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Abstract

Simple factoid question answering (QA) is a task, where the questions can be answered
by looking up a single fact in the knowledge base (KB). However, this QA task is difficult,
since retrieving a single supporting fact involves searching many alternatives given a query
expressed in natural language. We use a retrieval-based approach to QA. We decompose
the problem into four sub-problems: entity detection, entity linking, relation prediction,
and evidence integration. Entity detection and linking rely on detecting the entities in a
question and linking them to the candidate entities in the KB. Relation prediction classifies
a question as one of the relation types in the KB. Finally, evidence integration combines
scores from entity linking and relation prediction to predict an (entity, relation) pair that
answers the question. Most of the research community has explored complex neural net-
work architectures for this task without establishing baselines to compare the results with
‘non-neural-network’ approaches. We explore several different models for entity detection
and relation prediction; a few different scoring functions for entity linking and evidence
integration. Our findings show that deep learning does help for the QA task, but not as
much as the research community has portrayed it to be. We also present two simple yet
very competitive baselines: one based on a simple neural network architecture and one
that does not use any neural networks.
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Chapter 1

Introduction

1.1 Problem Definition

Natural language processing (NLP) is one of the major branches in artificial intelligence
(AI) and it focuses on computer understanding and manipulation of human language.
Within NLP, the task of question-answering (QA) refers to building systems that automat-
ically answer questions expressed in a natural language. There are two major paradigms of
question answering: QA over free-text and QA using a knowledge base (KB). QA over free-
text aims at providing the answers to questions formulated in natural language, without
restriction of domain, for example, the Web. On the other hand, QA using a knowledge
base provides answers to questions by looking up facts that are already stored in a knowl-
edge base so the task is essentially to covert the natural language question into a database
query.

This thesis tries to tackle the problem of question answering over knowledge base;
specifically simple factoid question answering. Simple factoid QA refers to questions that
can be answered by looking up a single fact in the knowledge base. There are large
knowledge bases such as Freebase, which contain consolidated knowledge stored as facts,
and extracted from different sources such as free text, tables in webpages or collaborative
input [4]. For example, the question “Where was Sasha Vujacic born” can be answered
by looking up a single fact/triple in Freebase - (‘Sasha Vujacic’, place of birth, ‘Maribor,
Slovenia’). Factoid questions are the most common type of questions observed in various
community QA sites [31]. There is also more complex QA that may involve looking up
more than one fact in the KB to get to the correct answer but we will not be looking
at these questions. For the purpose of this thesis, we will be looking at factoid question
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answering over Freebase on the SimpleQuestions dataset, which is a dataset consisting of
questions that can be answered with a single fact.

1.2 Challenges

Although this task only involves retrieving a single fact in the KB, it is quite challenging in
reality for a couple of reasons. The KB contains millions of entities and queries expressed
in natural language can retrieve many candidate entities that are hard to distinguish. For
example, the entity in the question, “Which city is JFK located in?” can be extremely
hard to find in the KB because there are different nodes corresponding to ‘JFK’ - airport,
film, person, etc. It is also challenging to detect the relation type of a question so that
the correct predicate can be looked up in the KB. There exist different predicates in the
KB referring to a music genre and a film genre but they are difficult to distinguish from a
question phrased in English. For example, the question ‘Which genre is teri meri kahaani
under’ is actually referring to a film genre.

1.3 Approach

Factoid question answering relies on finding a single fact/triple from the knowledge base
that answers the question. We employ a retrieval-based approach to the factoid QA task,
where we decompose the task into four main sub-problems: entity detection, entity linking,
relation prediction, and evidence integration. Figure 1.1 shows the block diagram of our
question-answering system pipeline.

• Entity Detection: Given a question in natural language, this module returns the
entity mention in the text which is used as query in the linking phase to search for
the entity node in the KB. This problem is formulated as a sequence-to-sequence
(seq2seq) task similar to named entity recognition, where the task is to tag the entity
words in the question.

• Entity Linking: Given a query, i.e., the entity mention in the text from the detec-
tion phase, this module tries to link the question to candidate entity nodes in the
knowledge base using an inverted index. This is a search problem where the goal is
to retrieve top candidate entities from the index whose name matches the query.
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Entity	Detection Entity	Linking

Relation	Prediction

Evidence	
Integration

query	
text

top	5	
entities

top	3	
relations

prediction

Inverted	
Index

1. symbols/namesake/named_after
2. aviation/aircraft_model/manufacturer
3. award/award/presented_by

1. m/0f3xg_
2. m/031n7n
3. m/05d9c4
4. m/08cbdd
5. m/07dwg4

(m/0f3xg_,	symbols/
namesake/named_after)		

Question:
who	was	the	trump	ocean	
club	international	hotel	
and	tower	named	after

trump	ocean	club	
international	hotel	and	

tower

Figure 1.1: A block diagram of our QA system pipeline

• Relation Prediction: Given a question in natural language, this module returns the
top candidate relations. This problem is formulated as a large relation classification
task, where the top relations are selected based on the probability score assigned to
each relation class.

• Evidence Integration: Given the top candidate entities and the top candidate
relations, this module combines their score to make the top (entity, relation) pre-
diction. We also evaluate the performance based on metrics such as accuracy and
retrieval-at-k.

Example: Figure 1.1 shows a walk-through example of our system for the question, “who
was the trump ocean club international hotel and tower named after”. The entity detection
phase returns the entity mention as the query - ‘trump ocean club international hotel
and tower’. This query still needs to be linked to the correct entity machine identifier
(MID) in the KB. This is done by creating an inverted index for entities in the Freebase
subset. The index is searched using the query and candidate entities are ranked using a
relevance function to retrieve top candidate entities. Relation prediction on the question
also retrieves the top candidate relations. Finally, the top candidate entities and relations
are cross-linked and the scores from entity linking and relation prediction are combined
to re-rank the possible candidate (entity, relation) pairs. The top ranked pair is selected
as the prediction and compared against the ground-truth which in this case is (m/0f3xg ,
symbols/namesake/named after). As shown in Figure 1.2, this tuple can be easily looked
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up in Freebase to get the entity that contains the answer to the question and we can that
map that entity to its name to get the actual answer - ‘donald trump’.

m/0f3xg_ 

m/0cqt90trump	ocean	club	
international	hotel	

and	tower

object.type.name

donald trump

object.type.name

symbols/namesake
/named_after

m/05qx1
location/location
/containedby

…

…

…

…

…

Figure 1.2: A small snippet of the Freebase graph

1.4 Contributions

There have been two main approaches to factoid QA in the recent past. The first is a more
traditional approach that involves converting the question into a linguistically motivated
representation (e.g., using syntactic and/or semantic parsing), which simplifies the problem
into finding the answer that best fits this representation [30] [1]. More recent approaches
involve retrieving candidate answers from the KB using distributed representations of both
question and answer learned automatically in a data-driven manner by neural networks
(NNs) [31] [12] [27]. Different neural network architectures have been used in the litera-
ture for this task - recurrent NNs, convolutional NNs, memory networks, attention-based
networks, etc.

The main contribution of this thesis is to better understand the task of question an-
swering using a KB. There is a lack of strong baseline scores in the literature to compare
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the results of complex deep learning models. Almost all the work compares their models
to baselines based on random selection. There is also a lack of error analysis done to un-
derstand where our models are doing well or where they are under-performing. Our work
started out by replicating the work done by Ture and Jojic [27], who reported state-of-the-
art accuracy in this task and making the code open-source. Our experiments and analysis
show us where the main complexity of the factoid QA task comes from and where the deep
learning models actually help. Finally, we report a few simple models (with and without
the use of neural networks) that might serve as baselines for the factoid QA research com-
munity. These simple baseline results reveal that deep learning models do help but its
success is over-hyped.

1.5 Thesis Organization

Chapter 2 reviews some of the background concepts regarding neural networks and gives
an overview of related works on factoid question answering in the literature. Chapter 3
presents the datasets and the code for this work. Chapter 4 describes our method and the
experimental results. Chapter 5 describes the error analysis that we performed. Chapter
6 concludes this thesis.
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Chapter 2

Background & Related Work

Most of the work done in the past decade was on the WebQuestions dataset [1] and they
are based on semantic parsing, where a question is mapped to its formal meaning repre-
sentation (e.g., logical form) and then translated to a knowledge base (KB) query [1] [2]
[25]. Although the WebQuestions dataset contained mostly factoid questions, 32% of the
questions were complex and could not be answered with a single relation [29]. The Sim-
pleQuestions dataset was recently introduced by Bordes et al. and it only contains simple
factoid questions. This dataset (75,910 training set questions) is also much larger than the
WebQuestions dataset (3,778 training set questions) and was created with the intention of
testing out the performance of neural networks on this task [4]. Most approaches on this
dataset have used neural networks in various ways and we will briefly describe some of the
approaches in the literature that is related to our work.

First, we will briefly touch on some topics and concepts on neural networks (Section 2.1 -
2.4) that are used in the work covered in this thesis. These components are being briefly
introduced to the reader but they do not provide a detailed description. Please consult the
references or books on the material if more information is needed.

2.1 Fully Connected Networks

In fully connected networks (FCNs), each node in a layer of the neural network is con-
nected to all the nodes in the previous layer. There are weights/parameters for each layer
that are initially randomly initialized, and perform an affine transformation to the input
features. This is followed by a non-linear transformation such as hyperbolic tangent (tanh)
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or rectified linear units (ReLU) to allow the network to approximate complex functions.
FCNs have a fixed input and output size and are usually used for classification tasks to
output a value for each class.

2.2 Word Embeddings

A word embedding, W : w → Rd is a parameterized function that maps a word, w, to a
d -dimensional vector space. The function is a lookup table that indexes a row, n, in the
matrix, θ, for each word [21]:

Wθ(wn) = θn

Word embeddings are learned in an unsupervised fashion over a large corpus of text.
They try to encapsulate the semantic meaning of words by exploiting the idea that words
with similar semantics appear in similar contexts. A feed-forward neural network with one
hidden layer takes words as inputs from a vocabulary, embeds them into a lower dimensional
space and tries to make a prediction in the output layer. The weights are fine-tuned through
back-propagation. The weights of the different layers are combined in different ways to
output the word embeddings [21]. In NLP tasks, the words of the sentence represents the
input sequence where each input is a word embedding. GloVe [23] and word2vec [19] are
two popular word embedding methods. For our task, we used pre-trained GloVe word
vectors from their official website1.

2.3 Convolutional Neural Network

In convolutional neural networks (CNNs), filters are used to convolve over the input layer
producing local connections, where each region of the input is connected to a neuron in
the output. The filters share parameters and are randomly initialized and the values are
tuned using back-propagation.

There are three main types of layers stacked to build a CNN architecture - convolutional
layers, pooling layers and fully- connected layers. Figure 2.1 shows a CNN architecture
used for sentiment analysis of movie reviews. The matrix contains the word embeddings
for each word in the sentence in its rows. The convolutional layer computes features based
on the local connections using filters of different height. We slide the filters over the

1https:// nlp.stanford.edu/projects/glove/
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word embeddings so the width remains the same. The features are then passed through
an activation function (e.g. ReLU) to provide non-linearity. The pooling layer performs a
downsampling operation to pick out a signal. There are different types of pooling operations
but max-pooling is the most popular where the maximum value from the convolutional
feature is selected [6]. Pooling can be thought of as providing ‘location invariance’. For
example, we expect max-pooling to pick out the phrase ‘like this movie’ as a strong positive
signal for the sentiment analysis task and the location of the text is not of much importance
to make a classification. Finally, fully connected layers are used using the features from the
pooling layer as inputs to make the final classification for the movie review. The softmax
function in the final layer normalizes the scores into a probability distribution for the two
classes: positive and negative.

Figure 2.1: Example of convolutional network in sentiment analysis [6]

CNNs compute local features based on word embeddings and learned filters, similar to
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the n-grams representation, but they are more efficient in terms of size. CNNs require fixed
size inputs and outputs, so a few tricks have to be applied to adapt them into NLP tasks
such as padding the sentences to make them of same length. CNNs can also be trained
much faster than FCNs since they have fewer parameters.

2.4 Recurrent Neural Network

In many NLP tasks, we are required to capture a good sentence representation and sen-
tences can be thought of as a sequence of words. However, traditional neural network
accepts only a fixed size input and output and they have no sense of ‘state’ to reason
about previous events to make a decision. Recurrent neural network (RNN) can operate
over sequential input and produce sequential output depending on the task. For example,
named entity recognition has a many-to-many mapping whereas sentiment classification
has a many-to-one mapping. RNNs have become the de-facto baseline model in most NLP
tasks in recent years.

Figure 2.2: An unrolled recurrent neural network [22]

Figure 2.2 shows a vanilla RNN with an input sequence x0, x1, ..., xt and a hidden layer
output sequence h0, h1, ..., ht. For each time step t the RNN cell computes a hidden state,
ht, based on the current input, xt, and the previous cell state, ht−1, parametrized by shared
weights across time sequence, W hx and W hh.

ht = f(W hx · xt +W hh · ht−1)

There are usually fully connected layers that take the hidden layer output from the
RNN and make predictions (not shown in the figure): yt = g(W hy.ht). The input sequence
represents a word embedding for each word in the sentence. Predictions can be made
on each hidden layer output (h0, h1, ..., ht) for sequence-to-sequence tasks or on the last
hidden layer output, ht, that can be thought of as the ‘sentence embedding’ since its state is
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Figure 2.3: Structure of a deep bi-directional RNN [7]

influenced by all previous inputs [22]. RNNs can have a bi-directional structure to process
the sequence in the other direction and it is also possible to go deeper: stack more layers
on the network to give it more expressive power. Figure 2.3 shows the structure of a deep
3-layer bi-directional RNN.

Vanilla RNNs usually have problems capturing long-term dependencies due to a vanish-
ing or exploding gradient problem while training these networks. These problems arise due
to the product of the same weights multiple times during back-propagation. In practice,
variants of RNNs with gated cells such as long short-term memory (LSTM) [14] and gated
recurrent units (GRU) [8] are used. These variants have different modifications inside the
cell, A (as shown in Figure 2.2). They have mechanism to forget irrelevant parts of the
previous state, selectively update the cell and output certain parts of the state. These
complex cells allow the LSTM and GRU to capture long-term dependencies better than
vanilla RNNs.

2.5 Memory Networks

Memory networks [26] are a class of models which combine large memory with learning
component which can read and write to it. They incorporate reasoning via attention over
memory and the model framework is flexible enough to store rich representations of input
in memory. Attention refers to the model outputting a distribution that describes how
the model spread out the amount it cares about different memory positions [20]. In the
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task of factoid QA, the model scales up to store and read the entire knowledge base in
memory. The whole architecture is differentiable and only requires supervision at the final
output, i.e. the model is initialized with random weights and these weights are learned by
back-propagating the loss from the predicted answer.

Figure 2.4: Structure of a single hop end-to-end memory networks from Sumit Chopra’s
slides at NIPS 2015 [5]

Figure 2.4 shows the structure of a single hop end-to-end memory network [26]. There
are four modules: input (I), generalization (G), output (O), response (R). For factoid QA
[4] , the input module pre-processes the question and Freebase and loads up the memory
with the facts. The generalization module is used to extend the memory with Reverb facts.
The output module performs the memory lookups via attention mechanism given the input
to return a supporting fact to answer the given question.

pi = softmax(uTmi)

o =
∑
i

pici

â = softmax(W (o+ u))

To avoid scoring all the stored facts, they perform an entity linking step to generate a
small set of candidate facts. The supporting fact is the candidate fact that is most similar
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to the question according to an embedding model. The response module post-processes
the result of the output module to compute the intended answer but in the factoid QA
case, it just returns the entity and relation of the selected fact.

2.6 Attention-based Encoder-Decoder

Figure 2.5 shows the character-level attention-based encoder-decoder framework proposed
by Golub and He [12].

Figure 2.5: Encoder-decoder architecture from Golub and He[12]

Golub and He [12] encode the question, all the entities and relations/predicates in
Freebase into embeddings using character-level LSTMs. All the embeddings are randomly
initialized and jointly learned during end-to-end training to directly optimize the likelihood
of generating the correct KB query. To predict the entity and relation for a question,
an LSTM decoder with attention and pairwise semantic relevance function is used. The
decoder is initialized with zero vector (h0) and makes the prediction in two time-steps. At
the first time step, the decoder performs entity attentions over the encoded question and
selects the most likely entity based on the relevance function. In the second time step, it
performs predicate attentions over the encoded question and uses the embedding of the
entity (h1) to predict the most likely relation.
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2.7 Conditional Probabilistic Framework

Dai et al. [9] combine a unified conditional probabilistic framework with deep recurrent
neural networks and neural embeddings. They propose a conditional factoid factorization
to predict the most likely entity, e, and relation, r, pair, given the question, q :

p(e, r|q) = p(r|q).p(e|q, r)

Neural networks are used to parametrize p(r|q) and p(e|q, r). They use a GRU for the
relation network to output the most likely relation for a question. The relation is factorized
before the entity since there are fewer relations to consider. They perform entity detection
with a bi-directional GRU (Bi-GRU) followed by a linear-chain conditional random field
(CRF) to find the entity mention in the question. Candidate entities are retrieved based
on n-gram matches with entity name and if the predicted relation exists for that entity
in the KB. Out of the cadidate entities, another GRU is used to predict the entity given
the question and the relation. However, the embeddings for entities are not randomly
initialized but with type vector representation, which is a bag of words representation for
all the predefined types in the KB.

2.8 CNN with Attentive Max-Pooling

Yin et al. [31] performed entity detection using a Bi-GRU CRF model similar to Dai et al.
[9] to find the entity mention in the question. They split the question into entity mention
and question pattern where the entity mention in the question is masked out with a token.
Based on the entity mention and the names of the entities in the KB, entity linking is
performed based on lexical matching to retrieve a set of candidate entities, Ce. Then,
all the triples/facts in the KB that include the entities from Ce are retrieved to form a
fact pool. The entity and predicate pair from all the facts in the pool are matched with
the entity mention and the question pattern and the highest scored pair is chosen as the
prediction to the question.

Figure 2.6 shows the fact selection system architecture, where a candidate fact from
the pool is scored. The entity mention from Freebase and the question is encoded using
a character-level CNN and their similarity is calculated using the cosine score, me. The
relation pattern is encoded using a separate word-level CNN and their cosine similarity,
mr, is computed. Both the CNNs also implement attentive max-pooling, which re-weights
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Figure 2.6: Fact selection system architecture from Yin et al. [31]

the features based on the cosine similarity of the embeddings. The predicted entity and
relation pair is taken from the fact with the highest overall ranking score, st:

st = me +mr + se

where se is the score from the entity linking phase. During training phase, there was
1 positive example and 99 negative examples were sampled from the fact pool to avoid
including too many negative examples.

2.9 Improved Relation Detection with Hierarchical

LSTM

Following the work of the attentive CNN model, Yu et al. [32] used a hierarchical residual
Bi-LSTM (HR Bi-LSTM) on the raw question text to rank all the relations in the KB that
are associated with the entities in Ce. Figure 2.7 shows the HR Bi-LSTM model used for
relation detection. The relations were encoded by concatenating the entire token at the
relation level and also by splitting them into words at the word-level.

The relation detection scores are used to re-rank and prune candidate entities. Then,
they perform relation detection on the formatted question text where the entity mention in
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Figure 2.7: The HR Bi-LSTM model used for relation detection by Yu et al. [32]

the question is masked with a token. Finally, they combine the scores from the entity re-
ranking and the relation detection on formatted question text to rank the candidate (entity,
relation) pairs and the highest ranked pair is the predicted answer. The analysis shows
that their hierarchical architecture helps the model learn different levels of abstraction and
reduces the over-fitting problem.

2.10 Retrieval-based Approach with RNNs

Ture and Jojic [27] formulates the task as two machine learning problems: detecting the
entities in the question, and classifying the question as one of the relation types in the
KB. They perform entity linking by using the entity mention as the query to a search
problem. They use indexes to efficiently search for candidate entities that contain n-grams
of the query and use tf-idf scoring to rank the entities. They also a few tricks such as
early termination in search and relation correction to prune the candidate entity space.
Ture and Jojic experiment with different RNNs and found that Bi-LSTMs performed best
for entity detection and Bi-GRUs performed best for the relation prediction task. Finally,
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the top candidate entity (from the linking phase) and the top relation (from the relation
prediction task) pair is selected as the prediction for the question.
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Chapter 3

Dataset and Code

3.1 Dataset

We demonstrate the effectiveness of our approach on the SimpleQuestions dataset [4],
which is a part of the bAbI project from Facebook AI Research1 that was created for
better text understanding and reasoning. The dataset contains factoid questions (also
referred to as simple questions) and the corresponding ground-truth fact. Each line in the
dataset contains the question text and (subject, predicate, object) triple from Freebase that
answers the question. However, the dataset does not identify the entities in the question,
it only provides the Freebase identifier (MID). The dataset is split into training (75,910
questions), validation (10,845 questions) and test sets (21,687 questions) and also provides
two subsets of Freebase. There are 1,837 unique relation types in the dataset. Table 3.1
shows a few samples of questions in the SimpleQuestions validation set.

In first-order factoid question answering, questions can be answered by looking up a
single subject-predicate pair in the knowledge base, in our case - Freebase [3]. Freebase is
a structured knowledge base in which entities are connected by predefined predicates or
“relations”. All predicates are directional, connecting from the subject to the object. Table
3.2 shows a few samples of Freebase triples. A triple (subject, predicate, object) describes
a fact; e.g., (m/07f3jg, people/person/place of birth, m/0565dl) [31]. The predicate is self
explanatory - it refers to the place of birth.

However, the subject and object entities have to be mapped to their names to get a
meaningful fact in real-life. Table 3.3 shows a few samples of the entities mapped to their

1https://research.fb.com/downloads/babi/
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Table 3.1: A few samples of questions in the SimpleQuestions validation set

Entity Relation Answer Question

m/0f3xg
symbols/namesake

/named after
m/0cqt90

Who was the trump ocean club inter-

national hotel and tower named after

m/07f3jg
people/person

/place of birth
m/0565d where was sasha vujai born

m/02p vkx
people/person

/profession
m/04gc2

What was Seymour Parker

Gilbert’s profession?

Table 3.2: A few samples from Freebase

Subject Predicate Object

m/07f3jg sports/pro athlete/teams m/09wc0v

m/07f3jg people/person/place of birth m/0565d

m/02p vkx people/person/place of birth m/0xmk3

m/02p vkx people/person/gender m/05zppz

names in Freebase using the predicate type.object.name or common.topic.alias. In this
example, the subject entity (m/07f3jg) refers to the basketball player, Sasha Vujacic and
the object entity (m/0565dl) refers to his birth place - Maribor, Slovenia.

Table 3.3: A few samples of entities mapped to their names in Freebase

Entity Name

m/0f3xg trump ocean club international hotel and tower

m/07f3jg sasha vujacic

m/02p vkx seymour parker gilbert

m/0565d slovenia, maribor

m/05zppz man

The SimpleQuestions dataset also provides two subsets of Freebase to make the task
easier. Table 3.4 shows the statistics of the Freebase subsets. In comparison, the entire
Freebase data dump is much larger and contains 1.9 billion triples2. In this paper, we have

2https://developers.google.com/freebase/
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only reported the results with the 2M-subset of Freebase.

Table 3.4: Statistics of the Freebase subsets provided with the SimpleQuestions dataset

2M-subset 5M-subset

# entities 2,150,604 4,904,397

# relations 6,701 7,523

# triples 14,180,937 22,441,880

Text pre-processing: we perform minimal text processing to the questions and the entity
names in Freebase. The test is lowercased, stripped off accents and tokenized using the
NLTK Penn Treebank tokenizer. For example, the text ‘Sasha Vujačić’ gets converted
to ‘sasha vujacic’ and the text ‘What was Seymour Parker Gilbert’s profession?’ gets
converted to ‘what was seymour parker gilbert ’s profession ?’.

3.2 Dataset for entity detection

As mentioned before, the SimpleQuestions dataset does not provide the ground truth for
the entities in the question so we had to back-project the name of the entity MID from
Freebase to create a training set. We used the names file (FB5M.name.txt) from Dai et al.
[9]3 that contains the name (type.object.name) and alias (common.topic.alias) predicate for
the entities from Freebase. We split the question and the entity name into tokens. First
we try to do exact matching on the tokens but if there are no matches found, we do fuzzy
matching to assign entity labels to a question token that match the entity name token with
low Levenshtein distance. Table 3.5 shows a few samples from the entity detection dataset.

Following from the previous example, back-projection maps the question “where was
sasha vujacic born” to the tags [O O I I O] where I represents an entity word and O
represents a non-entity word. Since ‘sasha vujacic’ is the name of the entity in question,
the words ‘sasha’ and ‘vujacic’ are marked as entity words. Creating the training set for
entity detection is a difficult task since there is no consistent way to map an entity MID to
a name. There are different predicates that lead to a name literal for an entity in Freebase.
In our case, we could not find the name or alias mapping for 611 entities in Freebase, so
we skipped those questions.

3https://github.com/zihangdai/cfo
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Table 3.5: A few samples from the back-projected entity detection dataset

Question Entity Labels

who was the trump ocean club inter-

national hotel and tower named after
O O O I I I I I I I O O

where was sasha vujacic born O O I I O

what was seymour parker

gilbert ’s profession ?
O O I I I O O

3.3 Code

Our code is open-source on GitHub4. The implementation uses Python 3, the deep learning
framework, PyTorch and the text processing package, torchtext.

4https://github.com/salman1993/BuboQA
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Chapter 4

Method and Results

We briefly discussed our approach in the introduction chapter. Figure 1.1 showed how
the different components fit together in our question-answering system pipeline. In this
chapter, we will dive deeper into each of these components and look at the different models
or techniques that we have experimented with and also provide the results to compare the
performance of each method.

4.1 Entity Detection

In this section, we describe how we do entity detection - the process of detecting entities
in the question so that we can query the index later to link the correct entity MID. The
query is formed in two steps: first, tag each word in the question as entity or not and
second, combine the predicted entity words to form a query. The entity detection task is
a seq2seq machine learning task, where both the input and output represents a sequence,
for example, named entity recognition. We have experimented with two models for this
task: recurrent neural networks, and conditional random field (CRF), as implemented in
Stanford Named Entity Recognizer (NER).1

4.1.1 RNN

A RNN naturally models dependencies among all words in the input sequence (i.e. ques-
tion) without any feature engineering but suffer from long-term dependency problem. We

1https://nlp.stanford.edu/software/CRF-NER.shtml
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have used variants of RNNs - LSTM and GRU, which are better at handling long term de-
pendencies. They can learn contextual features that are useful for the task, while learning
to ignore irrelevant parts. Figure 4.1 illustrates the different layers of the entity detec-
tion model for the question (after pre-processing): ‘where was sasha vujacic born’. The
beige colored boxes represent the embedding layer where each input word is mapped to a
300-dimensional GloVe embedding2. The green colored boxes represent the recurrent layer
that combines the current word embedding with the hidden layer representation from the
previous word to compute the hidden layer representation for the current word. Finally,
the blue colored boxes represent the fully-connected (FC) layers that project the hidden
representation of the final recurrent layer to the output space (entity, not-entity).

where was sasha

O O I

vujačić born

I O

Figure 4.1: Illustrating the different layers of the entity detection model

We experimented with different model architectures and hyper-parameters and found
that 2 layer bi-directional LSTM worked the best. Table 4.1 lists some of the parameters
that we tuned on the validation set using a random search. Listing 4.1 shows the RNN
architecture that achieved the best validation set F1-score for our entity detection task.
The model takes in a batch of questions as input that contain the indices of the words
that appear in the question text. The embedding layer maps the word indices to the
embedding space. The LSTM outputs a hidden state for each word which is then mapped
to the output space through linear layers followed by ReLU activation, dropout and batch
normalization layers. The last layer has 4 outputs instead of 2 because there are two extra
tokens - ‘unk’ and ‘pad’ . The ‘unk’ token is not used but is provided by default by the
torchtext package that we used for pre-process the dataset. The ‘pad’ token is required

2https://nlp.stanford.edu/projects/glove/
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Table 4.1: Some important parameters for the RNN that were tuned on the validation set

Parameters Type Range

RNN type factor (LSTM, GRU)

Learning rate float (1e-6, 1e-2)

Number of layers int (1, 5)

Hidden layer size int (100, 500)

Dropout float (0.1, 0.8)

Gradient clipping float (0.2, 0.7)

Batch size factor (32, 64, 128)

for mini-batch gradient descent. Our models benefit from batching since it leads to faster
convergence by taking more advantage of the GPU memory.

Ent i tyDetect ion (
( embed ) : Embedding (59480 , 300)
( rnn ) : LSTM(300 , 200 , num layers=2, dropout =0.3 , b i d i r e c t i o n a l=True )
( dropout ) : Dropout (p = 0 . 3 )
( r e l u ) : ReLU ( )
( hidden2tag ) : Sequent i a l (

( 0 ) : L inear (400 −> 400)
( 1 ) : BatchNorm1d (400 , eps=1e−05, momentum=0.1 , a f f i n e=True )
( 2 ) : ReLU ( )
( 3 ) : Dropout (p = 0 . 3 )
( 4 ) : L inear (400 −> 4)

)
)

Listing 4.1: Entity detection model architecture

Implementation details: For training the models, we used the Adam optimizer to op-
timize the negative log-likelihood loss with default parameters and a learning rate of 1e-4.
The model ran for 30 epochs with early termination with a patience parameter of 5 epochs.
We also do gradient clipping if the norm goes over 0.6 to avoid exploding gradient problem
in RNNs.
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4.1.2 CRF

The Stanford Named Entity Recognizer (NER) is a tool that can label sequences of words
into four classes - person, organization, location, not-entity. It extracts features such as
current/previous/next word, POS tag, character n-gram, etc. and trains a conditional
random field (CRF) model. A CRF is a conditional sequence model which represents
the probability of a hidden state sequence given some observations. It can do sequence
modeling, allowing both discriminative training and the bi-directional flow of probabilistic
information across the sequence. [11]

We trained the Stanford NER on the training set and labelled the test set questions.
The questions were tagged into the four classes, but we considered the three class labels
(person, organization, location) as entity, so ultimately, there were two classes - entity,
not-entity.

4.1.3 Results

Table 4.2 summarizes the results of the models on the entity detection task. The precision,
recall and F1-score are evaluated on the token span level. For example, a true positive
span means that the predicted entity token span exactly matches the ground truth from
the back-projected dataset. The results show that RNN performs the best on the test set
with F1-score of 91.51%. However, the CRF results are comparable and perform only a
little worse. Our model effectiveness is lower than the F1-score reported by Ture and Jojic
[27] but we cannot make a direct comparison between these two scores since they skip
some questions in the dataset (personal communication with the author). The asterisk in
the dataset column in Table 4.2 indicates that the dataset created for entity detection are
different.

Table 4.2: Results for the entity detection task

Model Dataset Precision (%) Recall (%) F1 score (%)

RNN validation 91.79 92.77 92.28

RNN test 91.07 91.94 91.51

CRF validation 90.65 89.89 90.27

CRF test 90.47 89.88 90.17

RNN (Ture & Jojic) validation (*) 94.1
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4.2 Entity Linking

After entity detection, we can identify the entity words in the question and obtain a query
but the main objective is to select the correct entity in the KB. This section describes how
we use the query to link to the entity MID in Freebase.

Creating the indexes: In order to make the knowledge base searchable by a given
query, we built three indexes: a names index, an inverted entity index, a graph reachability
index. The names index maps all the entity MIDs in the Freebase subset to their names
in the names file mentioned in Section 4.1. The inverted entity index maps n-grams of an
entity for n ∈ {1, 2, 3} to the entity MID. For example, if we have an entity MID ‘m/07f3jg’
with name ‘sasha vujacic’, the inverted index will add the MID to the postings list of three
terms - ‘sasha vujacic’ for n = 2, and ‘sasha’ and ‘vujacic’ for n = 1. A graph reachability
index maps each entity node in the Freebase subset to all nodes that are reachable by a
single relation (one hop away). The indexes are created using dictionaries in Python and
then dumped as pickle for faster loading.

Early termination: When we form the query, we iterate over the n-grams of the
entity words in decreasing order of n. Early termination stops searching for entities for
smaller values of n if we already found candidate entities. For example, if our query ‘sasha
vujacic’ for n = 2 finds candidate entities, then we will terminate our search and only
include those entities. Therefore, this prunes the entities that would have been otherwise
retrieved for the queries ‘sasha’ and ‘vujacic’ for n = 1.

Ranking entities: Given a query and all the possible entities in Freebase, we split
up the query into n-grams and use those n-grams to search the inverted index. Candidate
entity MIDs are retrieved from the index and appended to a list, Ce and checked for the
early termination condition. The entities in the candidate list, Ce are scored by a function
and then ranked in terms of descending order. We explore a few ways to score candidate
entities in the following sub-sections:

4.2.1 Fuzzy matching

We used the fuzzywuzzy3 package to compute string matching scores between the query
and a candidate entity name. The package uses Levenshtein Distance to calculate the
differences between sequences. We mainly used two functions from the package: ratio(),
which is a simple similarity score, and partial ratio(), which is a similarity score based

3https://github.com/seatgeek/fuzzywuzzy
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on substring matching to check if one string is included in the other. We used ratio()
to compute string matching score between the candidate entity name and the query -
denoted s-query in Table 4.3. We used partial ratio() to compute substring matching
score between the candidate entity name and the question - denoted p-question in Table
4.3 (note that we are doing partial matching on the question and not the query).

We experimented with other functions and parameters in the package as well, but we
do not report results in this paper since they did not seem to improve the results.

4.2.2 Inverse document frequency (idf)

To compute the idf, we take the n-grams of the query text in decreasing order of n, i.e.
n ∈ {3, 2, 1}. For example, our query is ‘sasha vujacic’ composed of two terms. Then, we
get the query ‘sasha vujacic’ for n = 2, ‘sasha’ and ‘vujacic’ for n = 1 (given that early
termination does not occur). The idf score is calculated on each term of the query and
summed up to form the total idf score.

idf(t) = log(
N

nt
)

where, N represents the total number of entities, and nt represents the number of entities
containing the term t.

The idf term for a term in the query, t, with respect to the document collection, D, is
inversely proportional to the document frequency of that term. This is important since the
idf score ranks rarer terms higher which improves entity ranking. For example, there may
be some other entities that contain the name ‘sasha’ in Freebase but very few entities that
contain ‘vujacic’ in their name so in this example, we would expect the MID ‘m/07f3jg’ to
be ranked higher which is the right thing to do.

We experimented with tf-idf as well, where the term frequency was the number of times
the candidate entity appeared in C. However, including the tf did not make any difference
so we excluded them from the results.

4.2.3 Weighted combination

We took the above features (s-query, p-question, idf) and trained a logistic regression
classifier to try to predict the correct entity. Then, we took the coeffiecients (wi) and the
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intercept (b) of the classifier to create a scoring function.

score = w1.(squery) + w2.(pquestion) + w3.(idf) + b

This score is denoted as combined in Table 4.3.

4.2.4 Results

Table 4.3 compares the retrieval-at-k results for the similarity functions on the validation
set, based on the query from entity detection using RNN. The results show that there is
little difference in the retrieval scores no matter what similarity function is used. What
is surprising is that even a weighted combination of the features tuned by the logistic
regression classifier hardly gives us any gains. We explore the reason behind this further
in the error analysis chapter. For the rest of the paper, we report results using s-query as
the similarity function for entity linking.

Table 4.3: Comparison of different similarity functions for entity linking on the validation
set

Similarity Ret@1 Ret@5 Ret@20 Ret@50 Ret@100

s-query 64.00 78.64 84.86 88.09 90.09

p-question 63.89 79.10 85.51 88.67 90.50

idf 62.63 77.90 84.45 87.67 89.88

combined 65.16 80.09 86.05 88.95 90.74

4.3 Relation Prediction

Relation prediction is the task of predicting the relation type of the qestion. For ex-
ample, for the question “where was sasha vujacic born”, the relation is ‘people/person/-
place of birth’ referring to the place of birth. The predicate/relation is given in the dataset
and there are 1,837 unique relation types in the dataset. Therefore, the objective is to do
large scale classification with 1,837 possible labels and to assign a relation type to the
question.
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4.3.1 RNN

Similar to the previous model, we use LSTM and GRU to model dependencies among
words in the question. Since this is not a tagging task, we only need to use the last hidden
layer output from the RNN to make the prediction. Figure 4.2 shows the different layers of
the relation prediction model and similar to the entity detection model, the beige colored
boxes map the words to the GloVe embeddings and the recurrent layer goes over the entire
sequence and the predictions are made based on the last hidden layer of the RNN.

where was sasha vujačić born

people/person/place_of_birth

Figure 4.2: Illustrating the different layers of the relation prediction model

We experimented with different model architectures and hyper-parameters and found
that 2 layer bi-directional GRU worked the best. We picked the model architecture and
parameters by random search by following a similar approach to the RNN model in entity
detection. The only difference is we use the RNN here to encode the question by using
only the last hidden layer of the RNN here to make a classification. Listing 4.2 shows the
RNN architecture that achieved the best validation set accuracy for relation prediction.
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Re l a t i o nC l a s s i f i c a t i o n (
( embed ) : Embedding (61767 , 300)
( encoder ) : Encoder (

( rnn ) : GRU(300 , 200 , num layers=2, dropout =0.3 , b i d i r e c t i o n a l=True )
)
( dropout ) : Dropout (p = 0 . 3 )
( r e l u ) : ReLU ( )
( out ) : Sequent i a l (

( 0 ) : L inear (400 −> 400)
( 1 ) : BatchNorm1d (400 , eps=1e−05, momentum=0.1 , a f f i n e=True )
( 2 ) : ReLU ( )
( 3 ) : Dropout (p = 0 . 3 )
( 4 ) : L inear (400 −> 1838)

)
)

Listing 4.2: Relation prediction model architecture

4.3.2 CNN

From a human standpoint, relations can be deduced from the question patter or from the
use of certain words. For example, questions of the type, “where was entity born” is likely
to be linked to the relation ‘people/ person/place of birth’. This intuition led us to believe
that CNNs may be a good choice to model the relation prediction task. CNNs cannot
model sequences but they are good at extracting local features by sliding the filters over
the word embeddings. We used the CNN model from Kim [15]. Our model is a little
simpler since we only use a single static channel instead of the multi-channel technique
described in the paper. Figure 4.3 shows a diagram of the model architecture from the
paper [15]. Listing 4.3 lists the model configuration that we used. The embedding layers
projects the word indices to word embeddings. The word embeddings are passed through
three convolutional layers followed by ReLU activation, max-pooling and dropout, before
the linear layer projects the pooled-features to the output space. Each convolutional layer
has 200 filters, stride of 1, filter height of 2, 3, 4 respectively and zero-padding of 1, 2, 3
respectively.
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Figure 4.3: CNN model architecture from Kim [15]

Re la t i onPred i c t i on (
( embed ) : Embedding (59480 , 300)
( conv1 ) : Conv2d (1 , 200 , k e r n e l s i z e =(2 , 300) ,

s t r i d e =(1 , 1 ) , padding=(1 , 0 ) )
( conv2 ) : Conv2d (1 , 200 , k e r n e l s i z e =(3 , 300) ,

s t r i d e =(1 , 1 ) , padding=(2 , 0 ) )
( conv3 ) : Conv2d (1 , 200 , k e r n e l s i z e =(4 , 300) ,

s t r i d e =(1 , 1 ) , padding=(3 , 0 ) )
( dropout ) : Dropout (p = 0 . 5 )
( f c 1 ) : L inear (600 −> 1838)

)

Listing 4.3: CNN model architecture for relation prediction

4.3.3 Logistic Regression

We also used the LogisticRegression classifier from the scikit-learn package4 with default
parameters. Logistic regression is a regression model where the dependent variable is
categorical. Since we have multiple classes, the model uses the one vs. rest scheme for

4http://scikit-learn.org/stable/
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training. We run logistic regression and report results on two types of features extracted
from the questions:

tf-idf on unigrams and bigrams: tf-idf means term-frequency times inverse document-
frequency. We used the CountVectorizer and TfidfTransformer classes in sciki-learn to
extract unigram and bigram features from the question.

word2vec and top 300 relation words: We split up the words in the question and
averaged the word2vec embeddings to obtain a vector representation for the sentence. Out-
of-vocabulary words were set as zero vector. We also split up the words in the relation class,
for example, the relation ‘people/person/place of birth’ was split up into the words [people,
person, place, of, birth] and made a vocabulary of the top 300 relation words. Then, we
obtained a bag of words representation of the question from these top 300 relation words
and concatenated the vector to the averaged word embeddings. The concatenated vector
formed the features for the question.

We have experimented with feature engineering and tried out other representations
such as different ranges of character and word n-gram combinations of bag-of-words and
tf-idf, but they did not perform better so we have not reported their results in this paper.

4.3.4 Results

Table 4.4 reports the performance of the different models discussed in this chapter on the
relation prediction task. The results show that CNNs perform slightly better than RNNs
on this task. However, they both perform much better than logistic regression. This tells
us that these deep learning models are significantly better than logistic regression in the
task of relation prediction.

One thing to notice here is that logistic regression does better on the test set than
the validation set. This is due to the fact that we used logistic regression with default
parameters so there were no parameters to tune on the validation set. As a result, we used
the (training + validation) set data for training when we tested on the test set. However,
we only used the training data when we tested on the validation set. This is not the case
for RNNs and CNNs where we used only the training data to test both on the validation
and test set, since there were many parameters to tune.
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Table 4.4: Results for relation prediction

Model Dataset Accuracy(%) Retrieval@3(%) Retrieval@5(%)

RNN validation 81.77 93.59 95.73

RNN test 81.32 93.52 95.46

CNN validation 82.58 93.84 95.79

CNN test 82.09 93.66 95.59

LR (tf-idf) validation 72.36 84.67 87.58

LR (tf-idf) test 72.64 85.39 88.16

LR (w2v+rel) validation 70.63 85.70 89.12

LR (w2v+rel) test 71.34 86.11 89.63

RNN (Ture & Jojic) validation (*) 81.6

4.4 Evidence Integration

Using the top m entities and their entity linking scores, and the top n relations and their
relation prediction scores, we combine the scores to output the final prediction in this
module [24].

Given the all the possible combinations of the (entity, relation) pairs, we look up the
graph reachability index to check if this combination of (entity, relation) exists in the KB.
We prune all the combinations that do not exist in the KB. After that, we score each
(entity, relation) pair using a log-linear scoring model. Given the entity linking score, sel,
and the relation prediction score, srp, the log-linear score is:

score(e, r) = sel(e)
α ∗ srp(r)β

We tuned the parameters, α and β, on the validation set and selected α = 0.7 and
β = 0.1. All the (entity, relation) pairs are then ranked in descending order of their score.

4.4.1 Entity node indegree

However, we found that there are many pairs with the same score since there can be many
entities (over hundreds) in the KB with the same entity name. Therefore, we considered
the entity node indegree in the KB to break these ties. For (entity, relation) pairs with
the same score, we broke the ties by doing a secondary sort on the indegree count of the
entity node in the KB.
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Table 4.5: Results comparing the effect of secondary sorting on entity node indegree on
the validation set when top 50 entities were crossed with top 5 relations

EntDet RelPred Indegree Accuracy Ret@2 Ret@3 Ret@inf

RNN RNN TRUE 72.69 79.32 81.37 85.91

RNN RNN FALSE 71.29 78.26 80.25 84.21

RNN CNN TRUE 72.66 79.46 81.36 85.88

RNN CNN FALSE 71.28 78.37 80.23 84.19

RNN LR TRUE 65.85 72.91 75.16 80.10

RNN LR FALSE 64.65 71.98 74.15 78.61

CRF RNN TRUE 71.30 77.85 79.86 84.06

CRF RNN FALSE 70.17 76.78 78.86 82.57

CRF CNN TRUE 71.36 77.98 79.88 84.07

CRF CNN FALSE 70.31 76.99 78.92 82.60

CRF LR TRUE 64.85 71.68 73.91 78.47

CRF LR FALSE 64.00 70.88 73.07 77.17

4.4.2 Results

Table 4.5 reports the results of different models with and without secondary sorting on
indegree when the top 50 entities were crossed with the top 5 relations on the validation set.
The results show that secondary sorting on the entity node indegree improves the retrieval
scores. We follow the evaluation method by Bordes et al. [4] and mark a prediction as
correct if both the entity and the relation are the same for that question in the ground
truth. The main evaluation metric used is accuracy, which is the same as retrieval-at-1
(Ret@1).

We experimented with different hits on entities and relations and found that accuracy
improves at higher depths. This is due to the fact that there can be many entities with
the same name so sometimes the correct entity is retrieved at a greater depth. Table
4.6 reports the results for different entity detection and relation prediction models on the
test set when the evidence of top 50 entities were combined with the top 5 relations.
The best model combination is RNN + CNN (RNN for entity detection and CNN for
relation prediction). However, CRF + CNN also produces competitive results. CRF +
LR is a model with no ‘non-neural-network’ baseline which under-performs due to the
ineffectiveness of LR compared to RNN and CNN. The results show that the deep learning
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Table 4.6: Evidence integration results on the test set when different models and number
of top entities and relations are considered

EntDet RelPred Ret@1 Ret@2 Ret@3 Ret@inf

RNN RNN 71.4 78.48 80.4 85.25

RNN CNN 71.54 78.54 80.53 85.35

RNN LR 65.52 72.9 75.01 80.36

CRF RNN 70.47 77.37 79.08 83.69

CRF CNN 70.54 77.43 79.29 83.78

CRF LR 64.83 72.01 74.07 78.92

models are important at relation prediction but much less important at entity detection.
Another finding is that CNNs are slightly better or atleast perform as well as RNNs, which
means that the relations are likely predicted by certain patterns in the question, and not
by taking into accounts the dependencies in the sequence.

4.4.3 Final Results

Finally, we compare our results with other models in the literature. Table 4.7 compares
end-to-end evaluation of the state-of-the art models to our models on the SimpleQuestions
test set.

The table results show that our model outperforms complex neural network models
such as memory networks from Bordes et al. and the encoder-decoder framework from
Golub and He. What is surprising is that our ‘non-neural-network’ model of CRF + LR
also outperforms the memory networks for this task. Our simple retrieval based approach
based on RNN and CNN get us an accuracy of 71.54%, and seems to be performing better
than the complex neural network model and rich features used by Lukovnikov et al. [18].
This model is 5.5% behind the best reported result on this task from Yu et al. As a side
note, we were unable to reproduce the result reported by Ture and Jojic and we have
doubts that those results are a true comparison to any of the other methods in the table.
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Table 4.7: Comparison with state-of-the art models for this task on the SimpleQuestions
test set

Model Description Accuracy (%)

Baseline random guess 4.9

Bordes et al. [4] memory networks 62.7

Golub and He [12]
character based

encoder-decoder
70.9

Lukovnikov et al. [18]
end-to-end learning

using neural embeddings
71.2

Dai et al. [9]
conditional probabilistic

framework
75.7

Yin et al. [31] attentive max-pooling 76.4

Yu et al. [32] HR-BiLSTM 77.0

Ture and Jojic [27] LSTM and GRU 86.8

Our approach RNN and CNN 71.54

Our approach CRF and CNN 70.54

Our approach CRF and LR 64.83
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Chapter 5

Error Analysis

In this chapter, we try to gain insights into the type of mistakes our approach produces in
an attempt to improve our model in the future. We perform our analysis at two different
stages of the pipeline: after entity linking and at the end after evidence integration.

5.1 Entity Linking

Table 4.3 in the entity linking section showed that the choice of similarity function did
not have much of an effect on the retrieval results. After inspection, we realized that this
was because all the similarity functions were getting the same questions right due to exact
matches and missing the other ones.

To understand why this is the case, we used the correct entity names as query in the
entity linking phase - we call this the ‘gold’ query text. In reality, it is not possible to have
such query text after entity detection since the questions do not always mention the entire
entity name. Using the ‘gold’ query text on the validation set, we counted the number of
entities that had the exact name as the query. Table 5.1 shows the cumulative density sum
of exact match counts.

Then, using the ‘gold’ query text and the ‘s-query’ similarity function, we performed
entity linking on the validation set. Table 5.2 shows the number of exact matches, partial
matches and retrieval rate at different hits. A name was considered to be a partial match
if the fuzzywuzzy.ratio() between the name and the query was above 0.6. Compared to the
histogram above, the retrieval results seem to line up perfectly. At each hit, our method
seems to be getting all the exact matches and plus random matches from greater depths.
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At hits = 1, we get all exact matches accounting for 67.6% and around 6.8% matches due
to random selection from hits=2,3,...,∞. This becomes more as number of hits increases.
For example, at hits=20, we 90.6% exact matches and only 1.9% due to random selection
from hits=21,22,...,∞.

Table 5.1: The cumulative density sum of exact match counts with the ‘gold’ query text
on the validation set

Hits 1 2 3 4 5 10 15 20

Cum. Density (%) 67.66 76.23 80.16 82.49 84.11 87.61 89.43 90.63

Table 5.2: Statistics of number of exact, partial matches with retrieval rate at different
hits for the ‘squery’ function with the ‘gold’ query text on the validation set

Hits # exact match # partial match Retrieval (%)

1 10774 0 74.46

2 14258 2090 81.57

3 16818 4149 85.10

4 18955 6110 86.72

5 20841 7971 87.73

10 28508 16080 90.33

15 34748 22989 91.78

20 40130 29293 92.54

We repeated this analysis with other similarity functions and the query text from our
entity detection using RNNs. The results showed similar pattern and we came to the
conclusion that better features were required to disambiguate between entities with the
same name as the query. We explain some of the other ideas that we have for future work
in the next chapter.

5.2 Evidence Integration

We performed error analysis using RNN for entity detection and RNN for relation pre-
diction when top-50 entities and top-5 relations were considered for evidence integration
(sorting on indegree) on the validation set. Our main goal was to understand the causes
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of error by our approach. We inspected the questions that were retrieved in the second
position (hits = 2) but not in the top position (hits = 1). We found that there were 733
such questions. Table 5.3 shows the cause, counts and percentage of the different errors.
The results tell us that entity linking is the biggest source of error.

Table 5.3: Statistics of errors of validation set questions that were retrieved in the second
position but not the top

What went wrong? Count Percentage

Both MID and relation wrong 61 8.3%

Correct MID, wrong relation 324 44.2%

Correct relation, wrong MID 348 47.5%

We also inspected the questions that were retrieved in the third position (hits = 3) but
not in the first or second position and there were 205 such questions. Table 5.4 shows the
statistics for the different errors and the results show that entity linking becomes an even
bigger source of error at greater depths accounting for more than 75% of these mistakes.

Table 5.4: Statistics of errors of validation set questions that were retrieved in the third
position but not in the first or second position

What went wrong? Count Percentage

Both MID and relation wrong 22 10.7%

Correct MID, wrong relation 29 14.2%

Correct relation, wrong MID 154 75.1%

We manually inspected some of the questions that were retrieved in the second position
but not the first. Table 5.5 shows a few samples that were retrieved in the second position
with the cause and the reason for the errors in the top position.

For questions where we got the correct relation and the wrong MID, we noticed that it
was due to two main reasons: incorrect linking or incorrect query. Incorrect query is due
to the errors propagated from the entity detection phase. For incorrect linking, we noticed
that in almost all cases, both the MIDs had the same name and our approach was unable
to disambiguate the correct entity from the incorrect one. For example, there are over
20 entities in KB with the name ‘charlie chaplin’ so the question ‘which films did charlie
chaplin direct?’ becomes really difficult to answer. From the question, we can understand
the question is likely talking about someone in the film industry but there still could be
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multiple entities who meet that criteria. This raises a philosophical question of whether
we are actually wrong in this case just because the ground truth does not contain that
answer. For questions where we got the correct MID but not the relation, we found many
of them were quite hard to distinguish even by humans. For example, the question ‘which
release was reading on’ is referring to a relation ‘music/release track/recording’ but our
classifier predicted the relation ‘music/release track/release’. For questions where we got
both the MID and the relation wrong, we noticed that it was due a combination of the
reasons noted above or due to incorrect evidence combination where we score an incorrect
pair higher than the correct pair. We also noticed that incorrect evidence combination
usually occurs due to incorrect relation prediction where the incorrect relation is scored
much higher than the correct relation.
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Table 5.5: Sample questions that were retrieved in the second position with the cause and
reason of errors in the top position

Cause Reason Question

Both MID

and relation

Same entity name but different MID.

Relation predicted ‘music/release/track’

instead of ‘music/artist/track’.

what is a track name

from the the corrs

Both MID

and relation

Incorrect evidence combination.

Correct linking.

Relation predicted ‘location/location/

containedby’ instead of ‘location/

location/contains’.

which prairie style

house in chicago

is located on sheridan

road

Only MID

Incorrect query - ‘cbs’.

Top entity retrieved referred to ‘cbs

films inc’ but correct entity referred

to ‘columbia broadcasting system’.

what is a film

produced by cbs

Only MID Incorrect linking - same entity name.

what group of people

were involved in the

siege of paris

Only MID Incorrect linking - same entity name.
which films did charlie

chaplin direct?

Only relation

Indistinguishability.

Relation predicted ‘influence/influence

node/influenced by’ instead of

‘influence/influence node/influenced’

who was influenced

by lewis black
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Chapter 6

Conclusion

6.1 Future Work

The error analysis performed after entity linking and evidence integration points to entity
disambiguation in entity linking as the biggest source of error. Only considering lexical
match on the surface form does not give our method enough power to distinguish between
two entities with the same name. Hence, one direction for future work is to include richer
features from Freebase that give us more information about the entities:

• We can use a neural model, such as StarSpace1, to learn entity embeddings in Free-
base. In StarSpace [28], the embeddings of all entities and relation types are learnt
in two ways: one for predicting tail entity given head entity, one for predicting head
entity given tail entity. Afterwards, we can use another train another model to pick
the entity embedding that links best to the question.

• We can include more information from Freebase fields such as the predicate ‘com-
mon.topic.notable types’ can be used to extract the type of entities, for example,
scientist, businessman, actor, etc. Dai et al. [9] used a bag-of-words representation
for the type information to encode the entities and Lukovnikov et al. [18] used the
type information and name and encoded the entity embeddings with a GRU.

Relation prediction accounted for more than 40% of the errors for questions retrieved
in the second position. To improve relation classification, we can perform a multi-stage

1https://github.com/facebookresearch/StarSpace
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retrieval, where initially we can use our current method to retrieve the top 10 candidates.
In the next stage, we can adopt a Siamese network style architecture similar to Yin et al.
[31] where both the question and the relation is encoded using a neural network and their
features are combined to make a prediction. The relation name can be encoded using the
entire relation name and also by splitting the relation into tokens to give more expressive
power.

Another direction of improvement is in entity detection by reducing the amount of
errors that occur due to incorrect queries. We could use NeuroNER [10], the current state-
of-the-art model for named- entity recognition, to do entity detection and that should
improve our queries and therefore, entity linking.

6.2 Summary

In this thesis, we attempted to tackle the factoid QA task on the SimpleQuestions dataset,
where the questions can be answered by retrieving a single fact from Freebase. We used a
retrieval-based approach and converted the problem into subtasks namely: entity detection,
entity linking, relation prediction and evidence integration. We experimented with different
models for the entity detection and relation prediction task with the aim of trying to
condense down to simplest possible models that perform really well on this task. The
experimental results show that neural networks help a lot in the relation prediction task
but not so much in entity linking. We also experimented with different scoring functions
to rank entities during linking and with a log-linear model to combine evidence scores from
entity linking and relation prediction. Our main contribution from this work is establishing
two strong baselines for the factoid QA task: one using a simple neural network architecture
and one without using any neural networks. We believe these two models will be helpful
to the community to compare the performance of future models. We also performed error
analysis which revealed the difficulty of the task and also a weakness of our approach.
We were linking entities mostly based on exact name matches and we need a richer set of
features to disambiguate entities - we keep this as a direction for future work.
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