low and consistent (Figure 

2.10). Oxic Si:P ratios ranged between 8.8 and 168.2 between the different nutrient treatments with mean Si:P ratios 

of 85.9 for the “P+Si addition” reactor, 69.0 for the “control” reactor, 30.3 for the “P addition” reactor and 23.9 for 

the “Si addition” (Figure 2.10). In anoxic reactors, Si:P ratios were initially between 18 and 50, and decreased in all 

treatments to around 5-6 by 8 days into the experiment (Figure 2.10). The anoxic “P+Si addition” reactor had a 
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mean Si:TDP ratio of 14.3, the anoxic  “control” reactor a mean of 8.9, the anoxic “Si addition” reactor a mean of 

9.4, and the anoxic “P addition” reactor a mean of 7.8 (Figure 2.10).   

              In the anoxic “control”, “P addition”, and “Si addition” reactors, aqueous Fe:P effluent ratios increased 

from 0 at the beginning of the experiment to around 1-1.7 at approximately 4 days, then decreased and remained 

around 0.1-0.2 from day 8 to day 16 of the experiment (Figure 2.10). The anoxic “P+Si addition” reactor Fe:P ratios 

increased from 0 to almost 4 at 2 days into the experiment, then decreased to around 0.1-0.2 in a similar pattern to 

the other reactors.  

              Anoxic reactor aqueous Fe:Si effluent ratios increased from 0 to 0.1-0.2 in the first 2-4 days of the 

experiment, then decreased to around 0.03 in the last 8 days of the experiment (Figure 2.10). The “P+Si addition” 

reactor reached the highest Fe:Si ratio of 0.25 at 2 days (Figure 2.10). 

2.3.5 TDP, SRP and DSi steady-state fluxes and total release 

              Oxic and anoxic steady-state fluxes of TDP, SRP and DSi are shown in Table 2.3. Oxic steady-state TDP 

fluxes ranged from 1.9 to 6.9 µmol m
-2

 h
-1

 and increased in the order of “P+Si addition” < “control” < “P addition” < 

“Si addition” (Table 2.3). The mean of all oxic TDP fluxes was 4.1 µmol m
-2

 h
-1

.  Anoxic steady-state TDP fluxes 

were markedly higher than oxic fluxes (Table 2.3). Anoxic TDP fluxes increased in the order of “P addition” < “Si 

addition” < “control” < “P+Si addition” and ranged from 66 to 80 µmol m
-2

 h
-1

 (Table 2.3).    

              Oxic steady-state SRP fluxes were slightly lower than TDP fluxes but showed similar trends (Table 2.3). 

Oxic steady-state SRP fluxes were in the range of 0.8-6 µmol m
-2

 h
-1

 and increased in the order of “control” < “P+Si 

addition” < “P addition” < “Si addition” (Table 2.3).  The mean SRP flux from all oxic reactors was 3.0 µmol m
-2

 h
-1

  

 (Table 2.3). Anoxic steady-state SRP fluxes ranged from 57 to 72 µmol m
-2

 h
-1

 and increased in the order of “Si 

addition” < “P addition” < “control” < “P+Si addition” with a mean flux of 63 µmol m
-2

 h
-1

 (Table 2.3).  

              Oxic steady-state DSi fluxes increased in the order of “Si addition” < “control” < “P+Si addition” < “P 

addition” reactors with fluxes ranging from 124 to 164 µmol m
-2

 h
-1

 (Table 2.3). The mean flux of all oxic reactors 

was 141 µmol m
-2

 h
-1

. Anoxic steady-state DSi fluxes increased in the order of “P addition” < “Si addition” < “P+Si 

addition” < “control” with fluxes ranging from 341 to 435 µmol m
-2

 h
-1

 and the mean of all anoxic fluxes was 381 

µmol m
-2

 h
-1

 (Table 2.3). Anoxic steady-state DSi fluxes were higher than oxic fluxes by 2-3 times (Table 2.3). 

              Total release of DSi and TDP over the experiment is shown in Table 2.3. Total release of SRP was not 

calculated as SRP was not measured on every sample. Total release of DSi from oxic reactors ranged from 85-106 

µmoles with a mean of 248 µmoles, and in anoxic reactors ranged from 216-280 µmoles with a mean of 248 µmoles 

(Table 2.3). Oxic and anoxic reactor total TDP release ranged from 1.2-5.1 µmoles and 35-43 µmoles respectively, 

with means of 2.8 µmoles for oxic reactors and 40 µmoles for anoxic reactors (Table 2.3). 
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Figure 2.10. Aqueous Si:P ratios from the effluent of oxic and anoxic reactors, and aqueous Fe:P and Fe:Si ratios from the 

effluent of  anoxic reactors over the course of the experiment. Note the different scales on the y-axis. Si:P ratios are shown in 

relation to the Redfield-Brzezinski ratio of Si:P = 16:1 delineating P limitation (Si:P > 16:1) and Si limitation (Si:P < 16:1) of 

diatom growth (Redfield 1958; Brzezinski 1985). Fe:P ratios are shown in relation to the theoretical maximum stoichiometric 

molar ratio of P incorporation into ferric oxides of Fe:P = 2:1 (Thibault et al. 2009). 
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Table 2.3. Oxic and anoxic steady-state fluxes of dissolved Si (DSi), total dissolved P (TDP), and soluble reactive P (SRP) and 

total release of DSi and TDP over the experiment for each nutrient treatment and the mean of all oxic and all anoxic reactors. Due 

to the increased temperature at which anoxic reactors were incubated, estimated anoxic steady-state fluxes and total release at 

22°C were calculated using a Q10 of 2.06 for TDP and SRP and 2.27 for DSi (Kelton & Chow-Fraser 2005; Kamatani 1982). 

 

Element Nutrient 

Treatment 

Steady-state flux  

(µmol m
-2

 h
-1

) 

 Total release over 16 days 

(µmoles) 

  Oxic 

(22°C) 

Anoxic 

(30°C) 

Anoxic 

(22°C)* 

 Oxic  

(22°C) 

Anoxic 

(30°C) 

Anoxic 

(22°C)* 

DSi  Control 130 435 226  85 246 128 

 P addition 164 341 177  106 216 112 

 Si addition 124 347 180  84 248 129 

 P+Si addition 146 400 208  96 280 145 

 Mean 141 381 198  93 248 128 

         

TDP Control 2.0 78 44  1.3 39 22 

 P addition 5.6  66 37  3.7 35 20 

 Si addition 6.9 69 39  5.1 41 23 

 P+Si addition 1.9 80 45  1.2 43 24 

 Mean 4.1 73 41  2.8 40 22 

         

SRP Control 0.8 68 38     
 P addition 4.4 58 33     
 Si addition 6.0 57 32     

 P+Si addition 0.9 72 40     

 Mean 3.0 64 36     

 

 

2.3.6 Ascorbate leachable Fe, Mn, P and Si concentrations in surface 

sediments 

              Ascorbate leachable Fe, Mn, P, and Si concentrations from the top 1 cm of sediment are shown in Table 

2.4. Ascorbate leachable Fe concentrations were higher than ascorbate leachable Mn by approximately 17 times, 

indicating that reactive Fe phases are likely more important in Cootes’ Paradise sediment than reactive Mn phases 

(Table 2.4). Reactive Fe concentrations ranged from 62.53 to 83.49 µmoles g
-1

 dry sed. in oxic reactors and 63.09 to 

70.65 g
-1

 dry sed. in anoxic reactors (Table 2.4). Oxic and anoxic reactors had mean reactive Fe concentrations of 

70.04 and 66.70 µmoles g
-1

 dry sed. respectively (Table 2.4). Reactive Mn concentrations ranged between 3.05 and 

4.85 µmoles g
-1

 dry sed. in the oxic reactors and 4.37 and 5.72 µmoles g
-1

 dry sed. in the anoxic reactors, with mean 

concentrations of 3.99 µmoles g
-1

 dry sed. and 4.87 µmoles g
-1

 dry sed. for oxic and anoxic reactors respectively 

(Table 2.4). 

              Ascorbate leachable P concentrations from oxic reactors ranged from 12.22 to 23.40 µmoles g
-1

 dry sed. 

with the “control” reactor and the “P addition” reactors having the lowest and highest concentrations respectively 

(Table 2.4). The Fe:P ratios were similar for all reactors except were lower in the “P addition” reactor. Oxic reactors 

had a mean ascorbate leachable P concentration of 16.13 µmoles g
-1 

dry sed. (Table 2.4).  
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Table 2.4. Fe, Mn, P, and Si concentrations (µmoles g-1 dry sed.) and Si:P, Fe:P, and Fe:Si ratios of the ascorbate leachable 

fraction of the top 1 cm of sediment from nutrient treatments and the mean of all oxic and all anoxic reactors. 

 

Element Nutrient Addition Reactive Fe-bound fraction (µmoles g
-1

 dry sed.) 

Oxic Anoxic 

Fe Control 62.53 70.65 

 P addition 83.49 64.82 

 Si addition 65.02 63.09 

 P+Si addition 69.10 68.22 

 Mean 70.04 66.70 

    

Mn Control 4.10 4.99 

 P addition 3.94 4.37 

 Si addition 3.05 4.39 

 P+Si addition 4.85 5.72 

 Mean 3.99 4.87 

    

P Control 12.22 24.03 

 P addition 23.40 21.79 

 Si addition 13.70 19.96 

 P+Si addition 15.21 23.76 

 Mean 16.13 22.39 

    

Si  Control 12.53 17.79 

 P addition 13.05 20.48 

 Si addition 13.00 19.38 

 P+Si addition 13.90 21.07 

 Mean  13.12 19.68 

    

Si:P Control 1.03 0.74 

 P addition 0.56 0.94 

 Si addition 0.95 0.97 

 P+Si addition 0.91 0.89 

 Mean 0.86 0.88 

    

Fe:P Control 5.12 2.94 

 P addition 3.57 2.97 

 Si addition 4.75 3.16 

 P+Si addition 4.54 2.87 

 Mean 4.50 2.99 

    

Fe:Si Control 4.99 3.97 

 P addition 6.40 3.17 

 Si addition 5.00 3.26 

 P+Si addition 4.97 3.24 

 Mean 5.34 3.41 

 

 

              Anoxic reactors had ascorbate leachable P concentrations that ranged from19.96 to 24.03 µmoles g
-1

 dry 

sed., with a mean of 22.39 µmoles g
-1

 dry sed. and the “Si addition” and “control” having the lowest and highest 

concentrations (Table 2.4). Fe:P ratios were lower than in oxic reactors and were similar for all treatments (Table 

2.4).  
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              Oxic reactor ascorbate leachable Si concentrations ranged from 12.53 to 13.90 µmoles g
-1

 dry sed. with the 

“control” and “P+Si addition” reactors having the lowest and highest concentrations respectively (Table 2.4). 

However, all reactors except the “P addition” reactor had the similar Fe:Si ratios. The mean ascorbate leachable Si 

concentration for oxic reactors was 13.12 µmoles g
-1

 dry sed. (Table 2.4).  

              Anoxic reactor ascorbate leachable Si concentrations were higher and ranged from 17.79-21.07 µmoles g
-1

 

dry sed., with a mean of 19.68 µmoles g
-1

 dry sed., and the “control” and “P+Si addition” having the lowest and 

highest concentrations (Table 4). Fe:Si ratios were lower than in oxic reactors, and were similar for the “P addition”, 

“Si addition”, and “P+Si addition” reactors.  

              The Si:P ratio of ascorbate leachable fractions of oxic and anoxic reactors ranged between 0.56 and 1.03 for 

oxic reactors and 0.74 and 0.97 for anoxic reactors with mean Si:P ratios of 0.86 and 0.88 for oxic and anoxic 

reactors respectively (Table 2.4).  

2.4 Discussion 

2.4.1 Oxic and anoxic conditions at the sediment-water interface 

              Achievement of oxic conditions at the sediment-water interface in oxic reactors was demonstrated by the 

production of NO3
-
 and SO4

2-
, which requires oxygen. The low release of TDMn and TDFe at the experimental pH 

(7-8) indicates formation of insoluble Fe and Mn oxides and thus high redox potential (Figure 2.11). Fe and Mn both 

have soluble reduced forms and insoluble oxyhydroxides (Figure 2.11) (Davison 1993).  

              Achievement of anoxic conditions and decreasing redox potential at the sediment-water interface in anoxic 

reactors was demonstrated by the sequence of NO3
-
 and SO4

2- 
reduction followed by TDMn and TDFe release, 

indicating the utilization of alternative terminal electron acceptors after depletion of oxygen (Figure 2.12) (Froelich 

et al. 1979). SO4
2-

 was likely reduced to H2S (Holmer & Storkholm 2001), which is in agreement with the higher 

concentration of TDS compared to SO4
2-

 in the anoxic reactors. The release of TDMn and TDFe suggests the 

reductive dissolution of Fe and Mn oxides, such as Fe(OH)3, FeOOH, ferrihydrite, and MnO2 to reduced soluble 

forms of Fe and Mn (Figure 2.11). 

2.4.2 P release under oxic conditions 

              Cootes’ Paradise sediments were a net sink of P under oxic conditions. Oxic TDP and SRP steady-state 

fluxes were low and within the range previously reported for Cootes’ Paradise sediments (0.96 to 28.3 mg P m
-2

  

day
-1

 or 1.29 to 38.07 µmoles m
-2

 h
-1

) by Kelton & Chow-Fraser (2005). The “P addition” reactor retained 

approximately 67% (7.5 µmoles) of P in the influent solution, and the “P+Si addition” reactor approximately 90% 

(10.2 µmoles). This retention was likely through sorption to Fe(III) oxides. If we assume that all P retention 

occurred in the top cm of sediment, P retention in the “P addition” and “P+Si addition” reactors equates to 0.9 

µmoles P g
-1

 dry sed. and 1.4 µmoles P g
-1

 dry sed. respectively. The ascorbate extraction recovered 12-23 µmoles  

g
-1

 dry sed. reactive Fe-bound P (Table 2.4), and thus these concentrations would more than account for the amount  
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Figure. 2.11. Eh pH diagrams showing the speciation of Fe (top) and Mn (bottom) across a range of pH. Figures taken from 

Kappler & Straub (2005) Geomicrobiological cycling of iron. Reviews in Mineralogy and Geochemistry, 59(1):85-108; Freitas et 

al. (2013) Oxidative precipitation of manganese from acid mine drainage by potassium permanganate. Journal of Chemistry, 

2013:8. 
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Figure 2.12. Average of anoxic reactors concentrations of NO3
-, TDMn, TDFe, and SO4

2- effluent concentrations showing the 

sequence of utilization of terminal electron acceptors. 

 
of P retention observed. The solid phase Fe:P ratios ranged from 3.5-5 (Table 2.4). Considering the theoretical 

maximum molar ratio of phosphate incorporation in ferric oxides of Fe:P = 2:1 (Thibault et al. 2009), it seems 

reasonable that P retention was through sorption to reactive Fe(III) oxides as there was likely available sorption 

sites.  

2.4.3 Si release under oxic conditions 

              Cootes’ Paradise sediments were a net source of DSi under oxic conditions. Concentrations of 12-14 

µmoles g
-1

 dry sed. reactive Fe-bound Si were recovered in the ascorbate leachable fraction, with Fe:Si ratios 

ranging from 5-6.5 (Table 2.4). This suggests that there was some sorption of Si to reactive Fe(III) oxides but that 

this sorption was not great enough relative to the pore water concentration of DSi to cause net retention as in the 

case of P. It is unknown what the source of DSi release under oxic conditions was, but the dissolution of BSi seem  

probable due to its higher reactivity compared to mineral silicates (DeMaster 1981). The concentration of BSi in 

sediment collected near the sampling site in Cootes’ Paradise marsh was previously measured at approximately 142 

µmoles g
-1

 dry sediment, which equates to approximately 5000-6000 µmoles BSi per sediment core (Shuhuan Li, 

unpublished data). The total DSi released from oxic reactors over the experiment ranged from 84-106 µmoles, and 

therefore the supply of BSi in sediment was likely more than enough to account for this DSi release.  

2.4.4 P release under anoxic conditions 

              Cootes’ Paradise sediments were a net source of P under anoxic conditions.  Anoxic P fluxes were 

approximately 18 times that of oxic P fluxes (Table 2.3). It is unlikely that the increased P release was due solely to 
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the increased incubation temperature of anoxic reactors compared to the oxic reactors (Table 2.3). A Q10 of 2.06 was 

determined for anoxic P fluxes in Cootes’ Paradise sediments (Kelton & Chow-Fraser 2005), and as such an 

approximately 8°C higher incubation temperature cannot account for all of the 18 fold increase in P release under 

anoxic conditions (Table 2.3).  Thus, the source of P under anoxic conditions was likely release from reductive 

dissolution of reactive Fe(III) oxides. In anoxic reactors, TDP and SRP were released at the same time as TDFe, 

suggesting the same source (Figures 2.6 and 2.8). Ascorbate leachable reactive Fe concentrations were lower in the 

anoxic reactors (mean of 66.70 µmol g
-1

 dry sed.) compared to the oxic (mean of 70.04 µmol g
-1

 dry sed.) (Table 

2.4), suggesting dissolution of reactive Fe under anoxic conditions. Again, considering the theoretical maximal Fe:P 

ratio of 2:1 (Thibault et al. 2009), the dissolution of approximately 3 µmol g
-1

 dry sed. of reactive Fe, which equates 

to approximately 20 µmol reactive Fe in the top cm of sediment, could have released approximately 10 µmoles P 

from the top cm of sediment. The anoxic reactors released a total of 35-43 µmoles P during the experiment (Table 

2.3). Therefore about 25% of total released P could have been release from reductive dissolution of Fe(III) oxides in 

the top cm of sediment. The remaining P release could have been from reductive dissolution of Fe(III) oxides below 

the top cm of sediment formed during the time the reactors were exposed to oxygen prior to the start of the 

experiment (approximately 10 days). As well, P could have been released from other pools in the sediment such as 

the loosely sorbed P pool.  

              While there appeared to be concurrent release of P and Fe, aqueous Fe:P ratios in the effluent from anoxic 

reactors were not consistent but changed over the course of the experiment (Figure 2.10). Additionally, except for 

the “P+Si addition” reactor, aqueous Fe:P ratios were below the stoichiometric maximal Fe:P release of 2:1 (Figure 

2.10).  This may be explained the reduction of Fe(III) by H2S produced through reduction of SO4
2-

, which produces 

Fe(II) and molecular S that can react to form FeS (Boström et al. 1988). Formation of FeS would remove both Fe
2+

 

and S from pore water, leading to decreased TDFe concentrations and Fe:P ratios in the effluent. Precipitation of 

FeS would also explain the low TDS concentrations relative to the influent SO4
2-

 concentration and thus potentially 

account for the missing sink of S (Figure 2.7). Low aqueous Fe:P ratios relative to the theoretical maximum were 

also found by Parsons et al. (2017) using Cootes’ Paradise sediments, and formation of FeS was suggested as a 

potential reason for Fe
2+

 removal. 

              The concentration of Fe in the ascorbate leachable fraction in anoxic reactors decreased relative to the oxic, 

but a considerable concentration of reactive Fe was still extracted, and was therefore apparently undissolved, at the 

end of the experiment (Table 2.4). This is consistent with the observation of a thin lighter layer at the top of the 

anoxic sediments, indicative of ferric iron. The concentration of reactive Fe-bound P increased in anoxic reactors 

relative to oxic and this may have been due to resorption of P released deeper in the sediment core to as yet 

undissolved Fe(III) oxide minerals near the surface. 

              Retention and release of P from Fe(III) oxides is consistent with previous studies, which have found that 

Cootes’ Paradise sediments contain substantial concentrations of Fe (313.69 µmol g
-1

 dry sed.) (Chris Parsons’ 

unpublished data) and P (57 ± 4 µmol g
-1

 dry sed.), and approximately 24% of the total sediment P is Fe-bound (Na 

dithionite-extractable) (Parsons et al. 2017). In an experiment where Cootes’ Paradise sediment was subjected to 

oscillating oxic and anoxic periods, the Fe-bound P pool was found to increase during oxic and decrease during 
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anoxic periods, and aqueous P concentrations to decrease during oxic and increase during anoxic periods, strongly 

suggesting retention and release of aqueous P by Fe oxide minerals (Parsons et al. 2017). The high concentrations of 

Fe recovered in the ascorbate leachable fractions from surface sediments suggests that Cootes’ Paradise has a high 

capacity to both retain and release P (Table 2.4). 

2.4.5 Si release under anoxic conditions 

              Sediments were a net source of DSi to the overlying water under oxic conditions, with anoxic Si fluxes 

being approximately 2.7 times that of oxic fluxes (Table 2.3). However, the increased temperature at which anoxic 

reactors were incubated may have contributed to the majority of the increased Si release under anoxic conditions. 

Assuming the source of DSi under oxic conditions was BSi predominantly in the form of diatoms, the 8°C higher 

incubation temperature of anoxic reactors probably increased BSi dissolution, which has been found to increase by a 

factor of 2.27 for each 10°C increase in temperature (Kamatani 1982). Using this Q10 relationship, estimated anoxic 

fluxes at 22°C were on average approximately 1.4 times, as opposed to 2.7 times, higher than oxic fluxes (Table 

2.3). This suggests that approximately 60% of the DSi release from anoxic reactors may have been due to the effect 

of temperature alone. 

              The remaining DSi release under anoxic conditions may have been from reductive dissolution of Fe(III) 

oxides. Similar to P, there was concurrent release of DSi and TDFe from anoxic reactors and aqueous Fe:Si ratios 

showed a similar pattern to Fe:P ratios (Figures 2.6 and 2.9). However, aqueous Fe:Si ratios were about an order of 

magnitude lower (0.01-0.25) than Fe:P ratios (0.1-3.9) (Figure 2.10). These low Fe:Si ratios suggest that release of 

Si through reductive dissolution of reactive Fe(III) oxides was likely not the dominant source of Si under anoxic 

conditions. This somewhat agrees with sediment sequential extractions performed on sediments from other parts of 

the world where redox sensitive Si pools were smaller than BSi (Tallberg et al 2008, Tallberg et al 2012). In the 

Gulf of Finland, the labile and potentially reactive oxide-bound or adsorbed Si was estimated to be between 4 and 16 

µmol g
-1

 dry sed. while the BSi was found to be 99 µmol g
-1

 dry sed. (Tallberg et al. 2008). Similarly, in the Bay of 

Brest BSi was found to be the largest potentially bioavailable Si pool (Tallberg et al. 2012). However, there is a lack 

of data on Si speciation in sediments for freshwater marsh environments. 

              Similar to P, reactive Fe-bound Si concentrations in anoxic reactors were higher than oxic, and could be due 

to the same reason i.e. resorption of DSi released to pore water deeper in the sediment to undissolved Fe(III) oxides 

near the surface (Table 2.4).  

              The relative contribution of temperature and redox to increased anoxic fluxes cannot be explicitly 

determined here and temperature controlled experiments are needed to confirm the effect of anoxia on DSi release. 

As well, the source of DSi under oxic and anoxic conditions cannot be confirmed. However, these results highlight 

the potential for substantial (40%) increase in DSi release from sediments under anoxic conditions, some of which 

may be due the reductive dissolution of Fe(III) oxides.  
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2.4.6 Competition between Si and P for sorption sites 

              The fluxes of DSi, TDP, and SRP between nutrient treatments did not give any clear evidence of the 

influence of Si and P on each nutrient’s release. However, Si:P ratios slightly lower than 1, and lower Fe:P ratios 

compared to Fe:Si ratios in the ascorbate leachable fraction from oxic reactors indicate that P was preferentially 

sorbed to Fe(III) oxides over Si (Table 2.4). This resulted in the ability of P to decrease Si sorption but not the 

ability for Si to decrease P sorption. This is consistent with the fact that the additions of Si in the “Si addition” and 

“P+Si addition” treatments had little effect on the Fe:P ratio relative to the control, but that the addition of P in the 

“P addition” treatment decreased the Fe:P ratio to 3.5 and increased the Fe:Si ratio to 6.4 indicating that there was 

higher P sorption at the expense of Si (Table 2.4).  

              The ability of Si to compete with P for sorption sites changes with pH due to the pKa values of phosphoric 

and silicic acid and the charge on the Fe oxide mineral surface (Figure 2.13, Hartikainen et al. 1996; Brinkman 

1993). Between pH 2 and 7, phosphate is predominantly in the form of H2PO4
-
, silicate is predominantly in the form 

of H4SiO4, and, using hematite as an example, the charge on the surface of the Fe oxide mineral is positive (Figure 

2.13, Brinkman 1993). In this pH range, P is preferentially sorbed due to stronger attraction between the -1 charge 

on the phosphate and the positively charged mineral surface than the 0 charge on the silicate (Brinkman 1993). 

Between pH 7 and 12, phosphate and silicate dissociate to HPO4
2-

 and H3SiO4
-
 and the charge on the surface of 

hematite decreases (Figure 2.13, Brinkman 1993). The negative charge on the silicate ion improves adsorption to the 

Fe oxide surface, enabling Si to more effectively compete with P for sorption sites (Brinkman 1993). At pH greater 

than 12, phosphate and silicate dissociate to PO4
3-

 and H2SiO4
2-

 and the charge on the surface of hematite becomes 

negative (Figure 2.13, Brinkman 1993). Consequently, there is repulsion between phosphate and the mineral surface, 

and Si is preferentially sorbed (Brinkman 1993).  

              The ability of Si to compete with P for sorption sites is also influenced by Si concentration, with high Si 

concentrations having as great an effect on P desorption as increased pH (Koski-Vähälä et al. 2001). Koski-Vähälä 

et al. (2001) noted that there may be a threshold concentration of Si needed to get any effect on P sorption. 

However, Tallberg et al. (2008) found that pore water dissolved P concentrations increased even with relatively 

small additions of Si (1-2 mmol L
-1 

sediment), but the effect increased with increasing Si concentrations. So, this 

threshold Si concentration may be different between sediments. Therefore, the inability of Si to influence P sorption 

in the experiment may have been due to the pH and the pore water concentrations of Si being too low for this to 

occur.  

              As well, the act of flowing solution containing Si through the sediment cores as opposed to adding Si in a 

pulse may have also resulted in different effects than were observed in other experiments (Koski-Vähälä et al. 2001; 

Tallberg et al. 2008). Pulse additions may be more representative of the effects of a large diatom bloom, while slow 

flow of Si may be more representative typical conditions in areas of upwelling of Si-rich groundwater. Therefore, 

the influence of Si on P sorption may only become important in more extreme events such as the deposition of a 

large diatom bloom, whereas there may be no or less of an effect under typical “everyday” conditions.  
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Figure 2.13. Speciation of phosphoric (top) and silicic acid (middle) and the charge density on the surface of hematite (bottom) 

across a range of pH. Phosphoric acid has pKa’s at 7.1 and 12.7, and silicic acid has pKa’s at 9.7 and 13.2. Speciation diagrams 

were made using PHREEQC and PHREEPLOT and the included thermodynamic database (Parkhurst and Appelo 1999; 

Kinniburgh and Cooper 2011). Bottom figure taken from Brinkman (1993) A double-layer model for ion adsorption onto metal 

oxides, applied to experimental data and to natural sediments of Lake Veluwe, the Netherlands. Hydrbiologia, 253:31-45. 
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2.4.7 Implication of internal loading of Si and P on water column Si:P ratio 

              Steady-state fluxes of TDP and SRP increased by approximately 18 times while Si increased by 2.7 times 

under anoxic conditions (Table 2.3). Thus, P fluxes increased more than Si fluxes under anoxic conditions. This 

resulted in a large decrease in the Si:TDP ratio of the effluent from well above 16:1 under oxic conditions to below 

16:1 under anoxic conditions (Figure 2.10). The Si:P ratio of 16:1 represents the delineation between P limited and 

Si limited diatom growth based on the nutrient content of marine diatoms under non-nutrient limiting conditions 

(Redfield 1958; Brzezinski 1985). Si limited diatom growth (Si:P < 16:1) may promote the growth and dominance 

of non-siliceous phytoplankton such as flagellates or cyanobacteria, which can alter food web dynamics and may 

exacerbate the effects of eutrophication (Egge & Aksnes 1992; Peterson Holm & Armstrong 1981; Sommer & 

Stabel 1983; Sommer 1994; Moss et al. 1991; Officer & Ryther 1980; Sommer et al. 2002). If internal loading is a 

substantial source of nutrients relative to external nutrient loads, the Si:P ratio of sediment release may have 

implications for phytoplankton community composition through promoting either P limited or Si limited growth. 

Our results indicate that anoxic conditions at the sediment-water interface may release proportionally more P than Si 

and in turn may promote the growth of non-siliceous phytoplankton (Sommer et al. 2002; Sommer 1983; Sommer 

1985; Peterson Holm & Armstrong 1981). Anoxic conditions could arise from a large phytoplankton bloom settling 

to the sediments due to depletion of oxygen through mineralization of organic matter by aerobic respiration 

(Froelich et al. 1979). Therefore, avoiding oxygen depletion in shallow eutrophic lakes where a significant portion 

of sediment P is associated with redox sensitive phase may be critical to remediation. 

2.5 Conclusion 

              Cootes’ Paradise sediment was a net sink of P and a net source of Si under oxic conditions, and a net source 

of both P and Si under anoxic conditions. Sediments retained 67-90% of influent P, which was likely through 

sorption to Fe(III) oxides. Fe:P ratios of the ascorbate leachable fraction were high relative to the theoretical 

maximum ratio of incorporation of P in ferric oxides indicating availability of sorption sites . The likely source of 

DSi under oxic conditions was dissolution of BSi. Recovery of Si in the ascorbate leachable fraction suggests that 

sorption of Si with Fe(III) oxides may have slightly reduced oxic DSi fluxes from the sediment. After accounting for 

the likely effects of temperature, anoxic TDP and DSi fluxes were approximately 8 times and 1.4 times larger than 

oxic fluxes respectively. Therefore, anoxic conditions had a disproportionate effect on P and Si release, with P 

release increasing substantially more than Si release. The reductive dissolution of Fe(III) oxide minerals and release 

of sorbed  P and Si was likely responsible for the difference between oxic and anoxic fluxes.  

              Ratios of Si:P, Fe:P, and Fe:Si indicated preferential sorption of P over Si to Fe(III) oxides in the surficial 

sediment. This indicates that competition between P and Si for sorption sites resulted in P being the superior 

competitor, which had the effect of decreasing Si sorption and possibly increasing DSi fluxes from sediment. The 

inability of Si to outcompete P for sorption sites was likely related to the experimental pH and Si concentrations 

being too low to have an effect. 
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              These results show that there may a significant effect of anoxia on sediment Si release, potentially 

increasing Si release by up to 40%. However, due to the disproportionate increase in P over Si under anoxic 

condtions, Si:TDP ratios of sediment release decreased from well above the 16:1 Redfield-Brzezinski ratio under 

oxic conditions to around 5-6 under anoxic conditions. Thus anoxic conditions at the sediment-water interface may 

promote the growth of non-siliceous phytoplankton through delivering a Si limited flux to the water column. 
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Chapter 3 

 
Nutrient silicon cycling and limitation at the land-large 

lake interface: Case study of Hamilton Harbour (Ontario, 

Canada) 
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3.1 Introduction 

The freshwater biogeochemical silicon (Si) cycle has historically been relatively understudied compared to 

those of the macronutrient elements phosphorus (P) and nitrogen (N). However, in recent years, it has been gaining 

increasing attention as an important link between the terrestrial and oceanic Si cycles (Street-Perrott and Barker 

2009; Frings et al. 2014). Ortho-silicic acid (H4SiO4), the most bioavailable form of Si, is produced through 

chemical weathering of silicate minerals in the earth’s crust (Harriss 1966). Silicon is an essential nutrient for many 

terrestrial and aquatic plants, including diatom algae, which are important primary producers in rivers, lakes, and 

oceans (Willen 1991; Treguer et al. 1995). Dissolved Si (DSi) assimilated by plants is precipitated as biogenic silica 

(BSi), a hydrated amorphous form of silica (Epstein 1994). Lakes and reservoirs are areas where significant amounts 

of nutrient Si are retained as a result of uptake by diatoms and other plants, followed by deposition and storage of 

BSi in sediments, thereby decreasing DSi export from land to the ocean (Frings et al. 2014; Harrison et al. 2012). 

Globally, it has been estimated that artificial reservoirs retain approximately 3% of DSi and 5.3% of the total 

reactive Si loading to rivers (Maavara et al., 2014), and up to 27% of the river DSi fluxes when lakes and reservoirs 

are combined (Frings et al. 2014).  

Anthropogenic enrichment of rivers and lakes with P and N can enhance Si retention by relieving P or N 

limitation of the growth of siliceous algae resulting in increased production of BSi, ultimately leading to Si 

limitation in the downstream coastal area (Conley et al., 1993; Garnier et al., 2002; Garnier et al., 2010; Schelske 

and Stoermer, 1972; Seitzinger et al., 2010). Silicon limiting conditions favour the growth of non-siliceous 

phytoplankton, including flagellates and cyanobacteria, which can become dominant members of the plankton 

community (Egge & Aksnes, 1992; Peterson Holm and Armstrong, 1981; Sommer, 1983, 1994). A shift in the 

plankton community composition to non-siliceous algae can alter food quality and energy transfer to higher trophic 

levels with potentially negative implications for zooplankton and fish (Moss et al., 1991; Officer and Ryther, 1980; 

Sommer et al., 2002).  Changing nutrient ratios, including a shift toward enhanced Si limitation, associated with 

anthropogenic eutrophication of freshwater and marine aquatic ecosystems are receiving increasing attention 

(Conley and Malone 1992; Danielsson et al. 2008; Glibert et al. 1995; Humborg et al. 2000; Justic et al. 1995; Justic 

et al. 1995; Li et al. 2007; Rocha et al. 2002; Turner et al. 1998; Viaroli et al. 2013; Maavara et al. 2015). However, 

despite the significant ecological consequences of Si limitation and the important influence of lakes and reservoirs 

on the riverine fluxes of reactive Si, relatively few studies have investigated how coastal freshwater ecosystems 

affect the exchanges of reactive Si at the land-large lake interface 

This study aimed to enhance the quantitative understanding of Si limitation and reactive Si cycling in 

Hamilton Harbour, Ontario, Canada. Hamilton Harbour is a highly urbanized and human-impacted coastal 

freshwater ecosystem and is representative of what the future may hold for many other coastal urban centers. 

Hamilton Harbour is located along Lake Ontario, one of the lower Laurentian Great Lakes, and represents a 

transitional environment along the land-river-lake continuum. Continued loading of P and N from anthropogenic 

activities in the watershed of Hamilton Harbour and the relatively low representation of diatoms in the 

phytoplankton community suggest that Si may be limiting for diatom growth (Dermott et al. 2007; Munawar et al. 
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2017). Silicon limitation could in turn be contributing factor to the recurrence of harmful algal blooms in Hamilton 

Harbour (Hiriart-Baer et al. 2009). 

The following hypotheses guided our work. 1) Hamilton Harbour is a net sink of reactive Si due to 

biological uptake of DSi and subsequent deposition and accumulation of BSi in sediments. 2) Diatom growth in 

Hamilton Harbour is Si limited due to high demand of DSi under the prevailing eutrophic conditions. To test these 

hypotheses, a mass balance model of DSi and reactive particulate Si (RPSi) for Hamilton Harbour was constructed. 

This involved identifying and quantifying reactive Si inflows and outflows, and internal Si cycling processes 

through field sampling, laboratory incubation experiments, and published literature. To determine if Si was 

stoichiometrically limiting to diatom growth, water samples from Hamilton Harbour were collected and analysed for 

DSi and total dissolved P (TDP) and molar dissolved Si:P ratios calculated across the spring, summer and fall of 

2016. 

3.2 Methods 

3.2.1 Study site 

Hamilton Harbour (Ontario, Canada, 43°17'17.3"N 79°50'03.7"W) is a 21.5 km
2 
embayment at the western 

end of Lake Ontario (Figure 3.1) that is heavily impacted by anthropogenic activity (Barica 1989). Hamilton 

Harbour has mean and maximum depths of 13 m and 23 m, respectively. The cities of Burlington and Hamilton 

border the north and south shores of the harbour, which are inhabited by approximately 747,000 people (Statistics 

Canada 2017). Major sources of nutrients to Hamilton Harbour are three tributaries that drain urban and agricultural 

land (Long et al., 2014), a channel connecting Hamilton Harbour to Cootes’ Paradise Marsh, a highly eutrophic 

coastal wetland (Chow-Fraser et al. 1998), plus direct effluent discharges from two wastewater treatment plants 

(WWTPs) and 18 combined sewer overflows (CSOs). Water from the harbour is also used to cool a large steel mill 

on the southern shore. Hamilton Harbour is connected to Lake Ontario by the man made Burlington Ship Canal 

(BSC) (820 m long, 88 m wide, 9.5 m deep), which creates a complex two-way hydraulic exchange between 

Hamilton Harbour and Lake Ontario driven by differences in water level (year round) and density (during summer 

stratification) (Ling et al. 1993; Barica 1989; Klapwijk and Snodgrass 1985).  

Hamilton Harbour and the adjoining Cootes’ Paradise Marsh were designated as one of 43 Great Lakes 

Areas of Concern by the International Joint Commission in 1987 due to severely degraded water quality and 

environmental health (International Joint Commission United States and Canada 1987; Hiriart-Baer et al. 2009; 

Hiriart-Baer et al. 2016). A Remedial Action Plan was established to protect environmental quality and restore the 

impaired beneficial uses including those resulting from “eutrophication or undesirable algae” (Hiriart-Baer et al. 

2016). Nutrient abatement strategies have focused primarily on reducing P and N loads and have led to some 

improvements in water quality (Hiriart-Baer et al. 2016). However, algal blooms, including those of cyanobacteria, 

continue to be a problem (Hiriart-Baer et al. 2009; Munawar et al. 2017).  
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Figure 3.1. Map of Hamilton Harbour, Ontario, Canada with the locations that water, suspended sediment, and sediment cores 

were collected throughout 2015 and 2016 as well as the locations of monitoring data stations from which data was used. 

 

3.2.2 Water budget 

              Hamilton Harbour’s water budget was calculated according to Equation 3.1 assuming that inflows and 

outflows balance each other on a monthly time scale. Water inflows considered in the budget are discharge from the 

three tributaries (T), the channel connecting Cootes’ Paradise Marsh to Hamilton Harbour (CP), the two WWTPs 

(WWTP), the 18 CSOs (CSO), the steel mill (SMD), plus precipitation (P), groundwater discharge (G), and inflow 

from Lake Ontario (LO). Water outflows included evaporation (E), steel mill intake (SMI), and outflow from 

Hamilton Harbour to Lake Ontario (HH):  

 

𝑇 +  𝐶𝑃 +  𝑊𝑊𝑇𝑃 +  𝐶𝑆𝑂 +  𝑆𝑀𝐷 + 𝑃 +   𝐺 + 𝐿𝑂 =  𝐸 + 𝑆𝑀𝐼 + 𝐻𝐻      Eq. 3.1 

 

Sources of information used to calculate the water budget are described in Table 3.1. Outflow from Hamilton 

Harbour to Lake Ontario was calculated as the residual term in Equation 3.1. Precipitation and evaporation data  

1 

2 

3 

4 
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Table 3.1. Sources of discharge data used to constrain the hydrologic budget. WWTP = wastewater treatment plants, CSOs = 

combined sewer overflows. 

Water Source Data Source/Reference Temporal Resolution 

Grindstone Cr. WSC Hydrometric St. 02HB012 1998-2015 daily mean discharge 

   

Redhill Cr. WSC Hydrometric St. 02HA014 1998-2015 daily mean discharge 

   

Indian Cr. WSC Hydrometric St. 02HA014; Long et al 

(2014) 

1998-2015 daily mean discharge 

Cootes’ Paradise WSC Hydrometric St. 02HB007; Long et al 

(2014) 

1998-2015 daily mean discharge 

WWTPs  Region of Halton, City of Hamilton 1998-2015 monthly mean discharge 

   

CSOs City of Hamilton 2015 annual discharge 

   

Steel Mill ArcelorMittal-Dofasco Steel Mill 2014-2016 monthly mean daily 

discharge 

Precipitation 1981-2010 Canadian Climate Normals, 

Hamilton Royal Botanical Gardens Weather St. 

1981-2010 monthly mean 

Evaporation 1981-2010 Canadian Climate Normals, 

Hamilton Royal Botanical Gardens Weather St. 

1981-2010 monthly mean daily  

Groundwater Harvey et al. (2000) 1997 annual discharge 

   

Lake Ontario Hamblin & He (2003) Unstratified (Feb. 1989) and stratified 

(July 1996) exchange estimates 

Hamilton Harbour  Mass balance Monthly  

 

 

collected by a weather station located at the western end of Hamilton Harbour (Figure 3.1) were extrapolated to the 

entire surface area of Hamilton Harbour.  

3.2.3 Sampling and analytical methods 

A regular field sampling program was undertaken between April and November 2016; it involved 

collection of water, suspended sediment, and bottom sediment samples from multiple sites and depths across 

Hamilton Harbour, as well as water samples from the two WWTPs, the steel mill intake and surface water discharge 

points and the CSOs (Figure 3.1, Table 3.2). Water samples from Hamilton Harbour were collected on a bi-weekly 

basis at 1 m below the surface (epilimnion) and 1 m above the sediment-water interface (hypolimnion) using Niskin 

bottles (General Oceanics). Suspended sediments were collected on a monthly basis with sediment traps based on 

the design of Marvin et al. (2004). Sediment cores were collected using box corers. Details of sample collection 

from other sites and other sources of reactive Si data are described in Table 3.2.  

All water samples were collected in 1 L amber high-density polyethylene bottles and refrigerated at 4°C in 

the dark until analysis. Approximately 30 mL of the 1 L sample was filtered through 0.45 µm pore size 

polypropylene syringe filters for analysis of total dissolved Si (DSi), total dissolved P (TDP) and soluble reactive Si 

(SRSi). Samples for analysis of DSi and TDP were acidified with 2% nitric acid and analysed using Inductively 
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Table 3.2. Sources of reactive silicon concentration data for external sources and sinks used in mass balance model. Dissolved 

silicon (DSi), reactive particulate silicon (RPSi), and total reactive silicon (TRSi) = DSi + RPSi, PGMN = Provincial 

Groundwater Monitoring Network, GLSP = Great Lakes Surveillance Program, WSC = Water Survey of Canada 

 

Source Data Reference Reactive Si 

Measured 

Temporal Resolution 

Grindstone Cr. Unpublished data from 

Long et al. (2014) 

TRSi 87 24-hr level weighted samples from baseflow 

and storm/melt events  Jul. 2010 – May 2012 

    

Redhill Cr. Unpublished data from 

Long et al. (2014) 

TRSi 87 24-hr level weighted samples from baseflow 

and storm/melt events  Jul. 2010 – May 2012 

    

Indian Cr. Unpublished data from 

Long et al. (2014) 

TRSi 87 24-hr level weighted samples from baseflow 

and storm/melt events  Jul. 2010 – May 2012 

    

Cootes’ Paradise Unpublished data from 

Long et al. (2014) 

TRSi 87 24-hr level weighted samples from baseflow 

and storm/melt events  Jul. 2010 – May 2012 

    

WWTP  Sample collection (this 

study) 

DSi, RPSi Weekly 24-hr composite (WWTP 1), monthly grab 

samples (WWTP 2) Nov. 2015 – Nov. 2016 

    

CSO Sample collection (this 

study) 

DSi 9 grab samples, Mar. – Oct. 2016 

    

Steel Mill Sample collection (this 

study) 

DSi, RPSi Weekly 24-hr composite samples Nov. 2015 – 

Nov. 2016 

    

Precipitation Chan & Kuntz (1982), 

bulk precipitation 

TRSi Monthly averaged over 1975-1978 

(uncontaminated) 

    

Groundwater PGMN wells 

W0000002-1 and 

W0000338-1 

DSi Annual or bi-annual water samples 2003-2013 

    

Lake Ontario GLSP PSN 1 and 

Fisheries and Oceans 

DSi Biweekly, monthly, or annual grab samples 

spanning 2006-2016 

    

Hamilton Harbour  Sample collection (this 

study) 

DSi, RPSi Biweekly grab samples Apr. – Nov. 2016 

 

 

Coupled Plasma-Optical Emission Spectrophotometry (ICP-OES, Thermo Scientific iCAP 6300) with detection 

limits of 0.05 µmol Si L
-1

 and 0.1 µmol P L
-1

, quantification limits of 0.15 µmol Si L
-1

 and 0.35 µmol P L
-1

, and 

precision better than 15% for both Si and P (low concentrations). SRSi was measured by the molybdenum blue 

method (Environmental Protection Agency 1978) on a UV-Visible Spectrophotometer (Thermo Evolution 260) with 

a detection limit of 0.6 µmol Si L
-1

, a quantification limit of 1.8 µmol Si L
-1

, and precision better than 10%.  

The remaining volume of each water sample was vacuum filtered and suspended particulate matter 

collected on 0.45 µm pore size nylon membrane filters (Whatman 47 mm type WNYL).  Filters were air dried and 

particulate matter (approximately 5-25 mg) extracted for RPSi by placing filters in 100 mL of 0.5 M NaOH for 3 

hours in a water bath at 85°C following a modified alkaline extraction method (DeMaster, 1981; Koning et al., 
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1997; Koning et al., 2002). One mL of extractant was subsampled every 30 min, filtered through 0.45 µm pore size 

nylon membrane syringe filters, acidified to 2% nitric acid and measured for DSi by ICP-OES. Freeze-dried and 

lightly ground suspended sediments and bottom sediments were extracted for RPSi following the same method. The 

y-intercept of the regression line of DSi concentration versus time then yielded the RPSi content of the sample. To 

calculate RPSi concentrations, the RPSi content (as wt% Si) was multiplied by the total suspended solid matter 

density (TSS), which was calculated as the mass of suspended particulate matter collected per volume filtered. To 

evaluate the extraction efficiency, material used in an inter-laboratory comparison of BSi extraction techniques was 

extracted and measured Si contents (as wt% SiO2) were within one standard deviation of  reported values (Conley, 

1998). The extracted RPSi includes BSi, silicate ions loosely bound to organic and inorganic particulate matter, and 

additional amorphous and poorly crystalline silicate mineral phases (Conley, 1998; Tallberg et al., 2009).  

3.2.4 Sediment core incubations 

Sediment core incubation experiments were carried out in order to estimate the internal loading fluxes of 

DSi from sediments to the water column. Sediment cores were collected in July and October 2016 from multiple 

sites across Hamilton Harbour (Figure 3.1) using a box corer. The sediments were subsampled onboard by inserting 

plastic core tubes (7.5 cm in diameter, 60 cm long) into the box corer. Bottom water was also collected at each site 

at 1 m above the sediment-water interface using Niskin bottles (General Oceanics). Incubation experiments began 

within 24 hours of sediment core collection using a similar setup as Beutel (2006) and Cowan and Boynton (1996) 

(Figure 3.2). Bottom water was carefully poured into the core tubes to create an overlying water column of 

approximately 1 – 1.2 L in volume (Figure 3.2). The effects of bottom water oxygenation and temperature on the 

internal loading DSi flux were tested in two separate incubation experiments. In the first, sediment cores were 

incubated at 22±2°C while the overlying water column was bubbled with either air or N2 gas. In the second, 

sediment cores were incubated at a range of temperatures (3°C, 16°C, 19°C, and 22°C) while the water column was 

bubbled with air (Figure 3.2). In both experiments, sediment cores were incubated for approximately 72 hours. The 

overlying water was sampled 2-4 times per day through ports installed in the top cap of the core tubes and analysed 

for DSi and SRSi (see analytical methods above) (Figure 3.2). After completion of the incubation experiments 

sediment cores were frozen and sectioned into 1 or 2 cm intervals for RPSi extraction.  

3.2.5 Reactive Si budget 

The conceptual model of the reactive Si cycle in Hamilton Harbour is shown in Figure 3.3. Hamilton 

Harbour was divided into 4 reactive Si reservoirs: 1) water column DSi, 2) water column RPSi, 3) sediment DSi, 

and 4) sediment RPSi (Figure 3.3). The temporal resolution of the model was one month. On this monthly time 

scale, the water column was assumed to be well mixed and spatially homogenous.  The fluxes affecting the reactive 

Si reservoirs are then: 1) exchange fluxes with land-based sources and sinks, which include the tributaries, Cootes’  
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Figure 3.2. Sediment core design and experimental set-up during the sediment incubation experiments.  Sediment cores were 

capped at the top and bottom and contained 25-30 cm of intact sediment overlain by water collected from 1 m above the 

sediment-water interface (A). Sediment columns were bubbled with gas to mix the water column and keep it oxygenated or 

deoxygenated as desired (B). Samples of the water column were taken through ports in the top cap throughout the incubation 

period (B).   

 

 

 Paradise, WWTPs, CSOs, steel mill (intake and discharge), precipitation and groundwater, 2) internal Si cycling 

fluxes, which include uptake and dissolution in the water column, sedimentation, resuspension, and internal loading, 

and 3) exchange fluxes with Lake Ontario, that is, inflow from the lake and outflow from Hamilton Harbour.   

The DSi and RPSi mass balances were calculated on a monthly basis from May to November 2016 

according to Equations 3.2 and 3.3, where ∆MDSi and ∆MRPSi are the monthly change in mass of DSi and RPSi in the 

water column, respectively, and the F terms correspond to the numbered fluxes in Figure 3.3:  

 

∆𝑀𝐷𝑆𝑖 =  𝐹1 +  𝐹2 + 𝐹3 +  𝐹4 +  𝐹5 +  𝐹6 + 𝐹7 + 𝐹16 +  𝐹19 −  𝐹13 − 𝐹19                                                     Eq. 3.2 

∆𝑀𝑅𝑃𝑆𝑖 = 𝐹8 + 𝐹9 +  𝐹10 + 𝐹11 +  𝐹12 + 𝐹13 +  𝐹15 + 𝐹20 −  𝐹14 − 𝐹21                                                         Eq. 3.3 

 

A                                                      B
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Figure 3.3. Conceptual model of reactive silicon cycling in Hamilton Harbour. Boxes represent reservoirs and arrows fluxes of 

reactive Si to and from reservoirs. DSi = dissolved Si, RPSi = reactive particulate Si, T = tributaries, CP = Cootes’ Paradise 

marsh, WWTP = wastewater treatment plants, CSO = combined sewer overflows, Net SM = net steel mill flux (intake – 

discharge), P = precipitation, G = groundwater, L. Ontario = Lake Ontario, H. Harbour = Hamilton Harbour.  

 

Monthly mean watershed (F1 to F12) and harbour-lake exchange (F18 to F21) fluxes of DSi and RPSi (expressed in 

units of moles day
-1

) were calculated by multiplying monthly mean concentrations of DSi or RPSi (moles m
-3

) by 

monthly mean water flows (m
3
 day

-1
) from each source. Mean fluxes for the entire May to November period were 

calculated by summing all monthly fluxes and dividing by 214 days. 

Total reactive Si concentrations from the 3 tributaries, and outflow from Cootes’ Paradise Marsh were 

measured on water samples collected from storm or melt events and baseflow conditions between July 2010 and 

May 2012 (Long et al., 2014 unpublished data). For tributaries and Cootes’ Paradise, monthly mean total reactive Si 

concentrations were calculated according to Equation 3.4 where Cmonthly avg is the monthly average concentration of 
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total reactive Si; Cstorm,melt and Cbaseflow are the average concentrations of total reactive Si in samples collected during 

storm/melt events and baseflow in each month respectively; events is the number of days per month on which a 

storm/melt event occurred; baseflow is the number of days in the given month that no storm/melt event occurred and 

as such was assumed to be baseflow conditions: 

  𝐶𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑎𝑣𝑔 = (
𝐶𝑠𝑡𝑜𝑟𝑚,𝑚𝑒𝑙𝑡∗𝑒𝑣𝑒𝑛𝑡𝑠

𝑑𝑎𝑦𝑠 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ
) +  (

𝐶𝑏𝑎𝑠𝑒𝑓𝑙𝑜𝑤∗𝑏𝑎𝑠𝑒𝑓𝑙𝑜𝑤

𝑑𝑎𝑦𝑠 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ
)       Eq. 3.4 

In order to separate total reactive Si into DSi and RPSi, DSi was assumed to be 84% and RPSi 16% of the 

monthly total reactive silicates concentration according to the global average for rivers (Conley 1997).  

For other sources, RPSi concentrations were calculated according to Equation 3.5, where TSS is the total 

suspended solids, wt%RPSi is the proportion of RPSi in suspended matter determined by the RPSi extraction, and 

28.085 is the molar weight of Si (g): 

𝐶𝑅𝑃𝑆𝑖 =
𝑇𝑆𝑆∗𝑤𝑡%𝑅𝑃𝑆𝑖

28.085
                                                                                                                                               Eq. 3.5 

For sources where water samples were collected and analysed for RPSi, TSS was calculated from the weight (g) of 

suspended matter collected on the filter divided by the volume of water filtered (m
3
). TSS concentrations for Lake 

Ontario were obtained from Ling et al., (1993), and TSS for CSO from the Hamilton Harbour RAP Technical Team 

(2010). Lake Ontario RPSi concentrations were not available and as such were calculated assuming 5% of TSS by 

weight was RPSi based on the average percent weight RPSi measured in Hamilton Harbour water samples. Limited 

sample volumes from CSOs prevented analysis of RPSi. As such, RPSi concentrations were calculated using the 

percent weight of RPSi measured in samples collected from WWTP 2. 

The internal loading fluxes of DSi from sediments (F16) were estimated from the sediment incubation 

experiments. The DSi flux from each sediment core was calculated from the linear regression of DSi concentration 

measured in the water column versus time (Figure 3.4). No significant differences in DSi fluxes were found between 

oxic and anoxic water column treatments, but significant differences were found at different temperatures (at the α = 

0.05 level in a t-test), resulting in the following flux-temperature relationship (Equation 3.6, Figure 3.5): 

 

𝐿𝑜𝑔(𝑚𝑚𝑜𝑙 𝐷𝑆𝑖 𝑚−2𝑑−1) = 0.0433𝑇 − 0.2617                              r2
 = 0.97, p < 0.001                                     Eq. 3.6 

 

where temperature (T) is in °C. Net uptake of DSi in the water column (F13) was calculated as the residual term in 

Equation 3.2. Sedimentation (F14) was calculated from the sedimentation rate measured by sediment traps multiplied 

by the RPSi content of the suspended sediments determined in the alkaline extractions. Resuspension (F17) was 

calculated as the residual term in Equation 3.3. The burial flux (F17) was calculated according to Equation 3.7: 

 

𝐹17 =  𝐹14 −  𝐹15 − 𝐹16                                                                                                                                         Eq. 3.7 
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Figure 3.4. Graph of DSi concentration vs time for cores taken from Hamilton Harbour 258 incubated at 4 different 

temperatures. The slope of the regression line is the DSi flux (µmol L-1 h-1). Fluxes were then converted to units of mmol m-2  

day-1 by multiplying by the volume of the water column (L), dividing by the surface area of the core (m2), and making units 

conversions to give fluxes in mmol m-2 day-1.  

 

Note that negative values of F17 occur when sediment RPSi dissolution exceeds net sedimentation of RPSi. In this 

case, the dissolution of previously deposited RPSi sustains an internal loading flux of DSi that is greater than the 

(net) supply flux of RPSi from the water column.  

3.3 Results 

3.3.1 Water budget 

The annual hydrologic budget for Hamilton Harbour averaged over the time period 1998-2015 is shown in 

Figure 3.6 and monthly water fluxes are given in Appendix 1 Table 1. Water fluxes used in the calculation of the 

monthly reactive Si budget are given in Table 3.3. Between May and November, water exchanges between Hamilton 

Harbour and Lake Ontario dominate the water budget. Exchanges with Lake Ontario account for 75% of the total 

water inflow and 87% of the total outflow. Intake and discharge of water by the steel mill is the second largest water 

inflow and outflow, but results in no net loss or gain of water as the fluxes are equal. Discharge from WWTPs is the 

third largest water inflow, contributing 6.8% of the total water input to Hamilton Harbour between May and 

November. Tributaries, Cootes’ Paradise Marsh, CSOs, precipitation, groundwater and evaporation all contribute 

less than 2.5% each to the total water inflows or outflows, and thus are relatively minor components of the overall 

water budget.  
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Figure 3.5. The regression of the log of the DSi flux from all 16 cores versus incubation temperature gave a significant positive 

correlation where DSi flux increased with increasing temperature. The equation of the regression line was used to estimate 

internal loading DSi fluxes at measured hypolimnetic water temperatures between May to November 2016. 

 

3.3.2 Reactive Si concentrations 

 The concentrations of DSi, SRSi, TDP and RPSi measured in water and suspended sediment samples 

collected at 4 sites across Hamilton Harbour between April and November 2016 are listed in Appendix 1 Tables 2 

through 5; concentrations of DSi, SRSi, TDP and RPSi measured in water samples collected from the two WWTPs 

and from the steel mill intake and discharge points between November 2015 and November 2016 can be found in 

Appendix 1 Tables 7 through 12.  Water column concentrations of DSi and RPSi varied significantly between April 

and November 2016 (Figure 3.7). DSi concentrations in the epilimnion and hypolimnion were lowest in spring, in 

the ranges 1.8-2.3 µmol L
-1

 and 1.8-4.7 µmol L
-1

, respectively, and highest in the fall in the ranges 20.1-22.6 µmol 

L
-1

 and 22.9-26.1 µmol L
-1

, respectively (Figure 3.7). Hypolimnetic DSi tended to be slightly higher than epilimnetic 

DSi, hence justifying treating the water column as a homogeneous reservoir (Figure 3.7). The water column 

concentrations of DSi began increasing at the end of May in both the epilimnion and hypolimnion (Figure 3.7). 

However, while the increase in hypolimnetic DSi concentration remained fairly steady, the epilimnion DSi 

concentration exhibited dips around June-July and again in September (Figure 3.7). The concentrations of RPSi 

generally showed an opposite trend to DSi (Figure 3.7). Eplimnetic and hypolimnetic RPSi concentrations were 

highest in the spring, in the ranges 4.3-13.5 µmol L
-1

 and 6.8-11.4 µmol L
-1

, respectively, and lower in summer and 

fall, in the ranges 1.3-7.1 µmol L
-1

 and 2.0-6.2 µmol L
-1

, respectively (Figure 3.7).    

 The seasonal trends of water column TDP deviated from that of DSi (Figure 3.8). Concentrations of TDP in 

the epilimnion were relatively high in the spring, in the range 1.0-1.3 µmol L
-1

, decreased throughout the summer to 

minimum concentrations around 0.3-0.4 µmol L
-1

 in mid-August to mid-September, and increased again to  
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Figure 3.6. Annual hydrologic budget for Hamilton Harbour averaged over the time period 1998-2015. Positive discharge 

indicates water input and negative discharge indicates water export from the Hamilton Harbour water column. 

 

concentrations in the range 1.3-1.7 µmol L
-1

 in the fall (Figure 3.8).  Hypolimnetic TDP concentrations were 

relatively constant throughout the spring and early summer in the range of 0.8-1.0 µmol L
-1

, increased through 

August and into September reaching 2.1 µmol L
-1

, and decreased through the fall to 1.3 µmol L
-1

 in November 

(Figure 3.8).   

 Molar Si:P (= DSi:TDP) ratios in the epilimnion were lowest in the spring, in the range 1.4-2.3, peaked in 

August and September reaching 28 and 27, respectively, and dropped to values of 10.7-17.4 in the fall (Figure 3.9). 

Hypolimnetic Si:P ratios were also lowest in the spring, in the range 2.2-4.9, peaked in late July reaching 20.6, 

decreased to 10.8 in September, and rose again to 17.7 in November (Figure 3.9).  

3.3.3 Reactive Si budget 

 Mean DSi and RPSi fluxes averaged across the entire May to November period are listed in Table 3.3, 

while the DSi and RPSi fluxes for the individual months can be found in Appendix 1 Tables 13 and 14. Sources and 

estimates of uncertainty associated with water flows, reactive Si concentrations and reactive Si fluxes are presented 

in Appendix 2 Tables 1 through 4.  

  From May to November 2016, the largest DSi influx to Hamilton Harbour from the watershed was the 

WWTPs, followed in decreasing order of importance by groundwater, Cootes’ Paradise Marsh, the tributaries, the 

net flux from the steel mill, CSOs, and precipitation (Table 3.3). Together these watershed sources amounted to 51 x 

10
3
 moles day

-1 
of DSi and 4.4 x 10

3
 moles day

-1 
of RPSi. WWTPs contributed 25 x 10

3
 moles day

-1
, or 49% of the  
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Table 3.3. Mean May to November 2016 discharge and fluxes of DSi and RPSi to and from Hamilton Harbour ± uncertainty. 

WWTP = wastewater treatment plants, CSO = combined sewer overflows. Net uptake is a sink for DSi and a source for RPSi.  A 

positive value of net uptake indicates net assimilation of DSi to RPSi, and negative value for net uptake indicates net dissolution 

of RPSi to DSi. DSi sources are tributaries, Cootes’ Paradise, WWTPs, CSOs, steel mill discharge, groundwater, precipitation, 

net dissolution, internal loading, and Lake Ontario (L. Ontario) inflow. DSi sinks are net uptake, steel mill withdrawal and 

Hamilton Harbour (H. H.) outflow. RPSi sources are tributaries, Cootes’ Paradise, WWTPs, CSOs, steel mill discharge, net 

uptake, resuspension, and Lake Ontario (L. Ontario) inflow. RPSi sinks are net dissolution, steel mill withdrawal, sedimentation, 

burial and Hamilton Harbour (H. H.) outflow. Total sources and sinks of DSi and RPSi were not equal resulting in accumulation 

of DSi and depletion of RPSi in the water column. 

 

Sources/Sinks Mean May to November 

Discharge  

(10
3
 m

3 
day

-1
) 

Mean May to November Flux  

(10
3
 moles day

-1
) 

DSi RPSi 

Watershed Fluxes    

Tributaries (F1,F8) 86.4 ± 13.5 5.5 ± 1.4 1.1 ± 0.5 

Cootes’ Paradise (F2,F9) 145.4 ± 36.5 8.3 ± 2.9 1.6  ± 0.6 

WWTP (F3,F10) 408.2 ± 4.1 24.7 ± 5.2 1.0  ± 0.2 

CSO (F4,F11) 13.2 ± 2.6 0.9 ± 0.9 0.3  ± 0.2 

Net steel mill flux  

(F5, F12) 

0 0.7 0.4 

Precipitation (F6) 57.7 ± 9.8 0.2 ± 0.2  

Groundwater (F7) 58.1 ± 29.1 10.6 ± 7.4  

Evaporation 54.2 ± 21.7   

Total Watershed Inputs  50.9 4.4 

    

Internal Si Cycling    

Net uptake (F13)  38.0 ± 14.2 38.0 ± 14.2 

Sedimentation (F14)   972.6 ± 301.5 

Resuspension (F15)   929.8 ± 288.2 

Internal loading (F16)  40.9 ± 16.3  

Burial (F17)   1.9 

    

Harbour-Lake Exchange    

L. Ontario inflow (F18,F20) 4499.3 ± 510.7 38.7 ± 14.1 8.9 ± 4.2 

H.H. outflow (F19,F21) 5214.1 ± 842.9 67.3 ± 24.3 19.6 ± 7.3 

Net Transfer  -28.6 -10.7 

    

Total External Inputs  89.6 13.3 

Total External Outputs  67.3 19.6 

    

Total Sources 5985.2 ± 713.9 140.9 983.9 

Total Sinks 5985.4 ± 972.2 115.7 995.0 

Water column  

accumulation/depletion 

 25.2 -11.1 
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Figure 3.7. DSi and RPSi concentrations in measured in water samples collected from Hamilton Harbour from 1 m below the 

surface (epilimnion) and from 1 m above the sediment-water interface (hypolimnion) between April and November 2016. Error 

bars represent uncertainty associated with sample storage and analysis. Epilimnion DSi and RPSi concentrations are shown in 

relation to the S0 and the Klim DSi concentrations for the diatom Asterionella formosa (Tilman and Kilham, 1976). Below the Klim 

concentration, diatom growth is controlled by Si availability and below the S0 concentration no diatom growth occurs (Finenko 

and Krupatkina, 1974; Tilman and Kilham, 1976). 
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Figure 3.8. TDP concentrations in measured in water samples collected from Hamilton Harbour from 1 m below the surface 

(epilimnion) and from 1 m above the sediment-water interface (hypolimnion) between April and November 2016. Error bars 

represent uncertainty associated with sample collection, storage, and analysis. Epilimnion TDP concentrations are shown in 

relation to the Klim P concentration for the diatom Asterionella formosa, below which diatom growth is controlled by P 

availability (Finenko and Krupatkina-Akinina, 1974; Tilman and Kilham, 1976). 

 

total watershed DSi input (Table 3.3). Groundwater, Cootes’ Paradise Marsh and tributaries contributed 21, 16 and 

11% of the total DSi input from watershed sources, respectively (Table 3.3). The DSi flux discharging from the steel 

mill was slightly higher than that of the intake resulting in a net contribution of 0.7 x 10
3
 moles day

-1
 Si (Table 3.3). 

DSi fluxes from the steel mill (net), CSOs, and precipitation were all minor DSi sources and relatively unimportant 

in the overall budget (Table 3.3). RPSi fluxes from the watershed were relatively minor compared to DSi fluxes and 

ranged from 0.3 x 10
3
 moles day

-1
 to 1.6 x 10

3
 moles day

-1
, with the steel mill contributing a net flux of 0.4 x 10

3
 

moles day
-1

 (Table 3.3). 

 Exchanges with Lake Ontario constituted the largest external input and output of reactive Si for Hamilton 

Harbour. The input of DSi from Lake Ontario was estimated at 39 x 10
3
 moles day

-1 
of DSi, that is, 43% of the total 

external DSi input, and 8.9 x 10
3
 moles day

-1 
of RPSi, or 67% of the total external RPSi input (Table 3.3). Outflow 

from Hamilton Harbour to Lake Ontario removed 67 x 10
3
 moles day

-1 
of DSi and 20 x 10

3
 moles day

-1 
of RPSi. The 

net transfer of reactive Si from Hamilton Harbour to Lake Ontario thus consisted of 29 x 10
3
 moles day

-1 
of DSi and 

11 x 10
3
 moles day

-1
 of RPSi (Table 3.3).    

  Only net DSi uptake fluxes are calculated, because the dissolution of RPSi in the water column could not 

be independently estimated.  Uptake is a source of RPSi in the water column and dissolution a sink. Therefore, 

positive net uptake fluxes indicate that gross uptake exceeded gross dissolution, and vice versa. Negative net uptake 

will be referred to as net dissolution. Net uptake utilized approximately 42% of the total external DSi input to  
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Figure 3.9. Si:P ratios calculated from DSi and TDP concentrations  measured in water samples collected from Hamilton 

Harbour from 1 m below the surface (epilimnion) and from 1 m above the sediment-water interface (hypolimnion) between April 

and November 2016. Error bars represent uncertainty associated with sample collection, storage, and analysis for both Si and 

TDP.  Si:P ratios are shown in relation to the idealized Redfield-Brzezinski ratios of nutrient uptake for marine diatoms (Redfield 

1958; Brzezinski 1985). 

 

Hamilton Harbour and transformed 38 x 10
3
 moles day

-1
 of DSi to RPSi (Table 3.3). Net uptake was highest in May 

(146 x 10
3
 moles day

-1
) and decreased through June (69 x 10

3
 moles day

-1
) and July (38 x 10

3
 moles day

-1
) (Figure 

3.10). Net dissolution was 38 x 10
3
 moles day

-1 
in August and 60 x 10

3
 moles day

-1 
in October (Figure 3.10). Net 

uptake was 42 x 10
3
 moles day

-1 
in September and 71 x 10

3
 moles day

-1 
in November (Figure 3.10). 

 Monthly gross sedimentation rates from the 4 sites across Hamilton Harbour are given in Appendix 1 Table 

6. Average sedimentation and resuspension fluxes between May and November amounted to 973 x 10
3
 moles day

-1
 

and 930 x 10
3
 moles day

-1
, respectively (Table 3.3), indicating intense exchanges between the water column and 

bottom sediments. Net sedimentation, that is, sedimentation minus resuspension, therefore amounted to 43 x 10
3
 

moles day
-1

 RPSi (Table 3.3). Net sedimentation was highest in May (181 x 10
3 

moles Si day
-1

) and decreased 

through June (82 x 10
3 

moles Si day
-1

) and July (43 x 10
3 

moles Si day
-1

) (Figure 3.10). Net sedimentation was 

negative in August (-36 x 10
3 

moles Si day
-1

) and October (-67 x 10
3 

moles Si day
-1

) as resuspension exceeded 

sedimentation (Figure 3.10). Net sedimentation increased again to 29 x 10
3 

moles Si day
-1 

in September and 69 x 10
3 

moles Si day
-1

 in November (Figure 3.10). 

 The estimated internal loading of DSi from sediments was 41 x 10
3
 moles day

-1
, compared to the total 

external DSi input to Hamilton Harbour of 90 x 10
3
 moles day

-1
 (Table 3.3). Internal loading was lowest in May (31 

x 10
3
 moles Si day

-1
) and increased throughout the summer to a maximum in October (49 x 10

3
 moles Si day

-1
) 

(Figure 3.10). Internal loading decreased in November returning to a similar value as in May (Figure 3.10). Internal 

loading returned approximately 96% of net RPSi sedimentation back to the water column as DSi, while the   
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Figure 3.10. Monthly net external DSi and RPSi inputs and internal cycling fluxes. Net external DSi and RPSi inputs were 

calculated as the sum of watershed fluxes and inflow from Lake Ontario minus Hamilton Harbour outflow. Positive net external 

inputs indicate Hamilton Harbour was a net sink of DSi or RPSi, and negative net external inputs indicate Hamilton Harbour was 

a net source of DSi or RPSi. Net sedimentation was calculated as sedimentation minus resuspension. Positive values of net 

uptake indicate net uptake of DSi and negative values net dissolution of RPSi. 

 

remaining 4% (1.9 x 10
3
 moles day

-1
) was buried (Table 3.3). Burial was greatest in May (150 x 10

3
 moles day

-1
) 

and decreased until July (Figure 3.10). In August and October negative burial fluxes were calculated, indicating that 

the internal loading of DSi from the sediments was being sustained by the dissolution from previously deposited 

RPSi (Figure 3.10). In September the burial flux was again positive (Figure 3.10). 

3.3.4 Hamilton Harbour: Net source or sink of reactive Si?  

 Net external DSi and RPSi inputs to Hamilton Harbour were calculated as the sum of the external inputs 

from the watershed and Lake Ontario, minus the outputs associated with outflow to Lake Ontario. In May, June, 

July, and November, the external inputs of DSi exceeded the outputs, indicating that during these months Hamilton 

Harbour was a net DSi sink (positive net external DSi inputs on Figure 3.10). In August, September and October, the 

combined external DSi inputs were smaller than the output of DSi to Lake Ontario (negative net external DSi inputs 

on Figure 3.10) and, thus, Hamilton Harbour was a net DSi source. For RPSi, the external inputs were smaller than 
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the corresponding RPSi outputs to Lake Ontario in all months, except November (Figure 3.10). Integrated over the 

entire May to November period, Hamilton Harbour retained 4.8 x 10
6 
moles DSi (25% of total DSi inputs) and 3.4 x 

10
6 
moles total reactive Si (DSi + RPSi) (16% of total reactive Si inputs). Over the same time period, the net export 

of RPSi to Lake Ontario was 1.4 x 10
6 
moles.  

3.4 Discussion 

3.4.1 Watershed Si fluxes  

 Of the watershed reactive Si fluxes, WWTPs, Cootes’ Paradise, groundwater, and tributaries were the 

largest, and CSOs, the net steel mill flux, and precipitation were relatively unimportant (Table 3.3). The DSi flux 

from WWTP effluent was the second largest external source of DSi and was more than double that of groundwater 

and all 3 tributaries (Table 3.3). This is similar to that found  at the Deer Island Treatment Plant where the flux of 

DSi was greater than that of the 3 adjacent rivers combined (Maguire & Fulweiler 2017). Si in WWTP effluent 

comes from sewage, groundwater, and surface runoff (Maguire & Fulweiler 2016). Sources of DSi in sewage 

include laundry and dishwasher detergents as well as consumption of food (Sferratore et al., 2006). Detergents 

contain soluble silicates known as waterglass (Van Dokkum et al., 2004). WWTPs do not appear to remove DSi 

during the treatment process (Maguire & Fulweiler 2017).  

 Between November 2015 and November 2016, the annual average concentrations of DSi in WWTP 

effluent were 70.6 µmol L
-1

 from WWTP 1 and 72.3 µmol L
-1

 from WWTP 2, with an average Si:P ratio of 34.1 

from WWTP 1 and 16.5 from WWTP 2. This DSi concentration is lower than the Deer Island Treatment Plant in the 

U.S. and the Acheres Wastewater Treatment Plant in France, where DSi concentrations in the range 138-177 µmol 

L
-1

 were measured (Maguire & Fulweiler, 2016, 2017; Sferratore et al. 2006). The annual average Si:P ratio of 

effluent from the Deer Island Treatment Plant was 37.2, which is similar to that found here (Maguire & Fulweiler 

2017). However Si:P ratios in that study were calculated using dissolved inorganic P (DIP) and thus are not directly 

comparable to the Si:P ratios reported here calculated using TDP.  

 Few studies have measured DSi and RPSi concentrations in WWTP effluent and this source is just 

beginning to be recognized as a potentially important anthropogenic effect on the global Si cycle (Sferratore et al. 

2006; Maguire & Fulweiler 2016; Maguire & Fulweiler 2017). Wastewater is likely to become an even more 

important source of Si in the future as volumes of wastewater discharging from concentrated areas are predicted to 

increase with population growth (Carey & Migliaccio, 2009 and references therein).  However, the effects that 

WWTP effluent may have on the concentrations and ratios of nutrients in the receiving water bodies is unclear.  

 Compared to rivers, WWTPs discharge a substantially higher volume of water that has higher Si and P 

concentrations and lower Si:P ratios (Maguire & Fulweiler 2017; Carey & Migliaccio 2009).  Thus, WWTP effluent 

may exert a much greater influence on the chemical composition of the receiving water body than tributaries, and 

relatively low Si:P ratios in WWTP effluent may cause a shift towards Si limitation. However, this effect was not 

observed in Massachusetts Bay where plumes of DSi, dissolved inorganic N, and DIP were found to extend 2.7 km, 

10.1 km, and 3.8 km away from the effluent discharge site of the Deer Island Treatment Plant, but no differences in 
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Si:P or Si:N ratios were observed outside of the immediate area above the WWTP diffuser (Maguire & Fulweiler 

2017). As well, since the opening of the effluent diffusers in 2000, there have been no significant changes to 

phytoplankton biomass or composition in Massachusetts Bay despite nutrient loading from the WWTP (Maguire & 

Fulweiler 2017). In Hamilton Harbour, the impact of WWTP effluent on DSi and TDP concentrations and ratios in 

the water column may be minimal due to the flushing and “short circuiting” action of exchange with Lake Ontario 

that prevents substantial migration of effluent plumes into the harbour (Barica 1989). Therefore, while there is 

potential for WWTP effluent to be an important factor influencing Si:P ratios and phytoplankton community 

composition in a receiving water body, this may only occur under certain conditions. The impact of WWTP effluent 

may be extremely isolated and is likely influenced by the size, circulation patterns, and water exchanges of a given 

water body (Maguire & Fulweiler 2017).  

3.4.2 Si cycling within Hamilton Harbour water column and sediments 

 The timing of peak uptake rates in the spring (146 x 10
3
 moles day

-1
 in April and 69 x 10

3
 moles day

-1
 in 

May) and fall (42 x 10
3
 moles day

-1 
in September) coincide with the spring and fall diatom blooms that regularly 

occur in Hamilton Harbour (Figure 3.10) (Dermott et al. 2007; Munawar et al. 2017). Extrapolating the May to 

November average net uptake rate of 38 x 10
3
 moles day

-1
 (Table 3.3) to the entire year, diatoms assimilated 

approximately 0.6 moles Si m
-2

 yr
-1

 on per area basis. This value is likely an underestimate of gross uptake as 

concurrent dissolution of RPSi in the water column may have supported higher uptake. Nriagu (1978) estimated that 

approximately 90% of the BSi pool in the water column dissolved before reaching the sediments in Lake Ontario. If 

this were the case in Hamilton Harbour, gross uptake may have been as much as 6 moles Si m
-2

 yr
-1 

or 380 x 10
3
 

moles day
-1

. Therefore, an estimate of gross DSi uptake in Hamilton Harbour is in the range of 0.6-6 moles Si m
-2

  

yr
-1

. The low end of this range is similar to that found in oligotrophic Lake Superior (0.3-0.6 moles Si m
-2

 yr
-1

) and 

the mean for the global ocean (0.6-0.8 moles Si m
-2

 yr
-1

), and is lower than that found for mesotrophic to eutrophic 

Lake Michigan (1.4-1.8 moles Si m
-2

 yr
-1

) (Nelson et al., 1995; Parker et al., 1977; Schelske, 1985). The upper end 

of the range is lower than the global mean uptake for coastal upwelling areas (8.3 moles Si m
-2

 yr
-1

) (Nelson et al., 

1995). Thus, estimated uptake rates in Hamilton Harbour match reasonably well to a range of environments despite 

being extremely eutrophic, which may be due to Si limitation in the water column limiting uptake rates.     

DSi internal loading was calculated from sediment core incubation experiments, which is a widely used 

technique (Beutel, 2006; Conley et al., 1997; Conley et al., 1988; Cowan & Boynton, 1996; Denis & Grenz, 2003; 

Heinen & McManus, 2004; Lehrter et al., 2012; Spears et al., 2008; Srithongouthai et al., 2003). The internal 

loading DSi flux was calculated as a function of temperature, which strongly influences BSi dissolution and 

sediment Si release rates (Gibson et al., 2000; Kamatani, 1982; Srithongouthai et al., 2003). The fluxes obtained 

were within the range of published values for other freshwater lakes and marine coastal areas using similar methods 

(Conley et al., 1997; Cowan & Boynton, 1996; Denis & Grenz, 2003; Heinen & McManus, 2004; Lehrter et al., 

2012; Srithongouthai et al., 2003).  

Internal loading recycles Si deposited to sediments back to the water column and is therefore ultimately 

dependent on external nutrient loads. Internal loading of DSi from sediment was the largest DSi flux into the water 
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column of Hamilton Harbour and is likely important for sustaining diatom growth. Internal recycling of Si through 

dissolution of particulate Si in the water column and internal loading of Si from sediments have been found to be a 

substantial Si source important for sustaining diatom growth across a wide variety of freshwater lakes and marine 

coastal areas across many continents and oceans (Cornwell & Banahan, 1992; Johnson & Eisenreich, 1978; Nriagu, 

1978; Schelske et al., 1983; Schelske, 1985; Schelske et al., 1986; Miretzky & Cirelli, 2004; Bailey-Watts, 1976; 

Gibson et al., 2000; Bootsma et al., 2003; Degobbis et al., 1990; Savchuk, 2002; Singh et al., 2015; D’Elia et al., 

1983).  In Chesapeake Bay, the sediment Si flux exceeded the total riverine input by a factor of at least 5 (D’Elia et 

al. 1983), which is similar to the present work where internal loading was approximately 7 times larger than 

tributary inputs. Internal loading can exceed tributary inputs because tributaries are not always the main external 

source of Si. In Hamilton Harbour, Si inputs from exchange with Lake Ontario, WWTP effluent, and inflow from 

Cootes’ Paradise were all larger than that contributed by tributaries.  

Approximately 96% of gross sedimentation was resuspended in the water column (Table 3.3). High 

resuspension fluxes in Hamilton Harbour are enabled by wind-induced mixing and exchange with Lake Ontario that 

create vertical instability, and lead to high suspended matter concentrations (Barica, 1989; Haffner et al., 1983). 

Similarly high resuspension fluxes have been found in Lake Erie, where resuspended sediments constituted between 

76% and 90% of the catch in the bottom sediment trap (Bloesch 1982), and in nearshore Lake Ontario, where 

resuspension was about 85% of total sedimentation (Rosa 1985). The mean net sedimentation rate between May and 

November was approximately 0.04 g cm
-2

 year
-1

, which is comparable to rates reported for Hamilton Harbour by 

Mayer & Johnson (1994) (0.038-0.097 g cm
-2

 year
-1

) and Rukavina & Versteeg (1996) (0.067-0.222 g cm
-2

 year
-1

). 

Net uptake and net sedimentation fluxes were of similar magnitudes and followed similar trends between 

May and November, indicating that the diatom frustules that did not dissolve in the water column sank to the 

sediments (Figure 3.10). However, due to the high recycling efficiency at the sediment-water interface, relatively 

little RPSi, approximately 1.6 % of total reactive Si inputs or 0.03 moles m
-2

 yr
-1

, was permanently buried in the 

sediments.  

3.4.3 Harbour-lake exchange 

 The overall net effect of exchange between Hamilton Harbour and Lake Ontario over the period May to 

November 2016 was removal of DSi and RPSi from Hamilton Harbour. The flux of Si from Hamilton Harbour to 

Lake Ontario was almost double that of inflow from Lake Ontario, making Hamilton Harbour an overall net source 

of reactive Si to Lake Ontario (Table 3.3). The impact of Lake Ontario on Hamilton Harbour is thought to be largely 

beneficial through providing oxygen to the hypolimnion and diluting concentrations of pollutants and nutrients 

(Barica 1989).  However, this also acts to dilute concentrations of Si which are already in low supply. In contrast, 

the impact of Hamilton Harbour on Lake Ontario has received little attention. As a net source of Si, Hamilton 

Harbour may be contributing to the observed increase in spring surface water Si concentrations in offshore areas of 

Lake Ontario since the 1990s (Dove 2009).  
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3.4.4 Hamilton Harbour: Net source or sink of reactive Si?  

 Hamilton Harbour retained approximately 25% of external DSi inputs, thereby acting as a net sink of DSi 

and decreasing the flux of DSi from the watershed to Lake Ontario. This retention is within the range of estimated 

global DSi retention by lakes and reservoirs (21-27%) (Frings et al. 2014). However, Hamilton Harbour was a net 

source of RPSi relative to external inputs. The DSi:RPSi ratio of watershed reactive Si inputs to Hamilton Harbour 

was 11.6 while the DSi:RPSi ratio of outflow to Lake Ontario was 3.5. Thus, some of the DSi retained was in fact 

exported as RPSi and the total reactive Si retention in Hamilton Harbour was 16%. This highlights the importance of 

considering both DSi and RPSi reactive forms in Si budgets as retention of DSi does not necessarily equate to 

retention of total reactive Si.  

 While Hamilton Harbour was an overall net sink of reactive Si between May and November, Hamilton 

Harbour was a source of reactive Si in some months (i.e. August, September, and October). The fate of Si in 

Hamilton Harbour was largely influenced by the amount of uptake of DSi and subsequent sedimentation of RPSi. In 

the spring when uptake was high, DSi was assimilated and retained in Hamilton Harbour as RPSi. In the summer, 

when uptake was low or net dissolution was occurring, DSi was not assimilated or retained. Consequently, more DSi 

was exported to Lake Ontario. Therefore, the internal cycling of Si largely dictates the fate of Si in the water column 

and whether it will be retained or exported downstream. 

 Nriagu (1978) calculated a DSi mass balance budget for Lake Ontario where total DSi inflow was 

estimated to be 12.32 x 10
7
 kg yr

-1
 and total outflow  5.83 x 10

7
 kg yr

-1
. From this, net retention of DSi in Lake 

Ontario is estimated to be 6.49 x 10
7
 kg yr

-1
. Using the surface area of Lake Ontario (18,960 km

2
), this converts to a 

per area average DSi retention of 5.7 x 10
4
 moles km

-2
 yr

-1
. The per area average DSi retention in Hamilton Harbour 

between May and November 2016 is calculated to be approximately 38 x 10
4
 moles km

-2
 yr

-1
. Therefore, retention of 

DSi in Hamilton Harbour is approximately 6-7 times higher than the per area average for all of Lake Ontario, 

indicating that Si retention may be focused in nearshore areas. This is likely due to the higher nutrient inputs 

received by the nearshore zone stimulating biological activity, DSi uptake and RPSi burial. This is in agreement 

with our current understanding of Si cycling in marine coastal zones, which act as nutrient sinks and hot spots for 

biogeochemical cycling (Laruelle et al. 2009; Mackenzie et al. 2000; Jickells 1998). 

 

3.4.5 Si limited diatom growth in Hamilton Harbour  

 The relative and absolute concentrations of DSi and TDP in the water column of Hamilton Harbour 

indicate stoichiometric and possible physiological Si limitation of diatom growth. Epilimnetic and hypolimnetic Si:P 

ratios were below the idealized Redfield-Brzezinski ratio of 16:1 throughout most April to November 2016 (Figure 

3.9).  Si:P ratios were particularly low in the spring and early summer when the highest diatom uptake of DSi was 

predicted (Figures 3.9 and 3.10). The Si:P ratio of 16:1 is based on the typical nutrient composition of marine 

diatoms under non-limiting nutrient conditions (Brzezinski 1985; Redfield 1958). However, this may not accurately 
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represent the nutrient requirements of freshwater diatoms as Si content has been found to vary between marine and 

freshwater species(Conley & Kilham 1989). 

 Stoichiometric Si limitation does not necessarily imply physiological limitation as DSi may still be replete 

in the water column. However, physiological limitation of diatom growth was indicated by severely depleted 

epilimnetic DSi concentrations in the spring and early summer of 2016. In Figure 3.7, Hamilton Harbour epilimnetic 

DSi concentrations are shown in relation to the Klim and S0 DSi concentrations for the diatom Asterionella formosa 

(Tilman & Kilham 1976), which is a consistent member of the diatom community in Hamilton Harbour (Dermott et 

al. 2007; Munawar et al. 2017). The Klim concentration is the concentration at which the rate of cell division is 90% 

of maximal and therefore the division rate is limited by Si bioavailability below this concentration (Finenko and 

Krupatkina-Akinina 1974; Tilman & Kilham 1976). The S0 concentration is the minimum DSi concentration needed 

for growth and therefore growth is inhibited below this concentration (Tilman and Kilham 1976). Epilimnetic DSi 

concentrations were consistently below the Klim concentration of 29.2 µmol L
-1

 DSi from April to November and 

approached the S0 concentration of 0.78 µmol L
-1

 DSi in the spring (Figure 3.7). This suggests that diatom growth 

was regulated by DSi bioavailability and that low DSi concentrations may have terminated the spring bloom. Si 

limitation of diatom growth also agrees with the observation of relatively low Si uptake rates considering the 

eutrophic status of Hamilton Harbour.  However, it should be noted that other factors such as turbulence, light, 

temperature and zooplankton grazing may also have influenced diatom growth (Willen 1991). Hamilton Harbour has 

an unusually high abundance of zooplankton compared to other eutrophic embayment’s, which this is likely due to 

high primary productivity particularly of edible and nutritious phytoplankton  including some species of flagellates, 

green algae, and diatoms (Bowen and Currie 2017). 

  In addition, TDP concentrations were consistently above the Klim concentration of P for A. formosa 

between April and November suggesting that diatom growth was not regulated by P bioavailability (Figure 3.8). 

Diatom growth did not deplete TDP concentrations in the spring and TDP concentrations remained detectable and 

above the Klim concentration even in the late summer when peak biomass in Hamilton Harbour typically occurs 

(Figure 3.8) (Dermott et al. 2007; Munawar et al. 2017). Thus, P was likely available in excess to diatoms and 

potentially all phytoplankton in 2016.  

 The main strategy to decrease algal blooms in Hamilton Harbour is to decrease P concentrations, which is 

based on the assumption that total phytoplankton growth is P limited (Hiriart-Baer et al., 2009). However, our data 

suggest that diatom growth was Si limited and that P is in such excess that the growth of non-siliceous 

phytoplankton may not have been limited by P. Analysis of two decades of water quality trends revealed that P 

limitation of phytoplankton growth only occurs when other factors, such as light availability and high growth rates 

supported by elevated temperatures, cause P demand to be greater than supply (Hiriart-Baer et al. 2009). Otherwise, 

P is sufficient in the water column and does not control growth rates, which is in agreement with our finding 

(Hiriart-Baer et al. 2009). 

  The Si and P Klim and Si S0 concentrations of A. formosa may not be directly applicable to the entire 

diatom community as the concentrations vary between diatom species (Tilman and Kilham 1976; Kilham 1975; 

Willen 1991). However, S0 is generally in the range of 1-6.6 µmol DSi L
-1

 for freshwater and marine diatoms 
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(Willen 1991 and references therein), and growth inhibiting concentrations determined under culture conditions are 

generally lower than concentrations that would inhibit growth in nature (Kilham 1975; Tilman and Kilham 1976). 

Therefore, it is reasonable that the DSi concentrations measured here were physiologically limiting and potentially 

inhibiting to spring diatom growth in Hamilton Harbour.  

3.4.6 Implications of Si limitation in nearshore zones of lakes and oceans 

 Areas of freshwater and marine aquatic environments may be moving towards Si limitation as changes to 

nutrient stoichiometry and shifts in phytoplankton community composition towards non-siliceous species have been 

observed in numerous rivers, lakes, reservoirs, and areas of the coastal and open ocean (Conley and Malone, 1992; 

Danielsson et al., 2008; Glibert et al., 1995; Humborg et al., 2000; Justic et al., 1995; Justic et al., 1995; Kling et al., 

2011; Li et al., 2007; Rocha et al., 2002; Turner et al., 2003; Viaroli et al., 2013). Phytoplankton communities 

dominated by flagellates or cyanobacteria can lead to changes in food web structure and less efficient energy 

transfer to higher trophic levels (Moss et al. 1991; Officer and Ryther 1980; Sommer et al. 2002).  Si limitation may 

also lead to higher incidence of toxic diatom blooms. Parsons et al. (2002) found the relative abundance of toxic 

Pseudo-nitzchia species in sediment cores taken from the Gulf of Mexico near the Mississippi River plume were 

positively correlated to Mississippi River nitrate fluxes and negatively correlated to the Mississippi River Si:N 

ratios. This indicates that Pseudo-nitzchia species may be stimulated more than other diatom species under high N 

and low Si conditions, leading to harmful diatom blooms (Parsons et al. 2002). Further, the negative effects of Si 

limitation may be exacerbated with warming temperatures and acidification as is expected to occur in the future due 

to climate change (Calbet et al. 2014).  

 Nearshore zones of lakes and the ocean can act as nutrient sinks of Si (Laruelle et al. 2009; Mackenzie et 

al. 2000; Strayer and Findlay 2010). Severe DSi depletion in nearshore zones due to Si limitation may result in 

negative consequences at the local scale and may cause or enhance Si limitation downstream through decreased DSi 

exports. Thus, nearshore zones of lakes experiencing eutrophication may be critical areas to focus remediation 

efforts as the effects of Si limitation may cascade and magnify further downstream. 

 Recovery from Si limitation appears possible upon reduction of P concentrations and increasing the Si:P 

ratio (Barbiero et al. 2002; Gaedke & Schweizer 1993; Krivtsov et al. 2000). Upon P reductions in Lake Michigan 

and Lake Constance, increases in diatoms and DSi concentrations were observed (Barbiero et al., 2002; Gaedke and 

Schweizer, 1993). A different approach to combating Si limitation and eutrophication could be to enhance P uptake 

by diatoms in the spring through addition of Si, which would reduce the P available for non-siliceous algae in the 

summer (Krivtsov et al., 2000).   In a modelling exercise assuming Si limitation of diatoms in spring and P 

limitation of cyanobacteria in the summer, Krivtsov et al. (2000) found that increasing winter Si concentrations led 

to a larger spring diatom bloom and a lower summer cyanobacteria bloom. This was because increased Si 

availability enabled higher diatom growth and greater assimilation of P from the water column, leaving less P 

available for cyanobacteria growth in the summer (Krivtsov et al., 2000). This inverse relationship between the sizes 

of diatom and cyanobacteria blooms was observed in the Saidenback reservoir where P limited diatom growth 

resulted in depletion of water column P and a small or absent cyanobacteria bloom, and Si limited diatom growth 
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was unable to deplete water column P, resulting in a smaller diatom and a larger cyanobacteria bloom (Horn and 

Uhlmann 1995). This pattern was qualitatively observed in Hamilton Harbour where relatively high spring diatom 

biomass in 2002 was followed by relatively low summer cyanobacteria and total phytoplankton biomass, and 

relatively low spring diatom biomass in 2006 was followed by relatively high summer cyanobacteria and total 

phytoplankton biomass  (Munawar et al. 2017). Through manipulating this inverse relationship, augmenting water 

bodies with Si may be able to shift peak phytoplankton biomass from the summer to the spring and thereby limit or 

eliminate the growth of potentially harmful algal species (Krivtsov et al. 2000).   

 However, the addition of Si as a remediation strategy may have several negative consequences. Greater 

diatom growth in the spring will deliver a larger supply of organic matter to the sediments, which may increase 

biological oxygen demand and drive anoxic conditions at the sediment-water interface. This may result in a release 

of P bound to iron oxides in the sediment, which may counteract the benefits of P drawdown in the water column. In 

addition, Krivtsov et al. (2000) note that increased Si in the water column may lead to release of phosphate bound to 

Al through competitive binding of Si. Therefore, P removal by means of Si addition is likely to be most effective in 

lakes that have relatively low levels of Al-bound phosphates (Krivtsov et al., 2000). Thus, while Si addition remains 

an interesting and potentially effective remediation strategy, it may only be beneficial under certain conditions.   

3.4.7 Model limitations and considerations 

              The assumption of complete mixing of all reactive Si inputs and the water column was made for 

simplification but is likely unrepresentative of the environmental conditions. Hamilton Harbour thermally stratifies 

between May and October, which prevents complete mixing of water at the surface and at depth (Hamblin & He 

2003). Reactive Si inputs likely have a greater influence in the vicinity of their discharge points rather than the 

whole of Hamilton Harbour (Barica 1989; Maguire and Fulweiler 2017). As well, exchange with Lake Ontario may 

prevent mixing of reactive Si inputs that enter near the BSC such as discharge from WWTP (Barica 1989). This 

occurs through a “short-circuiting” action as water from these sources are removed from the harbour before it gets 

completely mixed (Barica 1989).  

Further, lack of data and inability to collect samples during the winter months prevented the establishment 

of a full annual Si budget. Si biogeochemistry in lakes over the winter period is a time we know relatively little 

about yet studies have shown that diatoms can continue to grow over winter in the North American Great Lakes 

(Burns et al., 1978). Therefore, future endeavors should plan to incorporate winter sampling in order to get the full 

picture of Si cycling over the year and capture winter and early spring diatom growth.  

Finally, it should be noted that measurement of TDP in the water column of Hamilton Harbour likely 

overestimated the immediately bioavailable P to phytoplankton (Bostrom et al. 1988). TDP includes both SRP and 

dissolved organic P (DOP). SRP is the most directly available P source for phytoplankton (Bostrom et al. 1988). 

However, some DOP fractions may also be bioavailable (Bostrom et al. 1988; Qin et al. 2015). In bioassay 

experiments, algae grown for 14 days with DOP from the effluent of two wastewater treatment plants indicated that 

approximately 75% of DOP was potentially bioavailable (Qin et al. 2015). Therefore, while SRP indicates the 

minimum immediately bioavailable P, TDP may be more representative of the potentially bioavailable P (Bostrom 
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et al. 1988; Qin et al. 2015). Further, particulate P was not measured but may also contribute bioavailable P through 

desorption, dissolution and degradation of particulate matter (Bostrom et al. 1988).    

3.5 Conclusion 

 A reactive Si budget was established for Hamilton Harbour between May and November 2016. The budget 

showed that internal loading of DSi from sediments, exchange with Lake Ontario, and WWTPs were the largest DSi 

fluxes to the Hamilton Harbour water column, which is in contrast to the widely held assumption that watershed 

sources such as tributaries and groundwater are the major contributions of reactive Si to lakes. Hamilton Harbour 

was a net sink of reactive Si over May to November 2016, but became a net source of reactive Si during periods of 

limited/no diatom growth showing that biological assimilation was a large control on the fate of reactive Si. RPSi 

was efficiently recycled at the sediment-water interface leading to low burial rates of only 1.6 % of total reactive Si 

inputs. This research showed that diatom growth in Hamilton Harbour is stoichiometrically and likely 

physiologically Si limited, which is in contradiction to the assumption of P limitation. Si limitation may be 

exacerbating the negative effects of eutrophication in Hamilton Harbour and other coastal freshwater and marine 

areas by shifting phytoplankton community composition in favour of non-siliceous algae.  
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Chapter 4  

 

General Conclusions and Recommendations 
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4.1 Summary of key findings 

This thesis examined the biogeochemical cycling of Si in a human impacted nearshore environment, using 

the Hamilton Harbour Area of Concern as a case study. In Chapter 2, mechanisms of internal loading of P and Si 

from Cootes’ Paradise sediments were tested through sediment core flow through systems under oxic and anoxic 

conditions and with different nutrient (P, Si) additions. This study demonstrated that both P and Si are associated 

with reactive iron (Fe) phases in sediments but that P and Si behave differently under oxic and anoxic conditions. 

There was net retention of P under oxic conditions and net release under anoxic conditions, with anoxic P release 

being approximately 8 times that of oxic P release. P retention and release appeared to be dominated by sorption to 

Fe(III) oxides under oxic conditions and release from Fe(III) oxides under anoxic conditions due to reductive 

dissolution. However, there was net release of Si under both oxic and anoxic conditions, and anoxic release of Si 

increased by only 1.4 times. Thus, other potentially bioavailable Si pools in sediment, which are ostensibly not 

redox sensitive such as BSi, may have been a greater contribution to DSi release from sediments than retention and 

release from Fe(III) oxides. The different mechanisms governing release of P and Si lead to high Si:P ratios of 

release under oxic and low Si:P ratios of release under anoxic conditions relative to the nutrient requirements for 

diatom growth (Redfield 1958; Brzezinski 1985). This is the first laboratory study to compare the release of P and Si 

from intact sediment cores under oxic and anoxic conditions, and show decoupling of P and Si cycles. P was found 

to outcompete Si sorption sites, which is consistent with our knowledge of the effects of Si concentration and pH on 

competitive sorption, with Si only being able to outcompete P at high concentrations and high pH (>9) (Brinkman 

1993; Koski-Vähälä et al. 2001; Tallberg et al. 2008). In areas where sediments are a major source of nutrients to the 

water column, nutrient stoichiometry of internal loading may drive nutrient dynamics in the water column through 

promoting P limitation or Si limitation of diatom growth. Understanding the behaviour of the cycling of Si and P in 

sediments under variable redox conditions may be critical to the development of effective remediation strategies and 

determining how nutrient cycling in sediments may change due to eutrophication induced hypoxia (Rabalais et al. 

2010). 

In Chapter 3, the biogeochemical cycling of reactive Si in Hamilton Harbour was explored through the 

development of a reactive Si mass balance budget. The results demonstrated that Hamilton Harbour was a net sink 

of reactive Si between May and November 2016, retaining 16% of total reactive Si inputs from external sources. 

The retention of Si was strongly controlled by biological uptake of DSi and recycling of BSi at the sediment water 

interface, with lower retention occurring in months with lower DSi uptake or higher recycling rates. This finding is 

in agreement with studies demonstrating net retention of Si in freshwater lakes and reservoirs and in marine coastal 

zones (Frings et al. 2014; Maavara et al. 2014; Taylor Maavara et al. 2015; Laruelle et al. 2009). This study also 

demonstrated that Si was stoichiometrically and likely physiologically limiting to diatom growth with respect to P in 

Hamilton Harbour, which is in contrast to the assumption of P limited phytoplankton growth (Hiriart-Baer et al. 

2009). This is in agreement with studies showing Si limitation of coastal nearshore zones following nutrient 

enrichment, but is one of the first studies to show Si limitation in the nearshore zone of a large lake (Schelske & 

Stoermer 1971; Schelske & Stoermer 1972; Schelske et al. 1986; Conley & Malone 1992; Chauvaud et al. 2000; D 
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Justic et al. 1995; Dubravko Justic et al. 1995; Rocha et al. 2002; Gobler et al. 2006; Danielsson et al. 2008; Garnier 

et al. 2002; Peeters et al. 1991).  

4.2 Research limitations 

In chapter 2, the increased temperature inside the anaerobic chamber relative to the lab bench resulted in 

anoxic reactors being incubated at approximately 30°C and the oxic at approximately 22°C. Temperature can alter 

nutrient fluxes across the sediment-water interface and therefore incubation temperature was a confounding variable 

in the study design (Kamatani 1982; Srithongouthai et al. 2003; Kelton & Chow-Fraser 2005; Zhou et al. 2016; 

Duan & Kaushal 2013). Anoxic reactors were incubated inside the anaerobic chamber to ensure anoxic conditions at 

the sediment-water interface and of the outflow solutions being collected, which would have been difficult to 

achieve and maintain on the lab bench. While N2 gas could have been used to make the sediment-water interface 

anoxic, there did not seem a feasible way to prevent oxidation of the outflow solutions being continuously collected. 

Oxidation of the outflowing solutions likely would have drastically altered the results through oxidation and 

precipitation of Fe(III) and potentially coprecipitation and/or adsorption of other dissolves constituents with Fe(III). 

The achievement of oxic and anoxic conditions at the sediment-water interface was critical to answering our 

research questions and therefore was prioritized. The extent of the temperature differential between the interior and 

exterior of the chamber was only discovered during the course of the experiment. Given the sensitivity of nutrient 

fluxes to temperature, future experiments should ensure temperature control and consistency between treatments. 

This could be achieved through the use of an environmental chamber or perhaps a water bath.  

A second limitation encountered in the sediment core flow through experiment was a lack of replicate 

sediment cores in order to assess the reproducibility of the results and if differences between nutrient treatments 

were significant or simply natural variability in elemental composition, microbial activity and benthic bioturbation 

potentially causing differences in solute transport (Andersson et al. 1988). The study design involved 8 different 

nutrient treatments. Set-up, maintenance, sample collection and sample analysis in a timely fashion from 8 flow-

through reactors was challenging for 1 person. Having more than 8 reactors would have required substantial 

additional human resources.  However, if this experiment were to be repeated, replicate samples should be 

incorporated. This could be achieved through collaboration between several people to work on the experiment 

planned ahead of time in order to maximize the data that comes out of it. 

In chapter 3, a lack of DSi and BSi data from November 2015 through March 2016 prevented the 

establishment of an annual reactive Si budget, and winter Si dynamics are a missing piece of the story. Collaboration 

with Environment and Climate Change Canada enabled sample collection from Hamilton Harbour between April 

and November 2016, for which we are grateful as sample collection would not have been feasible without their 

assistance. Winter sampling is not a routine practice for Environment and Climate Change Canada due to safety 

concerns and as such, no samples were collected during the winter months. Further, there are no historical Si data 

from these months available to estimate DSi and BSi concentrations or suspended sediment deposition. 

Consequently, the reactive Si budget had to be restricted to May to November 2016. However, the winter Si budget 

may be an important period of the year as phytoplankton growth can persist over the winter (Burns et al. 1978; 
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Pernica et al. 2017). Therefore, in the future, efforts to collect samples over winter should be made. This would 

likely require planning with an organization such as Environment and Climate Change Canada well in advance, but 

may be subject to funds available and weather conditions. Thus, winter sampling will likely continue to be a 

challenge, but little is known about Si cycling during this time of year, and therefore effort should be made to 

include these months if possible.  

Year to year variability of DSi and BSi fluxes were unable to be evaluated in the Hamilton Harbour 

reactive Si budget due to a lack of data and the time restrictions of a Master of Science degree (2 years). DSi is not 

frequently measured in monitoring programs or by WWTP or industry, and RPSi has rarely been measured in mass 

balance studies. Therefore, the 1 year data set established here is the first for the Hamilton Harbour region, and one 

of the few globally to include both DSi and RPSi species. Due to the amount of laboratory work necessary to 

analyse samples for DSi and RPSi, sample collection could not be extended past November 2016. However, routine 

monitoring, for example once per month, of freshwater bodies including rivers, wetlands, and lakes, and 

measurement of both DSi and RPSi would greatly increase our ability to evaluate the temporal variability of Si 

cycling in nearshore areas such as Hamilton Harbour. As well, the establishment of a longer time series of data 

would enable evaluation of trends and changes in Si cycling over time, which is an important aspect of remediation. 

 

4.3 Recommendations for future research and concluding remarks 
 

The effect of anoxia on release of Si from sediment is still an underdeveloped area of research that warrants 

further investigation. While anoxic conditions have been shown in increase P internal loading in a many sedimentary 

environments (Orihel et al. 2017), the effect of anoxia on Si release from sediments is still not well established 

(Siipola et al. 2016; Lehtimäki et al. 2016). There are several potentially bioavailable pools of Si in sediment that 

may be mobilized under different environmental conditions, and therefore the relative importance of each 

bioavailable Si pool may change under different environmental conditions (Kamatani 1982; Loucaides et al. 2008b; 

Lehtimäki et al. 2016; Siipola et al. 2016). Research is needed on how environmental variables such as temperature, 

redox, pH and ionic strength influence the release of Si from redox sensitive phases, and the relative importance of 

release of Fe-bound Si compared to BSi at different temperatures, redox, pH and ionic strength conditions. This 

knowledge may be important for understanding how nutrient cycling in sediments may change with increasing 

temperatures due to climate change (Zhou et al. 2016; Duan & Kaushal 2013) and increasing hypoxic areas 

(Rabalais et al. 2010). 

Studies investigating competitive sorption between P and Si have had mixed results and suggest that Si 

may only have a significant impact on P release under high concentrations and/or high pH (Koski-Vähälä et al. 

2001; Tallberg et al. 2008). Future studies could investigate if there are threshold Si concentrations or pH at which 

point the system tips to Si being the better competitor for sorption sites. Studies in clean systems using pure mineral 

phases are needed to better understand the mechanisms of competitive sorption between P and Si. As well, 

experiments determining whether competition between P and Si for sorption sites is likely to affect P and Si internal 

loading in an environmentally relevant setup are needed. Further, as efforts to reduce external nutrient loads 
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continue, the influence of internal loading of legacy P and Si under oxic and anoxic conditions on water column 

phytoplankton community composition would also be interesting and relevant to investigate.  

Si limitation may be occurring in other eutrophic areas of the Laurentian Great Lakes or other large lakes. 

Si limitation may enhance Si retention due to excess P and may therefore even further reduce Si delivery 

downstream or offshore relative to the degree of natural retention in these areas. Thus, the effects of Si limitation on 

Si retention and export in eutrophic areas should be investigated. Further, Si addition as a remediation strategy 

should be tested in longer term (months) laboratory, mesocosm, and whole lake experiments to see how Si addition 

effects phytoplankton community composition, seasonal succession, deposition of organic matter in the sediments, 

and oxygenation of the sediment-water interface over time.  

In northern temperate lakes, winter may be an important time of year for Si cycling and should be further 

investigated. Little is known about Si cycling during the winter months but some studies have found diatom growth 

to persist through the winter (Burns et al. 1978) and Si limitation may shift diatom growth towards the winter 

(Stoermer 1993). Winter diatom growth may lead to greater RPSi burial due to low water temperatures and therefore 

lower RPSi dissolution and recycling rates at the sediment-water interface.  

This research has demonstrated that freshwater nearshore zones such as coastal wetlands and embayment’s 

are important areas of nutrient cycling that can alter nutrient fluxes from the watershed to the open lake. Sediments 

may act as a source or a sink of Si and P under different redox conditions, which can potentially drive diatom 

dominated or non-diatom dominated phytoplankton growth and nutrient dynamics in the water column. Human 

activities exert enormous pressure on nearshore zones through nutrient loading, which can alter the Si 

biogeochemical cycle. Eutrophication can lead to Si limitation of diatom growth, which may enhance the 

proliferation of harmful algal blooms. Further, Si limitation in the nearshore may enhance Si retention, decreasing Si 

exports offshore and downstream, which may potentially affect nutrient cycling in the coastal ocean. Understanding 

Si cycling and the interactions between Si and other nutrient cycles in human impacted nearshore zones is valuable 

knowledge that may ultimately help protect ecosystem health and the valuable ecosystem services that nearshore 

zones provide (Sierszen et al. 2012; Strayer & Findlay 2010).  
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A1 Table 1. Hamilton Harbour monthly and annual water budget ± uncertainty. 

 

Water Source/Sink   Discharge (10
3
  m

3
 day

-1
) 

Jan. Feb. Mar. Apr. May Jun. 

Tributaries 140 ± 21 168 ± 25 271  ± 41 258  ± 39 159  ± 24 112  ± 17 

Cootes’ Paradise 273  ± 68 293  ± 73 538  ± 135 511  ± 128 257  ± 64 168  ± 42 

WWTP 435  ± 4 447  ± 4 501  ± 5 496  ± 5 444  ± 4 419  ± 4 

CSO 13 ± 3 13 ± 3 13 ± 3 13 ± 3 13 ± 3 13 ± 3 

Steel mill intake 646 ± 97 627 ± 94 623 ± 93 656 ± 98 675 ± 101 726 ± 109 

Steel mill discharge 646 ± 97 627 ± 94 623 ± 93 656 ± 98 675 ± 101 726 ± 109 

Groundwater 58 ± 29 58 ± 29 58 ± 29 58 ± 29 58 ± 29 58 ± 29 

Precipitation 39 ± 7 44 ± 7 44 ± 8 53 ± 9 59 ± 10 52 ± 9 

Evaporation 0 0 0 49 ± 20 73 ± 29 90 ± 36 

L. Ontario inflow 829 ± 94 829 ± 94 829 ± 94 829 ± 94 5098 ± 579 5098 ± 579 

H. Harbour outflow 1789 ± 221 1852 ± 229 2255 ± 278 2170 ± 268 6016 ± 743 5830 ± 720 

 

Water Source/Sink Discharge (10
3
  m

3
 day

-1
) 

July August September October November December 

Tributaries 75  ± 11 58  ± 9 47  ± 7 72  ± 11 82  ± 12 112  ± 17 

Cootes’ Paradise 87  ± 22 79  ± 20 66  ± 17 151  ± 38 210  ± 52 285  ± 71 

WWTP 398 ± 4 385 ± 4 398 ± 4 411 ± 4 401 ± 4 431 ± 4 

CSO 13 ± 3 13 ± 3 13 ± 3 13 ± 3 13 ± 3 13 ± 3 

Steel mill intake 775 ± 116 757 ± 114 736 ± 110 690 ± 104 658 ± 99 665 ± 100 

Steel mill discharge 775 ± 116 757 ± 114 736 ± 110 690 ± 104 658 ± 99 665 ± 100 

Groundwater 58 ± 29 58 ± 29 58 ± 29 58 ± 29 58 ± 29 58 ± 29 

Precipitation 57 ± 10 62 ± 11 58 ± 10 50 ± 8 65 ± 11 50 ± 8 

Evaporation 90 ± 36 71 ± 28 39 ± 15 15 ± 6 0 0 

L. Ontario inflow 5098 ± 579 5098 ± 579 5098 ± 579 5098 ± 579 829 ± 94 829 ± 94 

H. Harbour outflow 5696 ± 703 5682 ± 702 5699 ± 704 5837 ± 721 1660 ± 205 1779 ± 220 
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A1 Table 2. Dissolved silicon (DSi), soluble reactive silicon (SRSi), and total dissolved phosphorus (TDP) concentrations 

measured at sites 1, 2, 3, and 4 across Hamilton Harbour from 1 m below the surface (epilimnion). Concentrations of DSi and 

SRSi were not significantly different. Epilimnion DSi concentrations between sites were not significantly different. DSi 

concentrations at site 2 were significantly different between the epilimnion and hypolimnion. Epilimnion TDP concentrations 

between sites were not significantly different. TDP concentrations at site 2 were significantly different between the epilimnion 

and hypolimnion. All significant differences were determined by one-way ANOVA at the α = 0.05 level, followed by a Tukey 

HSD test.  

 

Date  

(D/M/Y) 

Concentration (µmol L-1) 

Site 1  

(70270) 

Site 2  

(258) 

Site 3  

(7007) 

Epilimnion DSi SRSi TDP DSi SRSi TDP DSi SRSi TDP 

20/04/16 1.82  1.14 0.82  0.98 2.43  0.93 

4/05/16 0.86  1.04 0.45  1.15 0.79  1.52 

18/05/16 1.02  0.78 2.10  1.16 1.85  1.82 

31/05/16 3.71 3.76 0.85 3.51 3.26 1.37 3.03 2.96 0.71 

14/06/16 3.38 3.99 0.75 7.34  0.57 4.84  0.52 

29/06/16 2.34 3.23 0.73 1.64 1.61 0.62 2.96  1.02 

12/07/16 4.28  1.27 4.50  0.74 5.81 4.94 0.97 

26/07/16 3.78  0.97 2.58 3.29 0.08 4.64  0.65 

11/08/16 9.10 11.15 0.39 10.17  0.51 10.62 10.20 - 

24/08/16 15.03 15.25 0.35 11.85 14.35 0.57 14.45  0.70 

08/09/16 7.06  0.70 4.64  0.33 4.05 3.98 0.41 

20/09/16 9.61  0.10 6.99  0.24 9.37  0.51 

05/10/16 18.18 18.45 1.51 19.27 19.63 1.50 19.01 19.58 1.60 

19/10/16 23.54  1.84 20.46  1.74 19.39  1.24 

04/11/16 22.04  1.31 22.37  1.42 23.16 22.08 1.13 

Mean 8.38  0.92 7.91
 

 0.87 8.43  0.98 

 

Date  

(D/M/Y) 

Concentration (µmol L-1) 

Site 4  

(W3) 

Mean All Sites 

Epilimnion DSi SRSi TDP DSi TDP 

20/04/16 4.45 4.81 0.98 2.38 1.01 

4/05/16 4.95  1.18 1.76 1.22 

18/05/16 2.32  1.32 1.82 1.27 

31/05/16 6.72 7.89 2.34 4.24 1.32 

14/06/16 6.97  1.03 5.64 0.72 

29/06/16 2.35  1.49 2.32 0.96 

12/07/16 4.51 5.90 0.75 4.78 0.93 

26/07/16 4.72 5.58 1.07 3.93 0.69 

11/08/16 10.02 11.69 0.17 9.98 0.36 

24/08/16 11.32  1.55 13.16 0.79 

08/09/16 7.70  0.75 5.86 0.55 

20/09/16 10.13  0.48 9.03 0.33 

05/10/16 24.08 24.83 1.85 20.13 1.61 

19/10/16 21.85  1.87 21.31 1.67 

04/11/16 22.70 22.58 1.30 22.57 1.29 

Mean 9.65  1.21 8.59
 

0.98 
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A1 Table 3. Dissolved silicon (DSi), soluble reactive silicon (SRSi), and total dissolved phosphorus (TDP) concentrations 

measured at sites 1, 2, 3, and 4 across Hamilton Harbour from 1 m above the sediment water interface (hypolimnion), which was 

between 10 and 11 m depth for site 1, between 19 and 23.5 m depth for site 2, between 10 and 11 m depth for site 3, and between 

8.5 and 19 m depth for site 4. Concentrations of DSi and SRSi were not significantly different. Hypolimnion DSi concentrations 

were significantly different between sites 2 and 3. DSi concentrations at site 2 were significantly different between the epilimnion 

and hypolimnion. Hypolimnion TDP concentrations were significantly different between sites 1 and 2 and between sites 2 and  3. 

TDP concentrations at site 2 were significantly different between the epilimnion and hypolimnion. All significant differences 

were determined by one-way ANOVA at the α = 0.05 level, followed by a Tukey HSD test.  

 

Date  

(D/M/Y) 

Concentration (µmol L-1) 

Site 1  

(70270) 

Site 2  

(258) 

Site 3  

(7007) 

DSi SRSi TDP DSi SRSi TDP DSi SRSi TDP 

20/04/16 0.82  0.86 6.29 6.37 0.98 7.40  0.97 

4/05/16 1.33  0.80 1.76  0.87 1.89  0.63 

18/05/16 1.24  1.22 3.60  0.62 2.51  0.84 

31/05/16 4.67  0.96 7.94 10.26 1.14 4.80  0.58 

14/06/16 7.35 8.76 0.54 14.38  1.24 8.11  0.57 

29/06/16 10.27  1.05 14.69  0.97 7.69 7.65 1.08 

12/07/16 12.05 14.92 0.95 27.58 33.69 1.30 13.84  0.94 

26/07/16 20.26 22.15 0.82 23.41 26.51 0.82 14.17 14.04 0.65 

11/08/16 14.27  0.80 32.49 37.08 1.89 17.84  0.83 

24/08/16 23.26  1.34 32.65  2.92 16.92  0.51 

08/09/16 19.58  0.72 31.40 37.47 3.62 14.02  0.53 

20/09/16 18.94 18.35 0.56 44.95  6.54 14.40 14.63 0.77 

05/10/16 18.98  1.25 28.89  2.93 22.11  1.99 

19/10/16 23.42 24.12 1.43 39.64 41.87 2.73 20.29 20.95 1.25 

04/11/16 22.97 22.25 1.46 24.03 23.81 1.32 23.33  1.21 

Mean 13.29  0.98
 

22.25  1.99
 

12.62
 

 0.89
 

 

 

Date  

(D/M/Y) 

Concentration (µmol L-1) 

Site 4  

(W3) 

Mean All Sites 

DSi SRSi TDP DSi TDP 

20/04/16 4.26 4.14 1.02 4.69 0.96 

4/05/16 2.04  0.83 1.75 0.78 

18/05/16 3.23  0.86 2.65 0.88 

31/05/16 7.38  0.94 6.20 0.90 

14/06/16 10.34 12.69 0.70 10.04 0.76 

29/06/16 8.79 4.26 1.07 10.36 1.04 

12/07/16 12.37  1.11 16.46 1.07 

26/07/16 8.83  0.95 16.67 0.81 

11/08/16 12.31 13.75 0.66 19.23 1.12 

24/08/16 15.73 14.10 1.07 22.14 1.46 

08/09/16 34.66 35.07 3.59 24.92 2.12 

20/09/16 10.87  0.38 22.29 2.06 

05/10/16 23.48  1.71 23.37 1.97 

19/10/16 21.05 21.53 1.59 26.10 1.75 

04/11/16 21.43  1.21 22.94 1.30 

Mean 13.12  1.18 15.32
 

1.27 
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A1 Table 4. Wt% Si, total suspended solids (TSS) and RPSi concentrations measured at sites 1, 2, 3, and 4 across Hamilton 

Harbour from 1 m below the surface (epilimnion). Samples were extracted in groups in order to have enough suspended 

particulate matter and the resulting wt% Si is the mean of sample group. RPSi concentrations showed no significant differences 

between the 4 sites or with depth in a one-way ANOVA at the α = 0.05 level. 

Date  

(D/M/Y) 

Site 1 

 (70270) 

Site 2  

(258) 

Wt% Si TSS (mg L
-1

) RPSi 

(µmol L
-1

) 

Wt% Si TSS (mg L
-1

) RPSi 

(µmol L
-1

) 

20/04/16 6.12 6.10 13.29 7.92 4.88 13.75 

4/05/16 5.07 3.25 5.87 7.92 2.17 6.12 

18/05/16 5.07 2.13 3.84 4.89 3.09 5.37 

31/05/16 5.07 1.23 2.23 4.89 1.72 5.37 

14/06/16 7.17 1.96 5.00 5.28 1.97 3.70 

29/06/16 7.17 0.69 1.75 5.28 0.59 1.11 

12/07/16 7.17 1.96 5.00 5.28 1.59 2.98 

26/07/16 7.17 1.27 3.25 5.28 1.07 2.02 

11/08/16 3.38 2.41 2.90 2.96 3.09 3.25 

24/08/16 3.38 0.40 0.48 2.96 0.68 0.72 

08/09/16 3.38 1.09 1.31 2.96 2.39 2.51 

20/09/16 9.49 1.62 5.48 6.59 0.97 2.27 

05/10/16 9.49 0.50 1.68 6.59 1.48 3.48 

19/10/16 9.49 1.26 4.26 6.59 1.18 2.77 

04/11/16 9.49 1.49 5.04 6.59 0.99 2.32 

Mean    4.09   3.85 

 

Date  

(D/M/Y) 

Site 3  

(7007) 

Site 4  

(W3) 

Mean All 

Sites 

Wt% Si TSS  

(mg L
-1

) 

RPSi 

(µmol L
-1

) 

Wt% Si TSS  

(mg L
-1

) 

RPSi 

(µmol L
-1

) 

RPSi 

(µmol L
-1

) 

20/04/16 9.41 3.84 12.85 8.50 4.71 14.25 13.54 

4/05/16 9.41 1.75 5.88 8.50 2.76 8.35 8.06 

18/05/16 6.15 2.73 5.98 4.16 2.44 3.62 4.30 

31/05/16 6.15 1.35 2.95 4.16 2.84 4.20 4.14 

14/06/16 3.50 12.70 15.82 4.61 2.45 4.02 7.13 

29/06/16 3.50 0.50 0.63 4.61 0.98 1.61 1.27 

12/07/16 3.50 1.61 2.00 4.61 1.46 2.39 3.09 

26/07/16 3.50 1.00 1.24 4.61 1.71 2.81 2.33 

11/08/16 3.24 2.63 3.03 3.56 2.76 3.50 3.17 

24/08/16 3.24 1.20 1.38 3.56 2.86 3.62 1.55 

08/09/16 3.24 1.07 1.23 3.56 2.22 2.81 1.97 

20/09/16 6.23 2.15 4.77 5.48 2.20 4.30 4.20 

05/10/16 6.23 0.98 2.18 5.48 0.78 1.52 2.21 

19/10/16 6.23 0.85 1.89 5.48 1.58 3.08 3.00 

04/11/16 6.23 1.33 2.95 5.48 1.37 2.67 3.25 

Mean    4.32   4.18 4.21 
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A1 Table 5. Wt% Si, total suspended solids (TSS) and RPSi concentrations measured at sites 1, 2, 3, and 4 across Hamilton 

Harbour from 1 m above the sediment water interface (hypolimnion), which was between 10 and 11 m depth for Site 1, between 

19 and 23.5 m depth for Site 2, between 10 and 11 m depth for Site 3, and between 8.5 and 19 m depth for Site 4. Samples were 

extracted in groups in order to have enough suspended particulate matter and the resulting wt% Si is the mean of sample group. 

RPSi concentrations showed no significant differences between the 4 sites or with depth in a one-way ANOVA at the α = 0.05 

level. 

Date  

(D/M/Y) 

Site 1 

 (70270) 

Site 2  

(258) 

Wt% Si TSS (mg L
-1

) RPSi 

(µmol L
-1

) 

Wt% Si TSS (mg L
-1

) RPSi 

(µmol L
-1

) 

20/04/16 6.58 5.07 11.88 7.07 3.86 9.73 

4/05/16 5.06 2.24 4.04 7.07 2.01 9.73 

18/05/16 5.06 2.32 4.18 7.46 2.74 7.27 

31/05/16 5.06 6.84 12.33 7.46 2.02 5.36 

14/06/16 6.86 2.15 5.24 3.21 1.25 1.42 

29/06/16 6.86 1.09 2.67 3.21 5.61 6.40 

12/07/16 6.86 1.80 4.39 3.21 0.60 0.69 

26/07/16 6.86 2.26 5.52 3.21 1.20 1.37 

11/08/16 6.71 1.96 4.68 1.29 2.42 1.12 

24/08/16 6.71 1.83 4.38 1.29 1.46 0.67 

08/09/16 6.71 1.18 2.83 1.29 1.09 0.50 

20/09/16 7.89 1.08 3.02 5.76 3.40 6.97 

05/10/16 7.89 1.16 3.27 5.76 1.48 3.03 

19/10/16 7.89 1.71 4.80 5.76 5.09 10.44 

04/11/16 7.89 2.00 5.62 5.76 1.79 3.67 

Mean   5.26   4.56 

 

Date  

(D/M/Y) 

Site 3  

(7007) 

Site 4  

(W3) 

Mean All 

Sites 

Wt% Si TSS  

(mg L
-1

) 

RPSi 

(µmol L
-1

) 

Wt% Si TSS  

(mg L
-1

) 

RPSi 

(µmol L
-1

) 

RPSi 

(µmol L
-1

) 

20/04/16 9.25 4.79 15.78 8.23 4.91 14.38 11.44 

4/05/16 9.25 2.37 7.81 8.23 2.39 6.99 7.09 

18/05/16 7.27 2.95 7.63 6.79 3.28 7.92 6.75 

31/05/16 7.27 1.73 4.48 6.79 2.22 5.38 6.89 

14/06/16 5.38 1.79 3.43 1.26 1.38 0.62 2.68 

29/06/16 5.38 0.69 1.33 1.26 18.61 8.35 4.69 

12/07/16 5.38 5.09 9.75 1.26 1.12 0.50 3.83 

26/07/16 5.38 0.88 1.69 1.26 1.57 0.70 2.32 

11/08/16 10.35 1.55 5.73 3.80 1.57 2.13 3.41 

24/08/16 10.35 0.00 0.00 3.80 1.66 2.25 1.83 

08/09/16 10.35 1.06 3.90 3.80 2.23 3.02 2.56 

20/09/16 10.10 0.98 3.53 6.49 1.76 4.08 4.40 

05/10/16 10.10 0.49 1.75 6.49 0.93 2.14 2.55 

19/10/16 10.10 1.47 5.28 6.49 1.81 4.19 6.18 

04/11/16 10.10 1.39 4.98 6.49 2.11 4.88 4.79 

Mean   5.14   4.50 4.76 
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A1 Table 6. Monthly gross sedimentation downflux, wt% Si, and RPSi flux from May to November 2016. Suspended sediments 

were unable to be collected from site 1 in August and from site 2 in September and October. 

 

Month  Site 1 (9031) Site 2 (9032) 

Wt% Si Down-flux 

(g cm
-2

 day
-1

)
 

RPSi 

(mmol m
-2

 day
-1

) 

Wt% Si Down-flux 

(g cm
-2

 day
-1

) 

RPSi  

(mmol m
-2

 day
-1

) 

May 4.89 27.04 47.05 7.49 22.42 59.81 

Jun. 3.32 33.41 39.50 4.75 21.40 36.22 

Jul. 3.56 31.26 39.61 7.15 9.22 23.49 

Aug.    3.94 14.84 20.79 

Sept. 3.00 39.17 41.78    

Oct. 3.39 15.95 19.23    

Nov. 4.66 43.91 72.94 7.37 82.40 216.35 

 

Month  Site 3 (9030) Site 4 (9033) Mean All 

Sites 

Wt% Si Down-flux 

(g cm
-2

  

day
-1

)
 

RPSi  

(mmol  

m
-2

 day
-1

) 

Wt% Si Down-flux 

(g cm
-2

  

day
-1

)
 

RPSi  

(mmol 

m
-2

 day
-1

) 

RPSi 

(mmol 

m
-2

 day
-1

) 

May 6.26 31.01 69.18 4.37 54.88 85.29 65.33 

Jun. 4.38 12.77 19.93 3.29 18.69 21.92 29.39 

Jul. 5.71 10.91 22.18 3.78 29.80 40.07 31.34 

Aug. 3.88 14.16 19.57 2.80 32.30 32.21 24.19 

Sept. 3.43 21.63 26.38 2.49 28.71 25.45 31.20 

Oct. 3.53 10.83 13.63 3.46 14.58 17.96 16.94 

Nov. 4.36 35.25 54.74 4.14 73.40 108.29 113.08 
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A1 Table 7. Concentrations of DSi, SRSi, and TDP and Si:P ratios measured at WWTP 1. No significant differences were found 

between DSi and SRSi (t-test at the α = 0.05 level). 

 

Date  

(D/M/Y) 

Concentration (µmol L
-1

) Si:P 

DSi SRSi TDP 

04/11/2015 75.06  4.49 16.72 

10/11/2015 60.01 67.26 4.83 12.42 

18/11/2015 63.85  4.63 13.79 

23/11/2015 59.62 67.39 7.37 8.09 

03/12/2015 66.61 70.55 11.62 5.73 

22/12/2015 69.96 75.27 5.30 13.20 

29/12/2015 78.77 82.89 3.41 23.10 

05/01/2016 84.48 86.92 1.94 43.55 

10/02/2016 80.41 83.68 1.79 44.92 

17/02/2016 73.81 75.30 1.16 63.63 

24/02/2016 71.36 72.67 1.40 50.97 

02/03/2016 90.04 89.94 1.28 70.34 

08/03/2016 92.17 98.25 1.04 88.63 

16/03/2016 101.60  1.08 94.07 

23/03/2016 91.29 97.21 2.34 39.01 

30/03/2016 108.25  1.15 94.13 

06/04/2016 105.15 114.78 0.98 107.30 

20/04/2016 91.14 93.59 1.06 85.98 

01/06/2016 57.59 68.99 6.92 8.32 

08/06/2016 55.88 67.51 4.33 12.91 

06/07/2016 44.16 50.57 2.74 16.12 

13/07/2016 47.32  3.55 13.33 

20/07/2016 53.25  3.84 13.87 

27/07/2016 58.90 65.71 4.29 13.73 

03/08/2016 57.58  3.00 19.19 

10/08/2016 52.32 57.85 4.04 12.95 

17/08/2016 73.25 81.72 2.95 24.83 

24/08/2016 68.07 74.53 3.03 22.47 

31/08/2016 70.43  2.22 31.73 

05/10/2016 59.69 61.44 2.81 21.24 

12/10/2016 61.84  3.21 19.26 

19/10/2016 51.90 53.27 7.99 6.50 

26/10/2016 65.81  3.32 19.82 

09/11/2016 67.36  1.89 35.64 

17/11/2016 65.19 68.89 2.40 27.16 

23/11/2016 66.05  1.74 37.96 

30/11/2016 70.28  2.39 29.41 
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A1 Table 8. Wt% Si, total suspended solids (TSS) and RPSi concentrations measured at WWTP1. Samples were grouped by 

month and extracted together. Samples were not collected in September 2016. 

 

Year Month Wt% Si TSS (mg/L) RPSi (µmol L
-1

) 

2015 November  3.53 3.77 4.74 

 December 1.39 8.16 4.05 

2016 January 1.52 1.50 0.81 

 February 3.36 1.60 1.92 

 March 3.12 1.92 2.13 

 April 1.55 1.50 0.83 

 May 2.24 2.38 1.90 

 June 1.77 2.69 1.69 

 July  1.94 1.14 0.79 

 August 2.79 1.16 1.15 

 September    

 October 2.14 0.60 0.46 

 November 1.45 2.01 1.04 
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A1 Table 9. Concentrations of DSi, SRSi, and TDP and Si:P ratios measured at WWTP 2. No significant differences were found 

between DSi and SRSi (t-test at the α = 0.05 level). 

Date  

(D/M/Y) 

Sample 

number 

Concentration (µmol L
-1

) Si:P 

DSi SRSi TDP Mean DSi Mean TDP 

11/11/2015 1 85.86  5.16 69.33 5.22 13.28 

 2 85.97 95.07 5.14    

 3 36.16  5.35    

26/11/2015 1 65.45 70.80 11.75 65.20 11.68 5.58 

 2 65.06  11.53    

 3 65.10  11.77    

06/01/2016 1 77.61 81.70 13.89 78.21 13.67 5.72 

 2 79.71 81.81 13.77    

 3 77.29 80.55 13.36    

03/02/2016 1 63.36  3.03 64.55 3.06 21.09 

 2 64.76 64.40 3.22    

 3 65.12  3.04    

 4 64.98 64.53 2.96    

10/03/2016 1 110.65 113.62 6.83 110.92 6.59 16.83 

 2 109.93  6.37    

 3 109.93  6.56    

 4 113.18  6.61    

07/04/2016 1 117.06 124.10 1.79 118.32 1.74 68.00 

 2 117.60  1.69    

 3 120.30  1.75    

27/04/2016 1 82.01 86.36 4.24 81.34 4.23 19.23 

 2 80.45  4.45    

 3 81.14 86.53 3.90    

 4 81.74  4.32    

26/05/2016 1 68.11  16.80 68.43 17.26 3.96 

 2 68.42  17.13    

 3 67.76  17.56    

 4 69.43  17.55    

22/06/2016 1 56.21 67.27 11.91 55.83 11.94 4.68 

 2 55.52  12.03    

 3 55.72  11.78    

 4 55.88 66.42 12.01    

21/07/2016 1 51.31 61.69 12.15 51.12 12.32 4.15 

 2 51.42  12.75    

 3 50.86  12.19    

 4 50.89  12.19    

18/08/2016 1 66.26 74.68 6.61 65.75 6.68 9.84 

 2 65.36  6.30    

 3 65.48  7.11    

 4 65.88 73.80 6.72    

03/10/2016 1 74.80 82.59 1.43 74.76 1.75 42.72 

 2 75.04  1.93    

 3 74.92  1.80    

 4 74.28  1.85    

03/11/2016 1 40.49 41.52 8.83 41.10 8.05 5.11 

 2 12.10  5.95    

 3 55.94  8.71    

 4 55.87  8.69    
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A1 Table 9. Continued 

Date  

(D/M/Y) 

Sample 

number 

Concentration (µmol L
-1

) Si:P 

DSi SRSi TDP Mean DSi Mean TDP 

30/11/2016 1 67.68  5.99 67.94 6.14 11.07 

 2 68.22  6.25    

 3 67.92 71.92 6.22    

 4 67.92  6.09    
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A1 Table 10. Wt% Si, total suspended solids (TSS) and RPSi concentrations measured at WWTP 2. Grab samples taken on the 

same date were combined and extracted together. 

 

Date (D/M/Y) Wt% Si TSS (mg L
-1

) RPSi (µmol L
-1

) 

26/11/2015 0.56 3.82 0.76 

06/01/2016 0.41 7.75 1.13 

03/02/2016 0.78 16.85 4.67 

10/03/2016 0.43 5.76 0.89 

07/04/2016 0.36 16.60 2.12 

27/04/2016 0.41 13.01 1.90 

26/05/2016 0.39 11.53 1.59 

22/06/2016 0.68 3.54 0.86 

21/07/2016 0.73 2.38 0.61 

18/08/2016 0.52 7.60 1.41 

03/10/2016 0.60 9.05 1.94 

03/11/2016 1.27 19.28 8.69 

30/11/2016 0.43 4.85 0.74 
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A1 Table 11. Concentrations of DSi, SRSi, and TDP and Si:P ratios measured at steel mill intake and one steel mill discharge 

point (contact water). No significant differences were found between DSi and SRSi for either site (t-test at the α = 0.05 level). 

 

Date  

(D/M/Y) 

Concentration (µmol L
-1

) Si:P 

Intake Discharge Intake Discharge 

DSi SRSi TDP DSi SRSi TDP 

02/11/2015 8.73 9.94 1.26 12.28  1.71 6.93 7.18 

09/11/2015 5.04  1.03 9.59 10.27 1.26 4.89 7.61 

16/11/2015 5.13 5.70 1.12 9.18 9.77 1.29 4.58 7.12 

23/11/2015 20.23 10.73 1.13 9.55 10.47 1.85 17.90 5.16 

30/11/2015 8.65 9.79 1.09 12.84 13.72 1.69 7.94 7.60 

07/12/2015 9.77 10.94 1.00 10.41 11.40 1.33 9.77 7.83 

14/12/2015 15.84 16.88 0.95 10.19 11.24 1.29 16.67 7.90 

21/12/2015 9.30 10.44 1.36 12.24 13.24 1.62 6.84 7.56 

28/12/2015    18.20  2.42  7.52 

04/01/2016 10.68 9.48 1.42 13.24  1.18 7.52 11.22 

11/01/2016 11.53  1.63 15.54 14.84 7.17 7.07 2.17 

18/01/2016 9.65 9.34 1.40 11.57  1.03 6.89 11.23 

25/01/2016 9.42  1.11 11.93 11.28 1.13 8.49 10.56 

01/02/2016 7.70  1.07 10.13  1.06 7.20 9.56 

15/02/2016 5.31 4.10 1.38 9.70 8.70 1.13 3.85 8.58 

22/02/2016 4.66 3.63 1.15 6.87 6.07 1.24 4.05 5.54 

29/02/2016 6.12 6.21 1.16 10.06 10.82 1.14 5.28 8.82 

07/03/2016 2.95  0.87 5.98  1.07 3.39 5.59 

14/03/2016 2.19 2.07 0.96 6.33 6.57 1.04 2.28 6.09 

21/03/2016 2.58  0.50 5.54  0.81 5.16 6.84 

28/03/2016 7.55 7.70 0.73 12.49 13.16 0.87 10.34 14.36 

11/04/2016 11.21 11.14 1.17 13.83 14.07 1.06 9.58 13.05 

18/04/2016 4.52  1.02 8.48  1.15 4.43 7.37 

25/04/2016 5.66  0.95 6.79  1.03 5.96 6.59 

16/05/2016 7.90  1.64 9.10  2.06 4.82 4.42 

23/05/2016 6.35  1.43 7.27  0.96 4.44 7.57 

30/05/2016 8.02 9.78 1.34 9.87 11.46 1.86 5.99 5.31 

06/06/2016 9.90 11.99 1.83 10.48 12.46 2.47 5.41 4.24 

13/06/2016 8.03  0.97 10.63  1.23 8.28 8.64 

20/06/2016 8.20 8.11 1.50 12.02  1.79 5.47 6.72 

27/06/2016 12.92  1.12 14.28 16.39 1.35 11.54 10.58 

04/07/2016 12.57  1.04 16.59  1.36 12.09 12.20 

11/07/2016 14.87 14.11 1.32 16.09 17.60 1.63 11.27 9.87 

18/07/2016 12.66 13.48 1.33 15.15 15.34 1.16 9.52 13.06 

25/07/2016 14.11  0.69 18.40 19.29 0.84 20.45 21.90 

01/08/2016 15.09 16.15 0.80 21.43  0.70 18.86 30.61 

08/08/2016 14.78 15.38 0.81 19.41 20.49 1.92 18.25 10.11 

29/08/2016 20.19  0.90 23.21  0.90 22.43 25.79 

05/09/2016 18.37  0.38 22.38 24.43 0.83 48.34 26.96 

12/09/2016 16.34 17.64 0.90 18.40  0.87 18.16 21.15 

19/09/2016 24.02  0.65 23.86 25.81 0.99 36.95 24.10 

26/09/2016 16.36 17.39 1.23 18.94  1.02 13.30 18.57 

03/10/2016 25.68 26.01 1.31 30.28 31.06 1.86 19.60 16.28 

10/10/2016 21.50  1.47 26.54  1.17 14.63 22.68 

24/10/2016 26.70 27.19 1.56 33.27  2.28 17.12 14.59 

31/10/2016 25.54  10.32 33.32  1.62 2.47 20.57 

07/11/2016 22.61 22.44 1.23 25.52  1.43 18.38 17.85 
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A1 Table 11. Continued 

Date  

(D/M/Y) 

Concentration (µmol L
-1

) Si:P 

Intake Discharge Intake Discharge 

DSi SRSi TDP DSi SRSi TDP 

14/11/2016 22.68  1.36 30.15  1.87 16.68 16.12 

21/11/2016 24.63  1.39 29.64 30.79 1.74 17.72 17.03 

28/11/2016 18.18  0.98 21.85  1.13 18.55 19.34 
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A1 Table 12. Wt% Si, total suspended solids (TSS) and RPSi concentrations measured at steel mill intake and one steel mill 

discharge point (contact water). Samples were grouped by month and extracted together. 

 

Year Month Intake Discharge 

Wt% Si TSS  

(mg L
-1

) 

RPSi  

(µmol L
-1

) 

Wt% Si TSS  

(mg L
-1

) 

RPSi  

(µmol L
-1

) 

2015 Nov. 15.27 0.87 4.73 14.37 2.19 11.19 

 Dec. 5.59 0.79 1.57 5.48 1.87 3.65 

2016 Jan. 7.65 1.00 2.73 7.67 2.24 6.12 

 Feb. 13.74 1.21 5.92 14.46 1.76 9.08 

 Mar. 11.62 2.35 9.74 13.23 2.45 11.53 

 Apr. 8.43 3.16 9.48 8.52 2.65 8.04 

 May 5.96 1.69 3.59 6.47 3.27 7.52 

 Jun. 7.09 1.33 3.37 5.99 1.52 3.24 

 Jul. 11.27 1.05 4.21 9.57 1.52 5.18 

 Aug. 10.80 0.39 1.50 4.94 1.74 3.05 

 Sept. 7.54 1.14 3.07 11.36 0.73 2.97 

 Oct. 5.92 2.31 4.86 4.35 3.07 4.76 

 Nov. 7.66 2.10 5.73 5.52 2.92 5.75 
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A1 Table 13. May to November 2016 monthly DSi fluxes ± uncertainty.  A positive value of net uptake indicates net 

assimilation of DSi to RPSi, and negative value for net uptake indicates net dissolution of RPSi to DSi. DSi sources are 

tributaries, Cootes’ Paradise, WWTPs, CSOs, steel mill discharge, groundwater, precipitation, net dissolution, internal loading, 

and Lake Ontario (L. Ontario) inflow. DSi sinks are net uptake, steel mill withdrawal and Hamilton Harbour (H. H.) outflow. 

 

DSi Flux DSi Flux (10
3
  moles day

-1
) 

May Jun. Jul. Aug. 

Tributaries 8.4 ± 3.8 7.3 ± 3.3 5.0 ± 2.3 3.9 ± 1.8 

Cootes’ Paradise 10.4 ± 5.7 13.3 ± 7.3 2.5 ± 1.4 5.1 ± 2.8 

WWTPs 31.1 ± 6.5 22.7 ± 4.8 20.3 ± 4.3 25.0 ± 5.2 

CSOs 0.9 ± 0.9 0.9 ± 0.9 0.9 ± 0.9 0.9 ± 0.9 

Steel mill withdrawal 5.0 ± 1.8 7.1 ± 2.5 9.7 ± 3.4 15.4 ± 5.4 

Steel mill discharge 5.3  ± 1.9 7.6  ± 2.7 10.6  ± 3.7 16.4  ± 5.7 

Groundwater 10.6  ± 7.4 10.6  ± 7.4 10.6  ± 7.4 10.6  ± 7.4 

Precipitation 0.2 ± 0.2 0.2 ± 0.2 0.2 ± 0.2 0.2 ± 0.2 

Net uptake/dissolution 145.7 ± 58.3 69.2 ± 27.7 38.1 ± 15.3 -37.9 ± 15.2 

Internal loading 31.2 ± 12.5 38.7 ± 15.5 41.1 ± 16.4 43.6 ± 17.5 

L. Ontario inflow 67.0 ± 24.4 53.9 ± 19.6 46.7 ± 17.0 14.6 ± 5.3 

H. H. outflow 18.5 ± 4.1 41.3 ± 9.2 59.6 ± 13.3 91.6 ± 20.5 

 

DSi  

Flux 

DSi Flux (10
3
  moles day

-1
) 

Sept. Oct. Nov. 

Tributaries 2.6 ± 1.2 5.5 ± 2.5 5.8 ± 2.6 

Cootes’ Paradise 3.1 ± 1.7 11.4 ± 6.3 12.7 ± 7.0 

WWTPs 28.7 ± 6.0 17.9 ± 3.8 27.3 ± 5.7 

CSOs 0.9 ± 0.9 0.9 ± 0.9 0.9 ± 0.9 

Steel mill withdrawal 12.7 ± 4.4 12.4 ± 4.3 10.5 ± 3.7 

Steel mill discharge 13.3  ± 4.6 13.5  ± 4.7 11.1  ± 3.9 

Groundwater 10.6  ± 7.4 10.6  ± 7.4 10.6  ± 7.4 

Precipitation 0.2 ± 0.2 0.2 ± 0.2 0.2 ± 0.2 

Net uptake/dissolution 42.1 ± 16.8 -60.0 ± 24.0 71.3 ± 28.5 

Internal loading 48.4 ± 19.3 49.1 ± 19.6 34.0 ± 13.6 

L. Ontario inflow 29.8 ± 10.8 41.0 ± 14.9 17.1 ± 6.2 

H. H. outflow 88.5 ± 19.8 132.7 ± 29.7 37.8 ± 8.4 
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A1 Table 14. May to November 2016 monthly RPSi fluxes ± uncertainty. A positive value of net uptake indicates net 

assimilation of DSi to RPSi, and negative value for net uptake indicates net dissolution of RPSi to DSi. RPSi sources are 

tributaries, Cootes’ Paradise, WWTPs, CSOs, steel mill discharge, net uptake, resuspension, and Lake Ontario (L. Ontario) 

inflow. RPSi sinks are net dissolution, steel mill withdrawal, sedimentation, burial and Hamilton Harbour (H. H.) outflow. 

 

RPSi Flux Flux (10
3
  moles day

-1
) 

May Jun Jul Aug 

Tributaries 1.6 ± 0.7 1.4 ± 0.6 1.0 ± 0.4 0.7 ± 0.3 

Cootes’ Paradise 2.0  ± 1.1 2.5  ± 1.4 0.5  ± 0.3 1.0  ± 0.5 

WWTPs 0.7  ± 0.2 0.4  ± 0.1 0.3  ± 0.1 0.6  ± 0.1 

CSOs 0.2  ± 0.2 0.3  ± 0.3 0.3  ± 0.3 0.2  ± 0.2 

Steel mill discharge 3.4  ± 1.2 2.4  ± 0.9 3.5  ± 1.3 2.5  ± 0.9 

Steel mill withdrawal 2.4 ± 0.9 2.4 ± 0.9 3.3 ± 1.2 2.5 ± 0.9 

Net uptake 145.7 ± 58.3 69.2 ± 27.7 38.1 ± 15.3 -37.9 ± 15.2 

Sedimentation 1490.0 ± 461.9 650.2 ± 201.5 784.7 ± 243.2 553.6 ± 171.6 

Resuspension 1309.4 ± 405.9 568.1± 176.1 741.2 ± 229.8 589.5 ± 182.7 

Burial 149.5 ± 46.3 43.3 ± 13.4 2.4 ± 0.7 79.5 ± 24.7 

L. Ontario inflow 10.1  ± 4.8 10.1 ± 4.8 10.1 ± 4.8 10.1 ± 4.8 

H. H. outflow 37.3 ± 12.4 23.0 ± 7.7 16.5 ± 5.5 14.2 ± 4.7 

 

 

RPSi Flux Flux (10
3
  moles day

-1
) 

Sept. Oct. Nov. 

Tributaries 0.5 ± 0.2 1.1 ± 0.5 1.1 ± 0.5 

Cootes’ Paradise 0.6  ± 0.3 2.2  ± 1.2 2.4  ± 1.3 

WWTPs 1.3  ± 0.3 1.3  ± 0.3 2.6  ± 0.6 

CSOs 0.2  ± 0.2 0.2  ± 0.2 0.9  ± 0.9 

Steel mill discharge 3.1  ± 1.1 3.2  ± 1.2 4.3  ± 1.5 

Steel mill withdrawal 2.5 ± 0.9 3.2 ± 1.2 3.4 ± 1.2 

Net uptake 42.1 ± 16.8 -60.0 ± 24.0 71.3 ± 28.5 

Sedimentation 678.4 ± 210.3 365.2 ± 113.2 2309.6 ± 716.0 

Resuspension 649.2 ± 201.2 432.6 ± 134.1 2240.5 ± 694.5 

Burial 19.1 ± 5.9 116.4 ± 36.1 35.1 ± 10.9 

L. Ontario inflow 10.1 ± 4.8 10.1 ± 4.8 1.6 ± 0.8 

H. H. outflow 18.7 ± 6.2 20.3 ± 6.8 6.7 ± 2.2 
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Appendix 2 

 
Uncertainty Analysis  
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A2 Table 1. Water budget uncertainty. ε denotes relative uncertainty as a percent. 

 

Water Source Sources of uncertainty Assigned 

ε (%) 

Reference/Calculation Total ε 

(%) 

Grindstone Creek Current meter 5 Winter (1981) 15 

Stage-discharge 

relationship 

5 Winter (1981) 

Channel bias 5 Winter (1981) 

     

Redhill Creek Current meter 5 Winter (1981) 15 

Stage-discharge 

relationship 

5 Winter (1981) 

Channel bias 5 Winter (1981) 

     

Indian Creek Current meter 5 Winter (1981) 25 

Stage-discharge 

relationship 

5 Winter (1981) 

Channel bias 5 Winter (1981) 

Regression relationship 10 Tanya Long, personal 

communication 

     

Cootes’ Paradise Current meter 5 Winter (1981) 25 

Stage-discharge 

relationship 

5 Winter (1981) 

Channel bias 5 Winter (1981) 

Regression relationship 10 Tanya Long, personal 

communication 

     

WWTPs Flow meter  1 Ministry of the Environment (2008); 

City of Hamilton (2011); Regional 

Municipality of Halton (2011) 

1 

     

CSO MIKE URBAN Model 20 City of Hamilton (2017) 20 

     

Steel Mill  Flow meter 15 Ministry of the Environment and 

Climate Change (2015) 
15 

Groundwater Hydraulic conductivity 

estimation methods 

50 Estimate 50 

     

Precipitation Gage type 2 Winter (1981) 17 

Gage placement 5 Winter (1981) 

Gage density 10 Winter (1981) 

     

Lake Ontario 

Inflow 

Model uncertainty 11.35 Hamblin & He (2003) 11.35 

     

Evaporation Measurement error 10 Winter (1981) 40 

Pan to lake coefficient 15 Winter (1981) 

Areal averaging 15 Winter (1981) 

     

Hamilton 

Harbour Outflow 

Sum of ∆ of all water 

sources divided by total 

discharge 

12.35 Calculated 12.35 
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A2 Table 2. DSi concentration uncertainty. ε denotes relative uncertainty as a percent. 

DSi Source/Sink Sources of uncertainty Assigned 

ε 

Reference/Calculation Total ε 

Grindstone Creek Analytical uncertainty 10 Ministry of the Environment and 

Climate Change (2014) 
30 

Partitioning of DSi and 

RPSi 

20 Conley (1997) 

Redhill Creek Analytical uncertainty 10 Ministry of the Environment and 

Climate Change (2014) 
30 

Partitioning of DSi and 

RPSi 

20 Conley (1997) 

Indian Creek Analytical uncertainty 10 Ministry of the Environment and 

Climate Change (2014) 
30 

Partitioning of DSi and 

RPSi 

20 Conley (1997) 

Cootes’ Paradise Analytical uncertainty 10 Ministry of the Environment and 

Climate Change (2014) 
30 

Partitioning of DSi and 

RPSi 

20 Conley (1997) 

WWTPs Analytical uncertainty 15 Performance of QA/QC samples 20 

Sample storage time 5 Estimated from difference of DSi 

measured in sample stored for 1 

week versus stored for 8 weeks 

CSO Analytical uncertainty 15 Performance of QA/QC samples 80 

Sample storage 15 Estimated from difference of DSi 

measured in sample stored for 1 

week versus stored for 8 weeks 

Spatial uncertainty 50 Estimate 

Steel Mill  Analytical uncertainty 15 Performance of QA/QC samples 20 

Sample storage time 5 Estimated from difference of DSi 

measured in sample stored for 1 

week versus stored for 8 weeks 

Groundwater Analytical uncertainty 10 Ministry of the Environment and 

Climate Change (2014) 
20 

 Spatial uncertainty 10 Difference in DSi between 2 wells 

Precipitation Analytical uncertainty 10 Ministry of the Environment and 

Climate Change (2014) 
80 

 Sampling uncertainty 20 Estimated based on Galloway & 

Likens (1978) 

 Spatial uncertainty 50 Estimated based on Galloway & 

Likens (1978) 

Lake Ontario 

Inflow 

Analytical uncertainty 10 Ministry of the Environment and 

Climate Change (2014) 
25 

Spatial variability 15 Estimated from difference in DSi 

concentration between 2 monitoring 

sites 

Hamilton 

Harbour Outflow 

Analytical uncertainty 15 Performance of QA/QC samples 20 

Sample storage time 5 Estimated from difference of DSi 

measured in sample stored for 1 

week versus stored for 8 weeks 

Internal loading Analytical uncertainty 15 Performance of QA/QC samples 15 
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A2 Table 3. RPSi concentration uncertainty. ε denotes relative uncertainty as a percent. 

 

RPSi Source/Sink Sources of uncertainty Assigned 

ε 

Reference/Calculation Total ε 

Grindstone Creek Analytical uncertainty 10 Ministry of the Environment and 

Climate Change (2014) 
30 

Partitioning of DSi and 

RPSi 

20 Conley (1997) 

Redhill Creek Analytical uncertainty 10 Ministry of the Environment and 

Climate Change (2014) 
30 

Partitioning of DSi and 

RPSi 

20 Conley (1997) 

Indian Creek Analytical uncertainty 10 Ministry of the Environment and 

Climate Change (2014) 
30 

Partitioning of DSi and 

RPSi 

20 Conley (1997) 

Cootes’ Paradise Analytical uncertainty 10 Ministry of the Environment and 

Climate Change (2014) 
30 

Partitioning of DSi and 

RPSi 

20 Conley (1997) 

WWTPs Extraction uncertainty 21 Average difference between 

measured and published value for 

reference material Conley (1998) 

21 

CSO Spatial uncertainty 50 Estimate 86 

Extraction uncertainty 21 Average difference between 

measured and published value for 

reference material (Conley 1998) 

Use of WWTP 2 

concentration 

15 Estimate 

Steel Mill Extraction uncertainty 21 Average difference between 

measured and published value for 

reference material (Conley 1998) 

21 

Lake Ontario 

Inflow 

Extraction uncertainty 21 Average difference between 

measured and published value for 

reference material (Conley 1998) 

36 

Use of Hamilton 

Harbour concentration 

15 Estimate 

Hamilton 

Harbour Outflow 

Extraction uncertainty 21 Average difference between 

measured and published value for 

reference material (Conley 1998) 

21 

Sedimentation Extraction uncertainty 21 Average difference between 

measured and published value for 

reference material (Conley 1998) 

21 
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A2 Table 4. Reactive Si flux uncertainty. ε denotes relative uncertainty as a percent. 

 

Si Flux Sources of uncertainty Assigned 

ε 

Reference/ 

Calculation 

Total DSi 

Flux ε 

Total RPSi 

Flux ε 

Tributaries Discharge 15 See A2 Table 1 45 45 

DSi Concentration 30 See A2 Table 2 

RPSi Concentration 30 See A2 Table 3 

Cootes’ Paradise Discharge 25 See A2 Table 1 55 55 

DSi Concentration 30 See A2 Table 2 

RPSi Concentration 30 See A2 Table 3 

WWTPs Discharge 1 See A2 Table 1 21 22 

DSi Concentration 20 See A2 Table 2 

RPSi Concentration 21 See A2 Table 3 

CSO Discharge 20 See A2 Table 1 100 106 

DSi Concentration 80 See A2 Table 2 

RPSi Concentration 86 See A2 Table 3 

Steel mill intake 

and discharge 

Discharge 15 See A2 Table 1 35 36 

DSi Concentration 20 See A2 Table 2 

RPSi Concentration 21 See A2 Table 3 

Groundwater Discharge 50 See A2 Table 1 70  

DSi Concentration 20 See A2 Table 2 

Precipitation Discharge 80 See A2 Table 1 90  

DSi Concentration 10 See A2 Table 2 

Lake Ontario 

inflow 

Discharge 11.35 See A2 Table 1 36.35 47.35 

DSi Concentration 25 See A2 Table 2 

RPSi Concentration 36 See A2 Table 3 

Hamilton 

Harbour outflow 

Discharge 12.35 See A2 Table 1 22.35 33.35 

DSi Concentration 20 See A2 Table 2 

RPSi Concentration 21 See A2 Table 3 

Internal loading DSi Concentration 15 See A2 Table 2 40  

Temperature 

relationship 

25 Difference in flux 

calculated from lower 

and upper 95% 

confidence intervals 

Net uptake Uncertainties of other 

fluxes 

40 Average relative 

uncertainties of other 

DSi flux except CSO 

and precipitation 

because so small 

40  

Sedimentation RPSi Concentration 21 See A2 Table 3  31 

Catch efficiency 10 Estimated based on 

Boyce et al. (1990) 

Resuspension Uncertainties of other 

fluxes 

31 Same as 

sedimentation  (same 

order of magnitude) 

 31 

Burial Uncertainties of benthic 

flux, sedimentation, and 

resuspension 

31 Same as 

sedimentation and 

resuspension which 

exert larger influence 

than internal loading 

 31 

 


